
Magnetic Vortex Dynamics: Non-linear

Dynamics, Pinning Mechanisms, and

Dimensionality Crossover

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Te-Yu Chen

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Paul A. Crowell

January, 2012



c© Te-Yu Chen 2012

ALL RIGHTS RESERVED



Acknowledgements

I joined Professor Paul Crowell’s group in the summer of 2007. Paul is knowledge-

able and is always generous with his time. Learning from his excellent research

insight and problem-solving skills has been the most valuable experience in my

graduate study. I am grateful to have had the opportunity to work with him.

Johoo Park established the original time-resolved Kerr microscope setup, and

Rob Compton improved the setup for studying the dynamics of magnetic vor-

tices. They developed various experimental techniques and LabVIEW software

infrastructure that I still use today. I am grateful to inherit the knowledge and

techniques which they established in this Lab.

The research which I discuss in this dissertation is a collaboration work with

Professor Chris Leighton’s group in the Chemical Engineering and Materials Sci-

ence Department of the University of Minnesota. All of the samples shown in my

dissertation were grown in Chris’ lab. I also would like to thank Chris for valuable

discussions and advices.

I have also had the pleasure of working directly with Rob Compton, Mun

Chan, Mike Erickson, and Andrew Galkiewicz. Rob was my mentor when I joined

the group, and he fabricated the samples which I used for studying the non-

linear vortex dynamics. Mun developed the original fabrication process which I

optimized for patterning magnetic disks in my research. Mike grew all the samples

which I used for studying pinning mechanisms and dimensionality crossover of

vortex dynamics. Andrew Galkiewicz developed the double modulation technique

and he also conducted some of the micromagnetic simulations discussed in this

i



dissertation.

I owe many thanks to all of the other members of the Crowell group, including

Chad Geppert, Eric Garlid, Kevin Christie, Dmitry Spivak, and Changjiang Liu.

They were always happy to discuss physics or to help me prepare presentations.

My wife, Yu-Wen Chen, is smart, funny, and wonderful. Yu-Wen has been

my most cherished partner in these last six years together, and I’m grateful for

her love. I must thank my parents for always supporting me in all possible ways,

especially during the past few years when I’m 7,129 miles away from them.

This work was supported by the MRSEC Program of the National Science

Foundation under Award Number DMR-0819885, and the University of Minnesota

Graduate School through the Doctoral Dissertation Fellowship. Additional sup-

port for the Nanofabrication Center was provided by the NSF NNIN network.

The figure from Physical Review Letter has been reprinted with permission from

the American Physical Society (APS). The figure from Science has been reprinted

with permission from the American Association for the Advancement of Science

(AAAS).

ii



Abstract

The dynamics of a magnetic vortex, which is the simplest realization of a domain

structure, are influenced profoundly by non-linear effects at both large and small

amplitudes. For example, a strongly driven magnetic vortex is unstable with

respect to internal deformation, leading to reversal of its core magnetization. At

small amplitudes, a second class of non-linear phenomena are associated with

pinning of the vortex core. The pinning of magnetic vortices is closely related to

the pinning of domain walls in ferromagnetic films. For both cases, however, the

absence of an appropriate characterization tool has limited the ability to correlate

the physical and magnetic microstructures of ferromagnetic films with specific

pinning mechanisms. Given this range of phenomena, there is also an acute need

for a global picture of vortex dynamics over a wide range of excitation amplitudes

and frequencies.

In this dissertation, I show a global phase diagram of vortex dynamics in

permalloy (Ni80Fe20) disks by probing the response spectrum over four orders of

magnitude in excitation power. A clear boundary separates pinned and unpinned

dynamics in a phase space of amplitude and frequency. I also discuss a highly

quantitative analysis of the pinning potential for defects, and how it can be used

to trace the dynamics of a single vortex from deep in the pinning regime to the

onset of core reversal. Regarding the pinning mechanism, I show that the pinning

of a magnetic vortex is strongly correlated with surface roughness, and I make

a quantitative comparison of the pinning energy and spatial range in films of

various thickness. The results demonstrate that thickness fluctuations on the

lateral length scale of the vortex core diameter, i.e., an effective roughness at a

specific length scale, provide the dominant pinning mechanism. I argue that this

mechanism will be important in virtually any soft ferromagnetic film.

Finally, I show the dynamics of a magnetic vortex cross over from two-dimensional

(2D) to three-dimensional (3D) with increasing disk thickness. A 2D mode of the
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vortex dynamics is the lowest frequency excitation below the crossover region,

above which a 3D mode becomes the lowest frequency excitation.
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Chapter 1

Introduction

The research of magnetization dynamics describes how a magnetic material re-

sponds when excited by a variety of sources, such as magnetic fields, spin-polarized

currents [1–15], polarized light [16–20], or temperature gradients [21]. In this dis-

sertation I will focus on the magnetization dynamics excited by magnetic fields.

For example, the magnetization direction of a ferromagnet can be changed by ap-

plying a magnetic field, and the reversal process from one saturated magnetization

direction to the reversed direction is of particular interest for magnetic devices,

such as hard disk drives of computers.

It is well-known that the magnetization dynamics of a ferromagnet are gov-

erned by fundamental magnetic energies, i.e., exchange energy, dipole energy,

magnetostatic energy, crystalline anisotropy energy, and Zeeman energy, which

will be discussed in Sec 1.1. It has been challenging, however, to describe pre-

cisely how these energies and the magnetization change with time in real materials.

The challenges arise from the inevitable disorder in the material.

As will be discussed in Sec. 1.3, for example, the dynamics of a magnetic

domain wall are strongly affected by pinning defects in the material. Magnetic

domain walls are the boundaries of magnetic domains, within which the magne-

tization is uniformly aligned. When excited by a magnetic field, some domains

expand while others become smaller, resulting in the motion of domain walls. In
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the presence of pinning defects, a domain wall moves stochastically and discon-

tinuously. This is often the dynamical process by which a ferromagnet reverses

its magnetization.

Although pinning of domain walls is ubiquitous, the microscopic mechanism

of pinning remains unclear for virtually all soft ferromagnetic materials. Quanti-

tative measurements of the physical properties (i.e., strength and range) of pin-

ning sites are required to provide essential information for identifying the pinning

mechanisms, but such measurements have been practically impossible in extended

structures such as thin films. The reason is that the structures of domain walls

are generally very complex, and every domain wall interacts with multiple pinning

sites simultaneously.

In this dissertation, I will focus on the simplest realization of a domain struc-

ture - a single vortex in a circular ferromagnetic disk. Similar to the dynamics

of a domain wall, the dynamics of a vortex are strongly affected by pinning de-

fects. But, unlike a domain wall, the structure of a single vortex is simple and

well-defined. Additionally, the lowest frequency excitation of a vortex, i.e., the

gyrotropic mode, can be described by an analytical theory, which provides a foun-

dation for the development of analytical models for vortex pinning. These advan-

tages make a single vortex a model system for studying how disorder affects the

dynamics of a non-uniform domain structure, as will be detailed in Sec. 1.4.

This introductory chapter will outline the basic principles of magnetization

dynamics, including the dynamics of magnetic domain walls and magnetic vor-

tices. Equations will be written in CGS units in this dissertation unless otherwise

indicated.

1.1 Energies of a Ferromagnet

The magnetic properties of a ferromagnet are governed by four magnetic energies,

including the exchange energy, the Zeeman energy, the magnetostatic energy, and

the crystalline anisotropy energy. A brief description of these energies will be
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given in the following.

1.1.1 Exchange Energy

The fundamental property of a ferromagnet is its preference for a constant mag-

netization direction. Deviations from this ideal case cause an energy penalty, i.e.,

the exchange energy Wex, which is given by:

Wex =

∫

V

d3r
A

Ms
2
(∇ ·M(r))2 , (1.1)

where M is the magnetization (magnetic moment per unit volume), Ms is the

saturation magnetization, and A is the exchange constant. Typical values for

Ni80Fe20 are Ms = 800 emu/cm3 and A = 10−6 erg/cm.

1.1.2 Zeeman Energy

The Zeeman energy WH is the interaction energy of M with an external field

Hext, and it is given by:

WH = −
∫

V

d3rM(r) ·Hext(r). (1.2)

It is clear from Eq. 1.2 that WH is minimum when the magnetization aligns with

the applied magnetic field.

1.1.3 Magnetostatic Energy

The magnetostatic energy Wms arises from the magnetic dipole-dipole interac-

tions. Wms is given by:

Wms = −1

2

∫

d3rHd(r) ·M(r), (1.3)

where the dipole field Hd has the form:

Hd(r) =
1

4π

∫

V

d3r′
1

R3

[

3
(

M · R̂
)

R̂−M

]

, (1.4)
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where R = r − r
′. An important example is the magnetostatic energy of an

extended ferromagnetic thin film. The energy of M in the plane of the film is

lower than that of M along the normal axis of the film. The difference in Wms is

2πM2

s .

In contrast to the short-range (exchange) interaction characterizing the ex-

change energy (Sec. 1.1.1), the magnetostatic energy is associated with the long-

range (dipole-dipole) interaction. The competition between these two energies

results in various domain structures, such as domain walls in extended ferromag-

netic films (Sec. 1.3) and vortices in ferromagnetic disks (Sec. 1.4). A characteristic

length in a soft ferromagnetic material is give by the exchange length:

Lex =

√

A

2πMs
2
, (1.5)

which is based on the ratio of the exchange constant to the magnetostatic energy

of a thin film. A typical value for Ni80Fe20 is Lex ≈ 6 nm.

1.1.4 Crystalline Anisotropy Energy

The crystalline anisotropy energy Wa originates from the spin-orbit interaction

and depends on the direction of the magnetization relative to the crystal struc-

tural axes of the material. For single crystal materials, cubic crystals have cubic

anisotropies, while hexagonal and tetragonal crystals have uniaxial anisotropies.

For polycrystalline materials, which are composed of many crystallites of varying

size and orientation, the crystalline axis can be random or directed, determined

by growth and processing conditions, resulting in an averaged global anisotropy.

The strength of the anisotropy depends strongly on the material. In polycrys-

talline Ni80Fe20, the anisotropic energy is typically below 1000 erg/cm3, which

is much smaller than the exchange energy and the magnetostatic energy. The

magnetic properties of Ni80Fe20 are primarily determined by the exchange and

magnetostatic energies.
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Figure 1.1: Schematic of the precession of magnetization about H . (a) Without
damping. (b) With damping.

1.2 Magnetization Dynamics

This section will discuss the basic principles of magnetization dynamics. These

principles will provide the foundations for the discussions of domain-wall dynamics

and vortex dynamics in this dissertation.

1.2.1 Landau-Lifshitz-Gilbert (LLG) Equation

The magnetic energies discussed in Sec. 1.1 determine the magnetization dynam-

ics. The total energy Wtot = Wex + WH + Wms + Wa leads to an effective field

Heff , which is defined as:

Heff =
dWtot

dM
. (1.6)

Heff results in a torqueM×Heff acting on the magnetizationM . The dynamics

of M are given by:
dM

dt
= −γM ×Heff , (1.7)

where γ = gµB/~ is the gyromagnetic ratio, µB is the Bohr magneton, and the

factor g has a value close to 2 for most ferromagnetic materials [22].



6

Eq 1.7 is the fundamental equation of magnetization dynamics without damp-

ing. For example, if Heff is constant, a circular precession mode of the magneti-

zation occurs, as illustrated in Fig. 1.1(a). The precession frequency ω0 is given

by the Larmor frequency γHeff .

In real materials damping is inevitable, but the origin of damping remains

controversial. For the purpose of this dissertation, I will apply a phenomenological

damping parameter α, which is the Gilbert damping constant (see Ref. [23]).

The corresponding magnetization dynamics are described by the Landau-Lifshitz-

Gilbert (LLG) equation [24],

dM

dt
= −γM ×Heff +

α

Ms
M × dM

dt
. (1.8)

Fig. 1.1(b) illustrates that in the presence of damping the magnetization spirals

down until it becomes parallel to Heff .

1.2.2 Micromagnetic Simulation

The magnetization dynamics of a ferromagnet can be numerically calculated by

using Eq. 1.8. This approach is referred to as micromagnetic simulation. The sim-

ulated system first needs to be divided into a grid of cells. The cell size is smaller

than Lex (Eq. 1.5), so that the magnetization in each cell is assumed to respond

as a single unit. In this case Heff in Eq. 1.8 accounts for the interactions between

cells, including the dipole-dipole interaction and the exchange interaction. Mi-

cromagnetic simulations can provide useful microscopic insight into the behavior

of a ferromagnet. There are several micromagnetics software packages available,

and the LLG Micromagnetics Simulator [25] has been used in this dissertation

research.
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1.3 Pinning of Magnetic Domain Walls

The pinning of magnetic domain walls has been studied intensively since 1919,

the year when Barkhausen discovered the discontinuous reversal process of a fer-

romagnet [26]. In this section, I will discuss the static and dynamical properties

of a domain wall, including the domain-wall dynamics in the presence of pinning

defects. I will also point out the challenges of identifying the microscopic pinning

mechanisms.

1.3.1 Magnetic Domains and Domain Walls

The magnetization of any sufficiently large ferromagnetic thin film will spon-

taneously break into domains. Within each domain, the magnetization aligns

uniformly to minimize the exchange energy. The structure of the domains de-

pends on the geometry of the film. For example, Fig.1.2(a) shows schematically

a flux-closure domain structure near the edge of a film. The flux-closure struc-

ture of M minimizes the stray field outside the film, and therefore minimizes the

magnetostatic energy.

The magnetic domains are separated by domain walls, within which the mag-

netization rotates continuously over a lateral range LDW , i.e., the domain-wall

width. Generally speaking, a large LDW corresponds to small gradient of M

within the domain wall, which is favorable for minimizing the exchange energy.

On the other hand, a small LDW is favorable for minimizing the magnetostatic

energy. The competition of these two energies determines the value of LDW .

Therefore, similar to Lex discussed in Sec. 1.1.3, LDW is typically on the order of

10 nm. The exact structures of domain walls depend on both the material and

the thickness of the film [24]. For example, if the thickness of the Ni80Fe20 film

is below ∼ 20 nm, the magnetizations rotate in the plane of the wall (Néel wall),

as shown in Fig.1.2(b). For thicknesses larger than ∼ 100 nm, the rotation is

perpendicular to the plane of the wall (Bloch wall), as shown in Fig.1.2(c). For

thicknesses between 20 and 100 nm, a cross-tie wall is stable, containing a chain
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Figure 1.2: Schematic representation of (a) a simple model of flux-closure type
domains at the edge of a film, (b) a Néel wall, (c) a Bloch wall, and (d) a cross-tie
wall. The solid lines in (a) indicate the domain walls. The dashed lines in (b),
(c), and (d) indicate the range of the domain walls. The projections into the
cross-sectional dimension are shown for the Néel wall (b) and the Bloch wall (c).
The cross tie wall (d) contains a chain of vortices and antivortices. The centers
of a vortex and an antivortex are indicated by the red (gray) arrows in (d).
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of vortices and antivortices, as shown in Fig.1.2(d).

