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Abstract

In this research, low complexity turbo equalization algorithms are examined as an al-

ternatives to the optimal, but, much more complex, Bahl-Cocke-Jelinek-Raviv (BCJR)

algorithm. First, the soft-in soft-out (SISO) decision feedback equalizer (DFE) algo-

rithm with the extrinsic information mapping methods that directly take into account

the error propagation effects of DFE is presented. We also utilize a pair of DFE operating

in opposite directions in turbo equalization setting to remove the effect of intersymbol

interference (ISI) at the receiver with new extrinsic information combining strategy that

explores error correlation between the two sets of DFE outputs. When this method is

combined with the proposed DFE extrinsic information formulation, the resulting “bidi-

rectional” turbo-DFE achieves excellent performance-complexity tradeoffs compared to

the turbo equalization based on the BCJR algorithm. Furthermore, a self-iterating soft

equalizer (SISE) consisting of a few relatively weak equalizers is shown to provide robust

performance in severe ISI channels. Constituent suboptimal equalizers are allowed to

exchange soft information based on the method that are designed to suppress significant

correlation among their soft outputs. The resulting SISE works well as a stand-alone

equalizer or as the equalizer component of a turbo equalization system. The perfor-

mance advantages of the proposed algorithms are validated with bit-error-rate (BER)

simulations and extrinsic information transfer (EXIT) chart analysis.

In the thesis, provable lower bounds are also presented for the information rate

of any finite ISI channels. Let us consider I(X;X + S + N) where X is the symbol

drawn independently and uniformly from a fixed, finite-size alphabet, S a discrete-

valued random variable (RV) and N a Gaussian RV. Especially, when S represents the

precursor ISI after the infinite-length unbiased minimum mean-squared error (MMSE)

DFE is applied at the channel output, the mutual information I(X;X + S +N) serves

as a tight lower bound for the symmetric information rate (SIR) as well as capacity
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of the ISI channel corrupted by Gaussian noise. The new lower bounds are obtained

by first introducing a “mismatched” mutual information function that can be proved

as a lower bound to I(X;X + S + N) and then further lower-bounding this function

with expressions that can be computed via a few single-dimensional integrations with

a small computational load. The new bounds provide a similar level of tightness as the

well-known conjectured lower bound by Shamai and Laroia for a wide variety of ISI

channels of practical interest.
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Chapter 1

Introduction

1.1 Background

Assuming a channel with particular bandwidth and noise characteristics, it has been

demonstrated that error free transmission is possible if information is sent at a rate

less than the computable maximum information rate of the channel; this theoretical

limit on the rate of error-free transmission is expressed in terms of the channel capacity

[1]. More specifically, it was shown that for any given transmission rate lower than the

channel’s capacity, there are codes that can achieve an arbitrarily small probability of

error on a noisy channel by adding redundant information to the original message.

The first practical codes to approach the channel capacity for additive white noise

Gaussian noise (AWGN) channel, called turbo codes, were introduced in 1993 [2, 3].

The basic idea of this new coding scheme is to use a parallel concatenation of two

recursive systematic convolutional (RSC) codes with an interleaver between the encoders

[4]. The codes are decoded iteratively by exchanging the soft information between

two constituent soft-in soft-out (SISO) decoders. This key concept is expressed as the

“turbo principle” because of the similarity between the decoding algorithm and the

cyclic feedback mechanism in Turbo engines [5].
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Intersymbol interference (ISI), which occurs in high-speed digital communication

when transmitted symbols overlap with one another due to channel distortion, can also

make communication less reliable if it is not compensated for. In order to combat the

detrimental effect of ISI, the turbo principle has also been applied to the communication

system [6]. Analogous to the turbo codes, this receiving scheme is referred as the

turbo equalization, wherein a SISO equalizer (or detector) and a SISO error-correction

decoder exchange their soft information in an iterative fashion until reliable decisions

are generated. In this system, the ISI channel can be viewed as a specific non-recursive

convolutional encoder and the channel equalizer (or detector) may be regarded as a

corresponding convolutional decoder.

The detector or equalizer portion of the frequently investigated turbo equalizer (TE)

system is based on the Bahl-Cocke-Jelinek-Raviv (BCJR) [7] and the soft-output Viterbi

algorithms (SOVA) [8]. The BCJR algorithm exactly computes the a posteriori prob-

ability of the transmitted signal symbols considering the channel response and the a

priori information of the transmitted symbols and, as such, can be viewed as an op-

timum SISO equalizer. Meanwhile, the SOVA algorithm is a variation of the original

Viterbi algorithm; it incorporates the a priori information of the input symbols to the

path metrics and generates a soft-output reliability measure of the final path decisions.

However, the computational complexities of both algorithms grow exponentially as a

function of the channel length and the symbol alphabet set size. Therefore, the trellis

search equalization approach becomes impractical when the multipath channel is very

long or the symbol alphabet set size is very large [10,11].

Numerous less complex, but suboptimal, turbo equalization methods have been pro-

posed to mitigate the high computational complexity of the BCJR and SOVA methods;

many of these suboptimal equalizers are based on filters utilizing the a priori informa-

tion and can be classified as either SISO linear equalizers (LE), SISO decision feedback

equalizers (DFE), or SISO soft-feedback equalizers (SFE) which can be viewed as a hy-

brid of LE and DFE [12–25]. Specifically, SISO LEs adopt the soft extrinsic information
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from the decoder as the a priori information about the transmitted symbols, whereas

SISO DFEs use the hard estimates of previously equalized or decoded causal symbols

as their a priori information and the soft extrinsic information from the decoder as the

a priori information for anticausal symbols; some schemes even use the hard estimates

for anticausal symbols [21]. Similarly, SISO SFEs employ the soft a posteriori informa-

tion of the previously equalized causal symbols as their a priori information, and the

soft information from the decoder as the a priori information for anticausal symbols.

Regardless of the classification, the exact minimum mean-squared-error (MMSE) filters

all have a time-varying structure wherein each tap must be recalculated at each sym-

bol interval, and the resulting complexity increases at least as a quadratic function of

the filter length, which creates significant implementation challenges [13]. Furthermore,

even with the time-varying MMSE filters, these equalizers are still individually weak

when ISI is severe [24]. Thus, the primary objective of this research is the development

of an effective alternative equalization structure for communication systems.

Also in this dissertation, we are concerned with provable lower bounds for the maxi-

mum information rate in the communication systems that can be easily computed. The

computation of the symmetric information rate (SIR) of the classical discrete-time in-

tersymbol interference (ISI) channel is of great interest in digital communication. The

SIR represents the mutual information between the channel input and output while

the input is constrained to be independently and uniformly distributed (i.u.d.) over

the given alphabet. In this sense, the SIR is also known as capacity with uniform,

independent input distribution and itself represents a reasonably tight lower bound to

unconstrained channel capacity, especially at high coding rates. During recent years, a

number of researchers have worked on estimating or bounding the information rate via

simulation of the BCJR algorithm [7]. The information rate with a given input distribu-

tion can be closely estimated for finite ISI channels with moderate input alphabet size

and channel impulse response length, by running the forward-recursion portion of the

BCJR algorithm on long (pseudo) randomly generated input and noise samples [26–28].
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The simulation-based method has been further generalized, and lower and upper bounds

based on auxiliary finite-state channels with reduced states were introduced for long ISI

channels, as well as some non-finite state ISI channels in [29]. The tightness of these

bounds is highly related to the optimality of auxiliary channels, but the general rule to

find the optimal or near-optimal auxiliary channel has not been provided in [29]. The

work of [29] has been recently extended in [30] to further tighten the lower and upper

bounds by using an iterative expectation-maximization type algorithm to optimize the

parameters of the auxiliary finite-state channels. It is noted, however, that the global

optimality of the bounds in [30] is neither guaranteed, nor the lower bound is proven

to converge to a stationary point as iteration progresses. Another approach based on

auxiliary channels is also proposed to obtain a lower bound utilizing a mismatched

Ungerboeck-type channel response to achieve improved tightness for a given level of

computational complexity [31]. In the context of [31], the Ungerboeck-type response

is the channel’s response observed at the output of the matched filter front-end. As

such, the trellis search detection algorithms driven by the channel observations of the

Ungerboeck model must be designed so that they can handle correlated noise samples

[32].

An entirely different direction in estimating or bounding the information rate is

based on finding an analytical expression that can easily be evaluated or numerically

computed (in contrast to the methods based on Monte-Carlo simulation that rely on

generating pseudo-random signal and noise samples). An early work in this direction

is the lower bound on the SIR by Hirt [33] based on carving a fixed block out of the

channel input/output sequences and performing a single multi-dimensional integration

(or running Monte-Carlo simulation for estimating the integral) with the dimensionality

equal to the block size. However, this method is also computationally intense unless the

size of the block gets small. Unfortunately the lower bound of [33] is not tight unless

the block size is very large compared to the channel ISI length.

A number of more computationally efficient and analytically evaluated lower bounds
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for the SIR have been discussed in [34, 35]. Unfortunately, however, the only bound

presented in [35] that is reasonably tight throughout the entire signal-to-noise ratio

(SNR) region (i.e., both low and high code rate regimes) is the one that could not be

proved as a lower bound. This particular bound is now widely known as the Shamai-

Laroia conjecture (SLC) and, although unproven, is a popular tool for quickly estimating

the SIR of ISI channels. At high code rates, the SIR is generally very close to capacity,

so an easily computed tight SIR lower bound is also useful for quickly estimating channel

capacity for high code rate applications, such as data storage channels and optical fiber

channels.

Consider the random variable (RV) Y = X+S+N , where X is a symbol drawn inde-

pendently and uniformly from a fixed, finite-size alphabet set symmetrically positioned

around the origin, S a zero-mean discrete-valued RV, and N a zero-mean Gaussian RV.

It is well known that I(X;X + S + N) lower-bounds the SIR if S + N represents the

noise component of unbiased minimum mean-squared error decision feedback equalizer

(MMSE-DFE) filter output after ideal postcursor ISI cancellation [35]. The SLC is con-

cerned with the special case where S is a linear sum of symbols drawn independently

and uniformly from the same symbol set where X was taken. As the number of symbols

forming S grows, finding an analytical expression for the probability density function of

S +N (and thus one for I(X;Y )) is a long-standing problem [37,38], as pointed out in

[35]. The SLC of [35] can be stated as I(X;X + S +N) ≥ I(X;X +G), where G is a

Gaussian RV with variance matching that of S+N . The information rate I(X;X +G)

is easily obtained by numerically calculating a single one-dimensional integral, and is

generally observed to be reasonably tight to I(X;X + S +N) in most cases. Unfortu-

nately, I(X;X + G) remains as a conjectured bound with no proof available to date.

One difficulty of proving the SLC stems from the fact that for the channels driven by the

inputs from a finite alphabet, Gaussian noise is not the worst-case noise in terms of the

achievable information rate [35,36]. Another difficulty is that the power contribution of

a single individual weight involved in constructing S could remain a significant portion
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of the total power associated with all weights, even if the number of weights approaches

infinity. This is to say that the Lindberg condition for the central limit theorem does

not hold for this problem, and the Gaussian approximation of S cannot be justified [35].

In this thesis, we also provide the easily computable analytical expressions for lower

bounds to the SIR.

1.2 Problem Statement

We assume that the receiver knows the discrete-time baseband channel response accu-

rately. While the methods in this thesis discussed are general, our presentation will be

mainly based on binary symbols with PX , E(x2n) = 1, xn ∈ {±1}, as well as real-valued

ISI channel coefficients and noise samples. Although xn typically represents a coded bit

sequence, our analysis will assume that it is equiprobable and independent and identi-

cally distributed (i.i.d.). Given the transmitted bit sequence {xk}, the channel output

at time n is

rn =

Lh−1∑
k=0

hkxn−k + wn (1.1)

= h0xn + wn +

Lh−1∑
k=1

hkxn−k︸ ︷︷ ︸
ISI

(1.2)

where wn is AWGN with variance N0 and {hk} is the energy-normalized channel impulse

response with length Lh.

As shown in the equation (1.2), ISI can cause the wrong detection of xn at receiver.

Thus, our first question is how to suppress the ISI terms effectively and efficiently in

order to estimate xn with the given channel output sequence rn of (1.1). The second

question is how to quickly estimate the channel capacity (or SIR since the input is

assumed to be i.u.d.) for the discrete ISI channel model. The channel capacity C

(bits/channel use) for any finite-ISI channel corrupted by Gaussian noise is given as

C , lim
N→∞

1
2N+1I

(
{xk}N−N ; {rk}N−N

)
where {uk}N2

N1
= {uk, k = N1, N1 + 1, . . . , N2} [68].
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Figure 1.1: Turbo Equalization System.

The first question will be answered in Chapter 2, 3, and 4 while the second question

will be answered in Chapter 5.

1.3 Turbo Equalization

Turbo equalization is a well-established technique that is highly effective in combating

ISI via iterative exchange of soft decisions between a SISO equalizer and a SISO error-

correction decoder separated by an interleaver [6]. The original structure of turbo

equalization is described in Fig. 1.1.

In turbo equalization, the equalizer computes the a posteriori log-likelihood ratio

(LLR) of xn,

L(xn) , ln
Pr(xn = +1 | r)
Pr(xn = −1 | r)

where r is the entire or partial received sample block utilized for LLR estimation for

xn. Note that this computation requires the knowledge of the a priori probabilities

of all input bits affecting r. Since these a priori probabilities are not available, they

are all set to 1/2 initially and then, as the turbo iteration ensues, to the estimated

probability values based on the extrinsic information generated and passed back by the

outer decoder.

The equalizer then generates its own extrinsic information by subtracting the effect

of the probability estimate passed down for the current bit. Write this estimated a
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priori LLR passed down from the decoder as

La(xn) , ln
Pr(xn = +1)

Pr(xn = −1)

with an understanding that the probabilities in the expression are in reality just esti-

mates.

Then, the equalizer’s extrinsic LLR for xn to be passed to the error-correction code

decoder is given by

Le(xn) , L(xn)− La(xn).

This equation suggests first computing L(xn) based on the a priori probabilities of all

input bits including xn and then simply subtracting La(xn) to generate the extrinsic

LLR Le(xn). An alternative way of generating Le(xn) is to set La(xn) = 0 while

computing L(xn), i.e., suppress the effect of La(xn) in the calculation of L(xn):

Le(xn) = L(xn)|La(xn)=0.

The techniques discussed in this dissertation actually use the second method.

1.4 Trellis based Detection

In this section, we briefly review the BCJR algorithm of [7] and SOVA algorithm of [8].

Both algorithms are trellis-based, in the sense that they make use of a trellis diagram

showing all possible state transitions at each time step, induced by a finite-state Markov

channel model.

1.4.1 BCJR Algorithm

Given the entire received sequence, r = {r0, r1, . . . , rN−1}, BCJR algorithm exactly

computes the APPs of the transmitted symbols in the presence of the a priori infor-

mation of the transmitted symbols by considering the channel response and the noise
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variance. This algorithm is also referred as the maximum a posteriori (MAP) symbol

detection algorithm since it estimates xn maximizing the APP of a symbol, Pr(xn | r).

Let us denote s′, s, and s′′ as the past, current, and future states of the Markov

process respectively. Since Pr(xn | r) = Pr(xn, r)/Pr(r), Pr(xn, r) is computed instead

of Pr(xn | r). Then,

Pr(xn, r) =
∑
s′

αn−1(s
′) · γn(s′, s) · βn(s) (1.3)

where αn−1(s
′) , Pr(Sn−1 = s′, {rk}n−1

0 ), γn(s
′, s) , Pr(rn | Sn−1 = s′, Sn = s)Pr(xn),

and βn(s) , Pr({rk}N−1
n+1 | Sn = s). Since the noise is assumed to be AWGN, γn(s

′, s)

is simply given as (2πN0)
−1/2 exp(− (rn−on)2

2N0
)Pr(xn) where on is the noiseless channel

output corresponding to the state transition from s′ to s and Pr(xn) is the estimated a

priori probability. Moreover, the metric αn(s) and βn(s) can be computed recursively

[7]:

αn(s) =
∑
s′

αn−1(s
′) · γn(s′, s) (1.4)

βn(s) =
∑
s′′

βn+1(s
′′) · γn+1(s, s

′′) (1.5)

These equations represent the forward and backward recursions of BCJR algorithm,

respectively. Finally, the a posteriori LLR of xn is given as

L(xn), ln
Pr(xn = +1 | r)
Pr(xn = −1 | r)

= ln
Pr(xn = +1, r)

Pr(xn = −1, r)

= ln

∑
s′,xn=+1 αn−1(s

′) · γn(s′, s) · βn(s)∑
s′,xn=−1 αn−1(s′) · γn(s′, s) · βn(s)

(1.6)

Note that the above computations in probability domain can be also implemented in

log domain [39]. Furthermore, the approximated version of BCJR algorithm and its

improvement have been also discussed in [40–42].
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1.4.2 SOVA Algorithm

The classic Viterbi algorithm generates the hard decision of the codeword minimizing

the log-likelihood function [9]. It has been, therefore, modified to produce the soft

output by Hagenaur et. al [8]. The SOVA computes the probability of making a wrong

decision when the survivor paths on the trellis is chosen. Specifically, at time n, the path

metrics of a survivor path and its competing path, denoted by M s
n and M c

n respectively,

are defined as

M s
n =

1

2N0

n∑
k=0

(rk − osk)
2, M c

n =
1

2N0

n∑
k=0

(rk − ock)
2

where osk and ock are noiseless channel output corresponding to the survivor and com-

peting data path. Notice that M s
n ≤ M c

n. Then, the probability of selecting this path

is proportional to

Pr(survivor path) ∼ e−Ms
n , Pr(competing path) ∼ e−Mc

n

Therefore, the probability of selecting the wrong survivor path at time n is

Pw
n =

e−Mc
n

e−Ms
n + e−Mc

n
=

1

1 + e∆n

where ∆n = M s
n −M c

n.

Now, let us assume that Viterbi algorithm has made errors in e different positions

where the decisions of the competing path is different from the decisions of the survivor

path at time n. Then, denoting the probability of the previous erroneous decisions on

the survivor path as Pj , we can update these probabilities for the e different decisions

according to

Pj ← Pj(1− Pw
n ) + (1− Pj)P

w
n , j = j1, j2, . . . , je.

Finally, the SOVA algorithm produce the soft-output for xn as

L(xn), ln
Pr(xn = +1 | r)
Pr(xn = −1 | r)

= x̂n log

(
1− Pn

Pn

)
. (1.7)
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where x̂n is the estimated hard decision of Viterbi algorithm. Some researchers have

also worked to improve the performance of SOVA [43–48].

1.5 Thesis Outline

• Chapter 2 briefly reviews the previously developed filter based turbo equalization

algorithms, such as SISO LE and DFE, and then proposes the enhanced DFE

based turbo equalization with the modified LLR mapping method. Additionally,

the MMSE filters utilizing a priori information are summarized and SNR/MI

analyses for SISO LE and DFE are provided.

• In Chapter 3, the turbo equalization based on bidirectional DFE (BiDFE) is pre-

sented with its SNR figure-of-merit, and the noise correlation coefficient between

two DFEs is analyzed under the ideal decision feedback assumption.

• Chapter 4 describes the self-iterating soft equalizers (SISE) which can be em-

ployed in turbo equalization systems; more specifically, a proper way to extract

the extrinsic information from other constituent equalizers when the information

between the equalizers is highly correlated is shown.

• Chapter 5 investigates the analytical and provable lower bounds on the SIR or

capacity of the ISI channel corrupted by Gaussian noise. In all finite-ISI channels

examined, the proposed bound provides the same level of tightness as the SLC

to the SIR with a very reasonable computation load. Moreover, the analytical

method is much better in quickly producing a tight bound than the simulation-

based method in terms of complexity/accuracy tradeoffs.

• Chapter 6 draws final conclusions and suggests future research.

11



Chapter 2

SISO LE and DFE

Given the channel observation sequence, what is the best estimate for the transmitted

symbols in the sense of minimizing the mean-squared-error (MSE)? This question can

be answered with specific estimator structures in mind such as a single finite-impulse

response (FIR) filter or a combination of a FIR forward filter with a FIR feedback

filter. The former leads to the classical MMSE-LE whereas the latter corresponds to

the classical MMSE-DFE of [49].

Naturally, the MMSE solutions depend on the second order statistics involving all

underlying random variables - namely, the noise samples and the channel input symbols.

In the classical MMSE equalizer design, the assumed mean and variance of the input

symbols simply reflect those of the independent, equally-likely symbols since there exists

no a priori information about these symbols. In turbo equalization setting, however,

estimates of the a priori symbol probability do become available via the soft decisions

made by the outer decoder. As shown by the authors of [14], the classical MMSE equal-

izer design can be modified by incorporating the mean and variance of the symbols

estimated via the extrinsic symbol information generated by the decoder. The resulting

structure is a time-varying filter that needs to recalculate the filter taps at every symbol
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interval. Unfortunately, this time-varying structure also creates significant implemen-

tation challenges because the complexity of the filter tap computation increases at least

as a quadratic function of the total filter length.

