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Abstract 

 

Agriculture is one of the most weather sensitive industries and weather-

related risks are a major source of crop production risk exposure. One method of 

hedging the risk exposure has been through the use of crop insurance. However, the 

crop insurance market suffers from several problems of asymmetric information and 

systemic weather risk. Without government subsidies or reinsurance crop insurers 

would have to pass the cost of bearing the risk exposures to farmers. The rising cost 

of the federal crop insurance program has been an incentive for the government to 

seek alternative ways to reduce the cost.  

Weather derivatives have been suggested as a potential risk management tool 

to solve the problems. Previous studies have shown that weather derivatives are an 

effective means of hedging agricultural production risk. Yet, it is unclear what role 

weather derivatives will play as a risk management tool compared with the existing 

federal crop insurance program. This study compares the hedging cost and 

effectiveness of weather options with those of crop insurance for soybean and corn 

production in four counties of southern Minnesota. We calculate weather option 

premium by using daily simulation method and compare hedging effectiveness by 

several risk indicators: certainty equivalence, risk premium, Sharpe ratio, and value at 

risk. 

Our results show that the hedging effectiveness of using weather options is 

limited at the farm level compared with crop insurance products. This is because 

weather options insure against adverse weather events causing damage at the county 

level, while crop insurance protects farmers against the loss of their crops directly at 

the farm level as well as at the county level. Thus, individual farmers will continue to 

use crop insurance with government subsidy for their production risk management. 
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However, we observe that the hedging effectiveness of using weather options 

increases as the level of spatial aggregation increases from farm level to county level 

to four-county aggregate level. This implies that the government as a reinsurer can 

reduce idiosyncratic yield risk by aggregating the individual risk exposures at the 

county or higher level, and hedge the remaining systemic weather risk by purchasing 

weather options in the financial market. As a result, weather derivatives could be used 

by the government as a hedging tool to reduce the social cost of the federal crop 

insurance program, since the government currently does not hedge their risk 

exposures in the program. 

Against our expectation based on the conventional wisdom, geographic basis 

risk is not significant in hedging our local weather risk with non-local exchange 

market weather options based on Minneapolis. It is likely due to the fact that the 

Midwest area including Minnesota has relatively homogeneous (or less variable) 

weather conditions and crop yields across the counties compared to other U.S. regions. 

The result indicates that we can hedge local weather risk with non-local exchange 

market weather derivatives in southern Minnesota. However, it should be applied 

cautiously to other locations, crops, or other types of weather derivatives, considering 

spatial correlation of weather variables between a specific farm location and a weather 

index reference point. 
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Chapter Ⅰ 

Introduction 

 

Research Problem 

 It is estimated that up to 70 percent of all businesses face some type of 

weather-related risk (Lettre, 2000) and nearly 30 percent of the U.S. economy is 

directly affected by the weather (www.cme.com). As a result, the earnings of 

businesses can be adversely impacted by summers that are hotter than normal or 

winters that are much colder than anticipated. Agriculture is one of the most weather-

sensitive industries and weather-related risks, mostly arising from fluctuations in 

temperature and precipitation, are a major source of crop production risk exposure. 

 One method of hedging this risk exposure has been through the use of crop 

insurance. Farmers can choose from a variety of insurance plans; yield insurance 

plans, which protect farmers against the loss of their crops due to natural disasters, 

and revenue insurance plans, which protect them against the loss of revenue due to 

both natural disasters and crop price declines. Federal crop insurance markets have 

been able to achieve broader farmer participation through sharply higher federal costs 

in the form of crop insurance rate subsidies. 

 However, crop insurance indemnities are determined based on yield shortfall, 

which may or may not be actually caused by natural disasters. As a consequence, the 

crop insurance market suffers from several classic problems of asymmetric 

information: adverse selection, moral hazard, and verifiability (Chambers, 1989; Hyde 

and Vercammen, 1997; Skees and Reed, 1986). Adverse selection is a problem 

because individual farmers are better informed about their individual prospects for 

success than the insurer is, so that the low-risk farmers do not participate in the 
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insurance program. This increases the insurer’s loss. The moral hazard problem 

emanates from the fact that the insurer may be able to observe yield, but she does not 

observe all of the farmer’s inputs into production (farmer effort, fertilizer expense, 

quality of equipment, etc.). Thus, once insured, the farmer has less incentive to 

expend as many costly resources for production as he would if he were uninsured. 

The third type of information problem is that of verifiability. Non-verifiability is when 

an insurer cannot observe the exact level of yield while the farmer observes yield with 

certainty. In order to induce the farmer to report his yield truthfully, the insurer must 

expend costly resources to monitor the farmer. As a result, the above three problems 

of asymmetric information increase the cost of the insurer. This is one of the 

economic arguments for a government to subsidize crop insurance. 

 More recently, it has been pointed out that the failure of crop insurance 

markets is closely related to the existence of systemic weather risk which stems from 

spatially correlated adverse weather events (Miranda and Glauber, 1997; Woodard and 

Garcia, 2008; Xu, Filler, Odening, and Okhrin, 2009). Miranda and Glauber (1997) 

argue that without reinsurance or government subsidies crop insurers would have to 

pass the cost of bearing the systemic risk through to farmers. 

 As a result, the government subsidizes a high proportion of the costs of crop 

insurance for participating farmers and private crop insurance companies. Farmers 

pay only 33-62% of the premium, depending on the coverage level (or none of the 

premium in the case of catastrophic coverage) and the federal government pays the 

rest of the premium (averaging nearly 60% of the total premiums). Insurance 

company losses are reinsured by the USDA and their administrative and operating 

(A&O) costs are reimbursed by the federal government. In fiscal year 2009, the cost 

of the government premium subsidy for farmers totaled $5.2 billion (or 71% of total 
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cost). The next largest component was $1.6 billion (or 22% of total cost) in the form 

of reimbursement of A&O expenses to private insurance companies (Shields, 2010). 

To solve these problems weather derivatives have been suggested as a 

potential risk management tool. In contrast to crop insurance, the problems of 

asymmetric information do not exist in the weather derivatives market because 

weather derivatives insure against the objective weather events causing damage, not 

the damage itself. Systemic weather risk is also effectively hedged using weather 

derivatives without the need for government subsidies because all weather risks are 

transferred to the derivatives market (Woodard and Garcia, 2008). 

Just as professionals regularly use futures and options to hedge their risk in 

interest rates, equities and foreign exchange, now there are tools available for the 

management of risk from extreme movements of temperature and precipitation in an 

exchange market (Chicago Mercantile Exchange) or over-the-counter (OTC). For 

example, a put option is a common type of weather derivative which provides the 

buyer of the option (the farmer) with protection (the right to sell the weather event to 

the option seller in exchange for the indemnity payment which would reduce the loss 

of the option buyer) in the case of adverse weather events such as drought or 

excessively cold temperature. The weather derivatives market has been growing 

extremely fast in size as end users of weather derivatives and associated weather risk 

management tools increase in volume and diversity. According to the Chicago 

Mercantile Exchange (CME), in 2000, the first year with available records, there were 

just 87 trades, amounting to $1.2 million of notional value, climbing swiftly to 

121,000 trades, worth $6.6 billion, by 2004. The peak volume was almost 930,000 

trades in 2007, with a notional value of $17.9 billion. Even though standard vanilla 

weather derivatives volumes remain relatively lacklustre in recent years, more and 
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more end-users are interested in tailor-made structured weather derivatives.    

 Previous empirical studies on weather derivatives have mostly focused on 

weather options pricing because there is no agreed pricing mechanism for the options 

underlying nonstorable and nontradable assets such as weather indices (Cao and Wei, 

2004; Huang, Shiu, and Lin, 2008; Odening, Musshoff, and Xu, 2007; Richards, 

Manfredo, and Sanders, 2004; Yoo, 2003). Those studies also show that hedging 

effectiveness exists when using weather derivatives. Yet, it is still unclear what role 

weather derivatives will play in agriculture, even though the studies have shown the 

hedging effectiveness of weather derivatives. One reason for the uncertain role of 

weather derivatives is the popularity of crop insurance. In turn, that popularity is due 

significantly to the fact that the federal government subsidizes insurance premiums to 

keep farmers at lower rates and to maintain private crop insurance companies with 

adequate reserves in case of widespread crop disasters. The rising cost of the federal 

crop insurance program has been an incentive for the government to seek alternative 

ways to reduce that cost. 

 

Research Objectives 

 The primary goal of this study is to analyze weather derivatives as a potential 

risk management tool compared with crop insurance in a more practical and 

comprehensive approach. Unlike previous studies, which compared hedging with 

weather derivatives to the no hedge alternative, we approach the hedging problem by 

comparing several risk indicators among alternative hedging tools. Based on the 

comparisons of hedging effectiveness between using weather options and crop 

insurance, we observe whether and how much weather options reduce the social cost 

that exists in the federal crop insurance program. In this study the social cost 
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reduction is measured as an improvement of risk indicators such as value at risk, 

certainty equivalence or risk premium.  

There are two sub-objectives under the above primary goal. First, this study 

plans to assess the literature on weather process models, weather derivative pricing 

and hedging effectiveness based on previous studies in different regions and different 

crops. This will facilitate an identification of the existing gaps in our knowledge based 

on the existing models and empirical results. Second, this study proposes to identify a 

composite modeling approach that integrates the temperature and precipitation 

processes. In comparing hedging effectiveness between weather options and crop 

insurance, all possible basis risks and spatial aggregation effects are considered. 

Various levels of crop yield data from individual farm level to county level to all 

county aggregate level are applied to observe the spatial aggregation effects on 

hedging effectiveness. 

 For the purposes we develop an empirical model for evaluating the hedging 

cost and effectiveness of weather options and multiple peril crop insurance (MPCI) 

for representative Midwest crops, soybean and corn, in four specific Minnesota 

counties (towns), Rock County (Luverne), Stevens County (Morris), Fillmore County 

(Preston), and Chisago County (Rush City). MPCI is a crop yield insurance plan that 

protects individual farmers against their farm level output losses caused by various 

adverse weather and/or natural disaster events. Because MPCI is the most widely used 

plan showing about 30% of total U.S. crop insurance usage and it covers yield risk, 

not revenue risk, MPCI is a good insurance plan to compare with weather derivatives 

which also protect against production risk caused by adverse weather. We also 

consider another crop yield insurance plan, group risk plan (GRP), which insures 

county yields to compare the hedging cost and effectiveness with weather options at 
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the county level. The empirical analysis in this study is composed of the four steps:  

 Estimating the yield response models to observe the relationship between 

crop yield and weather variables for optimal weather hedge 

 Estimating the weather process models to generate a statistical distribution of 

weather variables for pricing weather options 

 Pricing the weather options to compare the hedging cost with that of using 

crop insurance  

 Evaluating the hedging effectiveness as measured by several risk indicators 

between using weather options and crop insurance. 

 The remainder of the dissertation is organized as follows. Chapter II contains 

a review of previous studies concerning crop insurance and weather derivatives. In 

Chapter III, we provide a conceptual framework of producer’s maximization problem 

and three empirical models: yield response model, temperature process model, and 

precipitation process model. Weather options are priced based on the estimation of 

these three empirical models. Chapter IV contains the methodology for pricing 

weather options and comparing hedging effectiveness. In Chapter V, data and 

summary statistics are described. Empirical results are presented in Chapter VI. The 

last Chapter is a discussion of the conclusions. 
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Chapter Ⅱ 

Literature Review 

 

In this Chapter we review previous studies about crop insurance and weather 

derivatives. We start reviewing the papers which address the problems in existing crop 

insurance program and move to the papers estimating crop yield response models. 

Then we examine the papers pricing financial and weather derivatives which are 

followed by several recent papers measuring hedging effectiveness of using weather 

derivatives. 

       

The Problems in Crop Insurance 

 Many papers have dealt with the problems of asymmetric information and 

limitation of crop insurance as a production risk management tool. Skees and Reed 

(1986) demonstrate the problem of adverse selection caused by insufficient 

information of individual farmers under Federal Crop Insurance (FCI). They derive 

the negative relationship between expected yields and theoretical insurance rates, and 

show that farmers with relatively high expected yields opt out crop insurance when 

the same premium is charged for all farmers. In 1985, FCI began to offer premium 

discounts as expected yields increases in order to address adverse selection. The 

results of their paper support the FCI’s action. However, it would be difficult for the 

insurer to obtain sufficient information of each farmer and accurately determine an 

ideal premium based upon the individual risk-level of each insured. 

 Chambers (1989) examines the effect of moral hazard on all-risk agricultural 

insurance indemnity schedules with Pareto-Optimal and constrained Pareto-Optimal 

contracts model. He suggests three alternative ways to deal with moral hazard: (a) 
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insurance companies provide farmers with the incentives to take appropriate actions, 

(b) collect a priori and contemporaneous information about the farmer’s farming 

practices, and (c) write multiyear insurance contracts to detect consistent cheating 

statistically. However, any of these recipes has a limitation to mitigate the moral 

hazard problem completely if farmers try to cheat in various ways. 

 Hyde and Vercammen (1997) analyze both moral hazard and costly state 

verification in the hidden-action moral hazard model. The model illustrates that if 

both hidden action and costly state verification problems are present, optimal 

contracts require co-insurance which refers to the joint assumption of risk between the 

insurer and the farmer. Also, as the cost of verification increases, the level of 

insurance coverage decreases in the sense that smaller indemnity payments are made 

so that both the insurer and the farmer bear expenses from the hidden action. 

 These problems of asymmetric information combined with systemic weather 

risk increase the cost of the insurer. Miranda and Glauber (1997) indicate that private 

crop insurance markets are doomed to fail without affordable reinsurance or 

government subsidies, because systemic weather effects induce high correlation 

(covariance risk) among farm-level yields, defeating insurer efforts to pool risks 

across farms. Therefore, the extent to which asymmetric information and systemic 

risk each contribute to crop insurance market failure poses an important public policy 

question. 

 To mitigate the problems of asymmetric information and systemic risks, 

Group Risk Plan (GRP) was introduced within the Federal Crop Insurance Program. 

However, GRP are rarely used by farmers due to geographic basis risk and it does not 

remove the asymmetric information problems completely. Deng, Barnett, and 

Vedenov (2004) test the viability of GRP for cotton and soybean in Georgia and South 
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Carolina by comparing GRP with MPCI and find GRP performs poorly. They 

conclude that the potential demand for cotton and soybean GRP in the two states is 

low due to more heterogeneity in the production regions. Zhu, Ghosh, and Goodwin 

(2009) investigate spatial correlation of crop losses to determine the reasonable range 

and shape of the geographical area in the design of the optimal GRP.  

Coble and Barnett (2008) also handle the question of how systemic risk 

should be addressed. They suggest that if the federal government absorbs a sufficient 

degree of the systemic risk by providing an area-based integrated crop insurance 

(named wrapping crop insurance) to producers, then only the remaining residual risk 

could be insured by the private insurance industry. However, it is still questionable 

whether the reduction of systemic risk is enough for private insurers to accommodate 

it and whether the government can remove the systemic risk completely without 

incurring any social cost by spending taxpayers’ money. 

 Several current research efforts have been conducted to improve crop 

insurance premium rating procedures and the actuarial performance of the program. 

Premium rating procedures that more accurately reflect producer risks would reduce 

adverse selection and moral hazard problem. Babcock, Hart, and Hayes (2004) show 

that crop insurance premiums are overpriced for low-deductible (high-coverage) 

policies, which are inconsistent with actuarial fairness. This overpricing can be 

explained by increases in insurance losses from natural yield variations and 

information asymmetries such as fraud, moral hazard, and adverse selection. Thus, 

per-acre subsidies also increase as coverage levels increase. Adhikari, Knight, and 

Belasco (2010) show that sampling error under MPCI significantly increases expected 

indemnities and thus increases actuarially fair premiums and premium subsidies. The 

producer welfare loss due to sampling error is larger in high risk areas. Ramirez, 
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Carpio, and Rejesus (2009) suggest that the additional time and effort spent trying to 

find more years of data and to model an appropriate yield distribution model can 

result in significant accuracy in premium rating. 

 

Estimating Crop Yield Response Models 

 Everyone agrees that weather and technology are the main drivers of corn and 

soybean yields in the U.S. Corn Belt. However, despite nearly a century of research 

on the relationship between weather, technology, and yields, the exact relationship 

remains debatable. Thompson (1962, 1963, 1969, 1970, 1985, 1986, 1988) has 

investigated the relationship between weather, technology, and corn and soybean 

yields, and many multiple regression models have been developed based on his 

studies. Thompson’s crop/weather model is used to determine the impact of changes 

in climate and weather variability on corn and soybean yields since 1930 for five U.S. 

Corn Belt states, Illinois, Indiana, Iowa, Missouri, and Ohio. His model (1986, 1988) 

is a simple quadratic equation to estimate the effects of departures from normal 

weather on corn yield as follows:  

        
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where YL is the corn yield for L location (Illinois, Indiana, Iowa, Missouri, and Ohio), 

X1
L is the deviation from average preseason (September through June) precipitation, 

X2
L is the deviation from average June temperature, X3

L is the deviation from average 

July rainfall, X4
L is the deviation from average July temperature, X5

L is the deviation 

from average August rainfall, X6
L is the deviation from average August temperature, t1 

is the first time trend (1930-1959), t2 is the second time trend (1960-1972), and t3 is 

the third time trend (1973-1983).  

His primary results come from pooled regression with pooled data from the 
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five states. First of all, he finds all six of the coefficients on the squared weather 

variables are estimated to be negative, implying that extreme of weather, in either 

direction, will depress yield. Next, he observes that highest yields of corn have been 

associated with normal preseason precipitation, normal June temperature, below 

normal temperature in July and August, and above normal rainfall in July and August. 

 Turvey’s (2001) crop yield response model to estimate weather effects on 

crop yields shows two differences from Thompson’s. First, he uses cumulative rainfall 

and cumulative crop heat units above 50oF from June 1 to August 31 for independent 

variables on his Cobb-Douglas production function, instead of monthly rainfall and 

temperature on quadratic equation in Thompson’s. Second, yields as dependent 

variable are detrended using a linear trend equation. He estimates these weather 

effects on three crops, corn, soybean, and hay, yields in Oxford County, Ontario with 

county data collected from 1935 to 1996. The R2 for all three crops are around 0.30. 

Both coefficients of rainfall and heat for corn and soybean are positive but only heat 

is significant. Hay shows a positive and significant relationship with rainfall while it 

has negative and insignificant coefficient of heat. After estimating the yield response 

model, he calculates the premium of European-type option and specific/multiple-

event insurance for rainfall and heat units using a simple “burn-rate” approach. The 

burn-rate approach calculates the premium of a particular contract by averaging the 

payoffs based on historical data, assuming that historical weather patterns provide the 

best measure of future weather patterns. 

 The most recent study on estimating crop yield response model is Tannura, 

Urwin, and Good (2008). To investigate the relationship between weather, technology, 

and corn and soybean yields, they develop multiple regression models based on 

Thompson’s studies. Corn and soybean yields, monthly temperature, and monthly 
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precipitation observations are collected from 1960 to 2006 for Illinois, Indiana, and 

Iowa. Analysis of the regression results shows that yields are reduced by unfavorable 

weather by a much larger amount than they are increased by favorable weather. Corn 

yields are particularly affected by technology, the magnitude of precipitation during 

June and July, and the magnitude of temperatures during July and August. The effect 

of temperatures during May and June appears to be minimal. Soybean yields are most 

affected by technology and the magnitude of precipitation during June through August 

(and especially during August). The magnitude of July and August temperatures are 

also important on soybean yields, but less so than precipitation.  

 

Pricing Weather Derivatives 

 The fundamental framework for the pricing of stock options (and applying to 

most of options) was established by Black and Scholes (1973). The Black-Scholes 

model bases on a riskless portfolio consisting of a position in the option and a position 

in the underlying stock for a very short period of time. The Black-Scholes pricing 

equation can be derived by either solving its differential equation or by using risk-

neutral valuation, assuming that the underlying stock price follows a lognormal 

diffusion process and that the continuously compounded return from the stock is 

lognormally distributed. The attractive feature of this Black-Scholes formula is that it 

does not depend on investor preferences or knowledge of the expected return on the 

underlying asset.  

 However, in the case of commodity derivatives, there is a problem that the 

log-normal spot price model does not work well for commodity prices. Black (1976) 

notes that commodity prices are characterized by the presence of seasonal patterns. 

These can be caused by planting/harvesting cycles, seasonal variations in weather, or 
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even intra-day variations in demand (in the case of electricity) so that neither seasonal 

patterns nor the phenomenon of mean-reversion can be adequately captured with a 

log-normal spot price model.  

 Merton (1976) and Cox and Ross (1976) modify the classic Black-Scholes 

formula when underlying stock returns are discontinuous with several jumps, because 

the critical assumption of the classic Black-Scholes model is that the underlying stock 

return dynamics can be described by a stochastic process with a continuous sample 

path. They derive a more general option pricing formula with one of normal 

continuous stochastic processes and the other with a jump process. They assume the 

jump process follows the Poisson process with magnitude and frequency of jumps in 

the formula.  

 The methodology for calculating option values with various underlying assets 

has also been developed with the option pricing model. There exists a simple closed 

form solution in the case of a non-dividend paying stock (as in Black-Scholes model) 

and also in the case of a stock which pays a continuous dividend proportional to the 

stock price. For other dividend policies numerical methods must be used to solve the 

differential equation. If the distribution of the terminal stock value is known, the value 

of the option can be obtained by integration. In general the integrals involved will not 

have analytic solutions and they must be evaluated by numerical methods. As one of 

the important numerical methods, Boyle (1977) develops a Monte Carlo simulation to 

obtain numerical solutions to option valuation problems. The technique is simple and 

flexible in the sense that it can easily be modified to accommodate different stochastic 

processes governing the underlying stock returns. In particular, it has distinct 

advantages in some special situations involving jump process so that various option 

values, including weather derivatives, have been calculated using this Monte Carlo 
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simulation method. 

 Weather derivatives, which were introduced in 1999 by Chicago Mercantile 

Exchange (CME), have been evaluated in various ways by economists. Dischel 

(1998) explains why it is hazardous to apply the Black-Scholes model to weather 

derivatives and asserts that stochastic Monte Carlo simulations may prove more 

effective models for the valuation. The primary reason not to use a Black-Scholes 

model to price weather options is that there is no underlying tradable commodity in 

weather options so that riskless portfolio with balanced long and short positions of 

option and underlying assets can not be constructed as in stock options. He suggests 

an equation incorporating meteorological mean reversion and separating long-term 

trends from short-term volatility as: 

          21 )()()]()([ dztdztdttTtdT   ,            (2.2) 

where T is some weather variable (for example, temperature or rainfall) that varies 

over time t, the parameter θ is the average historical measure of that variable as it 

moves with the seasons and it is the gravitational core to which the simulated variable 

reverts in the absence of randomness. He separates the distribution of T from the 

change in T and designates them as τ and σ respectively. He samples the two 

distributions separately drawing from the Wiener processes dz1 and dz2. His model 

contributes to pricing weather derivatives by using stochastic Monte Carlo simulation, 

considering mean reversion processes in weather variables. 