1.3.2 Barkhausen Effect

The simplest type of domain-wall dynamics is continuous motion with a fixed

internal structure. For example, for the domain walls shown in Fig.1.2(b)-(d),

applying a magnetic field along the positive y direction will make the domain on

the left of the domain wall expand, resulting in domain-wall motion in the positive

x direction. For a homogeneous material (without defects), domain-wall motion is

continuous, with a domain-wall velocity vDW determined by the intrinsic damping

and the excitation. The value of vDW will be discussed in detail in Sec. 1.3.3.

In a real material, domain-wall motion is generally discontinuous and stochas-

tic, caused by pinning defects in the material. The avalanche of domain-wall

motion is usually referred to as the Barkhausen effect [26–29]. Contemporary

investigations of Barkhausen phenomena are primarily concerned with universal

(sample-independent) behavior in which the jump size of domain-wall motion ex-

hibits power law behavior

P (s) ∝ b−η, (1.9)

where the probability of the occurrence of a jump scales inversely with the jump

size b. The critical exponent η determines the universality class. Further discus-

sions of the universality class can be found in references [30–37].

As an example, Fig. 1.3 shows a direct observation of the Barkhausen avalanche

by Kim et al. [37]. They measured the domain-evolution patterns of a Co film

for six times on the same 400 × 320 µm2 area, as shown for the six images in

Fig. 1.3. In each image, a single domain wall moves from the left to the right of

the image as a function of time. The domain wall positions are at the boundaries

of the regions with different colors. The positions of the domain wall are discrete

because pinning defects trap the domain wall. The domain wall remains static at

each position for several seconds, as indicated by the color code for each position,

and then the domain wall moves to the next position. The transient motion
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Figure 1.3: A series of six images showing avalanches of the domain structure
captured for six experiments on the same 400 × 320 µm2 area of a 20 nm thick
Co film. The sample was saturated downward first, and then a constant field
was applied upward as indicated. For each image, the successive positions of a
single domain wall are indicated by the boundaries of the regions with different
colors. The initial position of the domain wall is at the first boundary from the
left. For example, the solid arrow of the first image indicates the initial position of
the domain wall for the first experiment. The domain wall stays at each position
for some time and then moves to the next position, as illustrated by the dashed
arrows in the first image. The color code represents the elapsed time from 0 to
4 sec for the domain wall to stay at each position. Reprinted from Ref. [37] with
permission from the APS.
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between the indicated domain-wall positions is not shown because the elapsed

time between those positions is much smaller than 1 sec.

The experimental results of Fig. 1.3 demonstrate three characteristics of domain-

wall pinning. First, the data in each image show that a domain wall moves discon-

tinuously in the presence of pinning. Second, the discontinuous motion is random

for each time when the measurement was taken, as shown by the differences of

the six images. Third, the domain wall interacts with multiple pinning defects,

which are randomly distributed in the material, resulting in the bending of the

domain wall. Because of these three characteristics, it is practically impossible

to characterize an individual pinning defect from the behavior of a domain wall

in an extended film. Consequently, the microscopic pinning mechanisms of do-

main walls remain largely mysterious in all ferromagnetic materials. I will show

in Ch. 3 and 4 that, in contrast to domain-wall pinning, vortex pinning can be

characterized quantitatively for each individual pinning site.

1.3.3 Dynamic Regimes of Magnetic Domain Walls

In the presence of pinning, domain-wall motion shows multiple dynamic regimes,

as illustrated in Fig. 1.4. The velocity of domain-wall motion depends on the

strength of the driving force F , which is induced by an applied magnetic field

or spin-polarized current. When F acting on the wall is below a characteristic

depinning threshold Fdep, the domain wall is trapped by defects. As F increases,

so that F > Fdep, a depinning transition occurs. If the temperature T > 0, the

depinning transition is smeared, and the domain wall enters a thermally activated

creep regime at the depinning region [30, 38–44]. Above the pinned (creep) regime,

the domain-wall velocity vDW increases linearly with increasing F [45–47]. As

the driving force increases further, above a critical force FW , the corresponding

magnetization dynamics become highly non-linear, and domain-wall motion is

accompanied by internal excitations [45, 48, 49]. The internal excitations cause

vDW to decrease from its maximum value at FW , and the drop of vDW in this
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Figure 1.4: Schematic of the domain-wall velocity vDW as a function of the applied
force F . Three dynamic regimes are separated by the vertical dashed lines. The
solid and dotted curves correspond to the cases of zero temperature (T = 0) and
non-zero temperature (T > 0) respectively.

regime is referred to as Walker breakdown [45].

The domain-wall velocity in the creep and linear regimes is relatively well-

understood compared to that of Walker breakdown, which remains controversial.

The creep motion has been described by a theory of a 1D interface moving in a

2D weakly disordered medium. The velocity-field relationship is given by [38]:

vDW = v0 exp

[

−
(

Tdep

T

)(

Fdep

F

)µ]

. (1.10)

The depinning temperature Tdep is given by UC/kB, where Uc is related to the

height of the defect-induced pinning energy barrier. µ is a universal dynamic

exponent equal to 1/4 for a 1D interface moving in a 2D weakly disordered medium

[38]. Eq. 1.10 has been confirmed by a recent experiment [39].

In the linear dynamics regime, vDW is determined by the dissipation, which

can be characterized by a Gilbert Damping constant α. When the domain wall is

driven by a magnetic field H , vDW is given by [45, 46]:

vDW = mH, (1.11)

where m = γLDW/α is the wall mobility. In Ni80Fe20 m ∼ 10 m/sec Oe, which
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is consistent with the experimental results observed in films [50] and nanowires

[48, 49].

A simple model has been developed to describe the onset of the Walker break-

down by treating the domain wall in 1D (for a review, see Ref. [6]). The model

explains the existence of FW , below which the shape of the domain wall remains

rigid. Above FW , the domain wall starts to precess and the internal excitations

occur. The predicted value of FW , however, is at least a factor of 10 larger than

the experimental values of FW . Furthermore, the 1D model fails to describe the

microscopic behavior of the domian wall in this regime. The microscopic behavior

remains unclear because of the lack of tools to probe the microstructure of the

domain wall with sufficient temporal and spatial resolution.

It should be noted that, although the transitions between the three regimes

have been observed in films [39, 50] or nanowires [48, 49], it has been difficult

to capture all of these regimes in a single quantitative experiment because of the

large dynamic range covered by these phenomena as well as the spatially extended

nature of domain walls.

1.3.4 Pinning Mechanisms of Magnetic Domain Walls

Another challenge is to identify the microscopic mechanisms of the domain-wall

pinning. Pinning is usually attributed to the interactions between the domain

structure and local fluctuations of magnetic properties due to defects. Possible

sources of defects in polycrystalline ferromagnets include point defects (e.g., im-

purities, vacancies, and nonmagnetic inclusions), line defects (e.g., dislocations),

surface imperfections (e.g., roughness), and random anisotropies. Because multi-

ple types of defects coexist in a given material, it is problematic to identify exactly

which ones dominate the pinning process. It has been practically impossible to

identify an individual pinning site, and therefore studies of domain wall pinning

have focused on collective effects [51–54]. For example, Li et al. [54] reported a

correlation between the surface roughness and the coercivity (i.e., the half-width
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of the magnetic hysteresis loop) from a series of Co films, implying that the pin-

ning of domain walls is stronger in rougher films. The approaches of studying the

collective effects, however, are not adequate for applications of domain wall-based

devices, such as domain-wall logic [55] and domain-wall memory [56, 57], in which

pinning must be precisely engineered .

1.4 Dynamics of Magnetic Vortices in the Pres-

ence of Pinning

In Sec. 1.3, I discussed the difficulties in investigating the pinning of domain

walls. An alternative approach is to study pinning in simple, albeit non-uniform

magnetic structures, where an individual pinning site can be readily identified.

In this section, I will focus on a single magnetic vortex, which is the simplest

realization of a non-uniform domain structure. I will discuss the structure and the

dynamics of a single magnetic vortex. I will also discuss the recent experimental

studies of vortex pinning at the end of this section.

1.4.1 Magnetic Vortex

A magnetic vortex is often the ground state of soft ferromagnetic disks with thick-

nesses on the order of 10 nm and diameters on the order of 1 µm. Although the

magnetization circulates in the bulk of the disk, the most significant feature of a

vortex is a core of diameter ∼ 10 nm, within which the magnetization rotates out

of the disk plane, as shown schematically in Fig. 1.5(b).

In 1990, Aharoni and Amikam [59] first hypothesized the magneitzation dis-

tribution for the vortex state, which was later derived by Usov and Peschany [60]

using a variational principle. A intuitive way to understand the vortex state is

that, starting from the edge of of the disk, the magnetization follows the circu-

lar shape of the disk to minimize the magnetostatic energy. The central point

of the disk corresponds to a topological defect, at which the large magnetization
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Figure 1.5: (a) The ground state configuration of the magnetization of a magnetic
disk 1 µm in diameter and 50 nm in thickness. Data were obtained from a 2D
micromagnetic simulation with a cell size of 5×5×50 nm3. The arrows in the
disk indicate the in-plane component of the magnetization. (b) Schematic repre-
sentation of a magnetic vortex. (c) Schematic representation of the vortex core
seen from the cross section of the disk. (d) Magnetic force microscopy (MFM)
image of an array of Ni80Fe20 disks with 1 µm in diameter and 50 nm in thickness.
MFM images shows contrast at the disk centers due to the interaction between
the magnetized tip and the vortex core. The black and white colors correspond to
the core polarity P = ±1 respectively. Reprinted from Ref. [58] with permission
from the AAAS.
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Figure 1.6: Four different combinations of (P , C), where P is the polarity and C
the chirality, representing four different vortex states.

gradient associated with the circulated magnetization would cause the exchange

energy to diverge. Consequently, the magnetization rotates out of the plane only

within the vortex core to avoid the energy divergence. The radius of the vortex

core is determined by minimizing the sum of the magnetostatic energy (Eq. 1.3)

and the exchange energy (Eq. 1.1). Recall from Sec. 1.1.3 that the length scale

associated with competition of the magnetostatic energy and the exchange energy

in thin films is the exchange length. Similar to the exchange length, the radius of

the vortex core is typically on the order of 10 nm.

In 2000, Raabe et al. [61] reported the first direct evidence for the vortex state,

showing the in-plane circular magnetization by using Lorentz electron microscopy.

In the same year, Shinjo et al. [58] showed the first direct observation of a vortex

core by using magnetic force microscopy (MFM), as can be seen in Fig. 1.5(d).

A single magnetic vortex can be described by two topological quantities: the

polarity P and the chirality C. The polarity describes the magnetization direction

of the vortex core, and the chirality corresponds to the winding direction of in-

plane magnetization. There are four different possible ground states denoted by
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combinations of (P,C), as shown in Fig. 1.6. The degeneracy with respect to the

polarity allows the gyrotropic motion of the vortex core to have two degenerate

modes, as will be discussed in Sec. 1.4.4.

1.4.2 Diameter of the Vortex Core

The diameter of the vortex core is smaller at the surface of disk than in the equa-

torial plane of the disk, as shown schematically in Fig. 1.5(c). This barrel shape

of the vortex core was predicted by theory [62] and by micromagnetic simulations

[63]. The diameter of the core will be important for the discussions of vortex

pinning in Ch. 4 because the core diameter at the surface determines the lateral

pinning range for a magnetic vortex.

In the following I will discuss the core diameter by using quasi-3D micromag-

netic simulations. A 1 µm diameter disk is divided into cells of a size of 5×5×s

nm3, where s = L/5 is the dimension of the cell along the normal axis of the disk

and L is the thickness of the disk. It is quasi-3D because s scales with L, rather

than a constant 5 nm for 3D simulations. The quasi-3D simulations are more

efficient than the 3D simulations in terms of computation time, especially when

simulating magnetization dynamics. Fig.1.7(a) shows a micromagnetic simulation

of a core profile at the surface of the disk, obtained from the magnetization of the

top (or the bottom) layer of the cells. I will define the diameter of the core as the

distance between the peaks of the first derivative of the profile, which is shown

in Fig. 1.7(b). Fig. 1.7(c) shows the simulated core diameters at the surface and

in the equatorial plane of the disk as a function of L. Although both diameters

increase with increasing L, the diameter at the surface is less sensitive to L com-

pared to that in the equatorial plane. I will show in Ch. 4 that the thickness

dependence of the core diameter at the surface matches the thickness dependence

of the pinning range.
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Figure 1.7: (a) The computed profile of vortex core, i.e., the z-component of
the magnetization (mz ≡ Mz/Ms), determined from a quasi-3D micromagnetic
simulation of a 1 µm diameter disk with a thickness of 50 nm. The core profile
shown in (a) is for the surface layer of the disk. (b) The first derivative of the
core profile. The dashed lines indicate the positions of the extrema of the first
derivative, providing the core diameter as indicated by the arrows in in (a). (c)
The core diameter as a function of the disk thickness. The filled circles indicate
the core diameter at the surface of the disk and the open circles indicate the core
diameter in the equatorial plane of the disk.
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Figure 1.8: (a) Displacement of the vortex core versus field for four 50 nm thick
disks with different diameters. Displacements are relative to the zero field core
positions.

1.4.3 Displacement Susceptibility of the Vortex Core

The vortex core is located at the center of the disk unless an in-plane magnetic

field is applied. The applied field moves the core in the direction perpendicular to

the field direction [64]. The new equilibrium position is determined by the balance

between the Zeeman and magnetostatic energies of the disk. For example, Fig. 1.8

shows the field dependence of the displacement of the core, measured using time-

resolved Kerr microscopy (TRKM), which will be described in Ch. 2. In the field

range shown, the measured displacement Y is linear with field Hx. Linear fits

to the displacement curves give the displacement susceptibility χY = dY/dHx.

Typical values are χY = 4.5±0.3 nm/Oe for a 2 µm disk and 0.9 ± 0.2 nm/Oe for

a 1 µm disk. In comparison, micromagnetic simulations give 3.9 and 1.1 nm/Oe

respectively.

The position of the vortex core can be controlled in two dimensions within the

disk by combining two orthogonal fields. In my experiment, this approach allows

me to move the core repeatedly to the same position with a resolution of ∼ 5 nm
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Figure 1.9: (a) Schematic representation of the gyrotropic mode of a magnetic
vortex. The gyrotropic mode can be excited by applying an in-plane oriented
magnetic field h(t). (b) Cartoon of the potential well with magnetostatic energy
W expanded to second order in vortex-core displacement. The dashed arrows in
(a) and (b) indicate the orbital motion of the vortex core.

[65, 66]. As will discussed in Ch. 3 and Ch. 4, controlling the core position is

crucial for studying the properties of localized pinning sites.

1.4.4 Gyrotropic Mode

Regarding the dynamics of a magnetic vortex, in this dissertation I will focus on

the lowest frequency excitation of a magnetic vortex, i.e., the gyrotropic mode.

The higher frequency modes, including the radial and azimuthal spin-wave modes,

will not be addressed here and a discussion of them can be found in references

[67–69].

