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Abstract

Liquid bridges with moving contact lines are found in a variety of settings, such as capillary

feeders and high-speed printing processes. Despite this relevance, studies on liquid bridges

often assume that the contact lines remain pinned in place during stretching. While this

may be the case for some applications, contact line motion is desirable in printing processes

so that the amount of liquid transferred can be maximized. In this thesis we study sev-

eral model problems to improve our understanding of how moving contact lines alter the

dynamics of liquid bridges.

We use the finite element method to study the stretching of a liquid bridge between

either two flat plates or a flat plate and a cavity. For axisymmetric bridges we find that

while the wettability of the two surfaces is a key factor in controlling liquid transfer between

two flat plates, the presence of a cavity leads to fundamentally different bridge dynamics.

This is due to the pinning of the contact line on the cavity wall, which leads to a decrease in

the amount of liquid transferred to the flat plate. We find that the presence of inertia aids

in cavity emptying by forcing the interface further into the cavity. However, this increase

in emptying can be offset by an increased tendency for the production of satellite drops as

the flat plate is made more wettable.

To study non-axisymmetric flows we solve the Navier-Stokes equations in three dimen-

sions. We find that when the stretching motion is asymmetric the liquid remains evenly

distributed after breakup, so long as the two plates are not accelerating relative to each

other. If the bridge shape is not initially cylindrical we find that the ability of the bridge

to maintain its initial shape after breakup depends on the friction between the contact line

and the solid.

Finally, we use flow visualization to observe the stretching of liquid bridges both with

and without small air bubbles. We find that while the breakup of wetting fluids between

two identical surfaces is symmetric about the bridge midpoint, contact line pinning breaks

this symmetry at slow stretching speeds for nonwetting fluids. We exploit this observation

to force the bubbles selectively toward the least hydrophillic plate confining the bridge.
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CHAPTER 1

Introduction

It is a rare occurrence to find a commercial product that has not, in some way, been in-

volved in a printing or coating process. Clothing, scratch-resistant glass, circuit boards,

newspapers, photographic film, and non-stick cookware are all examples of printed and/or

coated products. Coating is often defined as the continuous displacement of a gas at a solid

surface by a liquid (Scriven, 2005). Our understanding of coating flows has advanced sig-

nificantly over the past few decades, and there are now several review articles and books on

the subject (Cohen and Gutoff, 1992; Kistler and Schweizer, 1997; Weinstein and Ruschak,

2004; Scriven, 2005). In contrast to coating, printing can be defined as the discrete dis-

placement of a gas at a solid by a liquid. This seemingly subtle difference between the two

techniques leads to fundamental differences in the fluid mechanics governing each process.

In coating, for example, a steady, two-dimensional flow is desired so that long production

runs of uniform product can be maintained. In printing, however, the reproduction of a

discrete pattern means that the flow will be inherently transient and three-dimensional,

significantly complicating both experimental and theoretical analyses. Current printing

processes are able to produce pattern resolutions below the scale detectable by the human

eye (∼ 50 µm when viewing at ∼ 10 cm, see Clark, 2011), and even our home printers

can produce vivid, well-resolved images. However, advances in the solution processing of

electrically conducting materials has made the use of traditional printing processes feasi-

ble for the large-scale manufacture of electronic devices, presenting a market of nearly $3

billion in 2008 (Markets and Markets, 2011). This requires the production of features as

small as 100 nm (Gamota et al., 2004), which represents a significant increase in resolution

from current printing technology. To achieve such high resolutions requires not just our

current technical know-how for each printing operation, but a fundamental understanding

of the physical mechanisms governing printing. In particular, the transfer of liquid from one

surface to another is a key stage in any printing process which remains poorly understood.

The goal of this thesis is to improve our understanding of the mechanisms through which

this transfer occurs, with a particular emphasis on gravure printing.

1
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1.1 Industrial printing processes

We begin by summarizing five of the most promising techniques for the large-scale printing of

organic electronics (Michel et al., 2001). For the interested reader, Krebs (2009) has written

an excellent review on techniques for solution processing of polymer solar cells specifically,

which covers most of the techniques discussed here. The Graphic Arts Technical Foundation

(GATF) also provides very good technical primers on several of these techniques, including

gravure (Kasunich, 1998), lithography (Wilson, 2005), flexography (Crouch, 1998), and

screen printing (Ingram, 1999).

1.1.1 Ink-jet printing

Ink-jet printing is likely the technique that the average person is the most familiar with,

given its ubiquity at home and in the workplace. In ink-jet printing, liquid is ejected from

a nozzle in discrete droplets that eventually land on a substrate. The substrate and/or the

nozzle are displaced so that the drops land in different locations, creating the desired pattern

(figure 1.1). While a personal printer often has only 4 nozzles, one for black and three for

color, an industrial ink-jet printer may have more than one hundred nozzles (Creagh and

McDonald, 2003).