In the classical, non-turbo setting (i.e., no iterative exchange of soft information

between the equalizer and the decoder), it has long been known that the DFE almost

always outperforms the LE, despite the fact that the DFE typically suffers from error

propagation. This is because when ISI is severe with the channel response showing nulls

or deep valleys within the Nyquist band, the LE is subject to large noise enhancement.

The work of [14], however, shows that when hard decisions are fed through the feedback

filter (to reduce complexity), the SISO DFE performs considerably worse than the SISO

LE, presumably due to error propagation.

In this chapter we first briefly review the results of [14] related to the SISO LE and

DFE to provide necessary background while establishing notations. We then readdresses

the DFE design issue in the turbo equalizer environment and shows that just as in

classical non-turbo setting, the DFE outperforms the LE, if extrinsic information is

reformulated in a way that combats error propagation more effectively. We also review

MMSE filter design methods that utilizes the reliability of the a priori information and

provide the SNR/MI analyses for previously developed filter based equalizers. This

chapter is based on [24,72].

2.1 SISO Linear Equalizer

The work of [14] has established an effective strategy of utilizing the a priori information

estimates from the outer decoder in calculating the equalizer tap coefficients. The gist

of the approach in [14] is a clever tweaking of the classical MMSE estimation principle

where the “mean” of the input symbols are constructed using the available a priori

information estimates and utilized in the linear estimator weight computation.

Based on the above principle and suppressing the effect of the a priori probability
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estimate on the current bit xn (i.e., E(xn) = 0) in an effort to extract the extrinsic

information, the MMSE filter taps (causal filter length Lf1, anticausal filter length Lf2,

and a total length Lf1 + Lf2 + 1) at time n are derived respectively as:

fn ,
[
f{n,−Lf1}, f{n,−Lf1+1}, . . . , f{n,Lf2}

]T
=
{
HΣnH

T + (1− zn)ss
T +N0I

}−1
s (2.1)

where H is a channel convolution matrix defined as

H ,


hLh−1 hLh−2 · · · h0 0 · · · 0

0 hLh−1 hLh−2 · · · h0 0 · · · 0

. . .
. . .

. . .

0 0 · · · 0 hLh−1 hLh−2 · · · h0

 ,

and Σn depends on E(xi), i = n − Lf1, . . . , n + Lf2, computed from the decoder out-

put as E(xi) = tanh(La(xi)/2). Specifically, Σn , Diag(zn−Lf1
, zn−Lf1+1, . . . , zn+Lf2

)

with zi , 1 − [E(xi)]
2. Adding the term (1 − zn)ss

T in (2.1) has the same effect

of suppressing E(xn) to zero in HΣnH
T . The cross correlation vector is defined as

s , H[01×Lf1
, 1,01×Lf2

]T .

The equalizer output is obtained as

yn = fTn · (rn −Hx̄n + E(xn)s) (2.2)

where the received vector is defined as rn ,
[
rn−Lf1

, rn−Lf1+1, . . . , rn+Lf2

]T
and the

symbols’ mean as x̄n ,
[
E(xn−Lf1

),E(xn−Lf1+1), . . . ,E(xn+Lf2
)
]T

. The addition of the

E(xn)s term is to suppress the effect of E(xn) in Hx̄n.

Define the symbol sequence xn ,
[
xn−Lf1

, . . . , xn+Lf2

]T
and the noise sequence as

wn ,
[
wn−Lf1

, . . . , wn+Lf2

]T
. Then, the linear filter output yn can be rewritten as

yn = (fTn H) ·
(
xn − E{ẋn}

)
+ fTn wn

= p{n,0}xn +

Lf2∑
k=−Lf1,k ̸=0

p{n,k}
(
xn+k − E(xn+k)

)
+

Lf2∑
k=−Lf1

f{n,k}wn+k

= p{n,0}xn + vn (2.3)
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where E{ẋn} ,
[
E(xn−Lf1

), . . . ,E(xn−1), 0,E(xn+1), . . . ,E(xn+Lf2
)
]T

. Moreover, pn ,[
p{n,−Lf1}, . . . , p{n,Lf2}

]
= fTn H and p{n,0} = fTn s especially. The sum of the noise

and the remaining ISI terms caused by the neighboring symbols is denoted by vn:

vn ,
∑Lf2

k=−Lf1,k ̸=0 p{n,k}
(
xn+k − E(xn+k)

)
+
∑Lf2

k=−Lf1
f{n,k}wn+k. The variance of vn

is

Var(vn), fTn Cov{rnrTn | xn = x}fn

= fTn
(
HΣnH

T − znss
T +N0I

)
fn (2.4)

= fTn
(
HΣnH

T + (1− zn)ss
T +N0I− ssT

)
fn

= fTn
(
HΣnH

T + (1− zn)ss
T +N0I

)
fn − fTn ss

T fn

= fTn s(1− sT fn). (2.5)

The equality of (2.4) holds because the variance of the current symbol, zn, should not

be counted for its noise variance and the last equality comes from the definition of fn

in (2.1).

Then, assuming that vn is AWGN, the extrinsic LLR is naturally given by

Le(xn), ln
Pr(xn = +1 | yn)
Pr(xn = −1 | yn)

∣∣∣∣∣
La(xn)=0

= ln
Pr(xn = +1, yn)

Pr(xn = −1, yn)

∣∣∣∣∣
La(xn)=0

=

{
ln

Pr(yn | xn = +1)

Pr(yn | xn = −1)
+ ln

Pr(xn = +1)

Pr(xn = −1)

} ∣∣∣∣∣
La(xn)=0

= ln
Pr(yn | xn = +1)

Pr(yn | xn = −1)
(2.6)

=−
∣∣yn − p{n,0}

∣∣2
2Var(vn)

+

∣∣yn + p{n,0}
∣∣2

2Var(vn)

=
2p{n,0}yn

Var(vn)
. (2.7)

The equality of (2.6) holds because La(xn) was already suppressed to zero in generating

yn.
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Figure 2.1: Decision Feedback Equalizer (DFE).

2.2 SISO Decision Feedback Equalizer

The structure of the classic DFE is shown in Fig. 2.1. The DFE consists of a linear

feedforward filter, a linear feedback filter, and a decision device. The feedforward filter

suppresses the pre-cursor ISI, on the other hand, the feedback filter cancels out the post-

cursor ISI. The results of two filters are added and then applied to a decision device to

determine the symbol of interest.

Like in the case of LE, the MMSE feedforward filter taps (a total of Lc+1) and the

feedback filter taps (a total of Ld = Lh − 1) at time n are derived respectively as:

cn ,
[
c{n,0}, c{n,+1}, . . . , c{n,Lc}

]T
=
{
HΣnH

T + (1− zn)ss
T +N0I

}−1
s (2.8)

dn ,
[
d{n,−Ld}, d{n,−Ld+1}, . . . , d{n,−1}

]T
=MHTcn (2.9)

where Σn , Diag(01×Ld
, zn, zn+1, . . . , zn+Lc) with zi , 1 − [E(xi)]

2. The remaining

vector and matrix are defined as s , H[01×Ld
, 1,01×Lc ]

T and M , [ILd×Ld
,0Ld×(Lc+1)].

The equalizer output is obtained as

yn = cTn · (rn −Hx̄n + E(xn)s) (2.10)

where the received vector is defined as rn , [rn, rn+1, . . . , rn+Lc ]
T and the compos-

ite vector of the causal symbol decisions and the anticausal symbols’ mean as x̄n ,

[x̂n−Ld
, . . . , x̂n−1,E(xn), . . . ,E(xn+Lc)]

T where x̂i is the available decision for xi based
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on the a posteriori LLR of xi, i.e., if L(xi) = La(xi) + Le(xi) ≥ 0, then, x̂i = +1;

otherwise, x̂i = −1.

Define the anticausal symbol sequence xn , [xn, xn+1, . . . , xn+Lc ]
T , the causal sym-

bol sequence xc
n , [xn−Ld

, xn−Ld+1, . . . , xn−1]
T , the available decision sequence x̂c

n ,

[x̂n−Ld
, x̂n−Ld+1, . . . , x̂n−1]

T , and the noise sequencewn , [wn, wn+1, . . . , wn+Lc ]
T . Then,

the combined filter output yn can be rewritten as

yn = (cTnH1) ·
(
xn − E{ẋn}

)
+ dT

n (x
c
n − x̂c

n) + cTnwn

= p{n,0}xn +

Ld∑
k=1

d{n,−k}
(
xn−k − x̂n−k

)
+

Lc∑
k=1

p{n,k}
(
xn+k − E(xn+k)

)
+

Lc∑
k=0

c{n,k}wn+k

= p{n,0}xn + in + vn (2.11)

where E{ẋn} , [0,E(xn+1),E(xn+2), . . . ,E(xn+Lc)]
T and H1 is the (Lc + 1) × (Lc +

1) submatrix of H formed by the entire rows of the columns from the (Ld + 1)th to

the last. Moreover, pn ,
[
p{n,0}, p{n,1}, . . . , p{n,Lc}

]
= cTnH1 and p{n,0} = cTns. The

error propagation caused by the mismatched hard decision feedback is denoted as in,

i.e., in ,
∑Ld

k=1 d{n,−k}
(
xn−k − x̂n−k

)
and vn is the sum of noise and the remaining

ISI terms caused by the neighboring symbols: vn ,
∑Lc

k=1 p{n,k}
(
xn+k − E(xn+k)

)
+∑Lc

k=0 c{n,k}wn+k. Same as LE, the variance of vn is

Var(vn), cTnCov{rnrTn | xn = x}cn

= cTn
(
HΣnH

T − znss
T +N0I

)
cn

= cTns(1− sTcn). (2.12)

Assuming that the feedback decisions are all correct, i.e., in = 0, and vn is AWGN, the

extrinsic LLR is naturally given by

Le(xn) = ln
Pr(yn | xn = +1)

Pr(yn | xn = −1)

=
2p{n,0}yn

Var(vn)
. (2.13)

However, this LLR mapping method is prone to error propagation. Therefore, SISO

DFE has been a less preferred choice as an iterative equalizer structure to eliminate
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the ISI although it was observed in [50–52] that DFE with ideal decision feedback can

outperform the LE on various ISI channels.

2.3 Proposed SISO Decision Feedback Equalizer

While the MAP estimation of in is equal to zero, we observe that the chance of in ̸= 0

is relatively high for severe ISI channels. In order to mitigate the error propagation

in DFE, many techniques [53–56] have been investigated in the classical equalization

system. On the other hand, our strategy in turbo equalization system is to estimate in

and utilize the statistical parameters associated with this estimate in the formulation

of the extrinsic information. Since in is to be estimated on the basis of the observation

yc
n , [yn−Ld

, yn−Ld+1, . . . , yn−1]
T , E(in) and Var(in) can be defined as the conditional

mean and variance, i.e.,

E(in),E(in|yc
n) = E

{
dT
n (x

c
n − x̂c

n) | yc
n

}
=dT

n (tanh(L(xc
n)/2)− x̂c

n) (2.14)

Var(in),Var(in | yc
n) = Var

{
dT
n (x

c
n − x̂c

n) | yc
n)
}

=dT
n Σ́

c
ndn (2.15)

where L(xc
n) = [L(xn−Ld

), . . . , L(xn−1)]
T , Σ́c

n , Diag (źn−Ld
, . . . , źn−1), and źn = 1 −

tanh(L(xn)/2)
2.

Now, let us consider the possible causal error sequence ec{n,j} , xc
{n,j} − x̂c

n for

j = 1, 2, . . . , 2Ld . Then, we can compute the extrinsic information for the given causal

error sequence ec{n,j}:

Le(xn|ec{n,j}), ln
Pr(yn | xn = +1, ec{n,j})

Pr(yn | xn = −1, ec{n,j})

=
2p{n,0}(yn − dT

ne
c
{n,j})

Var(vn)
. (2.16)

To compute the extrinsic information of xn taking into account the probabilities of
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possible error sequences, we write

Pr(yn | xn = +1)=

2Ld∑
j=1

Pr(yn | xn = +1, ec{n,j})Pr(e
c
{n,j})

=

2Ld∑
j=1

exp
(
Le(xn|ec{n,j})

)
Pr(ec{n,j})

1 + exp
(
Le(xn|ec{n,j})

) (2.17)

Pr(yn | xn = −1)=
2Ld∑
j=1

Pr(yn | xn = −1, ec{n,j})Pr(e
c
{n,j})

=

2Ld∑
j=1

Pr(ec{n,j})

1 + exp
(
Le(xn|ec{n,j})

) . (2.18)

Accordingly, the extrinsic information of xn considering the distribution of in is given

as

Le(xn) = ln


2Ld∑
j=1

exp
(
Le(xn|ec{n,j})

)
Pr(ec{n,j})

1 + exp
(
Le(xn|ec{n,j})

)
− ln


2Ld∑
j=1

Pr(ec{n,j})

1 + exp
(
Le(xn|ec{n,j})

)
 .

(2.19)

In principle, the extrinsic information of (2.19) can be evaluated using (2.16) and approx-

imating Pr(ec{n,j}) or Pr(e
c
{n,j}|y

c
n) by

∏Ld
k=1 Pr(e{n−k,j}|yn−k), which can be computed

based on the a posteriori LLRs of xc
n.

However, since the computational complexity of (2.19) increases exponentially ac-

cording to the length of feedback filter, Ld, we seek a more practical modification. A

possible solution is to apply the Bayes’ rule only for the two mutually exclusive cases

of in = 0 and in ̸= 0. Then,

Pr(yn | xn = +1)=
exp (Le(xn|in = 0))Pr(in = 0)

1 + exp (Le(xn|in = 0))
+

exp (Le(xn|in ̸= 0))Pr(in ̸= 0)

1 + exp (Le(xn|in ̸= 0))

(2.20)

Pr(yn | xn = −1)= Pr(in = 0)

1 + exp (Le(xn|in = 0))
+

Pr(in ̸= 0)

1 + exp (Le(xn|in ̸= 0))
. (2.21)
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The extrinsic information of xn for each case of in can be estimated as

Le(xn|in = 0)=
2p{n,0}yn

Var(vn)
(2.22)

Le(xn|in ̸= 0)= ln


2Ld∑

j=1,ec{n,j} ̸=0

exp
(
Le(xn|ec{n,j})

)
Pr(ec{n,j}){

1 + exp
(
Le(xn|ec{n,j})

)}
Pr(in ̸= 0)


− ln


2Ld∑

j=1,ec{n,j} ̸=0

Pr(ec{n,j}){
1 + exp

(
Le(xn|ec{n,j})

)}
Pr(in ̸= 0)


≃ ln


2Ld∑

j=1,ec{n,j} ̸=0

(
1

2
+

Le(xn|ec{n,j})
4

)
Pr(ec{n,j})

Pr(in ̸= 0)


− ln


2Ld∑

j=1,ec{n,j} ̸=0

(
1

2
−

Le(xn|ec{n,j})
4

)
Pr(ec{n,j})

Pr(in ̸= 0)

 (2.23)

= ln

{
E
in

(
1

2
+

2p{n,0} (yn − in)

4Var(vn)

∣∣∣∣∣in ̸= 0

)}

− ln

{
E
in

(
1

2
−

2p{n,0} (yn − in)

4Var(vn)

∣∣∣∣∣in ̸= 0

)}

= ln

{
1 +

p{n,0} (yn − E(in|in ̸= 0))

Var(vn)

}
− ln

{
1−

p{n,0} (yn − E(in|in ̸= 0))

Var(vn)

}

≃

2φn/(1− φn) if φn < 0

2φn/(1 + φn) otherwise
(2.24)

=
2φn

1 + |φn|
(2.25)

where φn , p{n,0} (yn − E(in|in ̸= 0))/Var(vn). The approximation of (2.23) is from

the first order Taylor expansion at zero, i.e, ex/(1 + ex) ≃ 0.5 + 0.25x and 1/(1 +

ex) ≃ 0.5 − 0.25x. We also use ln {1 + φn} − ln {1− φn} = ln {1 + 2φn/(1− φn)} =

− ln {1− 2φn/(1 + φn)} and ln(1+x) ≃ x in (2.24): ln {1 + 2φn/(1− φn)} ≃ 2φn/(1−

φn) is used for φn < 0 while − ln {1− 2φn/(1 + φn)} ≃ 2φn/(1 + φn) is used for
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φn ≥ 0. Furthermore, the conditional mean E(in|in ̸= 0) can be estimated by the a

posteriori LLRs of Ld causal symbols. In other words, E(in|in ̸= 0) = E(in)/Pr(in ̸= 0)

where E(in) is given in (2.14) and Pr(in ̸= 0) = 1 − Pr(in = 0) with Pr(in = 0) =∏Ld
k=1 exp(|L(xn−k)|)/(1 + exp(|L(xn−k)|)). Finally, the extrinsic information of xn is

given as

Le(xn) = ln

{
exp (Le(xn|in = 0))Pr(in = 0)

1 + exp (Le(xn|in = 0))
+

exp (Le(xn|in ̸= 0))Pr(in ̸= 0)

1 + exp (Le(xn|in ̸= 0))

}
− ln

{
Pr(in = 0)

1 + exp (Le(xn|in = 0))
+

Pr(in ̸= 0)

1 + exp (Le(xn|in ̸= 0))

}
. (2.26)

While this gets passed to the outer decoder as equalizer’s extrinsic information, hard

decisions that propagate down the feedback filter are generated by slicing Le(xn) +

La(xn) where La(xn) is the extrinsic information from the decoder. Note that the

original structure of DFE is not modified, only LLR mapping method is newly adopted.

Another improved LLR mapping methods for DFE also exists [23].

2.4 Low Complexity Filter Derivations

As also discussed in [14], the filter tap values derived above are time-varying and creates

significant implementation challenges because the filter taps need to be recalculated

at each time index n. In an effort to reduce the complexity associated with time-

varying filter implementation, low complexity filter computations have been introduced

in [13,14,16–18].

2.4.1 Time-invariant Filters

A low-complexity variation would be to simply assume the variane of xn is equal to

1 (zn = 1) for all n during the filter derivations. These time-invariant-filters based

approaches can reduce the complexity to a linear function of the filter length since the

filter computation is not necessary at each time index n.
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MMSE Linear Equalizer

The time-invariant filter of LE is given as

f ,
[
f−Lf1

, f−Lf1+1, . . . , fLf2

]T
=
{
HHT +N0I

}−1
s. (2.27)

Note that, even though the time-invariant filters are used, the a priori information

is exploited to subtract the mean values of the channel observation vector rn (see (2.2)).

Then, as shown in [14], the MSE (or the variance of vn) of the equalized output, yn, is

Var(vn) = fT
(
HΣnH

T − znss
T +N0I

)
f .

The extrinsic information can be generated by using (2.7) with a Gaussian RV assump-

tion of vn.

MMSE Decision Feedback Equalizer

The time-invariant filters of DFE are also given as

c, [c0, c+1, . . . , cLc ]
T

=
{
HΣHT +N0I

}−1
s (2.28)

d, [d−Ld
, d−Ld+1, . . . , d−1]

T

=MHT c (2.29)

where Σ , Diag(01×Ld
,11×(Lc+1)).

Again, even though the time-invariant filters are used, the a priori information is

exploited to subtract the mean values of the channel observation vector rn (see (2.10))

and enhance a posteriori LLR computation: Le(xn) + La(xn). Then, the mean and

variance of in and the noise variance of vn with the time-invariant filters are also given
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by

E(in) =dT (tanh(L(xc
n)/2)− x̂c

n) (2.30)

Var(in) =dT Σ́c
nd (2.31)

Var(vn) = cT
(
HΣnH

T − znss
T +N0I

)
c. (2.32)

Also, the extrinsic information can be obtained in a similar way to (2.26).

2.4.2 Iteration-varying Filters

While the overall complexity is reduced, the time-invariant filters do not provide good

performance as the maximum achievable output SNR by this equalizer cannot approach

the matched filter bound (MFB), the attainable output SNR when no ISI is introduced.

In other words, when the perfect a priori information is available for all xn, i.e., E(xn) =

xn for all n, the output SNR should be equal to the MFB ideally, but time-invariant-

filter-based equalizers cannot achieve the MFB since the filters have not been derived

on the premise of the perfect a priori information.

A hybrid scheme that switches between two time-invariant filter settings - one cor-

responding to the case of no a priori information and one to the case of the perfect

a priori information - is also discussed in [14]. Unfortunately, this switching method

requires accurate timing of when the switch must take place. Predicting the switching

time based on the extrinsic information transfer (EXIT) chart of [63] is suggested in [64]

for the LE. However, accurately-timed switching is hard to achieve in practice. This is

true especially with the DFE and BiDFE methods for which the EXIT characteristic is

not easy to be characterized due to the non-negligible effect of error propagation. This

switching method is extended to the adaptive LE based on the classification of the a

priori information block [65].