In the gyrotropic mode the vortex core circulates around its equilibrium posi-

tion and the core moves as a particle, as shown schematically in Fig. 1.9. Argyle

in 1984 observed the first evidence of the gyrotropic motion of a magnetic vortex

using a magneto-optical photomicrographic image [62]. Recently, the gyrotropic

motion of a magnetic vortex has been experimentally observed in real time and

space using time-resolved Kerr microscopy [64, 65, 67, 69], scanning transmission

X-ray microscopy [70–73], and time-resolved photo-emission electron microscopy

[74–76]. For a magnetic vortex in a disk, the gyrotropic mode in the linear regime
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is well-understood, with experiment, analytical theory, and micromagnetic simula-

tion, all showing that gyrotropic-mode frequency fG is determined by the geomet-

ric aspect ratio (thickness/diameter) of the disk [67, 69, 77, 78]. In the following

I will give a brief overview of the analytical calculation, following Guslienko’s

treatments in references [77, 79].

Thiele in 1973 developed a method to describe the steady-state motion of

arbitrary micromagnetic feqaures such as domains and domain walls. Recall from

Sec. 1.2.1 that the dynamics of magnetization are governed by the LLG equation

(Eq. 1.8), which is a torque equation. On the assumption that a domain or

a domain wall moves as a rigid object, Thiele transformed the torque equation

(Eq. 1.8) into a force equation, which will be referred to as the Thiele equation:

G× dr

dt
−D

dr

dt
− ∂W (r)

∂r
= F(t), (1.12)

where

G = −Ms

γ

∫

dr3r [∇φ×∇θ] sin θ (1.13)

and

D = −Ms

γ
α

∫

dr3r
[

∇θ∇θ + sin2 θ∇φ∇φ
]

. (1.14)

r is the displacement of the rigid magnetic structure, t is time, θ and φ are the polar

coordinates of magnetization, W is the potential energy, and F is the applied force.

Detailed derivations of the Thiele equation can be found in references [80, 81].

For the gyrotropic mode of a magnetic vortex, the vortex core moves as a

rigid body and its dynamics can be described by the Thiele equation. In a mag-

netic disk, the majority of the in-plane part of the vortex also moves as a rigid

body, along with the core. At the edge of the disk, however, the magnetiza-

tion tends to align with the circular shape of the disk. To address the bound-

ary condition, Guslienko developed a “two-vortices” model [77, 79], in which

the magnetization at the edge of the disk aligns with the circular shape of the
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disk, and the corresponding Thiele equation (Eq. 1.12) has the following param-

eters: r is the displacement of the vortex core relative to the equilibrium posi-

tion of the core, G = −πPLMs/γẑ is the gyrovector, D = απMsL(2 + ln R
Rc

)/γ

is the damping constant with Rc = 0.68Lex
2/3L1/3, W is the potential energy,

F(t) = (ξπMsLR)h(t)× ẑ is the time dependent excitation force, and ξ = 2/3 is

a model-dependent constant. The parameter p = ±1 is the vortex polarization, L

is the disk thickness, R is the disk radius, and h(t) is the excitation field.

Eq. 1.12 can be solved numerically for general forms of W and F, as will be

discussed in Ch. 3. In the following I will consider a simple case, in which Eq. 1.12

can be solved analytically. When the vortex core is near the center of the disk,

W can be approximated as a parabolic potential:

W =
1

2
kr2, (1.15)

where the curvature of the potential is k = 9.98(ξMsL)
2π/R obtained from the

“two-vortices” model. On the assumption that F = 0, solving Eq. 1.12 and

Eq. 1.15 leads to two solutions, which are the clockwise and counterclockwise

orbital motions of the core, with the gyrotropic mode frequency fG given by

[77, 82]:

fG = ± kG

2π(G2 +D2)
, (1.16)

where the positive sign is for the clockwise mode and the negative sign is for the

counterclockwise mode. It should be noted that the polarity of the core P = ±1

determines the sign of G. For the case of P = 1, the clockwise mode has a

negative fG and the counterclockwise mode has a positive fG. In other words, if

P = 1 a counterclockwise-circular-polarized excitation force F at fG drives the

counterclockwise mode on resonance, but clockwise-circular-polarized F will not

drive the clockwise mode on resonance. This asymmetric resonance is caused by

the gyroforce G×dr/(dt) in Eq. 1.12. As will be discussed in Sec. 3.1.2, a reliable

way to determine the polarity of a vortex core is to measure the direction of the

core gyration.
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Fig. 1.10(a) shows a schematic representation of the gyrotropic mode spectra

for the case of P = 1. A clockwise-circular-polarized force can excite the clockwise

mode with response power r2CW , as indicated by the red curve. A counterclockwise-

circular-polarized force can excite the conterclockwise-mode with response r2CCW ,

as indicated by the blue curve.

The asymmetric resonance results in interesting orbital shapes when excited

by a linearly polarized force Flin, as was first pointed out by Lee et al. [82].

Fig. 1.10(b)-(d) show schematically the orbits excited by Flin, which is along the

x axis. The projections of Flin in the circular coordinate contain two components

FCW and FCCW , which excite rCW , as indicated by the red orbits, and rCCW , as

indicated by the blue orbits, respectively. The response of Flin is rCW + rCCW , as

indicated by the black orbit. I will assume that Flin is a sine wave at frequency f .

For the case of f = fG [Fig. 1.10(b)], the excited r2CCW is much larger than r2CW ,

as can be seen from the spectra [Fig. 1.10(a)], resulting in an elliptical orbit of

rCW + rCCW with very low ellipticity. In this case, the phase difference δ between

rCW and rCCW is close to π/2, as indicated by the core positions (black filled

circles) at a given time. For the case of f < fG [Fig. 1.10(c)], the amplitude

difference between rCCW and rCW becomes smaller, with δ ∼ π, resulting in an

elliptical orbit of rCW + rCCW with the long axis along the x axis. For the case of

f > fG [Fig. 1.10(d)], δ ∼ 0, resulting an elliptical orbit of rCW + rCCW with the

long axis along the y axis.

Although the ellipticity of the orbits are difficult to detect in experiment due

to the small ellipticity for f close to the resonance, the elliptical orbits will be

emphasized for the case of numerical calculations in Sec. 3.1.5.

.

1.4.5 Large Amplitude Regime

Several groups have reported that the experimental results of fG are in consistent

with the prediction of the “two-vortices” model (Eq. 1.16) [67, 69, 77, 78]. These
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Figure 1.10: (a) Schematic of the gyrotropic mode spectra for the case of core
polarity P = 1. The red curve indicates the spectrum of r2CW as a function of
excitation frequency f , where rCW is the amplitude of the clockwise gyration. The
blue curve indicates the spectrum of r2CCW , where rCCW is the amplitude of the
counterclockwise gyration. (b)-(d) Schematic of vortex-core orbits for the cases
of (b) f = fG, (c) 0 < f < fG, and (d) f > fG. The black filled circle on each
orbit represents the core position. The red and blue open circles represent the
orbits of clockwise gyration rCW and counterclockwise gyration rCCW . The black
open ellipses represent the gyration of rCW + rCCW , which can be excited by the
linear-polarized force Flin. The amplitude of rCCW at f = fG is much larger than
those at f < fG and f > fG. The amplitude of rCW decreases with increasing f .
In this case Flin is along the x axis as indicated by an arrow in (b).
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experimental results correspond to the cases of linear vortex dynamics, as I will

discuss in Ch. 3. As noted earlier, non-linear vortex dynamics occur at large

amplitude. First, as the amplitude of vortex motion increases, higher order terms

in W of Eq. 1.12 need to be considered [83, 84]. For example, Buchanan et al. [83]

measured the gyrotropic mode spectra for a vortex in circular and elliptical disks,

and they showed that the spectral line-shape is asymmetric at high excitation

powers, indicating that the non-linear dynamics are caused by anharmonic W .

As the core velocity increases further, the assumption of a rigid vortex core

breaks down. Internal excitations of the vortex core occur in this dynamics

regime, similar to the Walker breakdown of a domain wall under strong exci-

tations (Sec. 1.3.3). For example, Vansteenkiste et al. observed directly that the

vortex core deforms under strong excitations [72], and several groups observed

that the vortex core reverses its polarity under strong excitation [71, 73, 85, 86].

I will discuss the reversal of the core polarity in more detail in Ch. 3.

1.4.6 Pinning of Magnetic Vortices

Alongside the non-linear effects discussed above, vortex dynamics are profoundly

affected by pinning defects in the material. For example, pinning defects cause

discontinuous vortex motion as a function of the applied magnetic field, as was

first observed by Uhlig et al. [87]. Additionally, when a vortex is pinned by a

defect, fG increases significantly from the predicted value of Eq. 1.16, as was first

observed by Compton and Crowell [65].

Because the magnitude of fG reveals whether the vortex core is pinned, spatial

distributions of pinning defects can be determined by measuring fG at different

core positions. For example, Fig. 1.11(a) shows fG as a function of the orthogo-

nal in-plane-oriented magnetic fields, revealing the map of spatial distribution of

pinning defects in a 80 nm × 80 nm spatial range. The experimental technique

used in Fig. 1.11(a) will be discussed in more detail in Ch. 2.

The fluctuations of fG due to pinning [Fig. 1.11(a)] suggest the existence of
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Figure 1.11: (a) Contour map of the gyrotropic frequency fG as a function of
static field applied along both in-plane directions for a 2 µm diameter disk. Data
were obtained at a pulse amplitude of hy ∼ 6 Oe. (b) Gyrotropic frequency versus
the amplitude hy of the excitation pulse. Data were obtained at fixed locations in
field space, as indicated by the symbols shown in (a).
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a depinning threshold for a given position of the vortex core. Indeed, when fG

was measured as a function of the pulse amplitude at different core locations, fG

showed transitions from high to low values with increasing amplitude, as shown

in Fig. 1.11(b). The transition field for the data indicated by the circles is only ∼
1 Oe. For this location, indicated by the circle in Fig. 1.11(a), the vortex core is

already depinned, since the pulse amplitude used to obtain the data of Fig. 1.11(a)

is ∼ 6 Oe. On the other hand, for the frequency peak that is indicated by the

diamonds in Fig. 1.11(a), no corresponding depinning transition was observed in

Fig. 1.11(b). In this case the largest excitation amplitude achievable is smaller

than the depinning field.

The observations of Fig. 1.11 suggest that a pinning defect induces a pinning

potential, which locally confines the vortex core. At low excitation amplitude,

the vortex core remains within the range of the pinning site. As the amplitude

of the excitation increases, so does the radius of the orbit of the core about its

equilibrium position. When the radius of the core’s orbit exceeds the range of

the pinning potential, the core is depinned and fG decreases to the frequency

predicted by the analytical model of the gyrotropic mode. I will discuss in detail

the form of a pinning potential in Ch. 3.

1.4.7 Research Questions

(1) How does a defect affect the dynamics of a magnetic vortex? In

Sec. 1.4.6, I maintained that the observation of enhancement of fG implies the

existence of localized pinning potentials. Quantitative determinations of the pin-

ning potentials are needed to fully understand how defects affect the dynamics of

a magnetic vortex. Although the experimental results shown in Fig. 1.11 revealed

the depinning transition, the large bandwidth of the pulsed excitation made it

difficult to interpret the transition and the subsequent dynamics. The ideal probe

would address the response of a single vortex as a function of amplitude and fre-

quency, with an amplitude range extending from the pinned regime up through
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the threshold for core reversal. I have developed a set of new measurement tech-

niques to achieve this goal, as will be discussed in Ch. 2. I will show in Ch. 3 that

my approach allows for a highly quantitative analysis of the pinning potential.

I will also show that the new approach can also be used to trace the dynamics

of a single vortex from deep in the pinning regime to the onset of core reversal,

showing a global phase diagram of vortex dynamics in the presence of pinning.

(2) What is the pinning mechanism? The microscopic mechanism of

vortex pinning remains largely mysterious not only for Ni80Fe20, but also for all

ferromagnetic materials. It is clear, however, that pinning of a single vortex can in

fact be probed via vortex dynamics (Sec. 1.4.6). I will discuss my research results

of the strength and range of pinning sites, which were obtained by measuring the

vortex dynamics of disks with different thicknesses. As will be shown in Ch. 4,

my experimental results indicate that the dominant source of pinning mechanism

for a single Ni80Fe20 vortex is the surface roughness on the length scale of the

vortex-core diameter.

(3) Where does the 2D-3D crossover of vortex dynamics occur? The

vortex dynamics discussed thus far in this chapter are for vortices in thin disks

(L << R). In the thin-disk limit the vortex structure can be treated in 2D. For

sufficiently thick disks the 2D model must break down. In Ch. 5 I will discuss my

research of the dimensional crossover of the vortex dynamics. Experimental results

and simulations indicate that there are two gyrotropic modes which crossover at

a critical thickness. Besides the original gyrotropic mode which can be described

by the 2D model (Sec. 1.4.4), the second gyrotropic mode is associated with the

distortion of the vortex core along the normal axis of the disk.
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Design and Methodology

This chapter will describe the experimental methodology, including two parts. The

first part will discuss the preparation process of samples, including the deposition

of Ni80Fe20 films and the lithography of micron-sized disks. The second part will

discuss time-resolved Kerr microscopy (TRKM).

2.1 Sample Preparation

2.1.1 Sputtering of Magnetic Thin Films

Thirteen samples will be discussed in this dissertation, with the growth param-

eters given in Table 2.1. Samples 1 to 10 have the same deposition parameters

except the thickness of the films, and they were prepared for studying the thickness

dependence of vortex pinning and the dimensional crossover of vortex dynamics.

Polycrystalline Ni80Fe20 films were grown on Si substrates with a SiN buffer layer

by dc magnetron sputtering at 100 W (1 A/s) in 2.5 mTorr Ar, at ambient tem-

perature (RT). The film thicknesses are 20, 35, 50, 65, 80, 100, 130, 160, 200, and

300 nm. Fig. 2.1 shows representative atomic force microscopy (AFM) images,

which reveal the surface morphology of the films. The surface roughness and the

grain size increase with the thickness of the film, as is typical. A detailed analysis

29
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Sample Substrate Material Thickness Temp. Rate
1 Si/SiN Ni80Fe20 20 nm RT 1 A/s
2 Si/SiN Ni80Fe20 35 nm RT 1 A/s
3 Si/SiN Ni80Fe20 50 nm RT 1 A/s
4 Si/SiN Ni80Fe20 65 nm RT 1 A/s
5 Si/SiN Ni80Fe20 80 nm RT 1 A/s
6 Si/SiN Ni80Fe20 100 nm RT 1 A/s
7 Si/SiN Ni80Fe20 130 nm RT 1 A/s
8 Si/SiN Ni80Fe20 160 nm RT 1 A/s
9 Si/SiN Ni80Fe20 200 nm RT 1 A/s
10 Si/SiN Ni80Fe20 300 nm RT 1 A/s
11 Si/SiN Ni80Fe20 50 nm RT 1 A/s
12 Al2O3 Cu 30 nm RT 2 A/s

Ni80Fe20 50 nm 1 A/s
13 Al2O3 Cu 30 nm 250 C 2 A/s

Ni80Fe20 50 nm 1 A/s

Table 2.1: Growth parameters for thin Ni80Fe20 films.

of the surface roughness will be given in Sec. 4.2.

Sample 11 has the same thickness (50 nm) as sample 3, but it has smaller

roughness. (Sample 11 was obtained from a different deposition run.) For sam-

ples 12 and 13, polycrystalline Ni80Fe20 films were grown on sapphire (Al2O3)

substrates with a Cu buffer by dc magnetron sputtering at 100 W (1 A/s) in 2.5

mTorr Ar, at either ambient temperature (for sample 12) or at an elevated sub-

strate temperature of 250 C (for sample 13). Because of the elevated substrate

temperature, sample 13 has larger grain size (∼ 100 nm) [64] than samples 3, 11,

and 12 (∼ 30 nm), although they all have the same thickness. This can be clearly

seen from the AFM images (Fig. 2.1).