 Most of other studies after 2000 to price weather derivatives have used Monte 

Carlo simulation for various models. Cao and Wei (2004) and Richard, Manfredo, and 

Sanders (2004) extend Lucas’ (1978) equilibrium asset-pricing model so that the 

fundamental uncertainties in the economy are generated by the aggregate dividend 

and a state variable representing the weather variable, i.e., the temperature. The model 
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is calibrated with temperature and consumption data, and the market price of weather 

risk is then analyzed and quantified. Alaton, Djehiche, and Stillberger (2002) and Yoo 

(2003) derive the close form pricing formula for the temperature derivative using the 

Martingale method but the formula is not generalized in all cases. 

 Much of the conceptual framework for valuing temperature derivatives in our 

study is motivated by Richard, Manfredo, and Sanders (2004). They find that a 

temperature series for Fresno, CA follows a mean-reverting Brownian motion process 

with discrete jumps and autoregressive conditional heteroscedastic errors from 

conducting several specification tests. Based on the estimated parameters on this 

process by maximum likelihood estimation (Ball and Torous 1983, 1985), they 

calibrate the price of Cooling Degree Day (CDD) weather options through Monte 

Carlo simulation. Finally, they provide the comparison of option prices among three 

methods: a traditional burn-rate approach, a Black-Scholes approximation, and an 

equilibrium Monte Carlo simulation. These methods reveal significant differences. 

 Compared to temperature derivatives, there have been few papers which 

analyze the pricing of precipitation derivatives and the hedging effectiveness. In fact, 

rainfall is as important as temperature in agriculture and is even more important in 

some types of grain production than temperature. Odening, Musshoff, and Xu (2007) 

develop a daily precipitation model applying Woolhiser and Pegram (1978) and 

Stoppa and Hess (2003). They capture the following characteristics of daily rainfall in 

the Brandenburg region of Germany and depict the characteristics in their 

precipitation model: (a) The probability of rainfall occurrence follows a seasonal 

pattern. (b) The sequence of rainy and dry days obeys an autoregressive process. (c) 

The amount of precipitation on a rainy day varies with the season. (d) The volatility of 

the amount of precipitation also changes seasonally. Based on the estimated 
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parameters in their precipitation model, they price a precipitation option using three 

different pricing methods; burn-rate analysis, index value simulation, and daily 

simulation. The precipitation model in our study is based on Odening, Musshoff, and 

Xu (2007), considering all other previous models for precipitation option pricing.  

 

Weather Derivatives as an Effective Risk Management Tool 

 There have been many studies which provide methods to evaluate hedging 

effectiveness by various derivatives products including weather derivatives. The 

traditional approach to evaluating hedging effectiveness is through the ad hoc 

examination of R2 values resulting from a minimum variance hedge regression. 

Minimum variance hedging effectiveness is most commonly evaluated through an 

ordinary least squares (OLS) regression of the change in cash price as a linear 

function of the change in the futures price (Leuthold, Junkus, and Cordier, 1989), 

where the resulting R2 is the measure of hedging effectiveness (Hull, 5th edition, p.78-

85).  

 Sanders and Manfredo (2004) and Manfredo and Richards (2005) present an 

empirical methodology, based on the encompassing principle, for evaluating 

alternative futures contracts in a hedging effectiveness framework. In doing this, they 

combine minimum variance hedging and forecast evaluation. Their model starts from 

the OLS regression to estimate minimum variance hedge ratio: 

                  ,βα ttt eFPCP                       (2.3) 

where ΔCPt and ΔFPt are the change in the cash price (CP) and futures price (FP), 

respectively, over interval t. The R2 from estimating equation (2.3) is a measure of 

hedging effectiveness. 

 They assume there are two competing futures contracts available as: 
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                 00
00 βα ttt eFPCP                      (2.3a) 

      and ,βα 11
11 ttt eFPCP                      (2.3b) 

where FPt
0 is the preferred contract, FPt

1 is the competing contract, β0 is the hedge 

ratio for the preferred contract, β1 is the hedge ratio for the competing contract, et
0 is 

the residual basis risk for the preferred contract, and e t
1 is the residual basis risk for 

the competing contract.  

 For comparing the hedging performance of alternative futures contracts, 

Sanders and Manfredo (2004) derive an encompassing test as: 

                 ,)(λφ 100
tttt veee                       (2.4) 

If the null hypothesis that λ is equal to zero is not rejected, then the competing 

contract provides no reduction in residual basis risk relative to the preferred contract. 

If the null hypothesis is rejected, then both the preferred and competing contracts are 

taken for effective hedging position. The new optimal hedge ratio for this composite 

hedging position is β0(1-λ) for the preferred contract and β1λ for the competing 

contract. This encompassing regression provides an easy and direct comparison of 

hedging effectiveness and encompassing test. 

 To measure the hedging effectiveness or change in risk exposure by 

purchasing weather derivatives, Vedenov and Barnett (2004) and Woodard and Garcia 

(2008) use the mean root square loss. The mean root square loss is a simple function 

of the semi-variance, which reflects downside risk, only measuring deviations below 

the mean. They determine the hedge ratio by minimizing the semi-variance of a 

portfolio consisting of yields and weather derivatives. In addition, Vedenov and 

Barnett (2004) measure two additional risk indicators, value-at-risk (VaR) and 

certainty equivalent, to support their result of hedging effectiveness.  
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One of the interesting recent studies to evaluate cost of derivatives and 

hedging effectiveness is Richards, Eaves, Fournier, Naranjo, Chu, and Henneberry 

(2006). They price bug options as a damage control tool and evaluate the hedging 

effectiveness by comparing four familiar risk indicators (certainty equivalent, risk 

premium, Sharpe ratio, and value-at-risk) between no hedge and a call option hedge to 

manage economic risk caused by insects. Bug options, which protect farmers from the 

economic damage caused by higher insect population, are comparable to weather 

options which protect against adverse weather events. Thus, their methodology of 

option pricing and evaluating hedging effectiveness can be well applied to the case of 

weather derivatives. Following Richards, et al. (2006), we measure the four risk 

indicators to compare hedging effectiveness between using crop insurance and 

weather options. More specific explanation of calculating these risk indicators is 

provided in Chapter IV.  

 One of the primary concerns of weather derivatives as a production risk 

hedging tool is basis risk. Basis risk is defined as the risk that the payoffs of a given 

hedging instrument do not correspond to shortfalls in the underlying exposure. 

Geographic basis risk, which comes from the distance between the weather station for 

weather derivatives and the exposure location, needs to be controlled to make weather 

derivatives a more effective hedging instrument. Odening, Musshoff, and Xu (2007) 

quantified the geographic basis risk by estimating the popular de-correlation function 

which represents the relationship between the correlation coefficient between the 

precipitation at different places and the distance between the places, as proposed by 

Rubel (1996).   

Woodard and Garcia (2007) categorize basis risk into three types: local, 

geographic, and product. Local basis risk refers to the gap between shortfalls for a 
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given exposure and the payoffs of the hedging derivative, where the underlying index 

on the weather derivative and the exposure being hedged correspond to the same 

geographic location. Geographic basis risk happens by different geographic locations 

for hedging as defined above. Product basis risk refers to the difference in hedging 

effectiveness between alternative hedging instruments. They suggest that while the 

degree of geographic basis risk may be significant, it should not preclude the use of 

geographic cross-hedging. They also find that the degree to which geographic basis 

risk impedes effective hedging diminishes as the level of spatial aggregation increases. 
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Chapter Ⅲ 

Conceptual Framework 

 

In this Chapter we provide a conceptual framework of the producer’s profit 

maximization problem and three empirical models: yield response model, temperature 

process model, and precipitation process model. From the producer’s maximization 

problem under production uncertainty we derive the three asymmetric information 

problems that exist in the crop insurance program and show why a numerical 

approach is ultimately required to compare the hedging cost and effectiveness 

between crop insurance and weather options. The three empirical models provide an 

important framework for pricing weather options. Specifically, we determine the 

optimal strike level and tick value of weather options based on the estimated yield 

response model. Based on the estimated temperature and precipitation process models, 

we generate a statistical distribution of weather indices to price weather options by 

using a daily simulation approach.      

 

Producer’s Maximization Problem under Production Uncertainty 

 Our problem statement can be constructed in the conceptual framework of 

producer’s maximization problem. The production risk and alternative risk 

management tools faced by the farmer are incorporated into the producer’s expected 

utility of profit maximization problem. From this conceptual framework, we observe 

the three asymmetric information problems; adverse selection, moral hazard, and non-

verifiability of crop insurance as a risk management tool. In addition, we compare the 

expected utility of profit between a crop insurance hedge and a weather derivatives 

hedge mathematically to identify which theoretical characteristics might make the 
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weather derivative product better for a farmer in terms of cost and hedging 

effectiveness. The conceptual framework presented here is based on the model of 

individual insurance decisions developed by McKenna (1986, p. 85-93) and modified 

to fit the farmer’s problem under production risk with two alternative hedging tools. 

 If the farmer produces only one output, the profit function can be written as: 

                  wxaxtrypy  ),,,( ,                     (3.1) 

where py is the (scalar) price of output (y), r is the amount of precipitation, t is the 

temperature, x is the vector of inputs, a is the vector of all other external factors, and 

w is the vector of input prices. 

 In this simple model, we assume that production risk is only caused by the 

precipitation and temperature variables while prices and all other factors are assumed 

to be fixed, so that the profit function can be simplified as: 

                            )),(( try .                        (3.2) 

We will assume that the farmer has an Actual Production History (APH) of 
_

y  

bushels and the profit from 
_

y  bushels is $
_

 , that is, )),((
__

try . In addition, we 

assume that the farmer faces the risk of a loss $   (compared with APH) with 

probability p (0<p<1). We assume that the farmer is risk-averse, implying that his 

utility function is concave. If no insurance is taken out, the farmer’s expected utility is 

given by: 

              )()1()(
__

0  uppuU   .                   (3.3) 

 Now assume that the farmer is provided with a multiple-peril crop insurance 

(MPCI) plan, where the coverage ratio is chosen by the farmer and the premium (h) is 

determined by the insurance firm. The insured farmer determines how much of the 

loss (  ) may be reclaimed from the insurer, say an amount c. We will refer to the 
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difference between the loss ( ) and the claim (c) as the deductible (D): 

                      D ≡  - c.                          (3.4) 

The insurer sets the premium (h) equal to his total expected cost (e) of providing the 

coverage (or unit payout) c: 

                    h = e = p(c + kc),                       (3.5) 

where k is an administrative cost per unit of payout c. By substituting (3.4) into (3.5), 

equation (3.5) can be restated as: 

                    h = p(1 + k)( - D),                      (3.6) 

which shows the negative relationship between the premium (h) and the insurance 

deductible (D). 

Thus, the farmer’s expected utility with the MPCI policy is: 

            )()1()(
__

1 huphcpuU                  (3.7) 

or, again using (3.4) we get 

             )()1()(
__

1 huphDpuU   .               (3.8) 

From the first-derivative of (3.8) with respect to h, it is clear that the utility from 

taking out insurance falls as the premium rises: 

          0)()1()(
__

1  huphDup
dh

dU
 ,           (3.9) 

since the marginal utility of profit, (.)u , is assumed to be positive. 

 To see the optimal deductible level that the risk-averse farmer chooses, we 

take the first-derivative with respect to D in (3.8), bearing in mind the dependence of 

h on D in (3.6). We get 

              
)1(1

)1)(1(

)(

)(
_

*
_

kp

kp

hu

hDu












.                 (3.10) 

The right-hand side of (3.10) is greater than unity. Therefore,  
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                )()(
_

*
_

huhDu   ,                   (3.11) 

which, by concavity of u(.) for the risk-averter, implies that 

                    hhD 
_

*
_

                       (3.12) 

or D*>0. Thus, it is optimal for the risk-averter to choose a positive deductible and so 

the farmer has less than full insurance. The farmer pays the premium h = p(1 + k)(  - 

D*) and has the deductible written into the insurance contract. Thus, the insured 

farmer only makes a claim on the policy if the loss exceeds D* and the claim is only 

the difference between the loss and the deductible. In actuality, MPCI provides a 

guaranteed level of yield from 50 to 85% of the farmer’s APH and the remaining 15-

50% is still exposed to production risk.  

 A slight modification of the preceding model will show the adverse selection 

and moral hazard problems under the crop insurance hedge. Let us suppose that the 

insurer in calculating the premium based on the expected cost in (3.5) is not able to 

identify the probability of loss (p) for a particular farmer. Rather, the insurer uses an 

average probability for the appropriate group of farmers, say
_

p . Thus, the premium 

determined by the insurer in equation (3.6) is 

      
_

h  = 
_

p (1 + k)(  - D).                     (3.13) 

Then by substitution from (3.13), equation (3.10) is modified slightly to 
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
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


.                 (3.14) 

 Now consider two types of farmers in the group who differ only in their 

personal loss probabilities, p1 and p2, with p1 > p2 and (p1 + p2)/2 =
_

p . Differentiation 

of (3.8) gives us 
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


,               (3.15) 

for a given 
_

p , where the numerator is positive and the denominator is negative by 

the farmer’s concave utility function. This implies that the farmer with the higher 

probability of loss chooses a lower deductible (higher insurance coverage level), 

while the farmer with lower probability of loss chooses a higher deductible (lower 

coverage) or opts out of the insurance program. The insurer cannot identify each 

farmer’s probability of loss and uses an average probability to determine the premium 

level. Hence, high-risk and low-risk types all pay the same premium but the former 

(high risk) group receives more from claims on their insurance contracts with higher 

insurance coverage as observed in (3.15) than does the latter (low risk) group. If these 

claims are large, the average premium may have to rise and some low risk producers 

may leave the insurance scheme. This is referred to as the adverse selection problem. 

 Moral hazard arises when farmers have some control over either the 

probability or magnitude of the loss but changes in these controls are not observed by 

the insurer and do not affect the premium. Suppose that the farmer is able to affect the 

possibility of loss by making an expenditure z, such that a higher expenditure achieves 

a lower probability of loss. Thus, p is a function of z, and the profit is correspondingly 

reduced by the amount z. Instead of (3.7) the expected utility is  

     )())(1()()(
__

zhuzpzhcuzpU m    ,        (3.16) 

where 0)(  zp  is assumed. The expected utility maximizing agent chooses the 

level of expenditure (z) from the first-order condition  

)())(1()()()]()()[(
____

zhuzpzhcuzpzhuzhcuzp       

(3.17) 
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where the right-hand side is greater than zero by the assumption of 0(.) u . Since 

0)(  zp , it follows that 

             )()(
__

zhcuzhu   .               (3.18) 

This implies that 

                zhczh  
__

                   (3.19) 

or c <  . This means that the insured farmer expending some amount of z on self-

protection chooses a positive deductible.  

 Moral hazard in this model is represented by the assumption that the premium 

is unaffected by the level of expenditure on self-protection. Since the level of z is 

unobservable to the insurer, it follows that the premium cannot be made to depend on 

it. That is 

                        .0
dz

dh
                         (3.20) 

This implies that the farmer does not find any benefits from expending additional cost 

and may succumb to the moral hazard temptation. 

 The verifiability problem is captured from the calculation of the premium in 

equation (3.6). When the farmer reports his loss as   where 0 , instead of 

the true loss  , the premium will be increased by p(1 + k) . Even though the insurer 

expends additional administrative cost β to induce the farmer to report his true yields, 

assuming the additional cost detects all dishonest reports completely, the premium 

will be still increased by pβ( D ). Thus, the honest and low risk farmer will leave 

the crop insurance scheme due to the increased premium caused by the verifiability 

problem. 

 Next we return to equation (3.7) for a comparison between the choices of no 

hedge and a hedge by using crop insurance. For the expected utility maximizing 
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farmer choosing to take out insurance, the expected utility U1 in (3.7) should be 

certainly no less than U0 in (3.3). That is 

0)]()()[1()]()([
____

01   uhupuhcupUU  .   (3.21) 

The second part of (3.21), )]()()[1(
__

 uhup  , is always negative, but the first 

part, )]()([
__

   uhcup , can be either positive or negative, depending on 

the sign of (c – h). Even in the case of positive (c - h) where the first part is positive, 

total value of U1 – U0 depends on the probability of loss (p), since the second part is 

always negative. Thus, this inequality condition depends on the claim or coverage (c), 

the premium (h), and the probability of loss (p). This implies that an analytical 

comparison of expected utility between no hedge and insurance hedge is not available 

and a numerical approach needs to be applied. 

 If the farmer uses weather put options rather than crop insurance, his 

expected utility is: 

)))(,0(()1()))(,0((
__

2 owKTMaxupowKTMaxpuU    ,  (3.22) 

where Max(0, T(K-w)) is the vector of temperature and precipitation put options 

payoffs and o is the vector of their premiums. For the options payoffs, w is the vector 

of values for the weather indices at maturity, K is the vector of their strike levels 

which are the predetermined index levels at which the option buyers can exercise, and 

T is the vector of their tick values which are the indemnity payments per unit of 

adverse weather event. The weather option payoffs, Max(0, T(K-w)), will be paid to 

the farmer in both cases of probability of loss, p and (1-p), because the payoffs 

depend on the weather events not the yield levels, even though there is a relationship 

between weather events and yield levels. 

 Conceptually, to compare the expected utility between weather derivatives 
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and crop insurance, we subtract (3.22) from (3.7): 

                                U1 – U2 = 

)]))(,0(()()[1()]))(,0(()([
____

owKTMaxuhupowKTMaxuhcup                

(3.23) 

Again, it is not possible to compare the expected utilities U1 and U2 analytically in 

this model, because the crop insurance payoff and premium, c = Max(0,  - D) and h, 

are determined by crop yield and various conditions in the contract such as the 

deductible level (D) chosen, selected crops, loss history of the county, and the 

farmer’s APH, while the weather derivative payoff and premium, Max(0, T(K-w)) and 

o, are determined by the weather index. In addition, crop insurance covers the 

production risk by only 50-85%, while the hedge by weather derivatives induces local 

or geographic basis risk. The basis risks are caused by a hedging gap due to the 

imperfect relationship between crop yield and weather variables or distance between 

weather station for weather derivatives and the risk exposure location. Therefore, 

simulation methods based on historical processes of weather indices and crop yields 

will be applied to the comparison among no-hedge, hedge by crop insurance, and 

hedge by weather derivatives in our empirical study. 

 For the simulation process, three empirical models are introduced. First, 

alternative yield response models are examined to estimate the relationship between 

crop yield and weather variables for optimal weather hedge. The yield response model 

is also applied to the stochastic profit simulation model to compare the hedging 

effectiveness in various simulated situations. Next, the temperature and precipitation 

process models are considered to price the weather options. Weather derivatives are 

evaluated mostly based on daily simulation of underlying weather processes, so an 

appropriate weather process model needs to be determined. 
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Yield Response Model 

Yield response model shows the relationship between crop yield and weather 

variables. The estimated parameters of the yield response model determine the 

optimal tick value and strike level of weather options as an effective hedging 

instrument. The estimated yield response model is also used to generate stochastic 

yield and profit simulations on which the expected profits and various risk indicators 

are measured and compared under alternative hedging strategies.  

Alternative yield response models are considered to estimate crop yields on 

weather variables by Ordinary Least Squares (OLS) and to choose the model which 

fits the weather relationship best. The three models are (3.24) linear, (3.25) quadratic, 

and (3.26) Cobb-Douglas:  

               Yt = β0 + β1Rt + β2Gt                            (3.24) 

               Yt = β0 + β1Rt + β2Gt + β3Rt2 + β4Gt2                       (3.25) 

               Yt = ARtβ1Gtβ2                                                  (3.26) 

where Yt is the detrended crop yield (bushels per planted acre), Rt is the deviation of 

the cumulative daily rainfall for growing season (between June and August), and Gt is 

the deviation of the cumulative daily temperature for growing season. Although there 

are many other factors that potentially influence yields, if they are uncorrelated with 

weather variables, then relatively simple models will provide reliable estimates of the 

weather-yield relationship (Richards, Manfredo, and Sanders, 2004). 

 As we will see in Chapter V, the raw yield data used in this study is both non-

stationary and highly variable. Thus, in analyzing the impact of weather on yield, our 

data must be corrected for the impact of a general upward trend in yields by using a 

detrending method.  
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 Following Turvey’s (2001) yield response model, we use the cumulative daily 

rainfall and temperature for growing season from June to August instead of monthly 

or shorter time intervals. There are two reasons for this. First, month-to-month U.S. 

weather conditions are typically autocorrelated (Jewson and Brix, 2005), so this may 

induce a multicollinearity problem. Second, using multiple derivative contracts based 

on monthly weather indices increases the probability of over fitting the hedging 

parameters and may diminish the accuracy of the hedging estimates (Woodard and 

Garcia, 2007).  

 

Temperature Model 

 Pricing of weather options is carried out by a burn-rate analysis and a daily 

simulation in our study. In a non-parametric burn-rate analysis, we price weather 

options based on the empirical distribution of the weather index derived from the 

historical weather data. In a daily simulation approach, on the other hand, weather 

options are evaluated based on daily simulation of underlying weather processes, so 

an appropriate weather process model needs to be determined.  

Temperature variables tend to generate abnormal variations or irregular jumps 

due to unexpected weather events, and then they revert back to some long-run average 

level. In addition, the daily temperature process shows a significant seasonal behavior 

in southern Minnesota. More detailed data description will be provided in Chapter V. 

Based on our daily temperature process in southern Minnesota and previous studies 

(Cao and Wei, 2004; Richards, Manfredo, and Sanders, 2004; Richars, et al., 2006; 

Yoo, 2003) we construct our temperature process model using mean-reverting 

Brownian motion with log-normal jumps and seasonal volatility. Richards, Manfredo, 

and Sanders (2004) show the mean-reverting Brownian motion with log-normal 
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jumps and ARCH is preferred based on their likelihood-ratio test results.  

 The change of average daily temperature (Wt) is not entirely deterministic 

and it is assumed to follow a Brownian motion process: 

                   dWt = μ dt + σ dz,                        (3.27) 

where μ is the drift rate per unit of time (dt), σ is the standard deviation of the process, 

and dz is an increment of a standard Weiner process with zero mean and variance of dt. 

We approximate the change of Wt (dWt) with a discrete change (Wt – Wt-1). 

 The daily temperature process would be volatile in the short run, but any 

irregular trend away from the mean would not be sustained over the long run. 

Therefore, the process (3.27) is rewritten by including a mean-reversion term as: 

               dWt = κ (Wt
m – Wt) dt + σ dz,                   (3.28) 

where κ is the rate of mean reversion, and Wt
m is the instantaneous mean of the 

process. If the rate of mean reversion (κ) of a process is equal to 1, then it forces daily 

temperature (Wt) back to exactly its instantaneous mean (Wt
m) in the next day 

(neglecting noise). On the other hand, if κ of a process is equal to 0, then any irregular 

trend never reverts back to its long-term mean and turns into a Wiener process.    

