
Multi-Type Nearest and Reverse Nearest Neighbor Search :
Concepts and Algorithms

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Xiaobin Ma

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

Shashi Shekhar

Name of Faculty Adviser(s)

February 2012

c© Xiaobin Ma 2012

Acknowledgments

This work represents the culmination of many years of work, and would never have

been completed without the support and contributions of many people. First and

foremost I would like to thank my academic adviser, Professor Shashi Shekhar for in-

valuable guidance, enormous patience and unwavering support in all respects. With-

out his patient support it is not possible to make this dissertation a reality. He not

only helped provide the insight, patience, and knowledge necessary to accomplish

successfully but also taught me the approaches to do research, write paper and give

presentations.

I would like to thank all members of my committee, Professor Jaideep Srivastava,

Professor Mohamed Mokbel and Professor Gediminas Adomavicius, for their time in

reviewing my work and giving suggestive advices. I would also thank Professor Hui

Xiong, Professor Yan Huang, Dr. Chengyang Zhang and Pusheng Zhang for their

discussions about the work and reviewing the papers.

I owe more thanks and love than anyone could possibly imagine to the people

- my parents, Kanchu Ma and Zhifang Wang, my grand parents Mingshan Wang

and Changli Bai, and my parent-in-law Renkui Lu. They have been encouraging me

during the studies as they always do in my life.

My deepest thanks and love to my wife Jiping, and my son Kevin and daughter

Lillian. They bring the warmness and happiness to my life and work, which solidly

support my long time study.

I would like specially thank Kimberly Koffolt, who helped to make me a better

writer and presenter. She always patiently reads and polishes every paper I wrote. I

also owe too many thanks to my colleagues from spatial database group in University

of Minnesota and friends Betsy George, Pradeep Mohan, Mike Evans, Yu Liang,

Xiuzhen Cheng, Dechang Chen, Weili Wu, Chang-Tien Lu, Xinping Zhang, Zhihong

i

Yao, Yu Ming and Ningsheng Huang. Without their friendship and help, this work

would not have been accomplished.

Finally, I would like to thank the University of Minnesota Computer Science &

Engineering for providing me the best equipment and facilities. Special thanks to the

system staff who establish and maintain the very efficient computing environment.

ii

Dedication

To my parents, Jiping, Kevin and Lillian

iii

Abstract

The growing availability of spatial databases and the computational resources to ex-

ploit them has led to Geographic Information Systems (GIS) of increasing complex-

ity. At the same time, users’ expectations of location-based services are also grow-

ing, which means these services must be able to handle ever more complex queries.

This thesis investigates methods that expand the scope of traditional database search

methods for answering location-based queries in today’s computing environment. Tra-

ditionally, location-based services and other applications have relied heavily on two

concepts: the nearest neighbor search (known also as the proximity, similarity, or

closest point search) and the reverse nearest neighbor search.

Given a query point q and a set S of points in metric space, the nearest neighbor

(NN) search finds a point p in S such that the distance from q to p is shortest. An

example NN query might be “where is the closest post office to my hotel”. Numerous

variants of the NN search, including the all-nearest-neighbor, group nearest neighbor

and K-closest neighbor search among others, also play a critical role in location-based

services.

Related to the classic NN query problem is the Reverse Nearest Neighbor (RNN)

query problem, which is normally used to find the “influence” of a point on the

database. In applications such as decision support systems, RNN search is widely

used to make business decisions. For example, it is used to find the influence of

a new supermarket on a neighborhood by finding how many residences have this

supermarket as their nearest neighbor.

One fundamental limitation of traditional NN and RNN search queries in today’s

computing environment, however, is their inability to consider more than one feature

type. For example, a NN search can determine the closest post office to a hotel, but

not the closest post office, gas station and grocery store, for a traveler who wants the

shortest path that starts at a hotel and passes through a post office, a gas station,

iv

and a grocery store. Likewise, classic RNN searches that cannot account for the

influence of more than one feature type may be of limited value for decision-makers

in competitive business settings.

In this thesis, we attempt to expand the scope of traditional database search

methods by exploring the effect of multiple feature types on nearest neighbor and

reverse nearest neighbor search queries. We first formally define the notion of the

Multi-Type Nearest Neighbor (MTNN) search. Given a query point and a collection

of spatial feature types an MTNN query finds the shortest tour for the query point

such that one instance of every feature type is visited during the tour. For example,

the shortest tour which starts at a hotel and passes through a post office, a gas

station, and a grocery store. We propose an R-tree based solution exploiting a page

level upper bound for efficient computation in clustered data sets and finding optimal

query result, and compare our method to RLORD, an existing method which assumes

a fixed order of feature types, by analyzing the cost model and experimenting.

We then research the effect of multiple feature types on real world applications by

extending the MTNN search to spatio-temporal road networks. We model the road

networks as a time aggregated multi-type graph, a special case of a time aggregated

encoded path view. Based on this model, we formalize the BEst Start Time Multi-

Type Nearest Neighbor (BESTMTNN) query problem and present new algorithms

that give the best start time, a turn-by-turn route and shortest path in terms of least

travel time for a given query.

Finally, we study how multiple feature types affect the reverse nearest neighbor

search. Traditional RNN searches consider only the effect of the feature type that the

query point belongs to. A Multi-Type Reverse Nearest Neighbor (MTRNN) query

problem is formalized to capture the notion of finding the influence of a query point

and other objects that belong to multiple other feature types in the search space. In

other words, the MTRNN query finds all the objects that have the query point and

one point from every feature type as their MTNN nearest neighbor. We show that

the MTRNN can yield dramatically different results compared to the classic RNN

search.

v

Contents

List of Figures x

List of Tables xi

1 Introduction 1

1.1 Overview . 5

2 Multi-Type Nearest Neighbor Search : Concepts and Algorit hms 6

2.1 Introduction . 6

2.2 Problem Formulation . 10

2.3 R-Tree Based Page-Level Pruning Algorithm 11

2.3.1 First Upper Bound Search . 13

2.3.2 R-Tree Search . 13

2.3.3 Subset Search . 13

2.4 Comparison of PLUB and RLORD . 14

2.4.1 Comparison by Example . 14

2.4.2 Comparison by Cost Models 16

2.5 Experimental Results . 19

2.5.1 The Experimental Setup . 19

2.5.2 A Performance Comparison of PLUB and RLORD With Different

Feature Types . 21

2.5.3 The Effect of Data Set Density On Performance of PLUB and

RLORD . 22

2.5.4 Effect of Between-Cluster Compactness Factor on Performance of

PLUB and RLORD . 22

vi

2.5.5 Effect of In-Cluster Compactness Factor on Performance of PLUB

and RLORD . 24

2.6 Summary . 24

3 Multi-Type Nearest Neighbor Query on Spatio-Temporal Roa d Networks 26

3.1 Introduction . 26

3.2 Basic Concepts and Problem Formulation 29

3.3 BESTMTNN Algorithm . 31

3.3.1 BESTMTNN-Related Properties 32

3.3.2 Time Aggregate Multi-Type Graph (TAMTG) 34

3.3.3 Partial Route Growth . 35

3.3.4 BESTMTNN Algorithm . 38

3.3.5 An Example of BESTMTNN Algorithm 41

3.4 Experimental Evaluations . 42

3.4.1 The Experimental Setup . 43

3.4.2 Scalability of BESTMTNN with Respect to Feature Types . . . 44

3.4.3 The Effect of Number of Points in Feature Types on The Perfor-

mance . 45

3.4.4 The Effect of Different Lengths of Query Time Windows on Per-

formance . 46

3.4.5 Effect of Different Lengths of Time Series on Performance . . . 47

3.5 Summary . 47

4 Multi-Type Reverse Nearest Neighbor Search 49

4.1 Introduction . 49

4.2 Preliminaries . 55

4.2.1 Problem Formulation . 56

4.2.2 One Step Baseline Algorithm for the MTRNN Query 58

4.3 Multi-Type Reverse Nearest Neighbor Algorithms 58

4.3.1 Preparation Step : Finding Feature Routes 60

4.3.2 The Filtering Step : R-tree Node Level Pruning 64

4.3.3 Refinement Step: Removing False Hit Points 76

4.4 Complexity Analysis . 80

4.4.1 Cost of Baseline Algorithm . 80

vii

4.4.2 Cost of MTRNN Algorithm . 82

4.5 Experimental Evaluations . 84

4.5.1 Settings . 84

4.5.2 Evaluation Methodology . 86

4.5.3 Experimental Results . 88

4.6 Summary . 96

5 Conclusions and Future Work 98

5.1 Major Results . 99

5.2 future Research Directions . 100

Bibliography 102

viii

List of Figures

2.1 Multi-type nearest neighbor illustration 7

2.2 R-tree based MTNN algorithm . 12

2.3 A running example for PLUB and RLORD 14

2.4 Experiment setup and design . 19

2.5 Scalability of PLUB and RLORD in terms of feature types 21

2.6 Performance of PLUB and RLORD on different densities of data sets . . 22

2.7 Effect of between-clusters compactness factor 23

2.8 Effect of in-cluster compactness factor 24

3.1 Properties related to BESTMTNN query 33

3.2 Partial route growth . 36

3.3 BESTMTNN algorithm . 39

3.4 An example of BESTMTNN . 41

3.5 Experiment setup and design . 43

3.6 Scalability in terms of feature type . 45

3.7 Effect of number of points . 46

3.8 Performance under different time window sizes 47

3.9 Effect of time series length . 48

4.1 Influence of two feature types . 51

4.2 A use case . 51

4.3 MTRNN algorithm . 59

4.4 Find greedy MTR . 62

4.5 Find feature routes . 63

4.6 Feature routes on the divided space 64

4.7 Three pruning scenarios . 64

ix

4.8 Pruning one node . 67

4.9 Open region pruning . 68

4.10 One node pruning algorithm . 71

4.11 A filtering example . 73

4.12 Filtering algorithm . 75

4.13 Refinement algorithm . 77

4.14 Adapted MTNN algorithm . 79

4.15 Experiment setup and design . 87

4.16 Performance of baseline and MTRNN algorithms w.r.t. number of feature

types . 88

4.17 Performance w.r.t. number of feature routes 89

4.18 Scalability of MTRNN w.r.t. number of feature types on synthetic data

sets . 90

4.19 Scalability of MTRNN w.r.t. number of feature types on real data sets . 90

4.20 IO cost of MTRNN w.r.t. number of feature types 91

4.21 Scalability of MTRNN w.r.t. cardinality of feature types 92

4.22 Scalability of MTRNN w.r.t. cardinality of feature types (Large Data Sets) 92

4.23 Scalability of MTRNN w.r.t. Cardinality of the Queried Data Sets . . . 93

4.24 Scalability of MTRNN w.r.t. Cardinality of the Queried Data Sets (Large

Data Sets) . 93

4.25 Filtering ratio of MTRNN w.r.t. number of feature routes 94

4.26 Change of RNNs w.r.t. number of feature types 95

x

List of Tables

2.1 Calculation Results of PLUB Leaf Node Sequences 15

4.1 Summary of Symbols . 55

4.2 Data Set Description . 85

xi

Chapter 1

Introduction

The growing availability of spatial databases and the computational resources to ex-

ploit them has led to Geographic Information Systems (GIS) of increasing complexity.

Meanwhile, the growing popularity of location-based services is raising users’ expec-

tations of these services, which means these services must be able to handle ever

more complex queries. This thesis investigates methods that expand the scope of

traditional database search methods for answering location-based queries in today’s

computing environment.

Traditionally, location-based services and other related applications have relied

heavily on the concepts of the nearest neighbor search and reverse nearest neighbor

search. Given a query point, the problem of the Nearest Neighbor (NN) search in

database society [4–6, 10, 12, 23, 29, 42, 45, 49, 51, 52, 57, 61] is to find the closest point

in a given data set from a huge database. A traditional NN query can be stated as

follows: given a point set P = {p1, p2, ..., pn} and a query point q in a vector space,

the NN query finds a point pk such that the distance from q to pk ∈ P is minimized

among the distances from q to pi ∈ P . Many application domains make use of the NN

query. For example, in Geographic Information Systems (GIS), “find the nearest gas

station from my location” is a typical query that uses a NN query technique. The NN

problem was first introduced into the spatial database community by Roussopoulos

and Kelly in their pioneering paper [49]. Following their work, extensive research

were done to tackle classic nearest neighbor search problem and many of the variants

such as k-closest pair search [14,15,24,25,52,71], k-nearest neighbor search [16,51,57],

all nearest neighbor search [11,13,24,25,75], group nearest neighbor search [44], and

1

continuous nearest neighbor search [61]. All of these problem formulations focus on

one or two object types and try to find relationships among object points within one

or two object types. However, for many application domains, including location-based

services, the assumption of only one or two data object types is severely limiting. In

many cases, it is the relationship among multiple types of objects that’s important.

For example, a traveler may want to know not the closest post office to a hotel, but

rather the shortest tour that passes through a post office, a gas station, and a grocery

store.

Related to the classic NN query problem is the Reverse Nearest Neighbor (RNN)

query problem [3,17,18,21,28,30–32,46,56,58,59,62–66,68–70,73]. The RNN search

finds all points that have the given query point as their nearest neighbor. This type

of search is normally used to find the “influence” of a point on the database. It was

first formalized to capture the notion of influence set by Korn and Muthukrishnan in

their work [31]. Given a data set P and a query point fq,q, an RNN query finds all

objects in P that have the query point fq,q as their nearest neighbor. RNN queries

have widely been used in Decision Support Systems, Profile-Based Marketing, etc.

For example, before deciding to build a new supermarket, a company needs to know

how many customers the supermarket may potentially attract. In other words, it

needs to know the influence of opening a supermarket. An RNN query can be used

to find all residential customers that live closer to the new supermarket than any

other supermarket. Following the work [31], an on-line algorithm [58] for dynamic

databases and an index structure was devised to answer RNN queries by Yang and

Lin in [17]. Similar to NN queries, RNN problems have been studied in an extended

family containing different variations, for example, monochromatic and bichromatic

RkNN queries [3, 68], visible RkNN problem [21], aggregate RNN over data stream

[32], reverse top-k query problem [65], MaxBRNN problem [66], continuous RNN

[28, 43, 64, 67–69], and Reverse Skyline Queries [18]. As with the traditional NN

problems, however, all the current RNN problems consider the influence of a single

feature type. In some applications, this limitation may significantly affect the quality

of results and lead to incorrect business decisions.

In this thesis, we address the need for expanded NN and RNN search capabilities

in spatial databases and GIS-related applications by studying the effect of multiple

feature types on search problems, i.e., the relationship among more than two types of

objects. We have formalized the notion of searching the nearest neighbor in objects

2

of multiple feature types as an MTNN query problem [40]. Given a query point and

a collection of spatial features, an MTNN query finds the shortest tour for the query

point such that one instance of each feature is visited during the tour. For example,

a tourist may be interested in finding the shortest tour which starts at a hotel and

passes through a post office, a gas station, and a grocery store. The MTNN query

problem differs from the traditional nearest neighbor query problem in that there

are potentially many objects for each feature type and the shortest tour should pass

through only one object from each feature type. We have studied a generalized MTNN

query problem and provided algorithms that find the optimal solution, the shortest

route, to the problem. Based on an R-tree index, we have designed an algorithm which

exploits a Page-Level Upper Bound (PLUB) for efficient pruning at the R-tree node

level. These algorithms are based on a page-level pruning strategy. R-tree page-level

pruning method nicely compliments the instance-level pruning method, since it makes

better use of the R-tree index for reducing I/O cost. After discussion of our PLUB

pruning strategy, we have given a cost model for the PLUB algorithm. Experimental

results show that the PLUB algorithm can answer MTNN query within reasonable

time.

We then extend our MTNN approach to spatio-temporal road networks using

queries exhibiting important spatio-temporal properties [38]. For example, a traveler

may be interested in finding a shortest route in terms of least travel time with the

best start time between 9:00 am and 11:00 am from his house through one grocery

store (with a stay of 1 1/2 hours), one electronics store (1 hour stay) and one post

office (arriving before 4:00 pm; 1/2 hour stay) and returning home before 8:00 pm.

This query illustrates some important properties. First, the traveler is trying to find a

route with instances from different feature types (grocery store, an electric appliances

store etc). Second, the route to be found is a closed route from the query point back

to the query point. Third, the traveler is interested in not only the route but also the

best start time. Considering the variability of traffic patterns at different times on

road networks, this best start time could differ for different time windows. Therefore,

the query asks for answers containing not only spatial features like the route but also

temporal features. Fourth, the query itself contains spatial and temporal features.

For example, the query point and different interested locations are spatial features.

The best start time between 9:00 am and 11:00 am and length of stay at each location

are temporal features. We have formalized this query problem as a BEst Start Time

3

Multi-Type Nearest Neighbor (BESTMTNN) query problem [38] and proposed a

label-correcting based algorithm to solve it. This algorithm prioritizes the spatio-

temporal partial routes with current least travel time. It takes a user-specified query

that involves spatio-temporal features such as query time window sizes for all features

and planned stay time interval at a location and gives a turn-by-turn route and the

best start time in terms of least travel time.

Finally we have studied how multiple feature types influence the RNN search and

formalized the Multi-Type Reverse Nearest Neighbor (MTRNN) query problem [41].

This work was motivated by the observation that a set of points may be influenced

by more than one type of data, not just a single type as is assumed in the classic

RNN query. For example, in the query “find all residential customers that live closer

to the new supermarket than any other supermarket”, some customers may want

the opportunity to shop for groceries, electronics, and wine. Here, what influences

customers’ choice of grocery store is the shortest route through one grocery store,

one electronics store, and one wine shop rather than the shortest route to the grocery

store alone. In this case, the RNN query needs to consider the influence of feature

types besides grocery store. As the above example shows, there is a need to also

consider the influence of other feature types in addition to that of the given query

point.

After formalizing the MTRNN problem, we propose an on-line algorithm con-

sisting of three major steps, preparation, filtering, and refinement. The preparation

step finds feature routes for the filtering step by applying a greedy algorithm that

uses R-tree indexes from all feature types during searching. The filtering step elim-

inates R-tree nodes that cannot contain an MTRNN by utilizing feature routes and

then retrieves all remaining points that are potential MTRNNs to form a candidate

MTRNN point set. We describe two pruning techniques, closed region pruning and

open region pruning, to eliminate all R-tree nodes and points that cannot possibly

be MTRNN points. The refinement step removes all the false hit points by three re-

finement approaches among which the final approach is to search the MTNN of each

candidate point. Our experiments on both synthetic and real data sets demonstrate

that typical MTRNN queries can be answered by our algorithms within reasonable

time.

4

1.1 Overview

Chapter 2 addresses the MTNN search problem. We first discuss the motivation of

the work and formalize the MTNN problem. Then we present an R-tree based page

level pruning technique, called page level upper bound (PLUB) pruning, to prune the

irrelevant R-tree nodes. The remaining points are further filtered to find the optimal

solution by using the point level algorithm. Next, we compare the difference of our

method with the RLORD algorithm, using a specific example and cost model. We

then discuss the experiment results, showing the strength and weakness of our MTNN

algorithm.

Chapter 3 extends the MTNN search problem to spatio-temporal road networks.

We first formalize the BESTMTNN problem. Next we identify the special properties

related to a BESTMTNN query and describe a special case of time-aggregated en-

coded path view which we call the Time-Aggregated Multi-Type Graph (TAMTG);

we then present our partial route growth approach designed to accommodate the

BESTMTNN query as well as a TAMTG-based label-correcting algorithm that finds

the optimal solution for the BESTMTNN problem. Finally, experimental setup and

experimental results are presented to show the computational performance of the

BESTMTNN query algorithm on spatio-temporal road networks.

In Chapter 4, we introduce the new notion of the MTRNN query. We first formal-

ize the MTRNN problem and present a brute force algorithm as a baseline algorithm.

Following the definition of the MTRNN problem, we propose two filtering methods,

closed region pruning and open region pruning, to prune the search space and three

refinement approaches to remove the false hit points. We prove that our pruning and

refinement approaches never introduce any false hit and false miss. Next, we formally

analyze the complexity of the algorithms by presenting an analytical cost model. The

experiment results show that the filtering and refinement based algorithms are several

magnitudes faster than brute-force alternatives and give query results in reasonable

time.

5

Chapter 2

Multi-Type Nearest Neighbor Search :
Concepts and
Algorithms

Given a query point and a collection of spatial features, a multi-type nearest neigh-

bor(MTNN) query finds the shortest tour for the query point in a way such that only

one instance of each feature is visited during the tour. For example, a tourist may be

interested in finding the shortest tour which starts at a hotel and passes through a

post office, a gas station, and a grocery store. The MTNN query problem is different

from the traditional nearest neighbor query problem in that there are many objects

for each feature type and the shortest tour should pass through only one object from

each feature type. In this chapter, we propose an R-tree based solution exploiting

a page level upper bound for efficient computation in clustered data sets and find-

ing optimal query result. We compare our method with another recently proposed

method, RLORD, which was developed to solve the optimal sequenced route(OSR)

query [54]. In our view, OSR represents a spatially constrained version of MTNN.

Experimental results are provided to show the strength of our proposed algorithm

and design decisions related to performance tuning.

2.1 Introduction

Widespread use of spatial search engines such as Google Maps and MapQuest is

leading to an increasing interest in developing intelligent spatial query techniques.

6

b11

b14

b12

g15
g14

w14
w13

w11

w10

w1

q

g9

b4

g11

g1

w9

w2

b1

b2

g4

g5

w8 g2
w15

w3

g13

b15

g12g10

w12

w7

w4

w6

w5

b9

b8

b5
b10

b3

g16
g3

g7

b6 b13

b7

g8 g6

Figure 2.1: Multi-type nearest neighbor illustration

For example, a traveler may be interested in finding the shortest tour which starts at

a hotel and passes through a post office, a gas station, and a grocery store. Therefore,

it is critical to design an intelligent map query technique to efficiently find such a

shortest tour. In this chapter, we formalize the above intelligent map query problem

as a multi-type nearest neighbor (MTNN) query problem. Specifically, given a query

point and a collection of spatial features, a MTNN query finds the shortest tour for

the query point such that only one instance of each feature type is visited during the

tour.

In the real world, many spatial data sets include a collection of instances of spatial

features (e.g. post office, grocery store, and hotel). Figure illustrates an MTNN

query. In the figure, points with different colors represent different spatial feature

types. Given the query point q and a collection of spatial events represented by

black(b) points, white(w) points and green/gray(g) points, an MTNN query is to find

the shortest tour that starts at point q and passes through only one instance of each

spatial event in the collection as the shortest route shown in the Figure 2.1. In this

figure, the solid line string route (q, w12, g3, b11) is a shortest path. All other dashed

line strings represent alternative routes from q through one point from each feature

type.

The nearest neighbor (NN) query problem [12,49,10,45,5,23,61] has been studied

7

extensively in the field of computer science. A traditional NN query can be stated as

follows: given a point set P = {p1, p2, ...pn} and a query point q in a vector space,

the NN query finds a point pk such that the distance from q to pk ∈ P is minimized

among the distances from q to pi ∈ P . Many application domains are related to the

NN query. For example, in Geographic Information Systems (GIS), “find the nearest

gas station from my location” is a typical query that uses a NN query technique. In

addition, NN queries are used for some data analysis techniques such as clustering.

Recently, many other NN query problems have attracted great research interests.

All nearest neighbor (ANN) query [11, 13, 24, 25, 75] searches a nearest neighbor in a

dataset A for every point in a dataset B. K-closest pair query [15,14,24,25] discovers

K-closest pairs within which a different point comes from a different dataset. Reverse

nearest neighbor (RNN) query [31,32,58,59,17] finds a set of data that is the NN of

a given query point. Group nearest neighbor (GNN) query [44] retrieves a nearest

neighbor for a given set of query points. All of these problems focus on one or two

data types and try to find relationships among data points within one or two object

types. However, for many application domains, it is the relationship among more

than two types of objects that’s important.

The MTNN problem can have many variations if spatial and/or time constraints

are imposed on it. For instance, we may constrain the range of selected object set

PO within a given circle or rectangle, and the path can be from a query point q to all

points in PO and return to q. If we know the visit order for part or all of the different

feature types, it is a (partially) fixed order MTNN problem. Time constraint can also

be part of the problem. For example, the post office might be open from 9:00am to

5:00pm so a visit has to be made during this period. However, our focus is on the

generalized MTNN problem.

In this chapter, we study a generalized MTNN query problem and provide an

optimal solution to the problem. Based on an R-tree index, we design an algorithm

which exploits a page-level upper bound(PLUB) for efficient pruning at the R-tree

node level. We originally formalized the MTNN query problem and presented al-

gorithms for both optimal results and sub-optimal results in a technical report [39].

These algorithms are based on a page-level pruning strategy. In contrast, algorithms

proposed for the OSR problem [54] apply instance-level pruning techniques for reduc-

ing the computation cost. In fact, the R-tree page-level pruning method can serve as

a nice complimentary technique to the instance-level pruning method, since R-tree

8

page-level pruning technique makes better use of the R-tree index for reducing I/O

cost. After discussion of our PLUB pruning strategy, we will give a detailed compar-

ison of our method and the RLORD method, one of the solutions proposed by [54]

for the OSR problem, introduced in [54]. Finally we give experiment results for both

our method and the RLORD algorithm on clustered data sets.

Related Work. Previous work on NN can be classified in two groups. One consists

of the main memory algorithms that are mainly proposed in computational geometry.

The other is the category of secondary memory algorithms using R-tree index.

The simplest brute force algorithm can find a NN in O(n) time. In the early period

the main memory algorithms focused on developing efficient algorithms for datasets

with specific distributions. Cleary analyzed algorithms on a uniformly distributed

dataset that partition the space into a regular grid in [12]. Bentley et al. used k-d

tree to get an O(n) space and O(log(n)) time query result [20]. Another partition

based approach [47] used the well-known Voronoi graph. It first precomputed the

Voronoi graph for the given dataset. For a given query point q, it just needed to use

a fast point location algorithm to determine the cell that contained the query point

q.

The first R-tree based algorithm [49] for the NN query problem was a branch-

and-bound algorithm in that it searches the R-tree using a depth first strategy and

prunes the search space with the NN found so far. It basically uses two metrics, the

MINDIST and MINMAXDIST, to prune the impossible R-tree node in the search as

soon as possible. MINDIST is the distance from query point q to an object O and

MINMAXDIST is the minimum of the maximum possible distances from p to a face

of the Minimum Bounding Box(MBR) containing the object O.

The R-tree search begins at a root node downward to the leaf node. When neces-

sary, the search will be upward. In a downward search, all MBRs with a MINDIST

greater than the MINMAXDIST of another MBR will be discarded. In an upward

search, an object with a distance to query point q greater than the MINMAXDIST

of query point q to a MBR will be discarded and the MBR with a MINDIST greater

than the distance from query point q to an object is also discarded.