For all samples, a capping layer of Al (2.5 nm thick) was grown on top of the

Ni80Fe20 film with growth rate 0.5 A/s. The capping layer protects the magnetic

films from oxidation.
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Figure 2.1: Representative atomic force microscopy (AFM) images of the Ni80Fe20
films. The lateral scanning range is 1 µm × 1 µm. The color scale represents the
thickness fluctuation from 0 to 10 nm at the surface of the films. Sample numbers
correspond to those in Table 2.1
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2.1.2 Patterning of Disks

The samples were fabricated by electron beam lithography (EBL) and dry etching

at the University of Minnesota Nanofabrication Center. First, EBL patterns were

defined in the Graphic Data System (GDSII) format, which were obtained from

the drawing package AutoCad. The EBL process we used is a bilayer resist process

with polymethylmethacrylate (PMMA) as the imaging layer and polymethylglu-

tarimide (PMGI) as the undercut layer. After the bilayer resist was spin-coated

on Ni80Fe20 films, the patterns were written on the resist using either the Raith

150 EBL system (for samples 1, 2, 4–6, 11–13) or the Vistec EBPG5000+ EBL

system (for samples 3, 7–10). Both of the EBL systems provide similar results

for the patterns used in this dissertation. Following exposure in the EBL system,

the resist is developed in two steps to obtain the image mask (PMMA) and the

undercut (PMGI). After the resist was developed into disk patterns, one of the

two following dry-etching processes can be applied, both providing similar results.

The first dry-etching process was used for samples 1–11. A 70 nm layer of

Ti was deposited on the bilayer resist and the resist was lifted off, resulting in a

layer of Ti disks as a hard mask. Next, the disk patterns were transferred from

the Ti layer into the permalloy layer by Ar ion milling. Finally, the Ti mask was

removed by fluorine-based reactive ion etching.

The second dry-etching process was used for samples 12 and 13. A 50 nm

layer of SiN was reactively sputtered onto the permalloy film before the bilayer

resist was spin-coated. After the resist was developed into disk patterns, a 50 nm

layer of Al was deposited through the resist to form disks. The resist was then

lifted off. The disk patterns were then transferred from the Al layer into the SiN

layer by fluorine-based reactive ion etching. Finally, the SiN mask pattern was

transferred to the permalloy layer by Ar ion milling.

A representative scanning electron microscopy (SEM) image of the patterned

Ni80Fe20 disk is shown in Fig. 2.2. The fabrication process described above is a

“top-down” method, and it has the advantage of compatibility with any deposition

technique and substrate, because the deposition is done prior to the EBL. The
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Figure 2.2: Representative scanning electron microscopy (SEM) image of a 1 µm
diameter Ni80Fe20 disk (sample 11).

opposite method (not described in this dissertation) is usually referred to as “lift-

off”, in which films are deposited on the substrates with EBL resist patterns.

2.2 Time-Resolved Kerr Microscopy

Time-resolved Kerr Microscopy (TRKM) [88] is the main experimental technique

used in this dissertation. TRKM is based on the magneto-optical Kerr effect,

which is the rotation of the polarization of light reflected by a magnetic material.

To achieve temporal resolution (<1 ns), TRKM is a pump-probe technique that is

sensitive to magnetization changes that are induced by magnetic field excitations.

The polar Kerr signal θKerr is acquired stroboscopically in a manner similar to a

sampling oscilloscope. Purely stochastic effects are therefore averaged out. The

laser beam is focused into a 400 nm diameter spot. When the focused laser light

scans across a sample, it can provide images of the pump-induced change in the

z-component of the magnetization of the sample.

The TRKM setup described in the following is an upgraded version of former

graduate students’ work. Details of the original setup can be found in the theses
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of Johoo Park [89] and Rob Compton [66]. The original excitation approach of

TRKM is pulsed magnetic fields. I have worked with Paul Crowell and Andrew

Galkiewicz to upgrade the experimental setup, and we have recently developed

three additional types of excitation approaches. The following will discuss the

working principles, the most essential components, and some typical data of these

four approaches.

2.2.1 Overview

Fig. 2.3 shows a schematic diagram of the TRKM setup. A Ti:Sapphire laser

(Coherent Mira-107661) produces a 76 MHz optical pulse train with wavelength

λ = 810 nm. The repetition rate of the pulses is reduced to f0 by a pulse picker

(Conoptics 350). The laser beam is split into pump and probe beams. To obtain

a polar Kerr signal, which is sensitive to the z-component of the magnetization

of the sample, the probe beam is linearly polarized, and it is focused through an

oil immersion objective (Nikon CFI-P-100X) to a spot with a full width at half

maximum (FWHM) ∼ 400 nm. The laser spot is incident on the magnetic disk

and the reflected signal is collected by the same objective.

The sample substrate is polished to a thickness of 50 µm and positioned above

the center conductor of a coplanar waveguide (CPWG) as shown in Fig. 2.3(b)

[89]. A current passes through the CPWG and generates a magnetic field. The

thin substrate allows the magnetic disks (on the substrate) to be sufficiently close

to the waveguide and therefore to be excited by the field.

Fig. 2.3(c) is a schematic diagram showing the focused laser beam incident on

a magnetic disk. In this example, the beam is focused 300 nm from the center

of the disk. The measured signal θKerr ∝ Mz, and the offset of the beam allows

θKerr to be sensitive to the position of the vortex core, which is the only region

with non-zero Mz. The position of the vortex core is probed as a function of time

by varying the delay of the probe pulse relative to the excitation. The excitation,

therefore, needs to have a fixed phase relative to the pulse train of the probe beam.
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Figure 2.3: (a) Schematic diagram of the time-resolved Kerr microscope. The
pulse train from the Ti:Sapphire laser is split into pump and probe beams. The
pump beam is incident on a fast photoswitch, generating a pulse of electrical
current that produces an in-plane field excitation. The probe beam is focused
onto the sample by a microscope objective. The detector, which is a photo-
diode bridge, analyzes the pump-induced rotation of the polarization θKerr. (b)
Cartoon of the microscope, focusing the probe beam onto a single magnetic disk.
The sample is mounted on a coplanar waveguide (CPWG). (c) Cartoon of the
gyrotropic mode probed by the focused probe beam. The beam is offset from the
center of the disk, so that the motion of the vortex core generates an oscillating
signal.
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Figure 2.4: (a) Schematic representation of the drive amplitude as a function
of time for the case of pulsed excitation. The modulation is applied for lock-
in detection. Data of the response amplitude is collected during the ON cycles.
(b) Schematic representation of the excitation (i.e., magnetic field), the response
θKerr, and the probe (i.e., optical pulse), as a function of time. The repetition
period of the excitation and the probe is 1/f0. The probe is delayed relative to
the excitation to detect the response as a function of time.
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The details of the synchronization will be discussed in the following.

2.2.2 Pulsed Excitation

For the pulsed excitation setup [Fig. 2.3(a)], the pump beam is delayed relative

to the probe beam by a movable retroflector, after which it is incident on a fast

photoswitch (Hammamatsu G4176-03), producing electrical pulses with a tempo-

ral width ∼ 120 ps. This electrical signal is launched into the CPWG on which

the sample is mounted. The electrical signal generates a pulse of in-plane oriented

magnetic field, which drives the vortex motion. The amplitude of the magnetic

field pulse can be calculated from the magnitude of the current, the thickness of

the sample substrate, and the geometry of the CPWG.

Fig. 2.4(a) shows a schematic of the excitation amplitude as a function of

time. The excitation is modulated on and off at 2.5 kHz by optically chopping

the pump beam, so that the pump-induced change in polarization of the probe

beam (detected by a polarization bridge) can be analyzed by a lock-in amplifier.

Fig. 2.4(b) shows the relative phases for the excitation pulse, the response θKerr,

and the probe pulse. The response after each excitation pulse is a damped oscilla-

tion, corresponding to the orbital motion of the vortex core. The repetition of the

excitation and the probe are tuned to be at 1/f0 = 39.5 ns, so that the response

damps out before the next cycle. The delay between the excitation and the probe

allows for the time-resolved measurement.

Fig. 2.5(a) shows typical data of a time scan. After the excitation pulse is ap-

plied at t = 0 ns, a 0.2 GHz (5 ns period) response is clearly seen. This corresponds

to the orbital motion of the vortex core. Besides the core motion, immediately af-

ter the excitation, a higher frequency response damps out quickly before 2 ns, and

it corresponds to the azimuthal spin-wave modes of the in-plane magnetization of

the vortex [69]. These modes are revealed by the Fourier transform of the time

scan, as shown in Fig. 2.5(b). The strong peak at 0.2 GHz associated with the

core motion, and the two small peaks at 3.6 GHz and 4.4 GHz are the spin-wave
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Figure 2.5: (a) Representative time scan using the pulsed excitation approach.
The excitation is applied at t = 0 ns, with an amplitude of 4 Oe. Data were
obtained from a 2 µm × 50 nm disk (sample 12). (b) The Fourier transform of
(a). The data for f > 2.5 GHz are multiplied by 1000 for a better visibility.

modes propagating clockwise and counterclockwise around the disk. As pointed

out by Park and Crowell [69, 89], the spin waves couple with the gyrotropic mo-

tion of the vortex. The symmetry of these two spin-wave modes is broken because

the orbital motion of the core is either clockwise or counterclockwise.

In this dissertation I will focus on the orbital motion of the core. In practice,

the pulsed excitation approach allows us to characterize the frequency of this

mode very efficiently (∼ 1 minute/scan). The efficiency becomes important for

characterizing pinning defects in a material. I will show experimental data of

more than 3000 time scans in Ch. 4.

2.2.3 Continuous-Wave (CW) Excitation

Fig. 2.6 shows the setup for continuous-wave (CW) excitation. The pump pulses

are used as the clock input for a phase-locked loop (SiliconLabs Si5325-26), or
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Figure 2.6: Schematic diagram of the time-resolved Kerr microscope for the case
of CW excitation. The blue lines indicate the electric paths, and the red lines
indicate the optical paths. The movable retroflector in Fig: 2.3 is bypassed, so
that the pump beam is incident on a photodiode, which produces an electrical
clock signal to the phase lock loop (PLL). A function generator (not shown)
provides the reference for the RF switch and the lock-in amplifier.
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Figure 2.7: (a) Schematic representation of the drive amplitude as a function of
time for the case of CW excitation. (b) Schematic representation of the excitation
(i.e., magnetic field), the response θKerr, and the probe (i.e., optical pulse), as a
function of time. The repetition period of the probe is 1/f0. The probe is delayed
relative to the excitation to detect the response as a function of time.
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Figure 2.8: (a) Representative time scan in the case of CW excitation. The
frequency of the excitation field is fCW = 0.24 GHz. The field amplitude is 1.8
Oe. Data were obtained from a 2 µm × 50 nm disk (sample 12). (b) Gyrotropic
mode spectra obtained by measuring the response power of the gyrotropic mode
θKerr

2 as a function of the excitation frequency fCW .
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PLL, which synthesizes a sine wave with a frequency that can be selected from

2 MHz to 1400 MHz. The excitation power can be controlled over 4 orders of

magnitude with a 0.5 dB resolution by using an amplifier and a digital attenuator.

A RF switch chops the signal on and off at 2.5 kHz for lock-in amplifier detection.

This 2.5 kHz chopping signal is obtained from a function generator, which does

not need to be synchronized with the laser clock. Fig. 2.7(a) shows schematically

the excitation signal as a function of time. Fig. 2.7(b) shows a zoomed-in view

of Fig. 2.7(a) and the relative phases for the excitation sine wave, the response

θKerr, and the probe pulse. The important feature is that the excitation sine wave

is phase-locked to the repetition rate of the probe beam (f0 = 4 MHz). Similar to

the pulsed excitation discussed above, the excited vortex-core motion is probed

as a function of time by varying the delay of the probe pulse relative to the CW

excitation. In this case, the delay is achieved by controlling the PLL electronically,

instead of using a optical delay.

The CW excitation induces a steady state motion of the vortex core. Specif-

ically, the orbital motion of the core builds up in amplitude starting from rest

at the beginning of each data collection period. The orbital motion reaches a

steady state after a typical time ∼ 100 ns, which is determined by damping. The

duration of the data collection period (200 µs) is much longer than the build-up

time, so that the collected data represent the steady state motion.

Typical data for the case of CW excitation are presented in Fig. 2.8(a), which

shows the steady-state gyrotropic motion of the vortex core measured at excitation

frequency fCW = 0.24 GHz. Fig. 2.8(b) shows the response power of the gyrotropic

mode as a function fCW . The peak of the gyrotropic mode spectrum shows a

resonant frequency at 0.20 GHz, as is typical for a 2 µm diameter disk with 50

nm thickness.



43

Figure 2.9: Schematic diagram of the time-resolved Kerr microscope for the gated
CW excitation. An additional RF switch is added to the CW excitation setup
(Fig. 2.7). This added RF switch is synchronized in phase with the PLL.
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Figure 2.10: (a) Schematic representation of the drive amplitude as a function of
time for the case of gated-CW excitation. The excitation is modulated within ev-
ery ”ON” cycle at the same phase and frequency as the probe beam. (b) Schematic
representation of the excitation (i.e., magnetic field), the response θKerr, and the
probe (i.e., optical pulse), as a function of time. The repetition period of the
excitation and the probe is 1/f0. The probe is delayed relative to the excitation
to detect the response as a function of time.
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2.2.4 Gated-CW Excitation

As shown in Fig. 2.9, gated-CW excitation is achieved by adding an additional

RF switch to the CW-excitation setup. The added RF switch is synchronized

in phase with PLL, so that the RF switch chops the excitation at f0 = 2 MHz

with a fixed phase relative to the probe beam. Fig. 2.10(a) shows schematically

the resulting wave form. Fig. 2.10(b) shows the relative phases for the excitation,

the response θKerr, and the probe pulse. The delay time between the probe and

the excitation allows for a time-resolved measurement of the response. With this

approach I can measure the response of the vortex core as it starts from rest, or

rings down after the excitation is turned off.

Fig. 2.11 shows typical data of a time scan in the case of gated-CW excitation.

The frequency of the applied field is 0.20 GHz and the amplitude is 1 Oe. When

the excitation is turned on at t = 0 ns, the gyrotropic motion of the vortex core

builds up and gradually reaches a steady state. After the excitation is turned off

at t = 190 ns, the gyrotropic motion decays exponentially.

There are two important aspects of the gated-CW technique. First, the total

scanning time (the allowed delay time between the excitation and probe) can be as

long as 500 ns, limited by 1/f0. The total scanning time is much longer than that

of the pulsed excitation approach, which is 10 ns, limited by the distance of the

movable optical path. Secondly, compared to the pulsed excitation approach, the

gated-CW excitation has the advantage of controlling the motion of the vortex core

before the excitation is turned off. With these two advantages, I have applied the

gated-CW approach to study the spiral motion of the vortex after the excitation

is turned off. This reveals interesting details of the pinning process in the time

domain, as will be discussed in Sec. 3.2.