 To estimate the instantaneous mean of the process (Wt
m), we set up another 

equation accommodating seasonality, time trend, and autoregression in a manner 

similar to Alaton, Djehiche, and Stillberger (2001), Campbell and Diebold (2005), 

Richards, Manfredo, and Sanders (2004), and Yoo (2003). Seasonal cycle is observed 

clearly in our historical temperature data (in Chapter V). Time trend may be relevant 

but is likely minor in the short 68-year span (from 1941 to 2008) of our data. 

Autoregressive lags are included to capture any sort of persistent covariance 

stationary dynamics in the daily temperature process. Assembling the three pieces, we 

estimate the following instantaneous mean of weather process model: 
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where t is the time variable, measured in days. We let t = 1, 2, … denote January 1, 

January 2, and so on. Since we know that the period of the oscillations is one year 

(neglecting leap years) we have (2πt / 365). In addition, the optimal lag is found to be 

p=3 by the Akaike Information Criterion (AIC), AIC = ln(residual sum of 

squares/sample size) + 2 (number of independent variables/sample size), which is a 

statistical criterion for model selection.1 The optimal number of lags is the one which 

minimizes AIC.  

 Next, the unexpected discrete jumps in temperature which happen to occur 

need to be considered. We assume that discrete jumps occur according to a Poisson 

process q with average arrival rate (or mean number of jumps occurring per unit time) 

λ and a random percentage shock (or jump size) φ. The random shock is assumed to 

be distributed as ln(φ) ~ N (θ, δ2), where θ is the mean jump size and δ2 is the variance 

of the jump (Jorion, 1988). The Poisson process (q) is distributed as: 

             dq = 0 with probability 1 – λ dt and                (3.30) 

                        1 with probability λ dt. 

 Combining (3.28)~(3.30), the stochastic differential equation for the 

temperature process accommodating mean reversion and jump diffusion is as: 

         dWt = (κ (Wt
m – Wt) – λθ) dt + σ dz + φ dq,            (3.31) 





p

1j
j3210 ργ)365/2cos(γ)365/2sin(γγ),(where jtt

m
t WttttWW  . 

 The parameters (κ, σ, λ, θ, δ) of the weather process model (3.31) are 

estimated by maximum likelihood estimation (MLE). The log-likelihood function is 

derived by solving the stochastic differential equation (3.31) as:  

                                             
1 The AIC statistics for optimal lag are reported in Chapter VI. 
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where T is the total number of time-series observation and N is the number of jumps 

sufficiently large to include all potential jumps in the observed data (See Appendix I 

for the derivation of likelihood function (3.32) from the stochastic differential 

equation (3.31)).  

 

Precipitation Model 

 To describe a daily precipitation model, we need to observe the process 

carefully and compare with the temperature process to see if the same model can be 

applied. The precipitation process in Midwest area has the following characteristics:  

 The probability of rainfall obeys a seasonal pattern. Rainfall is much more in 

summer than in winter.  

 The sequence of precipitation follows an autoregressive process, implying that 

the probability of rainfall is higher if the previous day was rainy.  

 The amount of precipitation varies with the season. Rainfall is more intensive 

in summer than in winter.  

 The volatility of the amount of precipitation is higher in summer than in winter.  

The third and fourth characteristics, which are caused by the truncated data at 0 inch 

most of days in winter season, do not allow the same process model as in temperature 

which shows continuously smooth trend (without truncation) with unexpected jumps.  

 A combination of a Markov chain and a gamma distribution function (a two-

part model) has been recognized as a simple and effective approach in generating 

daily precipitation data for many environments (Geng, Penning de Vries, and Supit, 

1986; Richardson and Wright, 1984). Odening, Musshoff, and Xu (2007) and Wilks 
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(1999) use a mixed exponential distribution, which is a weighted combination of two 

simple exponential distributions, instead of a gamma distribution for the two-part 

model. 

The stochastic process of daily precipitation can be decomposed into the 

binary event (Xt) “rainfall” and “dryness” respectively, and a gamma distribution for 

the amount of precipitation (Yt) for rainy days. Thus, the amount of precipitation 

falling on a date t is assumed to be a random variable Rt = Xt · Yt. 

 The first part of the process is described as: 

                 





rainy is day  if 1,

dry is day  if 0,

t

t
X t .                     (3.33) 

Assume that Xt follows a first-order Markov process. Then, the probability of rainfall 

occurrence at day t (pt) is calculated as: 

          ,)1( 01
1

11
1 ttttt qpqpp    for t = 1,2,…,T,            (3.34) 

where qt
11 is the transition probability from rainfall at day t-1 to rainfall at day t, and 

qt
01 is the transition probability from dryness at day t-1 to rainfall at day t. 

 The second part of the process is a non-negative distribution for the 

amount of precipitation (Yt) for rainy days. Yt is assumed to be a stochastically 

independent sequence of random variables having a gamma distribution whose 

probability density is given by 

0βα,,     ,
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)β/exp(
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YY

XY            (3.35) 

where α and β are distribution parameters, and Γ(α) is the gamma function of α.  

Since it is known that the rainfall pattern depends on the seasonality in a year, 

the Markov chain can best be applied for each month separately (Geng, Penning de 

Vries, and Supit, 1986). The estimation of the transitional probabilities qt
11 and qt

01 are 

obtained directly from the historical daily rainfall under the assumption that we have 
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at least twenty years of data (Richardson and Wright, 1984). Thus, we estimate the 

transitional probabilities based on our 68 years of rainfall data.   

To estimate the gamma distribution parameters α and β by maximum 

likelihood estimation (MLE) we derive the log-likelihood function for N observations 

(Y1, …, YN) from its probability density function (3.35): 

α))(ln( N - )ln(β αN-β/Y)Yln(1)-α()βα,(Lln
N

1t
t

N

1t
t  



,     (3.36) 

where N is the number of rainy days. Finding the maximum with respect to β by 

taking the derivative and setting it equal to zero yields the maximum likelihood 

estimator of the β parameters: 


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Substituting (3.37) into (3.36) gives: 
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Finding the maximum with respect to α by taking the derivative and setting it equal to 

zero yields: 
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where   
)α(

)α(
)α(

'




 is the digamma function. There is no closed-form solution for α. 

Following Greenwood and Durand (1960) and Richardson and Wright (1984), α is 

estimated using the approximation as: 

^

α= (0.5000876 + 0.16488552Θ – 0.0544274Θ2) / Θ,        (3.40)  

where Θ = ln(YA/YG), YA is the arithmetic mean, and YG is the geometric mean. We 

rewrite (3.37) as: 

^

β = YA/
^

α .                         (3.37)’ 
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Chapter Ⅳ 

Methodology 

 

In this Chapter we describe methodology to analyze weather options 

compared with crop insurance. Three different methods are used to calculate the 

weather option premium, and four alternative risk indicators are used to compare 

hedging effectiveness. Finally, we address geographic basis risk, which has been 

pointed out as a primary concern for implementing weather hedges, and spatial 

aggregation approach.    

 

Valuation of Weather Options 

Valuation of the weather option premium is carried out by three different 

analyses in the study: a burn-rate (BR) analysis, a Black-Scholes (BS)-based pricing 

model, and a daily (Monte Carlo) simulation. Originally, practitioners used simple BR 

models while most recent studies use simulation methods. BS prices, which are 

calculated applying the arbitrage-free approach, are inappropriate for the weather 

problem due to non-tradable weather indices and are computed only for comparison 

purpose. 

The BR option value is calculated as the mean of the discounted payoffs of 

the option for each historical year, assuming that historical weather patterns provide 

the best measure of future patterns. For example, in the case of (European) rainfall 

call option which is contracted in year t, the option buyer receives the payoff in 

maturity year T, CT, by exercising his option if the level of rainfall in T, RT, is greater 

than strike level, K, which is predetermined by contract. If RT is less than or equal to 

K, the option buyer will not exercise his option and the payoff is zero. Thus, the 
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payoff in maturity year T from a long (or buying) position in a rainfall call option is 

given by:  

              CT(RT,K) = Max (0, D(RT – K)),                  (4.1) 

where D is the tick value, as measured in $ per inch of rainfall, which is the indemnity 

per unit of adverse weather event. The option price or premium (Ct) that the option 

buyer has to pay in year t is calculated by discounting CT up to year t at the risk-free 

rate of interest (r):  

                      Ct = e-r (T-t) CT.                         (4.2) 

A BR method evaluates the call option price by simply averaging all calculated CT 

from equation (4.1) using all historical rainfall data in year T = 1, …, 68 (RT) from 

1941 to 2008 and discounting the average payoffs at the risk free rate (r). 

In the case of a put option, the payoff in year T, PT, from a long put option is given by:  

                PT(RT,K) = Max (0, D(K - RT)).                  (4.3) 

A BR analysis is the simplest approach and does not require strong assumptions about 

the distribution of the underlying index. However, the BR analysis has been criticized 

because the derivative prices measured by this method are rather sensitive to the 

number of observations (Cao, Li, and Wei, 2003) and the method cannot 

accommodate the probabilities of adverse weather events (Richards, Manfredo, and 

Sanders, 2004). The option prices calculated using the BR method in the study are 

provided only for comparison with the prices using Monte Carlo simulation. 

 Black-Scholes (BS) is the most widely used pricing model for most derivative 

products in both exchange markets and over-the-counter markets. The BS pricing 

formula is presented in Hull (2002, p.246-247). However, no-arbitrage models such as 

a BS type of model are inappropriate for weather derivatives because weather is not a 

traded asset, but rather a state variable, so traders cannot form the riskless hedge on 
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which such models are based. Thus, the option prices calculated using the BS pricing 

formula are inaccurate and not reported in the study. 

A daily (Monte Carlo) simulation follows steps similar to the BR analysis, but 

the empirical distribution is replaced by a statistical model for the stochastic process 

of the underlying weather indices. The option value is calculated by averaging the 

implied derivative prices over 10,000 weather values that are generated by Monte 

Carlo simulation based on the estimated parameters in the weather process models. 

This simulation approach has been commonly used in recent studies. The advantage 

of daily simulation is to produce more accurate results than the BR analysis, because 

it evaluates a considerably larger number of simulated values and it incorporates 

possible weather forecasts such as mean reversion or extreme events into the pricing 

model. 

We use a risk-neutral valuation method, which discounts the payoffs of the 

options at expiry by the risk-free rate, under the assumption that the market price of 

weather risk is zero. If there is no correlation between the weather index and an 

aggregate market index, then the market price of weather risk must be zero (Hull, 

2002). To observe the correlation we use the annual personal income data (to 

represent the aggregate market index) and annualized temperature and precipitation 

residuals for each of our four counties. Historical personal income data at the county 

level are obtained from the Bureau of Economic Analysis (BEA). We find a 

statistically significant correlation between personal income and weather series 

residuals for only Chisago county (Rush City). Odening, Musshoff, and Xu (2007) 

also show that there is no (or negligible) correlation between rainfall indexes and 

stock market returns for the precipitation option. Turvey (2005) argues that the market 

price of risk should be zero in equilibrium because of spatial arbitrage. 
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Comparison of Hedging Cost and Effectiveness 

Using a stochastic expected utility framework, we evaluate the hedging 

effectiveness of weather options by comparing several simulated risk indicators: 

certainty equivalence (CE), risk premium (RP), Sharpe ratio (SR), and value at risk 

(VaR). These are the alternative hedging strategy performance measures evaluated by 

Richards, et al. (2006).  

 To calculate the risk indicators, we specify a utility function representing 

economic value of profit (or net income) of farmers. Richards, et al. (2006) use a well 

known power utility as:  

                      
γ1

)(
γ1




U ,                         (4.4) 

where π is profit and γ is the degree of risk aversion (0 < γ < 1 for concavity). This 

function is attractive for observing risk indicators because it represents all risk 

characteristics by γ: if 0 < γ < 1, the farmer is risk averse, if γ = 0, he is risk neutral, 

and if γ > 1, he is a risk lover. However, this utility function has a shortcoming in our 

application because the degree of concavity of the utility function varies with profit. 

We can observe that the degree of concavity, as measured by –U″(π)/U′(π) = γ/π, 

depends on both γ and π, showing decreasing absolute risk aversion as profit increases 

for 0 < γ < 1. If some of our simulated profits are negative, the utility will not even be 

determined for this risk averter (0 < γ < 1). 

 To overcome the shortcoming of power utility function, we consider an 

alternative negative exponential utility function with expectation written as:  

                       )γexp(E)(E  U ,                     (4.5) 

where exp(·) is an exponential function. The degree of concavity of this utility 

function is γ which does not depend on profit (π). This implies that the utility function 
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shows constant absolute risk aversion for γ > 0, regardless of any profit or loss level. 

Hence, the certainty equivalence (CE) and risk premium (RP) in our study are 

measured based on the negative exponential utility function. 

 Profit is defined by the difference between crop revenue and total production 

cost per planted acre, where crop revenue is the product of uncertain yields and price. 

Uncertain crop yields are simulated based on the estimated yield response model 

under the assumption of a normally distributed error term in the yield response model. 

Crop price is taken from maximum price elections set by the Risk Management 

Agency (RMA) every year (Prices Inquiry System, RMA Information Browser). Total 

production costs are estimated on the county-level yields using FINBIN farm 

financial database (Center for Farm Financial Management). Payoffs and costs of 

hedging instruments are included in crop revenues and production costs, respectively. 

 The certainty equivalent (CE) value is defined as a minimum amount of 

payoff with certainty in lieu of a uncertain amount of net income with expectation 

E(π). The CE value is obtained by solving (4.5) for π, which becomes:  

                  CE(π) = (1 / γ) ln E[U(π)].                    (4.6) 

We interpret the social cost of crop insurance to be the CE(π) using weather options 

less the CE(π) using unsubsidized crop insurance. In this measurement we assume 

that there is no social cost from using weather derivatives alone because all weather 

risks are transferred to the derivatives market. 

 The risk premium (RP), which is the minimum amount to compensate the 

farmer for taking a risk, equals:  

          RP(π) = E(π) – CE(π) = E(π) – (1 / γ) ln E[U(π)].          (4.7) 

The CE and RP have been used in the traditional expected utility model by assuming 

the decision maker is an expected utility maximizer with a Bernoulli utility function. 
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A shortcoming of this approach is that the value is subject to the choice of utility 

function and the assumption of risk attitude of the agent. However, this does not pose 

a particular problem for our comparison, as we assume the same utility function with 

the same degree of risk aversion for both crop insurance and the weather option hedge. 

 The Sharpe ratio (SR) is a measure of the excess return (or risk premium) per 

unit of production risk in our farm production. It is defined as: 

                     ,
)(

)(E
SR

R

RR f




                         (4.8) 

where E(R) is the expected rate of return from the crop production, Rf is the risk-free 

rate of return (0.05 in our study), and σ(R) is the standard deviation of the crop 

production returns. The SR is used to characterize how well the return from the crop 

production compensates the farmer for the risk taken. The SR does not need the 

assumption of utility function or risk attitude of the farmer, but it is limited to the 

underlying distribution with only mean and variance in the calculation. 

 The value at risk (VaR) measures the maximum amount of loss expected at 

some specified confidence level. There are three common VaR calculation models: 

historical simulation, Monte Carlo simulation, and variance-covariance model. 

Historical simulation assumes that profit (or loss) from the crop production in the 

future will have the same distribution as they had in the past. The VaR for the 95% 

confidence interval using historical simulation method is evaluated as: 

                   VaR = H × σp × 1.65,                      (4.9) 

where H is the average of historical profit (or loss) and σp is the historical volatility of 

profit (or loss). 

 Monte Carlo simulation is conceptually simple and goes as follows: (a) 

Compute the profit (or loss) for each of N iterations. (b) Sort the resulting profit (or 

loss) for the simulated profit (or loss) distribution. (c) Calculate VaR at a particular 
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confidence level using the percentile function. For example, if we computed 5000 

simulations, our estimate of the 95% percentile corresponds to the 250th largest loss; 

i.e., (1 - 0.95) * 5000. 

 The third method, a variance-covariance model, was popularized by J.P. 

Morgan in the early 1990s. The model assumes that risk factor returns are normally 

distributed and that the change in portfolio value is linearly dependent on all risk 

factor returns. VaR for the 95% confidence interval using this method is calculated as: 

                 VaR = -Vp (μp – 1.645σp),                   (4.10) 

where Vp is the initial value of the return on the portfolio, μp and σp are the mean and 

standard deviation of the portfolio, respectively.  

 The VaR has been preferred by financial institutes to calculate maximum 

losses on their portfolio of investment frequently. The VaR has an advantage of being 

easy to calculate based on various risk periods. The shortcoming is that the choice of 

confidence interval is arbitrary and subjective. The VaR is measured using Monte 

Carlo simulation at the 90% confidence level in our study.  

To compare the hedging cost and effectiveness of weather derivatives with 

multiple peril crop insurance (MPCI), we calculate the indemnity payments and 

premium cost of MPCI. The MPCI premium is directly obtained from the 2007 crop 

insurance calculator (www.farmdoc.uiuc.edu) based on farm location (county), actual 

production history (APH), and coverage levels. We calculate the average of 24 

insurance premiums of farmers who reported their yield histories for at least 17 years 

during 1984-2006 in each of our four counties. 

The MPCI participating farmer has to decide the level of yield coverage and 

the level of price coverage in order to determine the amount of protection obtained 

from MPCI. For the level of yield coverage he can choose from 50 to 85 percent of 
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his actual production history (APH) which is an estimate of his average yield on the 

insured unit for four to ten consecutive years. He can also select an indemnity price 

level between 55 and 100 percent of the maximum price elections set by the Risk 

Management Agency (RMA) for each crop every year. 

 In practice indemnity payments are calculated based on the guaranteed yield 

and price the farmer chooses. If his actual yield per planted acre is not less than his 

yield guarantee, no indemnity is paid. If his yield per planted acre is less than his yield 

guarantee, the indemnity paid is equal to: the yield difference × the guaranteed price × 

the number of acres insured. 

 Premium cost per acre is calculated as: APH yield × level of yield coverage × 

the guaranteed price × premium rate × subsidy factor. Premium rates are based on the 

coverage level chosen, the loss history of the farmer’s county, and his APH yield. 

APH yield is a simple average of from four to ten consecutive years of the farmer’s 

actual yields. Subsidy factor is the percentage of total premium paid by the farmer, 

with the remaining subsidized by the government.   

 For example, assume the farmer’s APH corn yield is 130 bu. per acre and he 

chooses 75% level of yield coverage and 100% level of price coverage. The corn price 

election based on 2007 maximum price elections set by the RMA is $3.50/bu. Assume 

that his number of acres insured is 300 acres and actual yield is 81 bu. per acre. Then, 

the guaranteed yield equals 97.5 bu. ( = 130 bu. × 75%) and the indemnity payment is 

$19,057.50 ( = (97.5 – 81 bu.) × $3.50 × 330 acres). The premium per acre is 

$6.76/acre, which is calculated as: 130 bu./acre × 75% × $3.50/bu. × 4.4% × 0.45, 

assuming that the premium rate is 4.4% and the subsidy factor is 0.45. Subsidy factor 

0.45 means that the farmer pays only 45% of total premium and government covers 

the remaining 55%. 
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 Neither MPCI nor weather options provide 100 percent coverage on the 

farmer’s crop yield loss. MPCI insures each farmer’s crop from 50 to 85 percent of 

his or her APH yield. Weather derivatives induce a hedging gap, caused by the 

imperfect relationship between crop yield and weather variables. We call the hedging 

gap as local basis risk in weather hedge. The hedging gap is unavoidable in using 

weather derivatives, even though it can be minimized by using a better fitted yield 

response model to determine the optimal weather hedge. Therefore, we calculate the 

weighted hedging costs for MPCI and for weather options by adjusting each cost by 

the corresponding coverage ratio in order to compare the hedging cost at the same 

coverage level. 

 

Geographic Basis Risk and Spatial Aggregation 

 In this study weather options are priced based on the weather process at each 

of the four locations, assuming the existence of an over-the-counter (OTC) weather 

option contract for the weather index at each location. However, OTC weather options 

based on each specific location are not traded now due to liquidity and fair pricing 

problems. The liquidity problem is caused by very low demands for the weather 

derivatives based on the remote agricultural regions. Each remote region may not 

have sufficient historical weather data, which induces the fair pricing problem, and 

speculators may require considerable risk premiums (Woodard and Garcia, 2007).  

The Chicago Mercantile Exchange (CME) offers weather options and futures 

only for 24 major cities in the United States. Thus, geographic basis risk, a hedging 

gap caused by distance between the CME weather station and the agricultural field, 

may arise when we use the CME options instead of OTC options. For example, a 

farmer who produces corn and soybean in Rock county, one of our four agricultural 
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regions in southern Minnesota, will hedge the weather risk by purchasing the CME 

weather derivatives based on Minneapolis which is the closest CME reference city to 

Rock county. To measure the geographic basis risk for each county, we compare the 

hedging effectiveness between CME options based on the Minneapolis weather index 

and OTC options based on each local weather index, because there is no geographic 

basis risk in using the OTC options for each county. 

Woodard and Garcia (2007) show that the use of spatial aggregation 

diminishes the degree to which geographic basis risk impedes effective hedging. We 

compare the hedging effectiveness between crop insurance and CME weather options 

for the spatially aggregated four counties in order to verify that the weather option is a 

more efficient hedging instrument with less significant geographic basis risk as we 

increase the level of spatial aggregation. 
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Chapter Ⅴ 

Data and Summary Statistics 

 

Raw weather (temperature and precipitation) and crop yield (soybean and 

corn) data for our four locations are presented in this Chapter. Summary statistics and 

graphical representation help us to get some intuition for estimating yield response 

functions and weather process models. 

    

Raw Weather Data 

 The period of analysis begins in 1941. The primary reason for choosing to 

begin the analysis in the 1941 growing season is that genetic engineering and 

fertilization practices did not begin to substantially improve crop yields until the 

1930’s.  

 Weather data is obtained from the Minnesota Climatology Working Group, 

which is a collaboration between the State Climatology Office (Minnesota 

Department of Natural Resources - Division of Waters), Extension Climatology 

Office (University of Minnesota - Minnesota Extension Service), and Academic 

Climatology (University of Minnesota). In order to analyze a cross-section of the 

Southern Minnesota region, we use weather data from four dispersed measurement 

stations in the region. The southwest and southeast points in the region under 

consideration lie at approximately 43.6° latitude. The northwest and northeast 

locations lie approximately 2° to the north at 45.6° latitude. The southwest and 

northwest locations lie approximately 96° longitude. The southeast and northeast 

locations lie approximately 92° longitude. The nearest measurement locations near 

these points of intersection are in the Minnesota communities of Luverne, Morris, 



 

 

４６

Preston, and Rush City, mapping into the southwest, northwest, southeast, and 

northeast points of intersection, respectively. For each location (L), daily high 

temperature (MaxTt
L), daily low temperature (MinTt

L), and daily precipitation (prect
L), 

were obtained for the period from September 1, 1940 to August 31, 2008 (t = 1 to 

24,837).  