Hjalason et al. employed a priority queue to implement a best first search strategy

in [25]. This algorithm is optimal in the sense that it visits only the nodes along the

path from the root to the leaf node that contains the NN.

Our proposed algorithm needs to find the MTNN from the remaining subsets

9

each of which contains at least one object of different types after reaching the leaf

node. This is similar to the traveling salesman problem (TSP) [48], which tries to

find the shortest path from a given dataset such that every data object is visited

exactly one time. If the object number in feature types is limited to one, the MTNN

query problem becomes a TSP problem. TSP is a NP-complete problem and the best

known algorithms to find an optimal solution are exponential.

In parallel with our work, Sharifzadeh et al. [54] recently proposed an Optimal Se-

quenced Route (OSR) query problem and provided three optimal solutions: Dijkstra-

based, LORD and R-LORD. Essentially, the OSR problem is a special case of the

MTNN problem investigated in this chapter. Indeed, the OSR problem can be thought

of as imposing a spatial constraint on the MTNN problem. Specifically, the visiting

order of feature types is fixed for the OSR problem.

Another recently published work [36] proposed a number of fast approximate algo-

rithms to give sub-optimal solutions in metric space for Trip Planning Queries(TPQ);

this is the same type of query we call a MTNN query in the chapter.

Outline. The remainder of this chapter is organized as follows. Section 2.2 formalizes

the MTNN problem. Section 2.3 presents an R-tree based optimal solution for the

MTNN problem. Section 2.4 compares the difference of our method with the RLORD

algorithm, using a specific example. The experimental setup and experiment results

are provided in Section 2.5. Finally, in Section 2.6, we conclude our discussion and

suggest further work.

2.2 Problem Formulation

In this section, we introduce some basic concepts, describe some symbols used in

the rest of the chapter and give a formal problem statement for the MTNN query

problem.

Let < P1, P2, ..., Pk > be an ordered point sequence and P1, P2, ..., Pk be from k

different (feature) types of data sets. R(q, P1, P2, ..., Pk) is a route from q though

points P1, P2, ..., and Pk and d(R(q, P1, P2, ..., Pk)) represent the distance of route

R(q, P1, P2, ..., Pk). Similarly, with Ri representing the tree node of feature type i we

define a page-level upper bound(PLUB) as d(R(q, R1, R2, ..., Rk)), the longest distance

of route R(q, R1, R2, ..., Rk).

Multi-Type Nearest Neighbor (MTNN) is defined to be the ordered point sequence

10

< P ′
1, P

′
2, ..., P

′
k > such that d(R(q, P ′

1, P ′
2, ..., P

′
k)) is minimum among all possible

routes. Thus, d(R(q, P ′
1, P

′
2, ..., P

′
k)) is the MTNN distance. An MTNN query is a

query finding MTNNs in given spatial data-sets.

The following descriptions characterize a formal definition for the MTNN query

problem.

Problem: The Multi-type Nearest Neighbor (MTNN) Query

Given:

• A query point, distance metric, k feature types of spatial objects and R-tree for

each data set

Find:

• Multi-type Nearest Neighbor (MTNN)

Objective:

• Minimize the length of route from a query point covering an instance of each

feature

Constraints:

• Correctness: The tour should be the shortest path for the query point and the

given collection of spatial query feature types.

• Completeness: Only the shortest path is returned as the query result.

2.3 R-Tree Based Page-Level Pruning Algorithm

In spatial databases, R trees and theirs variants are widely used for indexing spatial

data. In this chapter, we propose an R-tree based algorithm for the MTNN query

problem. Specifically, we design an R-tree based page-level pruning method to filter

out large numbers of spatial objects. This method gives an optimal solution and

has exponential time complexity with respect to the number of feature types. The

algorithm works well when the number of feature types is small (< 8).

We have many feature types in an MTNN problem. In order to find the optimal

solution, we have to search a space consisting of all permutations of all feature type

objects. For every permutation, we do the same search steps and get a route with a

11

shortest distance. Thus for total N permutations, we get N routes. Finally we find the

solution to the MTNN problem by taking the route with the shortest distance from

these N routes. For the sake of convenience, our discussions are based on a search

space consisting of one permutation of all feature type objects in the following.

For one permutation of feature types t1, t2, . . . , tk, we need to find the optimal

route from the query point through one point in every type in the order of t1, t2, . . . , tk.

In the R-tree based algorithm we use a branch and bound strategy to prune and search

the space. The algorithm can be divided into three parts. The first part finds an upper

bound for the R-tree search. The second part prunes the search space based on R-

tree using the current upper bound. The output of this part is candidate sequences

consisting of leaf nodes, each of which is from one of the R trees. The third part finds

the current MTNN shortest distance from the current candidate sequence. Figure 2.2

illustrates these three parts. We will discuss them in detail in the rest of this section.

Algorithm MTNN(R-trees, q)
Input : K types of spatial objects and R-tree, Distance metrics,

the query point q
Output : MTNN and the shortest path
1. step 1: First Upper Bound Search Find the first upper bound of
2. MTNN shortest distance by using a fast greedy algorithm and set
3. current upper bound to be this first upper bound
4. step 2: R-Tree Search Prune search space to find subsets of objects
5. that may contain MTNN and get a candidate sequence
6. step 3: Subset Search Calculate current MTNN shortest distance in
7. current candidate sequence
8. if current calculated MTNN shortest distance shorter than
9. current upper bound
10. then set current upper bound to be current calculated MTNN
11. shortest distance
12. if Some search space is not examined
13. then Go to step 2
14. else Report current upper bound as the final MTNN shortest
15. distance

Figure 2.2: R-tree based MTNN algorithm

12

2.3.1 First Upper Bound Search

The first step of the MTNN algorithm is to find the first upper bound for pruning

the search space. This upper bound will determine the pruning efficiency for the

R-tree search. The general requirements for the first upper bound search strategy are

time efficiency and upper bound accuracy. Trade-offs will be made when designing

an MTNN algorithm. In most cases, we prefer an algorithm with high time efficiency

and normal upper bound accuracy. In this chapter, we use a simple greedy algorithm

as follows.

Randomly generate one permutation of feature types, for example, generate per-

mutation R = (r1, r2, . . . , rk). Search the NN r1,i1 of query point q in feature type r1

by using a basic R-tree based NN search method. Then search the NN r2,i2 of r1,i1 in

feature type r2. Repeat this procedure until all types of features are visited. Finally,

we get a path from query point q going through an exact single point in each feature

type. Calculate the distance of this path and use it as the first upper bound in the

MTNN search. We call this distance the greedy distance rg.

2.3.2 R-Tree Search

In spatial databases, the task of an R-tree search is to prune the search space using a

branch and bound approach on the R-tree index. We call the pruning method used in

this part R-tree page-level pruning. For permutation R = {r1, r2, . . . , rk} we first use a
general NN search strategy to determine in the R-tree of type r1 the possible leaf node

rectangle set S1 such that (d, Rs1) (Rs1 ∈ S1) is less than the upper bound distance.

Next the rectangle set S1 is used to determine the possible leaf node rectangle set S2

in the R-tree of type r2 such that the distance d(q, Rs1, Rs2) (Rs1 ∈ S1, Rs2 ∈ S2) is

less than the upper bound distance. This procedure continues until all R-trees are

visited. Finally, we get a list of candidate leaf node sequences among which each leaf

node contains one type of feature objects. When searching R trees we choose to use

a Depth First Search(DFS) strategy since DFS generates a route distance faster and

we may use the new generated route distance as an upper bound if it is shorter than

the current upper bound and thus prune R-tree nodes more efficiently.

2.3.3 Subset Search

In a subset search, we are given subsets of all different types of objects for all per-

mutations of different feature types. For a specific permutation, all these points in

13

subsets form a multi-level bipartite graph. The legal route consists of points each of

which is from a different level of the graph. Many search algorithms such as BFS,

DFS, Dijkstra, A∗, IDA∗, SMA∗ etc can be updated and used to find the optimal

route. We call the methods used in this part point pruning. In [39], a simple brute

force algorithm and a dynamic programming method were given. In this chapter, we

use the RLORD algorithm [53] as another search method in our subset search.

2.4 Comparison of PLUB and RLORD

2.4.1 Comparison by Example

Here, we illustrate our proposed PLUB-based MTNN algorithm and compare it to R-

LORD by using an extended example from [54]. Basically, a MTNN problem reduces

to an OSR problem for a fixed permutation of feature types. The following discussions

are based on a fixed permutation.

g9

q

w1

w10

w11

w13
w14

g14
g15

b12

b14

b11

W4 w8

W2

B1

g5

g4

b2

b1

w2

w9

g1

g11

b4

G2

W1

G3

b9

W3

w5

w6

w4

w7

w12

g10 g12

b15

g13

w3

w15
g2

G1

b8

g6g8

b7

b13

B4

b6

g7

g3
g16G4

B3b3

b10
b5

B2

(a) PLUB and RLORD

W4W3W2W1

(feature white) root

(feature black) root

B4B3B2B1

G4G3G2G1

(feature green) root

(b) R-tree Index

Figure 2.3: A running example for PLUB and RLORD

In the example of Figure 2.3 (a) we assume the permutation is (w, b, g) and the

distance metric is the Euclidian distance. The order of the R-tree is 4. There are three

different feature types represented by black(b), white(w) and green/gray(g) points.

In Figure 2.3 (a), R(q, w2, b2, g2) is the greedy route and the radius of the search

circle is d(R(q, w2, b2, g2)). q is the query point represented as △ and the rectangles

14

represent the leaf nodes of the R-tree indices for different feature types. Figure 2.3

(b) gives the R-tree structure for feature types green, black and white.

The first step in PLUB is the same as in R-LORD: look for the first upper bound

distance. The algorithm first finds NN w2 of q in all objects of feature type w. Then

b2 of feature type b is found as the NN of w2. Next, g2 of feature type g is found

as the NN of b2. Finally we get greedy route Rg (q, w2, b2, g2) with greedy distance

Dg = d(R(q, w2, b2, g2)) = 3.37 as the current upper bound Du.

In the R-tree search, leaf node W1 is inside the upper bound circle, so the partial

route is expanded to be (q,W1). Next, the R-tree of feature type b is searched, and

leaf nodes B1, B3, B4 are added to the current partial route (q,W1) because the PLUB

of partial routes (q,W1, B1), (q,W1, B3) and (q,W1, B4) is less than the current upper

bound. Then we search the R-tree of feature type g and find that the PLUB of only

one route (q,W1, B1, G1) is less than the current upper bound. Thus in the subset

search step, we only need to look for the shortest route from query point q through

points inside leaf nodes W1, B1 and G1. Table 2.1 gives the detailed calculation

results.

Upper Bound Eliminated

W1 B1 G1 2.04 N

W1 B1 G3 6.2 Y

W1 B1 G4 4.27 Y

W1 B3 G1 7.53 Y

W1 B3 G3 6.54 Y

W1 B3 G4 4.29 Y

W1 B4 G1 4.02 Y

W2 B1 3.7 Y

W2 B3 G4 3.43 Y

W2 B4 5.17 Y

W4 B1 4.08 Y

W4 B3 7.94 Y

W4 B4 7.56 Y

Table 2.1: Calculation Results of PLUB Leaf Node Sequences

When searching candidate MTNNs in route R(q,W1, B1, G1)), the first iteration

does 4 point-to-point(P −P) calculations and finds partial routes R(q, g2), R(q, g10),

R(q, g12) and R(q, g13). Similarly, iteration 2 gives partial routes R(q, b12, g13), R(q,

b1, g13), R(q, b2, g2) and R(q, b15, g13) with 20 (P − P) calculations. Finally we get

15

R(q, w10, b15, g13), R(q, w9, b15, g13), R(q, w2, b2, g2), and R(q, w11, b1, g13) with 20 P-P

calculations. After this step, the current MTNN is R(q, w11, b1, g13) with distance

3.16. This procedure takes 44 total P-P calculations.

In R-LORD, initially the partial route set is S = {(g2), (g3), (g4), (g5), (g7), (g9),
(g10), (g12), (g13), (g14), (g15), (g16)}. In the first iteration, every black point x in-

side Tc (range query Q1) and MBR(Q2) (range query Q2) is checked for every

green/gray point in S. If D(p, x) +D(x, P1) + L(PSR) ≤ Tc, then point x is added

to the head of the partial route. When x is b1, for example, we get partial route

(b1, g10), (b1, g13). By using property 2, only partial routes with shortest length will

be kept. So, (b1, g13) is put into a new partial route set. At the end of iteration 1,

we have partial route set {(b1, g13), (b2, g2), (b3, g3), (b4, g3), (b6, g14), (b7, g14), (b11, g3),
(b12, g13), (b13, g14), (b14, g3), (b15, g13)}. By using property 2, we dramatically reduce

the size of the partial route set. However, property 2 can only be used in itera-

tion 1. Following a similar procedure, each of subsequent (m − 2) iterations will

check every point of the feature type inside Tv (range query Q1) and MBR(Q2)

(range query Q2) for every partial route in the current partial route set S. Fi-

nally we get route set {(w1, b11, g3), (w2, b2, g2), (w3, b11, g3), (w8, b1, g13), (w9,b15, g13),

(w10, b15, g3), (w11, b1, g13), (w12, b11, g3), (w13, b1, g13), (w14,b1, g13), (w15, b1, g13)} and

R(q, w11, b1,g13) is shortest among all routes. This procedure takes a total of 298 P-P

calculations.

In summary, PLUB needs 17 rectangle-to-rectangle distance calculations and 44

P − P distance calculations in this example. RLORD takes 298 P − P calculations.

Apparently PLUB requires less computation.

As seen in the above illustration, the PLUB method uses a page-based pruning

approach, while R-LORD uses a point-based search method. If the number of points

inside the query range in R-LORD becomes big, the size of the partial route set will

increase significantly. For every partial route inside a current partial route set, every

point of the following feature type inside the current query range in R-LORD needs

to be checked, which takes a lot of time.

2.4.2 Comparison by Cost Models

In this section, we provide algebraic cost models for PLUB and RLORD. The MTNN

query is a CPU intensive task, and the CPU cost is at least as important as the I/O

cost for data sets with medium and high numbers of feature types of spatial data.

16

We will explore the I/O cost model and give a whole cost analysis for PLUB and

RLORD.

As we discussed in section 3, the costs for the proposed PLUB include (1) the

search of the R-tree leaf nodes inside the current search range, (2) page-level leaf node

candidate sequence pruning and (3) a point-level candidate MTNN search. Therefore,

the cost model also has three components: (1) cost of the page-level R-tree traversal,

(2) cost of the page-level leaf node candidate sequence search, and (3) cost of the

point-level candidate MTNN search. We also identify the cost components of RLORD

as (1) cost of the page-level R-tree traversal and (2) cost of the point-level candidate

MTNN search. In PLUB, the page-level leaf node candidate sequence search will

possibly prune many more candidate sequences so the cost of the point-level candidate

MTNN search will possibly be much smaller than that in RLORD. In the following,

we will discuss the cost models for PLUB and RLORD respectively.

Cost Model of PLUB

Let CR−T be the cost of the R-tree traversal to find all R-tree leaf nodes intersected

by the circle with radius of the current upper bound, centered at the query point.

In addition, let CLF be the page-level leaf node search cost for the R-tree candidate

leaf node sequences and CPN be the point-level search cost for candidate MTNNs in

candidate leaf node sequences. Thus the total cost of PLUB is expressed as CR−T +

CLF + CPN .

PLUB first traverses all the R-trees to look for leaf node rectangles that intersect

with the current search range. Let CPR be the cost of the point-to-rectangle distance

calculations and Nt,i be the number of all the tree nodes visited in the feature type

i tree traversal. Thus CR−T = CPR × ΣNt,i(i = 1, ..., k) (k is the number of feature

types). It is worth noting that CR−T is the same for PLUB and RLORD.

Next PLUB does a page-level search for leaf node candidate sequences. Let NR−R

be the number of leaf nodes visited in candidate leaf node sequences, and CR−R be

the cost of rectangle-to-rectangle distance calculation. Then we can get the cost of

leaf node candidate sequence pruning as CLF = NR−R × CR−R.

Finally we search for candidate MTNNs in the remaining leaf node candidate

sequences. Let FLS be the leaf node candidate sequence filtering ability ratio, nl be

the average point number in leaf node for all feature types and pi be the page number

of feature type i. We use Cls to denote the cost of the MTNN search in single leaf

17

node sequence to arrive at the following cost:

Cls = nl + (nl × nl) + nl + (nl × nl) + ...+ nl + (nl × nl) (k − 1 items)

The condensed form is:

(k − 1)(nl × (nl + 1))

Thus the total point-level candidate MTNN search cost is CPN = Cls × Πpi × (1 −
FLS), (i = 1, ..., k)

Cost Model of RLORD

Let CR−T be the cost of R-tree based coarse pruning, i.e., finding all data points inside

the initial upper bound, and let CPS be the cost of the candidate MTNN search in

the remaining subsets. The cost CR−T is the same as for PLUB. The cost CPS is:

nl × (p1 + nl × p1 × p2 + (p2 + nl × p2 × p3) + ...+ (pk−1 + nl × pk−1 × pk)

The total cost of RLORD is CR−T + CPS.

The Cost Model Comparison of PLUB and RLORD

There are many factors to consider when comparing the cost models of PLUB and

RLORD. We may consider simplifying these models by focusing on the dominant

factors and therefore removing some terms. In PLUB we may assume that CR−T +

CLF << CPL and get the approximate cost model as:

(k − 1)nl × (nl + 1)× Πpi × (1− FLS).

Similarly, if we assume CR−T << CPS, R-LORD’s cost model becomes:

nl × (p1 + nl × p1 × p2 + (p2 + nl × p2 × p3) + ...+ (pk−1 + nl × pk−1 × pk)

In random or approximate random datasets, FLS is small, and PLUB takes more

time. The opposite is true in clustered datasets, where FLS tends to be bigger. That

is when

1− FLS < nl × (p1 + nl × p1 × p2 + (p2 + nl × p2 × p3) + ...+ (pk−1 + nl × pk−1 ×
pk))/((k − 1)nl × (nl + 1)× πpi)

PLUB runs faster than RLORD. Later in the discussion of the experimental results,

we’ll refer to this formula 1, and refer to the left side as the remaining ratio (r−ratio),

and the right side as the comparison ratio (c− ratio).

18

MeasurementsMTNN Query
Processing

Analysis

Algorithms

Parameters: Feature Types, CN, BCF, ICF

PLUB−based RLORD−based
Algorithms

Datasets
Generation

Datasets
Spatial

CN BCF ICF

Figure 2.4: Experiment setup and design

2.5 Experimental Results

In this section, we present the results of various experiments to evaluate our PLUB

based algorithm and RLORD based algorithm, both of which give optimal solutions,

for the MTNN query in different clustered data sets. Specifically, we demonstrate

comparisons of the PLUB and RLORD based algorithms with respect to execution

time under different data sets with different properties such as feature type number,

data set density and compactness of clusters.

2.5.1 The Experimental Setup

Experiment Platform Our experiments were performed on a PC with a 3.20GHz

CPU and 1 GByte memory running the GNU/Linux Ubuntu 1.0 operating system.

All algorithms were implemented in the C programming language.

Experimental Data Sets We evaluated the performance of both the PLUB

and RLORD based algorithms for the MTNN query with synthetic data sets, which

allow better control towards studying the effects of interesting parameters. All data

points in the synthetic data sets were distributed over a 10000X10000 plane and

formed clustered data sets. In order to reduce the effect of query point positions, we

took 25 query points on a sample dataset space, each of whose x and y axis values

were from 3000.00 to 7000.00 respectively and with each point placed 1000.00 away

19

from its neighbor in the x and y axis directions, and calculated the average running

time, c − ratio and r − ratio as the final reported values. There were four different

parameters in our experimental setup.

• Feature Type(FT): Feature type numbers from 2 to 7 to show the scalability of

both algorithms.

• Between-cluster Compactness Factor(BCF): control the minimum distance of

cluster centers, i.e. the compactness between clusters.

• In-cluster Compactness Factor(ICF): control the compactness within a cluster.

• Cluster Number(CN): control the of density of data sets.

For a given cluster number ClusterNumber, we generated a data set as follows.

First a simplified estimated maximum number of cluster center distance was deter-

mined by formula maxCCDist = 10000.0/(int)(
√
ClusterNumber + 1). Next the

minimum cluster center distance was calculated as follows minCCDist = BCF ×
maxCCDist. Finally, we decided the cluster size by ClusterSize = ICF×minCCDist

The number of objects inside each cluster is within p/2 and p, 84 in our experiment

setting, that is the order of R-tree leaf node. Thus the expected number of objects in-

side a single cluster is about 61. For a dataset of 20 clusters, the total object number

is therefore about 1220.

Experiment Design Figure 2.4 describes the experimental setup to evaluate

the impact of design decisions on the relative performance of both the PLUB and

RLORD based algorithms for the MTNN query. We evaluated the performance of

the algorithms with synthetic data sets generated according to the rules discussed

above. We observed the performance of both PLUB and RLORD based algorithms

under different data set settings in term of execution time. Our goal was to answer

the following questions: (1) How do changes in feature type affect scalability in PLUB

and RLORD? (2) How do differences in data density affect the performance of PLUB

and RLORD? (3) How does compactness between clusters affect the performance of

PLUB and RLORD? (4) How does compactness within clusters affect the performance

of PLUB and RLORD?

20

2 3 4 5 6 7

0

50

100

150

200

250

300

350

400

450

500

Feature Type(BCF=0.1,ICF=0.1,CN=20)

E
xc

ut
io

n
T

im
e(

se
c)

PLUB
RLORD

Figure 2.5: Scalability of PLUB and RLORD in terms of feature types

2.5.2 A Performance Comparison of PLUB and RLORD With Differ ent Fea-
ture Types

This section describes the scalability improvement of PLUB in terms of feature types

in clustered data sets, compared to RLORD. We set the fixed cluster number at

20, the BCF at 0.1, which means the minimum cluster center distance was 10% of

maxCCDist and the ICF at 0.1, which means the size of a cluster was 10% of the

minimum distance between two clusters. This is a highly clustered dataset in that

the size of clusters is 1% of maxCCDist. We change the number of feature types

from 2 to 7 and don’t show the results with feature type number 1 because that case

would reduce the MTNN query problem to the classic NN problem, making PLUB

and RLORD no more than classic NN algorithms.

Figure 2.5 compares the scalability of PLUB and RLORD in terms of numbers of

feature types. More specifically, this figure illustrates that the execution time change

with the increase of data types from 2 to 7 when the minimum distance between

clusters is small (BCF=0.1) and cluster size is small (ICF=0.1) When the data type

number is 2,3,4 and 5, there is no big difference of performance between PLUB and

RLORD. When the data type number is 6 and 7, PLUB runs less time than RLORD.

This experiment shows that PLUB is more scalable than RLORD in highly clustered

data sets.

21

20 50 100 200
0

50

100

150

200

250

300

Cluster Number(FT=7,BCF=0.1,ICF=0.5)

E
xc

ut
io

n
T

im
e(

se
c)

PLUB
RLORD

Figure 2.6: Performance of PLUB and RLORD on different densities of data sets

2.5.3 The Effect of Data Set Density On Performance of PLUB an d RLORD

In this section, we show how the density of data sets affects the performance of PLUB

and RLORD. We tested PLUB and RLORD with feature type number 7, BCF 0.1,

which is the same BCF used in the scalability test, and ICF 0.5, which means the size

of a cluster was 50% of the minimum distance between two clusters. The changing

variable is cluster number, with assigned values of 20, 50, 100 and 200. Because there

are almost the same average number of data points inside clusters for data sets of

different cluster numbers, these data sets on the same space represent data sets with

different densities.

Figure 2.6 illustrates the performance of PLUB and RLORD on different densities

of data sets. As can be seen, under all dataset densities with cluster numbers 20, 50,

100 and 200, the execution time of PLUB is always less than RLORD. In this figure

we cannot see significant change in execution time, or any apparent trend for either

PLUB and RLORD, which means the data set density appears to have almost no

effect on execution time of PLUB and RLORD in clustered data sets with current

settings.

2.5.4 Effect of Between-Cluster Compactness Factor on Perf ormance of PLUB
and RLORD

In this section, we show the effect of the between-cluster compactness factor (BCF)

on the performance of PLUB and RLORD. We set the feature type number at 7, ICF

22

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

50

100

150

200

250

300

350

(a) BCF(FT=7,ICF=0.3,CN=50)

E
xc

ut
io

n
T

im
e(

se
c)

PLUB
RLORD

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
−22

−20

−18

−16

−14

−12

−10

(b) BCF(FT=7,ICF=0.3,CN=50)

R
at

io
(lo

g)

r−ratio
c−ratio

Figure 2.7: Effect of between-clusters compactness factor

at 0.3 and cluster number at 50, which is medium density in our experiments. We

raised parameter BCF from 0.1 to its highest value 1.0.

Figure 2.7(a) illustrates the performance of PLUB and RLORD on data sets with

different BCF. We can see that both the execution times and the trends of PLUB and

RLORD are very different. The execution time of RLORD has an apparent down

trend with the increase of BCF from 0.1 to 1.0. However, the execution time of PLUB

doesn’t change too much. With BCF values smaller than some value, about 0.8 in

this specific experimental settings, PLPUB runs faster. When BCF increases beyond

this value, RLORD is faster.

Figure 2.7(b) gives the results of formula 1. The curve r − ratio shows the ratio

of the left side of formula 1 and the curve c − ratio presents the ratio of the right

side of formula 1. Both ratio values are log values because they are tiny numbers,

which means the pruning ability is very high. A seemingly contradictory result evi-

dent in this figure is that increases in the r − ratio, which means there is a decrease

in the pruning ratio, does not lead to increases in execution time. The explanation

is that when BCF increases, there are fewer leaf nodes that intersected with the cur-

rent search bound. Thus the total number of possible candidate leaf node sequences

decreases dramatically, thereby reducing the execution time. The key point to note

here is that when the r − ratio is smaller than the c − ratio, PLUB runs faster but

when the remaining ratio is greater than the comparison ratio, PLUB takes more

time than RLORD. In other words, the relative trends of r− ratio and c− ratio only

23

0.1 0.2 0.3 0.4 0.5
0

50

100

150

200

250

300

350

ICF(FT=7,BCF=0.1,CN=50)

E
xc

ut
io

n
T

im
e(

se
c)

PLUB
RLORD

Figure 2.8: Effect of in-cluster compactness factor

determine the relative execution time of PLUB and RLORD.

2.5.5 Effect of In-Cluster Compactness Factor on Performan ce of PLUB and
RLORD

In this section, we show the effect of the in-cluster compactness factor (ICF) on the

performance of PLUB and RLORD. We set the feature type number at 7, BCF at

0.1 and cluster number at 50, or medium density. We changed parameter ICF from

0.1 to 0.5.

Figure 2.8 illustrates the performance of PLUB and RLORD on data sets with

different ICF. We can see the execution times of PLUB and RLORD are very different.