2.2.5 Double Modulation Excitation

As shown in Sec. 2.2.3, CW excitation induces steady state vortex motion starting

from rest during each data collection cycle. It is also important to measure the
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Figure 2.11: Representative time scan in the case of gated-CW excitation. The
excitation field is switched on at t = 0 ns and it is turned off at t = 190 ns.

steady-state motion starting from large amplitude, rather than from rest, as I

will discuss in Ch. 3. To achieve this, I have worked with Andrew Galkiewicz to

developed a double-modulation technique, which discussed in the following.

Fig. 2.12 shows a schematic diagram of the double-modulation experimental

setup. The output of the PLL becomes the reference for a microwave generator

(Agilent N5183A), so that the output of the microwave generator is synchronized

in phase with the probed beam. The output signal of the microwave generator is

a sine wave with two modulation options, both of which are used in this case. The

first modulation is referred to as pulsed modulation (PM), which corresponds to

the chopping of the continuous sine wave on and off. The second modulation is

referred to as amplitude modulation (AM), which modulates of the amplitude of

the sine wave. For the case of the double-modulation setup, PM and AM are at

the same frequency (2.5 kHz), but with a fixed phase difference. AM is delayed

relative to PM by a delay time T1.

Fig. 2.13(a) shows a schematic representation of the modulated sine wave for

the case of double modulation. PM allows the excitation to have ON and OFF

cycles for lock-in detection. AM is used to change the amplitude of sine wave

except for the initial T1 of each ON cycle, which therefore has two parts. The

first part has a duration of T1 = 2 µs and an amplitude of A1 = 6.4 Oe, and the

second part has a duration of T2 = 198 µs and an amplitude of A2 ≤ A1. Because

T2 >> T1, the collected data represent primarily the response in the second part
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Figure 2.12: Schematic diagram of the time-resolved Kerr microscope for the case
of the double-modulation technique. A microwave source is used to synthesize a
continuous wave, with pulsed modulation (PM) and amplitude modulation (AM).
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Figure 2.13: (a) Schematic representation of the drive amplitude as a function
of time for the case of the double modulation technique. T1 and A1 indicate the
duration and the amplitude of the first part of the ON cycle, while T2 and A2

are for the second part. The collected data correspond to the response amplitude
effectively only during T2, because T2 is much longer then T1. (b) Schematic
representation of the excitation (i.e., magnetic field), the response θKerr, and the
probe (i.e., optical pulse), as a function of time. The repetition period of the
excitation and the probe is 1/f0. The probe is delayed relative to the excitation
to detect the response as a function of time
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of the ON cycle. Fig. 2.7(b) shows the relative phases for the excitation sine wave,

the response θKerr, and the probe pulse. The excitation sine wave is phase-locked

to the repetition rate of the probe beam. Similar to the CW excitation setup

discussed in Sec. 2.2.3, the excited vortex-core motion is probed as a function of

time by varying the delay of the probe pulse relative to the excitation.



Chapter 3

Non-linear Dynamics of a

Magnetic Vortex in the Presence

of Pinning

Recall from Sec.1.4 that defects in ferromagnetic films create localized pinning

potentials, which influence the dynamics of a magnetic vortex. In this chapter I

will discuss the depinning transition of a magnetic vortex and the associated non-

linear dynamics. In the first part, I will show a set of measurements on a single

magnetic vortex over a large dynamic range in amplitude and frequency, revealing

a complete dynamic phase diagram. A simple model captures the physics of the

observed phase diagram. In the second part, I will show a direct observation of

the pinning process in the time domain.

50
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Figure 3.1: Observed gyrotropic spectra of a 2 um diameter disk excited by CW
magnetic field for amplitudes from 0.2 Oe to 5.1 Oe. The equilibrium position of
the core is determined by the external field of -50 Oe. Data at drive amplitudes
below 0.8 Oe are multiplied by 100 for better visibility.
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3.1 Dynamic Phase Diagram of a Magnetic

Vortex

3.1.1 Gyrotropic-Mode Spectra

The spectrum of the gyrotropic mode can be measured by using the TRKM with

the CW-excitation aproach, as described in Sec. 2.2.3. I will focus on a 2 µm di-

ameter disk (sample 11) and discuss how the spectrum changes with the excitation

amplitude.

As CW excitation is applied, the y-component of the motion of the vortex

core is measured as a function of excitation frequency and amplitude, as shown

in Fig. 3.1. For excitation fields between 1 and 2 Oe, the spectra show a single

symmetric peak at 0.20 GHz. This is the ordinary gyrotropic mode, and both the

lineshape and peak position indicate that the vortex dynamics are linear over this

range [67, 69, 77, 78]. The equation of motion for a vortex in this case can be

derived from the Thiele equation (Eq. 1.12), as discussed in Sec. 1.4.1.

For excitation fields above 2 Oe, the spectra become irregular. As originally

observed by Vansteenkiste et al. [72], in this regime the assumption of a rigid core

breaks down, and this results in the reversal the core polarity at the highest core

velocities [71]. I will show in the following section that the apparent splitting of

gyrotropic-mode spectra in this range results from the suppression of the average

gyrotropic signal by successive core annihilation events [84, 90].

3.1.2 Reversal of the Vortex Core Polarity

To investigate the origin of the irregular spectrum at high amplitudes (Fig. 3.1), I

performed time-resolved measurements by using gated-CW excitation (Sec. 2.2.4).

The y-component of gyrotropic motion is shown in Fig. 3.2(a) as a function of time

for excitation amplitudes of 1.3, 2.3, 2.9, and 4.6 Oe. The excitation field is turned

on at t = 0 ns and switched off at t = 190 n. For an excitation field of 1.3 Oe, the

amplitude of the gyrotropic motion saturates within 1 to 2 cycles. In contrast,
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Figure 3.2: (a) Time-resolved data showing the y-component of the vortex motion
for different excitation amplitudes at a frequency of 0.20 GHz. The data at 1.3 Oe
are multiplied by 5 for better visibility. (b) Time-resolved data for different probe-
beam positions, showing the asymmetry between the x- and y-components of the
gyrotropic motion due to polarity switching. The insets are cartoons showing the
offset directions of the focused probe beam (red circle).
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the data obtained at 2.3 Oe show the typical orbital motion of a depinned vortex

core, with a very long build-up and ringdown time determined by the Gilbert

damping. At 2.9 Oe, the gyrotropic motion is similar, except that the apparent

time constants for the build-up and decay of the motion become shorter. At 4.6

Oe, the motion shows dramatic amplitude modulation in the time domain. At the

highest amplitudes, the apparent motion of the vortex core also becomes highly

elliptical, as can be seen in Fig. 3.2(b), which shows the x and y components of

the motion. The x-component is suppressed nearly completely.

In interpreting the data of Fig. 3.2, it is essential to realize that the detection of

the vortex motion is stroboscopic, and so any process that is not strictly coherent

will lead to averaging in the time domain. This is why the apparent build-up

of motion for a vortex core near the depinning threshold (1.3 Oe) appears to

occur in only 1 or 2 cycles. For successive clock cycles, the orbital phase varies

stochastically. At high amplitudes, the effect that appears to be beating at 4.6 Oe

is associated with reversal of the vortex core polarity (at approximately 25 ns).

If the reversal always occurred at the exact same point for each clock cycle, the

observed signal would undergo a rapid collapse followed by a build-up and then

subsequent collapse as the core reverses again. In practice, the averaging over

many 2 MHz clock cycles smears out the progressive build-up and collapse of the

gyrotropic motion. The apparent beating is due to the successive reversal events.

As the number of reversals increases, the uncertainty in the time at which the nth

reversal occurs becomes comparable to the gyrotropic period and the modulation

is no longer evident. This steady-state signal is smaller than it would be if the

response in the linear regime (without core reversal) were extrapolated to higher

drive amplitude. This is the primary reason for the “hole” that appears near the

original gyrotropic frequency in the highest amplitude spectra shown in Fig. 3.1.

Essentially, the power around this frequency ends up being dissipated during core

flips, producing what appears to be splitting in the spectrum.

Each core reversal produces a change in the direction of gyration as well as

a change in the sign of the polar Kerr signal, as discussed in Sec. 1.4.4. For
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this reason, a superposition of signals from clockwise and counterclockwise orbits

will appear as oscillatory motion of the vortex core parallel to the axis of the

oscillating field (y in our case), with no component along x. This observation,

also made by Cheng et al. [91], depends on the phase of the gyrotropic motion

with respect to the alternating field and agrees with the calculation in Ref. [82].

In fact, Fig. 3.2(b) shows that the observed x-component of the motion is very

weak, implying that there is incomplete cancellation of the signals from the two

different directions of rotation. It is possible to verify the sense of rotation directly

by imaging. I find that if the amplitude is increased above 2 Oe and then reduced

back to the linear regime, the sense of rotation may be reversed. This is due to

the fact that after 190 ns (and many core flips), the polarity of the vortex core is

nearly random.

Careful analysis of the time-domain data as well as the spatial dependence

of the signal demonstrate that the dynamics in the strong excitation regime are

dominated by successive reversals of the vortex core polarity.

3.1.3 Pinning Potential

I now consider excitation fields below 1 Oe in Fig. 3.1. At the lowest excitation

amplitude 0.2 Oe, the spectrum of Fig. 3.1 shows a resonant peak at about 0.50

GHz, which is much higher than the gyrotropic mode frequency observed at higher

amplitudes. As shown previously using pulsed excitation [64, 65] (Sec. 1.4.6), this

enhancement of the gyrotropic frequency is due to pinning and the measured

frequency reflects the local curvature of the effective potential W (r). As the

amplitude increases, the peak shifts to lower frequencies, but the weight at higher

frequencies is preserved, and so the lineshape becomes triangular. Over a narrow

range of driving amplitudes (0.8 to 1.0 Oe), the response amplitude increases by a

factor of 10, and a narrow peak emerges at the gyrotropic frequency (0.20 GHz).

I will discuss in the following how this behavior emerges from the dynamics of a

driven vortex in the presence of a pinning site.
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Figure 3.3: Schematic of the potential energy described by Eq. 3.1, including
a parabolic magnetostatic potential (dashed curve) and a Gaussian pinning po-
tential due to a point-like defect. The dotted arrows indicate the pinned and
unpinned orbits of the ovrtex core.

To model the spectrum in the presence of pinning, I assume a total potential

W (r) =
1

2
kr2 +Wp(r), (3.1)

where Wp is the pinning potential and 1

2
kr2 is the magnetostatic potential from

the geometry, as discussed in Sec. 1.4.4. Wp must have a local minimum (below

that of the background magnetostatic potential) and must vanish for large r, as

shown schematically in Fig. 3.3 for the total energy. As originally suggested by

Paul Crowell, we find that this condition is satisfied by a Gaussian

Wp = −a · exp
(−r2

2c2

)

, (3.2)

which captures both required features with only two parameters, a depth a and a

width c, or full-width at half-maximum FWHM= c
√
2 ln 2. Due to the form ofWp,

the equation of motion Eq. 1.12 becomes a two-dimensional non-linear differential

equation with explicit time-dependence. I solve this differential equation numeri-

cally using typical material constants for Ni80Fe20, including Ms = 800 emu/cm3,

A = 1.05 × 10−6 ergs/cm, α = 0.01. In the numerical calculation the position of

the vortex core can be obtained at each time step of the numerical integration.
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Figure 3.4: Gyrotropic spectra below 0.8 Oe from the experiment (points) and
the numerical calculations (solid lines).

The orbital motion of the vortex reaches a steady state after a sufficiently large

number of time steps. For a given choice of pinning center depth a and width c, I

can solve for the spectrum of the steady-state vortex-core motion at each driving

amplitude. Fitting of the experimental results can be achieved by the numerical

calculations with different combinations of a and c. The results of this fit are

shown in Fig. 3.4 as solid curves, which were obtained for a = 0.17 eV and the

FWHM c
√
2 ln 2 = 7 nm.

This model has two important aspects. First, it allows for determining the

strength and range of pinning sites. The same approach can be applied to other

pinning sites in the same disk in addition to the pinning site discussed above, and

the experimental results show an average pinning energy 0.7 ± 0.2 eV and pinning

range 16 ± 3 nm from six random pinning defects measured in this sample.

Second, the model provides a realistic picture of the depinning transition and

the dynamics above the depinning transition. The solutions of Eq. 1.12 with

W of the form of Eq. 3.1 are orbits. At small amplitudes, the frequency of an
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orbit depends on r. For r > c, the frequency rapidly approaches the unpinned

gyrotropic frequency (0.20 GHz). There is a well-defined boundary that separates

these two regimes.

3.1.4 Phase Diagram of Vortex Dynamics

To obtain a global picture, it is instructive to represent the orbital amplitude as

a contour plot in a parameter space of drive amplitude and frequency, as shown

in Fig. 3.5(a) for the experiment and Fig. 3.5(b) for the numerical results. Note

that the contours are shown for increasing amplitude, obtained by exciting the

vortex starting from rest at each step of frequency and amplitude (CW excitation,

see Sec. 2.2.3). The unpinned and pinned gyrotropic frequencies are indicated by

vertical dashed lines. The sharp boundary separating the pinned and unpinned

regimes as the drive amplitude increases is particularly evident for frequencies

near the unpinned gyrotropic frequency.

3.1.5 Metastable Orbits of the Vortex Core

The numerical calculations [Fig. 3.5(a)] show that there are two metastable orbits

in the depinning region, the boundary of which is shown as a dashed curve in

Fig. 3.5(b). The two orbits in the metastable region include a pinned orbit and

an unpinned orbit, while outside this region only one orbit exists, which is either

pinned or unpinned. At an excitation frequency f = 0.20 GHz, for example,

Fig. 3.6 shows the numerical solutions at three excitation amplitudes, 2.0 Oe, 0.5

Oe, and 0.05 Oe, representing three typical regions in the phase diagram. For

the case of a 2.0 Oe excitation amplitude, as shown in Fig. 3.6(a), the numerical

solution is a circular orbit with a diameter larger than that of the pinning potential

(7 nm). The circular shape reflects that, in this range of field amplitude, the vortex

dynamics are analogous to the dynamics of a 2D harmonic oscillator driven at

resonance, as discussed in Sec. 1.4.4.

At 0.5 Oe, as shown in Fig. 3.6(b), both an unpinned orbit (outside the pinning
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Figure 3.5: (a), (b), Gyrotropic response as a function of excitation amplitude
and frequency for (a) the experiment and (b) the numerical calculations. The
experimental parameter space is above the horizontal dashed line in (b). The
color scale is logarithmic. The contours are shown for increasing amplitude. The
dashed curve in (b) shows the boundary of the region in which two gyrotropic
orbits exist.
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Figure 3.6: Gyrotropic orbits of the vortex core calculated at (a) 2.0 Oe, (b) 0.5
Oe, and (c) 0.05 Oe. The excitation frequency is at 0.20 GHz. The excitation
field h is a sine wave oriented along the y-axis as indicated by the arrorw in (a).
(d) Zoomed-in view of the pinned orbit in (b).
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range) and a pinned orbit (inside the pinning range) exist. At 0.05 Oe, as shown

in Fig. 3.6(c), only a pinned orbit exists. Recall from Sec. 1.4.4 that, for the

gyrotropic mode in a parabolic potential, the orbits are elliptical when the drive

frequency f < fG, where fG is the eigenfrequency associated with the potential.