 Table 5.1 and Table 5.2 show descriptive statistics for monthly average 

temperature and cumulative precipitation for each region, respectively. Table 5.1 

shows that Luverne which is located in southwest is the warmest of the four regions 

throughout the growing season from May through August, while Rush City located in 

northeast is always the coolest, implying that south and west is warmer than north and 

east, respectively. The values of average temperature in May are relatively lower and 

wider spread around the mean compared with other months based on the negative 

kurtosis, and are right skewed for all four regions. On the other hand, July shows the 

highest average temperature for all regions and the values are left skewed except 

Preston.  

 Table 5.2 reveals that Preston which is located in southeast is the wettest 

while Morris located in northwest is the driest for most of the growing season, 

implying that south and east tend to be wetter than north and west, respectively. It is 

evident that the amounts of precipitation are right skewed throughout the growing 

season for all regions, implying that the frequency of excessively large amounts of 

rainfall is rare in southern Minnesota.     
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Table 5.1 Temperature (degree Fahrenheit) Statistics for Luverne, Morris, Preston, 
and Rush City, 1941-2008 
 

Period/Region Mean Maximum Minimum Stand. Dev. Kurtosis Skewness 

May       

  Luverne 57.9 66.6 50.5 3.76 -0.71 0.09 

  Morris 56.3 66.0 50.2 3.60 -0.46 0.35 

  Preston 56.9 65.2 50.8 3.40 -0.79 0.16 

  Rush City 55.7 64.7 49.6 3.49 -0.66 0.24 

June       

  Luverne 67.5 75.3 59.8 3.10 0.22 -0.38 

  Morris 65.9 73.9 58.8 2.87 0.21 -0.12 

  Preston 66.5 71.9 58.7 2.67 0.72 -0.28 

  Rush City 64.8 69.2 58.7 2.64 -0.55 -0.33 

July       

  Luverne 72.4 77.9 64.8 2.68 -0.05 -0.37 

  Morris 70.6 75.3 63.0 2.33 0.57 -0.29 

  Preston 70.9 77.3 64.3 2.45 -0.02 0.04 

  Rush City 69.7 74.6 62.7 2.44 0.04 -0.22 

August       

  Luverne 70.2 77.9 64.5 2.73 0.32 0.26 

  Morris 68.6 75.5 62.1 2.71 0.01 -0.04 

  Preston 68.7 77.0 61.6 2.77 0.70 0.04 

  Rush City 67.6 74.0 60.9 2.71 -0.03 -0.10 

Source: Minnesota Climatology Working Group (http://www.climate.umn.edu). 
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Table 5.2 Precipitation (inches) Statistics for Luverne, Morris, Preston, and Rush 
City, 1941-2008 

 

Period/Region Mean Maximum Minimum Stand. Dev. Kurtosis Skewness 

May       

  Luverne 3.42 10.85 0.00 2.09 2.41 1.34 

  Morris 2.97  8.89 0.28 1.61 1.94 1.17 

  Preston 3.90  8.72 0.74 1.69 0.42 0.61 

  Rush City 3.57  8.12 0.57 1.79 -0.56 0.47 

June       

  Luverne 4.24  9.13 0.00 2.20 -0.16 0.44 

  Morris 4.02  7.62 0.49 1.84 -0.98 0.12 

  Preston 5.06 12.12 0.80 2.49 0.19 0.75 

  Rush City 4.51 10.93 0.75 2.27 1.07 1.01 

July       

  Luverne 3.36 10.49 0.00 2.15 0.79 0.73 

  Morris 3.65  9.77 0.74 2.02 0.47 0.91 

  Preston 4.22 12.42 0.68 2.44 2.09 1.35 

  Rush City 3.87  9.21 1.07 1.79 0.63 0.75 

August       

  Luverne 3.15  7.66 0.35 2.00 -0.61 0.64 

  Morris 3.04  7.43 0.14 1.62 -0.28 0.48 

  Preston 4.26 14.88 0.31 2.62 3.42 1.43 

  Rush City 4.21 14.11 0.61 2.14 5.92 1.75 

Source: Minnesota Climatology Working Group (http://www.climate.umn.edu). 
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 Figure 5.1A and 5.1B depict the daily high and low temperature for 68 years 

in Luverne, one of our four regions, respectively. We do not provide the graphs for the 

other three regions, since they have similar trends to those for Luverne. The graphs 

show that the temperature oscillates through summer and winter. Some irregular 

jumps occur but return to the long-run seasonal trend. These characteristics justify the 

inclusion of seasonality, autoregression, and mean reversion with discrete jumps of 

temperature in our temperature process model. Increasing trend of temperature due to 

global warming is not noticeable due to a relatively short period of 68 years. 

 Figure 5.2 shows the historical daily precipitation for 68 years in Luverne. 

The probability and the amount of rainfall vary with the season. Rainfall is much 

more intensive in summer than in winter. In particular most of the winter days have no 

precipitation. It can also be seen that the volatility of the daily precipitation is higher 

in summer than in winter. 

 For our empirical analysis using temperature-based weather call/put option, 

the standard measure of Growing-Degree-Day (GDD), rather than outright 

temperature, for a particular day is calculated as:  

  50
2

]50],86,MaxMax[Min[]50],86,MinMax[Min[



 tt

t

TT
GDD .    (5.1) 

In essence, the growing degree day restricts the low temperature (floor) at 50 degrees 

Fahrenheit (temperature below which no growth occurs) and the high temperature 

(cap) at 86 degrees (temperature above which benefits of an additional degree are 

minimal). Precipitation is measured in inches.  

 Both temperature (GDD) and precipitation data used in our estimation are the 

cumulative daily measures during the sensitive period (between June and August) for 

corn and soybean yield in the form of deviation from the observed mean values. 
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Figure 5.1A Daily High Temperature – Luverne (September 1940 – August 2008)  
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Figure 5.1B Daily Low Temperature – Luverne (September 1940 – August 2008)  
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Figure 5.2 Daily Precipitation – Luverne (September 1940 – August 2008) 
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Raw Yield Data 

 Both county-level and farm-level crop yield data are used to observe the 

effects of spatial aggregation on hedging effectiveness. County-level and farm-level 

soybean and corn yields (per planted acre) data are obtained from the National 

Agricultural Statistics Service (NASS) and Risk Management Agency (RMA), 

respectively, for four Minnesota counties (towns): Rock County (Luverne), Stevens 

County (Morris), Fillmore County (Preston), and Chisago County (Rush City). For 

location L, growing season t (from 1941 to 2008), crop yield per planted acre is 

calculated as:  

                  ,
L
t

L
tL

t acre

prod
Y                           (5.2) 

where prodt
L is the crop production and acret

L is the acres planted.  

 The NASS provides the county-level yields per planted acre only from 1972 

while they provide the county-level yields per harvested acre from 1941. Since yields 

per planted acre and per harvested acre are correlated, we create a county-level yield 

per planted acre distribution before 1972 by calibrating the yields per harvested acre. 

For the calibration we follow the calibration method suggested by Fulton, King, and 

Fackler (1988). First, we generate detrended yields per harvested acre and per planted 

acre for our four counties from an ordinary least squares regression of yield on time 

(from 1972 to 2008) to remove the effects of technological change over time (see 

Appendix II-1 and II-2). Then, each element of the calibrated yields per harvested 

acre (Yht) from 1941 to 1971 is obtained from:  

Yht = (m + (σp / σh) (Yt – m)) + d,                 (5.3)  

where m is the mean of the 68-year (from 1941 to 2008) uncalibrated yields per 

harvested acre, σp and σh are the standard deviation for the yields per planted acre and 

per harvested acre (from 1972 to 2008), respectively, Yt is the year t observation of the 
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68-year uncalibrated yields per harvested acre data, d is the difference between the 

mean of the yields per planted acre and the mean of the yields per harvested acre 

(from 1972 to 2008). Calibrated soybean and corn yield per harvested acre are 

reported in Appendix II-3 and II-4, respectively. 

The farm-level yields per planted acre are provided by RMA for 23 growing 

seasons from 1984-2006. We select 24 farms reporting at least 17 years of yield out of 

23 years to evaluate the crop insurance and weather derivatives at the farm level. Sets 

of 10,000 simulated farm-level yields for each of the 24 farms are based on the fitted 

yield distribution function from its reported farm-level data. We find each individual 

farm’s fitted yield distribution function using @Risk statistical software (Palisade 

Corporation, 2009).      

 In Table 5.3 we report the summary of statistics for the county-level soybean 

and corn yields (bushels per planted acre) in the four counties during 1941-2008. We 

can observe that Preston, which is the wettest and second warmest area, shows the 

highest average yield in corn and the almost highest in soybean. This implies that 

there is enough moisture and higher than average temperature (not too hot) during 

growing season to increase the yield of corn and soybean. 
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Table 5.3 County-Level Soybean and Corn Yields (Bushels per Planted Acre) in the 
Four Counties, MN, 1941-2008 
 

Crop/Region Mean Maximum Minimum Stand. Dev. Kurtosis Skewness 

Soybean       

  Luverne 29.1 52.4 10.1 11.7 -1.13 0.21 

  Morris 23.9 42.7 6.8 10.5 -1.39 0.29 

  Preston 28.6 56.4 10.9 11.5 -0.71 0.47 

  Rush City 19.6 41.6 4.5 8.3 -0.37 0.48 

Corn       

  Luverne 87.0 189.9 32.2 42.9 -0.84 0.55 

  Morris 80.5 168.0 27.2 43.9 -1.09 0.54 

  Preston 97.0 190.8 40.6 40.7 -0.92 0.42 

  Rush City 73.1 136.3 23.7 28.7 -0.81 0.28 

Source: National Agricultural Statistics Service (http://www.nass.usda.gov). 

* Luverne, Morris, Preston, and Rush City represent Rock County, Stevens County, Fillmore 
County, and Chisago County, respectively. 
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  A graphical representation of soybean and corn yields is provided for each of 

our four measurement locations over 68 growing seasons in Figure 5.3 and Figure 5.4, 

respectively. We notice that yields have been increasing in all locations over time with 

the notable exception of the early years in the study.  

  The primary driver behind the positive slope is the fact that agricultural 

(mechanical, biological, and chemical) technology has experienced many advances 

since 1940, allowing farmers to achieve higher yields. Additional reasons for the 

observed increase in productivity could involve economies of size (the number of 

farmers has drastically decreased over time, while acreage farmed has not), and 

selection bias due to differences in management ability (“low-ability” farmers may 

have been “weeded-out” of the farming profession as the industry has become more 

competitive, leaving behind a more talented pool of farmers). 

  To correct a general upward trend in our non-stationary yield data, we use a 

quasi-linear detrending method following Thompson (1986). Rather than using a 

linear detrending method over the entire period, Thompson divides his time series 

data into three periods: pre-1960, 1960-1972, and post-1972 periods. He points out 

that the relatively steeper trend between 1960 and 1972 is caused by remarkable 

improvements in both fertilization practices and crop genetics. 

  For each location L, county-level yield per planted acre (Yt
L) is estimated on 

three time trends (t1, t2, and t3) as follows:   

Yt
L = β0 + β1 t1 + β2 t2 + β3 t3 + εt

L,                  (5.4)   

where the time variables for each year (t1, t2, and t3) are provided in Appendix III. 
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Figure 5.3 Soybean Yields (Bushels per Planted Acre) in Four Counties, MN, 
1941-2008 
 

Figure 5.1A: Soybean Yield - Luverne (1941-2008)
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Figure 5.1B: Soybean Yield - Morris (1941-2008)
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Figure 5.1C: Soybean Yield - Preston (1941-2008)
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Figure 5.1D: Soybean Yield - Rush City (1941-2008)
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Figure 5.4 Corn Yields (Bushels per Planted Acre) in Four Counties, MN, 1941-
2008 
 

Figure 5.2A: Corn Yield - Luverne (1941-2008)
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Figure 5.2B: Corn Yield - Morris (1941-2008)
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Figure 5.2C: Corn Yield - Preston (1941-2008)
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Figure 5.2D: Corn Yield - Rush City (1941-2008)
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  Tables 5.4 and 5.5 contain the time-trend regression results for soybean and 

corn, respectively. We notice that all quasi-linear regressions are characterized by high 

R2 and significant p-values on most of the coefficients. A graphical representation of 

detrended soybean and corn yields is provided for each of the four locations in Figure 

5.5 and Figure 5.6, respectively.      

 

 

Table 5.4 Time-Trend Regression Results for Soybean 

 

Location 
β0 (S.E.) 

 

β1 (S.E.) 

(1941-59) 

β2 (S.E.) 

(1960-72) 

Β3 (S.E.) 

(1973-2008) 
F R2 S.E. Obs. 

Luverne 13.21**(2.25) 0.38**(0.18) 0.55**(0.20) 0.56**(0.08) 81.10** 0.79 5.46 68 

Morris 12.43**(1.95) 0.11 (0.15) 0.54**(0.17) 0.57**(0.07) 90.16** 0.81 4.72 68 

Preston 12.85**(1.99) 0.43**(0.16) 0.36**(0.18) 0.64**(0.07) 105.17** 0.83 4.82 68 

RushCity 10.78**(1.87) 0.13 (0.15) 0.32*(0.17) 0.44**(0.07) 52.81** 0.71 4.54 68 

** Significant at 5% level     * Significant at 10% level 

 

 

Table 5.5 Time-Trend Regression Results for Corn 

 

Location 
β0 (S.E.) 

 

β1 (S.E.) 

(1941-59) 

β2 (S.E.) 

(1960-72) 

Β3 (S.E.) 

(1973-2008) 
F R2 S.E. Obs. 

Luverne 41.58**(7.28) 0.40 (0.58) 1.93**(0.68) 2.52**(0.25) 110.83** 0.84 17.64 68 

Morris 34.60**(6.66) 0.30 (0.53) 2.03**(0.59) 2.66**(0.23) 144.08** 0.87 16.15 68 

Preston 42.20**(6.13) 1.17**(0.49) 1.97**(0.55) 2.17**(0.21) 146.31** 0.87 14.86 68 

RushCity 29.56**(5.80) 1.42**(0.46) 1.00*(0.52) 1.36**(0.20) 71.83** 0.77 14.06 68 

** Significant at 5% level     * Significant at 10% level 
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Figure 5.5 Detrended Soybean Yields (Bushels per Planted Acre) in Four 
Counties, MN, 1941-2008 
 

Figure 5.3A: Detrended Soybean Yield - Luverne (1941-2008)
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Figure 5.3B: Detrended Soybean Yield - Morris (1941-2008)
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Figure 5.3C: Detrended Soybean Yield - Preston (1941-2008)
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Figure 5.3D: Detrended Soybean Yield - Rush City (1941-2008)
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Figure 5.6 Detrended Corn Yields (Bushels per Planted Acre) in Four Counties, 
MN, 1941-2008 
 

Figure 5.4A: Detrended Corn Yield - Luverne (1941-2008)
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Figure 5.4B: Detrended Corn Yield - Morris (1941-2008)
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Figure 5.4C: Detrended Corn Yield - Preston (1941-2008)
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Figure 5.4D: Detrended Corn Yield - Rush City (1941-2008)
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 Table 5.6 shows the correlation between annual crop yields and growing 

season (from June to August) weather variables for the four measurement stations. 

GDD representing temperature is negatively related with rainfall in most of stations 

for every month. The relationships between crop yields and monthly weather 

variables (GDD6 to Rain8) are not strong across stations. However, there appears to 

be a relatively strong positive correlation between June temperature (GDD6) and 

yields, while August temperature (GDD8) appears to be negatively correlated with 

yields. We can also observe that July and August precipitation has a relatively strong 

positive relationship with yields in Rush City and Preston, and June and July 

precipitation is positively correlated with yields in Morris. When we consider the 

relationship between crop yields and growing season weather variables (GDD3m and 

Rain3m), the correlation coefficients (except Luverne) are between 0.10 and 0.30 

which are similar to previous studies including Turvey (2001). 
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Table 5.6 Correlation between Crop Yields and Growing Season Weather 
Variables in the Four Counties, MN 
 

Region Variable Soybean Corn GDD3m Rain3m GDD6 GDD7 GDD8 Rain6 Rain7 Rain8

Morris 

Soybean 1.00          

Corn 0.95 1.00         

GDD3m 0.13 0.08 1.00        

Rain3m 0.17 0.08 -0.01 1.00       

GDD6 0.20 0.17 0.71 -0.00 1.00      

GDD7 0.14 0.10 0.68 0.06 0.25 1.00     

GDD8 -0.07 -0.12 0.68 -0.07 0.15 0.23 1.00    

Rain6 0.14 0.13 -0.16 0.57 -0.21 -0.04 -0.07 1.00   

Rain7 0.12 0.05 0.01 0.55 0.07 -0.13 0.07 -0.11 1.00  

Rain8 0.01 -0.06 0.15 0.51 0.15 0.32 -0.13 0.06 -0.11 1.00 

Luverne 

Soybean 1.00          

Corn 0.94 1.00         

GDD3m 0.28 0.14 1.00        

Rain3m -0.21 -0.17 -0.19 1.00       

GDD6 0.30 0.22 0.70 -0.16 1.00      

GDD7 0.27 0.14 0.76 -0.17 0.30 1.00     

GDD8 0.02 -0.10 0.65 -0.08 0.08 0.35 1.00    

Rain6 -0.22 -0.19 -0.19 0.60 -0.24 -0.22 0.07 1.00   

Rain7 -0.24 -0.14 -0.16 0.73 -0.11 -0.11 -0.10 0.23 1.00  

Rain8 0.10 0.04 0.02 0.43 0.09 0.05 -0.11 -0.21 0.04 1.00 

Rush 

City 

Soybean 1.00          

Corn 0.90 1.00         

GDD3m 0.26 0.10 1.00        

Rain3m 0.14 -0.03 -0.09 1.00       

GDD6 0.23 0.10 0.65 -0.04 1.00      

GDD7 0.26 0.11 0.73 -0.08 0.25 1.00     

GDD8 0.07 0.01 0.72 -0.08 0.16 0.31 1.00    

Rain6 -0.05 -0.15 -0.13 0.59 -0.16 -0.04 -0.08 1.00   

Rain7 0.09 0.04 -0.21 0.54 -0.02 -0.22 -0.20 -0.03 1.00  

Rain8 0.20 0.08 0.16 0.63 0.12 0.10 0.12 -0.02 0.13 1.00 

Preston 

Soybean 1.00          

Corn 0.95 1.00         

GDD3m 0.03 -0.09 1.00        

Rain3m 0.27 0.27 -0.10 1.00       

GDD6 0.15 0.04 0.68 -0.01 1.00      

GDD7 0.04 -0.02 0.73 -0.10 0.27 1.00     

GDD8 -0.12 -0.20 0.70 -0.10 0.15 0.32 1.00    

Rain6 0.03 0.08 -0.10 0.58 -0.11 -0.07 -0.03 1.00   

Rain7 0.18 0.15 -0.17 0.50 0.01 -0.13 -0.23 -0.12 1.00  

Rain8 0.27 0.24 0.09 0.68 0.08 0.01 0.08 0.15 0.03 1.00 
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Chapter Ⅵ 

Empirical Results 

 

In this Chapter we provide empirical results, and report the results following 

the empirical process presented in Chapter I: 

 Estimating the yield response models to determine the optimal strike level 

and tick vale of weather options   

 Estimating the weather process models to generate a statistical distribution of 

weather variables 

 Pricing the weather options to compare the hedging cost with that of using 

crop insurance  

 Evaluating the hedging effectiveness as measured by several risk indicators 

between using weather options and crop insurance. 

 

Estimation of Soybean Yield Response Models 

Three alternative yield response models are estimated: linear, quadratic, and 

Cobb-Douglas. Table 6.1 reports the regression results of the three models for 

soybean yield at the county level. Remember that the response variable (Yt) is the 

detrended crop yield and two explanatory variables (Rt and Gt) are the deviations from 

the mean of the cumulative daily rainfall and Growing-Degree-Day (GDD), 

respectively, for growing season (June to August). We notice that the quadratic yield 

response model fits the relationship between soybean yield and the two weather 

variables best. This is consistent with the previous literature (Thompson, 1986; 

Tannura, Irwin, and Good, 2008). Thus, we choose the quadratic yield response model 

for determining the optimal strike level and tick value of weather options and 
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simulating soybean yields to measure expected profits and risk indicators. 

Considering the four location-specific and pooled quadratic models in Table 

6.1B, the R-square measures are lower than 0.50 for all equations. This result is 

expected since we restrict the nature of specific event risks to the rainfall and GDD 

between June 1 and August 31, and we assume that direct physical inputs are held 

constant. Rather than interpreting R-square in terms of low predictive ability, it should 

be interpreted as the percent of total variability explained by the specific weather 

events (the June 1 to August 31 rainfall and temperature). 

 To see if pooling data rather than four location specific data is appropriate to 

our estimation, we apply Chow’s F-test at the 95% confidence interval: 

21.2)252,5(12.5
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where ESSR : Error Sum of Squares(ESS) of restricted (pooled) model = 4,640 

     ESSUR : ESS of unrestricted (four location specific) model = 4,213 

     K : number of parameters in restricted model = 5 

     N : number of observations in unrestricted model = 68. 

Therefore, we reject the null hypothesis which is that β0 = β0
i, β1 = β1

i, β2 = β2
i, β3 = β3

i, 

β4 = β4
i (for location i = 1, 2, 3, 4) implying that we reject pooled model and use each 

location specific model to hedge the production risk. 
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Table 6.1 Soybean Regression Results of Alternative Yield Response Models  

In the yield response model, Yt is the detrended crop yield (bushels per planted acre), Rt is the deviation 
from the mean of the cumulative daily rainfall for growing season (June to August), and Gt is the 
deviation from the mean of the cumulative daily Growing-Degree-Day (GDD) for growing season. 

6.1A Linear Yield Response Model: Yt = β0 + β1Rt + β2Gt + εt 

Location β0 (S.E.) β1 (S.E.) β2 (S.E.) F R2 S.E. Obs. 

Luverne 0.00 (0.63) 0.01 (0.17) 0.01* (0.00) 2.34  0.07 5.23 68 

Morris 0.00 (0.55) 0.38**(0.18) 0.00 (0.00) 2.68* 0.08 4.50 68 

Preston 0.00 (0.53) 0.28**(0.12) 0.01**(0.00) 5.73** 0.15 4.41 68 

RushCity 0.00 (0.46) 0.51**(0.13) 0.01**(0.00) 13.41** 0.29 3.79 68 

 

6.1B Quadratic Yield Response Model: Yt = β0 + β1Rt + β2Gt + β3 Rt
2 + β4 Gt

 2 + εt 

Location β0 (S.E.) β1 (S.E.) β2 (S.E.) β3 (S.E.) β4 (S.E.) F R2 S.E. Obs. 