With BCF = 0.1, ICF has little influence on the execution time of either PLUB or

RLORD, which means if the minimum allowed distanceminCCDist of clusters is very

small, compared to the maximum allowed distance maxCCDist, in our experimental

settings, the effect of BCF is dominant among all factors. From this figure the only

apparent trend is that PLUB always runs much faster than RLORD under these

experimental settings.

2.6 Summary

In this chapter, we investigated a multi-type nearest neighbor (MTNN) query prob-

lem, which can be related to many application domains, such as intelligent map

24

quest. We show that the MTNN problem is closely related to the TSP problem, but

the computation complexity of the MTNN problem is much higher than that of the

TSP problem in terms of feature type. We propose a R-tree based solution to MTNN

query problem. In our algorithm, a page-level upper bound (PLUB) is exploited for

efficient pruning at the R-tree node level. Finally, experimental results are provided

to show the strength of the proposed algorithm and design decisions related to per-

formance tuning. In our experiments, we compare the performances of PLUB and

RLORD in terms of execution time. When data sets are compact, PLUB outperforms

RLORD. When data sets go to random-distributed in space, RLORD runs faster than

PLUB.

As for future work, we plan to investigate heuristic algorithms from different

perspectives since MTNN query problem is very complex. For instance, one direction

is to design heuristic algorithms using geometric properties of spatial data sets. Also,

we believe that PLUB algorithm is very adequate to be extended to real road network

due to PLUB’s page-level pruning technique.

25

Chapter 3

Multi-Type Nearest
Neighbor Query on
Spatio-Temporal Road
Networks

A multi-type nearest neighbor(MTNN) query finds the shortest tour for a given query

point and different types of spatial features such that only one instance of each feature

is visited during the tour. In a real life MTNN query a user normally needs an answer

with specific start time and turn-by-turn route for specific period of time on road

networks, which requires considerations of spatial and temporal features of the road

network when designing algorithms. In this chapter, we propose a label correcting

algorithm that is based on a time aggregated multi-type graph, a special case of

a time aggregated encoded path view. This algorithm gives the best start time, a

turn-by-turn route and shortest path in terms of least travel time for a given query.

Experimental results are provided to show the strength of our proposed algorithm

and design decisions related to performance tuning.

3.1 Introduction

Widespread use of spatial search engines such as Google Maps and MapQuest is lead-

ing to an increasing interest in developing intelligent spatial-temporal query tech-

niques. For example, a traveler may be interested in finding a shortest route in terms

26

of least travel time with the best start time between 9:00 am and 11:00 am from his

house through one grocery store (with a stay of 1 1/2 hours), one electronics store (1

hour stay) and one post office (arriving before 4:00 pm; 1/2 hour stay) and returning

home before 8:00 pm. This query illustrates some important properties. First, the

traveler is trying to find a route with instances from different feature types (grocery

store, electronics store, etc.). This kind of query is called a multi-type nearest neigh-

bor (MTNN) query in [40]. Second, the route to be found is a closed route from the

query point back to the query point. Third, the traveler is interested in not only the

route but also the best start time. Considering the variability of traffic patterns at

different times on road networks, this best start time could differ for different time

windows. Therefore, the query asks for answers containing not only spatial features

like the route but also temporal features. Forth, the query itself contains spatial and

temporal features. For example, the query point and different interested locations

are spatial features. The best start time between 9:00 am and 11:00 am and length

of stay at each location are temporal features.

In this chapter, we extend MTNN query in the temporal dimension and study

the spatio-temporal MTNN query problem on spatial-temporal road networks. We

formalize a common query in real life as a spatial-temporal MTNN query, called BEst

Start Time Multi-Type Nearest Neighbor (BESTMTNN) query, with time window

constraints and answer the query based on our extension of the encoded path view.

This extension extends the encoded path view from spatial-only to spatio-temporal

road networks and is called the Time Aggregated Multi-Type Graph (TAMTG), a

special case of the time aggregated encoded path view (TAEPV) of road networks.

By identifying the special properties of BESTMTNN query that lead to our spatia-

temporal partial route growth approach we propose a label-correcting based algorithm

to solve it. This algorithm prioritizes the spatial-temporal partial routes with current

least travel time. It takes a user-specified query that involves spatio-temporal features

such as query time window sizes for all features and planned stay time interval at a

location and gives a turn-by-turn route and the best start time in terms of least travel

time. Our experiments show our algorithm can answer normal user BESTMTNN

queries in a reasonable time.

Related Work. Vehicle routing and scheduling problems have been extensively stud-

ied in Operational Research. According to a taxonomy given by Bodin et al. [7], vehi-

cle routing involves the traversing of a sequence of points in order. Vehicle scheduling

27

involves traversing a sequence of points with an associated set of departure and ar-

rival times. If a vehicle must traverse a sequence of points with time window and/or

precedence relationships, the problem is a combined vehicle routing and scheduling

problem. Numerous computational methods to solve such problems have been de-

veloped. Laporte et al. presented a summary of exact and approximate algorithms

for vehicle routing and scheduling problems [33]. He also summarized classical and

modern heuristics for solving such problems [34]. However, in all of these works, the

sequence of points to be visited in a query was specified in advance. Thus no solution

required that the point space be searched for points that would be visited in the

query, a key difference between previous works and our MTNN query problem.

In order to quickly find answers to spatial queries, researchers normally model

road networks as a graph. Huang et al. [26] precomputed all-pair shortest paths and

stored them in a spatial database. This precomputed graph is called an Encoded

Path View (EPV). Later, Huang et al. [27] extended EPV to large road networks and

proposed a Hierarchical Encoded Path View (HEPV), which provides a great way to

scale many algorithms to large road networks. Referencing a HEPV makes it possible

to answer a nearest neighbor query on road network very efficiently.

Recently, George et al. [22] proposed a Time-Aggregated Graph (TAG) to model

a spatial-temporal network. Based on this model, spatial queries that have been

studied for decades are answered along both spatial and temporal dimensions. For

example, George showed that the SP-TAG algorithm computes the shortest path for

a given start time in a small time-dependent network. In a related study, Ding [19]

proposed a time-dependent graph and studied how to find the best departure time in

terms of least travel time from one place to another over a large road network.

Meanwhile, the queries related to multiple feature types attracted attentions from

different database research groups. X. Ma et al. [40] formalized a MTNN query prob-

lem and proposed a Page Level Upper Bound (PLUB) based algorithm to find an

optimal route for the MTNN query. Sharifzadeh et al. [54] recently proposed an Op-

timal Sequenced Route (OSR) query problem and provided three optimal solutions,

Dijkstra-based, LORD and R-LORD, to solve the OSR query problem. Essentially,

the OSR problem is a special case of the MTNN problem. Because it fixes the visiting

order of feature types, it can be thought of as imposing a spatial constraint on the

MTNN problem. Sharifzadeh et al. [55] extended the OSR work to road network

by using Voronoi diagrams. Basically the algorithm of this extension precomputes

28

Voronoi diagrams for every possible partial route and finds the optimal sequenced

route very efficiently. However, it does not consider the variation in traffic patterns

that occurs at different times and thus ignores the temporal dimension of road net-

works. It also does not give a turn-by-turn route for the query on road networks.

Another issue is that with Euclidean distance (i.e. L2 norm) as metric the cell edges

in Voronoi diagram may become hyperbolic curves, which makes the determination

of whether or not a point is inside a cell very difficult.

Another recently published work [36] proposed a number of fast approximate

algorithms to give sub-optimal solutions in metric space for Trip Planning Queries

(TPQ). This work focused on efficient algorithms but could not guarantee finding the

shortest path.

Outline. The remainder of this chapter is organized as follows. Section 3.2 for-

malizes the BESTMTNN problem. In section 3.3 we identify the special proper-

ties related to a BESTMTNN query and describes the Time-Aggregated Multi-Type

Graph (TAMTG); we then present our partial route growth approach designed to

accommodate the BEST-MTNN query as well as a TAMTG-based label-correcting

algorithm that finds the optimal solution for the BESTMTNN problem. Section 3.4

gives the experimental setup and experimental results. Finally, in Section 3.5, we

conclude our discussion and suggest further work.

3.2 Basic Concepts and Problem Formulation

In this section, we introduce some basic concepts, explain some symbols used in the

remainder of the chapter and give a formal statement of the BEst Start Time Multi-

Type Nearest Neighbor (BESTMTNN) query problem.

Let < P1,1′ , P2,2′, ..., Pk,k′ > be an ordered point sequence and let P1,1′ , P2,2′, ..., Pk,k′

be from k different (feature) types of data sets. Pi,i′,ti is a point P ′
i of feature type i at

time ti. A spatial-temporal Partial Route R(qt0 , P1,1′,t1, P2,2′,t2 , ..., Pl,l′,tl) is a route

from the query point q at time t0 through points from different feature types but not

back to the original query point q. A complete closed route R(qt0 , P1,1′,t1, P2,2′,t2 , . . .

, Pk,k′,tk , qtk+1
) is a route that goes from the query point q at time t0 through point

P1,1′ , goes from point P1,1′ at time t1 through P2,2′ , . . . , and returns to query point q

at time tk+1 from Pk,k′ at time tk. t(R(qt0 , P1,1′,t1 , P2,2′,t2 , ..., Pk,k′,tk , qtk+1
)) represents

the travel time through the route R(qt0 , P1,1′,t1, P2,2′,t2 , ..., Pk,k′,tk , qtk+1
).

29

A BESTMTNN is defined to be an ordered point sequence < qt0 , P1,1′,t1 , P2,2′,t2 ,

..., Pk,k′,tk , qt′0 > such that t(R(qt0 , P1,1′,t1 , P2,2′,t2 , ..., Pk,k′,tk , qt′0)) is minimum among

all possible routes for all possible start time points and all qualified time window. A

BESTMTNN query is a query finding a BESTMTNN that includes a best start time,

a turn-by-turn route, and a least travel time in given spatial and temporal data sets.

Thus, < qt0 , P1,1′,t1 , P2,2′,t2 , ..., Pk,k′,tk , qt′0 > is a BESTMTNN query result.

An Encoded Path View (EPV) stores all pairs of shortest distance paths in a

spatial database. A Time Aggregate EPV (TAEPV) records such spatial information

but extends the EPV to include temporal information. In other words, a TAEPV

stores all pairs of shortest distance for all time points in terms of least travel time.

With a TAEPV on road networks, the results of a BESTMTNN query consolidate

the location information of interested points with different traffic patterns that vary

by times. A Time Aggregate Multi-Type Graph (TAMTG) is a special case of a

TAEPV. In a TAMTG, only least travel times among all points of interest (POI) are

stored. In a BESTMTNN query, the POIs are the given k data sets from k different

feature types.

The following is a formal definition of the BEst Start Time MTNN (BESTMTNN)

query problem. In the BESTMTNN query problem, we use road distance since we are

searching for BESTMTNN on spatial-temporal road networks. The spatial-temporal

road networks are represented by a TAEPV and a TAMTG that store least travel

times among points. These least travel times are calculated in advance because rout-

ing and scheduling are extremely time-consuming. Considering POIs could number

from hundreds to thousands and even more, it is infeasible to do an ad-hoc rout-

ing and scheduling for every BESTMTNN query. In this problem, we also consider

time window constraints as user-specified parameters indicating what time intervals

qualify for this query and how long the user is going to stay at a location (planned

stay period). Time window constraints are meaningful parameters in daily life. For

example, a post office can be visited only certain hours in a day, and a movie-goer

will want to arrive at a cinema before a movie’s specific start time and stay at the

cinema as long as the movie is scheduled to last. Given all these input parameters,

our objective is to minimum the travel time on the road networks. In this problem,

the planned stay period at any location is not considered as part of total travel time.

What interested us is the travel time on the road.

30

Problem: The BESTMTNN Query

Given:

• A query point

• Distance metric - road distance

• k different types of points of interest

• Spatial-temporal road networks represented by Time Aggregated Encoded Path

View (TAEPV) and Time Aggregated Multi-Type Graph (TAMTG)

• Time window constraints

Find:

• Least travel time, turn-by-turn route and BEst Start Time

Multi-type Nearest Neighbor (BESTMTNN)

Objective:

• Minimize the travel time on the road networks from the query point covering

an instance of each feature type and then back to the query point

3.3 BESTMTNN Algorithm

Here we examine in more detail that a typical BESTMTNN query from daily life that

was introduced earlier. “Find a route with the best start time between 9:00 am and

11:00 am from my house through one Cub Food store (stay for about 1 1/2 hours),

one Best Buy store (stay for about 1 hour) and one post office (arrive before 4:00

pm, stay about half an hour) and return to my house before 8:00 pm.” From this

typical query, we can find some important properties that could be used to guide the

algorithm design for a BESTMTNN query.

First, normally a traveler queries the best start time within a defined time window

(e.g., “between 9:00 am and 11:00 am”). By contrast, he’s willing to return home at

any time as long as it’s before his latest time (e.g., “Return to my house before 8:00

pm”). We can see therefore that the window containing possible start times is much

smaller than the “start - return” time window. This suggests that a forward search,

beginning from the starting query point, may be preferred for most cases.

31

Second, the query starts from a query point (e.g., “my house”) and ends at the

same query point (e.g., “return to my house”). This basically says that the traveler

asks for a closed travel route, which is different from the queries studied in previous

works [36, 40, 54, 55]. In those studies, the requested travel routes do not include

routes returning to the query point. This means that some properties identified for

designing previous algorithms may not always hold. More specifically, the property

2, which guarantees the correctness of the LORD and RLORD algorithms in [54],

is not always correct, and thus new properties should be identified in the design of

algorithms for closed route queries.

Third, the traveler asks for a specific turn-by-turn route. Here we can differentiate

the two levels of routes. The first level is the route through only the points of interest

(POIs) without routing and scheduling on points that are not in the set of POIs. The

second level of route is the route between two POIs. There may be multiple routes

between these two points on road networks so there is a routing and scheduling issue.

The BESTMTNN algorithm and corresponding data structure used in the algorithm

should support both levels of routing and scheduling.

Finally, a BESTMTNN query is a temporal query; embedded in the query’s search

for the best start time and route is the assumption that traffic patterns change over

time. There are three kinds of temporal patterns: long-term trends used in long-

term forecasts, short-term information available when starting travel and used in

short-term forecasts, and dynamic perturbation available only when arriving at a

destination, and representing any unforeseen events encountered during travel. It is

known that traffic volumes exhibit typical long-term temporal patterns. That is, traf-

fic volumes vary at different time points known in advance. This kind of information

can be used to do long-term forecasts. Due to the complexity of BESTMTNN queries,

we do not consider short-term forecasts or dynamic perturbation in this chapter.

As stated above, the BESTMTNN query differs from previously studied queries

and thus new properties need to be identified and existing data structures extended

to support solutions to this query.

3.3.1 BESTMTNN-Related Properties

The BESTMTNN algorithm enumerates all permutations of all feature types. For

each permutation, it starts with partial route only containing the query point and

grows a partial route by adding points from next feature to a current partial route.

32

In this part, we discuss some BESTMTNN-related properties that guarantee the

corretness of partial route growth procedure.

Property 1 If a route R(qt0, P1,1′,t1, P2,2′,t2, . . . , Pk,k′,tk, qt0′) is the optimal route,

then the travel time of route R(qt0, P1,1′,t1, P2,2′,t2) = t(R(q0, P1,1′,t1)) +t(R(P1,1′,t1,

P2,2′,t2)), is shortest among all possible routes from the query point q through any

point from feature type 1 at any time and then reaches point P2′ from feature type 2

at time t2.

...

qt0’qt0 /

.
.P

P

1,2,t2

1,1’,t1’

1,3,t3

2,2’,t2 ’

k,k’,tk ’

.

P
P

.
.

.

P
(a) Property 1

t0 /

.P1,1’,t1’
2,2’,t2 ’

k,k’,tk ’

.
Pi,i’,ti ’

 . . .Pi−1,i−1’,ti−1 ’

q P
. .

P
.

qt0’

(b) Property 2

Figure 3.1: Properties related to BESTMTNN query

In this property statement Pi,i′,ti represents point Pi′ of feature type i starting at

time ti if the point Pi′ is not an end point on a route. If the point Pi′ is an end point

on the route, Pi,i′,ti represents point Pi′ of feature type i with arrival time ti. Figure

3.1 (a) illustrates property 1. In this figure, the route R(qt0, P1,1′,t1, P2,2′,t2) from the

query point qt0, through point P1,1′,t1 from feature type 1 and reaching point P2,2′,t2

from feature type 2 has the least travel time. However, when growing a partial route

from the query point q to feature type 1, we don’t know which specific partial route

R(qt0, P1,1i,t1i) will lead to a shortest path from qt0 and reaching P2,2′,t2. Therefore, in

order to grow partial routes from the query point q through a feature type 1 point to

a feature type 2 point, we need to store the least travel time from the query point q

through all feature type 1 points for all qualified time points.

This property is important and necessary because the BESTMTNN query route is

a closed route that starts and ends with the same query point. Based on this property,

we know that beginning a BESTMTNN query requires storing all the partial routes

from the query point to all the points in the first feature type for all time points.

This property also makes it possible to use a forward search in order to find a closed

route.

33

Property 2 If a partial route R(qt0, P1,1′,t1, P2,2′,t2, . . . , Pi−1,(i−1)′,t(i−1), Pi,i′,ti) is

part of an optimal route, then the travel time of this partial route is least among all

partial routes starting with q and ending with Pi,i′,ti for specific arrival time point ti.

In partial route calculations, it is possible to have multiple partial routes ending

with the same point at the same time point. Property 2 guarantees that only the

partial route with the least travel time for a specific end point and time point needs to

be stored. It also indicates that a stored partial route can be identified by its end point

and arrival time point. According to property 2, it is enough to store information

for the specific partial route R(qt0, P1,1′,t1, P2,2′,t2, . . . , Pi−1,(i−1)′,t(i−1), Pi,i′,ti). Figure

3.1 (b) illustrates Property 2. In the figure, the partial routes ending with points

from feature type i − 1 are either from a different location or from a different time

point. Before growing the partial route to feature type i, it is unknown which partial

route ending with a point from feature type i − 1 will be on the optimal route.

However, according to property 2, it is known that the partial route must have a

least cost (travel time) if it is on the optimal route. Therefore, in order to grow

partial routes from feature type i−1 to feature type i it is enough to store those least

cost partial routes ending with different points from feature type i − 1 on different

time points. After growing from all these partial routes to a specific point Pi,i′,ti′

of feature type i at specific time ti′ there are still multiple partial routes. All these

newly grown partial routes could be represented as R(qt0, . . .,Pi−1,(i−1)′,t(i−1)′ ,Pi,i′,ti′),

R(qt0,. . .,Pi−1,(i−1)′′,t(i−1)′′ ,Pi,i′,ti′) etc. At this time, we know if the partial route ending

with Pi,i′,ti′ is on an optimal route it must be shortest. So, we only need to store one

partial route ending with Pi,i′,ti′ that has least cost.

3.3.2 Time Aggregate Multi-Type Graph (TAMTG)

A TAEPV stores all pairs of least travel times among all points, the start time of the

route with the least travel time, and the next hop on the route at all time points on

a graph. However, not all of this information is needed for partial route growth in

a BESTMTNN query. Of interest in partial route growth are the least travel time

among the points of interest (POIs) from different feature types at all time points

and the start time of the route with the least travel time. In other words, there is no

need to store the least travel time involved in a point of non-interest or if the least

travel time is among the POIs from the same feature type. We call the graph that

captures this more relevant set of least travel times a Time Aggregate Multi-Type

34

Graph (TAMTG).

As an illustration, the “initial” part of the Figure 3.2 shows part of TAMTG.

Indicated on the graph is the least travel time from the query point q to points r1

and r2 from feature type r for time points 2, 3 and 4 and the least travel time from

points r1 and r2 to point b1 from feature type b for time points 4 to 14. It is worth

noting that there may not be a direct link between points. Instead in the TAMTG

graph, the least travel time between two points has been calculated in advance. In

addition, for simplicity the graph does not show all the calculated least travel times

among points. For example, the least travel time from b1 to r1 and r2 is not given.

3.3.3 Partial Route Growth

A point on a partial route contains not only the point itself but also a specific time

point. For example, Pi,j,tj represents the point Pj on the partial route from feature

type i at time point tj. Both spatial and temporal data are required because traffic

volume varies over time, that is, the time dimension plays an important role in the

modeling of spatial-temporal road networks. The current partial route may come

from different previous partial routes for different time points. In other words, to

answer a BESTMTNN query it is not enough to store location (point) information.

What is needed is point information for all qualified time points. Due to the time

window constraints, not all time points may qualify when searching for a best route.

As discussed in the BESTMTNN properties section, a partial route can be identified

exclusively by its end point and the arrival time at the end point because only partial

routes with specific end points and specific time points are needed to grow the partial

route to the next feature type. In summary, identifying a partial route requires storing

a location and a time point along with a least travel time.

In daily life, when traffic volume is very high, drivers often choose to stay at

their location instead of trying to drive at that moment. Common sense tells them

that driving during high volume traffic will not expedite their travel or will do so

just a little. If staying extra time at a location leads to shorter or equal travel time

later, it is reasonable to choose staying extra time units at a location. In partial route

calculation of the BESTMTNN query algorithm, it is possible to add extra time units

to a location, but this extra time needs to be counted as part of travel time since it

is not a planned stay. Therefore, there are two categories of cost at a partial route.

One is directly generated from the growth of previous partial routes to the current

35

q q q q q q q q q q q

Last Point
t

Total Cost
(q, r2)

5 6 7 8 9 10 11 12 13 14 ...
q q q q q q q q q q

9 10 11 12 13 14 15 16 17...

 r2
r1 r1 r1 r1 r1 r1 r1 r1 r1

Total Cost
(Step 1...)

(q, r1)

(inital)

b1

(Step 2)
t

Last Point

t
Last Point

Total Cost

4 5 6 7 8 9 10 11 12 13 14 ...
 (Arriving at feature r) Planned Stay 2

... 4 5 6 7 8 9 10 11 12 13 14 ...

... 4 5 6 7 8 9 10 11 12 13 14 ...t

t

... 1 2 2 3 1 1 2 2 4 2 1 ...c(r2,b1)

... 4 5 3 3 7 2 1 3 4 2 1 ...

 5 5 5 8 9
5 5 5 9

6 6 6

3 3 3 4
 4 4 4 6 7 9

 9
 9

c(r1,b1)

Last Time

Last Time

(Step 1) Planned Stay 2

2 2 2 3
 1 1 1 2 3 4 5 6 7 8

5 5 5

 2 2 2 2 3 4 5 6 7 8
3 3 3 3 3 3 3 3 3 3

2 4 2 4 4 4 4 4 4 4 4

(Arriving at feature b) Planned Stay 2

5 5 5 6
 4 4 4 5 6 7 8 9

Last Time 8 7 8 7 7 7 7 7 7
 r2

5 5 5 6

t
c(q,r2)

2 3 4
3 2 42 5 1

q
r1 (stay 2)

r2 (stay 2)
c(q,r1)

t 2 3 4

Figure 3.2: Partial route growth

partial route. In Figure 3.2, for example, the cost 4 of partial route R(q4, r1,7, b1,10)

is calculated from the growth of partial route R(q4, r1,7). Since there is a planned

stay of 2 units at feature type b, the partial routes R(q4, r1,7, b1,10) and R(q4, r1,7, b1,11)

cannot be grown at times 10 and 11. The number 4 inside a circle in “Step 1” and

“’Step 2” indicates that this cost cannot be used for next partial route growth. For

the same 2-unit planned stay, the cost of partial route R(q4, r1,7, b1,12) is kept as 4.

The other cost arises from any extra stay on the partial route that ended with the

same point. For example, the cost 5 of partial route R(q4, r1,7, b1,13) results from 1

extra time unit stay at point b1 at time 12.

When updating an existing partial route or generating a new partial route, it is

necessary to update or generate the route for all qualified time points from all previous

partial routes. The implication is again that a partial route in a BESTMTNN query

is identified by both the end point on the route and a qualified time point. Here a

qualified time point means a time point within the query time window for a currently

visited feature.

Figure 3.2 illustrates the partial route calculation procedure. In the figure, t

represents a time point. Last Point stores the last point on the partial route before

reaching the current feature type. Last T ime stores the start travel time from Last

Point to the current point. Total Cost stores the least travel time for this partial

route so far. The Total Cost number inside the circle means the time point with this

cost is still within the planned stay period. So, this cost cannot be used to grow the

36

partial route to next feature. For example, if a traveler arrived at a Best Buy store at

3:00 pm with a cost 9 and planned to stay 1 hour, the traveler will not depart within

the period from 3:00 pm to 4:00 pm. In our algorithm, no time point within this

window can be used to grow the partial route. If all costs at a time point calculated

from different previous partial routes are within the stay period, the traveler cannot

depart from this time point. In other words, it is impossible to grow a partial route

from this time point. A number with a crossed out line means this cost is larger than

or equal to the previously calculated cost from a different previous partial route. Due

to space limitations, we don’t display all the crossed out Last Point and Last T ime.

In real computation, if updating a cost for a partial route, the corresponding Last

Point and Last T ime also need to be updated.

As shown in the example of Figure 3.2, we are searching the BESTMTNN for the

feature type sequence < r, b >. Point q is the query point. There are two points r1

and r2 from feature type r and one point b1 from feature type b. The planned stay

at a point of feature type r is time unit 2 and will not be counted as travel cost.

The query is asking for the best start time between 2 and 4. The TAMTG shown in

the initial step stores the least travel time of point pairs for all time points for the

sequence < q, r > from query point q to feature type r and feature type sequence

< r, b > from feature type r to feature type b. Step 1 shows growing the partial

route from the route containing only the query point q to feature type r. Step 2

illustrates growing the partial route from the route of < q, r > to feature type b. The

rule for growing the partial route in both steps is the same. The following example

shows how partial route R(q4, r1,7) is grown to become partial route R(q4, r1,7, b1,10).

More specifically, we explain how the total cost 4 is calculated on the partial route

R(q4, r1,7, b1,10) that is for the route R(q, r1, b1) at time point 10 in step 2. In step 1,

after staying for 2 time units at time point 5 at point r1 on partial route R(q2, r1,5),

time point 5 becomes 7. Please note that time unit 2 is a stay planned in advance so

it is not counted as part of travel cost. Then we find the cost (least travel time) from

r1 at time point 7 to b1 in the initial setup, which is 3. The arrival time point at b1

is 7 + 3 = 10 and the total cost is 1 + 3 = 4. So the total cost of arriving b1 at time

point 10 is 4. The partial route for this calculation is R(q4, b1,7, r1,10). The cost 5 in

the same row at time 13 is the cost after staying at b1 for one extra time unit. This

calculation continues for all possible partial routes. For a specific point at a specific

time point, the least travel time is stored as the Total Cost (least travel time) for

37

this partial route.