The potential can be approximated as parabolic near the bottom of the pinning

potential (Eq. 4.2), and fG becomes the pinned frequency fpin for this case. The

pinned orbit in Fig. 3.6(c) is elliptical because the drive frequency f = 0.20 GHz

is below the resonant frequency fpin = 0.50 GHz near the bottom of the pinning

potential. Fig. 3.6(d) shows a zoomed-in view of the pinned orbit when excited at

0.5 Oe. Similar to the orbit in Fig. 3.6(c), the orbit in Fig. 3.6(d) is elongated along

the x axis, but is not exactly elliptical. The shape of the orbit at 0.5 Oe reflects

that, in the depinning regime, the potential energy (Eq. 3.1) is anharmonic.

To probe the metastability in experiment, I carried out a monotonic sweep

of the drive amplitude in both directions using the double modulation technique

described in Sec. 2.2.5. Experimental data are presented as solid (increasing)

and dashed (decreasing) curves in Fig. 3.7(a), which shows the y-component of

the orbital motion measured as a function of excitation amplitude at three fixed

excitation frequencies. The corresponding numerical results at these frequencies

are shown in Fig. 3.7(b). The depinning with increasing excitation amplitude is

easily observed. At the gyrotropic frequency (0.17 GHz for this slightly larger

disk), both the experimental and the numerical results clearly show hysteresis in

the depinning region, demonstrating the existence of two distinct orbits. At 0.08

GHz, no hysteresis is observed as expected. At 0.27 GHz, however, hysteresis

is seen in the numerical results but not in the experiment. This discrepancy is

due to the presence of thermal activation in the experiment. In order to observe

hysteresis, there must be a negligible probability for the core to jump from the

pinned to the unpinned orbit on the time scale of the experiment, which is ∼ 1

sec. The energy difference ∆E between the two orbits, calculated at the upper

and lower boundaries of the coexistence region, is ∼ 30 eV at 0.17 GHz, but

is only ∼ 0.3 eV at 0.27 GHz. The characteristic rate for thermally activated
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Figure 3.7: (a) Gyrotropic response versus excitation amplitude measured at 0.17
GHz (fG of this disk), 0.08 GHz, and 0.27 GHz. Data taken on the increasing
(decreasing) branch are shown using solid (dashed) lines. (b) Numerical results
for the same conditions as the experiment. The two branches correspond to two
different vortex core orbits.
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jumps to occur is f0 exp(−∆E/kBT ), where f0 is the orbital frequency (the drive

frequency). The calculated rate is insignificant at 0.17 GHz, but it is ∼ 103

sec−1 at 0.27 GHz, which is why hysteresis cannot be observed. As the depinning

transition is approached from below, thermal activation becomes significant even

at the gyrotropic frequency, which is why the depinning transition at the resonance

in Fig. 3.5(a) dips slightly below the boundary seen in Fig. 3.5(b) .

3.2 Pinning Process in the Time Domain

3.2.1 Spiral Motion of the Vortex Core

Pinning processes in the time domain can be investigated by using gated-CW

excitation (Sec. 2.2.4). I first excited a vortex in the linear regime, below the

onset of core reversal. After the excitation field was switched off, the core spiralled

towards its equilibrium position, which may or may not be a pinning site, as shown

schematically in Fig. 3.8 (a) and (b) respectively. Both cases were measured in

the experiment, achieved by controlling the equilibrium position of the core with

an in-plane oriented static field. Fig. 3.8 (c) and (d) show that the measured

y-component of the orbital motion oscillates with decreasing amplitude after the

excitation is switched off at t = 0 ns. For the unpinned vortex [Fig. 3.8(c)], the

period of the oscillation remains constant, as indicated at three representative

cycles. For the pinned case [Fig. 3.8(d)], in contrast, the period of the oscillation

decreases as the amplitude decreases, as indicated at four representative cycles.

The differences between the unpinned and pinned cases can be clearly seen in

Fig. 3.9, which shows the amplitude and frequency of the gyrotropic signal as a

function of time, obtained from the data of Fig. 3.8. In the unpinned case, the am-

plitude decays exponentially and the gyrotropic frequency remains fixed. When,

however, the equilibrium position is at a pinning site, the decay is exponential

only up to a certain time, beyond which the amplitude drops more quickly and

the frequency increases.
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Figure 3.8: (a), (b), Cartoons of the gyrotropic motion in the potential energy,
when the equilibrium position is (a) not at a pinning site or (b) at a pinning site.
(c), (d), The y-component of the gyrotropic motion measured as a function of
time when the equilibrium position is (a) not at a pinning site or (b) at a pinning
site. The excitation is turned off at t = 0 ns. The periods of representative cycles
are indicated by the horizontal bars.
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Figure 3.9: (a), (b), Amplitude (a) and frequency (b) of the gyrotropic motion
measured as a function of time when the equilibrium position is at a pinning site
(filled symbols) or not at a pinning site (open symbols). The dashed lines are
linear fits for the open symbols.
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The frequency of the oscillation remains constant immediately after the ex-

citation is switched off because the drive frequency (before t = 0 ns) is at the

characteristic frequency of the magnetostatic potential. For the unpinned case,

the potential is parabolic for the entire process and the gyrotropic frequency re-

mains fixed. For the pinned case, the frequency changes from the unpinned value

to the pinned value as the core reaches the range of the pinning potential. For the

case shown in Fig. 3.9(b), the core starts to interact with the pinning site after

approximately 30 nsec.

3.2.2 Effect of Multiple Pinning Sites

It is possible to calibrate the Kerr signal in order to estimate the actual gyrotropic

radius and compare it with the areal density of pinning sites, obtained by the

method of measuring the gyrotropic frequency while sweeping the static magnetic

field [64, 65] (Sec. 1.4.6). This reveals the important fact that at the maximum

amplitude of Fig. 3.9(a), the core orbit encloses a large number of pinning sites (of

order 30). This apparently has little effect on either the gyrotropic amplitude or

frequency until the core starts to interact with the pinning site at its equilibrium

position. The robustness of the gyrotropic orbit derives from the fact that the

pinning energy, while large compared to kBT , is still small compared to the overall

magnetostatic energy of the disk. Detailed micromagnetic simulations by Min et

al. [92] bear this out, in that high amplitude orbits simply avoid pinning sites,

which represent minor perturbations to the magnetostatic energy.

3.2.3 Damping

In the unpinned regime, the frequency f and decay time τ can be used to determine

the Gilbert damping parameter α, given that

f · τ =

[

π

(

2 + ln
R

Rc

)

α

]

−1

, (3.3)
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which can be derived from Eq. 1.12 and Eq. 1.15 [77]. The unpinned data in

Fig. 3.9(a) correspond to α = 0.007, which is typical for Ni80Fe20. The data in

Fig. 3.9(b) correspond to the same α = 0.007 for t < 30 ns, but the apparent

damping increases to ∼ 0.015 as the core becomes pinned. This is unlikely, how-

ever, to reflect a true increase in the damping rate. The simulations of Min et al.

[92] showed that the effect of pinning leads to an increase of α by ∼ 10%, much

smaller than that observed in my experiment (∼ 200%). It is more likely that

fluctuations in the phase of the core motion relative to the optical probe pulse be-

come larger as the core orbit encloses fewer pinning sites, leading to the apparent

increase in the damping rate. In the absence of a single-shot measurement, it is

impossible to rule out such a mechanism.



Chapter 4

Microscopic Pinning Mechanism

of a Magnetic Vortex

This chapter will discuss the microscopic mechanism of vortex pinning in Ni80Fe20

films. In other words, what are the pinning defects? I will show the range and

strength of pinning sites as a function of film thickness. I will also show a detailed

analysis of the surface morphology of the films, which will be linked to the observed

vortex pinning quantitatively.

4.1 Quantitative Measurements of Pinning Sites

The first step in identifying the dominant pinning mechanism is to characterize

pinning defects for multiple samples with different growth parameters. Recall from

Ch. 3 that the energy and range of a pinning site can be determined by fitting

the gyrotropic-mode spectra at different amplitudes. Although this approach

can provide detailed information of a pinning potential, it is time consuming in

practice (∼ 50 hours for a pinning site). A more efficient approach is needed

for characterizing more than 10 pinning sites in each sample in order to obtain

statistical results.

I have adopted a technique that was originally developed by Compton et al.

68
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[64, 65] and I have established the following method to estimate the strength

and range, but not the detailed form, of a pinning potential. I will show that,

although this method is less rigorous than fitting the gyrotropic-mode spectra, it

is effectively about 60 times faster than fitting an entire spectra.

4.1.1 Pinning Energy

Recall from Sec. 1.4.6 that Compton et al. [64, 65] developed a technique of

constructing pinning maps by measuring fG at different vortex-core positions.

Using the same technique, I mapped the spatial distribution of pinning defects by

measuring the gyrotropic frequency fG as a function of the orthogonal in-plane

oriented dc magnetic field, as shown in Fig. 4.1(a). In this case, the in-plane fields

were varied in increments of 2 Oe over a range of 20 Oe × 20 Oe, which displaces

the vortex core over a 80 × 80 nm2 spatial region around the center of a 2 µm

diameter disk.

Every pinning site in the pinning map shows two characteristics, the pinned

frequency fpin, which is the highest frequency within each point-like area, and

∆H , which is the FWHM of the fG peak, averaged from the two orthogonal field

directions. The measured ∆H and fpin allow for estimating the range and energy

of the pinning site, as will be described below.

Recall from Sec. 1.4.4 that the background geometric confinement W is approx-

imated by a parabolic potential, given by W (r) = 1

2
kr2, where k is the unpinned

stiffness. An applied in-plane magnetic field H changes the potential energy by

Hµr, where µ = ξMsπRL. Therefore, in an applied field the core moves to a new

equilibrium position r(H) = Hµ/k for an unpinned vortex.

Fig. 4.2(a) illustrates the concept of estimating Epin from the measured ∆H .

Assuming that the field H0 positions the vortex core at the center of a pinning site

that we want to characterize, the core is trapped by the local pinning potential

Wp, unless a sufficiently large depinning field Hdepin ∼ 1

2
∆H is applied to overcome
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Figure 4.1: (a) Contour map of the gyrotropic frequency fG for a 2 µm diameter
disk. The dashed circle indicates one of the pinning sites within the measured spa-
tial range. (b) Gyrotropic-mode spectra measured using CW excitation, showing
results from the experiment (points) and the numerical calculations (solid lines)
at different excitation amplitudes as labelled. The spectra were measured at the
static fields Hx = -5 Oe and Hy = 3.5 Oe, which set the equilibrium position of
the core at the center of the pinning site indicated by the dashed circle in (a).
The fitting of the gyrotropic spectra provides independently the properties of the
pinning site, which can be compared to those determined from (a).
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Figure 4.2: (a) Cartoons of energy profiles (solid lines) at different static fields
H . The vortex core, indicated by a circle, is either inside or outside the pinning
potential depending on the amplitude of H as labelled. H0 represents the field
required to move the vortex core to the center of a pinning site. Hdepin is the field
required to overcome the energy of pinning potential Epin. (b) Cartoons of two
energy profiles with the same pinning energy Epin, but different pinning range
Dpin. The upper one is expected to show a higher fpin because of its smaller Dpin

compared to the lower one.

the energy barrier. Epin, i.e., the energy barrier, can be estimated from ∆H using

Epin =
1

2
kr2

(

1

2
∆H

)

. (4.1)

4.1.2 Pinning Range

To determine the pinning range Dpin, which is the diameter of a pinning potential,

we consider the simplest form of a pinning potential,

Wp(r) =
1

2
kpinr

2, (4.2)

where kpin is the stiffness of the pinning potential. It should be noted that Eq. 4.2

is an approximation to the more realistic model, in which the pinning potential

is of the Gaussian form as described in Ch. 3. In other words, here I focus on
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estimating the range and energy of pinning potentials, and I ignore the details of

the anharmonic characteristics that were discussed in Ch. 3.

There is a direct connection between fpin andDpin. It is instructive to compare

two pinning potentials which have the same Epin, but different Dpin, as shown in

Fig. 4.2(b). Recall from Eq. 1.16 that fG is proportional to the local curvature

of the total magnetostatic energy. fpin should be larger for the potential with a

smaller Dpin, which has a larger curvature. To get a general formula for Dpin, by

definition:

Epin = Wp

(

1

2
Dpin

)

. (4.3)

Eq. 4.2 and Eq. 4.3 lead to:

Dpin = 2

√

2Epin

kpin
. (4.4)

Since fpin = 2πG(ku + kpin) and fu = 2πGku (Eq. 1.16), Eq. 4.4 leads to the

expression of Dpin:

Dpin = 2

√

Epin

πG(fpin − fu)
. (4.5)

4.1.3 Pinning Map and Spectra Fitting

Given the approach of fitting the gyrotropic-mode spectra (Ch. 3), we now have

two independent approaches to determine the energy and range of a pinning site.

The two approaches were applied to the same pinning site, which is indicated by

the dashed circle in Fig. 4.1(a). For the first approach, the pinning map shows

the ∆H and fpin of the pinning site, which lead to the pinning energy and range

0.87 eV and 23 nm respectively, obtained from Eq. 4.1 and Eq. 4.5. For the

second approach, after the data of Fig. 4.1(a) were taken, I applied the static

fields Hx = -5 Oe and Hy = 3.5 Oe in order to position the vortex core at the

same pinning site. At the pinning site I measured the gyrotropic-mode spectra

at different amplitudes, as shown in Fig. 4.1(b). The spectra were fitted by using
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Figure 4.3: Contour maps of the gyrotropic frequency fG as a function of the
in-plane static field for disk thicknesses of (a) 20 nm, (b) 35 nm, (c) 50 nm, (d)
65 nm, (e) 80 nm, (f) 100 nm, and (g) 130 nm.
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the procedure that is described in Sec. 3.1.3. The fitting reveals that the pinning

energy and range are 0.93 eV and 19 nm respectively. The comparison of these

two independent approaches indicates that the pinning-map approach provides

reasonable estimations for the properties of a pinning site in a relatively short

measurement time. In the following I will discuss the experimental results of

seven samples measured by using the pinning-map approach.

4.1.4 Thickness Dependence of Pinning

I now discuss how the averaged energy and range of pinning sites change with

the thickness of Ni80Fe20 films. Fig. 4.3 shows seven pinning maps, obtained from

samples with different thickness L ranging from 20 nm to 130 nm (sample 1–7,

see Sec. 2.1.1).

Properties of the pinning sites in Fig. 4.3 are summarized in Fig. 4.4, which

shows the averaged pinning-site characteristics for each sample, i.e., 〈fpin〉, Dpin,

〈∆H〉, and Epin. Fig. 4.4(a) also shows the measured fu, indicated by triangles. It

should be noted that fu was precisely determined by measuring fG in the linear-

dynamics regime to remove the influence of pinning, as discussed in Ch. 3. It

is clear that the fu increases with L, as expected from the analytical model and

micromagnetic simulations [67, 69, 77, 78]. It is surprising, however, that 〈fpin〉
is significantly higher in thinner disks, showing that the enhancement of fG due

to pinning (〈fpin〉 − fu) varies approximately as 1/L.