Luverne 1.99**(0.67) 0.33**(0.15) 0.01 (0.00) -0.15**(0.02) 0.00 (0.00) 12.26** 0.44 4.12 68 

Morris 1.85**(0.80) 0.27 (0.18) 0.00 (0.00) -0.10* (0.06) -0.00**(0.00) 4.23** 0.21 4.23 68 

Preston 1.39* (0.80) 0.32**(0.12) 0.01**(0.00) -0.05**(0.02) -0.00 (0.00) 4.49** 0.22 4.28 68 

RushCity 0.72 (0.66) 0.58**(0.13) 0.01**(0.00) -0.05**(0.02) -0.00 (0.00) 8.34** 0.35 3.70 68 

Pooled 1.52**(0.36) 0.36**(0.07) 0.01**(0.00) -0.08**(0.01) -0.00**(0.00) 21.49** 0.24 4.17 272 

 

6.1C Cobb-Douglas Yield Response Model: lnYt = β0 + β1lnRt + β2lnGt + εt 

Location β0 (S.E.) β1 (S.E.) β2 (S.E.) F R2 S.E. Obs. 

Luverne 0.00 (0.03) 0.06 (0.07) 0.64* (0.34) 2.03  0.06 0.22 68 

Morris -0.00 (0.03) 0.18**(0.09) 0.19 (0.33) 2.27 0.07 0.23 68 

Preston -0.00 (0.02) 0.12**(0.05) 0.71**(0.25) 6.12** 0.16 0.16 68 

RushCity 0.00 (0.02) 0.48**(0.08) 0.99**(0.28) 24.10** 0.43 0.20 68 

** Significant at 5% level     * Significant at 10% level 
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We find two distinguishing characteristics from the estimated coefficients of 

the quadratic yield response models in Table 6.1B. First, negative coefficients on the 

squared weather variables (β3 and β4) say that large deviations (in either direction) 

from the historical mean precipitation and temperature (GDD) tend to depress yields. 

Second, the right-hand vertices on the x-axis of our negative quadratic functions 

imply that a slightly higher than average temperature and precipitation level is 

predicted to optimize the yield response function. For example at Luverne (in Table 

6.1B), to optimize the quadratic yield response function for rainfall, we rewrite the 

function Yt = – 0.15Rt
2 + 0.33Rt + 1.99 in the form Yt = -0.15 (Rt – 1.1)2 + 2.1715. 

Then the vertex (Rt, Yt) is (1.1, 2.1715). This implies that the amount of precipitation 

which is 1.1 inches higher than average precipitation maximizes soybean yield.        
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Based on the estimated negative quadratic function, we select the strangle 

hedging strategy which involves buying a put option and a call option with different 

strike levels on the underlying precipitation and GDD variables in order to provide the 

buyer of the option (the farmer) with protection from extreme weather events in either 

direction. Figures 6.1A- 6.1D display the estimated soybean yield response functions 

and the payoffs of strangle hedging strategies in our four locations. We observe the 

loss in the two extreme weather events is covered by the payoff of strangle options. 

Two exceptions of yield response functions are observed in Figure 6.1A (GDD for 

Luverne) and Figure 6.1D (GDD for Rush City). The two particular graphs show that 

soybean yield increases as growing season temperature (represented by GDD) 

increases. We do not hedge against GDD for Luverne, since a global minimum yield 

exists at slightly above the historic mean across the deviations in GDD. Rush City 

needs to hedge against GDD by purchasing a put option rather than a strangle 

purchase to protect only against downside GDD risk which occurs in the GDD level 

whose deviation is lower by 65 degree days (or more) than the mean.            

The optimal strike and tick values of the options are determined based on the 

estimated parameters. For example, the optimal strike level (Rt
*) for the precipitation 

option in the quadratic function is obtained by solving 0)(βββ 2*
3

^
*

1

^

0

^

 tt RR . By 

setting 0))(βββ( 2*
3

^
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d
, we determine the resulting optimal tick value 

as: )(β2β *
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Figure 6.1A Estimated Soybean Yield Response Functions and Hedging 
Strategies in Rock County (Luverne) 
 

Figure 6.1A Luverne Yield Response (Precipitation) - Strangle Hedging
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Figure 6.1A Luverne Yield Response (GDD) - No Hedging
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Figure 6.1B Estimated Soybean Yield Response Functions and Hedging 
Strategies in Stevens County (Morris) 
 

Figure 6.1B Morris Yield Response (Precipitation) - Strangle Hedging
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Figure 6.1B Morris Yield Response (GDD) - Strangle Hedging
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Figure 6.1C Estimated Soybean Yield Response Functions and Hedging 
Strategies in Fillmore County (Preston) 
 

Figure 6.1C Preston Yield Response (Precipitation) - Strangle Hedging
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Figure 6.1C Preston Yield Response (GDD) - Strangle Hedging
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Figure 6.1D Estimated Soybean Yield Response Functions and Hedging 
Strategies in Chisago County (Rush City)  
 

Figure 6.1D Rush City Yield Response (Precipitation) - Strangle Hedging
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Figure 6.1D Rush City Yield Response (GDD) - Put Option Hedging
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Estimation of Corn Yield Response Models 

 Regression results of the three yield response models for corn yield at the 

county level are reported in Table 6.2. As in the soybean yield response model, the 

quadratic model fits the relationship between corn yield and the two weather variables 

best. 

 We apply Chow’s F-test at the 95% confidence interval to test if each of the 

four location specific models can be used rather than a pooling model. 
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where ESSR : Error Sum of Squares(ESS) of restricted (pooled) model = 52,608 

     ESSUR : ESS of unrestricted (four location specific) model = 49,009 

     K : number of parameters in restricted model = 5 

     N : number of observations in unrestricted model = 68. 

We reject the null hypothesis that β0 = β0
i, β1 = β1

i, β2 = β2
i, β3 = β3

i, β4 = β4
i (for 

location i = 1, 2, 3, 4) implying that we use each location specific model to hedge the 

production risk. 

 Figures 6.2A-6.2D depict the estimated quadratic corn yield response models 

and strangle hedging strategies for our four locations. We determine the optimal strike 

level and tick values of the put and call options for hedging based on the estimation of 

quadratic yield response model. 
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Table 6.2 Corn Regression Results of Alternative Yield Response Models  

In the yield response model, Yt is the detrended crop yield (bushels per planted acre), Rt is the deviation 
from the mean of the cumulative daily rainfall for growing season (June to August), and Gt is the 
deviation from the mean of the cumulative daily Growing-Degree-Day (GDD) for growing season. 

6.2A Linear Yield Response Model: Yt = β0 + β1Rt + β2Gt + εt 

Location β0 (S.E.) β1 (S.E.) β2 (S.E.) F R2 S.E. Obs. 

Luverne 0.00 (2.11) 0.41 (0.58) 0.00 (0.02) 0.25 0.01 17.44 68 

Morris 0.00 (1.94) 0.18 (0.66) -0.00 (0.01) 0.04 0.00 16.01 68 

Preston -0.00 (1.73) 0.82**(0.39) 0.00 (0.01) 2.15 0.06 14.28 68 

RushCity -0.00 (1.68) 0.42 (0.46) 0.01 (0.01) 0.56 0.02 13.83 68 

 

6.2B Quadratic Yield Response Model: Yt = β0 + β1Rt + β2Gt + β3 Rt
2 + β4 Gt

 2 + εt 

Location β0 (S.E.) β1 (S.E.) β2 (S.E.) β3 (S.E.) Β4 (S.E.) F R2 S.E. Obs. 

Luverne 7.83**(2.27) 1.23**(0.51) -0.02 (0.01) -0.45**(0.08) -0.00 (0.00) 9.39** 0.37 14.1 68 

Morris 7.88**(2.74) -0.27 (0.61) -0.00 (0.01) -0.46**(0.21) -0.00**(0.00) 3.92** 0.20 14.6 68 

Preston 5.97**(2.51) 0.83**(0.39) -0.00 (0.01) -0.15**(0.07) -0.00**(0.00) 3.76** 0.19 13.5 68 

RushCity 2.88 (2.43) 0.60 (0.47) 0.01 (0.01) -0.15*(0.08) -0.00 (0.00) 1.20 0.07 13.7 68 

Pooled 5.87**(1.20) 0.67**(0.24) -0.01 (0.01) -0.23**(0.04) -0.00**(0.00) 13.69** 0.17 14.0 272 

 

6.2C Cobb-Douglas Yield Response Model: lnYt = β0 + β1lnRt + β2lnGt + εt 

Location β0 (S.E.) β1 (S.E.) β2 (S.E.) F R2 S.E. Obs. 

Luverne 0.00 (0.03) 0.16**(0.07) 0.20 (0.34) 2.64* 0.08 0.22 68 

Morris 0.00 (0.03) 0.07 (0.09) -0.01 (0.32) 0.38 0.01 0.22 68 

Preston 0.00 (0.02) 0.12**(0.05) 0.08 (0.23) 3.02* 0.08 0.14 68 

RushCity -0.00 (0.02) 0.18**(0.07) 0.24 (0.27) 3.30** 0.09 0.20 68 

** Significant at 5% level     * Significant at 10% level 
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Figure 6.2A Estimated Corn Yield Response Functions and Hedging Strategies in 
Rock County (Luverne) 

 

Figure 6.2A Luverne Yield Response (Precipitation) - Strangle Hedging
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Figure 6.2A Luverne Yield Response (GDD) - Strangle Hedging
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Figure 6.2B Estimated Corn Yield Response Functions and Hedging Strategies in 
Stevens County (Morris) 

 

Figure 6.2B Morris Yield Response (Precipitation) - Strangle Hedging
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Figure 6.2B Morris Yield Response (GDD) - Strangle Hedging
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Figure 6.2C Estimated Corn Yield Response Functions and Hedging Strategies in 
Fillmore County (Preston) 

 

Figure 6.2C Preston Yield Response (Precipitation) - Strangle Hedging
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Figure 6.2C Preston Yield Response (GDD) - Strangle Hedging
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Figure 6.2D Estimated Corn Yield Response Functions and Hedging Strategies in 
Chisago County (Rush City) 

 

Figure 6.2D Rush City Yield Response (Precipitation) - Strangle Hedging

-6

-4

-2

0

2

4

6

-9 -7 -5 -3 -1 1 3 5 7 9 11 13

Deviation in Growing Season Rain

Detrended Corn Yield

Yield Response Payoff of Options

 

Figure 6.2D Rush City Yield Response (GDD) - Strangle Hedging
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Estimation of Weather Process Models 

 In Tables 6.3, 6.4A, and 6.4B we report the estimation results of the daily low 

and high temperature process models, respectively. Growing-Degree-Day (GDD) 

option prices using the daily simulation method are calculated over 10,000 simulated 

GDD processes which are generated based on the estimated daily low and high 

temperature process models. 

 Table 6.3 presents the estimated parameters for the instantaneous mean of the 

daily low and high temperature for our four locations. We also report the Akaike 

Information Criterion (AIC) statistics to determine the optimal number of lags. The 

optimal number of lags is the one which minimizes AIC. We see the AIC statistic at 

p=3 is much lower than that at p=2, but is slightly higher than that at p=4 (or higher 

number of lags (p≥5), though we do not report them). Thus, we determine p=3 as the 

optimal lag for a more parsimonious model, which is consistent to the optimal lag of 

the model by Richards, Manfredo, and Sanders (2004). 

 All parameters for both daily low and high temperature are statistically 

significant at the 5% level in all four locations. The R-square measures are very high 

for all equations. As expected from the strong seasonality in daily temperature in 

Figures 5.1A and 5.1B, seasonality factor coefficients (γ1 and γ2) are statistically 

significant. The coefficient of time trend (γ3) is a very small positive number but 

statistically significant at 5% level, implying a warming trend. All three lag variables 

(ρ1, ρ2, and ρ3) are also statistically significant. The estimated instantaneous mean of 

the daily low and high temperature processes (Wt
m) in Table 6.3 are used to estimate 

the parameters of the daily low and high temperature process models in Table 6.4A 

and Table 6.4B, respectively.  



 

 

７６

Table 6.3 Instantaneous Mean of the Temperature Process Model 

The instantaneous mean of the daily temperature process model uses the following equation: 





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j
jtt

m
t WttttWW

1
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The estimated instantaneous mean of the daily low and high temperature processes (Wt
m) are used to 

estimate the parameters of the daily low and high temperature process models in Table 6.4A and Table 
6.4B, respectively.  
 

Parameter 
Luverne Morris Preston Rush City 

Low High Low High Low High Low High 

γ1 -1.73** -1.11** -1.75** -1.31** -1.81** -1.00** -1.79** -1.15** 

γ 2 1.01** 0.26** 1.05** 0.40** 1.20** 0.16** 1.22** 0.24** 

γ 3 0.0001** 0.0001** 0.0001** 0.0001** 0.0002** 0.0001** 0.0001** 0.0001** 

ρ1 0.79** 0.89** 0.87** 0.80** 0.76** 0.88** 0.88** 0.84** 

ρ2 -0.03** -0.11** -0.13** -0.03** -0.02** -0.11** -0.13** -0.06** 

ρ3 0.18** 0.19** 0.19** 0.19** 0.18** 0.20** 0.18** 0.19** 

N 23,722 23,722 23,722 23,722 23,722 23,722 23,722 23,722 

F-statistic 99,302** 99,999** 99,999** 99,999** 75,985** 99,999** 94,529** 99,999** 

R-square 0.9617 0.9821 0.9642 0.9767 0.9506 0.9839 0.9599 0.9811 

AIC (p=1) 4.1637 4.2490 4.0557 4.4272 4.4070 4.1236 4.1315 4.2016 

AIC (p=2) 4.1513 4.2452 4.0543 4.4109 4.3922 4.1189 4.1307 4.1906 

AIC (p=3) 4.1196 4.2092 4.0163 4.3738 4.3594 4.0780 4.0986 4.1544 

AIC (p=4) 4.1058 4.1918 4.0051 4.3557 4.3419 4.0614 4.0845 4.1380 

** Significant at 5% level     * Significant at 10% level 
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Table 6.4A shows the estimation result of the daily low temperature process 

model. Most of the parameters of the model are significant at the 5% level for all 

locations. For example at Luverne, if the daily temperature departs from the 

instantaneous mean of the process, it returns to the mean at the rate of κ = 0.12. 

Subscripts “s” and “w” stand for summer and winter, respectively. The estimated 

average arrival rate or mean number of jumps occurring per unit time (λ) is 0.08. The 

estimated mean (θ) and variance (δ2) of the random shock are -0.33 and 3.72, 

respectively. The variance of the Brownian motion process (σ2) is estimated to be 3.88. 

These estimated parameters explain reasonably well the seasonal temperature process 

in southern Minnesota where the standard deviation of winter temperature from 

December to February is about twice as large as that of summer temperature from 

June to August. The variance of the jump (δ2) and the variance of the process (σ2) are 

much larger in winter than in summer for all locations. The rate of mean reversion (κ) 

is higher in summer compared to winter, which implies that irregular jumps in 

summer tend to more quickly revert to the mean. This also supports a smaller standard 

deviation for the summer temperature. The daily high temperature process model in 

Table 6.4B has a similar result to the daily low temperature model. The GDD 

processes are simulated based on the estimated parameters of the daily low and high 

temperature process models. 
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Table 6.4A Daily Low Temperature Process Model 

The daily low temperature process model uses the following equation: 
 
dWt = (κ(Wt

m – Wt) – λθ)dt + σdz + φdq                      


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Parameters κ, λ, θ, δ2, σ2 represent the rate of mean reversion, average arrival rate, mean jump size, 
variance of the jump, and variance of the Brownian motion process, respectively. Subscript “s” and 
“w” stand for “summer” and “winter” respectively. The Growing-Degree-Day (GDD) processes are 
simulated based on the estimated parameters of the daily low and high temperature process models. 
 

Parameter 
Luverne Morris Preston Rush City 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. 

κ 0.12** 0.00 0.12** 0.00 0.10** 0.00 0.11** 0.00 

κs 0.16** 0.00 0.17** 0.00 0.14** 0.00 0.16** 0.00 

κw 0.10** 0.00 0.10** 0.00 0.09** 0.00 0.09** 0.00 

λ 0.08** 0.01 0.20** 0.02 0.46** 0.03 0.14** 0.01 

λs 0.01 0.01 0.28** 0.03 0.19** 0.03 0.00 0.00 

λw 0.33** 0.06 0.04** 0.02 0.44** 0.08 0.42** 0.07 

θ -0.33** 0.07 0.62** 0.07 -0.80** 0.08 -0.47** 0.08 

θs -0.19* 0.10 0.47** 0.10 -0.57** 0.12 -0.08 0.10 

θw -0.55** 0.16 0.30* 0.16 -0.63** 0.19 -0.61** 0.18 

δ2 3.72** 0.06 3.69** 0.06 4.00** 0.07 3.82** 0.06 

δs
2 2.68** 0.08 2.28** 0.08 2.88** 0.09 2.37** 0.08 

δw
2 4.38** 0.13 4.64** 0.14 4.82** 0.15 4.84** 0.15 

σ2 3.88** 0.03 3.73** 0.03 4.73** 0.04 3.98** 0.03 

σs
2 3.04** 0.05 3.07** 0.05 3.70** 0.06 3.17** 0.05 

σw
2 4.70** 0.08 4.39** 0.08 5.79** 0.10 4.93** 0.09 

** Significant at 5% level     * Significant at 10% level 
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Table 6.4B Daily High Temperature Process Model 

Parameter 
Luverne Morris Preston Rush City 

Estimate S.E. Estimate S.E. Estimate S.E. Estimate S.E. 

κ 0.11** 0.00 0.10** 0.00 0.11** 0.00 0.11** 0.00 

κs 0.15** 0.00 0.13** 0.00 0.16** 0.00 0.14** 0.00 

κw 0.10** 0.00 0.09** 0.00 0.10** 0.00 0.10** 0.00 

λ 0.01* 0.00 0.31** 0.03 0.04** 0.01 0.21** 0.02 

λs 0.00 0.00 0.45** 0.05 0.06** 0.01 0.22** 0.03 

λw 0.05** 0.02 0.22** 0.05 0.02 0.01 0.28** 0.05 

θ -0.23** 0.08 0.61** 0.09 0.15** 0.07 0.47** 0.08 

θs -0.13 0.11 0.69** 0.13 0.17 0.11 0.45** 0.12 

θw -0.45** 0.17 0.42** 0.19 -0.01 0.17 0.49** 0.17 

δ2 3.95** 0.06 4.23** 0.07 3.78** 0.06 3.73** 0.06 

δs
2 2.84** 0.09 2.96** 0.10 2.68** 0.09 2.90** 0.09 

δw
2 4.47** 0.14 5.02** 0.16 4.31** 0.14 4.26** 0.14 

σ2 4.01** 0.03 4.59** 0.04 3.77** 0.03 4.07** 0.03 

σs
2 2.99** 0.05 3.71** 0.06 2.89** 0.05 3.25** 0.06 

σw
2 4.65** 0.08 4.97** 0.08 4.23** 0.07 4.53** 0.07 

** Significant at 5% level     * Significant at 10% level 
 

Note: Subscripts “s” and “w” stand for summer and winter, respectively. 
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 In Table 6.5 we report the estimation result of the precipitation process model. 

The estimated parameters of the model explain the historical precipitation process 

well in the four counties. Preston and Rush City are located in the east, and they have 

relatively larger amounts of precipitation compared to Luverne and Morris in the west. 

The estimated transition probability from dryness to rainfall (q01) and from rainfall to 

rainfall (q11) are higher, and the β parameter of the gamma distribution (which 

determines to what extent extremely heavy rainfall occurs) are larger for Preston and 

Rush City compared to Luverne and Morris, respectively. Precipitation option prices 

using the daily simulation method are calculated over 10,000 simulated precipitation 

processes based on the estimated parameters of this precipitation process model.  
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Table 6.5 Precipitation Process Model 

The precipitation process model uses a two-part model: 
 
Pt = Pt-1 · qt

11 + (1- Pt-1) · qt
01, for t = 1,2,…,T               

0βα,,    ,
)α(β

)β/exp(
)1|(
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


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

t
tt

tt  Y
YY

XYf  

In the first equation, Pt, qt
11, and qt

01 represent the probability of rainfall occurrence at day t, the 
transition probability from rainfall at day t-1 to rainfall at day t, and the transition probability from 
dryness at day t-1 to rainfall at day t, respectively. In the second equation, gamma distribution function, 
Yt is the amount of precipitation, given Xt=1 when day t is rainy. The α and β are shape and scale 
parameters of the gamma distribution function, respectively. Subscript “6”, “7”, and “8” stand for 
“June”, “July”, and “August” respectively. 

 

Parameter Luverne Morris Preston Rush City 

q01
6 0.27 0.33 0.31 0.33 

q01
7 0.23 0.30 0.28 0.29 

q01
8 0.21 0.26 0.27 0.28 

q11
6 0.44 0.48 0.48 0.50 

q11
7 0.34 0.40 0.37 0.38 

q11
8 0.37 0.40 0.42 0.38 

α6 0.61 0.63 0.61 0.62 

α 7 0.61 0.63 0.61 0.62 

α 8 0.62 0.64 0.62 0.61 

β6 17.95 13.81 18.43 15.74 

β 7 17.84 14.60 18.57 16.50 

β 8 16.23 13.16 17.21 17.99 
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Valuation of Weather Options and Crop Insurance 

The weather option prices (or premiums) for soybean obtained by applying 

the burn-rate analysis and the daily simulation method are reported in Table 6.6. The 

tick values and option prices are measured in 2007 dollars, using the 2007 maximum 

price election of $7.00/bu. for soybean in order to compare with the 2007 MPCI 

premiums. To observe the relative option price level, we also report the prices as the 

percent of the 2007 soybean revenue per acre in parenthesis. The “w/Basis Risk” 

variable is the option price calculated under the local basis risk of (1 – R2) in the yield 

response model. Local basis risk is interpreted as the hedging gap caused by an 

imperfect weather yield relationship in the same geographic location. The “w/o Basis 

Risk” variable reflects weighted option prices by adjusting each price by the 

corresponding R2 measure, assuming 100% of R2 provides perfect coverage. For 

example at Luverne, the total price as calculated by daily simulation (DS) for both the 

precipitation call and put options is $4.24 per acre under the local basis risk of 0.56 

(R2 = 0.44). The weighted option price assuming no local basis risk (R2 = 1.00) is 

$9.64 per acre, which is calculated by dividing $4.24 by 0.44. This adjustment is an 

approximate measure to compare the weighted hedging cost for weather options and 

MPCI (which has no basis risk but insures up to 85 percent of the farmer’s APH yield) 

at the same coverage level. 