There are several pumping mechanisms used to produce the liquid drop, but the two

most common are thermal and piezoelectric. In thermal (or bubble) jet printing, a resistor

is used to heat a small piece of fluid, causing the formation of a bubble that forces ink

out of the nozzle as the bubble expands. Once the pressure in the nozzle is large enough

the bubble breaks, resulting in a vacuum that pulls more ink in from a reservoir, allowing

the process to be repeated indefinitely. The rate of drop production is thus limited by the

ability to expand and collapse this vapor bubble. In piezoelectric printing, a small voltage

is applied to a piezoelectric crystal, causing it to oscillate. This oscillation produces a drop

production cascade similar to the one in thermal ink-jet printing, though here the rate of

drop production is limited by the material properties of the crystal (Gamota et al., 2004).

The primary advantage of ink-jet is that it can be easily adjusted to produce different

patterns by simply changing the profile of pressure actuation within the nozzle, along with

the location of the nozzle relative to the substrate. This allows drops to be produced only

when they are required, so that ink-jet is sometimes called a drop-on-demand technique.

For applications that do not require a large number of copies, this adaptability is a distinct

advantage over the other printing techniques discussed in this chapter, which require a phys-

ical or chemical image to produce a pattern. Because the size of the drop and the location

of the nozzle can be precisely controlled, ink-jet printing is able to produce high-resolution

images. However, high printing speeds cannot be attained because the liquid is applied

drop by drop, instead of continuously as in gravure or lithographic printing. Additionally,

if drop formation is not precisely controlled it is possible to produce secondary drops known



1.1 Industrial printing processes 3

Figure 1.1: Schematic of an ink jet printing apparatus

as satellites, or even continuous jets of ink, that can damage the final pattern resolution

(Yildirim and Basaran, 2006). Finally, ink-jet printing nozzles can become clogged, leading

to defects in the final pattern. Despite this, ink-jet is considered a prime candidate for

printing electronics, and it has already been used to print transistors (Sirringhaus et al.,

2000), light emitting diodes (LEDs, see Bharathan and Yang, 1998; Shimoda et al., 2003)

and DNA microarrays (Blanchard et al., 1996; Hughes et al., 2001).

1.1.2 Screen printing

Screen printing is also a technique many of us are familiar with, often from silk-screening in

an art class. However, this seemingly simple technique can be scaled up to produce prints

2 − 3 m wide, and is already used to print circuit boards (Gamota et al., 2004).

The principle of operation for screen printing is quite simple, and is depicted graphically

in Figure 1.2. A screen, which is a matrix of regularly woven fibres, is first coated in

a photosensitive polymer. An area of the screen is blocked off, and the entire screen is

exposed to UV light. This cures the polymer in the exposed areas of the screen, allowing

the unexposed polymer to be rinsed off while leaving a gap in the screen through which

liquid can be passed (see the inset picture in Figure 1.2). A substrate is then brought

under the mesh, and ink is scraped across the top of the mesh using a squeegee. Pressure

is applied to ensure that ink seeps through the fibres, and the ink is transferred onto the

substrate (Gamota et al., 2004).

Because the screen is flexible and the squeegee is able to apply additional pressure,

this method can be used with high viscosity inks (up to 50 poise), which helps the ink to

retain its shape after printing. This is important for inks with high solids loadings, where

the viscosity may be too high for the other printing techniques discussed in this chapter.
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Figure 1.2: Schematic of a screen printing apparatus

Screen printing also allows for the production of very thick coats because many passes with

the squeegee can be made, while the substrate is successively lowered to leave room for

each new layer of ink (Gamota et al., 2004). This would be difficult to achieve in a roll

printing technique such as gravure, where multiple copies of the same roll would be required

to produce such a thick coating.

Because of its simplicity, screen printing has been widely used on a lab-scale to print

components for devices such as transistors (Bao et al., 1997), organic LEDs (OLEDs, see

Pardo et al., 2000; Birnstock et al., 2001), solar cells (Durr et al., 2005), and motion sensors

(Sekitani et al., 2007). However, screen printing has the lowest resolution of the methods

presented in this section (see table 1.1) as well as a low printing speed compared to other

roll-to-roll techniques.

1.1.3 Gravure printing

First developed in England in 1784, gravure has become one of the most widely used printing

methods in the world. Gravure is commonly employed to print materials at high volumes,

such as magazines/catalogues, stamps and labels. Additionally, the high resolutions possible

with gravure have made it a method of choice in the graphics arts industry (Kasunich, 1998).