3.3.4 BESTMTNN Algorithm

Figure 3.3 illustrates the BESTMTNN algorithm. Briefly, the algorithm proceeds

by gradually growing partial routes until finally a complete closed route is found.

According to our analysis of this query’s properties, a forward search strategy is

preferred. In the following description of the BESTMTNN algorithm, assume a search

order defined by < F1, F2, F3, . . . , Fk >. Fi represents feature type i.

In the priority Q, every node is attributed with a time series among which the ith

entry represents the partial route ending with the node at time point i and containing

information about Last Point, Last T ime, and Total Cost for this partial route as

discussed in section 3.3.3. Thus a node in Q represents partial routes that end with

the node for all qualified time points. For example, node u in the queue Q represents

all the partial routes from query point q to u. When visiting a new feature type, a

node from the new feature is added to the currently examined partial route to form a

new partial route that is then enqueued into priority queue Q at the end for all time

points within the time window of u. When visiting a feature type that has already

been visited, the algorithm uses a label correcting approach [9] to modify the entries

in a node according to the following conditions:

Cu[ti−1 + σvu[ti−1]] = minimum(σvu[ti−1] +Cv[ti−1],

Cu[ti−1 + σvu[ti−1]]) where

Cu[t]:Least travel time of partial route from query point to u arriving at time t

σvu[t]:Least travel time from v to u starting at time t

The algorithm maintains a list of partial routes in the priority queue Q. The pri-

ority query is ordered by the Minimum Total Cost of all partial routes that end with

the same node at all time points. The Total Cost of the partial route at a time point

is the least travel time spent on the partial route at a time point. Then a Minimum

Total Cost is the minimum of Total Cost at all time points. After a new partial

route is formed or an existing partial route is updated the partial route can be moved

forward if its Minimum Total Cost is smaller than that of the prior partial route in

the queue. This condition guarantees that the following partial routes in the queue

cannot have smaller least travel times even if these partial routes could be updated

from prior partial routes in the queue. For example, assume the queue contains par-

tial routes < R(q, r2), R(q, r1, b1), R(q, r1, b2) > ordered by Minimum Total Cost.

38

Algorithm BESTMTNN(q, TW, k, TAMTG)
Input : Query point q, Time Window Constraints (TW), number of feature

types k , Distance metrics, Time Aggregated Multi-Type Graph (TAMTG),
σvu(t) - cost from v to u at time t

Output : BESTMTNN route
1. Initialize : Add two fake new features of q as first (feature 0) and
2. last feature (feature k + 1)
3. Find greedy route and get Current Search Bound

4. While there is permutation left
5. Clear Q and enqueue q into Q with cost 0
6. While priority Queue Q not empty
7. v = Dequeue(Q)
8. if (v is q and q is back-home query point OR
9. Minimum Total Cost >= Current Search Bound)
10. Search in next permutation
11. i = NextFeature(v)
12. for (each node u in feature i)
13. for (every entry ti−1 within time window of feature i− 1)
14. if (WithinTW(ti−1 + σvu[ti−1], TW) AND
15. ((Cu[ti−1 + σvu[ti−1]] > σvu[ti−1]+ Cv[ti−1] OR i == 1))
16. Cu[ti−1 + σvu[ti−1] = σvu[ti−1] + Cv[ti−1]
17. Update related information
18. if (i has not been visited AND
19. Cu[ti−1 + σvu[ti−1]]+ σuq[ti−1 + σvu[ti−1]) >
20. Current Search Bound

21. Enqueue(u, Q)
22. Maintain priority queue Q by moving u forward in Q

23. according to Minimum Total Cost comparisons
24. Report current route as BESTMTNN route and the starting time of
25. BESTMTNN route as best starting time

Figure 3.3: BESTMTNN algorithm

39

(For simplicity, time tag has been ignored.) A new partial route R(q, r2, b1) is grown

from the partial route R(q, r2). The partial route R(q, r1, b1) could be updated to

R(q, r2, b1) if R(q, r2, b1) has smaller Minimum Total Cost. However, theMinimum

Total Cost of the newly updated partial route R(q, r2, b1) would still be bigger than

that of R(q, r2). So, if the Minimum Total Cost of R(q, r2) is bigger than Current

Search Bound or the length of time series it is safe to stop the search in the current

permutation.

More specifically, the first step of the algorithm after initialization is to find a

greedy route quickly and use its cost as first Current Search Bound. In a greedy

route search, first a random point of feature type F1 is picked, then the cost of

travelling from query point q at the first qualified time point to this point is used

as the current Total Cost. Then, a random point from feature type F2 is picked to

grow the partial route. This procedure continues until the search returns to the query

point. It is possible that this approach cannot find a qualified greedy route. In this

case, the length of the time series is used as the Current Search Bound.

The next step keeps all qualified partial routes R(qtj , P1,i,ti) as the first partial

route set and enqueue all the partial routes into a priority queue Q that is ordered by

minimum Total Cost of C(qtj , P1,i,ti). Here the point P1,i,ti is any point Pi of feature

type F1 at specific time ti and C(qtj , P1,i,ti) is the cost (least travel time) from q at

time tj to point Pi of feature type 1 arriving at time ti.

In the following step the partial route at the head of priority queue Q is removed

from the queue to become the current partial route. Assume this partial route is

R(qtj , . . . , Pi−1,g) starting at time tj from q. On this partial route Pi−1,g actually

represents all partial routes ending with point Pi−1,g for all qualified time points.

If the next feature type Fi has not been visited, for every point Pi,l in the feature

type Fi, add the point Pi,l to the current partial route, form a new partial routes

R(qtj , . . . , Pi−1,g, Pi,l) and then calculate the new partial route costs C(qtj , . . . , Pi−1,g,tg

Pi,l,tl) for all qualified time points among which Pi,l,tl is the point Pl from the feature

type Fi at time point tl. Finally the algorithm finds the Minimum Total Cost as

minimum(C(qtj , . . . , Pi−1,g,tg Pi,l,tl)) for all qualified time points and enqueues the

new partial route if the Minimum Total Cost is less than Current Search Bound.

If the next feature type Fi has already been visited, there must be another partial

route ending with Pi,l in the queue Q. Look for this partial route in Q and compare

the new least travel time on the new partial route to the previously calculated least

40

.q g3

2

g

g

g

1

4

x
x

x

xr3

r2

r4r1

b3

b4

b1b2

Figure 3.4: An example of BESTMTNN

travel time of the partial route ending with the same point Pi,l for every qualified

time point. If the new least travel time is less than the previous one at a time point,

replace the previous partial route with the new partial route for this time point.

Similar replacements should be done for all qualified time points.

In the last step in the iteration, the algorithm moves the partial route ending with

the point Pi,l forward in Q to keep the priority queue Q sorted by Minimum Total

Cost.

This procedure will continue until a complete closed route is found for this per-

mutation or the Minimum Total Cost from the current examined partial route is

greater than the Current Search Bound or the length of the time series. At this

time, it is possible that some partial routes remain in the priority queue. However,

since the queue is sorted by Minimum Total Cost, it is impossible to find another

complete closed route from the partial routes remaining in the queue with less travel

time than the Current Search Bound or the length of the time series.

After searching all permutations, the BESTMTNN algorithm generates a complete

closed route consisting of POIs with the best start time and a shortest travel time.

The full turn-by-turn route can be found by simply checking with TAEPV that is

used to generate TAMTG.

3.3.5 An Example of BESTMTNN Algorithm

Figure 3.4 illustrates how the BESTMTNN algorithm works on a spatial-temporal

road network. For simplicity, we only show the algorithm for a specific permutation

41

in the following. The full BESTMTNN algorithm works without pre-defined search

order. In this example, q is the query point and there are three feature types r, b

and g. Assume the current search sequence is < r, b, g >. First, the query point q

is enqueued and then dequeued to calculate partial routes R(q, r1), R(q, r2), R(q, r3)

and R(q, r4) for all qualified time points as described in section 3.3. (For simplicity,

the time dimension of partial routes is not shown in this example.) R(q, r1) or R(r1)

represents all partial routes ending with point r1 for all time points. These partial

routes are enqueued and sorted by Minimum Total Cost from all partial routes.

Assume now the sorted partial routes in the priority queue are < R(r1), R(r2), R(r3),

R(r4) >. Next, partial route R(r1), that is R(q, r1), is dequeued and grown by adding

every point in feature type b to it. Four new partial routes R(q, r1, b1), R(q, r1, b2),

R(q, r1, b3) and R(q, r1, b4) are generated and inserted into the queue such that the

queue remains sorted. Assume the queue is< R(r2), R(b1), R(b2), R(r3), R(r4), R(b4),

R(b3) > after sorting. At this time R(r2), that is R(q, r2), is dequeued and four new

partial routes R(q, r2, b1), R(q, r2, b2), R(q, r2, b3) and R(q, r2, b4) are generated by

adding every point in feature type b to it. Since feature type b was visited, every new

partial route identified by its end point and arrival time at the end point is compared

to the existing partial route if both of them share the same end point and time point.

The partial route with shorter Total Cost is kept. After all the partial routes are

grown and sorted, the partial route ending with point b3 is moved forwarded to the

head of the priority queue and the priority queue becomes < R(b3), R(b1), R(b2),

R(r3), R(r4), R(b4) >. This procedure continues until a complete closed route ending

with the query point q becomes the head of the priority queue. The BESTMTNN for

this permutation is the complete closed route with the smallest least travel time value

among all complete closed routes. In this example, the route with Minimum Total

Cost among all routes represented by R(q, r2, b3, g3) is the BESTMTNN route.

3.4 Experimental Evaluations

In this section, we present the results of various experiments to evaluate whether

our BESTMTNN algorithm is optimal in finding the shortest path in terms of least

travel time for the BESTMTNN query in real road network data sets. Specifically,

we demonstrate performance of the BESTMTNN algorithm with respect to execution

time using road network data with different properties related to the number of feature

42

Analysis

BESTMTNN
Algorithm

User−Specified
Query

Time−Aggregated
Multi−Type Graph

Extended SP−TAG
Algorithm

Types
Feature

Number
Point Len of

Time
Series

Time−Aggregated
Road Networks

BESTMTNN Query
Processing

Measurements

Figure 3.5: Experiment setup and design

types, number of points in each feature type, length of query windows and length of

time series.

3.4.1 The Experimental Setup

Experiment Platform Our experiments were performed on a PC with two 2.83

GHz CPUs and 4 GByte memory running the GNU/Linux Ubuntu 8.04.2 operating

system. All algorithms were implemented in the C programming language.

Experimental Data Sets We evaluated the performance of the BESTMTNN

algorithm for the BESTMTNN query with real road network data. The data set

represents the static digital road map from the area of 3 miles in downtown Min-

neapolis, Minnesota. In this data there are a total of 786 nodes and 2106 edges.

We synthetically generated different lengths of travel time series to create different

Time-aggregated Road Networks. For evaluation purposes, data points were ran-

domly picked from the nodes on the road networks to represent the points of interest

(POIs) from different feature types.

There were four different parameters in our experimental setup.

• Feature Type (FT): Feature type numbers from 2 to 7 to show the scalability

of the algorithm in terms of number of feature types.

• Number of Points (NOP): Number of data points from 20 to 120 in each feature

type.

43

• Length of Time Windows (TW): Length of query time windows from 20 to 120

for each feature type.

• Length of Time Series (TS): The available number of time points from 50 to

300 representing the long-term traffic patterns.

Experiment Design Figure 3.5 describes the experimental setup to evaluate the

impact of design decisions on the relative performance of the BESTMTNN algorithm

for the BESTMTNN query. The SP-TAG algorithm described in [22] calculated the

shortest path in terms of least travel time between a pair of spatial points for a given

start time. An extended version of SP-TAG algorithm randomly picks up points from

the Time-Aggregated road networks as POIs in different feature types and generates

TAMTG with different parameters choices related to number of feature types, number

of points in a data set belonging to a feature type and different lengths of time series,

based on the Time-Aggregated Road Networks. The BESTMTNN query processing

engine takes different TAMTGs and user-specified queries to generate the performance

measurements that are analyzed to evaluate the performance of the BESTMTNN

algorithm. The user-specified query gives the start time interval during which the

algorithm will find the best start time, the length of query time windows defining the

qualified visit time interval at all feature types, stay time intervals at all feature types

and the returning home time interval.

Our goal was to answer the following questions: (1) How do changes in number

of feature types affect the scalability of the BESTMTNN algorithm? (2) How do

differences in number of data points in each feature type affect the performance of the

algorithm? (3) How do the lengths of query time windows at each feature type affect

the performance of the algorithm? (4) How do the lengths of time series (number of

time points) affect the performance of the algorithm?

3.4.2 Scalability of BESTMTNN with Respect to Feature Types

This section describes the scalability of BESTMTNN in terms of the number of feature

types. In this experiment, the number of points in each feature type is 40, the length

of query time windows for all feature types is 60, and the length of time series is

300 time units. The number of feature types changes from 2 to 7. Figure 3.6 shows

that the algorithm runs less than 0.1 seconds when feature type number is 2,3 and 4

and runs for less than .5 seconds at feature type number 5. Run time increases to 3

44

seconds with 6 feature types and to a little less than 20 seconds for 7 feature types.

The execution time increases dramatically when the number of feature types increases

from 5 to 7 because the number of permutations increases dramatically, that is, the

number of iterations required for searching BESTMTNN becomes significantly large.

These results show that BESTMTNN is scalable with up to 7 feature types and for

most daily life queries, BESTMTNN can give the query results quickly.

2 3 4 5 6 7
0

2

4

6

8

10

12

14

16

18

20

22

Feature Type(NOP=40,TS=300,TW=60)

E
xc

ut
io

n
T

im
e(

se
c)

MTNNRD

Figure 3.6: Scalability in terms of feature type

3.4.3 The Effect of Number of Points in Feature Types on The Pe rformance

In this section, we show how the POI density of the data sets affects the performance

of the BESTMTNN algorithm. We tested BESTMTNN with feature type number

7, length of query time windows 60, time series units 300 and a changing number

of points in each feature type from 20 to 120. The results shown in Figure 3.7

indicates the data density in the area covered by the experiment data set affects the

BESTMTNN performance in a near linear fashion. When the data point number

is 20, the running time is about 6 seconds. However, when the data point number

reaches 120, that is, the total number of POI is 120 × 7 = 840, the running time is

about 80 seconds. In our road network data set, the total node (point) number is

786, which indicates that there must be some POIs from different feature types that

share the same location. This is a reasonable situation in daily life. For example,

multiple business units may share the same building or mall. Meanwhile, a POI total

45

of 840 means the data is extremely dense. It is probably necessary to partition this

dense area into smaller areas in order to answer a BESTMTNN query faster.

20 40 60 80 100 120
0

10

20

30

40

50

60

70

80

Number of Data Points (FT=7,TW=60,TS=300)

E
xc

ut
io

n
T

im
e(

se
c)

MTNNRD

Figure 3.7: Effect of number of points

3.4.4 The Effect of Different Lengths of Query Time Windows o n Perfor-
mance

In this section, we illustrate the BESTMTNN performance under different lengths of

query time windows at each feature type. We set the feature type number at 7, the

number of points in each feature type at 40 and the length of time series at 300. We

took the same query windows size for all feature types and changed the lengths of

query time windows from 20 to 120 units. Figure 3.8 shows that the BESTMTNN

query is sensitive to the length of query window. Run times increase near linearly

with increases of query time window. When the length of the time window is 20,

the running time is less than 2 seconds. When the time window reaches at 120, the

running time is just shy of 40 seconds. These results tell that it is beneficial for

users to specify smaller query time windows. However, it is worth remembering that

the chance of getting a BESTMTNN decreases as the size of the query time window

becomes smaller.

46

20 40 60 80 100 120
0

5

10

15

20

25

30

35

40

Time Window (FT=7,NOP=40,TS=300)

E
xc

ut
io

n
T

im
e(

se
c)

MTNNRD

Figure 3.8: Performance under different time window sizes

3.4.5 Effect of Different Lengths of Time Series on Performa nce

This experiment evaluates the effect of the total number of time series units in the

spatial-temporal road network on the performance of BESTMTNN. Here we used

number of feature types 7, number of points in each feature type 40 and the length of

query time windows 50 or 60. The length of the time series was changed from 50 to

300. Please note the maximum meaningful length of query time window is 50 when

the total available time series unit is 50. From the Figure 3.9, we can see that the

total running times are between 16 and 21 seconds. The lengths of time series affect

the BESTMTNN performance only a little and the changing pattern is not significant

when the length of time series changes.

3.5 Summary

We identified the properties of a BESTMTNN query and formalized a BESTMTNN

query problem on spatial-temporal road networks. We extended the EPV from spatial

only to spatial-temporal road networks and utilized a special case of the extended

EPV (TAEPV), TAMTG, in designing our BESTMTNN algorithm based on the

label-correcting approach. In our experiment we evaluated the performance of the

BESTMTNN algorithm in terms of number of feature types, number of points in each

feature type, the length of query time windows and the length of time series of road

networks.

47

50 100 150 200 250 300
5

10

15

20

25

Time Series (FT=7,NOP=40,TW=60)

E
xc

ut
io

n
T

im
e(

se
c)

MTNNRD

Figure 3.9: Effect of time series length

In the future work, we plan to conduct the comparative experiments to charac-

terize dominance zones of alternative choices for critical algorithm design decisions

and extend the BESTMTNN algorithm to huge road networks by using a hierarchical

TAMTG since it is extremely time-consuming to answer BESTMTNN query with

current technologies without partitioning huge road networks.

48

Chapter 4

Multi-Type Reverse
Nearest Neighbor
Search

This chapter presents a study of the Multi-Type Reverse Nearest Neighbor (MTRNN)

query problem. Traditionally, a reverse nearest neighbor (RNN) query finds all the

objects that have the query point as their nearest neighbor. In contrast, an MTRNN

query finds all the objects that have the query point in their multi-type nearest

neighbors. Existing RNN queries find an influence set by considering only one feature

type. However, the influence from multiple feature types is often critical for strategic

decision making in many business scenarios, such as site selection for a new shopping

center. To that end, we first formalize the notion of the MTRNN query by considering

the influence of multiple feature types. We also propose R-tree based algorithms to

find the influence set for a given query point and multiple feature types. Finally,

experimental results are provided to show the strength of the proposed algorithms as

well as design decisions related to performance tuning.

4.1 Introduction

Given a data set P and a query point fq,q, a reverse nearest neighbor (RNN) query

finds all objects in P that have the query point fq,q as their nearest neighbor. When

the data set P and the query point fq,q are of the same feature type, the RNN query

is said to be monochromatic. When they are from two different feature types, the

49

query is bichromatic. An RNN is said to represent a set of points in P that has

been influenced by a query point fq,q [31] and for this reason RNN queries have

been widely used in Decision Support Systems, Profile-Based Marketing, etc. For

example, before deciding to build a new supermarket, a company needs to know

how many customers the supermarket may potentially attract. In other words, it

needs to know the influence of opening a supermarket. An RNN query can be used

to find all residential customers that live closer to the new supermarket than any

other supermarket. If we assume that the presence alone of a new supermarket will

determine whether customers choose to shop at it, results of this query may be used

to decide whether to go ahead with the project. However, queries based on such

assumptions may not always produce useful results. A decision to shop at the new

store may also be influenced by the presence of other types of stores. For example,

some customers may want the opportunity to shop for groceries, electronics, and wine.

Here, what influences customers’ choice of grocery store is the shortest route through

one grocery store, one electronics store, and one wine shop rather than the shortest

route to the grocery store alone. In this case, the RNN query needs to consider the

influence of feature types besides grocery store. To date, both monochromatic and

bichromatic RNN queries have considered the influence of only one feature type. As

the above example shows, there is a need to also consider the influence of other feature

types in addition to that of the given query point.

Figure 4.1 illustrates how two feature types affect the results of an RNN query.

In the figure, point fq,q is the given query point and point fq,1 is another point from

the same feature type Fq, which we call the query feature type. Point f1,1 is a point

from a second feature type F1. p1 is a point from the data set P in which the RNNs

will be found. The perpendicular bisector ⊥ (fq,1, fq,q) or l1 between points fq,1 and

fq,q in Figure 4.1a divides the space into two half-spaces: P lane(l1, fq,1) containing

point fq,1 and P lane(l1, fq,q) containing point fq,q. Any point falling inside half plane

P lane(l1, fq,1) is closer to point fq,1 than fq,q. Similarly half plane P lane(l1, fq,q)

contains all points that are closer to fq,q than fq,1. For perpendicular bisector ⊥
(fq,q, fq,1) or l2, these properties also hold.

In Figure 4.1a, if the influence of point f1,1 is not considered, p1 is an RNN of

the given query point fq,q since fq,q is the nearest neighbor of p1. However, when the

influence of point f1,1 is considered, p1 is not an RNN of fq,q because the distance of

the route R(p1, fq,1, f1,1) is shorter than the distance of the route R(p1, fq,q, f1,1). As

50

,qqq,1(f

1,11,1

q,1

q,1

f

f f
q,q

,q

,f
1p1p

1l 2l

)q,1,f,qq(f)

q

f

f

f+ .

.
(b)(a)

+ .

.

Figure 4.1: Influence of two feature types

an opposite example, in Figure 4.1b, when the influence of point f1,1 is not considered,

p1 is not an RNN of the given query point fq,q since fq,1 is the nearest neighbor of p1.

However, when the influence of point f1,1 is considered, p1 is an RNN of fq,q because

the distance of the route R(p1, fq,q, f1,1) is shorter than the distance of the route

R(p1, fq,1, f1,1). This example shows that an RNN query may give different results

depending on the number of feature types accounted for. Implicit in the multi-type

RNN search that we describe is a query to find the shortest distance from point p1

through one instance of given feature types Fq and F1. We call this query a multi-type

nearest neighbor (MTNN) query in [40].

. . .
l5

l2

l1

.
.

.

.

..
..

.
.

. .
.
.. . .

.

.
.
. l3

l4

q,qf

q,1

q,3

1,3

1,4

1,5

1,2

f

f
f

f

1,1f

q,4

q,5

q,2
f

f

f

f
f

.
..

. .
.

.
.

.
.

.
.

.
.

.
.

.

..

.

.
.

.

.

.
. .

. .

.
. . .

.

.

. .

.
.

.

.

Figure 4.2: A use case

Figure 4.2 illustrates another business query problem. Assume that a business

rule states “Build a new grocery store if the store will be a nearest neighbor of more

51

than 30 residences.”. In the figure, assume that point fq,i is a grocery store from

feature type Fq, grocery store. The new grocery store to be built by our grocery store

chain is represented by the point fq,q, which is the query point. Every grocery store

is represented by a circle. Point f1,i is a wine shop from feature type F1, wine shop.

Every wine shop is represented by a triangle. The solid points represent residences.

The lines l1, l2, l3, l4 and l5 are perpendicular bisectors between point fq,q and fq,1,

fq,q and fq,2, fq,q and fq,3, fq,q and fq,4, and fq,q and fq,5 respectively. A classical RNN

query considers the influence of the grocery store only and finds that all residences

located inside the region formed by lines l1, l2, l3, l4 and l5 have the point fq,q as

their nearest neighbor. Thus the new grocery store fq,q is the nearest neighbor of

these residences, and the residences are the reverse nearest neighbors of fq,q. In this

business context, shoppers from the residences are considered likely to visit the new

grocery store fq,q because their route to the new store is shorter than to any other

grocery store. Further, the number of residences totals 37 in this case, which is enough

to justify going ahead with the project to build the new grocery store fq,q.

However, this classical RNN query result does not account for shoppers who want

the opportunity to buy not only groceries but also wine. (Some municipalities do not

permit the sale of wine in grocery stores.) Such shoppers are interested in finding

the shortest path through not one, but two types of stores, a grocery store and a

wine shop. A reverse nearest neighbor search that considers the influence of the

additional feature type wine shop may yield more useful results as shown in Figure

4.2. Indeed, after applying the same distance calculation method, i.e., the MTNN

query defined in [40] and used previously in Figure 4.1, the shortest route from some

of the residences (the blue or gray points in the figure) through one grocery store

and one wine shop does not contain the new grocery store fq,q. This means that

these residences are no longer RNNs of the new store and not likely to visit it. More

specifically, when two feature types Fq grocery store and F1 wine shop are considered

in the query, only 21 residences are found to be RNNs of fq,q, which does not meet

the threshold required for building a new store.

As this example demonstrates, an RNN query that considers the influence of

more than one feature type can produce quite different results from an RNN query

based on a single feature type. The differences can be two-fold. In our example

above, the multi-type query returned a different number of RNNs. In other cases, the

specific RNNs returned may differ. For example, a grocery chain may be interested

52

in knowing not only the number of potential shoppers but also the average household

income of potential shoppers at a new grocery store. A query that considers the

influence of the grocery store alone will generate one answer (e.g., average household

income=$27,000), while a query that considers the influence of additional nearby

businesses (e.g., wine shop and electronics store) may generate another (e.g. average

household income = $42,000, reflecting the fact that a different set of customers

is attracted to these shops). Whether it is a difference in the number of RNNs

returned or the RNNs themselves, multi-type RNN queries have considerable potential

to impact decision-making in business applications.

In this chapter we formalize the Multi-Type Reverse Nearest Neighbor (MTRNN)

query problem to consider the influence of other feature types in addition to the

feature type of the given query point. We propose R-tree based algorithms to prune

the search space by filtering R-tree nodes and points that are definitely not the

MTRNN of the given query point. Then refinement approaches are used to remove the

false hit points. Our experiments on both synthetic and real data sets demonstrate

that typical MTRNN queries can be answered by our algorithms within reasonable

time. The design decisions related to performance tuning are provided as well. We

also include experimental results that vividly highlight the degree to which MTRNN

query results can differ from results of traditional RNN queries.

Related Work. The notion of a reverse nearest neighbor query was first formalized

in a pioneering paper by Korn and Muthukrishnan [31]. They proposed algorithms for

static and dynamic cases by pre-computing the nearest neighbor for each data point.

Following their work, an on-line algorithm that utilized property of 2-dimentional

space partitioning was proposed in [58] for dynamic databases and an index structure

was devised to answer RNN queries by Yang and Lin in [17]. Since then RNN queries

have been extended in a number of dimensions including metric space [3] and [62],

high-dimensional space [56], ad-hoc space [73], large graphs [74] and spatial networks

using Voronoi diagram [50]. RNN queries have further been studied in an extended

family containing different variations of classic RNN problem.. Yao et al. [72] studied

reverse furthest neighbors in spatial databases. Tao et al. [60] dealt with monochro-

matic RkNN queries in arbitrary dimensionality for the first time. Wu et al. [68]

proposed a new algorithm for both monochromatic and bichromatic RkNN queries

on 2-dimensional location data. Gao et al. [21] extended RNN to a visible RkNN

problem, considering presence of obstacles and Vlachou et al. [65] proposed a reverse

53

top-k query problem to support the rank-aware query processing. Wong et al. [66]

formalized a maximum bichromatic reverse nearest neighbor (MaxBRNN) problem

that finds an optimal region maximizing the size of BRNNs. In this problem the

location of the query point is not fixed, which makes it different from existing prob-

lems. RNN problem plays an important role in mobile computing. [28,69] researched

continuous RNN and [64] studied bichromatic RNN in mobile system. Dellis and

Seeger introduced the concept of Reverse Skyline Queries in [18] for the first time.