Fig. 4.4(b) shows that the measured Dpin approximately matches the diameter

of the vortex core at the disk surface (indicated by the solid curve) for all sam-

ples. The core diameter is obtained from the micromagnetic simulation shown in

Fig. 1.7 of Sec. 1.4.2. Because of a large energy density associated with the core

region, where the magnetization gradient is large, it is likely that local defects

pin the vortex core region more effectively than the other regions of the vortex.

Imperfections on length scales similar to the core diameter therefore cause the

strongest pinning effects.
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Figure 4.4: Thickness dependence of (a) the pinned frequency fpin and the un-
pinned frequency fu, (b) the pinning range Dpin, (c) the averaged depinning field
∆H , and (d) the pinning energy Epin. The solid line in (b) is the diameter of the
vortex core at the surface of the disk, obtained from micromagnetic simulations.
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It should be noted that the above explanation for the observed pinning range

is consistent with the consensus derived from models of domain wall pinning [24].

Specifically, pinning of domain wall motion is known to be most effective at defects

with dimensions comparable to the wall width. However, to our knowledge this

limiting-defect-size effect has been shown in experiments only through collective

effects [52, 53, 93], in which the highest coercivities were observed when the grain

or inclusion size in the film matched the estimated domain wall width. Here,

because I directly identify the spatial range of the interaction between a single

vortex and an individual pinning site (Dpin), which is set by the core diameter,

my findings represent strong evidence for the predicted limiting-defect-size effect.

Additional information about the pinning defects can be obtained from the

thickness dependence of 〈Epin〉. If point defects in the bulk of the film (e.g.,

impurities, vacancies, and nonmagnetic inclusions) dominate the vortex pinning,

〈Epin〉 should scale directly with L. On the other hand, if surface imperfections

(e.g., roughness) dominate the vortex pinning, 〈Epin〉 should be insensitive to

L. Fig. 4.4(d) shows that the measured 〈Epin〉 is relatively constant at small

thickness and then drifts slightly upward with increasing L. The data suggest

that the observed vortex pinning is dominated by surface imperfections.

4.2 Surface Roughness

4.2.1 Roughness Power Spectral Density

I now turn to analysis of the surface roughness, which was characterized by using

tapping-mode AFM. (The AFM images were shown in Sec. 2.1.1.) Fig. 4.5(a)

shows the power spectral density (PSD) of the surface roughness, obtained from

the Fourier transform of the AFM images. The peak of the spectrum indicates

the grain size, which increases with L, as is typical.

By integrating the spectrum, we can obtain the RMS roughness σRMS , which,

however, does not account for the limiting-defect-size effect discussed in Sec 4.1.4.
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Figure 4.5: (a) Roughness power spectral density (PSD) as a function of wave-
vector, obtained from the FFT of atomic force micrographs (AFM). (b) Probabil-
ity distribution of π/(Dpin). The histogram consists of all pinning sites identified
in Fig. 4.3(a)-(g). The solid line is a Gaussian fit to the histogram.
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Figure 4.6: Effective roughness σeff versus the disk thickness L. Samples 1–7 are
indicated by the filled circles. Samples 11 and 13 are indicated by the open circle
and the open triangle respectively.

The spectrum shows the roughness at different length scales, and only the rough-

ness on the length scale of the diameter of the vortex core should contribute to

the vortex pinning. Therefore, the integration of the roughness PSD spectrum

should include a weighting function. Although it is possible to develop a model of

a weighting function based on the diameter of the core, I argue that a weighting

function can be obtained experimentally from the measured probability distri-

bution of Dpin. Fig. 4.5(b) shows the distribution of π/Dpin, which reflects the

importance of defects at different length scales for contributing to the vortex pin-

ning. I use π/Dpin as the relevant wave-vector q = 2π/λ, where λ is the wavelength

of the fluctuations in the potential energy, because the measured Dpin corresponds

to the FWHM of a pinning potential, which is approximately λ/2 in this case.

With this weighted integration procedure, an effective roughness σeff is ob-

tained for each sample. Fig. 4.6 shows that σeff increases from approximately 2

to 4 nm as L is increased from 20 to 130 nm. For samples with the same growth

conditions, the measured σeff varies roughly as
√
L, which is typical for sputtered
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thin films, because the atoms of the thin film material fall on the substrate ran-

domly during the thin-film deposition, resulting in a Gaussian distribution in the

local thickness.

4.2.2 Dominant Mechanism of Pinning

The relationship between pinning and roughness can be seen in Fig. 4.7(a) and (b),

which show Epin as a function of σRMS and σeff respectively. Besides the samples

discussed thus far (filled circles), two additional 50 nm thick samples are shown

for comparison, indicated by open circles for sample 11 and open triangles for

sample 13. Recall from Sec. 2.1.1 that sample 11 has smaller roughness compared

to the original 50 nm sample (sample 3). Sample 13 has larger grain size (∼ 100

nm) than samples 3 and 11 (∼ 30 nm). Fig. 4.7(a) shows that there is no clear

linear correlation between σRMS and Epin. However, as shown in Fig. 4.7(b), it

is clear that Epin scales linearly with σeff , and the linear fit, shown as a solid

line, intercepts the y-axis at approximately zero. This result indicates that the

effective roughness is the dominant vortex pinning mechanism for these permalloy

films.

The correlation between Epin and σeff also explains the thickness dependence

of Epin shown in Fig. 4.4(d). The slight increase of Epin with increasing L is due

to the fact that σeff is larger for thicker disks (Fig. 4.6). Also consistent with this

explaination, Fig. 4.8 shows that Epin/σeff is independent of L.

Besides the correlation between Epin and σeff , which clearly indicates the true

source of the pinning, another important aspect of the findings discussed above

is that I can now estimate how small the effective roughness would need to be in

order to avoid this mechanism. I will consider that a pinning site is unimportant

only if depinning of a vortex from that site can be thermally activated at room

temperature on a typical laboratory time scale, e.g., 1 sec.

The critical pinning energy ∆E can be estimated by setting the characteristic
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Figure 4.7: Pinning energy versus (a) the RMS roughness σRMS , and (b) the
effective roughness (on the length scale of the core diameter) σeff . The solid line
is a linear fit. Samples 1–7 are indicated by the filled circles. Samples 11 and 13
are indicated by the open circles and the open triangles respectively.
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Figure 4.8: Pinning energy Epin normalized by the effective roughness σeff versus
disk thickness L. Samples 1–7 are indicated by the filled circles. Samples 11 and
13 are indicated by the open circle and the open triangle respectively. The dashed
line indicates the average value of Epin/σeff .
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rate for thermally activated jumps to occur as 1 Hz:

f0 exp

(−∆E

kBT

)

= 1, (4.6)

where f0 ∼ 0.5 GHz is the gyrotropic-mode frequency, which is the attempt fre-

quency in this case. Solving Eq. 4.6 leads to ∆E ∼ 0.5 eV, below which a vortex

can be thermally activated. Therefore, the data in Fig. 4.7(b) indicate that the

effective roughness would need to be smaller than 1.5 nm to avoid vortex pinning.

To put this effective roughness value in perspective, I will consider its im-

plication for films with various growth modes, as was originally pointed out by

Chris Leighton. In the Volmer-Weber or island growth mode (often relevant to

sputtered polycrystalline metal films) [94], roughness is significant and the lateral

correlation length is directly linked to the grain size. Given that this length scale

in most practical situations is on the same order of magnitude as the physically

relevant pinning length scale (i.e., ∼ 20 nm, the vortex core diameter), the con-

straint σeff << 1.5 nm is a very stringent one, requiring grain sizes very different

from the core diameter. In Frank-van der Merwe (i.e., layer-by-layer) or step-flow

growth modes [94, 95] (potentially relevant to MBE-grown epitaxial metal films)

the lateral correlation length of the roughness is set by the mean terrace width,

and thus the vicinality of the substrate surface. Satisfying σeff << 1.5 nm may be

possible, but even in this case it would require specific tailoring of the vicinality

and terrace width to avoid the scale of the core diameter. Thus, I expect that the

surface roughness pinning mechanism plays an important role for vortex pinning

in virtually all soft ferromagnetic films. Similar length scale arguments apply to

edge roughness in patterned thin film devices, as the length scale associated with

the patterning probe is again likely on a similar scale to the vortex core.



Chapter 5

Dimensionality Crossover in

Magnetic Vortex Dynamics

Recall from Sec. 1.4 that the dynamics of a magnetic vortex can be treated two-

dimensionally (2D) and the gyrotropic frequency fG is determined by L/D for

a magnetic vortex in a thin disk (thickness L << diameter D). The model of

vortex pinning discussed in Ch. 3 and Ch. 4 is also based on the magnetic vortices

which are in the thin-disk regime. For sufficiently thick disks, the assumption of

2D vortex-core dynamics must break down, and the vortex-core dynamics along

the normal-axis direction of the disk must become important. It is important

to understand the properties of the 3D vortex-core dynamics and the critical

thickness Lc, beyond which a new model of vortex dynamics is needed.

In this chapter, I will show the experimental results of fG as a function of L,

which varies from 20 to 300 nm. I will discuss a 2D-3D crossover of the gyrotropic

mode at Lc ∼ 160 nm for 1 µm diameter permalloy (Ni80Fe20) disks. The exper-

imental results will be compared with quasi-3D micromagnetic simulations and

will be explained using a simple 3D model of the vortex-core dynamics.
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5.1 Thickness Dependence of the Gyrotropic mode

Frequency

As already shown in Ch. 4, both the unpinned and pinned fG can be measured

in experiment [Fig. 4.4(a)]. I will focus on the unpinned fG for the purposes of

this chapter. Fig. 5.1 shows the thickness dependence of fG over a large range

of L (20 to 300 nm), obtained by the CW excitation technique (Sec. 2.2.3). The

results from the 2D micromagnetic simulations are indicated by the dotted line.

As noted in Sec. 1.4, the experimental results, as indicated by the black circles,

show that fG is proportional to L for thin disks (L < 100 nm), consistent with

the 2D micromagnetic simulations as well as the analytical model (Eq. 1.16). In

this region the vortex dynamics are well-explained by the 2D model (Sec. 1.4.4).

For L = 130, 160, and 200 nm, the experimental values of fG deviate from those

of the 2D simulations, and an additional mode appears at higher frequencies. For

L = 300 nm, only one mode is observed and the experimental value of fG is close

to that of the 2D simulation.

The existence of two modes is very surprising, because only one gyrotropic

mode frequency exists if the core moves as a rigid body, as discussed in Sec. 1.4.4.

The additional mode is not one of the spin-wave modes (Sec. 2.2.2), because the

spin-wave modes are at much larger frequencies (> 5 GHz) than those shown in

Fig. 5.1 [69]. I will show in the following that the two modes in Fig. 5.1 are both

gyrotropic modes. In one mode the core oscillates uniformly through the thickness

of the disk, while in the other mode the core oscillates with larger amplitude at

the surfaces, with a node in the equatorial plane of the disk.

It is instructive to show the relative strengths of the two modes at different L.

Fig. 5.2(a) shows the measured spectra for the thicknesses of 80, 100, 130, 160,

and 200 nm. Data were obtained by using the the pulsed excitation technique

(Sec. 2.2.2). For each sample I measured time scans at ∼ 900 different core

positions, with a step size of ∼ 5 nm. An averaged FFT spectra of these time

scans were obtained for each sample, and the effect of the fluctuations of fG due
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Figure 5.1: Thickness dependence of the gyrotropic mode frequencies. The exper-
imental results for the unpinned frequency are indicated by the black circles. The
results of the 2D simulations are indicated by the dotted line.
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Figure 5.2: (a)-(e) Experimental response spectra for vortices in disks with dif-
ferent L. (f)-(j) Quasi-3D simulation results of the response spectra of vortices in
disks with different thicknesses L. The simulation data were obtained from the
spectrum of the surface layer in each disk.
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to pinning can be minimized in this approach. Fig. 5.2 shows that two modes

appear for the cases of 130, 160, and 200 nm, but not for the cases of 80 and 100

nm. At 130 nm, the power of the lower frequency mode is about a factor of 30

stronger than that of the higher frequency mode. At 160 nm, the lower frequency

mode is about twice as strong as the higher frequency mode. At 200 nm, the

higher frequency mode becomes the stronger mode, about twice as strong as the

lower frequency one. It appears that there is a crossover of two modes, one with

a strong response power and the other one with a weaker response power. This

crossover will be discussed in detail in the following.

5.2 Quasi-3D Simulations

To get insight into the thickness dependence of fG, I have simulated the vortex

dynamics by using the quasi-3D approach discussed in Sec. 1.4.2. A 1 µm diameter

disk is divided into cells of a size of 5×5×s nm3, where s = L/5 is the dimension

of the cell along the normal axis of the disk. In the micromagnetic simulations,

the vortex dynamics are excited by a pulsed in-plane oriented magnetic field of the

Gaussian form with a full width at half maximum of 180 ps. The magnetization

dynamics are averaged within each of the 5 layers, revealing a spectrum at each

layer of the disk.

From the micromagnetic simulations it becomes clear that there are two gy-

rotropic modes. Fig. 5.3 shows schematic representations of the two modes. In

Fig. 5.3(a), the core oscillates uniformly through the thickness of the disk. This

is the original gyrotropic mode, and it will be referred to as the zero-node mode.

In Fig. 5.3(b), the core oscillates with a larger amplitude at the surface, and with

a node in the equatorial plane of the disk. The core above the equatorial plane

of the disk gyrates with a phase difference of π compared to the core below the

equatorial plane. I will refer this mode [Fig. 5.3(b)] as the one-node mode.

Fig. 5.2(b) shows spectra from the simulation results at L = 80, 100, 130, 160,
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Figure 5.3: Schematic representations of the gyrotropic modes. (a) The zero-node
mode. (b) The one-node mode. The vortex core is indicated by the shaded region.
The directions of the gyration of the core are indicated by the dashed arrows.

and 200 nm. For L = 80 nm, the lower frequency peak corresponds to the zero-

node mode, while the higher frequency peak corresponds to the one-node mode.

For L = 200 nm, it is the opposite: the lower frequency peak corresponds to the

one-node mode, while the higher frequency peak corresponds to the zero-node

mode. The shift of the primary response power from the lower frequency mode to

the higher one is also observed in the experimental results of Fig. 5.2(a). In the

experiment, however, the one-node mode is not apparent for L = 80 and 100 nm.

A possible reason for the discrepancy will be discussed later.

Fig. 5.4 shows the simulated fG as a function L, providing a global picture

of the gyrotropic modes. The values of fG from the quasi-3D simulations, as

indicated by the red squares, are close to those from the experimental results

(black circles) for the entire thickness range shown in Fig. 5.4. Starting from the

smallest L, the frequency of the one-node mode is much larger than that of the

zero-node mode. The frequency of the zero-node mode increases with increasing

L. This increasing trend can be well-presented by the values of fG from the

2D simulations (black dotted line), because the zero-node mode is the only mode

observed in the 2D simulations. On the other hand, the frequency of the one-node

mode decreases with increasing L, as indicated schematically by the red dashed

curve. These two modes crossover at about L ∼ 160 nm. The true crossing of
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Figure 5.4: Thickness dependence of the gyrotropic mode frequencies. The experi-
mental results and the 2D simulations are indicated by the black circles and dotted
line respectively. The quasi-3D simulations are indicated by the red squares. The
dashed curve is a guide to the eyes for the thickness dependence of the one-node
mode (see text). The inset shows cartoons of the zero-node mode and the one-
node mode, corresponding to the increasing fG with increasing L (dotted line)
and the decreasing fG with increasing L (dashed line) respectively, as indicated
by the arrows.
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the eigenmodes, however, is forbidden. Instead, the eigenmodes in the crossover

regime become the superposition of the zero-node mode and the one-node mode,

resulting in an apparent mode repulsion, which is typical for the crossover of

modes in dynamical systems.