Another solution, as discussed in [13,16–18,22,25], would be the filter tap updating

for each iteration rather than for each time index which also leads linearly growing

complexity with the filter length same as the time-invariant filter. Specifically, the filter
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taps are recomputed only once for each iteration, by replacing the variance of xn with

the “iteration-varying” quantity z(k), which is the time-averaged variance of xn at the

kth turbo iteration, for all n, i.e., zn = z(k), [13]. Although this method gives rise

to suboptimal filters for each individual received sample block, the resulting filters are

optimal in the sense of minimizing the averaged MSE of the overall equalized outputs

when the filters are constrained to be time-invariant. Note that these iteration-varying

filters can be also utilized for DFE although the iteration-varying filters are introduced

only for LE in [13].

Linear Equalizer

The iteration-varying filter for the LE at the kth turbo iteration is given by

f (k) ,
[
f
(k)
−Lf1

, f
(k)
−Lf1+1, . . . , f

(k)
Lf2

]T
=
{
HΣ(k)HT + (1− z(k))ssT +N0I

}−1
s (2.33)

where Σ(k) , z(k)I and z(k) , zn = 1−1/N
∑N−1

n=0 tanh(La(xn)/2)
2. Notice that, unlike

in [25], the a priori information from the decoder is directly employed, i.e., no need to

generate a Gaussian random variable. Then, the MSE (or the variance of vn) of the

equalized output, yn, is

Var(vn) = f (k)T
(
HΣnH

T − znss
T +N0I

)
f (k).

It can be shown that this filter actually corresponds to the minimum time-averaged

MSE solution. Let us prove this. Let f (k) denote the time-invariant LE filter at the kth

turbo iteration. Then, the optimal filter, f (k), minimizing the time-averaged MSE of
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the overall equalized outputs is given by

f (k) , argmin
f (k)

1

N

N−1∑
n=0

Var(vn)

= argmin
f (k)

1

N

N−1∑
n=0

f (k)T
(
HΣnH

T − znss
T +N0I

)
f (k)

=argmin
f (k)

f (k)T
(
HΣnH

T − znss
T +N0I

)
f (k)

=argmin
f (k)

f (k)T
(
HΣ(k)HT − z(k)ssT +N0I

)
f (k)

=
{
HΣ(k)HT + (1− z(k))ssT +N0I

}−1
s (2.34)

where Σ(k) , z(k)I and z(k) , zn = 1/N
∑N−1

n=0 zn. The last equality comes from the

orthogonal principle. This expression is identical to the iteration-varying filter of (2.33),

and the proof is completed.

Just as in the time-invariant filters, the available individual a priori information is

still exploited via the subtraction of the mean values of the channel observation vector

rn (see (2.2)). Finally, the extrinsic information is obtained using (2.7), assuming a

Gaussian vn.

Decision Feedback Equalizer

The iteration-varying filters of the DFE at the kth turbo iteration are given by

c(k) ,
[
c
(k)
0 , c

(k)
+1, . . . , c

(k)
Lc

]T
=
{
HΣ(k)HT + (1− z(k))ssT +N0I

}−1
s (2.35)

d(k) ,
[
d
(k)
−Ld

, d
(k)
−Ld+1, . . . , d

(k)
−1

]T
=MHT c(k) (2.36)

where Σ(k) , z(k) · Diag(01×Ld
,11×(Lc+1)). Again, the available individual a priori

information is utilized in calculation of the equalized output (2.10).
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The mean and variance of in and the noise variance of vn with the iteration-varying

filters are also given by

E(in) =d(k)T (tanh(L(xc
n)/2)− x̂c

n) (2.37)

Var(in) =d(k)T Σ́c
nd

(k) (2.38)

Var(vn) = c(k)T
(
HΣnH

T − znss
T +N0I

)
c(k). (2.39)

The extrinsic information is obtained using (2.26) assuming a Gaussian vn but taking

into account the possibility of in ̸= 0. The optimality of this DFE filter in the sense of

minimum time-averaged MSE can be established using a similar proof as the LE case

above.

2.4.3 Complexity Comparison

Let us consider the computational complexity of different filter types. Assuming binary

symbols, the total required numbers of multiplications per iteration for the classical

time-invariant filter, the time-varying filter, and the iteration-varying filter are roughly

NL, N(L + L2), and NL + L3, respectively, where N is the total number of symbols

per codeword and L is the filter length. It is assumed that the matrix inversion in filter

tap computation requires complexity O(L3), but the complexity of the time-varying

filter derivation can be reduced to O(L2) using a recursive method [13]. It is easily seen

that if the codeword length is much longer than the filter length, which is commonly

the case, then the per-iteration, per-symbol complexity of the time-invariant filter, the

time-varying filter, and the iteration-varying filter goes as O(L), O(L2), and O(L),

respectively.

2.5 Performance Comparison

In this section, the performance of an equalizer with various filter types are considered.

When no a priori information is available, i.e., E(xn) = 0 (or La(xn) = 0) for all n, the
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time-varying filter, the time-invariant filter and the iteration-varying filter all obviously

become identical.

Now, let us consider the ideal condition for the equalizer where the perfect a priori

information is available, i.e., E(xn) = xn (or La(xn) = ±∞) for all n. This condition

may be satisfied when several iterations are performed at high SNRs in turbo equaliza-

tion. Then, the remaining ISI terms in the equalized output for the LE and DFE as well

as the error propagation variable for the DFE will disappear subsequently. Moreover,

the time-varying filter and the iteration-varying filter will converge to the normalized

matched filter regardless of the equalization algorithm used. Accordingly, the unbiased

output SNR associated with the LE and DFE with the time-varying and the iteration-

varying filters will be equal to that of the matched filter. Finally, the LE and DFE will

produce the same equalized output and the unbiased output SNRs with the time-varying

and the iteration-varying filters are given by

SNR∞,LE = SNR∞,DFE = MFB =
PX

N0
(2.40)

where SNR∞ denotes the unbiased output SNR with the perfect a priori information.

On the other hand, the maximum achievable unbiased output SNRs with the time-

invariant filters are given as

SNR∞,LE =
p20E(x

2
n)

Var(vn)
=

PX

N0

(
(fT s)2

fT f

)
(2.41)

SNR∞,DFE =
p20E(x

2
n)

Var(vn)
=

PX

N0

(
(cT s)2

cT c

)
(2.42)

where p0 is the bias weight on the transmitted symbol xn in the equalized output yn,

generated by the time-invariant filters (see (2.2) and (2.10)). Specifically, p0 = fT s for

the LE and p0 = cT s for the DFE. Since the residual ISI terms disappear in the noise

vn, Var(vn) = N0f
T f for the LE while Var(vn) = N0c

Tc for the DFE.

The values inside the parentheses of (2.41) and (2.42) depend on the channel response

and the channel input SNR, but they are less than 1 unless the channel is the ideal

AWGN channel or the channel input SNR is zero, i.e., PX/N0 = 0; thus, these output
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SNRs are also less than the MFB. Moreover, SNR∞,DFE is higher than SNR∞,LE since

the time-invariant feedforward filter of DFE can be viewed as the LE filter derived by

assuming the a priori information for the causal symbols is perfect at least. Finally,

SNR∞,LE ≤ SNR∞,DFE ≤ MFB =
PX

N0
(2.43)

where the equalities only hold on the ideal AWGN channel or at zero channel input

SNR.

In order to incorporate the above output SNR analysis with the EXIT chart, we

further compute the analytical MI with these output SNRs. Because the Gaussian

noise term only remains in the equalized output under the perfect a priori information,

the MI is simply given as

Cb(R), 1−
∫ ∞

−∞

e−τ2/2

√
2π

log2

{
1 + e−2

√
Rτ−2R

}
dτ (2.44)

where Cb(R) is the SIR of the binary-input Gaussian channel with SNR given by R.

Note that the MI computed by substituting R = SNR∞ in (2.44) is the maximum

attainable MI by an equalizer. The corresponding numerical results will be presented

in conjunction with the discussion of the EXIT chart analysis results.

2.6 Numerical Results

In this section, simulation results of several iterative equalization schemes are presented.

The transmitted symbols are encoded with a recursive rate-1/2 convolutional code en-

coder with parity generator (1+D2)/(1+D+D2) with 211 message bits and are modu-

lated by binary phase-shift keying (BPSK) so that xn ∈ {±1}. We also assume that the

noise is AWGN, and the noise variance and the channel information are perfectly known

to the receiver. The impulse response of the ISI channel h1 = (1/
√
19)[1 2 3 2 1]T

investigated in [14] is used for evaluating the performance of iterative equalizers. This

channel is considered a severe ISI channel as the channel spectra possess nulls over the
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Figure 2.2: Frequency Response of the ISI Channel h1 = (1/
√
19)[1 2 3 2 1]T .

Nyquist band, as shown in Fig. 2.2. The decoder is implemented using the BCJR algo-

rithm. Only the SISO equalizer changes from one scheme to another. The DFE with 17

feedforward taps and 4 feedback taps (Lc = 16 and Ld = 4) is used for both the normal

and the time-reversed DFEs while the LE uses 21 taps (Lf1 = 10 and Lf2 = 10). In the

figures, the “Proposed DFE” uses the proposed LLR mapping of (2.26) while “DFE”

uses the conventional LLR mapping of (2.13) (as used in [14]). Furthermore, the sym-

bols “TV-”, “TI-”, and “IV-” in the legend box denote equalizers with time-varying

filters, time-invariant filters, and iteration-varying filters, respectively. For instance,

“TV-LE” is the LE with the time-varying filter (or the exact MMSE in [13, 14]) and

“IV-LE” is the LE with the iteration-varying filter (or the low-complexity (LC) approx-

imate MMSE in [13]). Finally, the “MAP” is the optimal equalizer implemented via the

BCJR algorithm.

First, let us consider the computational complexity of the various equalizers. As

shown in [14], the number of multiplications and additions increases as an exponential
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function of the channel memory length for the MAP equalizer whereas the number of

the same operations is a quadratic function of both the channel memory length and the

filter length for the time-varying filter based approaches. The number of operations, on

the other hand, increases only linearly for the time-invariant and the iteration-varying

filter based approaches.

Fig. 2.3 shows the performance of several turbo equalizers with time-varying filters

after 20 iterations. TV-DFE with the conventional LLR mapping shows poor perfor-

mance but once the proposed LLR generations are used (“Proposed TV-DFE”), the

DFE performance becomes clearly better than the TV-LE method of [14], except at

very high SNRs where all schemes other than the conventional DFE perform compara-

bly.

Fig. 2.4 shows the bit error rate (BER) performance of time-invariant filter based

turbo equalizers. As the figure indicates, the “Proposed TI-DFE” also shows the supe-

rior performance to the “TI-DFE” and “IV-LE”. Also notice that “Proposed TI-DFE”

achieves decision-error-free performance at low BERs, indicating the error propagation

effect has been nearly eliminated using the proposed LLR generation method. However,

the equalizers with the time-invariant filters have their performance limitations since

the time-invariant filters do not fully exploit the a priori information from the decoder.

The performance with the iteration-varying filters are shown in Fig. 2.5. Again,

the “Proposed IV-DFE” shows the better BER performance than the “IV-DFE” and

“IV-LE”. Note that the performance with the iteration-varying filters is very close

to the performance with the time-varying filters while achieving a low computational

complexity nearly equal to the time-invariant filters.

The performance of the turbo equalizers are analyzed by using the EXIT chart [63],

a diagram demonstrating the MI transfer characteristics of the two constituent modules

which exchange soft information. In the EXIT charts, the behavior of the channel

equalizer is described with its input and output on the horizontal and vertical axis,

respectively, while the behavior of the decoder is described in the opposite way. The
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EXIT chart curves typically define a path for the MI trajectory to move up during

iterative processing of soft information. Moreover, the number of stairs that a given MI

trajectory (averaged over 1000 sample codeword blocks here) takes to reach the highest

value indicates the necessary number of iterations toward convergence.

Figs. 2.6, 2.7, and 2.8 show the EXIT chart corresponding to time-varying-filter-

based, time-invariant-filter-based, and iteration-varying-filter-based equalizers for h1 at

a 7 dB SNR respectively. The maximum MI with SNR∞,DFE and SNR∞,LE achieved by

the corresponding filter types are also plotted in the figures. As the figures show, the

trajectories of “TV-DFE”, “TI-DFE”, and “IV-DFE” move up for the first couple of

iterations, but then quickly fizzle out due to the inadequate extrinsic LLR generations

that cannot handle error propagation. However, the trajectories of “Proposed TV-

DFE”, “Proposed TI-DFE”, and “Proposed IV-DFE” keep moving up as the number of

iterations increases, clearly indicating the advantage and effectiveness of the proposed

LLR generation method. However, when time-invariant filters are used, the trajectory

of “Proposed TI-DFE” and “TI-LE” fail to approach 1 bit of MI even though they keep

moving up towards its own maximum MI limit as the number of iterations increases.

Furthermore, as expected, the maximum MI of TI-DFE is higher than the maximum

MI of TI-LE which confirms why the BER performance of TI-DFE is better than that

of TI-LE in Fig. 2.4.

2.7 Summary

In this chapter, we reviewed low-complexity turbo equalization methods based on LE

and DFE structures of [14] and proposed new SISO DFE structure well-suited to turbo

equalization. The proposed LLR generation for DFE designed to reduce error propaga-

tion indeed provide its decision-error-free performance in turbo equalizer settings. We

also provide the SNR/MI analyses for previously developed filter based equalizers, LE

and DFE.
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37



Chapter 3

SISO Bidirectional DFE

Recently, it has been shown [58–60], that conducting both normal and time-reversed

equalization of the received data sequence with two DFEs (or SFEs) running in oppo-

site directions and combining two DFE (or SFE) outputs is very effective in reducing

error propagation and improving BER performance. This “bi-directional” DFE (called

BiDFE) algorithm takes advantage of the different decision error and noise distributions

at the outputs of the forward and time-reversed DFEs [59,60].

In this chapter, a specific DFE extrinsic information combining strategy applied to

a BiDFE scheme is addressed to suppress statistical correlation between the outputs of

two opposite direction DFEs. We show that the resulting turbo BiDFE performance

approaches the performance of the BCJR-based turbo equalizer in a fairly severe ISI

environment, easily outperforming the turbo equalizer based on the SISO LE and SISO

DFE. Moreover, unlike the LE and DFE, the BiDFE algorithm can be designed to avoid

performance degradation even when the filter taps are constrained to be time-invariant

[24]. This chapter is written based on [24,72].
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3.1 SNR Advantage of BiDFE

The idea of BiDFE is already motivated in [59,60] by the fact that DFE can be performed

on the reversed received sequence using the time-reversed channel response. Here we

derive the SNR figure-of-merit for BiDFE assuming ideal feedback in both ways and

allowing infinitely long filter lengths. We then compare the result with those of the

usual, single-sided DFE as well as the matched filter detector (i.e., ideal detector under

zero-ISI condition). As will be seen, the ideal BiDFE SNR is significantly better than

the ideal DFE SNR especially at high channel SNRs, further motivating a turbo BiDFE

scheme.

3.1.1 Unbiased DFE

It is well known that the D-transforms of the feedforward and feedback MMSE-DFE

filter coefficients are, respectively [52]:

c(D) =
PX

P0g∗(D−∗)
, d(D) = g(D) (3.1)

where P0 is such that logP0 = 1
2π

∫ π
−π logRss(e

−jθ)dθ and g∗(D−∗) is obtained from

spectral factorization: Rss(D) = PXRhh(D) + N0 = P0g(D)g∗(D−∗) where Rhh(D) =

h(D)h∗(D−∗) and h(D) is the D-transform of the channel impulse response.

The unbiased equalized outputs of the normal MMSE-DFE in the forward direction,

Yf (D), are given by

Yf (D) = x(D) +
P0

P0 −N0
e′f (D) (3.2)

where

e′f (D), N0

P0

(
1− 1

g∗(D−∗)

)
x(D) +

PXw′(D)

P0g∗(D−∗)
(3.3)

with w′(D) denoting a complex-valued Gaussian noise sequence with autocorrelation

function Rw′w′(D) = N0Rhh(D). Then, the MSE and SNR of the unbiased normal
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MMSE-DFE are given by

MSEUDFE =

(
P0

P0 −N0

)2

E(|e′f,n|2) =
PXN0

P0 −N0
(3.4)

SNRUDFE , PX

MSEUDFE
=

P0 −N0

N0
. (3.5)

3.1.2 Unbiased Time-Reversed DFE

Now, let us assume that the transmitted data sequence xn is of a finite length so

that the MMSE-DFE can be performed on the time-reversed received signals using

the time-reverse of the original channel impulse response [61]. Denoting the time-

reversed ISI channel coefficients as h̃n = h∗Lh−1−n, its D-transform is given as h̃(D) =

DLh−1h∗(D−∗). Therefore, the D-transform of the autocorrelation function of the time-

reversed channel is given by Rh̃h̃(D) = h̃(D)h̃∗(D−∗) = Rhh(D). Accordingly, the feed-

forward and feedback filters of the time-reversed MMSE-DFE, denoted by c̃(D) and

d̃(D)− 1 respectively, are identical to the normal MMSE-DFE filters, i.e.,

c̃(D) = c(D) =
PX

P0g∗(D−∗)
, d̃(D) = d(D) = g(D). (3.6)

The unbiased output of the time-reversed MMSE-DFE can be expressed similarly to

the case of the normal, forward MMSE-DFE except that the unbiased output sequence

right after the time-reversed MMSE-DFE should also be time-reversed, in order to get

the unbiased equalized output Yb(D) matched to the input sequence x(D). Therefore,

Yb(D) = x(D) +
P0

P0 −N0
e′b(D) (3.7)

where

e′b(D), N0

P0

(
1− 1

g(D)

)
x(D) +

PX

P0

(
w′(D)

g(D)

)
. (3.8)

Then, the MSE and SNR of the unbiased time-reversed MMSE-DFE are given by

MSEURDFE =

(
P0

P0 −N0

)2

E(|e′b,n|2) =
PXN0

P0 −N0
(3.9)

SNRURDFE , PX

MSEURDFE
=

P0 −N0

N0
. (3.10)
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Figure 3.1: Bidirectional Decision Feedback Equalizer (BiDFE).

3.1.3 Unbiased BiDFE

The structure of the BiDFE is shown in Fig. 3.1. If we assume that the feedback

sequence is correct, the outputs of two unbiased DFEs are:

Yf,n =Xn + Vf,n (3.11)

Yb,n =Xn + Vb,n (3.12)

where Vf,n and Vb,n have D-transforms Vf (D) and Vb(D) as given by (from (3.2), (3.3),

(3.7), and (3.8))

Vf (D) =
N0

P0 −N0

(
1− 1

g∗(D−∗)

)
x(D) +

PX

P0 −N0

(
w′(D)

g∗(D−∗)

)
(3.13)

Vb(D) =
N0

P0 −N0

(
1− 1

g(D)

)
x(D) +

PX

P0 −N0

(
w′(D)

g(D)

)
. (3.14)

Assuming stationary random processes, we drop time index n for notational sim-

plicity and write: Yf = X + Vf and Yb = X + Vb. From (3.4) and (3.9), the variance of

Vf and Vb are also given as:

Var(Vf ) = Var(Vb) =
PXN0

P0 −N0
.
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The variables Vf and Vb are correlated with the correlation coefficient given by

ρ, E(VfV
∗
b )√

Var(Vf )Var(Vb)

=
P0 −N0

PXN0
E
[
Vf (D)V ∗

b (D
−∗)
]
0

=
PX

N0(P0 −N0)
E

[(
1

g∗(D−∗)

)2

w′(D)w′∗(D−∗)

]
0

(3.15)

=
P 2
0

PXN0(P0 −N0)

[
{c(D)}2Rw′w′(D)

]
0

=
P 2
0

PX(P0 −N0)

[
{c(D)}2Rhh(D)

]
0

(3.16)

where [z(D)]0 = z0 with z(D) =
∑

k zkD
k. The equality in (3.15) holds due to the

assumption that Xn is an i.i.d random variable and the self-interference term is removed

from the expression 1− 1/g∗(D−∗).

Since Var(Vf ) = Var(Vb), the linear MMSE combiner of [59, 62] becomes Y =

1
2 (Yf + Yb). Naturally, the MSE and SNR of the unbiased BiDFE are given as

MSEUBiDFE =
(1 + Re[ρ])

2
MSEUDFE

=
(1 + Re[ρ])PXN0

2(P0 −N0)
(3.17)

SNRUBiDFE , PX

MSEUBiDFE
=

2

(1 + Re[ρ])
SNRUDFE

=
2(P0 −N0)

(1 + Re[ρ])N0
(3.18)

where Re[ρ] denotes the real part of ρ.