Liang and Chen [37] then extended the skyline queries to uncertain databases. While

RNNs have been studied for a large variety of computational problems, a common

feature of all these studies is that they only consider the influence of a single feature

type, the feature type of the given query point.

Where the effect of multiple feature types has been studied is in nearest neighbor

queries. Sharifzadeh et al. [54] proposed an Optimal Sequenced Route (OSR) query

problem and provided three optimal solutions, Dijkstra-based, LORD and R-LORD.

Essentially, the OSR problem is a special case of the MTNN problem [40] because the

order of feature types is fixed for the OSR problem. The OSR work was extended to

road networks by using Voronoi diagrams in [55]. In this work, the visiting order of

feature types is also fixed, which makes it different from the work in [38]. Recently

Kanza et al. [35] formally defined an interactive route search problem in that the

route is computed in steps and presented heuristic interactive algorithms for route-

search queries in the presence of order constraints. In paper on Trip Planning Queries

(TPQ) [36] that find a route through multiple features for all permutations of feature

types, a number of fast approximate algorithms were proposed to give sub-optimal

solutions. In the work [8] multiple spatial rules represented as a directed graph were

imposed on sequenced route query and three algorithms were developed to find sub-

optimal travel distance. These studies offer some insight into the handling of multiple

feature types. However, if multi-type NN search approaches are to be extended to

reverse nearest neighbor searches, they need to be able to handle non-fixed order visits

and provide solutions finding optimal routes with shortest distance and then RNNs.

Ma et al. [40] formalized a Multi-Type NN query problem and proposed a Page Level

Upper Bound (PLUB) based algorithm to find an optimal route for the MTNN query

without any predefined visiting order of feature types. This work was then extended

to spatio-temporal road networks in [38]. In this chapter, we build on our study

of multi-type reverse NN solutions with non-fixed visits. To our knowledge, ours

54

is the first to consider the influence of multiple features in reverse nearest neighbor

problems.

Outline. The remainder of this chapter is organized as follows. Section 4.2 for-

malizes the MTRNN problem and presents a brute force algorithm as a baseline

algorithm. In section 4.3 we propose two filtering methods to prune the search space

and three refinement approaches to remove the false hit points. Section 4.4 analyzes

the complexity of the algorithms and section 4.5 gives the experimental setup, results

and a discussion. Finally, in section 4.6, we conclude and suggest future work.

4.2 Preliminaries

In this section, we introduce some basic concepts, explain some symbols used in the

remainder of the chapter and give a formal statement of the MTRNN query problem.

We also present a one-step brute force algorithm for the MTRNN query as a baseline

algorithm that is directly based on the formulation of the MTRNN query problem.

Table 4.1 summarizes the symbols to be used in the rest of this chapter.

Notation Description

P Queried data set

pi A point from queried data set P

Fq Feature type q that the query point fq,q belongs to

Fi Feature type i

fq,q A query point

fi,j A point j from feature type Fi

si A point i in space

sisj Line segment sisj
len(sisj) Length of line segment sisj
R(..., ...) A route through some given points

d(R(..., ...)) Distance of a route through some given points

Ri An R-tree index node

fr A feature route

Sfr A set of feature route

Sfrps A set of feature route point set

Sc A candidate MTRNN set

Table 4.1: Summary of Symbols

55

4.2.1 Problem Formulation

Let pi represent any point in the queried data set P , {p1, p2, . . . ,pn} be a point set,

Fi be a feature type, and fi,i′ be a point fi′ from feature type Fi.

Definition 1 Partial route. A Partial Route R(pi, f1,1′ , f2,2′, ..., fl,l′) is a route

from point pi through points from different feature types F1, F2, ..., Fl.

d(R(pi, f1,1′, f2,2′ , ..., fl,l′)) is the distance of the partial route.

Definition 2 Multi-Type Nearest Neighbor (MTNN). An MTNN of a given

point pi is defined to be the ordered point sequence < f1,1′, f2,2′ , . . . , fk,k′ > such that

d(R(pi, f1,1′, f2,2′ , ..., fk,k′)) is minimum among all possible routes from pi through one

instance of feature types F1, F2, ..., Fk.

R(pi, f1,1′ , f2,2′ , ..., fk,k′) is called the MTNN route for the given point pi. Please

note although an MTRNN route resulted from an MTRNN query is an ordered se-

quence, the order of feature types is not specified in an MTNN query.

Definition 3 Multi-Type Reverse Nearest Neighbor (MTRNN). An MTRNN

of the given point fq,q is defined to be a point pi in the queried data set P such that

the MTNN of the point pi contains the query point fq,q.

For a point pi in set P and feature types F1, ..., Fq, ... Fk, find the MTNN route

R(pi, f1,1′ ,f2,2′, ..., fk,k′). If the given query point fq,q is on the MTNN route, the point

pi is an MTRNN of the query point fq,q.

An MTRNN query is a query finding all MTRNNs for the given query point fq,q,

k feature types, and the queried data set P . As in the MTNN problem, the order

of the given k feature types is not specified because an MTRNN query is trying to

find the influence of given feature types. The features have influence no matter what

order they are in. Therefore, we don’t force any order constraint on the feature types

for an MTRNN query.

In our problem formulation, we are querying against a data set P whose feature

type differs from the given k feature types. We use Euclidean distance as the distance

metric. The query point fq,q is from feature type Fq of the given feature types. Each

data set of different feature types has its own separate R-tree index that will be

used to find nearest neighbor in the algorithm Figure 4.4 and in the adapted MTNN

56

algorithm Figure 4.14 of the refinement step. The query finds all MTRNNs in the

queried data set P in terms of k different feature types for the given query point fq,q.

That is, for every point in the queried data set P , first find its MTNN. If the given

query point fq,q is on the MTNN of this query point, the queried point is considered

to be an MTRNN of the given query point fq,q.

The following is the formal definition of the MTRNN query problem.

Problem: The MTRNN Query

Given:

• A data set P to be queried against

• Distance metric: Euclidean distance

• k sets of points, each set coming from one of k different feature types

• A query point fq,q, coming from feature Fq of the k feature types

• Seperate R-tree index for each data set including queried data set and feature

data set

Find:

• Multi-type reverse nearest neighbors (MTRNNs) in the queried data set P for

the given k different feature types and the query point fq,q such that fq,q is on

the MTNN of each MTRNN point

Objective:

• Minimize the length of the route starting from an MTRNN covering the query

point fq,q of Fq and one instance of every other feature type excluding feature

type Fq

In our problem formulation, the objective function follows the definition used

in [40,8,36,54]. The objective function, however, in these studies is very general and

does not consider the possible influence difference of different feature types. In other

words, every feature type has the same influence on a point. It also does not consider

the route returning to the query point, which may be useful in some applications. The

objective function defined here incorporates these considerations. Thus, our objective

function, represented as d(R(pi, f1,1′ ,f2,2′ , ..., fk,k′)), is the distance of the route from

57

a point pi through one instance of every feature of the given k feature types. If the

shortest route found from point pi contains the query point fq,q, then this point pi is

an MTRNN of the query point fq,q.

4.2.2 One Step Baseline Algorithm for the MTRNN Query

We developed a naive approach directly based on the concept of the MTRNN query

problem and the relationship between MTNN and MTRNN queries. For the given

query point fq,q, this one-step algorithm simply scans all the points in the queried

data set P . More specifically, for every point pi in P , it finds the MTNN of this point

in the given data sets of k different feature types using algorithm described in [54] for

one permutation of feature types and then applying the algorithm for all permutations

of feature types as did in [40]. If the query point fq,q is on the MTNN of a data point

pi, the data point pi is an MTRNN of fq,q. This brute force algorithm does not prune

any data points so it is very time-consuming and not scalable. It is presented here as

a baseline algorithm because it is directly based on the formulation of the MTRNN

query problem and is useful for evaluating the correctness of our MTRNN algorithm.

The scalability of the MTRNN algorithm depends on the efficiency of the under-

lying MTNN search of all the points in the queried data set. Due to the complexity

of the current MTNN algorithm [40, 54], achieving a scalable MTRNN algorithm re-

quires designing an efficient filtering method to prune most of the queried data before

the MTNN algorithm is applied. In the following section, we present an MTRNN

algorithm with an efficient filtering step.

4.3 Multi-Type Reverse Nearest Neighbor Algorithms

Our MTRNN algorithm is an on-line algorithm consisting of three major steps, prepa-

ration, filtering, and refinement. The output of the MTRNN query that take into

account the influence of multiple feature types is a set of reverse nearest neighbors.

The preparation step in section 4.3.1 finds feature routes for the filtering step by

applying a greedy algorithm that uses R-tree indexes from all feature types during

searching. Thus, normally only a small portion of data will be examined. The fil-

tering step in section 4.3.2 eliminates R-tree nodes that cannot contain an MTRNN

by utilizing feature routes and then retrieves all remaining points that are potential

MTRNNs to form a candidate MTRNN point set. In this section, we describe two

58

Algorithm MTRNN(R-trees, R-tree, fq,q, Fq)
Input : R-trees for each feature, R-tree index root of queried data set,

query point fq,q, the query feature type Fq

Output : MTRNN set Sc

1. //1.Preparation Step
2. Partition Space and put subspace into set Ssub

3. //Find initial greedy route
4. Sfrps = Greedy(R-trees, fq,q, ∅)
5. Find feature route set Sfr from Sfrps

6. S′
fr = FindFeatureRoutes(R-trees, fq,q, Sfr, Ssub)

7. Sfr = S′
fr ∪ §fr

8. //2.Filtering Step
9. Sc = Filtering(R-trees,R-tree,Sfr ,fq,q,NIL)
10. //3.Refinement Step
11. Sc = Refinement(R-trees,R-tree,fq,q ,Sc,Sfr,Fq)
12. return Sc

Figure 4.3. MTRNN algorithm.

pruning techniques, called closed region pruning and open region pruning, to elimi-

nate all R-tree nodes and points that cannot possibly be MTRNN points. We also

prove that both closed and open region pruning techniques do not introduce any false

misses in Lemma 1 and Lemma 2 respectively. The refinement step in section 4.3.3

removes all the false hit points by three refinement approaches among which the final

approach is to search the multi-type nearest neighbor (MTNN) of each candidate

point. If the query point is not one of the points in the MTNN of a candidate point,

the candidate point is a false hit and can be eliminated. Otherwise, the candidate

point is an MTRNN of the given query point. We prove that the refinement step does

not cause any false miss along with the description of the algorithm.

Figure 4.3 presents the overall flow of the MTRNN algorithm and its preparation,

filtering and refinement steps. We will discuss these three steps in detail in the

following sections. Because feature route is a crucial component in both filtering and

refinement, in the following we first discuss the algorithms to find feature routes in

the preparation step.

59

4.3.1 Preparation Step : Finding Feature Routes

A feature route plays an important role in the MTRNN algorithm. We first define

feature route and related concepts and then describe our approach of finding the

feature routes.

Definition 4 Multi-type route (MTR). Given k different feature types, a multi-

type route is a route that goes through one instance of every feature type.

Assume there are four feature types F1, F2, F3 and F4. An MTR could be

R(f1,1, f2,1, f3,1, f4,1).

Definition 5 Feature route. Given k different feature types, a feature route is a

multi-type route such that the distance from the fixed starting point through all other

points in the MTR route is shortest.

From the MTR R(f1,1, f2,1, f3,1, f4,1) illustrated above, we can get four feature

routes. Fixing point f1,1 and finding the shortest distance from point f1,1 through

the three other points we get one route. This route, assuming R(f1,1, f4,1, f3,1, f2,1)

starting from point f1,1 with the shortest distance, is a feature route. Starting from

each of other three points respectively and finding the route with shortest distance

yields four feature routes.

Definition 6 I-distance. Given a feature route, the (shortest) distance of this route

is called an I-distance.

Definition 7 Feature route point set. Given a feature route, a feature route point

set consists of all points in the feature route.

A feature route can be identified by a given feature route point set and a fixed

starting point. Given a feature route point set containing k points from k different

feature types there are k feature routes and k corresponding I-distances starting from

each point of the given feature route point set.

The position of a feature route on the search space will affect its filtering ability.

Therefore, it is preferred that different feature routes be found for different subspaces

of the entire search space. In our algorithms we divide the space into several subspaces

60

by straight lines intersected at the query point with the same angles between two

neighbor lines and find feature routes for each of these subspaces respectively.

Next, we show how to find initial feature route. Figure 4.4 displays the pseudo-

code for the greedy MTR finding procedure. This greedy algorithm uses a heuristic

method by assuming a fixed order of feature types represented as < Fq, F1, . . . , Fq−1,

Fq+1, . . . , Fk > among which Fi is feature type and greedily find the MTR. A greedy

approach is necessary because finding a feature route using the MTNN algorithm is

very time-consuming. A greedy approach is also sufficient because the route it finds

is used only for pruning purposes. We find the greedy MTR by greedily finding a

route for a specified ordered list of features starting from the given query point fq,q.

A greedy MTR route in terms of k feature types for the given query point fq,q of

feature type Fq is found by finding in feature type Fq the nearest neighbor fq,1′ of

fq,q inside a subspace, and then in feature type F1, finding the nearest neighbor f1,1′

of the point fq,1′. This procedure continues until all feature types have been visited.

During this procedure, the R-tree index of each feature type is used in the nearest

neighbor search algorithm based on work in [49]. All points on the greedy MTR route

form a feature route point set. When using a greedy approach to find an MTR we

should avoid generating the same MTR more than one time. This is done by making

sure that the nearest neighbor of the starting point fq,q is not in the existing feature

route set.

Generating one greedy MTR route, thus one feature route point set, for each of a

few subspaces may not create large enough pruning regions. For an MTRNN query to

generate pruning regions larger enough to filter as many as R-tree nodes and points

as possible, it is required to generate enough feature routes. However, there is a

tradeoff. The greater the number of feature routes the more expensive the filtering

cost due to the greater number of pruning regions generated for each feature route.

In our experiments, we show how many feature routes are enough for our filtering

algorithm.

There are two approaches to generate the feature routes. The first is to generate

m different feature route point sets by finding m NNs of the query point fq,q in feature

type Fq and from each of these m NNs greedily find the MTRs to get m greedy MTR

routes. This would likely enlarge the pruning regions, and thus increase the filtering

ability and reduce the refining cost. The other approach to generate more feature

routes, and thus larger pruning regions, is to partition the space into more subspaces.

61

Algorithm Greedy(R-trees, fq,q, Sfr)
Input : R-trees for each feature, query point fq,q, existing

feature route set Sfr

Output : A feature route point set Sfrps

1. q = fq,q, Sfrps = ∅
2. For next feature in feature list with predefined order
3. Remove head from the feature list
4. Find NN of q in current feature
5. //Avoid finding the same Sfrps twice
6. If q is fq,q and NN is in Sfr

7. return ∅
8. put the NN into Sfrps

9. q = NN

10. return Sfrps

Figure 4.4. Find greedy MTR.

Because one greedy MTR is found for one subspace, more subspaces means that

more greedy MTR are generated. So, more feature routes are then generated. Both

approaches have similar effect to increase the filtering ability and reduce cost. In

our experiments, we apply the second approach to generate more subspaces and thus

feature routes.

Figure 4.5 describes the algorithm for finding feature routes and corresponding

I-distances. Since an I-distance is shortest, the route that has length I-distance is

a Hamilton Path. We use the existing Hamilton Path-finding algorithm to find the

I-distance. As it is known, Hamilton Path-finding problem is NP-complete. For large

number of feature types, it is very time-consuming. However, it is acceptable to use

the existing algorithm to find exact shortest path for the Hamilton Path-finding in

our case since our MTRNN algorithm is only used when the number of feature type

is small due to its complexity. As will be discussed later, the shorter the I-distance,

the better it is for filtering efficiency.

In the feature route finding algorithm described in Figure 4.5, only the first point

of a greedy MTR route is required to be inside a specified subspace because the

feature routes generated this way could possibly be shorter. If we require all points

in a feature route point set to be inside the same subspace, the feature routes may

be longer, which will generate pruning regions with smaller size, thus decreasing

62

Algorithm FindFeatureRoutes(R-trees, fq,q, Sfr, Ssub)
Input : R-trees for each feature, query point fq,q, existing feature

route set Sfr, subspace set Ssub

Output : new feature route set S′
fr

1. S′
fr = ∅

2. For each subspace in Ssub

3. Sfrps = Greedy(R-trees, fq,q, Sfr)
4. For each point in Sfrps

5. Fix this point as starting point;
6. Find I-distance and corresponding feature route;
7. Put the feature route into feature route set S′

fr

8. return S′
fr

Figure 4.5. Find feature routes.

the filtering ability. Although a feature route generated with this strategy may fall

into different subspaces, this should not change its filtering ability much statistically,

considering that part of any feature route could fall outside the specified subspace

and all feature routes are used to generate pruning regions in an R-tree node filtering.

It is worth noting that for every greedy MTR route, one feature route point set and

k different feature routes are created.

To summarize the concepts of space partitioning and feature routes, Figure 4.6

illustrates a specific space partitioning of six subspaces and some feature routes. Three

lines l1, l2 and l3 intersect at the query point fq,q, and partition the space around it

into six subspaces S1, S2, . . . , S6. For convenience, one of the lines is parallel to the x

axis, and the angle between the lines is 360◦/6 = 60◦. Please note that the space can

be divided into any number of subspaces. Although this specific partitioning scheme

with six subspaces in Figure 4.6 is the same as in [58], the MTRNN algorithm does

not used the property used in [58]. Starting from each subspace, a greedy MTR route

is found. In the figure, sample feature routes of three feature types are given. In this

example, not all points on one of the feature routes are inside the same subspace,

because the feature route finding algorithm does not guarantee that all points will be

inside the same subspace.

63

.

l2
l3

l1

.
.

..

.

.
fq,q

Figure 4.6. Feature routes on the divided space.

4.3.2 The Filtering Step : R-tree Node Level Pruning

After finding feature routes we use two filtering approaches, closed region pruning and

open region pruning to prune the search space. In both approaches, feature routes

are used to generate pruning regions such that any point inside these regions cannot

be MTRNNs, and thus can be filtered without causing any false miss. We begin with

the discussion of closed region pruning.

Closed Region Pruning

f

r2
r2’

r2’
f

1,2f
2,2f

q,qf

q,1f

1,1f
2,1f

r1’

r1’
q,2

q,3

C3

C2

C1

(c) Node partially covered(b) Node completely covered(a) Node not intersected

r1

r3’

r3’

r3

2,3

1,3f

f

f

q,qfq,q

R1

R3

.

.

+

.

R2 .

+

.

.

+

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

Figure 4.7. Three pruning scenarios.

Definition 8 Closed pruning region. A closed pruning region is a circle centered

at the starting point fi,j in the feature route with radius = MINDIST from the query

64

point fq,q to an R-tree node of the queried data − I-distance of the feature route

starting at the point fi,j.

Closed region pruning generates closed regions for each feature route and one R-

tree node and uses these regions to prune the R-tree node. Figure 4.7 illustrates

three pruning scenarios. In the figure, fq,q is the query point and R1, R2 and R3 are

R-tree nodes that could be either leaf nodes or internal nodes in the R-tree index of

the queried data. There are three points inside a feature route point set from three

different feature types Fq, F1 and F2.

In Figure 4.7, ri is the length of a feature route and r′i is the length between the

MINDIST from a query point to an R-tree node and ri. In Figure 4.7a the length

of feature route R(f2,1, f1,1, fq,1) is r1 which is the I-distance starting from point f2,1

through point f1,1 and fq,1. During the pruning procedure as shown in Figure 4.7a,

first the minimum distance MINDIST from the query point fq,q to the R-tree node R1

has been calculated. Next the I-distance r1 of the feature route R(f2,1, f1,1, fq,1) was

retrieved from the pre-calculated results in preparation step. The MINDIST from fq,q

to R1 is r1+r′1 because r
′
1 = MINDIST from fq,q to R1 - r1. In the following, a circle

C1 is drawn, centered at the starting point f2,1 of the feature route R(f2,1, f1,1, fq,1). It

can be seen that circle C1 does not intersect the R-tree node R1. Therefore, the length

of the route from a point p1 inside R1 to the query point fq,q could be shorter than

the distance from the same point through route R(f2,1, f1,1, fq,1), i.e., d(R(p1, fq,q))

could be shorter than d(R(p1, f2,1, f1,1, fq,1)), which means that from a point inside

R1 it is possible to find an MTNN that contains the query point fq,q. Thus, all points

inside R1 should be evaluated to find whether their MTNNs contain the query point

fq,q or not.

In Figure 4.7b, r2 is the I-distance of route R(fq,2, f1,2, f2,2). r′2 = MINDIST

from fq,q to R2 - r2 so the MINDIST from fq,q to R2 is r2 + r′2. Similarly a circle

C2 centered as fq,2 is drawn. At this time it covers the R-tree node R2 completely.

Therefore the length of the route from a point p2 inside R2 through R(fq,2, f1,2, f2,2)

could not be longer than the distance from the same point to the query point fq,q,

i.e., d(R(p2, fq,2, f1,2, f2,2)) < d(R(p2, fq,q)), which means from any point inside R2 we

could not find an MTNN that contains the query point fq,q. Thus, the entire node

R2 can be pruned.

65

In Figure 4.7c, r3 is the I-distance of route R(f2,3, f1,3, fq,3). r′3 = MINDIST

from fq,q to R3 - r3 so the MINDIST from fq,q to R3 is r3 + r′3. Another circle C3

centered at f2,3 is drawn and intersects the R-tree node R3. Therefore the length

of the route from a point p3 inside the intersection of R3 and circle C3 through

route R(f2,3, f1,3, fq,3) could not be longer than the distance from the same point to

the query point fq,q, i.e., d(R(p3, f2,3, f1,3, fq,3)) < d(R(p3, fq,q)). However, the route

from a point p′3 of R3 outside the intersection through route R(f2,3, f1,3, fq,3) could

be longer than d(R(p′3, fq,q)). That means from any point inside the intersection we

could not find an MTNN that contains the query point fq,q but from a point outside

the intersection an MTNN could be found containing the query point. Thus, the part

of page R3 inside the circle C3 could be pruned.

From the pruning procedure illustrated in Figure 4.7, we know that the closed

pruning region cannot contain any MTRNN. Thus, pruning the closed region won’t

cause any false miss. The following Lemma 1 formally proves this point.

Lemma 1 For any point contained inside an R-tree node of the queried data set, if

it is also contained inside a closed pruning region it cannot be an MTRNN, and thus

can be pruned without causing any false miss.

Proof Assume pi is contained in an R-tree node and inside a closed pruning region.

Because pi is contained in the R-tree node, the distance from pi to the query point is

longer than or equals the MINDIST from the query point to the R-tree node. Since

the radius of the closed region circle equals the MINDIST from the query point to the

R-tree node − the I-distance of the feature route, the distance from pi that is inside

the circle representing the closed pruning region to the starting point of the feature

route + I-distance is shorter than MINDIST from the query point to the R-tree node.

Therefore, the distance from pi through the feature route is shorter than the distance

from pi to the query point. As we know that the distance of the MTNN route starting

at pi is shortest among all routes starting from pi through one instance of each of k

feature types, any route from pi through the query point cannot be the MTNN route,

which means the MTNN route from pi does not contain the query point. So pi is not

an MTRNN of the query point.

Please note that the set of points mentioned in Lemma 1 does not contain any

point on the circle of the closed region circle.

66

f

f

r4’

r4

’

r3’

2,3

1,3

q,3

f

f

q,q

f

r3’

r3

f

R3

f

C3

C4

C3

+

q,4

2,4
1,4

q,q

1,3

2,3f

f

q,3f

f

r3’

r3

r3’

R3

(a) After one pruning (b) After two pruning

r4

.

.
.

+

.

.

+

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

��������������
��������������
��������������
��������������
��������������
��������������

Figure 4.8. Pruning one node.

Figure 4.8 illustrates the pruning process on one R-tree node with two feature

routes. Figure 4.8a that is Figure 4.7c shows the pruning result with feature route

R(f2,3, f1,3, fq,3). The intersected part of R3 and circle C3 has been pruned. How-

ever, the shaded part may still contain potential MTRNNs as discussed for scenario

three in Figure 4.7c. In Figure 4.8b, another feature route R(f1,4, f2,4, fq,4) joins in

the pruning process. Similar to scenario three in Figure 4.7c, the length of the circle

C4 centered at f1,4 is the difference r′4 between the MINDIST from the query point

fq,q to R3 and the I-distance of feature route R(f1,4, f2,4, fq,4). The closed pruning

region represented by circle C4 also prunes part of R-tree node R3 as shown in Figure

4.8b. For better understanding, we draw two circles centered at fq,q with radius r3

and r4 among which r3 is the I-distance of feature route R(f2,3, f1,3, fq,3) and r4 is

the I-distance of feature route R(f1,4, f2,4, fq,4). The shaded part of R3 in Figure 4.8b

contains potential MTRNNs. The other part of R3 cannot contain any MTRNN so

it can be pruned without causing any false miss.

The filtering ability of a feature route in the closed region pruning

As we noted earlier, the filtering ability of a feature route depends on its position

relative to the position of the R-tree node to be pruned. The radius of the circle

centered at a point on a feature route equals the MINDIST from the query point to

an R-tree node - the I-distance of the feature route. If the MINDIST from the query

point to the R-tree node is less than the I-distance of a feature route, this feature

route will not be used to generate a closed pruning region for this R-tree node and it

67

will not prune any data point inside this R-tree node. The more the circle covers an

R-tree, the better the filtering ability. So, in order to increase the pruning ability of

a feature route, it is necessary to calculate its I-distance, which is a Hamilton Path

problem. Because the number of feature types is not big and the MTNN finding

algorithm is complicated, it is worth calculating the I-distance and having it serve as

the length of the feature route. After calculating the radius of the circle, both the

circle’s size and location are determined on the space. The closer the R-tree node is

to the center of a circle, the higher the probability that the circle covers more of the

R-tree, and thus the better the filtering ability. Therefore, we can incrementally add

more feature routes that are close to an R-tree node into the feature route set and

use them to filter the remaining part of the R-tree node and other R-tree nodes later.

Open Region Pruning

Our second pruning approach prunes an open region solely based on each feature

route, thus pruning all points and R-tree nodes inside this region. This pruning

approach is especially effective when pruning an R-tree node far away from the query

point.

s (x,y)1

hs

2,1
1,1

fq,1

f
f

(x1,y1)q,qf

.
(x2,y2)

..
l

.