The option prices calculated by daily simulation (DS) are slightly lower than 

the prices derived from burn-rate analysis (BA). At Luverne total option price 

(w/Basis Risk) calculated by daily simulation is $4.24 which is lower than $5.57 

calculated by BA. The other three locations also show slightly lower option prices 

calculated by daily simulation than those by burn-rate analysis. This result is 

consistent with previous studies (Odening, Musshoff, and Xu, 2007; Richards,  
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Table 6.6 Weather Option Prices for Soybean 

Location 

Precipitation Options GDD Options Both Options 

Put (%)a) Call (%) Put (%) Call (%) w/Basis Risk w/o Basis Risk 

Luverne       

   Strikeb) 8.09 15.58 - e) -   

   Tickc) $8.11 $8.11 - -   

   Price:BAd) $3.51 (0.99%) $2.06 (0.58%) - - $5.57 (1.57%) $12.66 (3.57%) 

   Price: DSd) $2.79 (0.78%) $1.45 (0.41%) - - $4.24 (1.19%) $9.64 (2.72%) 

Morris       

   Strike 7.56 16.62 1,521 1,898   

   Tick $6.30 $6.30 $0.14 $0.14   

   Price: BA $1.39 (0.49%) $0.00 (0.00%) $1.46 (0.51%) $0.16 (0.06%) $3.01 (1.05%) $14.33 (5.02%) 

   Price: DS $1.00 (0.35%) $0.33 (0.12%) $1.14 (0.40%) $0.04 (0.01%) $2.51 (0.88%) $11.95 (4.18%) 

Preston       

   Strike 10.61 22.59 1,622 2,358   

   Tick $4.41 $4.41 $0.11 $0.11   

   Price: BA $2.62 (0.75%) $0.08 (0.02%) $1.91 (0.55%) $0.00 (0.00%) $4.61 (1.33%) $20.95 (6.02%) 

   Price: DS $1.67 (0.48%) $0.13 (0.04%) $1.65 (0.47%) $0.00 (0.00%) $3.45 (0.99%) $15.68 (4.51%) 

Rush City       

   Strike 11.46 24.89 1,551 - e)   

   Tick $4.88 $4.88 $0.08 -   

   Price: BA $3.90 (2.08%) $0.00 (0.00%) $2.60 (1.38%) - $6.50 (3.46%) $18.57 (9.90%) 

   Price: DS $4.10 (2.18%) $0.02 (0.01%) $2.19 (1.17%) - $6.31 (3.36%) $18.03 (9.61%) 

Note: a) Option price represented as a percent (in the parenthesis) is calculated as a percent of the     
soybean revenue per acre (county average based on the price election $7.00/bu. per acre) in 2007.    
b) Strike is the predetermined level by contract at which the put (call) option buyer can sell (buy) the 
weather event to the option seller. The unit of strike for precipitation options is inch and the unit of 
strike for GDD options is degree days. c) Tick value is the indemnity payments per unit of adverse 
weather event (per inch for precipitation options and per degree for temperature options). The tick 
values and option prices are measured per acre. d) BA and DS represent the burn-rate and the daily 
simulation, respectively. e) Not available because we do not purchase the options based on the 
estimated yield response functions (See Figure 6.1A (GDD) and Figure 6.1D (GDD).)  
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Manfredo, and Sanders, 2004). To explain the relatively lower prices calculated by 

daily simulation, Richards, Manfredo, and Sanders (2004) point out that weighting the 

occurrence of irregular discrete jumps by their probability significantly reduces their 

ultimate impact on the daily simulated option values. On the other hand, Odening, 

Musshoff, and Xu (2007) note that daily precipitation models should be used with 

some caution in the context of derivative pricing, because they tend to underestimate 

rainfall variability. To show the less variable rainfall index by daily simulation, they 

present the mean and the standard deviation of their rainfall index distribution 

obtained by applying burn-rate and daily simulation. Nevertheless, we use the option 

prices calculated by daily simulation because a daily temperature model is widely 

used in the literature to construct temperature-based weather indexes and a daily 

precipitation model is often used by meteorologists and agricultural scientists. 

Simulated total prices (w/Basis Risk) for both precipitation and GDD put and call 

options range from $2.51 to $6.31 per acre (or 0.88% to 3.36% of revenue from 

soybean) across locations. 

In Table 6.7 we report the weather options for corn which are calculated by 

the two methods: burn rate and daily simulation. Total prices with basis risk for both 

options by applying the daily simulation method range from $2.42 to $5.51 per acre 

(or 0.50% to 1.00% of revenue from corn) across locations. The option prices for corn 

as a percent of revenue with basis risk (0.50% to 1.00%) are lower than those for 

soybean (0.88% to 3.36% in Table 6.6). However, the adjusted option prices for corn 

without basis risk range from 2.63% to 11.22% of revenue across locations, and they 

are similar to those for soybean (2.72% to 9.61% of revenue across locations). 
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Table 6.7 Weather Option Prices for Corn 

Location 

Precipitation Options GDD Options Both Options 

Put (%)a) Call (%) Put (%) Call (%) w/Basis Risk w/o Basis Risk 

Luverne       

   Strikeb) 7.73 16.50 1,362 2,023   

   Tickc) $13.84 $13.84 $0.19 $0.19   

   Price:BAd) $4.84 (0.87%) $2.39 (0.43%) $0.00 (0.00%) $0.26 (0.05%) $7.49 (1.35%) $20.24 (3.65%) 

   Price: DSd) $3.76 (0.68%) $1.55 (0.28%) $0.00 (0.00%) $0.20 (0.04%) $5.51 (1.00%) $14.89 (2.68%) 

Morris       

   Strike 6.30 14.55 1,476 1,865   

   Tick $13.43 $13.43 $0.28 $0.28   

   Price: BA $0.82 (0.17%) $0.74 (0.15%) $1.81 (0.37%) $0.83 (0.17%) $4.20 (0.85%) $21.00 (4.27%) 

   Price: DS $0.62 (0.13%) $2.42 (0.49%) $1.34 (0.27%) $0.35 (0.07%) $4.73 (0.96%) $23.65 (4.81%) 

Preston       

   Strike 9.40 23.36 1,543 1,907   

   Tick $7.18 $7.18 $0.23 $0.23   

   Price: BA $2.39 (0.40%) $0.04 (0.01%) $1.26 (0.21%) $0.88 (0.15%) $4.57 (0.77%) $24.05 (4.07%) 

   Price: DS $1.27 (0.21%) $0.14 (0.02%) $0.97 (0.16%) $0.58 (0.10%) $2.96 (0.50%) $15.58 (2.63%) 

Rush City       

   Strike 9.78 19.38 1,409 1,927   

   Tick $5.07 $5.07 $0.08 $0.08   

   Price: BA $1.70 (0.55%) $0.37 (0.12%) $0.45 (0.14%) $0.00 (0.00%) $2.52 (0.82%) $36.00 (11.69%) 

   Price: DS $1.74 (0.56%) $0.38 (0.12%) $0.30 (0.10%) $0.00 (0.00%) $2.42 (0.79%) $34.57 (11.22%) 

Note: a) Option price represented as a percent (in the parenthesis) is calculated as a percent of the     
corn revenue per acre (county average based on the price election $3.50/bu. per acre) in 2007.       
b) Strike is the predetermined level by contract at which the put (call) option buyer can sell (buy) the 
weather event to the option seller. The unit of strike for precipitation options is inch and the unit of 
strike for GDD options is degree days. c) Tick value is the indemnity payments per unit of adverse 
weather event (per inch for precipitation options and per degree for temperature options). The tick 
values and option prices are measured per acre. d) BA and DS represent the burn-rate and the daily 
simulation, respectively.  
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Comparison of Hedging Cost and Effectiveness 

 In Table 6.8 and 6.9 we compare the prices of weather options to those of the 

two crop insurance products, multi-peril crop insurance (MPCI) and group risk plan 

(GRP), for soybean and corn, respectively. The prices of weather options and GRP are 

calculated at the county level, while MPCI premiums are computed at the farm level. 

The prices of weather options for soybean and corn come from the Table 6.6 and 6.7, 

respectively (See the prices using daily simulation for both precipitation and GDD 

options in the tables). For crop insurance prices, the “85%” coverage variable means 

that the premium is calculated at the 85% coverage level, the highest level in the 

MPCI plan and the second highest level in the GRP, and “100%” coverage variable is 

the adjusted premium recalculated at the 100% coverage level (even though full 

coverage insurance is not provided in the market). The first two rows of MPCI prices 

in each location, 85% (38%) and 100% (38%) coverage prices, are the premium 

amounts paid by the farmer under 38% government subsidy. Under the government 

subsidy the farmer pays only 62% of the total premium and the remaining 38% is 

subsidized by the government. The GRP at the 85% coverage level is provided with 

59% subsidy rate so that farmers pay only 41% of the total premium. Subsidy rates, 

which are set by the Agricultural Risk Protection Act of 2000, vary by coverage level 

and type of insurance. The last row of each location, 100% (0%) coverage price, is the 

total premium at the 100% coverage level, assuming no subsidy is provided. The price 

coverage election is assumed to be 100% of the maximum price, $7.00 per bushel for 

soybean and $3.50 per bushel for corn in 2007. The average Actual Production 

History (APH) 10Y for each county is calculated as a simple average of the county-

level yields for ten consecutive years from 1997 to 2006. 
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Table 6.8 Comparison of Prices between Weather Options and Crop Insurance for Soybean 

Location 
Weather Option MPCI (Price Election: $7.00/bu. in 2007) GRP (Price Election: $7.00/bu. in 2007) 

Coverage Price (%)a) Coverage (Gov. Subsidy) Price (%)a) Coverage (Gov. Subsidy) Price (%)a) 

Luverne 

(Avg. APH 10Y = 

45.0 bu./acre)c) 

44% $ 4.24 (1.19%) 85% (38%)b) $12.15 (3.42%) 85% (59%)b) $ 5.44 (1.53%) 

100% $ 9.64 (2.72%) 100% (38%) $14.29 (4.03%) 100% (59%) $ 6.40 (1.80%) 

  100% ( 0%) $23.06 (6.50%) 100% ( 0%) $15.61 (4.40%) 

Morris 

(Avg. APH 10Y = 

38.7 bu./acre) 

21% $ 2.51 (0.88%) 85% (38%) $14.30 (5.01%) 85% (59%) $ 5.20 (1.82%) 

100% $11.95 (4.19%) 100% (38%) $16.82 (5.89%) 100% (59%) $ 6.12 (2.14%) 

  100% ( 0%) $27.13 (9.51%) 100% ( 0%) $14.93 (5.23%) 

Preston 

(Avg. APH 10Y = 

44.6 bu./acre) 

22% $ 3.45 (0.99%) 85% (38%) $17.17 (4.93%) 85% (59%) $ 3.17 (0.91%) 

100% $15.68 (4.50%) 100% (38%) $20.20 (5.80%) 100% (59%) $ 3.73 (1.07%) 

  100% ( 0%) $32.58 (9.36%) 100% ( 0%) $ 9.10 (2.61%) 

Rush City 

(Avg. APH 10Y = 

32.0 bu./acre) 

35% $ 6.31 (3.37%) 85% (38%) $14.95 (7.98%) 85% (59%) $ 3.96 (2.11%) 

100% $18.03 (9.63%) 100% (38%) $17.59 (9.39%) 100% (59%) $ 4.66 (2.49%) 

  100% ( 0%) $28.37 (15.15%) 100% ( 0%) $11.37 (6.07%) 

 
Note: a) Prices represented as a percent (in the parenthesis) are calculated as a percent of the soybean revenue per acre (county average based on the price election $7.00/bu. 
per acre) in 2007.  b) The “85%” coverage variable means that the crop insurance premium is calculated at the 85% coverage level, and “100%” coverage variable is the 
adjusted premium recalculated at the 100% coverage level. The “38%” in the parenthesis for MPCI (“59%” in the parenthesis for GRP) represent the government subsidy rate.  
c) The average Actual Production History (APH) 10Y is a simple average of the county-level soybean yields for ten consecutive years from 1997 to 2006. 
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Table 6.9 Comparison of Prices between Weather Options and Crop Insurance for Corn 

Location 
Weather Option MPCI (Price Election: $3.50/bu. in 2007) GRP (Price Election: $3.50/bu. in 2007) 

Coverage Price (%)a) Coverage (Gov. Subsidy) Price (%)a) Coverage (Gov. Subsidy) Price (%)a) 

Luverne 

(Avg. APH 10Y = 

151.0 bu./acre)c) 

37% $ 5.51 (0.99%) 85% (38%)b) $20.79 (3.75%) 85% (59%)b) $11.98 (2.16%) 

100% $14.89 (2.68%) 100% (38%) $24.46 (4.41%) 100% (59%) $14.09 (2.54%) 

  100% ( 0%) $39.45 (7.11%) 100% ( 0%) $34.38 (6.20%) 

Morris 

(Avg. APH 10Y = 

153.3 bu./acre) 

20% $ 4.73 (0.96%) 85% (38%) $24.77 (5.03%) 85% (59%) $10.41 (2.12%) 

100% $23.65 (4.81%) 100% (38%) $29.14 (5.92%) 100% (59%) $12.25 (2.49%) 

  100% ( 0%) $47.00 (9.55%) 100% ( 0%) $29.87 (6.07%) 

Preston 

(Avg. APH 10Y = 

158.6 bu./acre) 

19% $ 2.96 (0.50%) 85% (38%) $23.24 (3.93%) 85% (59%) $ 6.86 (1.16%) 

100% $15.58 (2.64%) 100% (38%) $27.34 (4.63%) 100% (59%) $ 8.07 (1.37%) 

  100% ( 0%) $44.10 (7.46%) 100% ( 0%) $19.68 (3.33%) 

Rush City 

(Avg. APH 10Y = 

115.1 bu./acre) 

7% $ 2.42 (0.79%) 85% (38%) $24.91 (8.13%) 85% (59%) $ 8.13 (2.65%) 

100% $34.57 (11.29%) 100% (38%) $29.31 (9.57%) 100% (59%) $ 9.56 (3.12%) 

  100% ( 0%) $47.27 (15.43%) 100% ( 0%) $23.33 (7.62%) 

 
Note: a) Prices represented as a percent (in the parenthesis) are calculated as a percent of the soybean revenue per acre (county average based on the price election $3.50/bu. 
per acre) in 2007.  b) The “85%” coverage variable means that the crop insurance premium is calculated at the 85% coverage level, and “100%” coverage variable is the 
adjusted premium recalculated at the 100% coverage level. The “38%” in the parenthesis for MPCI (“59%” in the parenthesis for GRP) represent the government subsidy rate.  
c) The average Actual Production History (APH) 10Y is a simple average of the county-level soybean yields for ten consecutive years from 1997 to 2006. 
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The approximate MPCI premiums for soybean at the 100% coverage level 

with no government subsidy range from $23.06/acre at Luverne to $32.58/acre at 

Preston (Table 6.8). They are much higher than the corresponding weather option 

premiums, which range from $9.64/acre at Luverne to $18.03/acre at Rush City at the 

100% coverage level. Main reason of the higher MPCI premiums compared with 

weather options is that MPCI premium is calculated at the individual farm level which 

reflects larger yield variability, while the weather option premium is calculated at the 

county level which removes the individual farmer’s yield variability.  

When we compare the weather option premiums with GRP premiums at the 

100% coverage level with no subsidy, the gaps between the two premiums are much 

smaller. This is because both weather options and GRP premiums are measured at the 

same county level. However, the gaps between the two premiums are mixed across 

locations. The GRP premiums at the 100% coverage without subsidy for Luverne and 

Morris, $15.61/acre and $14.93/acre, are higher than the corresponding weather 

option premiums, $9.64/acre and $11.95/acre, respectively. On the other hand, The 

GRP premiums for Preston and Rush City, $9.10/acre and $11.37/acre, are lower than 

the corresponding weather option premiums, $15.68/acre and $18.03/acre, 

respectively. Table 6.9, which presents the comparison of prices between weather 

options and crop insurance for corn, shows the similar result to Table 6.8 for soybean. 

 In Table 6.10 we compare hedging effectiveness indicators for soybean in our 

four locations, when using alternative hedging strategies at the farm level to analyze 

weather options as a more effective risk management tool for individual farmers in 

various scenarios. The comparison of hedging effectiveness for corn among 

alternative hedging strategies is similar to that for soybean and is reported in 

Appendix IV. The seven alternative hedging strategies include: “no hedge,” “MPCI 
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with no subsidy,” “MPCI with subsidy,” “GRP with no subsidy,” “GRP with subsidy,” 

“Local station-based weather options,” and “Minneapolis-based weather options.” For 

the farm-level risk indicators we take the average of the individual 24 farm risk 

indicators in each location, based on the 10,000 simulated yields and corresponding 

cost estimates for each individual farm. 

 We find that the hedging effectiveness of weather options compared with no 

hedge at the farm level is limited. Higher Sharpe ratio, VaR, certainty equivalent, and 

lower risk premium imply higher hedging effectiveness. Most of our risk indicators 

by using weather options at the farm level are not significantly improved compared 

with no hedge and are even worse when compared with both MPCI and GRP hedges. 

For example at Luverne, the Sharpe ratio, VaR, certainty equivalent at γ=0.005, and 

risk premium at γ=0.005 by using local weather options are 1.240, $35.03, $147.86, 

and $34.39, respectively, and they are slightly improved from 1.226, $32.69, $146.73, 

and $35.55 with no hedge. They are even worse than 1.322, $61.07, $151.47, and 

$24.22 by using MPCI with no government subsidy. Vedenov and Barnett (2004) also 

suggest there is only limited efficacy of weather derivatives in hedging disaggregated 

production exposures due to large yield variability at the farm level. MPCI insures the 

highly variable individual farm-level yields relatively better than weather derivatives 

do, because MPCI covers individual farm-level losses directly. Even GRP based on 

the county-level yield provides better hedging effectiveness to individual farmers 

compared with weather options. This shows the limitation of weather options as an 

effective hedging tool for individual farmers at the farm level mainly due to hedging 

gap caused by imperfect relationship between weather and crop yield. 
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Table 6.10 Comparison of Hedging Effectiveness of Crop Insurance and Weather 
Options for Soybean 
 

This table compares the risk indicators (Sharpe Ratio, Value at Risk, Certainty Equivalent, Risk 
Premium) when using alternative hedging strategies (No Hedge, MPCI with No Subsidy, MPCI with 
Subsidy, GRP with No Subsidy, GRP with Subsidy, Local Station-based Weather Options, and 
Minneapolis-based Weather Options) at the farm level. Sharpe Ratio is calculated under the assumption 
of risk free rate of 0.05. Value at Risk (VaR) is measured at the 10% confidence interval. Certainty 
Equivalent (CE) and Risk Premium (RP) are measured at the three different levels of risk aversion 
(γ=0.001, 0.005, 0.009). 

 

Location Indicator 

Farm Level (Average of Farms) 

No 

Hedge 

MPCI  

(No Sub.) 

MPCI 

(Subsidy) 

GRP  

(No Sub.) 

GRP 

(Subsidy) 

Option 

(Local) 

Option 

(Mpls.) 

Luverne 

Net Income $182.28 $175.69 $183.29 $183.52 $191.35 $182.25 $183.28 

Sharpe Ratio 1.226 1.322 1.381 1.387 1.449 1.240 1.247 

VaR (10%) $32.69 $61.07 $68.69 $65.65 $73.48 $35.03 $36.07 

CE(γ=0.001) $174.76 $170.14 $177.74 $177.88 $185.71 $174.94 $175.98 

CE(γ=0.005) $146.73 $151.47 $159.07 $158.62 $166.45 $147.86 $148.89 

CE(γ=0.009) $120.70 $137.05 $144.65 $143.44 $151.27 $122.97 $124.01 

RP(γ=0.001) $7.52 $5.55 $5.55 $5.65 $5.65 $7.31 $7.31 

RP(γ=0.005) $35.55 $24.22 $24.22 $24.90 $24.90 $34.39 $34.39 

RP(γ=0.009) $61.57 $38.64 $38.64 $40.08 $40.08 $59.27 $59.27 

Morris 

Net Income $118.77 $111.79 $120.58 $119.36 $126.85 $118.78 $118.35 

Sharpe Ratio 0.669 0.675 0.724 0.715 0.755 0.671 0.669 

VaR (10%) -$56.36 -$16.80 -$8.01 -$18.30 -$10.82 -$55.24 -$55.68 

CE(γ=0.001) $108.67 $104.56 $113.35 $111.67 $119.16 $108.79 $108.35 

CE(γ=0.005) $71.28 $80.81 $89.60 $86.08 $93.57 $71.82 $71.38 

CE(γ=0.009) $37.15 $63.19 $71.98 $66.84 $74.32 $38.12 $37.68 

RP(γ=0.001) $10.11 $7.23 $7.23 $7.69 $7.69 $10.00 $10.00 

RP(γ=0.005) $47.50 $30.98 $30.98 $33.28 $33.28 $46.96 $46.96 

RP(γ=0.009) $81.62 $48.60 $48.60 $52.52 $52.52 $80.67 $80.67 
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Table 6.10 - Continued 
 

Location Indicator 

Farm Level (Average of Farms) 

No 

Hedge 

MPCI  

(No Sub.) 

MPCI 

(Subsidy) 

GRP  

(No Sub.) 

GRP 

(Subsidy) 

Option 

(Local) 

Option 

(Mpls.) 

Preston 

Net Income $175.70 $159.93 $170.66 $180.70 $185.26 $175.71 $176.19 

Sharpe Ratio 0.893 0.848 0.906 0.969 0.994 0.895 0.900 

VaR (10%) -$0.43 $17.13 $27.85 $29.69 $34.25 $0.07 $1.27 

CE(γ=0.001) $165.05 $151.89 $162.62 $172.27 $176.83 $165.09 $165.66 

CE(γ=0.005) $124.17 $125.24 $135.97 $143.71 $148.28 $124.36 $125.25 

CE(γ=0.009) $80.37 $104.93 $115.66 $121.36 $125.92 $80.59 $81.83 

RP(γ=0.001) $10.66 $8.04 $8.04 $8.43 $8.43 $10.62 $10.53 

RP(γ=0.005) $51.53 $34.70 $34.70 $36.99 $36.99 $51.35 $50.94 

RP(γ=0.009) $95.33 $55.00 $55.00 $59.34 $59.34 $95.12 $94.37 

Rush 

City 

Net Income $58.99 $54.16 $63.51 $58.99 $59.52 $68.42 $74.11 

Sharpe Ratio 0.386 0.379 0.463 0.388 0.394 0.493 0.544 

VaR (10%) -$92.56 -$46.04 -$36.69 -$91.24 -$90.10 -$38.40 -$32.71 

CE(γ=0.001) $51.14 $49.06 $58.41 $51.24 $51.83 $63.01 $68.71 

CE(γ=0.005) $22.30 $32.40 $41.75 $22.76 $23.58 $45.16 $50.86 

CE(γ=0.009) -$4.64 $20.12 $29.47 -$3.93 -$2.92 $31.79 $37.49 

RP(γ=0.001) $7.85 $5.10 $5.10 $7.75 $7.69 $5.40 $5.40 

RP(γ=0.005) $36.69 $21.76 $21.76 $36.23 $35.94 $23.26 $23.26 

RP(γ=0.009) $63.63 $34.04 $34.04 $62.92 $62.44 $36.62 $36.62 
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Then, how can we use weather options as a hedging tool in crop production? 