Note that the infinite-length normal/time-reversed MMSE-DFE and BiDFE ana-

lyzed here do not exploit the a priori information of Xn. In other words, the feedfor-

ward and feedback filters of DFE are derived by assuming E(Xn) = 0 for all n, meaning

that the calculated SNR performance would reflect the non-turbo ideal-decision BiDFE

performance with time-invariant filter taps of Section 2.4.1.
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Figure 3.2: Turbo BiDFE Scheme.

3.2 Iterative BiDFE Algorithm

We now discuss an iterative BiDFE algorithm. Iterative equalization schemes based on

BiDFE are shown in Fig. 3.2. Basically, the channel equalizer is a SISO equalizer which

employs the normal forward DFE, the time-reversed DFE and an LLR combining block.

The received data sequence is equalized in both directions by the two DFEs, and the

extrinsic information from two DFEs are combined and passed to the error correction

code decoder. We show that a proper combining of the two sets of extrinsic information

can suppress error propagation and noise further and generate more reliable extrinsic

information for the outer decoder.

3.2.1 Combining Extrinsic Information

Similarly to the finite-length time-varying feedforward and feedback filter of the normal

DFE at time index n, which are previously defined as cn in (2.8) and dn in (2.9), we also

define the finite-length time-varying feedforward and feedback filter of the time-reversed

DFE at time index n as c̃n and d̃n with the same lengths as cn and dn respectively.

Note that c̃n and d̃n are defined in a similar way as (2.8) and (2.9) except that the
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channel convolution matrix H̃ for the time-reversed channel is given as

H̃ ,


h0 h1 · · · hLh−1 0 · · · 0

0 h0 h1 · · · hLh−1 0 · · · 0

. . .
. . .

. . .

0 0 · · · 0 h0 h1 · · · hLh−1

 .

The unbiased equalizer output [52] corresponding to the transmitted coded symbol

from the the normal (forward) and the time-reversed (backward) DFE can be repre-

sented respectively as

Yf,n =Xn + If,n + Vf,n (3.19)

Yb,n =Xn + Ib,n + Vb,n (3.20)

where Xn , xn, Vf,n , vf,n/p{n,0} and If,n , if,n/p{n,0}. Also, Vb,n , vb,n/p̃{n,0}

and Ib,n , ib,n/p̃{n,0} where vb,n and ib,n are defined similarly to the normal DFE and

p̃{n,0} = c̃Tn s̃ where s̃ , H̃[01×Ld
, 1,01×Lc ]

T . For notational simplicity, we further drop

time index n with an understanding that processing remains identical as n progresses:

Yf = X + If + Vf and Yb = X + Ib + Vb.

Now, we discuss the problem of how to combine the extrinsic information from two

DFEs. Initially, let us consider two unbiased equalizer outputs, which are corrupted by

AWGN, corresponding to the transmitted coded symbol X:

Yf =X + Uf

Yb =X + Ub

where the noise Uf and Ub are assumed to be zero mean Gaussian random variables

which are independent of the coded data X but correlated with each other with corre-

lation coefficient ρ.

In order to combine the extrinsic information, it is beneficial to whiten the noise Uf
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and Ub before combining. The noise correlation matrix R is defined as

R,

Var(Uf ) E(UfUb)

E(UfUb) Var(Ub)

 =

 Nf ρ
√
NfNb

ρ
√

NfNb Nb


where Nf , Var(Uf ) and Nb , Var(Ub). Then, the eigenvalues of the noise correlation

matrix, λ1 and λ2, with their corresponding normalized eigenvectors g1 and g2 are given

by

λ1 =
(Nf +Nb) +

√
(Nf −Nb)2 + 4ρ2NfNb

2

λ2 =
(Nf +Nb)−

√
(Nf −Nb)2 + 4ρ2NfNb

2

g1 =
1√

g211 + g221

g11
g21

 , g2 =
1√

g212 + g222

g12
g22


where g21 = g22 = ρ

√
NfNb, g11 =

1
2

[
(Nf−Nb)+

√
(Nf −Nb)2 + 4ρ2NfNb

]
, and g12 =

1
2

[
(Nf − Nb) −

√
(Nf −Nb)2 + 4ρ2NfNb

]
. It is easy to see that the noise correlation

matrix R is non-singular unless ρ = ±1. If R is non-singular, R can be expanded

as R = GΛG−1 where G , [g1 g2] and Λ , Diag(λ1, λ2). Since G is a unitary

matrix, the noise whitening matrix is A , [a1 a2] = G−1 = GT where a1 , [a11 a21]
T

and a2 , [a12 a22]
T . So, given the equalized output vector Y , [Yf , Yb]

T , the whitened

vector is Y′ , [Y ′
f , Y

′
b ]

T = AY with the new noise correlation matrix R′ = ARAT = Λ.
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Finally, the extrinsic information of X can be expressed as

Le(X) = ln
Pr(Yf , Yb | X = +1)

Pr(Yf , Yb | X = −1)

= ln
Pr(Y ′

f , Y
′
b | X = +1)

Pr(Y ′
f , Y

′
b | X = −1)

= ln
Pr(Y ′

f | X = +1)

Pr(Y ′
f | X = −1)

+ ln
Pr(Y ′

b | X = +1)

Pr(Y ′
b | X = −1)

=
2(a11 + a12)Y

′
f

λ1
+

2(a21 + a22)Y
′
b

λ2

=
2
(
Nb − ρ

√
NfNb

)
Yf

(1− ρ2)NfNb
+

2
(
Nf − ρ

√
NfNb

)
Yb

(1− ρ2)NfNb

=

(
Nb − ρ

√
NfNb

)
(1− ρ2)Nb

Le,f (X) +

(
Nf − ρ

√
NfNb

)
(1− ρ2)Nf

Le,b(X). (3.21)

For the singular noise correlation matrix R (i.e., ρ = +1), Nf = Nb = N and

Yf = Yb = Y so that Le,f (X) = Le,b(X). Consequently, the extrinsic information of

X becomes Le(X) = 2Y/N = (Le,f (X) + Le,b(X))/2. Note that the mean combiner of

[58], Le(X) = (Le,f (X) +Le,b(X))/2, can be considered as the proposed combiner with

ρ = +1. If ρ = −1, Uf = −Ub and we can cancel out the noise perfectly by averaging

the outputs: (Yf + Yb)/2. The extrinsic information of X in this case is Le(X) = +∞

when (Yf + Yb)/2 ≥ 0 while Le(X) = −∞ when (Yf + Yb)/2 < 0.

3.2.2 Reducing the Combiner Sensitivity to the Estimation Error

Let us consider the effect of errors in estimating ρ on extrinsic information. Write

ρ̂ = ρ+ε where ε is the estimation error. Then, the sensitivity of the combiner in (3.21)

to the estimation error can be defined as

S(ρ),
∣∣∣∣∂Le(X)

∂ρ

∣∣∣∣
=

∣∣∣∣
(
2ρNb − (1 + ρ2)

√
NfNb

)
(1− ρ2)2Nb

Le,f (X) +

(
2ρNf − (1 + ρ2)

√
NfNb

)
(1− ρ2)2Nf

Le,b(X)

∣∣∣∣
which approaches infinity as ρ → ±1. This means that the combiner of (3.21) is un-

fortunately very sensitive to the correlation estimator error, as the magnitude of the
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correlation becomes large.

The sensitivity of the combiner can be reduced if we assume that the variance of

Uf and Ub are the same, i.e., Nf = Nb. This assumption is reasonable when the same

feedforward and feedback filter length is used in both DFEs. Then, from (3.21), the

combined extrinsic information of X for non-singular R is simply given as

Le(X) =
1

(1 + ρ)

(
Le,f (X) + Le,b(X)

)
(3.22)

with the sensitivity to the correlation estimation error

S(ρ) =

∣∣∣∣ 1

(1 + ρ)2

(
Le,f (X) + Le,b(X)

)∣∣∣∣ .
Although the sensitivity of this combiner to the estimation error also goes to infinity as

ρ→ −1, it is more robust as ρ→ +1 since limρ→+1 S(ρ) = |(Le,f (X) + Le,b(X))/4|.

3.2.3 Application to the BiDFE Algorithm

Although the composite noise If,n+Vf,n and Ib,n+Vb,n are not Gaussian, we exploit the

combiner of (3.22) in order to produce the combined extrinsic information to be passed

to the convolutional decoder. The noise correlation coefficient between If,n + Vf,n and

Ib,n + Vb,n is naturally defined as

ρn ,
E {(If,n − E(If,n) + Vf,n) (Ib,n − E(Ib,n) + Vb,n)}√
(Var(If,n) + Var(Vf,n)) (Var(Ib,n) + Var(Vb,n))

.

Unfortunately, it is difficult to compute the correlation coefficient analytically in the

presence of decision feedback errors. However, assuming that the noise is stationary,

we have ρn = ρ and the correlation coefficient can be estimated through time-averaging

such as (3.23) where the summations are over some reasonably large finite window. Note

that the hard decisions for the transmitted symbols in normal and time-reversed DFEs

might be different; in estimating the correlation coefficient, we only consider those noise

samples for which X̂f,n and X̂b,n are identical.
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ρ̂=

∑{
(Yf,n − X̂f,n − E(If,n))(Yb,n − X̂b,n − E(Ib,n))

}
√∑

(Yf,n − X̂f,n − E(If,n))2
√∑

(Yb,n − X̂b,n − E(Ib,n))2
(3.23)

Let us summarize our LLR combining method: 1) The extrinsic information Le,f (Xn)

and Le,b(Xn) for n = 0, 1, . . . , N − 1 are acquired according to (2.26) in the normal and

time-reversed MMSE-DFE settings. 2) Estimate the noise correlation coefficient, ρ̂, be-

tween If,n+Vf,n and Ib,n+Vb,n by (3.23). 3) Generate the combined extrinsic information

Le(Xn) according to (3.22) with ρn = ρ̂.

3.2.4 Correlation Analysis under Ideal Feedback

We provide correlation analysis in the following. The analysis will allow validation of

(3.23) in different scenarios. The observation of how the simulated correlation coefficient

(3.23) converges to the analytically computed one under the assumptions of ideal feed-

back and perfect a priori information will also provide useful insights into the iterative

behaviour of the proposed turbo BiDFE.

First of all, the noise variance of Vf,n and Vb,n from the time-varying filters are:

Var(Vf,n) = (1− sTcn)/c
T
ns

Var(Vb,n) = (1− s̃T c̃n)/c̃
T
n s̃.

When we assume ideal decision feedback, Pr(If = 0) = Pr(Ib = 0) = 1 so that If,n =

48



Ib,n = 0, the noise correlation coefficient ρn between Vf,n and Vb,n becomes

ρn ,
E(Vf,nVb,n)√

Var(Vf,n)Var(Vb,n)

=

E

[
Lc∑
j=0

c{n,j}wn+j

Lc∑
k=0

c̃{n,k}wn−k+Lh−1

]
√

cTns(1− sT cn)
√

c̃Tn s̃(1− s̃T c̃n)
(3.24)

=

Lc∑
j=0

Lc∑
k=0

c{n,j}c̃{n,k}E [wn+jwn−k+Lh−1]√
cTns(1− sTcn)

√
c̃Tn s̃(1− s̃T c̃n)

=N0


Lc∑
j=0

Lc∑
k=0

c{n,j}c̃{n,k}δ(j + k + 1− Lh)√
cTns(1− sT cn)

√
c̃Tn s̃(1− s̃T c̃n)

 (3.25)

where δ(t) is defined as: if t = 0, δ(t) = 1; otherwise, δ(t) = 0. The equality in (3.24)

holds because Xn is an i.i.d random variable.

If the time-invariant filters are used instead of the time-varying filters, the variances

of Vf,n and Vb,n become

Var(Vf,n) = cT
(
HΣnH

T − znss
T +N0I

)
c/
(
cT s
)2

Var(Vb,n) = c̃T
(
H̃Σ̃nH̃

T − zns̃s̃
T +N0I

)
c̃/
(
c̃T s̃
)2

.

Then, the noise correlation coefficient can be also obtained as below.

ρn =N0


Lc∑
j=0

Lc∑
i=0

cj c̃iδ(j + i+ 1− Lh)√
cT (HΣnHT − znssT +N0I) c

√
c̃T (H̃Σ̃nH̃T − zns̃s̃T +N0I)c̃

(3.26)
Similarly, if the iteration-varying filters are used, the variances of Vf,n and Vb,n

become

Var(Vf,n) = c(k)T
(
HΣnH

T − znss
T +N0I

)
c(k)/

(
c(k)T s

)2
Var(Vb,n) = c̃(k)T

(
H̃Σ̃nH̃

T − zns̃s̃
T +N0I

)
c̃(k)/

(
c̃(k)T s̃

)2
.
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Accordingly, the noise correlation coefficient is given as

ρn =N0


Lc∑
j=0

Lc∑
i=0

c
(k)
j c̃

(k)
i δ(j + i+ 1− Lh)√

c(k)T (HΣnHT − znssT +N0I) c(k)
√

c̃(k)T (H̃Σ̃nH̃T − zns̃s̃T +N0I)c̃(k)


(3.27)

Now, let us consider some special cases.

No A Priori Information

When no a priori information is available, i.e., E(Xn) = 0 for all n, the feedforward

and feedback filters are the same as the time-invariant filters and the noise variances

are stationary:

Var(Vf,n) =Var(Vf ) = (1− sT c)/cT s

Var(Vb,n) =Var(Vb) = (1− s̃T c̃)/c̃T s̃.

Therefore, the noise correlation coefficient is given by

ρn = ρ = N0


Lc∑
j=0

Lc∑
k=0

cj c̃kδ(j + k + 1− Lh)√
cT s(1− sTc)

√
c̃T s̃(1− s̃T c̃)

 . (3.28)

We observed that the noise correlation coefficient of the infinite-length BiDFE in (3.16)

is almost identical to that of the finite-length BiDFE in (3.28) when Lc is chosen to be

long enough.

Time-varying/Iteration-varying Filters with Perfect A Priori Information

When several iterations are performed at high SNRs in turbo equalization, the perfect a

priori information could be available, i.e., E(Xn) = Xn for all n. When E(Xn) = Xn for

all n, the time-varying and the iteration-varying feedforward filters of two DFEs become
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the normalized matched filters corresponding to the forward and reverse channel impulse

responses:

cn = c(k) = A [h0, h1, . . . , hLh−1,01×Lc−Lh+1]
T

c̃n = c̃(k) = A [hLh−1, hLh−2, . . . , h0,01×Lc−Lh+1]
T

whereA is a real-valued constant depending on SNR, i.e., A , PX/(N0+PX
∑Lh−1

k=0 |hk|
2).

Moreover, since the first terms of Vf,n and Vb,n disappear, the noise variances are simply:

Var(Vf,n) =Var(Vf ) =
N0c

T
ncn

(cTns)
2

=
N0A

2

(cTns)
2

Lh−1∑
k=0

|hk|2

Var(Vb,n) =Var(Vb) =
N0c̃

T
n c̃n

(c̃Tn s̃)
2

=
N0A

2

(c̃Tn s̃)
2

Lh−1∑
k=0

|hk|2.

Accordingly, the noise correlation coefficient is

ρn = ρ = 1. (3.29)

Note that the noise correlation coefficient ρ with perfect a priori information converges

to 1 regardless of the SNR value. As will be shown shortly, the measured correlation

coefficient using simulated turbo BiDFE outputs indeed approaches 1, as turbo iteration

progresses. This indicates that both assumptions - ideal decision feedback and perfect

a priori information - are reasonable.

Time-invariant Filters with Perfect A Priori Information

When the time-invariant filters are used with perfect a priori information, the time-

invariant DFEs yield the noise variances as

Var(Vf,n) =Var(Vf ) = N0c
T c/(cT s)2

Var(Vb,n) =Var(Vb) = N0c̃
T c̃/(c̃T s̃)2.

The noise correlation coefficient is also simply given by

ρn = ρ =

Lc∑
j=0

Lc∑
k=0

cj c̃kδ(j + k + 1− Lh)

√
cTc
√
c̃T c̃

. (3.30)
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As will be discussed in the next section, in the simulation of turbo BiDFE with time-

invariant taps it is observed that the BiDFE output correlation does indeed converge to

(3.30), indicating again that the assumptions of error-free decisions and perfect a priori

information are reasonable.

3.2.5 Complexity Comparison

The BiDFE equalizers, including the proposed BiDFE methods, require roughly twice

as many operations as the DFE counterparts, due to the presence of the time-reversed

filter components. Most notably, while the complexity of the proposed BiDFE with

time-invariant filters is considerably lower than that of the MAP equalizer as well as

the LE and DFE with time-varying filter taps, the performance is significantly better

than the LE and DFE with time-varying filters as shown shortly.

3.2.6 Performance Comparison

Same as the previous SNR/MI analysis for LE and DFE, let us consider the ideal

condition for the equalizer where the perfect a priori information is available, i.e.,

E(Xn) = Xn (or La(Xn) = ±∞) for all n. Then, the BiDFE with the time-varying and

the iteration-varying filters also achieves the MFB since the noise correlation coefficient

between the normal DFE and the time-reversed DFE is equal to 1, which means they

produce the same equalized output and there is no SNR advantage of combining. Finally,

the unbiased output SNRs with the time-varying and the iteration-varying filters are

given by

SNR∞,LE = SNR∞,DFE = SNR∞,BiDFE = MFB =
PX

N0
(3.31)

However, although all equalizer schemes can achieve the MFB with the ideal condition,

their realized performance is different [24].
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On the other hand, the maximum achievable unbiased output SNRs with the time-

invariant filters is given as

SNR∞,BiDFE =

(
2

1 + ρ

)
SNR∞,DFE =

PX

N0

(
2(cT s)2

(1 + ρ)cTc

)
(3.32)

where ρ is the noise correlation coefficient between the normal DFE and the time-

reversed DFE under perfect a priori information and is given in (3.30).

The value inside the parentheses of (3.32) is also less than 1 unless the channel is

the ideal AWGN channel or the channel input SNR is zero, i.e., PX/N0 = 0; thus, these

output SNRs are also less than the MFB. However, since the output SNR by the BiDFE

is close to the MFB even when time-invariant filters are used [24], its performance is

not degraded as badly as in the LE or the DFE. In other words,

SNR∞,LE ≤ SNR∞,DFE ≤ SNR∞,BiDFE ≤ MFB =
PX

N0
(3.33)

where equalities only hold on the ideal AWGN channel or at zero channel input SNR.

Again, since the Gaussian noise term only remains in the equalized output, the analytical

maximum attainable MI of BiDFE with ideal condition is given as

Cb(R), 1−
∫ ∞

−∞

e−τ2/2

√
2π

log2

{
1 + e−2

√
Rτ−2R

}
dτ (3.34)

where R = SNR∞,BiDFE.

3.3 Numerical Results

In this section, simulation results of iterative BiDFE schemes are presented under the

same simulation conditions of Section 2.6. We also evaluate the performance of the iter-

ative equalizers over the ISI channel h2 = (1/
√
44)[1 2 3 4 3 2 1]T investigated

in [20]. The second ISI channel, h2, introduces more severe ISI than h1, as shown in

Fig. 3.3. For the ISI channel h2, the DFE with 21 feedforward taps and 6 feedback taps

(Lc = 20 and Ld = 6) is used for both the normal and the time-reversed DFEs while

the LE uses 27 taps (Lf1 = 13 and Lf2 = 13).
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The notations in Section 2.6 are also adopted here, but, the “Proposed BiDFE” is

the iterative BiDFE algorithm which is described in Section 3.2.3. In other words, “Pro-

posed BiDFE” uses the the proposed LLR generation for both normal and time-reversed

DFEs along with the proposed extrinsic information combiner of (3.22) in conjunction

with the noise correlation coefficient of (3.23). The “BiDFE (mean combiner)” is the

iterative BiDFE algorithm with the conventional LLR mapping and the mean com-

biner, Le(X) = (Le,f (X) + Le,b(X))/2 (of [58]), simulated for performance comparison

purposes.

Figs. 3.4, 3.5, and 3.6 show the performance of several turbo equalizers with time-

varying filters, time-invariant, and iteration-varying filters after 20 iterations. The “Pro-

posed BiDFE” is considerably better than the BiDFE based on the mean combiner, the

proposed DFE, and the LE, approaching the performance of the MAP scheme. Espe-

cially, as the Fig. 3.5 indicates, the performance of “Proposed TI-BiDFE” is very close
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to the performance of the MAP equalizer while achieving a low computational complex-

ity based on the use of time-invariant filters. Also notice that “Proposed TI-BiDFE”

achieve decision-error-free performance at low BERs, indicating the error propagation

effect has been nearly eliminated using the proposed LLR generation method and LLR

combining method. It is noteworthy that the proposed BiDFE algorithm still provides

near-optimal performance even with the time-invariant filter taps. While the TI-BiDFE

based on the existing mean combiner appears to perform almost as well, the EXIT

chart analysis to be discussed below indicate that with a smaller number of turbo it-

erations, its performance is distinctly inferior to the proposed TI-BiDFE based on the

new combining method.