.

.

(a) Ideal pruning

.

2,1

q,1

1,1
f

f

fq,q

8

L2L1

3

4x

C3

C2

s

s
s

s

s

s

f

s
s1

hs

C1

7

2l

1l

6

5

α

2

y

.

.

(b) Realistic Pruning

Figure 4.9. Open region pruning.

There are multiple ways to generate an open pruning region. A theoretic maximum

open region that is generated from a feature route and can be pruned is represented

as a half plane separated by a curve as illustrated in Figure 4.9a. In the figure,

fq,q(x1, y1) is the query point from feature Fq, fq,1(x2, y2) is any point from feature

68

Fq, f1,1 is a point from feature F1 and f2,1 is a point from feature F2. The space has

been divided by curve l into two planes. Plane(l,fq,1) represents the plane separated

by curve l and containing point fq,1 and Plane(l,fq,q) represents the plane separated

by curve l and containing the query point fq,q.

Next, we will define the Plane(l,fq,1) such that the distance from any point p inside

this plane to fq,1 plus the I−distance of feature route R(fq,1, f1,1, f2,1) is shorter than

the distance from point p to the query point fq,q. Therefore, it is impossible that the

query point fq,q is on the MTNN of the point p, which means that p is not MTRNN

of the query point fq,q. Because point p is any point inside Plane(l,fq,1), the whole

Plane(l,fq,1) can be pruned without incurring any false miss.

In the following, we describe how to find curve l so that it can divide the space

into Plane(l,fq,1) and Plane(l,fq,q). In Figure 4.9a curve l and straight line fq,1fq,q

intersect at point sh. R(fq,1, f1,1, f2,1) is a feature route and the distance from point

sh to starting point fq,1 of the feature route R(fq,1, f1,1, f2,1) plus the I − distance

of this feature route equals the distance from point sh to the query point fq,q, i.e.,

d(R(sh, fq,1, f1,1, f2,1)) = d(R(sh, fq,q)). In other words, point sh divides the line seg-

ment fq,1fq,q into two parts so that d(R(sh, fq,q)) - d(R(sh, fq,1)) = d(R(fq,1,f1,1,f2,1)).

In the following discussion, we will use h to represent the I-distance of the feature

route R(fq,1, f1,1, f2,1) in Figure 4.9a.

In order to guarantee that a point inside Plane(l,fq,1) is not an MTRNN of the

query point fq,q, any point p(xp, yp) inside Plane(l,fq,1) should satisfy the equation
√

(xp − x1)2 + (yp − y1)2 ≥
√

(xp − x2)2 + (yp − y2)2 + d(R(fq,1,f1,1,f2,1)). In this

equation d(R(fq,1,f1,1,f2,1)) = h. Thus, a point s1(x, y) on curve l should satisfy the

equation
√

(x− x1)2 + (y − y1)2 =
√

(x− x2)2 + (y − y2)2 + h, which can actually

be transformed into a quartic (4-th degree) equation. Because positions of point

fq,q(x1, y1) and fq,1(x2, y2) and I − distance h are known, the curve l is known and

divides the space into two planes.

Although curve l in Figure 4.9a can be used to maximally prune R-tree nodes

and points, it is not easy to check on which side of the curve l an R-tree node or a

point falls. From a practical point of view, a simple representation of an open pruning

region should be used in order to prune points and R-tree nodes efficiently. To simplify

the point check process, we propose a simpler open region pruning approach based

on a simpler region description. In Figure 4.9b, the feature route is R(fq,1, f1,1, f2,1),

starting at point fq,1 with I-distance h. The point sh divides the line segment fq,qfq,1

69

into two parts with length l1 and l2 such that l1 − l2 = h. Since the positions of

points fq,q and fq,1 and I-distance h are known, the position of sh is known, thus the

lengths of l1 and l2 being also known.

We construct the simple pruning region as follows. In Figure 4.9b we draw a

straight line s1s2 passing through point fq,1 and perpendicular to line fq,qfq,1. We

then draw line fq,qs1 as line L1 and line fq,qs2 as line L2. We take y− x = h in which

y is the length of line fq,qs1 and x is the length of line fq,1s1. Since (l1+ l2)
2+x2 = y2,

we can calculate x = 2l1l2
l1−l2

and y = l1
2+l2

2

l1−l2
. Because l1 and l2 are known, x and y are

known. Therefore, the positions s1 and s2 are also known.

In formulas x = 2l1l2
l1−l2

and y = l1
2+l2

2

l1−l2
, l2 is between 0 and

len(fq,1fq,q)

2
. When l2 is 0,

which means the I-distance of the feature route R(fq,1, f1,1, f2,1) is equal to or longer

than len(fq,1fq,q), no point can be pruned by using the open region generated based on

this feature route. When l2 is
len(fq,1fq,q)

2
, which means the I-distance h of this feature

route is 0, the MTRNN problem reduces to the classic RNN problem for this feature

route. Then the perpendicular bisector ⊥ (fq,1, fq,q) divides the data space into two

half planes: one that contains fq,1 (Plane(⊥ (fq,1, fq,q),fq,1)), and one that contains

fq,q (Plane(⊥ (fq,1, fq,q),fq,q)). No point in Plane(⊥ (fq,1, fq,q),fq,1) can be an RNN or

an MTRNN of fq,q and thus all R-tree nodes and points in Plane(⊥ (fq,1, fq,q),fq,1)

can be pruned.

Next we prove that all points in the open pruning region formed by lines L1 and

L2 excluding the triangle fq,qs1s2 in Figure 4.9b can be pruned. That is, the distance

from any point inside this region to the query point fq,q is longer than the distance

of the point to point fq,1 plus the I-distance h of the feature route R(fq,1, f1,1, f2,1)

starting at point fq,1.

Lemma 2 No point inside an open pruning region defined by a feature route and the

query point can be an MTRNN, and thus can be pruned.

Proof The open pruning region containing point fq,1 is formed by lines L1 and L2,

excluding triangle fq,qs1s2. It is divided into three parts as shown in Figure 4.9b. The

first part (part 1) is the open pruning region outside circle C2. The second part (part

2) is the intersection of circle C2 and open pruning region, excluding the circle C1.

The third part (part 3) is the intersection of circle C1 and the open pruning region.

We prove the lemma by demonstrating that any point in any part of the open pruning

region can be pruned without causing any false miss.

70

Algorithm OneNodePrune(R-trees,R-tree,Sfr,fq,q)
Input : R-trees for all feature types, R-tree node to be pruned, feature route set Sfr,

query point fq,q
Output : Empty set, R-tree node or candidate MTRNNs
1. Calculate mindist = the MINDIST from the query point fq,q to R-tree node;
2. S′

fr = Sfr, NoCenterCreated = true;

3. For each feature route in S′
fr

4. Calculate difference r between mindist and I-distance of feature route;
5. Form a closed pruning region;
6. Form an open pruning region
7. If R-tree node is entirely contained inside pruning regions
8. Then return empty set
9. Else If R-tree node is an internal node
10. Then return R-tree node
11. Else If NoCenterCreated
12. //Prune same R-tree node with newly generated feature route sets
13. Then NoCenterCreated = false;
14. Find center sc of the R-tree node and put subspace containing sc
15. into Ssub;
16. S′

fr = FindFeatureRoutes(Rtrees,sc,Sfr,Ssub);

17. Sfr = S′
fr ∪ Sfr;

18. Goto 3
19. Else return All points inside the R-tree node but outside all the
20. pruning regions

Figure 4.10. One node pruning algorithm.

In Figure 4.9b, s1 and s2 are positioned on the circle C1 centered at fq,q with radius

y or len(fq,qs1) and also on the circle C2 centered at fq,1 with radius x or len(fq,1s1).

The radius of the smallest circle C3 centered at fq,1 is len(fq,1, s4) in which s4 is any

point inside part 3.

First, assume a point s5 in part 1 is outside of the circle C2. We need to prove

d(R(s5, fq,1, f1,1, f2,1)) < d(R(s5,fq,q). It can be seen that d(R(s5, fq,1, f1,1, f2,1)) =

d(R(s5, s6)) + d(R(s6, fq,1)) + d(R(fq,1, f1,1, f2,1)) and d(R(s5, fq,q) = d(R(s5, s7) +

d(R(s7, fq,q). Because len(fq,qs7) = len(fq,qs2), len(fq,1s6) = len(fq,1s2) and len(fq,qs2)

- len(fq,1s6) = h, len(fq,qs7) - len(fq,1s6) = d(R(fq,1, f1,1, f2,1)). Therefore, we only

need to prove len(s5s7)≥ len(s5s6). It is easy to prove angle ∠s7s6s5 ≥ 90◦ so len(s5s7)

≥ len(s5s6). So, s5 can be pruned.

71

When a point s8 in part 2 is inside the circle C2 but outside the circle C1, fq,qs8

is longer than fq,1s2 but fq,1s8 is shorter than fq,1s2. Therefore d(R(s8, fq,1f1,1, f2,1))

< d(R(s8, fq,q)) and the point s8 can be pruned.

Finally, assume a point s4 in part 3 is inside the circle C1. Since ∠s3s4fq,1 >

∠s3s4fq,q and ∠s4s3fq,1 = ∠s3s4fq,1 we have ∠s4s3fq,1 > ∠s3s4fq,q. Thus, ∠s4s3fq,q

> ∠s3s4fq,q. Therefore we derive len(s4fq,q) > len(s3fq,q). Since we know len(s3fq,q)

- len(s3fq,1) > h, then len(s4fq,q) - len(s4fq,1) > h. So, the distance from point

s4 to fq,1 plus I-distance starting at fq,1 is shorter than the length of s4fq,q, i.e.,

d(R(s4, fq,1f1,1, f2,1)) < d(R(s4, fq,q)). Therefore, point s4 can be pruned.

Since Lemma 2 proves that no point inside an open region can be an MTRNN,

pruning the whole open region won’t introduce any false miss.

Figure 4.10 presents the pseudo-code for the algorithm applying both closed region

and open region pruning. If an R-tree node is entirely contained inside pruning

regions, the R-tree node can be filtered “safely” and the output set is empty, meaning

the MTNN from a point in the R-tree node cannot contain the given query point and

can safely be filtered without causing a false miss. Otherwise, if the R-tree node is

an internal node output the R-tree node itself. The filtering algorithm will then visit

all child nodes of this internal R-tree node later. If the R-tree node is a leaf node

and not all of it is covered by pruning regions, use the center point of the node as

a query point to find in specified subspaces a greedy MTR route whose points form

a new feature route point set. Next, find feature routes and use these new feature

routes to generate new pruning regions and try to prune the R-tree node. Because a

center point of an R-tree node can be anywhere either close to or far away from the

query point, we only find new greedy MTR routes whose starting point is inside the

subspace containing the center point in order to avoid generating too many feature

routes.

Filtering Algorithm

The complete filtering step should search all candidate points in the data set against

which the query is issued. Since R-trees are widely used in spatial databases, we

assume an R-tree index is available for each feature type and the queried data set.

Our filtering algorithm utilizes R-tree indexes to generate closed and open pruning

regions that are used to filter as many as R-tree nodes and points in the queried data

set. The example in Figure 4.11 illustrates how the filtering algorithm works.

72

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������
���������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������
�������������

.

R2

.
.

.

R−tree nodes pruned

sub2q,5

q,4

f

f
..

1,3f

2,3f

q,3f

1,2

R4

P7

P6

P2P1

. .

.

..
.

.. . .

.

R10R9

R8R7

R6

R5

q,2

P7

P6

P2

. .

.

.
.

.. .
R10R9

R8R7

R6

R5

R4
.

.

.

(b)

P11

2,2

f

f

f

q,qf

P17

P16

.
.
P10

.
P14.

P12
. .P13

R3
P9

P5

P8

P15

P11

. .P13

P9

P8

P15
P11

. .

.
.

R10R9

R8R4
.

.
fq,4

f

sub1

sub2

P12

(d)

. .
fq,q

(c)

sub2q,5

1,3f

2,3f

q,3f

P17

P16

.
.
P10

.
P14.

q,5q,qf

P17

P16

.
.
P10

R1

.
P14.

P12
. .P13

R3
P9P3

P4
P5

P8

P15

f

q,4

f

f
..

1,3f

2,3f

q,3f

f1,1

1,2

q,2

2,2

f

f

f

f2,1

q,1

sub1

P9P8P5P4P7P6P2 P3P1

R8 R9 R10

P12P16

R7R6R5

R−tree
R3 R4R2

P10

R−tree nodes pruned

f1,1
f2,1

q,1f

P17P13P11P15

R1

P3

P4

P1.

.

.

R2

.

(a)

P14

R1

Figure 4.11. A filtering example.

In this example, the R-tree nodes at the first level contain R1, R2, R3 and R4.

Figure 4.11a gives the R-tree index of the queried data set. The query point fq,q is of

feature type Fq. For simplicity, we don’t draw R-tree nodes of feature data sets and

only illustrate the filtering process in two subspaces sub1 and sub2.

Initially, as shown in Figure 4.11b we use 2 NN strategy and find in feature type

Fq two nearest neighbors fq,1 and fq,2 of the query point fq,q inside the subspace sub1.

Then we find nearest neighbor f1,1 of fq,1 and nearest neighbor f1,2 of fq,2 in feature

type F1. Finally we find nearest neighbor f2,1 of f1,1 and nearest neighbor f2,2 of

f1,2 in feature type F2. So far, we get two feature route point sets {fq,1,f1,1,f2,1} and

{fq,2, f1,2, f2,2}. For each feature route point set, we calculate the I-distances of the

feature routes starting from each point in the feature route point set. For example,

73

the I-distance of the feature route starting at point fq,1 in the feature route point

set {fq,1,f1,1,f2,1} is d(R(fq,1, f1,1, f2,1)). Similarly we find feature route point sets

{fq,4,f1,3,f2,3} and {fq,5, f1,3, f2,3} in subspace sub2. Because either I-distance of any

feature route from sets {fq,4,f1,3,f2,3} and {fq,5, f1,3, f2,3} is longer than MINDIST

from fq,q to an R-tree node (R3 or R4) or R-tree nodes (R1 and R2) have already

been pruned by other pruning regions, sets {fq,4,f1,3,f2,3} and {fq,5, f1,3, f2,3} are not

used to prune any R-tree node. For simplicity we ignore them and do not draw

pruning regions generated from them.

The next step illustrated in Figure 4.11c shows the closed region pruning with

feature routes found so far. It starts with calculating the MINDIST from the query

point fq,q and R-tree node R1. Following this step, we calculate the difference between

the MINDIST from the query point fq,q and R-tree node R1 and the I-distance of

R(fq,1, f1,1, f2,1) and draw a circle centered at fq,1 with this difference. We repeat

these steps for all points in the feature point route set {fq,1, f1,1, f2,1} and get three

feature routes and circles. The R-tree node R1 is completely covered by these circles

so it cannot contain any MTRNN and can be pruned. Similarly R-tree node R2 can be

pruned completely. However, R-tree node R3 is only partially covered by the circles.

Since from the center point of R3 no new feature route set is found in the subspace

sub1, we don’t try to prune R-tree node R3 again. Thus, it traverses down node R3 to

visit R5, R6 and R7. At R5, points p1 and p2 are inside the circles and can be pruned

but point p3 is left as a potential MTRNN. Similarly point p6 in node R6 and points

p4, p5 and p8 in node R7 are potential MTRNNs. Since R-tree nodes R1 and R2 were

pruned earlier and R-tree node R3 is not pruned by the open pruning regions, the

open pruning regions generated from feature point set {fq,1, f1,1, f2,1} and {fq,2, f1,2,
f2,2} have not been drawn.

In this example, R-tree node R4 is not entirely pruned by all existing closed and

open pruning regions (not shown in this figure for simplicity) and only points p9 and

p10 in node R8 were pruned. Figure 4.11d gives the example about how to prune

points inside R-tree node R4 of region sub2 by using closed and open region pruning

techniques generated from a new query point. For simplicity, only subspace sub2 is

shown in Figure 4.11d. We take the center of node R4 as the new query point and

find a greedy route R(fq,3, f1,3, f2,3) from it. As before, three circles are drawn. Point

p14 in node R8, point p12 in node R9 and point p13 in node R10 are then pruned

by the new circles. So far, the only potential MTRNNs are point p15 in node R9,

74

point p16 in R8 and points p11 and p17 in node R10. Now we apply the open region

pruning approach. The open pruning region is the region filled with hexagons. At

this time, points p16 in R8 and p17 in node R10 fall into the open pruning regions so

they are pruned. Finally only point p15 in node R9 and point p11 in node R10 are left

as candidate MTRNNs.

Algorithm Filtering(R-trees,R-tree,Sfr,fq,q,pc)
Input : R-trees for all feature types, R-tree for data set being queried,

Feature Routes Sfr, Query Point fq,q, center point pc
Output : Empty set, R-tree node or candidate MTRNN set Sc

1. R-tree = OneNodePrune(R-trees,R-tree,Sfr ,fq,q)
2. If R-tree is empty set
3. Then return empty set
4. Else If R-tree is an internal node
5. Then If pc is not NIL
6. Then return R-tree
7. Else Find center pc of R-tree node and put subspace containing pc
8. into Ssub

9. S′
fr = FindFeatureRoute(R-trees,pc,Sfr,Ssub);

10. Sfr = S′
fr ∪ Sfr;

11. //Prune R-tree node with new feature route set
12. R-tree = Filtering(R-trees,R-tree,S′

fr ,fq,q,pc)

13. If R-tree is empty set
14. Then Return empty set
15. //Prune child nodes of the R-tree node
16. For each child node of R-tree
17. Add Filtering(R-trees,child node,Sfr,fq,q) into PointSet
18. Else Add R-tree into PointSet
19. return PointSet

Figure 4.12. Filtering algorithm.

Figure 4.12 gives the pseudo-code of the filtering algorithm. For an internal R-tree

node, the Filtering function is called twice. At the first call, center point pc is empty

and the existing feature route set is used to prune the R-tree node. At the second

call, center point pc is found and the newly generated feature route set is used to

prune the R-tree node. If the R-tree node still cannot be pruned completely, each

child node is pruned with all feature routes including the newly generated ones. After

75

filtering, most of the points in the queried data set are safely pruned without causing

any false miss and a candidate point set Sc containing all potential MTRNNs has

been generated.

4.3.3 Refinement Step: Removing False Hit Points

The refinement step further eliminates points in the MTRNN candidate set Sc so

that only qualified MTRNNs will remain. Three refinement approaches are applied

to guarantee all false hits will be eliminated.

Figure 4.13 shows the pseudo-code for the complete refinement step.

The first approach uses existing feature routes to eliminate false hits from candi-

date MTRNNs. After filtering, we have a set Sc of candidate MTRNN points and a set

Sfr of feature routes. Since the I-distances of feature routes have already been calcu-

lated, they can be directly used to eliminate false hits that cannot be real MTRNNs.

If the minimum distance mindist, distance from an MTRNN candidate point p to the

starting point of one feature route plus the I-distance of the feature route, is shorter

than the distance d1 from p to the query point fq,q, which means the MTNN distance

from the point p is shorter than the distance d1 and the MTNN of point p cannot

contain the query point fq,q, the point p cannot be an MTRNN of the query point

fq,q and can be pruned. In other words, this approach does not introduce any false

miss.

In the second approach, a greedy MTR route and corresponding feature route

point set are calculated if an MTRNN candidate point p cannot be pruned by using

the first approach. Note that query point fq,q is considered as a point in the data set

of feature type Fq when finding this greedy MTR route. From the new feature route

point set, a new set of feature routes can be found. If the minimum distance mindist,

distance from an MTRNN candidate point p to the starting point of one new feature

route plus the I-distance of the new feature route, is shorter than d1, this point could

be pruned. Similar to the first approach, the second approach does not cause any

false miss. Since it is possible there are some points close to p in the candidate set,

this newly found feature route point set could be useful to prune these points (and

other points); thus the new point set from this greedy MTR route is added into the

set of feature route point set Sfrps and all I-distances for all feature routes from this

feature route point set are saved for future pruning.

If an MTRNN candidate point p cannot be pruned by the first two approaches,

76

Algorithm Refinement(R-trees,R-tree,fq,q,Sc,Sfr,Fq)
Input : R-trees for each feature type, R-tree for data set being queried,

Query Point fq,q, a candidate MTRNN set Sc, the feature route set
Sfr, the query feature type Fq

Output : MTRNN set Sc

1. mindist = ∞
2. For each point p in set Sc

3. Calculate distance d1 from point p to the query point fq,q;
4. For each feature route fr in Sfr

5. Calculate distance d2 from point p to the starting point of feature
6. route fr;
7. if mindist > d2+ I-distance of fr
8. mindist = d2+ I-distance of fr
9. If mindist < d1
10. Eliminate point p from set Sc;
11. goto 1
12. Sfrps = Greedy(R-trees, p, Sfr);
13. Calculate I-distances for all feature routes S′

fr starting from all points

14. in Sfrps;
15. For each feature route fr′ in S′

fr

16. Calculate distance d3 from point p to the starting point of feature
17. route fr′;
18. if mindist > d3+ I-distance of fr′

19. mindist = d3+ I-distance of fr′

20. If mindist < d1
21. Eliminate point p from set Sc;
22. Put the new feature routes S′

fr into Sfr;

23. goto 1
24. mtnn = MTNN(R-trees, R-tree, mindist, p, fq,q, Fq);
25. If fq,q is not in mtnn
26. Eliminate point p from set Sc;
27. Calculate I-distances for all feature routes starting from all points
28. in mtnn;
29. Put the new feature routes into Sfr;
30. return MTRNN set Sc

Figure 4.13. Refinement algorithm.

77

an MTNN algorithm that utilizes R-tree index of each feature type is applied to

calculate the real MTNN for this point p. As in the second approach, query point

fq,q is considered as a point in the dataset of feature type Fq. After finding MTNN

of the point p, we get a set of MTNN points and a corresponding MTNN route. If

query point fq,q is in the MTNN of the point p, then point p is an MTRNN of this

query point. Otherwise, p is eliminated from Sc. This approach does not cause any

false miss. From the MTNN algorithm in [40] we know that the MTNN route from

the point p is shortest among all possible routes from p going through each point

from each different feature types. If the query point fq,q is on this MTNN route or,

in other words, in the point set of MTNN, this point p is an MTRNN of the query

point fq,q according to the problem definition formalized in section 4.2. Thus, this

third approach does not introduce false miss.

Figure 4.14 shows the pseudo-code of the MTNN algorithm, which is adapted

from the algorithm described in [54] and [40]. The initial greedy distance dis is the

minimum distance of all routes from point p through all feature routes. The major

adaptation occurs during partial route growing to the feature type that the query

point fq,q belongs to. If none of the current partial routes for a specific permutation

contains the query point fq,q, it is safe to stop searching for this permutation. An-

other enhancement is to mark the partial route ending with query point fq,q after

growing the partial route to the feature type. Later, if this marked partial route is

not used to grow any further partial routes, the searching for this permutation can

be safely stopped. After all features in a permutation are visited, a potential MTNN

is generated. After all permutations of all feature types are searched, a real MTNN

is generated.

It is worth discussing when the filtering and refinement algorithms fail pruning

any point thus work as the naive baseline algorithm. Normally when all queried data

points are far away from the query point fq,q and all feature data points that are

clustered, our filtering and refinement algorithms may fail or have limited ability to

prune points. It means that it is likely the distance from a queried point p to the

query point fq,q is longer than the distance of a feature route plus the distance from

the start point of the feature route to point p. If this happens, point p cannot be

pruned.

78

Algorithm MTNN(R-trees,R-tree,dis,q,fq,q,Fq)
Input : R-trees for each feature type, R-tree index root of queried data set,

potential MTRNN point q, distance dis, Query Point fq,q, feature type Fq

of query point
Output : MTNN
1. MTNN = ∅
2. Prune all R-tree nodes not intersected by the circle centered at q with radius dis
3. For each permutation of all features
4. //For simplicity assume permuation is (1, 2, ..., k)
5. dis1 = dis

6. CurFT = k

7. For each point p in data set of feature type CurFT

8. If (d(R(p, q)) < dis1)
9. Put R(p) into partial route set S
10. For i = k − 1 to 1
11. If CurFT is Fq and fq,q is not in S

12. return empty
13. CurFT = i

14. For each point p′ in CurFT

15. Grow each partial route of S by adding p′ to the head
16. if(Length of new partial route +d(R(p′, q)) < dis1)
17. put new partial route into partial route set S1;
18. Put partial route with shortest length in S1 into partial route set S2;
19. S = S2;
20. Find route in S with shortest distance dis2;
21. dis1 = dis− dis2
22. dis =the distance of current shortest route

23. Find MTNN in route of S with shortest length
24. return MTNN

Figure 4.14. Adapted MTNN algorithm.

79

4.4 Complexity Analysis

In this section we study the complexity of the baseline algorithm and our proposed

MTRNN algorithm. Our analysis is based on the cost model for nearest neighbor

search in low and medium dimensional spaces devised in the work [63] by Tao et

al.. In the following we compute the expected time complexity in term of distance

calculations required to answer an MTRNN query.

Assume that the points of a queried data set and each feature data set are uni-

formly distributed in a unit square universe. The number of queried data points is

N and each feature data set contains M data points. Similarly to [54], we derive

formulas for the following distances

1. The expected distance δ between any pair of points each from a different feature

2. The expected feature route distance Efr

Because the cardinality of a feature data set is M and data are uniformly dis-

tributed in the unit square universe, it is expected to have
√
M points along a di-

rection of x or y axis. For two data sets from two different feature types, there

are expected
√
2M points. Because we assume the data are in the unit square uni-

verse, the expected distance between any pair of points each from different features

is δ = 1√
2M

.

If there are k points each from a different feature type in a feature route, the

expected feature route distance of the feature route is Efr = (k − 1)δ = k−1√
2M

.

4.4.1 Cost of Baseline Algorithm

Since we use the algorithm R-LORD in [54] to find MTRNN for one permutation

of feature types, for example, < F1, F2, . . . , Fk >, the cost of the baseline algorithm

on one queried data point is just the sum of the R-LORD algorithm cost for all

permutations.

Cost of R-LORD algorithm consists of two components, the distance calculation

of R-tree node access and distance calculation of point search within the range of each

iteration. In the following, we discuss these two components derived by Sharifzadeh

et al. [54].

As stated in [54] “for each accessed node, R-LORD performs an O(1) MINDIST

computation. Therefore, the complexity of each R-tree traversal is the same as the

80

number of node accesses during the traversal.” Thus, the expected number of R-

tree nodes, NA, is used to represent the distance calculation of R-tree node access.