In the federal crop insurance program, private crop insurance companies provide 

insurance products to farmers as an agent of the government, and transfer most of the 

farmers’ crop risk exposures to the government. However, the government does not 

hedge the risk exposures transferred from the crop insurance companies. This could 

be considered as social cost, because the potential losses caused by not hedging risk 

exposures would be covered with tax-payers money. Furthermore, the government 

also provides a significant portion of insurance premium to farmers in the form of 

government subsidy. Although idiosyncratic crop yield risk can be reduced by the 

government through aggregating the individual risk exposures at the county or higher 

level, the government still faces the systemic weather risk without any risk hedge. 

Thus, we observe whether and how the government uses weather options as 

an effective risk management tool to reduce the social cost. Suppose that the 

government provides GRP products with subsidy to farmers, and hedges the crop risk 

exposures by purchasing weather options at the county level. Table 6.11 and 6.12 

compare the net income and value at risk (VaR) of the government between no hedge, 

local station-based weather options hedge, and Minneapolis-based weather options 

hedge for soybean and corn, respectively, for our four counties. The net income of the 

government from the federal crop insurance program is computed as “GRP premium 

received from farmers – GRP indemnity payments paid to farmers – weather options 

premium paid to the option provider for risk hedge + weather options payoffs 

received from the option provider.” We assume no other administrative costs in the 

calculation. The net income and VaR of the government is calculated over the 10,000 

simulated county-level crop yields for each of the four counties. The only risk 

indicator we compare for the government is VaR. We do not measure Sharpe ratio of 
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the government, because it is hard to evaluate the federal service cost to calculate 

Sharpe ratio. In addition, certainty equivalent and risk premium at various levels of 

risk for the government is not appropriate because the government is risk neutral. 

 

Table 6.11 Weather Options Used by the Government at the County Level: 
Soybean 
 

  County Level

  No Hedge Option Option 

Location Indicator (Subsidy) (Local) (Mpls.) 

Luverne 
Net Income  $ 0.57  $ 0.54  $ 1.58 

VaR (10%) -$10.58 -$ 7.24 -$ 6.20 

Morris 
Net Income -$ 1.88 -$ 1.87 -$ 2.31 

VaR (10%) -$22.81 -$22.08 -$22.52 

Preston 
Net Income  $ 0.04  $ 0.04  $ 0.53 

VaR (10%) -$ 0.84 -$ 0.47  $ 0.02 

Rush City 
Net Income -$ 5.65 -$ 5.65 -$ 5.12 

VaR (10%) -$34.39 -$33.34 -$32.38 

 

Table 6.12 Weather Options Used by the Government at the County Level: Corn 
 

  County Level 

  No Hedge Option Option 

Location Indicator (Subsidy) (Local) (Mpls.) 

Luverne 
Net Income  $ 3.73  $ 3.68  $ 5.14 

VaR (10%) -$14.67 -$ 9.27 -$ 7.81

Morris 
Net Income -$ 1.27 -$ 1.24 -$ 2.28 

VaR (10%) -$35.99 -$32.86 -$33.89 

Preston 
Net Income  $ 1.26  $ 1.27  $ 1.52 

VaR (10%) -$ 6.17 -$ 6.21 -$ 4.34 

Rush City 
Net Income  $ 0.57  $ 0.56  $ 1.25 

VaR (10%) -$21.72 -$20.30 -$19.50
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We find the government’s VaR indicator improves from -$10.58/acre with no 

hedge to -$6.20/acre by using Minneapolis-based options in Luverne (Table 6.11). All 

other counties show improved VaR of the government by using either local station-

based weather options or Minneapolis-based weather options to hedge soybean yield 

risk exposures. Table 6.12 also shows the improved VaR indicators of the government 

by using weather options to hedge corn yield risk exposures at the county level across 

the four locations. This confirms that weather options can be used by the government 

as an effective hedging tool at the county or higher level for reducing social cost. 

Since local weather options based on our four specific counties are not traded 

due to liquidity and fair pricing problems in the market, we use Chicago Mercantile 

Exchange (CME) options based on several large reference cities near to the counties. 

Here we need to consider geographic basis risk which is caused by the difference 

between the weather index at a CME reference city and at a specific farm location. 

Geographic basis risk is measured as the difference in hedging effectiveness between 

local and non-local derivatives. When we compare our risk indicators between 

“Option (Local)” and “Option (Minneapolis)” in Table 6.10~6.12, the difference is 

very small both at the farm and county level. For example at Luverne in Table 6.10, 

Sharpe Ratio, VaR, CE(γ=0.001), and RP(γ=0.001) by using local weather options are 

1.240, $35.03, $174.94, and $7.31, respectively, and they are close to 1.247, $36.07, 

$175.98, and $7.31 by using Minneapolis-based weather options. This implies that 

geographic basis risk is minimal in southern Minnesota. Woodard and Garcia (2007) 

also find that the geographic basis risk from hedging with non-local contracts is small 

when they compare hedging effectiveness between local options (based on nine 

Illinois Crop Reporting Districts) and non-local options (based on nearby major cities).  

This result is interesting since the conventional wisdom is that geographic 
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basis risk may be a large impediment to the implementation of weather hedges in the 

agricultural industry. It is likely due to the fact that Midwest area including Minnesota 

and Illinois have relatively homogeneous (or less variable) weather conditions across 

the counties when compared to other U.S. regions. In particular the correlations of 

daily temperature between Minneapolis and each of the four local stations in this 

study are higher than 90%. Even though daily precipitation tends to be less spatially 

correlated, growing season precipitation (on which our precipitation options are 

based) shows a relatively high correlation close to 50% between Minneapolis and 

each of the four local stations. The result here indicates that we can hedge local 

weather risk with Minneapolis-based weather derivatives in southern Minnesota, since 

the geographic basis risk is not large. However, this approach should be applied 

cautiously to other locations, crops, or other types of weather derivatives considering 

spatial correlation of crop losses and weather variables across the locations. For 

example, Odening, Musshoff, and Xu (2007) show the geographical basis risk is 

significantly large based on their study with only rainfall options for hedging wheat 

production risk in Brandenburg, Germany during 1993-2005.              

 Table 6.13 and 6.14 illustrate the effect of spatial aggregation by using 

weather options evidently where we compare farm level (“Average of Farms”), 

county level (“Average of Counties”), and four-county aggregate level 

(“Aggregated”) for soybean and corn, respectively. The “Average of Farms” column 

statistics are calculated as the average of the individual 96 farm indicators in our four 

counties (24 farms for each of the four counties). The “Average of Counties” column 

statistics are calculated as the average of the individual four county indicators. The 

four-county “Aggregated” results are obtained by averaging the data across counties 

(i.e., aggregating) and then performing the analysis.  
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All risk indicators using Minneapolis-based options improve as the level of 

aggregation increases from the farm level to the four-county aggregate level. In Table 

6.13 for soybean, Sharpe ratio and VaR by using Minneapolis-based weather options 

increase remarkably from 0.803 to 1.506 and from -$27.11 to $35.39, respectively, as 

the level of spatial aggregation increases, implying an increase in hedging 

effectiveness with spatial aggregation. Certainty equivalent and risk premium are also 

improved at all levels of risk aversion as the level of spatial aggregation increases. 

Table 6.14 shows that weather options hedging effectiveness increases with the level 

of spatial aggregation for corn, which is consistent to Table 6.13 for soybean. This 

implies that reinsurers including the government could reduce idiosyncratic or 

individual farm-level yield risk by aggregating individual production exposures and 

hedging the remaining systematic weather risk by using spatially-aggregated weather 

derivatives. As a result, weather derivatives could be considered as an effective 

hedging tool by the government to reduce the social cost of crop insurance. 
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Table 6.13 Weather Options Hedging Effectiveness and Spatial Aggregation for 

Soybean 

This table compares the risk indicators (Sharpe Ratio, Value at Risk, Certainty Equivalent, Risk 
Premium) when using Local Station-based Weather Options and Minneapolis-based Weather Options at 
the farm level, county level, and multi-county level in order to show the spatial aggregation effect. 
Sharpe Ratio is calculated under the assumption of risk free rate of 0.05. Value at Risk (VaR) is 
measured at the 10% confidence interval. Certainty Equivalent (CE) and Risk Premium (RP) are 
measured at the three different levels of risk aversion (γ=0.001, 0.005, 0.009). 
 

Options Indicator 

Four Counties 

Average of Farms Average of 

Counties 

Aggregated 

Local-based 

Net Income $133.93 $134.69 - 

Sharpe Ratio 0.799 1.221 - 

VaR (10%) -$27.85 $13.43 - 

CE (γ=0.001) $125.02 $130.21 - 

CE (γ=0.005) $91.70 $112.29 - 

CE (γ=0.009) $59.44 $94.36 - 

RP (γ=0.001) $8.92 $4.48 - 

RP (γ=0.005) $42.23 $22.40 - 

RP (γ=0.009) $74.50 $40.33 - 

Minneapolis-

based 

Net Income $134.34 $135.09 $130.95 

Sharpe Ratio 0.803 1.229 1.506 

VaR (10%) -$27.11 $14.11 $35.39 

CE (γ=0.001) $125.46 $130.65 $128.17 

CE (γ=0.005) $92.28 $112.87 $117.02 

CE (γ=0.009) $60.15 $95.11 $105.82 

RP (γ=0.001) $8.88 $4.44 $2.78 

RP (γ=0.005) $42.06 $22.22 $13.92 

RP (γ=0.009) $74.19 $39.98 $25.13 
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Table 6.14 Weather Options Hedging Effectiveness and Spatial Aggregation for 

Corn 
 

Options Indicator 

Four Counties 

Average of Farms Average of 

Counties 

Aggregated 

Local-based 

Net Income $175.70 $165.45 - 

Sharpe Ratio 0.799 1.237 - 

VaR (10%) -$34.16 $19.46 - 

CE (γ=0.001) $160.53 $158.86 - 

CE (γ=0.005) $106.51 $132.59 - 

CE (γ=0.009) $55.37 $106.59 - 

RP (γ=0.001) $15.17 $6.59 - 

RP (γ=0.005) $69.19 $32.85 - 

RP (γ=0.009) $120.33 $58.85 - 

Minneapolis-

based 

Net Income $176.04 $165.79 $156.10 

Sharpe Ratio 0.802 1.242 1.604 

VaR (10%) -$33.65 $20.11 $51.51 

CE (γ=0.001) $160.89 $159.22 $152.69 

CE (γ=0.005) $106.94 $133.03 $138.53 

CE (γ=0.009) $55.86 $107.10 $118.30 

RP (γ=0.001) $15.15 $6.57 $3.42 

RP (γ=0.005) $69.10 $32.76 $17.57 

RP (γ=0.009) $120.18 $58.68 $37.80 
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Chapter Ⅶ 

Conclusion 

 

Summary and Implications 

 We analyze weather derivatives as a potential risk management tool for 

soybean and corn production in southern Minnesota compared with unsubsidized crop 

insurance for solving the problems of asymmetric information and systemic weather 

risk. For this purpose we price the growing degree days and precipitation options by a 

daily simulation method that is based on the estimated temperature and precipitation 

process models. Hedging cost and several risk indicators are compared between 

weather options and crop insurance in various scenarios. Based on this analysis we 

observe how weather options can be used as an effective risk hedging tool and 

whether the social cost that exists in the federal crop insurance program can be 

reduced by using weather derivatives. 

We find that the MPCI premium with no federal subsidy is much higher than 

the weather option premium at the same 100% coverage level. Main reason of the 

higher MPCI premiums compared with weather options is that MPCI premium is 

calculated at the individual farm level which reflects larger yield variability, while the 

weather option premium is calculated at the county level which removes the 

individual farmer’s yield variability. However, when we compare the weather option 

premiums with GRP premiums at the 100% coverage level with no subsidy, the gaps 

between the two premiums are much smaller. This is because both weather options 

and GRP premiums are measured at the same county level. 

Against our expectation based on the conventional wisdom and previous 

studies, geographic basis risk is not significant in hedging our local weather risk with 
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non-local CME weather options based on Minneapolis. This result is consistent to 

Woodard and Garcia (2007) for Illinois Crop Reporting District corn yields. It is 

likely due to the fact that the Midwest area including Minnesota and Illinois has 

relatively homogeneous (or less variable) weather conditions and crop yields across 

the counties compared to other U.S. regions. The result indicates that we can hedge 

local weather risk with non-local exchange market weather derivatives in southern 

Minnesota. However, it should be applied cautiously to other locations, crops, or other 

types of weather derivatives, considering spatial correlation of weather variables 

between a specific farm location and a weather index reference point.  

The hedging effectiveness of using weather options is limited at the farm 

level compared with crop insurance products. This is because weather options insure 

against adverse weather events causing damage at the county level, while crop 

insurance protects farmers against the loss of their crops directly at the farm level as 

well as at the county level. Vedenov and Barnett (2004) also suggest there is only 

limited efficacy of weather derivatives in hedging disaggregated production exposures 

mainly due to large yield variability. Thus, individual farmers will continue to use 

crop insurance with government subsidy for their production risk management. 

However, we observe that the hedging effectiveness of using weather options 

increases as the level of spatial aggregation increases from farm level to county level 

to multi-county aggregate level. Woodard and Garcia (2008) confirm that better 

weather hedging opportunities may exist at higher levels of spatial aggregation. This 

implies that the government as a reinsurer can reduce idiosyncratic yield risk by 

aggregating the individual risk exposures at the county or higher level, and hedge the 

remaining systemic weather risk by purchasing weather options in the financial 

market. As a result, weather derivatives could be used by the government as a hedging 
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tool to reduce the social cost of the federal crop insurance program, since the 

government currently does not hedge their risk exposures in the program.  

 

Suggestions for Further Research 

 First of all, this study can be extended to more variable crops grown in 

regions such as southern or western states to observe stronger hedging effectiveness 

of using weather derivatives compared with crop insurance. We focus on soybean and 

corn grown in southern Minnesota in this study. Southern Minnesota, which is located 

in the Corn Belt, is the relatively homogeneous and highly productive region 

compared with western or southern states in the United States. Weather conditions are 

relatively less variable so that production losses for corn and soybean have 

historically occurred only infrequently in southern Minnesota. Thus, the hedging 

effectiveness of using weather derivatives would be smaller in our locations than in 

the non-homogeneous regions. If we compare the hedging effectiveness of using 

weather derivatives and crop insurance for more variable and weather sensitive crops 

(such as Texas cotton or Kansas wheat), the hedging effectiveness of using weather 

derivatives will be greater for the crops in the non-homogeneous regions. 

 Second, to calculate the price of weather options we use the risk-neutral 

valuation method, which discounts the payoffs of the options at expiry by the risk free 

rate, under the assumption that the market price of weather risk is zero in this study. If 

there is no correlation between the weather index and an aggregate market index, then 

the market price of weather risk must be zero. In our four locations in southern 

Minnesota where weather indices are relatively less variable compared with many 

other states during the most years, we find the correlations between the weather index 

and an aggregate market index are not statistically significant except Chisago county. 
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However, in other regions where weather conditions are highly variable, we need to 

consider the market price of weather risk to calculate weather option premiums more 

accurately. Two different pricing models can be applied to reflect the market price of 

weather risk: the equilibrium asset pricing model (Cao and Wei, 2004; Richard, 

Manfredo, and Sanders, 2004) and the Martingale method (Huang, Shiu, and Lin, 

2008). 

 Finally, we can consider different approaches or assumptions in estimating 

yield response models to improve the design of risk management using weather 

derivatives. For example, the design and pricing of weather derivatives up to now is 

strongly based on an assumption that the dependence structure between crop yields 

and weather variables remains unchanged over time. However, there could be 

temporal changes in the weather yield relationship. Bokusheva (2011) employs two 

different approaches, the dynamic regression analysis2 and the copula approach3, to 

measure dependence in joint distribution of yield and weather variables. He suggests 

that temporal changes might become more pronounced in next decades due to both 

climate change and more rapid technological adjustments. Thus, future research could 

consider a dynamic analysis in estimating yield response models to determine optimal 

pricing and hedging ratio of weather derivatives. 

 

 

                                             
2 Bokusheva (2011) presents the model specification with the effect of time on the parameters 
measuring the sensitivity of the farms’ yields to a particular weather variable. Three alternative 
functional forms are employed: linear, logarithmic, and quadratic.   
   
3 A copula is a function that relates a joint cumulative distribution function to the distribution functions 
of the individual variables. It provides an alternative way to model joint distributions of crop yield and 
weather variables with great flexibility in terms of marginal distributions and dependence structure. 
Bokusheva concentrates on two explicit copulas – the Clayton and Gumbel copulas which are relevant 
for modeling joint distributions with asymmetric dependence structures.    
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Appendix I: Derivation of the Likelihood Function for Temperature Process 

 

Our stochastic differential equation (3.31) is composed of two parts: mean-reverting 

Brownian motion and discrete jumps. Let’s consider the mean-reverting Brownian motion 

part first: dWt = κ (Wt
m – Wt) dt + σ dz. This Brownian motion follows a normal 

distribution with mean of κ (Wt
m – Wt) and variance of σ2. We know the probability 

distribution of our normally distributed Brownian motion is give by: 
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where exp represents the exponential function. Remember the likelihood function is the 

product of the individual probabilities taken over all T observations. Then, the likelihood 

function is given by: 
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Taking the logarithm of both sides yields the log-likelihood function: 
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 Now we move to the unexpected discrete jumps in our temperature process. 

The discrete jumps occur according to a Poisson process q with average arrival rate λ 

and the jumps size φ which is distributed as ln(φ) ~ N (θ, δ2). We know the probability 

distribution of our Poisson process is given by: 
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where n is the number of jumps from 0 to N. The likelihood function is then given by: 
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Thus, the log-likelihood function of the Poisson process is: 
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Combing (A.3) and (A.6) yields the log-likelihood function: 

 
 




T

t

N

n

t
m

tt
n WWdW

n

T
TWL

1 0
2

2

2
)]

)σ(2

))(κ(
exp(

σ

1

!

λ
ln[)π2ln(

2
λ)(ln .  (A.7) 

Finally, we include the mean and variance of the jump size, θ and δ2, into (A.7) when 

the discrete jumps occur: 
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Appendix II-1: Detrended County-Level Soybean Yield Series 

Year (t) 
Luverne Morris Preston Rush City 

Harvested Planted Harvested Planted Harvested Planted Harvested Planted 

1972 32.0 31.9 17.0 16.9 29.0 28.6 20.0 19.1 

1973 27.5 27.5 25.4 25.2 26.3 24.8 21.5 21.2 

1974 22.6 22.6 17.7 17.6 18.6 18.0 10.1 9.4 

1975 32.1 32.0 21.6 21.5 22.6 22.5 15.0 14.3 

1976 18.0 17.8 9.9 9.7 21.8 21.7 12.5 10.8 

1977 34.5 33.5 23.3 23.1 32.1 31.7 19.2 19.0 

1978 34.3 34.2 25.3 25.1 30.0 29.8 19.0 18.8 

1979 30.9 30.8 24.4 24.1 26.3 26.2 21.7 21.3 

1980 31.7 31.6 23.9 23.8 25.4 25.2 21.8 21.7 

1981 31.6 31.3 27.1 27.0 27.7 27.6 19.2 18.7 

1982 29.6 28.4 26.6 26.2 24.8 24.3 18.1 17.4 

1983 29.0 29.0 26.1 25.9 25.0 25.0 21.0 20.6 

1984 28.6 28.3 26.4 26.2 23.8 23.6 19.0 18.8 

1985 27.3 27.1 22.1 21.4 20.3 20.0 19.5 19.2 

1986 24.5 24.3 23.9 23.9 25.9 25.7 23.0 22.6 

1987 31.2 30.8 24.3 24.0 30.5 30.2 24.1 24.1 

1988 28.4 28.2 11.6 11.2 19.2 18.8 16.3 15.6 

1989 30.3 30.1 25.6 25.3 28.0 27.9 18.2 18.1 

1990 28.4 28.0 23.7 23.2 27.5 25.9 20.1 19.1 

1991 28.0 27.5 27.5 26.9 29.1 28.5 19.8 19.0 

1992 20.3 19.5 17.6 17.5 20.6 20.2 12.5 11.6 

1993 7.9 7.2 15.3 13.3 18.3 18.2 13.0 12.6 

1994 31.1 31.1 21.6 20.7 28.3 28.0 18.9 18.8 

1995 28.6 28.0 25.1 24.7 30.4 29.9 18.6 17.9 

1996 28.9 28.6 21.6 21.2 25.5 25.2 13.8 13.6 

1997 27.2 27.1 24.4 24.3 28.2 28.1 19.4 19.1 

1998 30.2 30.0 24.6 24.2 28.4 27.7 22.9 22.7 

1999 32.5 32.1 24.9 24.6 27.4 26.7 22.0 21.8 

2000 30.8 30.3 25.1 24.7 26.9 26.5 18.6 18.2 

2001 27.8 27.6 23.0 22.7 19.6 19.4 17.7 17.6 

2002 28.1 27.9 25.0 24.8 29.0 28.8 25.4 25.1 

2003 24.6 24.5 19.5 19.4 18.5 18.4 14.3 14.2 

2004 25.6 25.5 18.7 18.6 22.7 22.5 14.7 14.5 

2005 32.7 32.3 22.9 22.5 31.1 30.8 20.3 20.1 

2006 32.3 31.9 21.5 21.2 27.4 27.1 21.8 21.5 

2007 30.8 30.6 22.3 22.1 26.5 26.4 15.3 15.2 

2008 28.0 27.7 20.3 20.0 22.1 21.8 15.4 15.2 

Mean 28.3 28.0 22.3 22.0 25.5 25.2 18.5 18.1 

S.D. 4.95 4.98 4.09 4.16 3.91 3.86 3.56 3.70 
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Appendix II-2: Detrended County-Level Corn Yield Series 