Figs. 3.7, 3.8, and 3.9 show the same set of simulation results now applied to

the more severe ISI channel h2. While all filter-based schemes lag clearly behind the

BCJR-based scheme at the error rates simulated, the proposed BiDFE scheme with the

time-varying, time-invariant, and iteration-varying filter cases outperform the DFE and

LE scheme by a significant margin. In fact, in this severe channel the BER curve of the

DFE and LE scheme, even with time-varying filters, appears to diverge considerably

from the ideal no-ISI curve. Overall, the proposed BiDFE based on time-invariant filter

taps offer excellent performance-complexity trade-off.

When the performance of LE with different filter types are compared for channel h2,

the iteration-varying filters sometimes provide even better BER performance than the

time-varying filters which is contradictory to the simulation results of [13] (the exact

MMSE shows a slightly better performance than the LC approximate MMSE as shown in

Fig. 3 of [13]). This is mainly due to the fact that when inaccurate a priori information

arrives, the optimal time-varying filters more easily fail to produce reliable extrinsic

information than the IV filters. In other word, the time-varying (or the exact MMSE)

filter solutions are designed regardless of the quality of the a priori information so

that an equalizer with time-varying filters can erroneously maximize the extrinsic LLRs

(or minimize the MSEs) based on the optimally but incorrectly derived MMSE filters
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by the wrong a priori LLRs. Note that the MSE comparison in [13] is based on the

premise that the incoming a priori information is reliable, but, this assumption is not

always guaranteed especially on the severe ISI channels, i.e., there are high possibilities

that the decoder generates incorrect a priori LLRs to the equalizer when ISI is severe.

Furthermore, a few erroneously maximized extrinsic LLRs by the equalizer can degrade

the overall turbo equalization performance since they can remove the possibility of the

correct signal path in the decoder. This phenomenon can be also explained with the

EXIT chart of Fig. 3.17. As the trajectory of the TV-LE shows for each stair, the TV

filter solutions tend to maximize the extrinsic LLRs quality based on the given a priori

LLRs. However, its side effect is also to generate the maximized wrong extrinsic LLRs

with the potential inaccuracies in the a priori information by the decoder. On the other

hand, the iteration-varying (or the LC approximate MMSE) filter solutions generate the

extrinsic LLRs moderately, thus, the erroneously generated LLRs are also moderately

controlled. In short, the LLRs with the time-varying filters ascend steeply but riskily

while the LLRs with the iteration-varying filters advance slowly but steadily. Note that

an equalizer with iteration-varying filters can also achieve MFB performance if enough

turbo iterations are performed. In the case of the BiDFE, this sensitivity plays an even

bigger role in determining the overall performance. As compared, “TI-BiDFE” shows

better performance than BiDFE with any other filter types since it would be better not

to update the filter taps at all when the a priori information is unreliable at low SNRs.

The noise correlation in one block of coded data bits is described in Fig. 3.10,

at different iteration numbers at a 6 dB SNR on h1. The correlation coefficient of

“Proposed TV-BiDFE” and “Proposed IV-BiDFE” go to 1 as the number of iterations

increases because the a priori information from the decoder becomes reliable, and the

time-varying and iteration-varying filters in the normal and the time-reversed DFEs

produce essentially the same equalized output sequences. This phenomenon of Fig. 3.10

accurately reflects the result of (3.29). On the other hand, the correlation coefficient of

“Proposed TI-BiDFE” actually decreases as the number of iterations increases, and the
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noise correlation coefficient converges to that of “TI-BiDFE with Ideal Feedback” or the

correlation coefficient of (3.30). This is because the decision feedback errors disappear

and the perfect a priori information is available from decoder. Note that the filter

coefficients in both DFEs do not change with the a priori information.

Figs. 3.11, 3.12, and 3.13 show the EXIT chart corresponding to time-varying-filter-

based, time-invariant-filter-based, and iteration-varying-filter-based equalizers for h1 at

a 7 dB SNR while Figs. 3.14, 3.15, and 3.16 show the similar EXIT charts for h2 at

a 10 dB SNR. As the figures show, the trajectories of the “Proposed BiDFE” indicate

that this scheme moves from 0 bit of mutual information to 1 bit with a less number of

iteration runs than “Proposed DFE” and “LE”. We notice, however, that the proposed

BiDFE scheme requires more iterations in achieving the full performance, relative to the

MAP equalizer (whose trajectory is not shown to avoid cluttering). Nevertheless, the

proposed BiDFE method offers a reasonable tradeoff among complexity, performance,

and latency.

Finally, Fig. 3.18 shows the SNR comparison at the output of the unbiased DFE

and BiDFE assuming ideal feedback on the channel h1 when the a priori information

is not available. As the figure shows, the output SNR of BiDFE is considerably higher

than the output SNR of DFE but with a certain gap to the MFB.

3.4 Summary

In this chapter, we proposed turbo equalization methods based on BiDFE structures.

When employing the previously developed LLR mapping method for DFE and an LLR

combining method that estimates the correlation between the forward and backward

DFE outputs and whitens them, the resulting performance is remarkably good given the

simple structure of the BiDFE, relative to that of the BCJR equalizer. The proposed

LLR generation and combining methods remain effective even when a time-invariant

constraint is imposed on the feedforward and feedback filters of the DFEs. Overall,
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the proposed BiDFE method based on time-invariant filter taps provides the excel-

lent performance-complexity tradeoff for severe ISI channels where other filter based

approaches fail to operate adequately.
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Figure 3.13: EXIT Chart on the Channel h1 at a 7 dB with Iteration-varying Filters.
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Figure 3.14: EXIT Chart on the Channel h2 at a 10 dB with Time-varying Filters.
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Figure 3.15: EXIT Chart on the Channel h2 at a 10 dB with Time-invariant Filters.
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Figure 3.16: EXIT Chart on the Channel h2 at a 10 dB with Iteration-varying Filters.
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Chapter 4

Self-Iterating Soft Equalizer

The previous BiDFE algorithm can be considered as a parallel concatenated scheme

with two suboptimal DFEs producing somewhat correlated yet significantly different

extrinsic information. The time-reversal operation applied to the reverse DFE can be

viewed as a type of interleaving that attempts to make two input streams going into

the forward and reverse DFEs appear independent.

In this chapter, we focus on a new equalizer structure that employs LE, DFE or

BiDFE as constituent modules, devising a strategy that allows iterative exchange of soft

information among the constituent equalizers. Unlike typical turbo processing methods,

no interleaver exists between the SISO equalizer modules, and a special strategy to

combat the correlation between successive module outputs must be devised. It is shown

that the extrinsic information of one module becomes the a priori information for the

next module connected in serial concatenation via a specific scaling law that depends

on the correlation between the two sets of information. This equalizer is viewed as a

self-iterating soft equalizer (SISE) consisting of several suboptimal constituent equalizers

which are serially concatenated with no interleavers placed between them. The rationale

behind this particular equalizer structure is that the suboptimal equalizers such as the

LE, DFE, and BiDFE all have their own advantages and disadvantages, and one should
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Figure 4.1: Self-Iterating Soft Equalizer (SISE).

be able to benefit from the presence of the other equalizers. For example, the LE does

not have the error propagation problem which the DFE suffers from, whereas the DFE

often shows significantly better performance than the LE when feedback decisions are

correct; and the BiDFE provides solid performance even with time-invariant filters,

although its complexity is roughly double the complexity of the DFE. This chapter is

based on [71,72].

4.1 Self-Iterating Soft Equalizer Algorithm

In this section, we discuss the SISE algorithm. Basically, the SISE is a SISO equalizer

which consists of one main suboptimal SISO equalizer and B branch suboptimal SISO

equalizers. The proposed SISE is illustrated in Fig. 4.1.

The key procedure in this algorithm is that the received data sequence is equalized

by the main equalizer and its extrinsic information is passed to the branch equalizers as

their a priori information. The extrinsic information generated in the branch equalizers
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is also passed back to the main equalizer to be used as its a priori information for the

next stage. Note that since this equalization algorithm can perform iteratively without

the decoder (hence the name “self-iterating” equalizer), it can be used in uncoded

systems as well. The terms “main” and “branch” here do not necessarily imply the

difference in the complexity levels or computational powers between the constituent

equalizers. Rather, the distinction simply indicates the scheduling strategy, i.e., the

main equalizer is the one that makes the initial decision in the serial concatenation of

the constituent equalizers. In fact, different arrangements of the constituent equalizers

are possible, including full parallel concatenation, full serial concatenation and combined

parallel/serial concatenation, along with many different scheduling strategies. For the

particular SISE structure shown in Fig. 4.1, for example, it can be seen that while there

is “self-iteration” between the main equalizer and the block of branch equalizers, no self-

iterations are assumed among the branch equalizers. While the concept and methods

developed in this chapter are general, for the performance analysis and simulation results

to be presented, we shall focus on a serial concatenation of one main equalizer and one

branch equalizer.

Unlike the extrinsic information between the decoder and the equalizer in usual

turbo equalization, the extrinsic information between the main equalizer and the branch

equalizers have correlation because no interleaving techniques can be used and their

equalization processes are all based on the common received data sequence. It has been

suggested that the high correlation between the a priori information and the extrinsic

information of a module in a turbo system can cause the performance degradation

[43, 48]. In this section, we show a proper way to construct the extrinsic information

from the branch equalizers when their outputs are correlated with the main equalizer

output. The same method can be applied in extracting the extrinsic information from

the main equalizer when its soft output is correlated with those of the branch equalizers.
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4.1.1 Generation of Uncorrelated A Priori Information

First let us assume that there is one main equalizer and one branch equalizer in an

uncoded system. We will later extend the proposed algorithm to the case of multiple

branch equalizers. We assume that the main equalizer passes the extrinsic LLR se-

quence, Le,m(x), to the branch equalizer as the latter’s a priori LLR, La,b(x), and the

branch equalizer produces the extrinsic LLR, Le,b(x), with the given La,b(x) sequence.

Since the a priori information (or extrinsic information) can be modeled as the

output of an equivalent AWGN channel [63], we write the two unbiased equalizer outputs

corrupted by AWGN, corresponding to the transmitted symbol x, as:

ym = x+ um

yb = x+ ub

where the subscripts ‘m’ and ‘b’ indicate the main equalizer and the branch equalizer,

respectively. Here, time index n is dropped for notational simplicity; the process remains

identical as n evolves. The noise terms um and ub are assumed to be zero mean Gaussian

random variables which are independent of the transmitted data x but correlated with

each other with correlation coefficient ρ.

Since the a posteriori information at the branch equalizer should explore both its

own observation yb as well as the available “side” information ym, the a posteriori LLR
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of the branch equalizer can be written as

Lb(x) = ln
Pr (x = +1|yb, ym)
Pr (x = −1|yb, ym)

(4.1)

= ln
Pr (yb, ym|x = +1)

Pr (yb, ym|x = −1)
+ ln

Pr (x = +1)

Pr (x = −1)

= ln
Pr (yb, ym|x = +1)

Pr (yb, ym|x = −1)
(4.2)

= ln
Pr (y′b, y

′
m|x = +1)

Pr
(
y′b, y

′
m|x = −1

)
= ln

Pr (y′m|x = +1)

Pr (y′m|x = −1)
+ ln

Pr (y′b|x = +1)

Pr
(
y′b|x = −1

)
=

(
Nb − ρ

√
NmNb

)
(1− ρ2)Nb

Le,m(x) +

(
Nm − ρ

√
NmNb

)
(1− ρ2)Nm

Le,b(x) (4.3)

where Nm , Var(um) and Nb , Var(ub), and y′m and y′b are the whitened equalized

outputs obtained by passing of ym and yb through a whitening filter computed via the

singular value decomposition (SVD) of the noise correlation matrix R defined as

R,

Var(um) E(umub)

E(ubum) Var(ub)

 =

 Nm ρ
√
NmNb

ρ
√
NmNb Nb

 .

The equality of (4.2) holds because the branch equalizer does not have any a priori

information other than what it derives from the main equalizer.

Obtaining (4.3) is straightforward; for detailed derivation, see Section 3.2.1. Due to

the sensitivity of Lb(x) to the estimation error of ρ in Section 3.2.1, we further assume

that the variance of um and ub are the same, i.e., Nm = Nb. Then, we can write

Lb(x) =
1

1 + ρ

(
Le,m(x) + Le,b(x)

)
. (4.4)

Now, we discuss how to extract the extrinsic information at the branch equalizer

from this a posteriori LLR and pass it as the a priori LLR of the main equalizer.

Notice that if the noise um and ub are uncorrelated, i.e., ρ = 0, the a posteriori LLR

of the branch equalizer would simply be Lb(x) = Le,m(x) + Le,b(x) and the a priori

LLR to the main equalizer is naturally defined as La,m(x) = Lb(x)|Le,m(x)=0 = Le,b(x).
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However, due to the effect of correlation between noise, Lb(x) is reduced here by the

factor 1/(1 + ρ). This suggests that the correlated information between the extrinsic

information of the main equalizer and the extrinsic information of the branch equalizer

be defined as

Lcorr(x),Lb(x)|ρ=0 − Lb(x)

=
ρ

1 + ρ

(
Le,m(x) + Le,b(x)

)
. (4.5)

We can view the relationship between Lb(x)|ρ=0, Lb(x), and Lcorr(x) in the following

sense: Since the correlated information is added twice in Lb(x)|ρ=0, it is necessary to

subtract the correlated information, Lcorr(x), from Lb(x)|ρ=0 to get Lb(x).

Then, it makes sense to define the a priori LLR of the main equalizer from the

branch equalizer as

La,m(x),
(
Lb(x)− Lcorr(x)

)∣∣∣
Le,m(x)=0

=

(
1− ρ

1 + ρ

)
Le,b(x). (4.6)

Notice that if two noise samples are uncorrelated like the extrinsic information between

the decoder and the equalizer, we could fully utilize the extrinsic LLR of the branch

equalizer as the a priori LLR of the main equalizer, i.e., La,m(x) = Le,b(x). On the

other hand, if the noise correlation coefficient is 1, the extrinsic information of the branch

equalizer would be completely redundant to the main equalizer, i.e., La,m(x) = 0. Note

that this process is also valid in opposite direction, i.e., when the a priori LLR of the

branch equalizer is extracted from the a posteriori LLR of the main equalizer.

4.1.2 Estimation of Noise Correlation Coefficient

As mentioned before, it is difficult to compute the correlation coefficient between um and

ub (or Le,m(x) and Le,b(x)) analytically. However, assuming that the noise is stationary,

the correlation coefficient can be estimated through time-averaging Le,m(x) and Le,b(x)
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over some reasonably large finite window:

ρ̂=

∑{(
Le,m(xn)− sign [Le,m(xn)]mm

)(
Le,b(xn)− sign [Le,b(xn)]mb

)}√∑(
Le,m(xn)− sign [Le,m(xn)]mm

)2√∑(
Le,b(xn)− sign [Le,b(xn)]mb

)2 (4.7)

where, due to the symmetricity of xn, mm and mb are the respective mean values

of Le,m(xn) and Le,b(xn) for xn = +1, i.e., mm = E(Le,m(xn)|xn = +1) and mb =

E(Le,b(xn)|xn = +1). We can also estimate them through time-averaging:

m̂m =
1

2

{
(Le,m(xn)|Le,m(xn) ≥ 0)− (Le,m(xn)|Le,m(xn) < 0)

}
m̂b =

1

2

{
(Le,b(xn)|Le,b(xn) ≥ 0)− (Le,b(xn)|Le,b(xn) < 0)

}
where tn means the time-average of tn. Note that the hard decisions for the transmitted

symbols in the main equalizer and the branch equalizer might be different; in estimating

the correlation coefficient, we only consider those LLR samples for which sign [Le,m(xn)]

and sign [Le,b(xn)] are identical. Also, notice that Le,m(xn) in (4.7) can be replaced by

La,b(xn).

4.1.3 Extension to the Case of Multiple Branch Equalizers

Let us assume that there is one main equalizer and two branch equalizers. Then, the a

priori LLR to the main equalizer from each branch equalizer can be defined as

L(1)
a,m(x) =

(
1− ρ(1)

1 + ρ(1)

)
L
(1)
e,b(x)

L(2)
a,m(x) =

(
1− ρ(2)

1 + ρ(2)

)
L
(2)
e,b(x).

where superscript (i) points to a specific branch equalizer and ρ(i) is the correlation

coefficient between L
(i)
e,b(x) and L

(i)
a,b(x). Again, since the a priori information (or ex-

trinsic information) can be modeled as an equivalent AWGN channel output, under the

assumption that the noise variances are the same, the whitened and combined a priori

information to the main equalizer [24] is given by

La,m(x) =
1

1 + ξ

(
L(1)
a,m(x) + L(2)

a,m(x)
)

(4.8)
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where ξ is the noise correlation coefficient between L
(1)
a,m(x) and L

(2)
a,m(x) and it can be

also estimated through time-averaging using a similar equation to (4.7). It is straight-

forward to extend the SISE algorithm to the system consisting of B branch equal-

izers. Specifically, the whitened and combined a priori LLR to the main equalizer,

La,m(x), can be obtained by passing the a priori LLRs generated by B branch equal-

izers, L
(1)
a,m(x), L

(2)
a,m(x), . . . , L

(B)
a,m(x), through the whitening filter computed by the SVD

of their B ×B noise correlation matrix.

4.1.4 SISE Algorithm

Finally, the proposed SISE algorithm for an uncoded system can be summarized as

follows:

• Initialize the a priori information of the main equalizer, i.e., La,m(xn) = 0 and

L
(i)
a,m(xn) = 0 for all time index n and branch index i.

• For the specified number of self-iterations,

1. Generate the extrinsic information of the main equalizer, Le,m(xn), with the

a priori information La,m(xk) for all k ̸= n (the process of generating the

extrinsic information in a given equalizer is described in Chapter 2 and 3).

2. Compute the noise correlation coefficients, ρ
(i)
m , between Le,m(xn) and L

(i)
a,m(xn)

and set L
(i)
a,b(xn) = (1− ρ

(i)
m )/(1 + ρ

(i)
m ) · Le,m(xn) for all i.

3. Generate the extrinsic information of each branch equalizer, L
(i)
e,b(xn), with

the given a priori information L
(i)
a,b(xk) for all k ̸= n, for all i.

4. Compute the noise correlation coefficient, ρ
(i)
b , between L

(i)
e,b(xn) and L

(i)
a,b(xn)

and set L
(i)
a,m(xn) = (1− ρ

(i)
b )/(1 + ρ

(i)
b ) · L(i)

e,b(xn) for all i.

5. Generate the a priori information for the main equalizer, La,m(xn), from

L
(i)
a,m(xn) via the extended equation of (4.8).
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Figure 4.2: Turbo Self-Iterating Soft Equalization Scheme.

4.2 Iterative Self-Iterating Soft Equalizer Algorithm

In this section, we propose turbo equalization based on the previously developed SISE

algorithm. The structure of the turbo equalization scheme based on SISE is shown in

Fig. 4.2. Various iterative equalization algorithms are possible based on this structure,

but two main algorithms are considered here.

4.2.1 SISE 1 Algorithm

The first algorithm passes the uncorrelated extrinsic information of the main equalizer

to the branch equalizers and then to the decoder in turn. The information flow of SISE

1 algorithm is shown in Fig. 4.3(a). The detail steps of SISE 1 are described as

• Initialize the a priori information from the decoder and the branch equalizers,

i.e., La(xn) = 0, La,m(xn) = 0, and L
(i)
a,m(xn) = 0 for all time index n and branch

index i.

• For the specified number of outer iterations,
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1. Generate the extrinsic information of the main equalizer, Le,m(xn), utilizing

the a priori information from the decoder, La(xk) for all k ̸= n.

2. Take the same steps of 2)− 5) in 4.1.4.

3. Reproduce the extrinsic information of the main equalizer, Le,m(xn), with the

combined a priori information from the decoder and the branch equalizers,

La(xk) + La,m(xk) for all k ̸= n.

4. Pass Le,m(xn) back to the decoder.

4.2.2 SISE 2 Algorithm

Due to the sequential nature of the self-iteration steps, the SISE 1 algorithm has long

processing latency issue; the second algorithm (SISE 2) is also proposed to get around

this issue. Different from the first algorithm, SISE 2 passes the correlation-compensated

extrinsic information of the main equalizer to the branch equalizers and to the decoder

simultaneously. Thus, in this case, the self-iteration step is performed in parallel with

the outer turbo iteration. The information flow of SISE 2 algorithm is summarized in

Fig. 4.3(b). The detailed algorithm of SISE 2 is described as

• Initialize the a priori information from the decoder and the branch equalizers,

i.e., La(xn) = 0, La,m(xn) = 0, and L
(i)
a,m(xn) = 0 for all time index n and branch
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index i.