The superposition of the zero-node mode and the one-node mode can be seen

from the simulated gyrotropic mode spectrum for each of the five layers at three

representative L at 80, 160 and 200 nm, as shown Fig. 5.5. For the case of L = 80

nm, the spectra show two primary peaks at 0.5 and 2.2 GHz. The lower frequency

peak corresponds to the zero-node mode, and the power of the peak is the same

for the layers 1 to 5. The higher frequency peak corresponds to the one-node

mode, with the power decreasing to zero in layers 1 to 3, and increasing in layers

3 to 5. For the case of L = 160 nm (in the crossover region), the simulations

show no clear indication for the zero-node and one-node modes. The power of

the two primary peaks at 0.5 and 1.2 GHz both decrease from the surface layer

to the mid-layer of the disk, but neither of them show a true node at the layer 3.

This is consistent with the discussion above that, in the crossover region, the two

observed modes are superpositions of the zero-node and one-node modes. For the

case of L = 200 nm, the spectra show two primary peaks at 0.4 and 1.2 GHz. In

contrast to the case at L = 80 nm, it is the higher frequency mode that has the

characteristics of the zero-node mode.

In the micromagnetic simulations, the excitation field is uniform along the

normal axis of the disk. If the eigenmodes of the system are truly the zero-

node mode and one-node mode, the excitation field should only excite the zero-

node mode because of symmetry. As discussed above, in the crossover region

superpositions of the modes occurs. This is why for the case of L = 160 nm in

Fig. 5.5 both modes have similar response power. Away from the crossover region,

superpositions of the modes are less apparent than those in the corssover region,

resulting in the weaker response of the one-node mode away from the crossover

region.

Similar to the micromagnetic simulations, in experiment the excitation field is
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Figure 5.5: Gyrotropic mode spectra of 1 µm diameter Ni80Fe20 disks at three
representative thickness L = 80, 160, and 200 nm. Data were obtained from
quasi-3D simulations, in which the disks were divided by five layers. The arrows
indicate the frequencies of the two gyrotropic modes discussed in the text.
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uniform along the normal axis of the disk. The experimental results, however, do

not show the one-node mode when L is away from the crossover region, based on

the observed fG (Fig. 5.4). It is likely that the response of the one-node mode is

too weak to be resolved in experiment when L is away from the crossover region.

The underlying physics of the distinctive thickness dependences for the two

gyrotropic modes can be explained by the dominant energies associated with the

modes. Recall from Sec. 1.4.4 that, for the zero-node mode, the vortex remains

rigid, so that fG of the zero-node mode is determined by the magnetostatic energy.

In this case the vortex core can be treated as a particle oscillating in a parabolic

potential of the magnetostatic energy. The curvature of the potential increases

with increasing L, resulting the increasing trend of fG with increasing L for the

zero-node mode. In contrast, in the one-node mode the gyration of the vortex core

is associated with the distortion of the vortex core, and the energy associated with

the one-node mode is dominated by the exchange energy. Recall from Sec. 1.1.1

that the gradient of magnetization causes the exchange energy. The magnetization

gradient due to the distortion of the core decreases with increasing L, so that fG of

the one-node mode decreases with increasing L. A rigorous analytical treatment

is needed to fully understand the physics of the one-node mode, and the results

discussed in this chapter will provide the foundation for the development of the

analytical model.



Chapter 6

Summary

In this dissertation, I have reported on investigations of the linear and non-linear

regimes of vortex dynamics in a single magnetic disk over a large dynamic range

in drive amplitude. The spectra reveal important information about transitions

between different dynamical regimes. I have identified three distinct regimes of

vortex behavior: the pinned regime, a linear response regime corresponding to

ordinary gyrotropic motion, and finally the core reversal regime. In addition to

core reversal at high amplitudes, a second class of non-linear dynamics is asso-

ciated with the depinning transition, in which the response amplitude changes

hysteretically as a function of the excitation amplitude. The spectrum of the vor-

tex oscillations near the depinning threshold can be used to measure the strength

and range of a pinning potential, and a simple model captures the physics of the

depinning transition, including the existence of two metastable states (pinned and

unpinned). A direct observation of the pinning process in the time domain fur-

ther supports the concept of a localized pinning potential. This complete picture

of vortex dynamics including pinning will facilitate further developments of spin-

tronic devices that contain vortices, such as nanocontacts, nanopillars, magnetic

tunnel junctions, and write heads in computer hard disk drives.

Regarding the dominant mechanism of the vortex pinning, I have shown that

the dynamics of a single vortex allow for quantifying the energy and length scales
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associated with an individual pinning site. I have shown that, from studying the

vortex pinning as a function of film thickness, the measured pinning range, ap-

proximately 20 nm, is identical to the diameter of the vortex core, demonstrating

that the pinning defects interact only with the core of the vortex. The dominant

pinning defects are located on the surfaces. I have demonstrated quantitatively

that the pinning is correlated not with the RMS surface roughness but rather

with the roughness on the lateral length scale of the core diameter, i.e. an effec-

tive roughness. This pinning mechanism likely sets the minimum pinning energy

for vortex motion in most soft ferromagnetic thin-film devices, such as vortex do-

main walls in nanowires. These findings therefore provide important insights into

the properties of magnetic vortices in real materials.

I have shown that the dynamics of the vortex core can be treated in 2D for thin

disks. Besides the 2D gyrotropic mode, i.e. the zero-node mode, the one-node

mode has much larger fG than the zero-node mode in thin disks. I have shown

that the opposite thickness dependence of the two modes results in a crossover

region, at which the eigenmodes are the superposition of the zero-node and one-

node modes. The disk thickness at which the crossover occurs can be defined as

a critical thickness, which is determined by the disk diameter and the material.

For example, I have demonstrated that the critical thickness is ∼ 160 nm for 1

µm diameter Ni80Fe20 disks.

For future directions, the experimental techniques of characterizing pinning

defects in Ni80Fe20 can be applied to other soft ferromagnets. Recently, I have

successfully observed the gyrotropic mode of a single vortex in micron-sized disks

that are made of Co, Ni, and CoFe films. It will be interesting to investigate the

pinning mechanisms in these materials.

Another interesting research direction is to study the pinning of a pair of

vortices instead of a single vortex. Two coupled vortices can be obtained from

ferromagnetic films that are patterned into stadium shapes. It is likely that the

microscopic pinning mechanism will be the same as a single vortex. The com-

petition between the pinning strength of the defects and the coupling strength
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between the vortices may lead to interesting magnetization dynamics. The study

of two vortices will also suggest how the pinning of a single vortex is related to

the pinning of other magnetic structures, such as cross tie walls, which consist of

chains of coupled vortices and antivortices.
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Appendix A

Details of Magnetic Disk

Fabrication

This appendix explains the detailed processing procedure I used to fabricate the

Ni80Fe20 disks studied in this dissertation. A general overview of the process is

discussed in Sec. 2.1.2.

A.1 Details of the Device Fabrication Procedure

Before beginning the fabrication process, the wafers of the Ni80Fe20 films must first

be cleaved into a piece of appropriate size; the devices studied in this dissertation

were approximately 5× 5 mm2.

I. Spin PMGI/PMMA Bilayer Resist:

1. Prepare the PMGI resist by mixing PMGI SF6 with Type T

thinner with a ratio of 2 to 3. For example, this can be achieved

by mixing 80 ml of SF9 (9%) with 220 ml of T thinner.

2. Prepare the PMMA resist by mixing 12 ml of 495k PMMA A9

with 15 ml of Type A thinner.
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3. Clean the sample with solvents, N2 dry, and check under micro-

scope.

4. Prebake the sample at 105 C; 1 min on hotplate.

5. Spin PMGI at 4000 rpm for 20 seconds. If the sample is small

(<5×5 mm2), set the Headway spinner at 3000 rpm and ramp to

4000 rpm. This will prevent pooling of a resist at the edges. If it

still pools, start the spin at 4000 rpm immediately.

6. Bake the sample at 250C for 5 min using a hotplate. Let the

sample cool ∼ 1 to 2 minutes.

7. Spin PMMA by ramping slowly to 4000 rpm for 40 sec at the top

speed.

8. Bake the sample at 180 C for 3 minutes on a hotplate.

9. If results are unsatisfactory, use NMP and O2 asher to remove

the resists and start over.

II. Electron Beam Lithography (Vistec EBPG5000+):

1. Vent the load lock, load samples, and then pump down.

2. Use the command “ce cjob” to check the design and to export

the .job file

3. Wait until the pressure is below 4× 10−5 Torr.

4. Use the command “subl 1” or “subl 2” to load the holder.

5. Use the command “pg select holder” to select the holder. For the

small piece holder the ID number is 3.

6. Use the command “mvm” to check the holder.

7. Use the command “pg measure current” to measure the current.

8. Use the command “pg move pos [X]mm,[Y]mm –rel” to move the

electron gun to the center of the sample at (X,Y).
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9. Use the command “job [FILENAME.job] 3 0 [X in µm],[Y in

µm]” to start writing the pattern.

10. Use the command “pg archive restore beam 1nA 300um 6.beam 100”

to restore the beam to the latest calibrated beam file.

11. Use the command “subu 1” to unload the holder.

12. Unload the sample and pump down the load lock.

III. Develop:

1. Develop PMMA in MIBK:IPA :: 1:3 for 30 sec. Rinse in IPA to

stop.

2. Check under the microscope. Developed pattern has a gray color.

(High dose regions might show brighter color.)

3. Develop PMGI in Shipley CD-26:IPA :: 1:40 for 30 sec. Rinse in

IPA to stop develop and blow dry.

4. Inspect features using optical microscope.

IV. Deposit Ti (hard mask) and lift-off:

1. E-beam evaporate 70 nm thick Ti at ∼ 1 Å/s. The pressure

during deposition is ∼ 2×10−6 Torr. The deposition of Ti can be

done using either the CHA E-beam evaporator or the Temescal

E-beam evaporator. (The Ti thickness 70 nm is optimized to

process Ni80Fe20 films up to 300 nm thick.)

2. Place several cover glass slips with the sample to deposit witness

Ti films on the cover glass slips.

3. After the deposition, lift-off the Ti pattern in NMP on an 80 C

hotplate for 5-10 minutes. The resist should get lumpy on the

sample as it lifts off. (Avoid sonication since this can destroy the

smallest features.)
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4. Rinse the sample in acetone/ methanol/ IPA/ DI water and blow

dry.

V. Dry Etch Recipe:

1. Place a cover glass slip over a portion of the film to be milled to

aid in determining when milling is complete.

2. Ion mill settings: accelerator voltage: 100 V; beam voltage: 300

V; discharge: ∼ 50 V; beam current: 95 mA (achieved by adjust-

ing cathode); pump down to 8×10−6 mTorr (Ar on to 9×10−5

mTorr). Ion mill at 0 deg for 40 min (50 nm thick sample). Fin-

ish the ion mill process at 60 degree for 3 minutes. (Remember

to change to 0 degree before closing the shutter.)

3. Take a picture under microscope.

4. Use AFM to check the etched sample if the etching rate needs to

be calibrated.

5. Test the etching rate of the STS etcher using the witness cover

glass slip (with 70 nm thick Ti); The file name of the etching

recipe is “TCHEN200” (CF4). The etching time is about 3 min

0 sec for 70 nm Ti.

6. Etch the Ti layer on the permalloy samples after calibrating the

etching time. (Place a witness cover glass slip with the sample to

monitor the etching process.)

7. Deposit SiO2 (60 nm thick) on the samples using the Varian E-

beam evaporator in order to protect the patterned samples.

Once the samples have been fabricated, they should be stored under vacuum

until they are going to be measured.



Appendix B

Details of Experimental Setup

Figs. B.1 and B.2 show the detailed diagrams of the experimental setups I used

in the CW excitation and double modulation techniques. A general overview of

the techniques are discussed in Ch. 2.
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Figure B.1: Schematic diagram of the CW excitation technique.
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Figure B.2: Schematic diagram of the double-modulation excitation technique.



Appendix C

Glossary

C.1 List of Abbreviations

Table C.1: List of Abbreviatons

Abbreviation Meaning

2D Two-Dimensional

3D Three-Dimensional

AFM Atomic Force Microscopy

AM Amplitude Modulation

CPGW Coplanar Waveguide

CW Continuous Wave

EBL Electron Beam Lithography

FWHM Full Width at Half Maximum

LLG Landau-Lifshitz-Gilbert

MFM Magnetic Force Microscopy

PLL Phase Locked Loop

PM Pulsed Modulation

PMGI Polymethylglutarimide

Continued on next page
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Table C.1 – continued from previous page

Abbreviation Meaning

PMMA Polymethylmethacrylate

PSD Power Spectral Density

RMS Root Mean Square

RF Radio Frequency

SEM Scanning Electron Microscopy

TRKM Time-Resolved Kerr Microscopy
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C.2 List of Symbols

Table C.2: List of Symbols

Symbol Definition

A Exchange constant

C Vortex core chirality

D Damping constant

Dpin Pinning range

Epin Pinning energy

fG Gyrtropic mode frequency of a magnetic vortex

f0 Reduced repetition rate of the probe beam in TRKM

fpin Pinned gyrotropic mode frequency

F Force

Fdep Depinning threshold force,

FW Critical force at Walker breakdown

k Curvature (stiffness) of a parabolic potential

kpin Curvature (stiffness) of a pinning (parabolic) potential

kB Boltzmann constant = 1.38× 10−16 ergs/k

G Gyrovector

Hd Dipole field

Hdepin Depinning (static) field

Heff Effective magnetic field

Hext External magnetic field

h(t) Time-dependent excitation field

J Angular momentum

L Thickness of a magnetic disk

Lc Critical thickness

Lex Exchange length

Continued on next page
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Table C.2 – continued from previous page

Symbol Definition

LDW Domain-wall width

M Magnetization (magnetic moment per unit volume)

m Domain-wall mobility

mz Z-component of the magnetization normalized by Ms

Ms Saturation magnetization

P Vortex core polarization p = ±1

R Radius of a magnetic disk

r Displacement of a vortex core

s Cell height in quasi-3D micromagnetic simulations

T Temperature

vDW Domain-wall velocity

W Potential energy

Wex Exchange energy

WH Zeeman energy

Wms Magnetostatic energy

Wp Pinning potential

α Gilbert damping constant

δ The phase difference between rCCW and rCW

∆E Critical energy for a thermal activation process

γ Gyromagnetic ratio

λ Wavelength

µB Bohr magneton

ω0 Precession frequency of magnetization

θK Polar Kerr rotation

χY Displacement susceptibility of a vortex core in the y direction

∆H FWHM of the fG peak observed in pinning maps

σeff Effective roughness on the length scale of the vortex core