Following the cost mode proposed in [63], the expected number of node accesses is

given as

NA =

h−1
∑

i=1

(ni × PNAi
) (4.1)

In this formula, h is the height of R-tree, PNAi
is the probability of accessing a

node at level i, and ni is the total number of nodes at level i. Given total number

of points in a data set, the capacity of R-tree node and the average fan-out of R-tree

node, h and ni can be easily derived [63]. For the PNAi
estimation, it is needed to

identify the search region. As derived in [54], the expected ranges for iteration 1 is

k × δ and for all other following iterations are (k − i + 2) × δ. Therefore, PNAi
can

be easily derived [63].

As LORD algorithm, R-LORD performs the same set of distance calculation for

the point search for the chosen point set, so the second part of the R-LORD cost is

Clord −kM in [54]. kM is removed from the Clord because the algorithm of finding

whether points are within the range in LORD is replaced by R-tree node pruning in

R-LORD.

The components that should be considered when deriving cost formula for Clord

are the expected number of partial routes, the current search range Tv (dis1 in Figure

4.14) and the expected number of points πTv
2M [63] in a feature type that are closer

to the starting point than current search range Tv and will be examined in an iteration.

For the initialization step, the current search range Tv is the length of greedy

route Tc = kδ (dis in Figure 4.14), the expected number of partial routes is πk2δ2M

and the expected number of points to be examined is M . For the first iteration, the

current search range Tv decreases to (k − 1)δ, the expected number of partial routes

is updated to π(k − 1)δ2M and the expected number of points to be examined is

π(k − 1)2δ2M . For each iteration, all the parameters are derived and summarized in

Table 4 in work [54]. Finally the cost formula of LORD is derived as follows

Clord = O(kM + k5) (4.2)

Therefore, the expected cost of R-LORD can be given as

81

Crlord =

k
∑

i=1

NA(i) + (Clord − kM) =

k
∑

i=1

NA(i) +O(k5) (4.3)

where NA(i) is distance calculation of R-tree node access, that is, the expected

number of nodes, accessed in iteration i in R-LORD algorithm [54].

Since the expected length of Tc [54] used in the R-LORD algorithm is the same

for all permutations under our assumption and the total number of permutations is

k!, the cost for one queried point is:

C1−point = k!× (

k
∑

i=1

NA(i) +O(k5)) (4.4)

Therefore, the total cost of the baseline algorithm for all queried points is:

Cbaseline = k!× O(N)× (

k
∑

i=1

NA(i) +O(k5)) (4.5)

4.4.2 Cost of MTRNN Algorithm

The efficiency of the MTRNN algorithm is primarily based on the filtering ratio, i.e.,

the number of candidate MTRNNs after filtering. A good filtering algorithm should

dramatically reduce the number of candidate MTRNN points and thus the overall

cost of the algorithm. On the other hand, the filtering cost is immaterial when the

number of feature types increases, which means the cost of the refinement step is

the dominant cost in the MTRNN algorithm. Therefore, we analyze the cost of the

refinement step and use it as the total cost of the MTRNN algorithm.

We assume that the feature routes are distributed uniformly in every direction

from the query point fq,q. In order to find the filtering ratio, we should calculate the

area of the closed and open pruning regions and then derive the expected number

of candidate MTRNN points that fall outside the pruning regions, based on the

assumption of uniform data distribution.

For both of the closed and open region pruning approaches discussed in section

4.3, a feature route starting inside a circle, say C1, with radius r1 of length Efr,

doesn’t have any pruning ability. In other words, no queried data points inside circle

C1 whose radius is r1 of length Efr can be pruned, so these points are included as the

minimum set of points in candidate MTRNN set Sc. Our filtering algorithm cannot

82

prune any point in this minimum set.

Assume that the number of feature route is l and that these feature routes start

outside circle C1 but inside another circle, say C2, with radius r2. The area outside C1

but inside C2 is πr2
2 − πr1

2. Since all points from all feature types inside this region

are expected to be starting points of feature routes we have 1
πr22−πr12

= kM
l
, which

gives r2 =

√

2l+πk(k−1)2

2πkM
. Assume that the expected distance from the query point fq,q

to the starting point of a feature route is r. We have πr2
2 − πr2 = πr2 − πr1

2 so the

expected distance r =
√

r22+r12

2
=

√

l+πk(k−1)2

2πkM
.

Next we discuss the area covered by an open pruning region. We first calculate

the area of triangle fq,qS1S2 in Figure 4.9b. In the figure, fq,qFq,1 is just the expected

distance r from the query point fq,q to the starting point of a feature route, so h =

r−r1 =

√
2(l+π(k−1)2)−

√
π(k−1)2

√
2πkM

. From Figure 4.9b, we have y−x = h and r2+x2 = y2

so x = r2−h2

2h
. Since r and h are known values, x is also known.

Therefore, inside a region formed by fq,qL1 and fq,qL2, the area of the triangle

region that is not covered by this open pruning region is xr. We assume that there

are enough feature routes such that the covered areas of the open pruning regions

touch each other. Therefore, the regions not covered by open pruning regions are of

area xrl.

For one feature route, a closed region can cover a region with expected area

π(r − r1)
2. However, half of the region was previously covered by an open prun-

ing region, so one closed region covering a region that was not covered by the pruning

regions has area π(r−r1)2

2
. Therefore, the total area covered by all the closed pruning

regions is π(r−r1)2

2
l for l feature route.

So far, we can calculate that the total area that was not covered by open and

closed regions is ANL = xrl− π(r−r1)2

2
l. This area is the lower bound of the area that

was not covered when we assume the open pruning regions are touching. As more and

more feature routes are added, the open pruning regions will overlap each other and

closed pruning regions will cover more area outside circle C1. Finally only a region

with area ANU = πr1
2 is not covered. This is the upper bound of the area that was

not covered.

When the open regions are not touching each other, the regions that can be pruned

are just the sum of all individual open and closed pruning regions. We ignore the

formula for this situation.

83

After deriving the area of regions AN that were not covered we can easily derive the

number of points Nsc in the candidate MTRNN set Sc by applying formula 1
AN

= N
Nsc

.

So, the Nsc = ANUN for the upper bound and Nsc = ANLN for the lower bound

and the total computation for MTRNN algorithm is NscCrlord. Since the number of

feature route does not increase with the number of data points in different features

and queried data set, it is considered as constant in the complexity analysis and

ignored in the cost model. Our experiment results in sections 4.5.3 and 4.5.3 also

confirm that this feature route number is constant. Because all the components for

the derivation of the asymptotic upper bound are given above, we ignore details for

simplicity. It is easy to derive that the MTRNN algorithm cost for both lower bound

covered area and upper bound covered area in terms of asymptotic upper bound is

CMTRNN = O(
Nk2

M
)× C1−point = k!×O(

Nk2

M
)× (

k
∑

i=1

NA(i) +O(k5)) (4.6)

Although CMTRNN is a factorial function in terms of k, k! is not very big when k

is not big, which is the case that MTRNN algorithm applies to.

4.5 Experimental Evaluations

We had two overall goals for our experiments: 1) to evaluate the performance and

scalability of the MTRNN algorithm for the MTRNN query and 2) to evaluate the

impact of our multi-type approach compared to traditional RNN query methods in

terms of number and identity of RNNs returned.

4.5.1 Settings

Experiment Platform Our experiments were performed on a PC with two 2.33 GHz

Intel Core 2 Duo CPUs and 3GByte memory running Windows XP SP3 operating

system. All algorithms were implemented in Java programming language with Eclipse

3.3.2 as the IDE and JDK 6.0 as the running environment.

Experimental Data Sets We evaluated the performance of the MTRNN algo-

rithm with both synthetic and real datasets.

• Synthetic data sets: All synthetically generated data points were distributed

over a 1000X1000 plane. To evaluate the effects of spatial distribution, one

84

queried data set was generated with random distribution (denoted as RAN)

and the second with clustered distribution (denoted as CLU). The data points

for different feature types were generated separately, resulting in different dis-

tributions in space for each type. The CLU dataset comprised 50 to 100 clusters

of data points from all the multiple feature types as well as the queried data.

• Real data sets: We used two real data sets in our experiments, denoted as CA

and NC. CA was converted from a California Road Network and POI spatial

data set [36]. The queried data and data of all feature types were selected

from the Road Network nodes and POIs respectively. For the NC data set, the

queried data and features were converted from the North Carolina (NC) Master

Address Database Project [1] and a GPS POI data set [2]. Both real datasets

contained multiple different feature types, and therefore different distributions

of data per feature type in our experiments. For each of these real data sets,

there are multiple different feature types.

Parameter Selection There were three data parameters in our experimental

setup.

• Feature Type (FT): Number of feature types used to show the scalability of the

algorithm.

• Cardinality of Feature Type (CF): Number of data points in each feature type.

• Cardinality of Queried Data (CQ): Number of data points in the queried data

set.

Table 4.2 lists the characteristics of each data set and their parameter settings

unless specified otherwise.

Data set RAN CLU CA NC

Dist random clustered real real

CF 2k to 10k 2k to 10k 4k 8k

CQ 20k to 100k 20k to 100k 22k 50k

Table 4.2: Data Set Description

Unless noted otherwise, we also chose the following parameters for the MTRNN

algorithm based on empirical evaluation.

85

• R-Tree capacity (CR): The capacity of the R-Tree for each feature and queried

data set was set to 36.

• Number of Subspaces (NS): The number of subspaces for generating feature

routes was set to 30.

Experiment Design Figure 4.15 gives an overview of the experimental setup.

The query processing engine takes the spatial data sets, the parameters to be applied

on the data sets, and the baseline, the new 3-step MTRNN, and the classic RNN

algorithms as input. The output consists of two categories of data, 1) performance

measurements (execution time, number of IOs and filtering ratio) and 2) specific

query results (RNNs). The performance measures are used to assess the viability

of MTRNN for handling queries of various degrees of complexity. We include a

comparison with the baseline algorithm, but this part of the evaluation is necessarily

limited because baseline does not do any pruning of queried points, making it too time

consuming to test more than a small number of feature types. We do not compare

MTRNN with classic RNN on the performance measures listed above because the

RNN algorithm is designed to solve classic RNN problems, not MTRNN problems.

Since ours is the first formalization of the MTRNN problem, there are no other

algorithms available to compare its performance with. Instead, we look to our second

category of experimental output and assess the impact of MTRNN on the specific

results returned compared to a traditional RNN approach. Note: we use RNNs or

RNN points to refer to the query results of both MTRNN and classical RNN queries.

4.5.2 Evaluation Methodology

We evaluated the scalability of the MTRNN algorithm with the following questions:

(1) How do changes in number of feature types affect MTRNN performance?

(2) How do differences in cardinality for each feature type affect performance?

(3) How do differences in cardinality in the queried data set affect performance?

(4) How do changes in number of feature routes affect the filtering capability of the

MTRNN algorithm?

We evaluated the impact of MTRNN on query results compared to classical RNN

by asking:

(5) What is the percentage difference in number of RNNs returned for the two queries

(6) What is the percentage difference in specific RNN points returned?

86

Datasets

MTRNN
AlgorithmAlgorithm

Baseline Classical RNN
 Algorithm

Analysis
Query Results

Measurements
Performance

 Query Processing Engine

Types, CF, CQ Parameters: Feature

Spatial

Figure 4.15. Experiment setup and design.

In every experiment for the MTRNN algorithm, we report CPU and IO time for

the filtering and refinement steps, IO cost in terms of number of nodes accessed,

and percentage of candidates remaining after filtering. We also report specific RNN

points returned for both MTRNN and classical RNN algorithms. To reduce the effect

of query point bias, we randomly selected 10 query points and averaged the results.

We define the following three metrics for evaluation purposes:

For evaluation of MTRNN algorithm performance:

(1) Filtering Ratio fr reflects the effectiveness of the filtering step.

fr =
Number of filtered points before refinement

NumPoints in queried data
(4.7)

In order to directly show how the query results of MTRNN are different from

RNN’s, we define two metrics instead of use precision and recall.

For evaluation of the impact of MTRNN on query results compared to RNN:

(2)The percentage difference in number of RNN points pn

pn =
| NumPoints in MTRNN −NumPoints in Classical RNN |

NumPoints in Classical RNN
(4.8)

87

1 2 3 4
10

0

10
2

10
4

Number of Feature Types (CF=1K,CQ=5K)

E
xe

cu
tio

n
T

im
e(

m
s)

Baseline (RAN)
3−Step MTRNN (RAN)
Baseline (CLU)
3−Step MTRNN (CLU)

(a) Synthetic

1 2 3 4
10

0

10
2

10
4

Number of Feature Types (CF=1K,CQ=5K)

E
xe

cu
tio

n
T

im
e(

m
s)

Baseline (CA)
3−Step MTRNN (CA)
Baseline (NC)
3−Step MTRNN (NC)

(b) Real

Figure 4.16. Performance of baseline and MTRNN algorithms w.r.t. number of feature
types.

(3)The percentage difference in specific RNN points ps

ps =
NumPoints in MTRNN but not in ClassicalRNN

NumPoints in Classical RNN
(4.9)

In other words, pn shows how much the new MTRNN query affects the answer

to the question “how many RNNs are returned?”. ps indicates how significantly the

new MTRNN query affects the answer to the question “what RNNs are returned?”.

pn and ps will be meaningless if no RNN is found for the classical RNN query.

4.5.3 Experimental Results

In this section, we present our evaluations of the MTRNN approach on both synthetic

and real data. MTRNN performance evaluation includes runtime comparisons with

the baseline algorithm using a small number of feature types followed by evaluations

of MTRNN performance alone on various other measures. The final set of results

presented measures the impact of the MTRNN approach on queries compared to

traditional RNN. We end the section with a discussion of some important aspects.

Performance of Baseline and MTRNN Algorithms with regard to (w.r.t.) Number of
Feature Types

We first evaluated the performance of the MTRNN algorithm against the baseline

algorithm w.r.t. the number of feature types. Since the baseline algorithm is very

time consuming, we only ran the experiments for numFT=1 to 4. We also chose a

smaller subset of the data from both synthetic and real data sets with cardinality of

feature data set 1k and cardinality of queried data set 5k form comparison purpose

88

because the baseline algorithm for larger data set runs too long. As Figure 4.16

shows, the baseline execution time increases much more dramatically than for the

3-Step MTRNN algorithm as the number of feature types increases. On the other

hand, our 3-Step MTRNN algorithm is much more scalable with the increment of

feature types. When numFT = 4, The baseline execution time is more than two

orders of magnitude longer. Similar patterns were found with increases in cardinality

of feature type data and queried data.

Performance w.r.t. Number of Feature Routes

We then evaluated the performance of the MTRNN algorithm as the number of feature

routes was raised from 25 to 250. As discussed in the previous section, the number of

feature routes can be increased either by increasing the number of subspaces or mNN

search in a subspace. As Figure 4.17 shows that both CPU and IO time decrease

as the number of feature routes increases. However, when number of feature routes

reaches a certain value (200 in the figure), performance gains are small, indicating

that the filtering ratio is now increasing slowly. The reason is that pruning regions

generated after 200 feature routes mostly overlap existing pruning regions. This result

tells us that the number of feature routes in an MTRNN query can be set to a constant

value. Our observation is supported by the cost model, where the effect of feature

route number was set to be a constant value, too. This is true for both synthetic and

real data sets.

Scalability of MTRNN w.r.t. Number of Feature Types

Next we evaluated the scalability of the MTRNN algorithm with larger numbers of

feature types than was tested in the first round of experiments. Overall, Figure 4.18

25 50 75 100 150 200 250
0

0.5

1

1.5

2x 10
4

Number of Feature Routes(numFT=5,CQ=50K)

T
ot

al
 E

xe
cu

tio
n

T
im

e(
m

s)

CPU (RAN)
IO (RAN)
CPU (CLU)
IO (CLU)

2.2%

1.5%

10.3%

5.8%

27.8%

48.7%

54.0%

60.7%

83.6%

89.6%

95.4%

95.3%

98.3%

96.6%

(a) Synthetic

25 50 75 100 150 200 250
0

2000

4000

6000

8000

10000

12000

Number of Feature Routes(numFT=5,CQ
CA

=22K,CQ
NC

=50K)

T
ot

al
 E

xe
cu

tio
n

T
im

e(
m

s)

CPU (CA)
IO (CA)
CPU (NC)
IO (NC)

8.5%

5.7%

12.3% 25.8%

46.3% 60.4%

40.0%

87.6%

81.3%

97.3%

95.8% 97.6%

1.0%

98.4%

(b) Real

Figure 4.17. Performance w.r.t. number of feature routes.

89

2 3 4 5 6 7
10

−1

10
0

10
1

10
2

10
3

Number of Feature Types (CF=10K,CQ=50K)

E
xe

cu
tio

n
T

im
e(

se
c)

Filtering
Refinement

CPU Time

Total Time

IO Time

Filtering Ratio
99.49%

98.89%
98.59%

98.27%

97.59%

97.18%

(a) Random

2 3 4 5 6 7
10

−1

10
0

10
1

10
2

10
3

Number of Feature Types (CF=10K, CQ=50K)

E
xe

cu
tio

n
T

im
e(

se
c)

Filtering
Refinement

CPU Time

99.28%

98.83%
98.25%

97.87%

97.12%

96.98%

Total Time

Filtering Ratio

IO Time

(b) Cluster

Figure 4.18. Scalability of MTRNN w.r.t. number of feature types on synthetic data sets.

2 3 4 5 6 7

10
0

10
1

10
2

10
3

Number of Feature Types (CF=4K, CQ=22K)

E
xe

cu
tio

n
T

im
e(

se
c)

Filtering
Refinement

Total Time

Filtering Ratio

CPU Time

IO Time

99.8%

99.5%

99.2%

99.0%

99.4%

98.8%

(a) California

2 3 4 5 6 7

10
0

10
1

10
2

10
3

Number of Feature Types (CF=8K, CQ=50K)

E
xe

cu
tio

n
T

im
e(

se
c)

Filtering
Refinement

CPU Time

IO Time

Total Time

Filtering Ratio
98.7%

98.6% 98.4%

98.3%

98.1%

97.6%

(b) North Carolina

Figure 4.19. Scalability of MTRNN w.r.t. number of feature types on real data sets.

and Figure 4.19 show that the total time for processing up to 7 types, the maximum

tested, is quite acceptable, considering the complexity of the MTRNN algorithm, the

size of the data set and the experimental platform.

In addition, we can see the effect of feature type number on CPU and IO time. As

shown in Figure 4.18a and 4.18b (in log scale) for the synthetic data sets, when the

feature types number 4 or less, IO and CPU time have similar weights. When there

are more than 4 feature types, CPU time and the refinement step become dominant

(FT > 4). Meanwhile, the filtering ratio slightly decreases due to the longer feature

routes and thus the looser distance bound.

The same trends are evident for the real data CA and NC in Figure 4.19a and

4.19b, again with CPU time and refinement step dominant for FT > 4. These results

indicate that a simpler filtering algorithm works well enough for smaller numbers of

feature types.

A closer look at the IO cost shown in Figure 4.20 reveals that while both filter-

90

2 3 4 5 6 7
0

50

100

150

200

Number of Feature Types

N
um

be
r

of
 IO

Filtering (RAN)
Refinement (RAN)
Filtering (CLU)
Refinement (CLU)

(a) Synthetic Data

2 3 4 5 6 7
0

50

100

150

200

250

300

350

Number of Feature Types

N
um

be
r

of
 IO

Filtering(CA)
Refinement(CA)
Filtering(NC)
Refinement(NC)

(b) Real Data

Figure 4.20. IO cost of MTRNN w.r.t. number of feature types.

ing and refinement IO costs grow when FT increases. refinement IO grows faster

because the number of permutations involved in the final refinement step increases

dramatically as FT increases.

Scalability of MTRNN w.r.t. Cardinality of Feature Types

Next we looked at the scalability of the MTRNN algorithm w.r.t. cardinality of

feature types. To better reflect the effects of cardinality, we used the same set of

randomly selected query points to reduce the effect of biased queries. Since CPU

time is dominant when FT=6, we only show total time in the figures. In Figure 4.21,

we can see that for both synthetic and real data the run time of the MTRNN algorithm

is less than 300 seconds for most cases, which is quite good for query problem of this

complexity. Furthermore, run time decreases with increases in cardinality of FT.

This is mainly due to the improved filtering ratio produced by the contribution of

refined feature routes. These results indicate that our filtering algorithm works very

well. (Since the maximum cardinality of the real CA data set is 4k, the experimental

results from 5k to 8k are only for the real NC data.)

With similar settings, FT = 6 and changing the cardinality of feature types,

Figure 4.22 shows the similar trend as Figure 4.21 for both synthetic and real data

sets. In both cases, the queried data sets contain 100k points and we evaluated the

performance for the 10k to 100k features data sets. The CA* and NC* data sets were

generated with extra random data because the original data sets are not big enough.

As the figures show, the run time decreases when increasing the cardinality of feature

types. The maximum elapse time is about 150 seconds even with the large data sets,

which indicates the algorithm scales very well.

91

2k 3k 4k 5k 6k 7k 8k 9k 10k
0

50

100

150

200

250

Cardinality of Feature Types (numFT=6,CQ=50K)

T
ot

al
 E

xe
cu

tio
n

T
im

e
(s

ec
)

Filtering (RAN)
Refinement (RAN)
Filtering (CLU)
Refinement (CLU)

Filtering Ratio

99.0%

99.1%

98.9%
98.9%

99.3%

99.0%

99.3%

99.4%
99.4%

99.3%

99.4%

99.5%
99.5%

99.3% 99.3%

99.5% 99.5%

99.3%

(a) Synthetic Data

2k 3k 4k 5k 6k 7k 8k
0

100

200

300

400

500

Cardinality of Feature Types (numFT=6,CQ
CA

=22K, CQ
NC

=50K)

T
ot

al
 E

xe
cu

tio
n

T
im

e(
se

c)

Filtering (CA)
Refinement (CA)
Filtering (NC)
Refinement (NC)

Filtering Ratio

86.8%

92.3%
97.3%

97.9% 97.9%

98.1% 98.2%

92.4%

96.5%

90.1%

(b) Real Data

Figure 4.21. Scalability of MTRNN w.r.t. cardinality of feature types.

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
0

20

40

60

80

100

120

140

Cardinality of Feature Types (numFT=6,CQ=100K)

T
ot

al
 E

xe
cu

tio
n

T
im

e(
se

c)

Filtering (RAN)
Refinement (RAN)
Filtering (CLU)
Refinement (CLU)

Filtering Ratio97.2%
96.4% 97.3% 96.5%

98.1%

95.7%
96.4%

98.5%
94.9%

97.2%

98.2%

98.2%

97.2%
96.2%

96.6%
97.8%

97.9%

98.1%

99.1%

98.5%

(a) Synthetic Data

10k 20k 30k 40k 50k 60k 70k 80k 90k 100k
0

20

40

60

80

100

120

140

160

180

Cardinality of Feature Types(numFT=6,CQ=100K)

T
ot

al
 E

xe
cu

tio
n

T
im

e(
se

c)

Filtering (CA*)
Refinement (CA*)
Filtering (NC*)
Refinement (NC*)

Filtering Ratio90.6%

93.1%

89.8%

94.1%

94.6%

95.9%

91.2%

90.6%
92.9%

92.1%
96.4%

90.8% 91.8%

92.7%

88.5%

88.6%
92.7%

94.7%

92.5%

96.5%

(b) Real Data

Figure 4.22. Scalability of MTRNN w.r.t. cardinality of feature types (Large Data Sets).

Scalability of MTRNN w.r.t. Cardinality of the Queried Data Set

We also examined the scalability of the MTRNN algorithm w.r.t. cardinality of the

queried data (Figure 4.23). Contrary to the previous experiment, the trend this time

is that increasing cardinality of the queried data increases run time (although no run

exceeded 10 minutes even when the data set reached 100k).

Why does this happen? First, the filtering ratio is large enough and improves much

less significantly than the CQ increments on this smaller range of space. Furthermore,

because the cardinality of the data sets from the multiple feature types remains the

same while the cardinality of the queried data set increases dramatically, the ratio of

queried data to feature data also increases dramatically. Thus, more points are left as

candidate MTRNNs after the filtering step, resulting in more MTRNN points found

and a rise in total run time.

In Figure 4.24, the run time increases as the cardinality of queried data sets

becomes larger. At this time, the size of queried data sets increase from 20k to 100k

92

20k 30k 40k 50k 60k 70k 80k 90k 100k
0

100

200

300

400

500

600

Cardinality of Queried Data Set (numFT=6,CF=10K)

T
ot

al
 E

xe
cu

tio
n

T
im

e(
se

c)

Filtering (RAN)
Refinement (RAN)
Filtering (CLU)
Refinement (CLU)

96.8%
96.3%

Filtering Ratio

97.9%

97.5%
98.2%

98.5%
98.5%

98.8%

98.7%
98.7%

98.9%

98.9%

99.1%

99.1%

99.2% 99.2%

99.4%

99.5%

(a) Synthetic Data

10k 20k 30k 40k 50k
0

50

100

150

200

250

Cardinality of Queried Data Set (numFT=6,CF
CA

=4K,CF
NC

=8K)

T
ot

al
 E

xe
cu

tio
n

T
im

e(
se

c)

Filtering (CA)
Refinement (CA)
Filtering (NC)
Refinement (NC)

Filtering Ratio

87.5%

91.1%

95.9%

98.1%

98.2%

82.3%

88.2%

(b) Real Data

Figure 4.23. Scalability of MTRNN w.r.t. Cardinality of the Queried Data Sets.

and the feature data set contains 100k points for both synthetic and real data sets,

the run time changes from about 10 seconds to 90 seconds. As in section 4.5.3, the

CA* and NC* data sets were generated with extra random data. This demonstrates

that the algorithm can give the query results in a reasonable time range even with

quite large queried data sets.

20k 30k 40k 50k 60k 70k 80k 90k 100k
0

10

20

30

40

50

60

70

80

90

Cardinality of Queried Data Set (numFT=6,CF=100K)

T
ot

al
 E

xe
cu

tio
n

T
im

e(
se

c)

Filtering (RAN)
Refinement (RAN)
Filtering (CLU)
Refinement (CLU)

Filtering Ratio

93.6%

93.2%
92.5%

92.1%

89.2%

88.1%

96.1%

95.8%

91.0%
93.1%

91.2%

90.8%

97.6%
97.8%

93.4%

92.6%
88.7%

92.4%

(a) Synthetic Data

20k 30k 40k 50k 60k 70k 80k 90k 100k
0

10

20

30

40

50

60

70

80

90

Cardinality of Queried Data Set (numFT=6,CF=100K)

T
ot

al
 E

xe
cu

tio
n

T
im

e(
se

c)

Filtering (CA*)
Refinement (CA*)
Filtering (NC*)
Refinement (NC*)

Filtering Ratio

96.4%

90.9%
92.8%

94.5%
92.2%

92.3%

93.8%

90.8%

97.1%

89.5%

87.9%

91.1%

94.4%

90.4%
90.3%91.8%

91.7%

89.1%

(b) Real Data

Figure 4.24. Scalability of MTRNN w.r.t. Cardinality of the Queried Data Sets (Large
Data Sets).