• For the specified number of outer iterations,

1. Generate the extrinsic information of the main equalizer, Le,m(xn), with the

combined a priori information from the decoder and the branch equalizer,

La(xk) + La,m(xk) for all k ̸= n.

2. Pass Le,m(xn) to the decoder.

3. While the decoder computes its own extrinsic information and passes it as

La(xn) to the main equalizer,

– Take the same steps of 2)− 5) in 4.1.4.

4.2.3 Comparison of Complexity and Latency

Let the computational complexity of the main equalizer, the branch equalizers, and the

decoder be CM , CB, and CD, respectively. For each outer iteration performed, the

amount of computation for the conventional turbo equalization is CM +CD, whereas it

is 2CM +CB +CD and CM +CB +CD for SISE 1 and SISE 2, respectively. Moreover,

assuming the processing time for the main equalizer, the parallel branch equalizers, and

the decoder is all equal to T , the total processing time for each outer iteration is 2T ,

4T , and 2T for the conventional system, SISE 1, and SISE 2, respectively. As will

be shown later, in addition to having complexity/latency advantage, SISE 2 also has

performance advantage over SISE 1 in many channel situations and thus seems to be the

preferred choice. Also, while SISE 2 requires higher complexity (by CB) than existing

turbo equalizers when CM is fixed in both cases, it will be shown that SISE 2 often

enables substantial error rate reduction in channel conditions where the existing turbo

equalizer cannot provide any performance improvement regardless of how large CM is

allowed to grow.
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4.3 Numerical Results

In this section, simulation results of the proposed SISE equalization schemes for both

uncoded and coded systems are presented. Same as before, the transmitted symbols

are modulated with BPSK so xn ∈ {±1}. The message bit length is 211. We also

assume that the noise is AWGN, and the noise variance and the channel information

are perfectly known to the receiver. In the figures, the label “Ideal” indicates the

performance of an equalizer with perfect a priori information.

4.3.1 Uncoded System

The impulse response of the ISI channel h0 = (1/
√
6)[1 2 1]T introduced in [10] is

used for the uncoded system. This channel has a spectral null over the Nyquist band as

shown in Fig. 4.4. Three different equalizer types are simulated for this channel. The

SISE method is the self-iterating soft equalizer algorithm described in Section 4.1.4.

Specifically, the SISO BiDFE algorithm of Section 3.2 is adopted as the main equalizer

which takes into account the possibility that error propagation in is not zero by tracking

the conditional extrinsic LLR: Le(xn|in ̸= 0) = 2p{n,0} (yn − E(in|in ̸= 0))/Var(vn).

Moreover, when decisions are made by the BiDFE, the arbitration criterion of [60]

with window size 15 is employed; the symbol sequence is decided among the estimated

sequence of two DFEs based on which candidate shows the smaller MSE in a window

centered around the symbol of interest. Finally, the SISO LE is used for the branch

equalizer and 2 self-iterations are applied. The “BAD” method is the BAD algorithm

of [60], and the MAP equalizer is the optimal equalizer implemented via the BCJR

algorithm. Each DFE in BiDFE consists of 13 feedforward taps and 2 feedback taps

(Lc = 12 and Ld = 2) while the LE uses 15 taps (Lf1 = 7 and Lf2 = 7) for h1.

Fig. 4.5 shows the performance comparison. As the figure shows, the proposed SISE

algorithm shows the superior performance to the BAD method of [60] and approaches

the performance of “Ideal BAD”.
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4.3.2 Coded System

In this subsection, simulation results of the iterative SISE equalization schemes are

presented. The transmitted symbols are encoded with a recursive rate-1/2 convolutional

code encoder with parity generator polynomials (1 +D2)/(1 +D +D2). The impulse

response of the severe ISI channel h2 = (1/
√
44)[1 2 3 4 3 2 1]T investigated as

well as an extremely severe ISI channel of h3 = (1/
√
85)[1 2 3 4 5 4 3 2 1]T

are used for evaluating and comparing the performances of iterative equalizers. These

channels are natural extensions of previously considered ISI patterns by Proakis and

their frequency responses are shown in Fig. 4.4.

In the error rate figures, curves labeled by “SISE 1” and “SISE 2” correspond to

the iterative SISE algorithms described in Section 4.2. Although various combinations
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of the main equalizer and the branch equalizers are possible in the iterative SISE algo-

rithm, some limited combinations are considered here. The label “(M, B)” in the legend

denotes a specific ‘M’ algorithm as the main equalizer and a ‘B’ algorithm as the branch

equalizer. For instance, “SISE 2 (IV-DFE, IV-RDFE)” denotes the iterative SISE 2 al-

gorithm with the normal DFE with iteration-varying filters as the main equalizer and

the time-reversed DFE (RDFE) with iteration-varying filters as the branch equalizer.

The straightforward LLR mapping method of (2.7) is adopted for the LE while the LLR

mapping methods of (2.26) and (3.22) are used for the DFE and BiDFE respectively.

Moreover, the DFE (and each DFE in the BiDFE) consists of 21 feedforward taps and

6 feedback taps (Lc = 20 and Ld = 6) on h2 while 21 feedforward taps and 8 feedback

taps (Lc = 20 and Ld = 8) on h3. The LE uses 27 taps (Lf1 = 13 and Lf2 = 13) for h2

and 29 taps (Lf1 = 14 and Lf2 = 14) for h3. Again, “MAP” is for the optimal equalizer

implemented via the BCJR algorithm. Finally, the decoder is also implemented using

the BCJR algorithm.

Figs. 4.6, 4.7, and 4.8 show the performance of several turbo equalizers after 20

outer iterations on the ISI channel h2. The performance of the proposed iterative SISE

algorithms is compared with the performance achieved when the equalizer consists only

of a single equalizer.

Fig. 4.6 shows performance comparison with LE-based single equalizers. Among the

single LE schemes, the iteration-varying filter design method gives the best performance,

outperforming even the time-varying filter method. When the number of filter taps

increases to 81 (40 causal and 40 anticausal taps) versus a total of 27, the IV-LE method

does not provide any performance gain, indicating that using 27 taps for this channel

already realizes IV-LE’s full potential. Of the two SISE methods showing superior

performance to the single LE, SISE 2 is better and is an obvious winner given its lower

complexity and latency compared to SISE 1. Both SISE schemes employ TI-BiDFE as

the sole branch equalizer. Given that each DFE in BiDFE has a total of 27 taps (21

feedforward and 6 feedback), each SISE scheme requires an overall total of 81 taps.
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Fig. 4.7 tells a similar story but the comparison is now with the DFE schemes.

Accordingly, the main equalizer of the SISE methods is also set up with the DFE,

under the iteration-varying filter design scheme. Among the single equalizers, this

time, the time-varying filter method performs slightly better than the iteration-varying

filter scheme (again, increasing the number of the iteration-varying filter taps does not

give any performance boost). Still, SISE methods give the best performance, other

than the MAP-based turbo equalizer, with SISE 2 once again coming ahead. Fig. 4.8

presents results that compare schemes based on BiDFE. Iteration-varying-filter-based

single equalizer is better than time-varying filter method and, again, increasing the filter

length does not improve performance. As for the branch equalizer, SISE schemes use the

IV-LE. This time, SISE 1 performs better than SISE 2, albeit by a very small margin.

A comparison of the simulation results in Figs. 4.6 and 4.8 reveals that the perfor-

mance of “SISE (TI-BiDFE, IV-LE)” is considerably better than that of “SISE (IV-LE,

TI-BiDFE)”. On the other hand, among the single equalizers, TI-BiDFE outperforms

IV-LE by a large margin. It turns out that the extrinsic LLR quality of the main equal-

izer is an important factor determining the overall performance of the SISE algorithms,

as the extrinsic LLRs of the main equalizer are passed to the decoder as well as the

branch equalizers. Therefore, in the design of the SISE algorithm, the equalizer showing

the best BER performance (or LLR quality) should be chosen as the main equalizer.

Fig. 4.9 shows comparison in the extremely severe ISI channel h3. Among the single

equalizers, TI-BiDFE schemes exhibit clear failure because the erroneously generated

a priori LLRs from the decoder during the iterations cause more errors in the subse-

quent turbo iterations, while IV-BiDFE is better than TV-BiDFE. Both SISE schemes

show robust performance, again lagged in performance only by the optimal MAP-based

scheme.

The performance of the turbo equalizers are analyzed by using the EXIT chart [63].

In order to avoid excessive cluttering, only the trajectories of “SISE 1”, “SISE 2”, and

the single equalizer are plotted in Figs. 4.10, 4.11, and 4.12. They describe the EXIT
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chart on h2 at a 12 dB SNR when IV-LE is used for the main equalizer, the EXIT chart

on h2 at a 10 dB SNR when IV-DFE is used for the main equalizer, and the EXIT chart

corresponding to h3 at a 13 dB SNR when TI-BiDFE is used for the main equalizer,

respectively. As the figures show, both SISE algorithms widen the EXIT chart tunnels

with aid of the branch equalizers while the trajectory of the single main equalizer itself

tends to be stuck at the bottleneck region. Accordingly, both SISE algorithms reach the

maximum MI value at a considerably smaller number of steps than the single equalizer

scheme, indicating a faster convergence for the SISE schemes.

It might be worthwhile to observe that SISE 1 sometimes shows a worse BER per-

formance than SISE 2 as seen in Figs. 4.6 and 4.7, although SISE 1 exhibits as clear an

MI trajectory towards the maximum MI as SISE 2 does. This is due to the fact that the

MI in the EXIT chart depends on the overall quality of the extrinsic LLRs and some

erroneously generated extrinsic LLRs have little effect on the MI, while this is not true

for BER performance.

4.4 Summary

In this chapter, we proposed self-iterating soft equalizers which can be further employed

in turbo equalization systems to improve performance in very severe ISI channels. The

proposed algorithms are designed to utilize the extrinsic information of other serially

concatenated suboptimal equalizers by reducing correlation on the information gen-

erated by other equalizers. The proposed algorithms show robust performance, even

when the constituent suboptimal equalizers are individually weak. The proposed SISE

schemes also provide good BER performance in uncoded systems.
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Chapter 5

Computing Lower Bounds on the

Information Rate of ISI Channels

In this chapter, we introduce the easily computable analytical expressions for lower

bounds to SIR. It is well known that I(X;X + S +N) lower-bounds the SIR if S +N

is the noise component of unbiased infinite-length MMSE-DFE filter output after ideal

postcursor ISI cancellation [35]. Therefore, we also focus on the easily computable ana-

lytical expressions for lower bounds to I(X;X+S+N) and thus to the SIR. The bounds

we develop here are fairly tight, with their tightness generally enhanced with increasing

computational load (which in the end still remains small). Our approach is to first define

a “mismatched” mutual information (MI) function based on the “mismatched” entropy

that takes the log operation not on the actual underlying probability density but on the

Gaussian density with the same variance. We then prove that this “mismatched” MI

is always less than or equal to I(X;X + S +N). We further bound this function from

below so that the final bound can be evaluated using numerical integration. The bound

is basically evaluated by computing a few single-dimensional integrals. This is in con-

trast to the Hirt bound that computes a single multi-dimensional integral of very high

dimension. Our bound computation also requires the evaluation of sum of the absolute
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values of the linear coefficients that form S as well as the identification of dominant

coefficient values, if they exist. At a reasonable overall computational load, our bounds

are shown to be for all practical purposes as tight as the Shamai-Laroia conjecture for

many practical ISI channels. This chapter is written based on [70].

5.1 A Provable Lower Bound to the Symmetrical Infor-

mation Rate

We first present a provable lower bound to I(X;Y ) where Y = X+
∑L

k=1 d−kXk+N =

X + S +N . The symbols X and Xk are all independently and uniformly drawn. The

linear coefficients d−k’s are related to the channel impulse response and will be specified

in Section 5.3. Let V = S +N so we can write Y = X + V . Note that V is a Gaussian

mixture. Also let Z = X +G where G is a zero mean Gaussian with variance matching

that of V , i.e., σ2
G = σ2

V .

Definition 1 (“Mismatched” MI (MMI) Function) Define

I ′(X;Y ),H ′(Y )−H ′(V ) (5.1)

where

H ′(Y ),−
∫ ∞

−∞
fY (t) log fZ(t)dt,

H ′(V ),−
∫ ∞

−∞
fV (t) log fG(t)dt

and fY (t), fV (t), fZ(t), and fG(t) are the probability density functions (pdfs) of the RVs,

Y , V , Z, and G, respectively. Note that the “mismatched” entropy functions H ′(Y ) and

H ′(V ) are defined based the log operation applied not to the actual underlying pdf fV (t)

but rather to the “mismatched” Gaussian pdf fG(t).

Lemma 1 Given the MMI function defined as above, we have

I ′(X;Y ) ≤ I(X;Y ). (5.2)
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Proof 1 See Section 5.5.1.

Let us now take a close look at this MMI function I ′(X;Y ) and develop some

insights into its behavior. Let the variances of V , S, and N be σ2
V , σ

2
S , and σ2

N respec-

tively. Further assume that the RVs, X, V , S, and N are all real-valued. We will also

assume a binary input alphabet. These assumptions are not necessary for our develop-

ment but make the presentation clearer as well as less cluttered. We will simply state

the results in Section 5.2.3 for a non-binary/complex-valued example. We also denote

mi =
∑L

k=1 d−kXk for i = 1, 2, . . . , 2L since {Xk}Lk=1 can have 2L different sequences.

Naturally, the pdfs of RVs V and G can be written as

fV (t) = 2−L
2L∑
i=1

1√
2πσ2

N

exp

(
−(t−mi)

2

2σ2
N

)

fG(t) =
1√
2πσ2

V

exp

(
− t2

2σ2
V

)
.

Proposition 1 Denoting ρi , mi/
√
PX and τ , (t−mi)/σN , letting ρ+k ’s to mean the

positive-half subset of ρi’s, and defining R , PX/σ2
V and ϕ , σN/σV , the MMI function

can be rewritten as I ′(X;Y ) = log 2− F with the new definition

F , 2−L
2L∑
i=1

Eτ

[
log
{
1 + e−2Rρie−2ϕ

√
Rτ−2R

}]
=Eρ,τ

[
log
{
1 + e−2Rρe−2ϕ

√
Rτ−2R

}]
(5.3a)

= 2−(L−1)
2L−1∑
k=1

Eτ

[
1

2
log
{
1 + 2 cosh

(
2Rρ+k

)
e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]
=Eρ+,τ

[
1

2
log
{
1 + 2 cosh

(
2Rρ+

)
e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]
. (5.3b)

A detailed derivation is given in Section 5.5.2. The position mi of the ith Gaussian

pdf of the mixture fV (t) is expressed as a dimensionless quantity: ρi = mi/
√
PX , with
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the normalization by the square root of the input power. Because of the symmetric

nature of fV (t), ρi occurs in equal-magnitude, opposite-polarity pairs. The expectation

is initially over τ , which is considered a zero-mean unit-variance Gaussian random vari-

able when contained inside the argument of the expectation operator. The expectation

operator in this case can simply be viewed as a short-hand notation as in

Eτ [p(τ)] =

∫ ∞

−∞

e−τ2/2

√
2π

p(τ)dτ.

In (5.3a) and (5.3b), however, ρ (or ρ+) is also treated as a RV and the expectation is over

both τ and ρ (or τ and ρ+) as the double subscripts indicate. Given the pdfs of τ , ρ and

ρ+, the computation of the expectation now involves numerical evaluation of a double

integral. Note that in (5.3a) ρ is a discrete-valued random variable distributed according

to fρ(t), which denotes the probability distribution of ρ = (1/
√
PX)

∑L
k=1 d−kXk and

ρ+ is a discrete-valued random variable distributed according to 2fρ(t)u(t) where u(t)

is a step function. Also, notice that cosh(2Rρ+) ≥ 1 and ϕ ≤ 1. Since it is not easy to

find fρ(t) when L is large, evaluating (5.3a) or (5.3b) is difficult in general.

It is insightful to compare F with

FSLC , log 2− CSLC(R)

=

∫ ∞

−∞

e−τ2/2

√
2π

log
{
1 + e−2

√
Rτ−2R

}
dτ

=Eτ

[
log
{
1 + e−2

√
Rτ−2R

}]
(5.4a)

=Eτ

[
1

2
log
{
1 + 2e−2

√
Rτ−2R + e−4

√
Rτ−4R

}]
(5.4b)

where CSLC(R) is the SIR of the binary-input Gaussian channel with SNR given by

R , PX/σ2
V and is the well-known SLC. The function FSLC quantifies the gap between

the SLC and the maximum attainable capacity for any binary channel with infinite

SNR, namely, 1 bit/channel use. Comparing the expressions for F in (5.3b) and FSLC

in (5.4b), we see that if ρ+ = 0 so that ϕ = 1, then F = FSLC , and I ′(X;Y ) and

the SLC both become equal to I(X;Y ). Also, if the discrete RV ρ converges to a
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Figure 5.1: F − FSLC as a function of R for a uniform ρ.

Gaussian random variable (in cumulative distribution), then again we get F = FSLC

and I ′(X;Y ) = CSLC(R) = I(X;Y ).

Furthermore, that ρ+ ≥ 0 in (5.3b) makes F larger while the factor ϕ being less

than 1 has an effect of decreasing F as it increases. If I ′(X;Y ) = log 2 − F is to be

a tight lower bound to I(X;Y ), then F needs to be small. The important question is:

how does F overall compare with FSLC , over all interested range of SNR? Since it is

already proved that I ′(X;Y ) = log 2− F , if F ≤ FSLC for some R values, then clearly

CSLC(R) = log 2− FSLC ≤ I(X;Y ) at those SNRs, i.e., the SLC holds true at least at

these SNRs.

While exact computation of (5.3b) requires in general obtaining all possible positive-

side values of ρ = (1/
√
PX)

∑L
k=1 d−kXk and thus can be computationally intense for

large L, in the cases where we know the functional form of the distribution for ρ,

evaluation of (5.3a) or (5.3b) is easy; the behavior of F under different ρ distributions

offers useful insights.
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Figure 5.2: F − FSLC as a function of R for a two-valued ρ.

First try a uniform distribution for ρ. For a uniformly distributed discrete random

variable ρ from −K∆ = −|ρ|max to K∆ = |ρ|max with a gap ∆ between delta functions

in the pdf, we have

σ2
S =

2PX∆2

2K + 1

K∑
i=1

i2 =
PX∆2K(K + 1)

3
=

PX |ρ|max(|ρ|max +∆)

3

which makes

ϕ2 =
σ2
N

σ2
N + σ2

S

= 1−
σ2
S

σ2
V

= 1− R∆2K(K + 1)

3
= 1− R|ρ|max(|ρ|max +∆)

3
.

Fig. 5.1 shows F and FSLC plotted with K = 1000 as functions of R for various values

of ϕ. We also consider a simple case involving only a single coefficient d−1, in which case

ρ takes only two possible values, e.g., ρ = ±
√

(1− ϕ2)/R. The plots of F and FSLC

for this case are shown against R for different values of ϕ in Fig. 5.2. Figs. 5.1 and 5.2

point to similar behaviors of F versus FSLC . Namely, F becomes smaller than FSLC

as ϕ decreases for a range of R values. At these R values, the provable lower bound

I ′(X;Y ) is apparently tighter than the SLC, with respect to the SIR.
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5.2 Bounding F

Exact computation of F in general is not easy, especially when L goes to infinity. We

thus resort to bounding F with expressions that can easily be computed. An upper

bound on F will provide a lower bound on I ′(X;Y ) and thus on I(X;Y ). Lower bounds

on F are also derived to see if they can get smaller than FSLC . If so, this would mean

I ′(X;Y ) = log 2 − F is larger than CSLC(R) = log 2 − FSLC , i.e., our bound is tighter

than the SLC.

5.2.1 Simple Bounds

Since log
(
1+2 cosh(2Rρ+)e−2ϕ

√
Rτ +e−4ϕ

√
Rτ−4R

)
is convex in ρ+, its integral function

with respect to τ , Eτ

[
1
2 log

(
1 + 2 cosh(2Rρ+)e−2ϕ

√
Rτ + e−4ϕ

√
Rτ−4R

)]
, is also convex

in ρ+. Moreover, this function increases as ρ+ increases. Accordingly, we can develop

bounds on F . The first simple upper bound is

F u1 , T (|ρ|max, θ)
∣∣∣
θ=σρ

(5.5)

where, for a given |ρ|max, the function T (|ρ|max, θ) represents a straight line passing

through two points of the function Eτ

[
1
2 log

(
1 + 2 cosh(2Rθ)e−2ϕ

√
Rτ + e−4ϕ

√
Rτ−4R

)]
at θ = 0 and at θ = |ρ|max. Note that |ρ|max , max |ρi| =

∑L
k=1 |d−k| and σρ is the

standard deviation of RV ρ.