Year (t) 
Luverne Morris Preston Rush City 

Harvested Planted Harvested Planted Harvested Planted Harvested Planted 

1972 96.0 95.5 69.0 68.2 102.0 101.3 86.0 84.9 

1973 86.9 86.5 84.5 83.9 103.3 102.6 83.2 82.0 

1974 34.0 33.7 45.1 44.5 66.9 66.2 40.6 38.9 

1975 66.1 65.1 66.9 66.4 82.9 82.4 58.4 56.0 

1976 34.6 33.7 29.4 28.8 75.6 74.6 42.0 41.2 

1977 89.9 88.9 78.6 77.1 102.6 101.6 85.9 85.0 

1978 89.3 89.0 79.2 78.3 105.3 104.9 68.4 67.3 

1979 85.5 85.0 67.3 67.3 94.9 94.4 71.1 70.2 

1980 79.3 78.7 72.0 71.6 86.3 85.2 74.0 73.4 

1981 82.4 82.2 79.2 79.2 104.7 103.2 68.5 67.7 

1982 78.8 77.9 71.3 70.5 85.1 83.9 68.9 68.5 

1983 52.4 51.9 58.3 58.3 80.3 78.1 68.5 67.9 

1984 73.4 73.2 70.0 69.4 88.6 88.1 71.3 70.7 

1985 75.0 73.6 64.2 62.5 80.2 78.7 73.9 72.1 

1986 84.6 82.6 69.4 66.3 99.3 97.2 78.8 77.1 

1987 83.9 83.9 72.6 72.2 97.4 96.8 81.3 79.1 

1988 51.5 51.0 35.4 34.0 50.3 49.8 34.1 33.1 

1989 80.2 79.5 73.7 71.5 92.5 91.3 69.2 68.8 

1990 71.7 71.6 65.1 64.0 90.2 89.1 73.1 72.4 

1991 63.1 62.4 64.1 63.6 91.4 90.0 65.7 55.4 

1992 67.0 66.0 57.2 56.8 70.0 69.1 60.5 57.6 

1993 35.4 25.8 35.7 25.1 51.3 50.8 37.0 35.6 

1994 80.5 78.7 70.4 70.1 92.6 90.8 71.5 69.5 

1995 60.3 59.1 52.1 51.4 77.3 76.4 67.2 59.7 

1996 66.7 66.1 61.5 60.7 77.3 76.8 62.9 62.4 

1997 65.4 64.9 69.0 68.4 90.1 89.0 71.7 69.8 

1998 77.6 77.2 76.3 75.7 100.1 98.7 82.8 82.1 

1999 77.8 77.0 71.9 71.5 92.6 91.6 74.1 72.7 

2000 78.9 78.4 72.9 72.5 86.6 85.7 67.6 65.9 

2001 63.7 63.2 62.0 61.0 74.5 73.6 64.2 63.0 

2002 69.9 69.1 73.3 72.5 91.4 90.2 83.3 82.2 

2003 69.2 68.4 67.1 66.6 85.1 84.5 60.1 59.6 

2004 73.6 73.5 63.4 63.3 93.2 93.2 67.6 67.3 

2005 87.0 87.0 71.5 70.7 103.3 103.2 73.7 73.1 

2006 74.8 74.6 66.6 66.1 92.3 91.6 64.8 64.2 

2007   57.8 57.1 89.5 88.9 52.1 49.5 

2008   62.3 61.1 88.8 87.5 76.6 75.4 

Mean 71.6 70.7 65.0 64.0 87.5 86.5 67.6 66.0 

S.D. 15.4 16.1 12.3 13.0 13.2 13.1 12.9 13.1 
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Appendix II-3: Calibrated County-Level Soybean Yields per Harvested Acre 

Year 

(t) 

Luverne Morris Preston Rush City 

Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated 

1941 33.9 33.6 36.8 36.7 37.1 36.6 27.9 27.9 

1942 30.1 29.8 24.1 23.8 26.0 25.6 22.3 22.0 

1943 28.8 28.5 17.7 17.3 33.9 33.4 17.2 16.7 

1944 34.0 33.8 31.3 31.1 38.9 38.5 35.1 35.3 

1945 32.7 32.4 32.1 31.9 24.9 24.6 18.9 18.5 

1946 35.4 35.2 32.8 32.7 34.0 33.5 15.3 14.8 

1947 24.7 24.3 23.0 22.7 23.1 22.8 18.5 18.1 

1948 33.0 32.7 34.1 33.9 26.0 25.6 17.9 17.4 

1949 27.4 27.1 28.8 28.6 35.8 35.4 27.7 27.7 

1950 18.8 18.5 24.0 23.7 27.7 27.4 8.4 7.6 

1951 29.9 29.6 28.5 28.3 20.1 19.8 24.4 24.2 

1952 29.0 28.7 24.0 23.7 27.6 27.3 22.2 21.9 

1953 31.2 30.9 29.8 29.6 29.9 29.5 26.1 26.0 

1954 28.8 28.5 27.2 27.0 33.6 33.2 23.9 23.7 

1955 25.1 24.7 24.8 24.5 23.8 23.5 20.4 20.0 

1956 24.4 24.1 24.0 23.7 31.8 31.4 21.3 20.9 

1957 36.3 36.1 23.3 23.0 36.5 36.1 24.9 24.7 

1958 20.4 20.0 17.0 16.5 27.4 27.0 16.2 15.6 

1959 25.2 24.9 13.7 13.2 30.7 30.3 21.0 20.7 

1960 31.1 30.8 21.3 21.0 22.1 21.8 14.1 13.5 

1961 34.1 33.8 23.4 23.1 33.0 32.6 18.8 18.4 

1962 29.6 29.3 15.2 14.7 24.8 24.4 17.2 16.7 

1963 27.7 27.4 29.5 29.4 31.4 31.0 18.0 17.5 

1964 24.7 24.4 14.4 13.9 20.1 19.8 12.9 12.2 

1965 20.7 20.4 17.6 17.2 23.1 22.8 10.3 9.6 

1966 28.2 27.9 20.6 20.2 26.0 25.7 18.0 17.5 

1967 23.2 22.9 15.6 15.2 21.0 20.7 15.4 14.9 

1968 19.5 19.1 17.5 17.0 24.9 24.6 17.3 16.8 

1969 31.8 31.5 19.2 18.8 28.7 28.3 10.6 9.8 

1970 26.0 25.7 17.7 17.3 31.2 30.8 21.8 21.5 

1971 23.4 23.1 18.4 18.0 24.5 24.2 15.3 14.7 

1972 32.0 31.7 17.0 16.6 29.0 28.6 20.0 19.6 

1973 27.5 27.2 25.5 25.2 26.5 26.2 21.6 21.3 

1974 22.6 22.3 17.8 17.4 18.8 18.5 10.1 9.4 

1975 32.1 31.8 21.8 21.5 23.0 22.7 15.2 14.6 

1976 17.9 17.6 10.1 9.5 22.3 22.0 12.7 12.0 

1977 34.4 34.2 23.6 23.3 32.9 32.5 19.5 19.1 

1978 34.3 34.0 25.7 25.4 30.9 30.6 19.4 19.0 

1979 30.9 30.6 24.9 24.6 27.3 27.0 22.1 21.9 
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Appendix II-3: Continued 

Year 

(t) 

Luverne Morris Preston Rush City 

Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated 

1980 31.6 31.4 24.5 24.2 26.5 26.1 22.3 22.0 

1981 31.5 31.3 27.8 27.6 29.0 28.6 19.7 19.3 

1982 29.5 29.2 27.3 27.1 26.0 25.7 18.6 18.1 

1983 29.0 28.7 26.8 26.6 26.4 26.1 21.6 21.3 

1984 28.5 28.2 27.2 27.0 25.2 24.9 19.7 19.3 

1985 27.3 27.0 22.8 22.5 21.6 21.3 20.2 19.8 

1986 24.5 24.2 24.8 24.5 27.6 27.2 23.9 23.6 

1987 31.2 30.9 25.1 24.9 32.6 32.2 25.1 24.9 

1988 28.4 28.1 12.0 11.5 20.7 20.4 17.0 16.5 

1989 30.3 30.0 26.6 26.3 30.2 29.8 19.0 18.6 

1990 28.3 28.0 24.7 24.4 29.7 29.4 21.0 20.7 

1991 28.0 27.6 28.6 28.4 31.5 31.1 20.7 20.4 

1992 20.3 20.0 18.3 17.9 22.4 22.1 13.2 12.5 

1993 7.9 7.4 16.0 15.6 20.0 19.7 13.7 13.1 

1994 31.1 30.8 22.6 22.3 30.9 30.6 19.9 19.5 

1995 28.6 28.3 26.4 26.1 33.3 32.9 19.7 19.3 

1996 28.9 28.6 22.7 22.3 28.1 27.7 14.6 14.0 

1997 27.2 26.8 25.6 25.4 31.1 30.7 20.5 20.2 

1998 30.2 29.9 25.9 25.7 31.3 31.0 24.3 24.1 

1999 32.4 32.2 26.2 26.0 30.3 29.9 23.4 23.1 

2000 30.7 30.4 26.5 26.3 29.9 29.5 19.8 19.4 

2001 27.8 27.5 24.3 24.0 21.8 21.6 18.9 18.5 

2002 28.1 27.8 26.4 26.2 32.4 32.0 27.1 27.0 

2003 24.6 24.3 20.6 20.3 20.7 20.4 15.3 14.7 

2004 25.5 25.2 19.8 19.4 25.4 25.1 15.7 15.2 

2005 32.6 32.4 24.3 24.0 34.9 34.5 21.8 21.5 

2006 32.3 32.0 22.8 22.5 30.9 30.5 23.4 23.1 

2007 30.7 30.4 23.7 23.4 29.9 29.5 16.4 15.9 

2008 28.0 27.7 21.6 21.2 24.9 24.6 16.6 16.1 

Mean 28.2 27.9 23.3 23.0 27.9 27.5 19.3 18.9 

S.D. 4.84 4.88 5.27 5.36 4.76 4.71 4.69 4.88 
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Appendix II-4: Calibrated County-Level Corn Yields per Harvested Acre 

Year 

(t) 

Luverne Morris Preston Rush City 

Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated 

1941 162.2 164.7 246.0 254.9 126.1 125.0 90.0 88.8 

1942 169.6 172.5 175.7 180.3 129.8 128.7 79.7 78.3 

1943 150.4 152.4 140.6 143.2 130.6 129.4 72.3 70.8 

1944 154.6 156.8 153.6 157.0 119.3 118.3 75.8 74.3 

1945 100.0 99.7 124.0 125.5 93.2 92.3 59.2 57.4 

1946 112.1 112.4 112.9 113.8 104.2 103.2 57.2 55.3 

1947 88.4 87.6 91.5 91.0 93.5 92.6 68.1 66.5 

1948 122.9 123.7 132.5 134.5 105.6 104.6 85.5 84.2 

1949 88.0 87.1 86.4 85.7 93.7 92.8 77.6 76.2 

1950 69.0 67.3 68.5 66.7 82.8 81.9 41.8 39.6 

1951 75.7 74.3 68.9 67.1 85.1 84.2 58.4 56.6 

1952 85.6 84.7 93.0 92.6 99.1 98.2 78.8 77.4 

1953 89.2 88.4 81.8 80.7 87.5 86.6 73.5 72.0 

1954 76.7 75.4 75.6 74.1 95.8 94.8 68.6 66.9 

1955 77.0 75.8 81.0 79.9 72.6 71.8 69.6 68.0 

1956 74.1 72.7 77.2 75.9 101.8 100.8 84.8 83.5 

1957 82.2 81.2 70.4 68.6 97.3 96.3 81.3 79.9 

1958 59.9 57.8 68.9 67.1 86.0 85.1 77.9 76.5 

1959 63.6 61.7 50.7 47.8 91.7 90.8 72.1 70.6 

1960 69.9 68.3 72.3 70.7 79.9 79.0 61.5 59.7 

1961 78.5 77.2 75.3 73.8 98.5 97.5 73.8 72.3 

1962 76.0 74.7 56.1 53.5 88.3 87.4 80.8 79.4 

1963 77.5 76.3 72.6 70.9 100.8 99.9 74.2 72.7 

1964 77.7 76.5 45.9 42.6 58.8 58.0 57.4 55.5 

1965 70.7 69.2 55.4 52.8 87.7 86.8 67.7 66.0 

1966 74.6 73.2 71.5 69.9 101.7 100.7 86.5 85.2 

1967 76.0 74.7 56.6 54.0 80.3 79.5 74.8 73.3 

1968 77.3 76.0 66.1 64.1 89.4 88.5 76.6 75.1 

1969 94.7 94.2 67.4 65.5 96.0 95.0 66.7 65.0 

1970 72.4 70.9 71.9 70.2 99.1 98.2 84.1 82.7 

1971 77.8 76.6 71.9 70.3 97.0 96.1 80.5 79.1 

1972 96.0 95.6 69.0 67.2 102.0 101.0 86.0 84.7 

1973 87.9 87.1 85.7 84.9 103.8 102.9 83.5 82.1 

1974 34.8 31.5 46.4 43.2 67.5 66.7 40.9 38.7 

1975 68.3 66.6 69.7 67.9 84.1 83.2 59.0 57.1 

1976 36.1 32.9 31.0 26.9 77.0 76.2 42.6 40.4 

1977 94.9 94.4 83.7 82.8 104.9 103.9 87.4 86.1 

1978 95.0 94.5 85.3 84.4 108.1 107.1 69.8 68.1 

1979 91.8 91.1 73.2 71.7 97.8 96.8 72.7 71.1 
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Appendix II-4: Continued 

Year 

(t) 

Luverne Morris Preston Rush City 

Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated Uncalibrated Calibrated 

1980 85.7 84.8 79.0 77.8 89.2 88.3 75.9 74.4 

1981 89.8 89.1 87.8 87.1 108.7 107.7 70.4 68.8 

1982 86.5 85.6 79.6 78.4 88.6 87.7 71.0 69.4 

1983 57.9 55.7 65.6 63.6 83.8 83.0 70.8 69.2 

1984 81.7 80.7 79.4 78.2 92.9 91.9 73.8 72.3 

1985 84.1 83.1 73.4 71.8 84.3 83.4 76.8 75.3 

1986 95.4 94.9 79.9 78.8 104.6 103.6 82.0 80.6 

1987 95.2 94.7 84.1 83.2 103.0 102.0 84.8 83.4 

1988 58.7 56.6 41.3 37.7 53.3 52.6 35.6 33.3 

1989 91.9 91.3 86.5 85.7 98.3 97.4 72.5 70.9 

1990 82.7 81.7 76.8 75.5 96.1 95.2 76.7 75.3 

1991 73.1 71.6 76.1 74.7 97.5 96.6 69.0 67.4 

1992 78.0 76.8 68.3 66.4 74.9 74.1 63.7 62.0 

1993 41.4 38.5 42.8 39.4 55.0 54.3 39.0 36.8 

1994 94.6 94.1 84.8 84.0 99.6 98.6 75.6 74.1 

1995 71.2 69.6 63.0 60.8 83.3 82.4 71.1 69.5 

1996 79.0 77.8 74.8 73.3 83.4 82.6 66.7 65.0 

1997 77.9 76.6 84.3 83.4 97.5 96.5 76.2 74.7 

1998 92.8 92.2 93.6 93.3 108.5 107.5 88.1 86.9 

1999 93.3 92.7 88.7 88.0 100.6 99.7 79.0 77.6 

2000 95.0 94.5 90.1 89.6 94.2 93.3 72.1 70.5 

2001 77.0 75.7 77.0 75.6 81.2 80.3 68.6 67.0 

2002 84.7 83.8 91.3 90.9 99.8 98.9 89.1 87.9 

2003 84.2 83.2 84.0 83.1 93.1 92.2 64.5 62.7 

2004 89.8 89.1 79.6 78.4 102.2 101.2 72.6 71.0 

2005 106.6 106.6 90.1 89.5 113.4 112.3 79.2 77.8 

2006 91.9 91.3 84.1 83.2 101.4 100.5 69.7 68.1 

2007 87.4 86.6 73.2 71.6 98.5 97.5 56.1 54.2 

2008 98.2 97.9 79.3 78.1 97.9 96.9 82.6 81.3 

Mean 86.1 85.2 82.1 81.1 94.2 93.2 71.6 70.1 

S.D. 23.9 25.0 31.1 33.0 14.6 14.6 12.2 12.4 
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Appendix III: Time Trending Variables 

 

Year t1  t2 t3  

1941  0  0  0  1980 18 13  8 

1942  1  0  0  1981 18 13  9 

1943  2  0  0  1982 18 13 10 

1944  3  0  0  1983 18 13 11 

1945  4  0  0  1984 18 13 12 

1946  5  0  0  1985 18 13 13 

1947  6  0  0  1986 18 13 14 

1948  7  0  0  1987 18 13 15 

1949  8  0  0  1988 18 13 16 

1950  9  0  0  1989 18 13 17 

1951 10  0  0  1990 18 13 18 

1952 11  0  0  1991 18 13 19 

1953 12  0  0  1992 18 13 20 

1954 13  0  0  1993 18 13 21 

1955 14  0  0  1994 18 13 22 

1956 15  0  0  1995 18 13 23 

1957 16  0  0  1996 18 13 24 

1958 17  0  0  1997 18 13 25 

1959 18  0  0  1998 18 13 26 

1960 18  1  0  1999 18 13 27 

1961 18  2  0  2000 18 13 28 

1962 18  3  0  2001 18 13 29 

1963 18  4  0  2002 18 13 30 

1964 18  5  0  2003 18 13 31 

1965 18  6  0  2004 18 13 32 

1966 18  7  0  2005 18 13 33 

1967 18  8  0  2006 18 13 34 

1968 18  9  0  2007 18 13 35 

1969 18 10  0  2008 18 13 36 

1970 18 11  0      

1971 18 12  0      

1972 18 13  0      

1973 18 13  1      

1974 18 13  2      

1975 18 13  3      

1976 18 13  4      

1977 18 13  5      

1978 18 13  6      

1979 18 13  7      
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Appendix IV: Comparison of Hedging Effectiveness of Crop Insurance and 
Weather Options for Corn 
 

This table compares the risk indicators (Sharpe Ratio, Value at Risk, Certainty Equivalent, Risk 
Premium) when using alternative hedging strategies (No Hedge, MPCI with No Subsidy, MPCI with 
Subsidy, GRP with No Subsidy, GRP with Subsidy, Local Station-based Weather Options, and 
Minneapolis-based Weather Options) at the farm level. Sharpe Ratio is calculated under the assumption 
of risk free rate of 0.05. Value at Risk (VaR) is measured at the 10% confidence interval. Certainty 
Equivalent (CE) and Risk Premium (RP) are measured at the three different levels of risk aversion 
(γ=0.001, 0.005, 0.009). 

 

Location Indicator 

Farm Level (Average of Farms) 

No 

Hedge 

MPCI  

(No Sub.) 

MPCI 

(Subsidy) 

GRP  

(No Sub.) 

GRP 

(Subsidy) 

Option 

(Local) 

Option 

(Mpls.) 

Luverne 

Net Income $248.52 $229.48 $242.21 $232.08 $249.32 $248.47 $249.93 

Sharpe Ratio 1.259 1.290 1.367 1.283 1.387 1.273 1.281 

VaR (10%) $49.75 $72.22 $84.95 $63.22 $80.46 $52.56 $54.02 

CE(γ=0.001) $234.63 $218.87 $231.60 $221.00 $238.24 $234.90 $236.36 

CE(γ=0.005) $186.55 $187.42 $200.15 $187.29 $204.53 $188.13 $189.59 

CE(γ=0.009) $142.43 $165.78 $178.51 $163.28 $180.52 $145.33 $146.79 

RP(γ=0.001) $13.89 $10.61 $10.61 $11.09 $11.09 $13.57 $13.57 

RP(γ=0.005) $61.97 $42.06 $42.06 $44.79 $44.79 $60.34 $60.34 

RP(γ=0.009) $106.09 $63.70 $63.70 $68.80 $68.80 $103.14 $103.14 

Morris 

Net Income $180.96 $165.54 $180.80 $180.61 $195.59 $180.99 $179.95 

Sharpe Ratio 0.669 0.673 0.732 0.727 0.783 0.673 0.670 

VaR (10%) -$64.00 -$6.08 $9.17 $3.82 $18.80 -$61.51 -$62.55 

CE(γ=0.001) $160.96 $151.81 $167.06 $166.68 $181.66 $161.33 $160.30 

CE(γ=0.005) $89.10 $111.34 $126.59 $125.25 $140.23 $90.91 $89.88 

CE(γ=0.009) $17.65 $85.39 $100.64 $98.38 $113.36 $21.06 $20.02 

RP(γ=0.001) $19.99 $13.73 $13.73 $13.92 $13.92 $19.65 $19.65 

RP(γ=0.005) $91.86 $54.21 $54.21 $55.35 $55.35 $90.07 $90.07 

RP(γ=0.009) $163.30 $80.15 $80.15 $82.23 $82.23 $159.93 $159.93 
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Appendix IV – Continued 
 

Location Indicator 

Farm Level (Average of Farms) 

No 

Hedge 

MPCI  

(No Sub.) 

MPCI 

(Subsidy) 

GRP  

(No Sub.) 

GRP 

(Subsidy) 

Option 

(Local) 

Option 

(Mpls.) 

Preston 

Net Income $176.31 $154.05 $168.45 $182.01 $191.89 $176.32 $176.58 

Sharpe Ratio 0.710 0.644 0.720 0.823 0.877 0.711 0.714 

VaR (10%) -$36.96 -$15.68 -$1.27 $20.01 $29.89 -$36.38 -$35.55 

CE(γ=0.001) $160.79 $142.27 $156.68 $170.77 $180.64 $160.85 $161.17 

CE(γ=0.005) $106.18 $106.60 $121.01 $136.63 $146.50 $106.47 $107.03 

CE(γ=0.009) $57.31 $82.15 $96.55 $112.90 $122.77 $57.82 $58.60 

RP(γ=0.001) $15.53 $11.77 $11.77 $11.24 $11.24 $15.47 $15.41 

RP(γ=0.005) $70.14 $47.44 $47.44 $45.39 $45.39 $69.86 $69.55 

RP(γ=0.009) $119.00 $71.90 $71.90 $69.11 $69.11 $118.50 $117.98 

Rush 

City 

Net Income $97.01 $89.77 $105.41 $104.20 $115.90 $97.01 $97.70 

Sharpe Ratio 0.538 0.595 0.706 0.641 0.720 0.539 0.543 

VaR (10%) -$91.65 -$15.13 $0.51 -$21.49 -$9.79 -$91.32 -$90.52 

CE(γ=0.001) $85.00 $83.18 $98.82 $96.80 $108.50 $85.04 $85.74 

CE(γ=0.005) $40.36 $63.19 $78.83 $73.63 $85.32 $40.53 $41.26 

CE(γ=0.009) -$2.95 $49.50 $65.14 $57.11 $68.81 -$2.73 -$1.97 

RP(γ=0.001) $12.01 $6.58 $6.58 $7.40 $7.40 $11.97 $11.96 

RP(γ=0.005) $56.65 $26.58 $26.58 $30.58 $30.58 $56.48 $56.44 

RP(γ=0.009) $99.96 $40.27 $40.27 $47.09 $47.09 $99.75 $99.66 

 

 

 

 

 

 

 

 