Filtering Ratio of MTRNN w.r.t Number of Feature Routes

Next we evaluated how the number of feature routes affects the filtering ratio. As

shown in Figure 4.25, the filtering ratio is very significant when the number of feature

routes exceeds 150, which indicates our filtering algorithm is quite efficient.

Figure 4.25 shows the filtering ability for both closed and open region pruning

methods. Since closed regions are pruned before open regions, more points are pruned

by closed region pruning. As shown in Figure 4.25a for synthetic data, the filtering

93

60 90 120 150 180 270 360
0

20

40

60

80

100

120

140

Number of Feature Routes (CF=10k, CQ=50K, numFT=6)

F
ilt

er
in

g
R

at
io

(%
)

Closed Region (RAN)
Open Region (RAN)
Closed Region (CLU)
Open Region (CLU)

(a) Synthetic Data

60 90 120 150 180
0

20

40

60

80

100

120

Number of Feature Routes

F
ilt

er
in

g
R

at
io

(%
)

Closed Region (CA)
Open Region (CA)
Closed Region (NC)
Open Region (NC)

(b) Real Data

Figure 4.25. Filtering ratio of MTRNN w.r.t. number of feature routes.

ratio grows as we increase the number of feature routes. However, when feature routes

reach a certain number (180 in the figure), the growth of the filtering ratio becomes

much less significant. Therefore, to save running time, we limited the number of space

divisions to 30 in our experiments (resulting in about 180 feature routes). Figure 4.25a

also indicates that both closed and open region pruning contributes to efficiency of

the filtering step. The filtering ratio for a closed region pruning is generally higher

because it is performed before open region pruning.

Figure 4.25b for real data exhibits a similar pattern. That is, when the number

of feature routes reaches a certain value, the filtering ratio is more than 90% and

becomes steady.

Since we were finding one nearest neighbor in one subspace in this experiment,

the results also show how filtering efficiency improves with increasing number of

subspaces.

Change in Number and Specific RNN Points Returned for MTRNN an d classical RNN
Queries w.r.t. Number of Feature Types

Finally, to highlight the potential impact of the MTRNN query approach, we quan-

tified changes in number of RNNs and specific RNNs w.r.t. FT for MTRNN and

classical RNN queries. The results illustrated in Figure 4.26 show that pn and ps are

indeed significant for both synthetic and real data. For synthetic data (Figure 4.26a),

as the FT increases, the smallest percentage change of pn with FT = 3 for data set

CLU is more than 20% and most of the percentages reached more than 50%. The

figure also shows that the MTRNN algorithm tends to find more RNNs when FT is

relatively large.

94

2 3 4 5 6 7
0

100

200

300

400

500

Number of Feature Types (CF=10K,CQ=50K)

P
er

ce
nt

ag
e(

%
)

p
n
 (RAN)

p
s
 (RAN)

p
n
 (CLU)

p
s
 (CLU)

(a) Synthetic Data

2 3 4 5 6 7
0

50

100

150

200

Number of Feature Types

P
er

ce
nt

ag
e(

%
)

p
n
 (CA)

p
s
 (CA)

p
n
 (NC)

p
s
 (NC)

(b) Real Data

Figure 4.26. Change of RNNs w.r.t. number of feature types.

The differences are even more dramatic in RNNs returned for the real datasets

Figure 4.26b, where the value of pn and ps rarely falls below 50% even when the

number of features is only 2 or 3. In other words, MTRNN queries consistently

generated results that differed by more than 50% from those generated by classical

RNN queries.

Discussion

Factors that Impact MTRNN Algorithm Performance The performance of

the MTRNN algorithm is usually significantly affected by the filtering ratio for large

data sets. The refinement step of the MTRNN algorithm is usually dominant espe-

cially with larger feature type number (> 4 in our experiment), because the MTNN

algorithm applied during this step is very time consuming with feature type number

rising. The larger the filtering ratio, the less the MTNN algorithm is called during

the refinement step (one MTNN is called for one candidate MTRNN). Therefore,

improvement of overall performance depends largely on how many candidates can

be pruned during the filtering step. As can be seen from Figure 4.21 and 4.23, the

filtering ratio improves as the range of the data increases (cardinality of features and

queried data). The reason is that faraway R-Tree nodes are more likely to be pruned.

Since the filtering step is less dominant in terms of execution time with large feature

type number, we may also increase the number of feature routes to achieve similar

effects. Nevertheless, a good filtering algorithm will always help to increase filtering

ability.

On the other hand, when number of feature types is small, total execution time

is not significant. In this case IO time becomes dominant and performance could be

95

improved by increasing the number of feature routes (thus filtering ratio) and cache

size to store more R-Tree nodes in memory.

Impact of Number of MTRNN Query on Results Summarizing the results

shown in Figure 4.26, it is clear that MTRNN queries can generate dramatically

different results from classical RNN queries, both in terms of quantity (How many

RNNs are there?) and content (What are the RNNs?). In general, the overlap

between the results of MTRNN and RNN queries decreases as the feature type number

increases because the other feature types around the queried data set will have an

impact, too. Finally, it is important to understand that pn and ps could be quite

different for the same set of data, with major implications for RNN-based decision-

making. For example, in Figure 4.26 for the CA data set with three feature types pn

is very small because the number of MTRNN results does not change much. However,

the actual results returned are totally different from the classical RNN query results,

resulting in a very high value of ps. Deciding whether to look at pn, ps or both

depends entirely on the application.

4.6 Summary

We formalized a multi-type reverse nearest neighbor problem (MTRNN) and devel-

oped an MTRNN query algorithm by exploiting a two-step R-tree node-level pruning

strategy. In the coarse-level pruning step, we generate closed and open pruning re-

gions which can be used to prune an entire R-tree or part of an R-tree for a given

query. In the refinement step, the remaining data points are evaluated and the true

MTRNN points are identified for the given query. We compared the MTRNN algo-

rithm with a traditional RNN query method in terms of number of feature types,

number of points in each feature type and queried data set. The experiment results

show that our algorithm not only returns MTRNNs within a reasonable time but that

MTRNN results differ significantly from results of traditional RNN queries. This find-

ing has important implications for decision-making algorithms used in business and

confirms the value of further investigation of MTRNN query approaches.

As for future work, we plan to introduce different weight factors for different fea-

ture types into the objective function. It is important for some business applications

since in reality the influence of different feature types may be different for different

types of applications. We are then interested in the application of MTRNN queries

96

on road networks using road network distance or other types of spatio-temporal

databases. We believe that the computational complexity of MTRNN queries will

rise dramatically when applied to such databases. Therefore, we plan to explore off-

line techniques for pre-computing of intermediate results of MTRNN queries as well

as indexing, data structure, and other methods for efficient storage and retrieval of re-

sults. Another direction to extend our MTRNN work is to design some good heuristic

approaches to find approximate results as well as design corresponding measurements

to evaluate the results that sufficiently capture the problem’s complexity.

97

Chapter 5

Conclusions and
Future Work

Spatial database research confronts daunting challenges in today’s computing envi-

ronment. The growing complexity of spatial database and GIS systems has been

accompanied by rising user expectations of spatial databases, GIS systems and their

applications. Users are looking to location-based services to handle all manner of rea-

sonable traveler queries. Therefore, it becomes increasingly critical to expand search

capabilities in spatial databases and GIS-related applications.

In this thesis we extended the scope of classic nearest neighbor (NN) and reverse

nearest neighbor (RNN) search problems by incorporating multiple feature types into

their formulations and devising new algorithms to solve them. We began by consid-

ering the case of a traveler who visits locations that belong to different categories, or

feature types during a single trip, such as a post office, a gas station, and a grocery

store. Traditional NN query methods are insufficient in this basic traveling scenario

because they assume only one or two feature types. What needs to be found is the

shortest route going through one instance from every feature type. We capture this

notion by formalizing a multi-type nearest neighbor (MTNN) problem [40], which

answers a query that is different from traditional NN search. The MTNN query

is a valuable addition to location-based services in spatial databases and geospatial

applications.

However, it is not enough as we did in [40] to use Euclidean distance as the mea-

surement to find the shortest route in MTNN problems because a majority of queries

in real life are to find a route in real road networks. Therefore, we formalized another

98

search problem called BEst Start Time Multi-Type Nearest Neighbor (BESTMTNN)

problem [38] that gives a turn-by-turn route and best start time in terms of travel

time.

Similar to traditional NN search problems, reverse nearest neighbor search prob-

lems traditionally consider the influence of an instance of a single feature type on

the queried points. Thus, they cannot answer queries regarding the influence of more

than one feature type, such as a grocery store and a wine shop. For the cases where

travelers may visit multiple instances of more than one feature type, however, the

influence of multiple feature types instead of one feature type must be considered,

which requires extension to the scope of the classic RNN query. Multi-Type Reverse

Nearest Neighbor (MTRNN) problem [41] was formalized to find the influence of

multiple feature types on the queried points.

5.1 Major Results

Specifically the primary contributions of this thesis are the following:

• We formalized and studied a generalized MTNN query problem. We pointed out

the difference between the MTNN problem and the Traveling Salesman Problem

(TSP) [48], which is one of the class of “NP Complete” combinatorial problems.

We designed an algorithm based on our page-level upper bound (PLUB) pruning

technique at the R-tree node level in order to filter a large block of spatial data

in the early stages. This algorithm found the optimal solution to approach the

MTNN problem when the feature type number is small. We also provided an

algebraic cost model for PLUB and compared it to the RLORD algorithm. Our

experiments showed that our method outperforms RLORD with clustered data

sets although the optimal solution becomes computationally intractable when

the number of query feature types is large.

• We identified the special properties of a new type of query involving spatial

and temporal features on spatio-temoral road networks. Then we formalized

the BESTMTNN query problem on spatio-temporal road networks by extend-

ing the encoded path view from spatial-only to spatio-temporal road networks

and designed a label-correcting based algorithm that grew the spatio-temporal

partial route as the time window was extended. This algorithm prioritized the

99

spatio-temporal partial routes with current least travel time. The input to the

algorithm is a user-specified query involving spatio-temporal features such as

query time window sizes for all features and planned stay-time interval at a

location. The output is a turn-by-turn route and the best start time in terms of

least travel time. Our experiments showed our algorithm could answer normal

user BESTMTNN queries in a reasonable time.

• We illustrated the motivation of the MTRNN problem with examples to show

how current RNN query techniques may give misleading answers in some ap-

plications. We formalized the MTRNN query problem to consider the influence

of other feature types in addition to the feature type of the given query point.

Based on the concepts of MTRNN query and the algorithm of MTNN query, we

gave a brute force algorithm as a base line algorithm. R-tree based algorithms

were then proposed to prune the search space with our new pruning techniques

called closed region pruning and open region pruning. These two pruning tech-

niques filtered R-tree nodes and points that were definitely not the MTRNN

of the given query point. Then we applied three refinement approaches to re-

move the false hit points. Our experiments on both synthetic and real data

sets showed our algorithms run much faster than the baseline algorithm. The

experiment also demonstrated that typical MTRNN queries could be answered

by our algorithms within reasonable time for different experimental settings.

The design decisions related to performance tuning were provided as well. To

highlight the significance of the MTRNN query, we also included experimental

results that vividly show the degree to which MTRNN query results could differ

from results of traditional RNN queries.

5.2 future Research Directions

This thesis identifies a new area in spatial database research that is of fundamental

importance to travel-related GIS applications. The work here expands and enriches

the potential of location-based services. There are several directions to extend the

current work.

The first direction is to incorporate continuous query techniques into the MTNN

search. A continuous MTNN search can give more precise answers according to chang-

ing traffic conditions. As shown in the thesis, MTNN searches are very complicated.

100

Designing proper data structures and storage methods for continuous MTNN queries

is a daunting challenge. Existing frameworks for continuous queries would require

careful adaptation in order to avoid compromising the efficiency of the MTNN query

algorithm. In addition, MTNN algorithms themselves would need to be redesigned

for the continuous query environment.

The BESTMTNN query and algorithm are an attempt to apply the MTNN query

in the real world. However, the work has two limitations. First, the Time Aggregated

Multi- Type Graph (TAMTG) is a single layer model of the road networks. Therefore,

the performance of the BESTMTNN algorithm will degrade dramatically when the

road networks become very large. One way to extend the BESTMTNN work on road

networks is to design a hierarchical spatio-temporal graph to model such networks

as well as new algorithms based on these models. The second limitation of the

BESTMTNN work is that only long term-traffic information was incorporated into

the TAMTG. Within modern computing systems such as mobile services, real time

traffic information is needed to update the MTNN query results from time to time

when a traveler is on the road. This requires enhancing the TAMTG and designing

related new algorithms for it.

As with MTNN queries, MTRNN queries also need to be made applicable to

road networks. Because the computational complexity of MTRNN queries rises dra-

matically when applied to spatio-temporal databases, it is worth exploring off-line

techniques for pre-computing of intermediate results of MTRNN queries as well as

indexing, data structure, and other methods for efficient storage and retrieval of re-

sults.

Another way to extend MTRNN work is to incorporate the notion of influence

of “multiple features” into different application domains. Evaluating the influence of

multiple feature types likely requires different approaches in different domains. How

to model the “accumulated” influence of multiple features for different real world

settings depends on the context of the domains and requires deep thinking and un-

derstanding. In other words, adapting MTRNN queries for different domains cannot

be done without specific knowledge of the domains. Formalizing problems similar to

MTRNN in different domains is challenging and designing good algorithms to prune

the search space is even harder.

Considering the complexity of MTNN and MTRNN queries, another interesting

direction to extend the current work is to investigate heuristic algorithms to find

101

approximate results as well as design corresponding measurements to evaluate the

results that sufficiently capture the problems complexity. A user-defined tolerance

factor can be used to control the quality of the query results found by heuristic

algorithms. Here, the challenge will be to design proper tolerance factors for different

environments without losing efficiency of the algorithms.

To conclude, this thesis presented the author’s attempt to extend traditional NN

and RNN queries in order to meet the growing demands of complex computation

environments. In the future, more extensions to the current work are needed to make

MTNN and MTRNN queries viable in real world applications.

102

Bibliography

[1] North Carolina Center for Geographic Information and Analysis, NC Master Ad-

dress Dataset Project. http://www.cgia.state.nc.us/Services/NCMasterAddress,

2009.

[2] GPS Data Team, GPS POI Files. http://poidirectory.com/poifiles/, 2010.

[3] E. Achtert, C. Bahm, P. Krager, P. Kunath, A. Pryakhin, and M. Renz. Effi-

cient Reverse k-Nearest Neighbor Search in Arbitrary Metric Spaces. In ACM

SIGMOD, 2006.

[4] R. Benetis, C. Jensen, G. Karciauskas, and S. Saltenis. Spatio-Temporal Network

Databases and Routing Algorithms: a Summary of Results. In IDEAS, 2002.

[5] S. Berchtold, C. Bohm, D. Keim, and H. Kriegel. A Cost Model for Nearest

Neighbor in High-Dimensional Data Space. 1997.

[6] S. Berchtold, C. Bohm, D. Keim, and H. Kriegel. On Optimizing Nearest Neigh-

bor Queries in High-Dimensional Data Spaces. 2001.

[7] L. Bodin and B. Golden. Classification in vehicle routing and scheduling. Net-

works, 1981.

[8] H. Chen, W. Ku, M. Sun, and R. Zimmermann. The Multi-Rule Partial Se-

quenced Route Query. In ACM GIS, 2008.

[9] B. Cherkassky, A. Goldberg, and T. Tadzik. Shortest paths algorithm: theory

and experimental evaluation. Mathematical Proggramming, 1996.

[10] K. Cheung and A. Fu. Enhanced Nearest Neighbor Search on the R-tree. ACM

SIGMOD Record, pages 16–21, 1998.

103

[11] K. Clarkson. Fast Algorithms for the All-Nearest-Neighbors Problem. In FOCS,

1983.

[12] J. G. Cleary. Analysis of an algorithm for finding nearest neighbor in Euclidean

space. ACM Transactions on Mathematical Software, pages 183–192, June 1979.

[13] A. Corral, Y. Manolopoulos, and M. Vassilakopoulos. Closest Pair Queries in

Spatial Databases. In ACM SIGMOD, 2000.

[14] A. Corral, Y. Manolopoulos, and M. Vassilakopoulos. Algorithms for Processing

K-closest-pair Queries in Spatial Databases. Data and Knowledge Engineering,

pages 67–104, 2004.

[15] A. Corral, M. Vassilakopoulos, and Y. Manolopoulos. The impact of Buffering

on Closest Pairs Queries Using R-Trees. In Proceedings of Advances in Databases

and Information Systems (ADBIS’01), pages 41–54, 2001.

[16] Y. Cui, B. C. Ooi, K. Tan, and H. V. Jagadish. Indexing the Distance: An

Efficient Method to KNN Processing. In VLDB, 2001.

[17] C.Yang and K.-I. Lin. An Index Structure for Efficient Reverse Nearest Neighbor

Queries. In ICDE, 2001.

[18] E. Dellis and B. Seeger. Efficient Computation of Reverse Skyline Queries. In

VLDB, 2007.

[19] B. Ding, J. Yu, and L. Qin. Finding time-dependent shortest paths over large

graphs. In EDBT, 2008.

[20] J. H. Friedman, J. L. Bentley, and R. A. Finkel. An algorithm for finding best

matches in logrithmic expected time. ACM Transactions on Mathematical Soft-

ware, pages 209–226, September 1977.

[21] Y. Gao, B. Zheng, G. Chen, W.-C. Lee, K. Lee, and Q. Li. Visible Reverse

k-Nearest Neighbor Queries. In ICDE, 2009.

[22] B. George, S. Kim, and S. Shekhar. Spatio-temporal network databases and

routing algotihms: a summary of results. In SSTD, 2007.

104

[23] H. Herhatosmanoglu, D. A. I. Stanoi, and A. Abbadi. Constrained Nearest

Nieghbor Queries. In SSTD, 2001.

[24] C. Hjaltason and H. Samet. Incremental Distance Join Algorithms for Spatial

Databases. In ACM SIGMOD, 1998.

[25] C. Hjaltason and H. Samet. Distance Browsing for Spatial Databases. ACM

Transactions on Database Systems, pages 265–318, 2 1999.

[26] Y.-W. Huang, N. Jing, and E. Rundensteiner. A semi-materialized view approach

for route maintenance in Intelligent Vehicle Highway systems. In ACM GIS, 1994.

[27] Y.-W. Huang, N. Jing, and E. Rundensteiner. Hierarchical encoded path view

for path query processing: an optimal model and its performance evaluation.

IEEE TKDE, pages 409–432, May/June 1998.

[28] J. M. Kang, M. Mokbel, S. Shekhar, T. Xia, and D. Zhang. Continuous Evalu-

ation of Monochromatic and Bichromatic Reverse Nearest Neighbors. In ICDE,

2007.

[29] N. Katayama and S. Satoh. The SR-tree: An Index Structure for High-

Dimensional Nearest Neighbor Queries. In ACM SIGMOD, 1997.

[30] F. Korn, F. A. Com, S. Muthukrishnan, and D. Srivastava. Reverse Nearest

Neighbor Aggregates Over Data Streams. In ACM SIGMOD, 2001.

[31] F. Korn and S. Muthukrishnan. Influence sets based on reverse nearest neighbor

queries. In ACM SIGMOD, 2000.

[32] F. Korn, S. Muthukrishnan, and D. Srivastava. Reverse nearest neighbor aggre-

gates over data stream. In VLDB, 2002.

[33] G. Laporte. The vehicle routing problem: An overview of exact and approximate

algorithms. European Journal of Operational Research, 1992.

[34] G. Laporte, M. Gendreau, J. Potvin, and F. Semet. Classical and modern heuris-

tics for the vehicle routing problem. Intl. Transactions in Operational Research,

2000.

105

[35] R. Levin, Y. Kanza, E. Safra, and Y. Sagiv. Interactive Route Search in the

Presence of Order Constraints. In VLDB, 2010.

[36] F. Li, D. Chen, M. Hadjieleftherious, G. Kollios, and S. Teng. On trip planning

queries in spatial databases. In SSTD, 2005.

[37] X. Lian and L. Chen. Monochromatic and Bichromatic Reverse Skyline Search

over Uncertain Databases. In ACM SIGMOD, 2008.

[38] X. Ma, S. Shekhar, and H. Xiong. Multi-Type Nearest Neighbor Queries on

Road Networks with Time Window Constraints. In ACM SIG SPATIAL GIS,

2009.

[39] X. Ma, S. Shekhar, H. Xiong, and P. Zhang. Exploiting a page-level upper bound

for multi-type nearest neighbor queries. In Technique Report,05-008, University

of Minnesota, 2005.

[40] X. Ma, S. Shekhar, H. Xiong, and P. Zhang. Exploiting Page Level Upper Bound

for Multi-Type Nearest Neighbor Queries. In ACM GIS, 2006.

[41] X. Ma, C. Zhang, S. Shekhar, Y. Huang, and H. Xiong. On Multi-Type Reverse

Nearest Neighbor Search. In Journal Of Data and Knowledge Engineering DOI

10.1016/j.datak.2011.06.003, 2011.

[42] Muhammad Cheema and Xuemin Lin and Wei Wang and Wenjie Zhang and Jian

Pei. Probabilistic reverse nearest neighbor queries on uncertain data. In TKDE,

2010.

[43] Muhammad Cheema and Xuemin Lin and Ying Zhang andWei Wang andWenjie

Zhang . Lazy updates: An efficient technique to continuously monitoring reverse

knn. In VLDB, 2009.

[44] D. Papadias, Y. T. Q. Shen, and K. Mouratidis. Group nearest neighbor queries.

In ICDE, 2004.

[45] A. Papadopoulos and Y. Manolopoulos. Performance of Nearest Neighbor

Queries in R-trees. In ICDT, pages 394–408, 1997.

106

[46] H. peter Kriegel, P. Kroger, M. Renz, A. Zufle, and A. Katzdobler. Reverse k-

Nearest Neighbor Search Based on Aggregate Point Access Methods. In SSDBM,

2009.

[47] F. P. Preparata and M. I. Shamos. Computational Geometry: An Introduction.

Springer Verlag, 1985.

[48] G. Reinelt. The Traveling Salesman - Computational Solutions for TSP Appli-

cations. Springer Verlag, 1994.

[49] N. Roussopoulos and F. V. S. Kelly. Nearest Neighbor Queries. In SIGMOD,

1995.

[50] M. Safar, D. Ebrahimi, and D. Taniar. Voronoi-Based Reverse Nearest Neighbour

Query Processing on Spatial Networks. In ACM Multimedia Systems Journal

(MMSJ), Volume 15, Issue 5, pp. 295-308, published by Springer, 2009.

[51] T. Seidl and H. Kriegel. Optimal Multi-Step k-Nearest Neighbor Search. In

SIGMOD, 1998.

[52] J. Shan, D. Zhang, and B. Salzberg. On Spatial-Range Closest-Pair Query. In

SSTD, 2003.

[53] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The optimal sequenced route

query. In University of Southern California, Computer Science Department,

Technical Report 05-840, January 2005.

[54] M. Sharifzadeh, M. Kolahdouzan, and C. Shahabi. The Optimal Sequenced

Route Query. In VLDB Journal DOI 10.1007/s0078-006-0038-6, 2007.

[55] M. Sharifzadeh and C. Shahabi. Processing optimal sequenced route queries using

voronoi diagrams. In Geoinformatica DOI 10.1007/s10707-007-0034-z, 2008.

[56] A. Singh, H. Ferhatosmanoglu, and A. S. Tosun. High Dimensional Reverse

Nearest Neighbor Queries. In CIKM, 2003.

[57] Z. Song and N. Roussopoulos. K-Nearest Neighbor Search for Moving Query

Point. In SSTD, 2002.

107

[58] I. Stanoi, D. Agrawal, and A. E. Abbadi. Reverse Nearest Neighbor Queries for

Dynamic Databases. In SIGMOD workshop on Research Issues in data mining

and knowledge discovery, 2000.

[59] I. Stanoi, I. Stanoi, M. Riedewald, D. Agrawal, and A. E. Abbadi. Discovery of

Influence Sets in Frequently Updated Databases. In VLDB, 2001.

[60] Y. Tao, D. Papadias, and X. Lian. Reverse kNN Search in Arbitrary Dimension-

ality. In VLDB, 2004.

[61] Y. Tao, D. Papadias, and Q. Shen. Continuous Nearest Neighbor Search. In

VLDB, 2002.

[62] Y. Tao, M. L. Yiu, and N. Mamoulis. Reverse Nearest Neighbor Search in Metric

Spaces. In TKDE, 7(4-5), 2006.

[63] Y. Tao, J. Zhang, D. Papadias, and N. Mamoulis. An Efficient Cost Model

for Optimization of Nearest Neighbor Search in Low and Medium Dimensional

Spaces. In TKDE, 2004.

[64] Q. T. Tran, D. Taniar, and M. Safar. Bichromatic Reverse Nearest-Neighbor

Search in Mobile Systems. In IEEE Systems Journal, Vol. 4, Issue 2, pp. 230-

242, 2010.

[65] A. Vlachou, C. Doulkeridis, Y. Kotidis, and K. Norvag. Reverse Top-k Queries.

In ICDE, 2010.

[66] R. C.-W. Wong, T. Ozsu, P. Yu, and A. W. Fu. Efficient Method for Maximizing

Bichromatic Reverse Nearest Neighbor . In VLDB, 2009.

[67] W. Wu, F. Yang, C.-Y. Chan, and K.-L. Tan. Continuous Reverse k-Nearest-

Neighbor Monitoring. In MDM, 2008.

[68] W. Wu, F. Yang, C.-Y. Chan, and K.-L. Tan. Finch: Evaluating Reverse k-

Nearest-Neighbor Queries on Location Data. In VLDB, 2008.

[69] T. Xia and D. Zhang. Continuous Reverse Nearest Neighbor Monitoring. In

ICDE, 2006.

108

[70] T. Xia, D. Zhang, E. Kanoulas, and Y. Du. On Computing Top-t Most Influential

Spatial Sites. In VLDB, 2005.

[71] C. Yang and K.-I. Lin. An Index Structure for Improving Nearest Closest Pairs

and Related Join Queries in Spatial Databases. In IDEAS, 2002.

[72] B. Yao, F. Li, and P. Kumar. Reverse Furthest Neighbors in Spatial Databases.

In ICDE, 2009.

[73] M. L. Yiu and N. Mamoulis. Reverse Nearest Neighbors Search in Ad-hoc Sub-

spaces. In ICDE, 2006.

[74] M. L. Yiu, D. Papadias, N. Mamoulis, and Y. Tao. Reverse Nearest Neighbors

Search in Large Graphs. In TKDE,18(4):540-553, 2006.

[75] J. Zhang, N. Mamoulis, D. Papadias, and Y. Tao. All-Nearest-Neighbors Queries

in Spatial Databases. In SSDBM, 2004.

109