Similarly, Eτ

[
1
2 log

(
1 + 2αe−2ϕ

√
Rτ + e−4ϕ

√
Rτ−4R

)]
is a concave and increasing

function of α , cosh(2Rρ+). Based on this property, we can develop another upper

bound.

F u2 ,Eτ

[
1

2
log
{
1 + 2(sσρ + 1)e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]
(5.6)

where s = (cosh(2R|ρ|max)− 1) /|ρ|max, the slope of a straight line connecting two points

(0, 1) and (|ρ|max, cosh(2R|ρ|max)).

A lower bound on F can also be obtained that can help shed lights on how tight the

upper bounds on F are. Using the convexity of Eτ

[
log
(
1 + e−2Rρe−2ϕ

√
Rτ−2R

)]
in ρ,
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the simple lower bound of F is

F l ,Eτ

[
1

2
log
{
1 + 2e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]
. (5.7)

Detailed derivations of (5.5), (5.6), and (5.7) are given in Section 5.5.3.

5.2.2 Tightened Bounds Based on Cluster Identification

The above bounds can be tightened up by identifying clusters in the Gaussian mixture

fV (t). In practical ISI channels, fV (t) often consists of clusters. This is due to the fact

that the coefficient set d−k’s typically contains a few dominating coefficients plus many

small terms. Assuming there are M dominating coefficients among d−k’s, we can let

ρk = λn + µi where n = 1, 2, . . . , 2M , i = 1, 2, . . . , 2L−M , and k = (n − 1)2L−M + i.

Since Xk is an i.u.d. RV, λ and µ are independent so that σ2
ρ = σ2

λ + σ2
µ where σ2

λ and

σ2
µ denote the variance of RVs λ and µ, respectively. Notice that λn can be viewed as

the position of a specific cluster while µi points to a specific Gaussian pdf out of 2L−M

Gaussian pdf’s symmetrically positioned around λn.

Therefore, assuming there are 2M clusters of Gaussian pdfs, the upper bound F u1

can be tightened as

F u1
M , 2−M

2M∑
n=1

Tn (|µ|max, θ)
∣∣∣
θ=σµ

(5.8)

where, for a given |µ|max, the function Tn(|µ|max, θ) is a straight line that passes through

the two points of the convex function Eτ

[
1
2 log

{
1 + 2 cosh (2Rθ) e−2Rλne−2ϕ

√
Rτ−2R +

e−4Rλne−4ϕ
√
Rτ−4R

}]
at θ = 0 and θ = |µ|max, σµ is the standard deviation of RV µ

defined as σµ =
√

σ2
ρ − σ2

λ, and |µ|max = |ρ|max − |λ|max.

Another form of tightened upper bound based on F u2 is obtained as

F u2
M , 2−M

2M∑
n=1

Eτ

[
1

2
log
{
1 + 2 (sMσµ + 1) e−2Rλne−2ϕ

√
Rτ−2R + e−4Rλne−4ϕ

√
Rτ−4R

}]
(5.9)
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where sM = (cosh(2R|µ|max)− 1) /|µ|max.

The lower bound F l can also be tightened similarly based on the cluster identifica-

tion:

F l
M , 2−(M−1)

2M−1∑
k=1

Eτ

[
1

2
log
{
1 + 2 cosh

(
2Rλ+

k

)
e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]
(5.10)

where λ+
k ’s form the positive-half subset of λn’s. The detail derivations of (5.8), (5.9),

and (5.10) can be found in Section 5.5.4.

5.2.3 Bounds for Complex Channels with QPSK Inputs

In the previous subsections, ISI coefficients and noise samples are assumed to be real-

valued with the channel inputs being the binary phase shift keying (BPSK) signal. In

this subsection, we provide a complex-valued example along with the channel inputs

taken from a quadrature phase shift keying (QPSK) quaternary alphabet, i.e., Xk ∈{√
PX
2 (±1± j)

}
. The extension to larger alphabets should be straightforward.

Denoting the real and imaginary parts of complex number a by a(r) and a(i) respec-

tively, i.e., a = a(r) + ja(i), and mi =
∑L

k=1 d−kXk for i = 1, 2, . . . , 4L, the pdf’s of

complex random variables V and G are given as

fV (t) = 4−L
4L∑
i=1

1

πσ2
N

exp

(
−|t−mi|2

σ2
N

)

=4−L
4L∑
i=1

{
1√
πσ2

N

exp

(
−
(
t(r) −m

(r)
i

)2
σ2
N

)
1√
πσ2

N

exp

(
−
(
t(i) −m

(i)
i

)2
σ2
N

)}

fG(t) =
1

πσ2
V

exp

(
−|t|

2

σ2
V

)
=

1√
πσ2

V

exp

(
−
(
t(r)
)2

σ2
V

)
1√
πσ2

V

exp

(
−
(
t(i)
)2

σ2
V

)
.
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Then, for the SLC, we write

FSLC , log 4− CSLC(R)

= 2

∫ ∞

−∞

e−τ2

√
π

log
{
1 + e−2

√
2Rτ−2R

}
dτ

=2Eτ

[
log
{
1 + e−2

√
2Rτ−2R

}]
(5.11a)

= 2Eτ

[
1

2
log
{
1 + 2e−2

√
2Rτ−2R + e−4

√
2Rτ−4R

}]
(5.11b)

where Eτ [p(τ)] =
∫∞
−∞ π−1/2e−τ2p(τ)dτ .

The function F is also given as

F , 4−L
4L∑
i=1

(
Eτ

[
log
{
1 + e−2

√
2Rρ

(r)
i e−2ϕ

√
2Rτ−2R

}]
+Eτ

[
log
{
1 + e−2

√
2Rρ

(i)
i e−2ϕ

√
2Rτ−2R

}])
=2Eρ(r),τ

[
log
{
1 + e−2

√
2Rρ(r)e−2ϕ

√
2Rτ−2R

}]
(5.12a)

= 4−(L−1)
4L−1∑
k=1

2Eτ

[
1

2
log
{
1 + 2 cosh

(
2
√
2Rρ

(r)+
k

)
e−2ϕ

√
2Rτ−2R + e−4ϕ

√
2Rτ−4R

}]
=2Eρ(r)+,τ

[
1

2
log
{
1 + 2 cosh

(
2
√
2Rρ(r)+

)
e−2ϕ

√
2Rτ−2R + e−4ϕ

√
2Rτ−4R

}]
(5.12b)

where ρ
(r)
i , m

(r)
i /
√
PX , ρ

(i)
i , m

(i)
i /
√
PX , and ρ

(r)+
k ’s and ρ

(i)+
k ’s denote the positive-

half subset of ρ
(r)
i ’s and ρ

(i)
i ’s respectively. The equality of (5.12a) holds because the

pdf of ρ(r) is identical to the pdf of ρ(i).

Then, the upper bound based on F u1 can be derived in a similar way as

F u1
M , 4−M

4M∑
n=1

2T (r)
n

(
|µ(r)|max, θ

) ∣∣∣
θ=

σµ√
2

(5.13)

where, for a given |µ(r)|max, T
(r)
n (|µ(r)|max, θ) denotes a straight line that passes through

the two points of the function Eτ

[
1
2 log

{
1 + 2 cosh

(
2
√
2Rθ

)
e−2

√
2Rλ

(r)
n e−2ϕ

√
2Rτ−2R +

e−4
√
2Rλ

(r)
n e−4ϕ

√
2Rτ−4R

}]
at θ = 0 and at θ = |µ(r)|max. Note that |µ(r)|max =

|µ|max/
√
2 and the variance of µ(r) is equal to σ2

µ/2 since the pdfs of λ(r) and µ(r)

are identical to the pdfs of λ(i) and µ(i), respectively.
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Figure 5.3: System Model of ISI channels.

A second upper bound on F is given as

F u2
M , 4−M

4M∑
n=1

2Eτ

[
1

2
log

{
1 + 2

(
s
(r)
M σµ√
2

+ 1

)
e−2

√
2Rλ

(r)
n e−2ϕ

√
2Rτ−2R

+e−4
√
2Rλ

(r)
n e−4ϕ

√
2Rτ−4R

}]
(5.14)

where s
(r)
M =

(
cosh(2

√
2R|µ(r)|max)− 1

)
/|µ(r)|max.

Finally, a lower bound to F can be shown to be

F l
M , 4−M

4M/2∑
k=1

Eτ

[
1

2
log
{
1 + 2 cosh

(
2
√
2Rλ

(r)+
k

)
e−2ϕ

√
2Rτ−2R

+e−4ϕ
√
2Rτ−4R

}]
(5.15)

where λ
(r)+
k ’s form the positive-half subset of λ

(r)
n ’s.

5.3 Application to ISI Channels and Numerical Examples

5.3.1 The ISI Channel and MMSE-DFE

Fig. 5.3 shows the discrete-time equivalent system model of the finite-ISI channel

with the infinite-length feedforward filter of the unbiased MMSE-DFE preceded by

the matched filter (MF) for the channel. The discrete-time MF output of Fig. 5.3 is

identical to the baud-rate sampled output of the continuous-time MF applied to the
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continuous-time channel, under the assumption that the channel is strictly limited to

the Nyquist band.

We also assume that the receiver knows the D-transform of the finite-ISI channel

response, h(D), xk is an i.u.d. input sequence and wk is additive white Gaussian noise

(AWGN) with variance σ2
W = N0. Furthermore, rk is the channel output sequence, zk

is the output sequence of the infinite-length MMSE-DFE feedforward filter and yk is

the unbiased MMSE-DFE output after ideal postcursor ISI cancellation.

DenotingX = x0, Xk = xk, and Y = y0, the output of the the unbiased MMSE-DFE

with ideal feedback [52] is

Y = X +

∞∑
k=1

d−kXk +N = X + S +N = X + V

where N is the Gaussian noise sample observed at the DFE forward filter output and

d−kXk is the precursor ISI sequence. Note we are assuming stationary random processes.

It is well-known that the D-transform of the precursor ISI taps d−k is given by [52]

d(D) =
N0

P0 −N0

(
1− 1

g∗(D−∗)

)
(5.16)

where P0 is such that logP0 = 1
2π

∫ π
−π logRss(e

−jθ)dθ and g∗(D−∗) is obtained from

spectral factorization: Rss(D) = PXRhh(D) + N0 = P0g(D)g∗(D−∗) with Rhh(D) =

h(D)h∗(D−∗). Notice that a convenient numerical spectral factorization algorithm exists

for recursively computing the coefficients of g∗(D−∗) [66,67].

Accordingly, the variances of V , N , and S are given as

σ2
V =

PXN0

P0 −N0

σ2
N =

PXP0N0

2π (P0 −N0)
2

∫ π

−π

Rhh(e
−jθ)

Rhh(e−jθ) +N0/PX
dθ

σ2
S = σ2

V − σ2
N .

We can obtain |ρ|max by the absolute summation of the inverse D-transform of d(D)

if the feedforward filter of MMSE-DFE is stable, i.e.,
∑∞

k=1 |d−k| < ∞. Let us first
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consider the case where d(D) has P multiple first-order poles, pi for i = 1, 2, . . . , P .

Then, |ρ|max can be obtained by the partial fraction method since d(D) is a rational

function. In other words, the inverse D-transform of individual fraction terms can be

found and then added together to form d−k. Denoting a(D) = 1
g∗(D−∗) =

∑P
i=1

ci
1−piD−1 ,

the sequence a−k is given as a−k =
∑P

i=1 cip
k
i . Therefore,

|ρ|max =
1√
PX

∞∑
k=1

|d−kXk| =
∞∑
k=1

|d−k|

=
N0

(P0 −N0)

( ∞∑
k=1

|a−k|

)

=
N0

(P0 −N0)

( ∞∑
k=1

∣∣∣∣∣
P∑
i=1

cip
k
i

∣∣∣∣∣
)

≤ N0

(P0 −N0)

(
P∑
i=1

∞∑
k=1

∣∣∣cipki ∣∣∣
)

=
N0

(P0 −N0)

(
P∑
i=1

|cipi|
1− |pi|

)
. (5.17)

The upper bound of |ρ|max can be also tightened by identifying the first K dominant

taps:

|ρ|max =
N0

(P0 −N0)

( ∞∑
k=1

∣∣∣∣∣
P∑
i=1

cip
k
i

∣∣∣∣∣
)

=
N0

(P0 −N0)

(
K∑
k=1

∣∣∣∣∣
P∑
i=1

cip
k
i

∣∣∣∣∣+
∞∑

k=K+1

∣∣∣∣∣
P∑
i=1

cip
k
i

∣∣∣∣∣
)

≤ N0

(P0 −N0)

(
K∑
k=1

∣∣∣∣∣
P∑
i=1

cip
k
i

∣∣∣∣∣+
P∑
i=1

∞∑
k=K+1

∣∣∣cipki ∣∣∣
)

=

K∑
k=1

|d−k|+
N0

(P0 −N0)

 P∑
i=1

∣∣∣cipK+1
i

∣∣∣
1− |pi|

 . (5.18)

For the case of the multiple-order poles of d(D), the upper bound of |ρ|max can be also

obtained in a similar way using the triangle inequality |a+ b| ≤ |a|+ |b|.

The SIR or the i.u.d. capacity (bits/channel use) for any finite-ISI channel corrupted
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Figure 5.4: First 20 Precursor taps after unbiased MMSE-DFE at SNR=10 dB for four
example channels.

by Gaussian noise is given [68] as

SIR, lim
N→∞

1

2N + 1
I
(
{xk}N−N ; {rk}N−N

)
≥ lim

N→∞

1

2N + 1
I
(
{xk}N−N ; {zk}N−N

)
(5.19)

≥ I
(
x0; z0|{xk}−1

−∞
)

(5.20)

= I (X;Y ) (5.21)

where {uk}N2
N1

= {uk, k = N1, N1 + 1, . . . , N2}. The inequality in (5.19) holds due

to the data processing theorem (equality holds if the MMSE-DFE feedforward filter

is invertible). The inequality of (5.20) can be obtained by applying the chain rule of

mutual information and assuming stationarity [35]. The equality (5.21) is valid because

known post-cursor ISI can simply be subtracted out without affecting capacity.
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5.3.2 Numerical Results

Now, let us examine the particular ISI channels, h(D) = 2−1/2(1+D), h(D) = 2−1(1+

D − D2 − D3) and h(D) = 0.19 + 0.35D + 0.46D2 + 0.5D3 + 0.46D4 + 0.35D5 +

0.19D6, which are well-known and previously investigated in [26, 34, 35], and h(D) =

1.6099−1/2
∑10

i=0D
i/(1 + (i − 5)2), which was considered in [30]. The first 20 pre-

cursor ISI tap values are computed and shown in Fig. 5.4 for these example chan-

nels. In addition, we consider a complex-valued partial response channel: h(D) =

2−1 {(1 + j) + (1− j)D}. The channel inputs are binary, except the complex-valued

channel for which the inputs are assumed quaternary.

Since the infinite-length MMSE-DFE is used, i.e., L =∞, the probability distribu-

tion of ρ is not available generally. Hence the lower bounds CL1,M = log 2 − F u1
M and

CL2,M = log 2 − F u2
M along with CSLC = log 2 − FSLC are considered as functions of

SNR = PX/N0 for different values of M . When no clustering is used, we set M = 0. In

computing |ρ|max (and thus |µ|max), which was needed to calculate F u1
M or F u2

M , we were

able to run numerical recursive spectral factorization to find all non-negligible d−k co-

efficients relatively quickly for all channels considered, without resorting to the bounds

of (5.17) or (5.18). We observed that the lower bounds, CL1,M and CL2,M , produced

similar results, so only CL1,M were chosen and plotted as CL,M in Figs. 5.5 through 5.9.

The SIR of each channel is also obtained using the simulation-based approach [26–28].

For each capacity figure, we first plotted the SIR and CSLC . We then plotted CL for

M = 0 and then another CL by choosing an M value for which the CL bound is almost

as tight as the CSLC conjecture (this is why the CSLC curve is almost overwritten and

indistinguishable in some figures). We also show for each channel how the upper and

lower bounds of F close on each other as M increases. The bounds on F are shown

with FSLC subtracted from them in the part (b) figure. In this way, it should be clear

that for those SNR values where F u − FSLC becomes less than zero eventually, F is

less than FSLC , guaranteeing that I ′(X : Y ) = log 2 − F is larger than CSLC . In fact,
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it can be seen from the part (b) plots of Figs. 5.5 through 5.8 that this is true for the

high SNR range corresponding to all rates higher than roughly 0.6 in each of the first

four channels considered, although the difference F −FSLC is small (note the very small

scale of the vertical axis in each part-b figure). In the fifth example shown in Fig. 5.9,

F u − FSLC is actually less than zero at all SNR values, meaning that for this channel

our bound is tighter than the SLC in the entire SNR range.

A significant implication here is that whenever I ′(X : Y ) = log 2− F is larger than

CSLC , there is an assurance that the SLC holds true. The curves of F l − FSLC for

different M values also provide a detailed picture of how large M should be in order for

CL to get close enough to the CSLC .

Note that the computational load for evaluating the integral of (5.8) and (5.9) to

obtain the bound depends exponentially on M , the number of clusters in the pdf fV (t).

The computational load in computing the dominant precursor ISI taps and their mag-

nitude sum is minimal. The results summarized in the figures indicate that in each

channel considered, a relatively small value of M (and thus a reasonably low compu-

tational load) yields a bound as tight as the SLC. As a case in point, comparison of

Fig. 5.8 with the results of [30] (Figure 6 of [30], specifically) gives a good idea on the

usefulness of an easily computable bound such as the one presented here. At a rate 0.9,

for example, one can observe from a close examination of Fig. 6 of [30] that the lower

bound of [30] approaches the SIR within about 0.88 dB with 2 iterations, which would

require basically running the BCJR algorithm twice on a reduced channel trellis of 64

states. In contrast, our bound based on just two clusters is about 0.84 dB away from

the SIR at the same rate, as estimated from Fig. 5.8. This bound requires computation

of 22 = 4 single-dimensional integrals, the complexity of which amounts to virtually

nothing relative to that associated with two BCJR simulation runs in the method of

[30]. The simulation-based bound of [30] does narrow the gap to about 0.65 dB with

five iterations, but at the expense of much more computational time.

We stress that the value of the simulation-based SIR estimation methods is not in
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their ability to provide easily obtained bounds; rather they play a critical role in esti-

mating the SIR (or capacity) with a very high accuracy, given the ample computational

resources. As for providing convenient and easily computed SIR estimates or bounds,

the need for analytically evaluated bounds such as the one developed in this chapter

continues to be high. In particular, the question remains as to how does the proposed

method perform on very long ISI channels with no dominant taps. A good example

of this type of channel is the indoor wireless channel in a highly scattered multi-path

setting. Unfortunately, our analysis indicates the lower bounds developed here are not

very effective in this case, with their gaps to the SIR bigger than that of the SLC when

computational loads are kept at reasonable levels. Easily-computed tight bounds for

this type of channel remain elusive.

5.4 Summary

In this chapter, we derived a lower bound to the SIR of the ISI channel driven by dis-

crete and finite-amplitude inputs. The approach taken was to introduce a “mismatched”

mutual information function that acts as a lower bound to the symmetric information

rate between the channel input and the ideal-feedback MMSE-DFE filter output. This

function turns out to be tighter than the Shamai-Laroia conjecture for a practically sig-

nificant range of SNR values for some example channels. We then further lower-bounded

this function by another function that can be evaluated via numerical integration with

a small computational load. The final computation also requires finding a few large

precursor ISI tap values as well as the absolute sum of the remaining ISI terms, which

can be done easily. The final lower bounds are demonstrated for a number of well-known

finite-ISI channels, and the results indicate that the new bounds computed at a fairly

low computational load are as tight as the SLC.
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5.5 Proofs and Derivations

5.5.1 Proof of Lemma 1

We show below that I ′(X;Y ) ≤ I(X;Y ). Start by writing

I(X;Y )− I ′(X;Y )

=
(
H(Y )−H ′(Y )

)
−
(
H(V )−H ′(V )

)
= −

∫ ∞

−∞
fY (t) log

(
fY (t)

fZ(t)

)
dt+

∫ ∞

−∞
fV (t) log

(
fV (t)

fG(t)

)
dt

= −D
(
fY (t)||fZ(t)

)
+D

(
fV (t)||fG(t)

)
(5.22)

where D
(
p(t)||q(t)

)
is the Kullback-Leibler (K-L) divergence defined as

D
(
p(t)||q(t)

)
,
∫ ∞

−∞
p(t) log

(
p(t)

q(t)

)
dt.

The K-L divergence is always greater than or equal to zero and convex in pair (p(t)||q(t)),

[69], i.e, assuming p1(t), p2(t), q1(t), and q2(t) are all pdfs, for 0 ≤ λ ≤ 1, we have

D
(
λp1(t) + (1− λ)p2(t)||λq1(t) + (1− λ)q2(t)

)
≤ λD

(
p1(t)||q1(t)

)
+ (1− λ)D

(
p2(t)||q2(t)

)
. (5.23)

For the sake of clarity, we assume that X is from the BPSK alphabet, i.e., X ∈

{±
√
PX}. Then,

fY (t) =
1

2

{
fV (t−

√
PX) + fV (t+

√
PX)

}
fZ(t) =

1

2

{
fG(t−

√
PX) + fG(t+

√
PX)

}
.

Substituting p1(t) = fV (t−
√
PX), p2(t) = fV (t+

√
PX), q1(t) = fG(t−

√
PX), q2(t) =

fG(t+
√
PX), and λ = 0.5 in (5.23), we get

D
(
fY (t)||fZ(t)

)
≤ 1

2

{
D
(
fV (t−

√
PX)||fG(t−

√
PX)

)
+D

(
fV (t+

√
PX)||fG(t+

√
PX)

)}
=D

(
fV (t)||fG(t)

)
.
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Accordingly, (5.22) is always greater than or equal to zero or I ′(X;Y ) ≤ I(X;Y ). While

this proof is for the binary alphabet, it is easy to see that the application of the pair-wise

convexity of (5.23) for any i.u.d. input leads to the same conclusion.

5.5.2 Derivation of the Proposition 1

From the pdfs of RVs V and G, we can write

H ′(V ) =−
∫ ∞

−∞
fV (t) log fG(t)dt

=
1

2
log
(
2πσ2

V

)
+

∫ ∞

−∞

t2

2σ2
V

fV (t)dt. (5.24)

Moreover, we have

fY (t) =
1

2

{
fV (t−

√
PX) + fV (t+

√
PX)

}
fZ(t) =

1

2

{
fG(t−

√
PX) + fG(t+

√
PX)

}
=

1

2

{
1√
2πσ2

V

exp

(
−
(
t−
√
PX

)2
2σ2

V

)
+

1√
2πσ2

V

exp

(
−
(
t+
√
PX

)2
2σ2

V

)}

=
1

2
√

2πσ2
V

exp

(
−(t−

√
PX)2

2σ2
V

){
1 + exp

(
−2
√
PXt

σ2
V

)}

=
1

2
√

2πσ2
V

exp

(
−(t+

√
PX)2

2σ2
V

){
1 + exp

(
2
√
PXt

σ2
V

)}
.

We can write − log fZ(t) in two different ways:

− log fZ(t) = log 2 +
1

2
log
(
2πσ2

V

)
+

(t−
√
PX)2

2σ2
V

− log

{
1 + exp

(
−2
√
PXt

σ2
V

)}
= log 2 +

1

2
log
(
2πσ2

V

)
+

(t+
√
PX)2

2σ2
V

− log

{
1 + exp

(
2
√
PXt

σ2
V

)}
.
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Thus, we have

−1

2

∫ ∞

−∞
fV (t−

√
PX) log fZ(t)dt

=
1

2

{
log 2 +

1

2
log
(
2πσ2

V

)}
+
1

2

∫ ∞

−∞

(t−
√
PX)2

2σ2
V

fV (t−
√
PX)dt

−1

2

∫ ∞

−∞
log

{
1 + exp

(
−2
√
PXt

σ2
V

)}
fV (t−

√
PX)dt

=
1

2

{
log 2 +

1

2
log
(
2πσ2

V

)}
+

1

2

∫ ∞

−∞

t2

2σ2
V

fV (t)dt

−1

2

∫ ∞

−∞
log

{
1 + exp

(
−2
√
PXt− 2PX

σ2
V

)}
fV (t)dt.

Similarly,

−1

2

∫ ∞

−∞
fV (t+

√
PX) log fZ(t)dt

=
1

2

{
log 2 +

1

2
log
(
2πσ2

V

)}
+

1

2

∫ ∞

−∞

t2

2σ2
V

fV (t)dt

−1

2

∫ ∞

−∞
log

{
1 + exp

(
2
√
PXt− 2PX

σ2
V

)}
fV (t)dt.

Accordingly,

H ′(Y ) =−
∫ ∞

−∞
fY (t) log fZ(t)dt

=−1

2

∫ ∞

−∞
fV (t−

√
PX) log fZ(t)dt−

1

2

∫ ∞

−∞
fV (t+

√
PX) log fZ(t)dt

= log 2 +
1

2
log
(
2πσ2

V

)
+

∫ ∞

−∞

t2

2σ2
V

fV (t)dt

−
∫ ∞

−∞

1

2

[
log

{
1 + exp

(
−2
√
PXt− 2PX

σ2
V

)}
+ log

{
1 + exp

(
2
√
PXt− 2PX

σ2
V

)}]
fV (t)dt

= log 2 +
1

2
log
(
2πσ2

V

)
+

∫ ∞

−∞

t2

2σ2
V

fV (t)dt

−
∫ ∞

−∞
log

{
1 + exp

(
−2
√
PXt− 2PX

σ2
V

)}
fV (t)dt. (5.25)
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The last equality in (5.25) holds because fV (t) is an even function. Finally, from (5.24)

and (5.25), we arrive at

I ′(X;Y ) =H ′(Y )−H ′(V )

= log 2−
∫ ∞

−∞
fV (t) log

{
1 + exp

(
−2
√
PXt− 2PX

σ2
V

)}
dt. (5.26)

Now write I ′(X;Y ) = log 2− F with the new definition

F ,
∫ ∞

−∞
fV (t) log

{
1 + exp

(
−2
√
PXt− 2PX

σ2
V

)}
dt

=2−L
2L∑
i=1

∫ ∞

−∞

1√
2πσ2

N

exp

(
−(t−mi)

2

2σ2
N

)
log

{
1 + exp

(
−2
√
PXt− 2PX

σ2
V

)}
dt

=2−L
2L∑
i=1

∫ ∞

−∞

e−τ2/2

√
2π

log

{
1 + exp

(
−2
√
PX (τσN +mi)− 2PX

σ2
V

)}
dτ

=2−L
2L∑
i=1

∫ ∞

−∞

e−τ2/2

√
2π

log
{
1 + e−2Rρie−2ϕ

√
Rτ−2R

}
dτ

=2−L
2L∑
i=1

Eτ

[
log
{
1 + e−2Rρie−2ϕ

√
Rτ−2R

}]
(5.27a)

where the third equality is obtained with a variable change (t − mi)/σN = τ and

ρi , mi/
√
PX , R , PX/σ2

V , and ϕ , σN/σV . The expression (5.27a) can also be

written as

F =2−L
2L∑
i=1

Eτ

[
log
{
1 + e−2Rρie−2ϕ

√
Rτ−2R

}]

=2−L
2L−1∑
k=1

Eτ

[
log
{
1 + e−2Rρ+k e−2ϕ

√
Rτ−2R

}
+ log

{
1 + e2Rρ+k e−2ϕ

√
Rτ−2R

}]

=2−L
2L−1∑
k=1

Eτ

[
log
{
1 +

(
e−2Rρ+k + e2Rρ+k

)
e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]

=2−(L−1)
2L−1∑
k=1

Eτ

[
1

2
log
{
1 + 2 cosh

(
2Rρ+k

)
e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]
(5.27b)

where ρ+k ’s is the positive-half subset of ρi’s.

118



5.5.3 Derivation of the Simple Bounds

Due to the convexity of Eτ

[
1
2 log

(
1 + 2 cosh(2Rρ+)e−2ϕ

√
Rτ + e−4ϕ

√
Rτ−4R

)]
in ρ+, the

upper bound of F can be found as

F =2−(L−1)
2L−1∑
k=1

Eτ

[
1

2
log
{
1 + 2 cosh

(
2Rρ+k

)
e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]

≤ 2−(L−1)
2L−1∑
k=1

{
T (|ρ|max, θ)

∣∣∣
θ=ρ+k

}
= T (|ρ|max, θ)

∣∣∣
θ=2−(L−1)

∑2L−1

k=1 ρ+k

= T (|ρ|max, θ)
∣∣∣
θ=|ρ|avg

≤ T (|ρ|max, θ)
∣∣∣
θ=σρ

, F u1 (5.28)

where, for a given |ρ|max, T (|ρ|max, θ) represents a straight line passing through the two

points of Eτ

[
1
2 log

(
1+2 cosh(2Rθ)e−2ϕ

√
Rτ + e−4ϕ

√
Rτ−4R

)]
: at θ = 0 and at θ = |ρ|max

and |ρ|avg , 2−L
∑2L

i=1 |ρi| = 2−(L−1)
∑2L−1

k=1 ρ+k . The last inequality is obtained from

the Cauchy-Schwarz inequality: |ρ|avg ≤ σρ.

Another upper bound of F can be also found as

F =2−(L−1)
2L−1∑
k=1

Eτ

[
1

2
log
{
1 + 2αke

−2ϕ
√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]

≤Eτ

[
1

2
log

{
1 + 2

(
2−(L−1)

2L−1∑
k=1

αk

)
e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]
=Eτ

[
1

2
log
{
1 + 2αavge

−2ϕ
√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]
(5.29)

where αk , cosh(2Rρ+k ) and αavg , 2−(L−1)
∑2L−1

k=1 αk = 2−(L−1)
∑2L−1

k=1 cosh(2Rρ+k ).

The inequality comes from the concavity of Eτ

[
1
2 log

(
1 + 2αe−2ϕ

√
Rτ + e−4ϕ

√
Rτ−4R

)]
in α. Moreover, since it is an increasing function of α, the last expression of (5.29) can

be further upper-bounded by replacing α′ with α′ ≥ αavg . For example, note

αavg ≤ 2−(L−1)
2L−1∑
k=1

(
sρ+k + 1

)
= s |ρ|avg + 1 ≤ sσρ + 1 , α′
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where s = (cosh(2R|ρ|max)− 1) /|ρ|max, the slope of a straight line connecting two points

of the convex function cosh(2Rρ), (0, 1) and (|ρ|max, cosh(2R|ρ|max)). This gives

F ≤Eτ

[
1

2
log
{
1 + 2

(
sσρ + 1

)
e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]
, F u2. (5.30)

By using the convexity of the function, Eτ

[
log
(
1 + e−2Rρe−2ϕ

√
Rτ−2R

)]
, in ρ, the

lower bound of F is also found as

F =2−L
2L∑
i=1

Eτ

[
log
{
1 + e−2Rρie−2ϕ

√
Rτ−2R

}]

≥Eτ

[
log

{
1 + exp

(
− 2R

(
2−L

2L∑
i=1

ρi

))
e−2ϕ

√
Rτ−2R

}]
=Eτ

[
log
{
1 + e−2ϕ

√
Rτ−2R

}]
=Eτ

[
1

2
log
{
1 + 2e−2ϕ

√
Rτ−2R + e−4ϕ

√
Rτ−4R

}]
, F l. (5.31)

5.5.4 Derivation of the Tightened Bounds

The tightened bounds are derived in a similar way using the convexity or concavity of

the function except the cluster identification needs be incorporated. Since ρk = λn+µi,

120



we can rewrite F as

F =2−M
2M∑
n=1

(
2−(L−M)

2L−M∑
i=1

Eτ

[
log
{
1 + e−2R(µi+λn)e−2ϕ

√
Rτ−2R

}])

=2−M
2M∑
n=1

(
2−(L−M−1)

2L−M−1∑
l=1

Eτ

[
1

2
log
{
1 + 2 cosh

(
2Rµ+

l

)
e−2Rλne−2ϕ

√
Rτ−2R + e−4Rλne−4ϕ

√
Rτ−4R

}])

≤ 2−M
2M∑
n=1

(
2−(L−M−1)

2L−M−1∑
l=1

{
Tn(|µ|max, θ)

∣∣∣
θ=µ+

l

})

=2−M
2M∑
n=1

{
Tn (|µ|max, θ)

∣∣∣
θ=2−(L−M−1)

∑2L−M−1

l=1 µ+
l

}

=2−M
2M∑
n=1

{
Tn(|µ|max, θ)

∣∣∣
θ=|µ|avg

}

≤ 2−M
2M∑
n=1

{
Tn(|µ|max, θ)

∣∣∣
θ=σµ

}
, F u1

M (5.32)

where µ+
l ’s form the positive-half subset of µi’s and, for a given |µ|max, Tn(|µ|max, θ) is a

straight line passing through the function Eτ

[
1
2 log

{
1+2 cosh (2Rθ) e−2Rλne−2ϕ

√
Rτ−2R+

e−4Rλne−4ϕ
√
Rτ−4R

}]
at θ = 0 and θ = |µ|max. Moreover, |µ|avg , 2−(L−M)

∑2L−M

i=1 |µi| =

2−(L−M−1)
∑2L−M−1

l=1 µ+
l . The last inequality also follows from |µ|avg ≤ σµ, and note

σµ =
√

σ2
ρ − σ2

λ and |µ|max = |ρ|max − |λ|max.
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Another form of tightened upper bound of F is obtained as

F =2−M
2M∑
n=1

(
2−(L−M−1)
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1

2
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[
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log
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[
1

2
log
{
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,F u2

M (5.33)

where βl , cosh
(
2Rµ+

l

)
and

βavg , 2−(L−M−1)
2L−M−1∑

l=1

βl = 2−(L−M−1)
2L−M−1∑

l=1

cosh(2Rµ+
l )

≤ 2−(L−M−1)
2L−M−1∑

k=1

(
sMµ+

k + 1
)
= sM |µ|avg + 1

≤ sMσµ + 1 , β′

which is based on a straight line connecting two points of the convex function cosh(2Rµ),

(0, 1) and (|µ|max, cosh(2R|µ|max), having a slope sM = (cosh(2R|µ|max)− 1) /|µ|max.
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The tightened lower bound of F based on cluster identification is obtained as

F =2−M
2M∑
n=1
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2−(L−M)

2L−M∑
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log
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√
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,F l

M (5.34)

where λ+
k ’s form the positive-half subset of λn’s.
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Figure 5.5: Example channel: h(D) = 2−1/2(1 + D) with BPSK inputs (a) SIR, SLC
and the new lower bounds as functions of SNR (b) Upper and lower bounds of F , for
different M , less FSLC , plotted against SNR.
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Figure 5.6: Example channel: h(D) = 2−1(1 + D − D2 − D3) with BPSK inputs (a)
SIR, SLC and the new lower bounds as functions of SNR (b) Upper and lower bounds
of F , for different M , less FSLC , plotted against SNR.
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Figure 5.7: Example channel: h(D) = 0.19+0.35D+0.46D2+0.5D3+0.46D4+0.35D5+
0.19D6 with BPSK inputs (a) SIR, SLC and the new lower bounds as functions of SNR
(b) Upper and lower bounds of F , for different M , less FSLC , plotted against SNR.
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Figure 5.8: Example channel: h(D) = 1.6099−1/2
∑10

i=0D
i/(1 + (i − 5)2) with BPSK

inputs (a) SIR, SLC and the new lower bounds as functions of SNR (b) Upper and lower
bounds of F , for different M , less FSLC , plotted against SNR.
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Figure 5.9: Example channel: h(D) = 2−1 {(1 + j) + (1− j)D} with QPSK inputs (a)
SIR, SLC and the new lower bounds as functions of SNR (b) Upper and lower bounds
of F , for different M , less FSLC , plotted against SNR.
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Chapter 6

Conclusion

6.1 Summary

This thesis has explored low-complexity turbo equalization algorithms as alternatives

to the optimal, but much more complex, MAP algorithm across severe ISI channels.

Chapter 2 gave a quick review of the SISO equalizer design method established in [14],

and presented a new SISO DFE design that relies on extrinsic information formulations

and directly accounts for the propagation error effect. With this new approach, both

error rate simulation and the EXIT chart analysis indicated that the proposed SISO

DFE is superior to the well-known SISO LE. This result contrasts the general under-

standing today that the error propagation effect of the DFE degrades the overall TE

performance to below that of an LE. Finally, various MMSE filters were summarized

using the a priori information, and the SNR and MI analyses for LE and DFE were

provided.

Assuming ideal feedback in both directions, the SNR figure-of-merit for BiDFEs

is derived in Chapter 3, allowing infinitely long filler lengths. Additionally, a new

extrinsic information combining strategy that investigates statistical noise correlation

between the outputs of two opposite direction DFEs was described. When combined
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with the previously proposed DFE extrinsic information formulation, this results in a

turbo BiDFE with performance approaching that of a BCJR-based TE in a fairly severe

ISI environment, significantly outperforming TEs based on SISO LEs and DFEs. This

bidirectional turbo DFE achieves excellent performance-complexity tradeoffs compared

to the BCJR algorithm-based TE. Remarkably, a time-invariant version of the BiDFE,

despite being a lower-complexity method that does not require tap-weight updating

as a function of time, nonetheless showed consistently good performance, unlike turbo

LEs or DFEs. Lastly, the noise correlation coefficient analysis is presented under the

assumption of ideal feedback, and the SNR/MI analyses for LEs, DFEs, and BiDFEs

were summarized.

Chapter 4 showed the proper way to extract extrinsic information from other con-

stituent equalizers, when the information between the equalizers could be highly cor-

related, and then proposed a self-iterating soft equalizer design for uncoded systems.

An SISE consists of multiple relatively weak equalizers which are allowed to exchange

soft information based on methods designed to suppress significant correlation among

their soft outputs. Furthermore, the SISE algorithm is employed in TE systems; the

turbo SISE shows robust performance even in severe ISI channels despite the individual

weakness of the constituent suboptimal equalizers. The SISE algorithm works well as a

stand-alone equalizer or as the equalizer component of a turbo equalization system.

Finally, the analytical and provable lower bounds on the SIR or capacity of the

ISI channel corrupted by Gaussian noise are investigated in Chapter 5. Consider the

random variable (RV) Y = X + S + N , where X is a symbol drawn independently

and uniformly from a fixed, finite-size alphabet set symmetrically positioned around

the origin, S a zero-mean discrete-valued RV and N a zero-mean Gaussian RV. When

S represents the precursor ISI terms after the MMSE-DFE is applied at the channel

output, I(X;X+S+N) serves as a tight lower bound for the SIR as well as capacity of

the ISI channel corrupted by Gaussian noise. Unfortunately, as the number of symbols

forming S grows, finding an analytical expression for the probability density function
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of S + N (and thus one for I(X;Y )) is not easy. Therefore, the new lower bounds

are obtained by first introducing a mismatched mutual information function that can

be proved as a lower bound to I(X;X + S +N) and then further lower-bounding this

function with expressions that can be computed via a few single-dimensional integrations

with a small computational load. The lower bounds on the provable bound itself is

developed based on identifying clusters in the distribution of S + N . Finding clusters

in the S + N distribution is the same as identifying dominant coefficient values from

the linear coefficient set that is used to construct S. In all finite-ISI channels examined,

the bound defined in this thesis provides the same level of tightness as the SLC to the

SIR (while being actually tighter than SLC at high SNRs when viewed closed up) with

a very reasonable computation load. In particular, this lower bound was presented on

the same channel employed in [30]; the analytical method given here is much better at

quickly producing a tight bound than the previous simulation-based method in terms

of the complexity/accuracy tradeoff.

6.2 Future work

One potential direction for future research is the examination of low-complexity turbo

equalization algorithms for multiple-input multiple-output (MIMO) systems for wireless

communications and high track density magnetic recording systems. The turbo equal-

ization schemes in this research were based on the single-input single-output system;

thus, these algorithms can naturally be extended to the MIMO systems.

Moreover, this thesis assumes that the noise in an ISI channel model is AWGN; how-

ever, in magnetic recording systems the noise is data-dependent. Specifically, medium

noise occurs due to the random variations in the geometry of a magnetization transition,

so it depends on the data pattern written on the disk. Accordingly, a data dependent

(or pattern-dependent) noise prediction/whitening procedure should be incorporated

with the detection algorithm, which gives rise to pattern-dependent noise predictive
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(PDNP) detectors. It would be beneficial to develop low-complexity turbo equalization

algorithms with PDNP processes for ISI channel models with data-dependent noise.

Another direction that warrants investigation is the development of channel esti-

mation algorithms in conjunction with the proposed turbo equalization schemes. Here

it was assumed that the impulse responses of ISI channels are perfectly known to the

receiver; however, this assumption is impractical, especially for wireless communication

systems. Therefore, it would be helpful to research channel estimation algorithms that

take advantage of the extrinsic information of other modules, equalizer and decoder, in

turbo systems.

One final avenue for future research would be looking for tight and more easily com-

puted analytical forms of SIR or channel capacity, which remains an unsolved problem.

In particular, the lower bounds developed here are not very effective on very long ISI

channels with no dominant taps, such as the indoor wireless channel in a highly scat-

tered multi-path setting as indicated in Chapter 5. This inquiry could be extended to

the various channel models, such as MIMO broadcast channels and 2-dimensional ISI

channels.
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