While we briefly discuss the basics of gravure here, we review it in more depth in section

1.2 because of its importance to this thesis.

In its simplest form gravure involves four components (see figure 1.3). The gravure roll

is a chrome-plated cylinder that has been engraved with a large number of small cavities or

grooves, some examples of which are shown in Figure 1.4. The cavities are filled with liquid

from a pool beneath the gravure roll, and any excess fluid is wiped off by a doctor blade.

This ideally leaves the area between the cavities (the lands) dry, and allows the amount

of fluid that is printed to be controlled by the cavity volume. A substrate is then pressed

against the gravure roll, often with a rubber backing roll to apply additional pressure and

ensure good contact between the substrate and the cavities (Kasunich, 1998). As the web

and roll are separated, a liquid bridge forms which is stretched and broken, pulling liquid

out of the cavities and onto the web. However, liquid transfer is often incomplete, which
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Figure 1.3: Schematic of gravure apparatus

(a) (b) (c)

Figure 1.4: Different gravure cell geometries, taken from Benkreira and Patel (1993), (a) quadrangular,
(b) trihelical, and (c) pyramidal

can leave gaps in the printed pattern. Additionally, if the ink contains a volatile solvent,

residual solids can collect in the cavities as the solvent evaporates. This fouling can lead

to coating defects because the effective cell volume and geometry have been altered (Yin

and Kumar, 2006a). Once the pattern has been dried, the web can be passed through

additional gravure rolls to apply inks with different compositions or colors. For graphic arts

applications, a gravure press will often have 8 or more different rolls.

Gravure is a popular technique because it is able to produce high-resolution features

(∼10 µm) at high speeds (up to 15 m/s). Because the pattern has been engraved into

a chrome-plated metal roll, the features degrade slowly and each roll is able to produce

millions of copies before it must be replaced. However, the rolls take hours to engrave, so

the desired pattern cannot be easily changed. The rolls are also expensive, and one needs

to make hundreds of thousands of copies to pay back the additional cost of manufacturing

a gravure roll relative to rolls for lithography or flexography. Despite this, gravure has

been used for several cutting-edge applications, including the printing of electric circuits

(Hagberg et al., 2001; Kittilä et al., 2004; Pudas et al., 2004), antennas (Pudas et al., 2005),
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Figure 1.5: Schematic of a flexographic printing apparatus

solar cells (Santa-Nokki et al., 2006) and photocatalytic coatings (Kawahara et al., 2003).

1.1.4 Flexographic printing

Flexographic printing, which is often simply called flexo, is in a sense gravure coating with

an extra step. Liquid is transferred from a pool to an anilox roll, which is an engraved

cylinder similar to a gravure roll, with any excess fluid wiped off using a doctor blade

(see figure 1.5). The purpose of the anilox roll is to control the amount of fluid that is

printed. The fluid is then transferred from the anilox roll to an impression roll, which has

been patterned with an upraised polymer layer. The impression roll is then pressed against

the web, normally with a backing roll used to ensure contact between the web and the

impression roll, allowing the transfer of liquid to take place (Gamota et al., 2004).

The advantage to flexographic printing is that the rubber impression layer allows the

surface to conform to rough or oddly shaped surfaces, which allows flexography to be used

on a much wider array of substrates than gravure. Flexographic rolls are also much cheaper

and easier to produce than gravure rolls because they don’t require the engraving of a unique

metal roll for each pattern. The trade-off is that the flexibility of the polymer decreases the

attainable pattern resolution, as it can deform and smudge the desired features. Addition-

ally, these rolls have a shorter life-span than gravure because the polymer wears more easily

than the chrome plated roll. Therefore, flexographic printing has traditionally been used for

low-resolution, low value-added applications, such as printing on cardboard and bread bags

(Gamota et al., 2004). However, as our ability to manufacture the impression and anilox

rolls has improved, flexography has been able to produce prints with comparable quality

to gravure and lithography (Larson, 2007). Flexography has been used in the printing of

polymer transistors (Mäkelä et al., 2005) and conductive wires (Han et al., 2007; Kwak

et al., 2010).



1.1 Industrial printing processes 7

Figure 1.6: Schematic of a lithographic printing apparatus

1.1.5 Lithographic printing

Lithographic printing was developed in the late eighteenth century by a German playwright

named Alois Senefelder, who was trying to find a way to print screenplays without having

to engrave expensive copper plates. In the two centuries since its conception, lithography

has developed into one of the most powerful printing tools, used for products as varied as

newspapers, business forms, and scratch tickets (Gamota et al., 2004).

While the term lithography can refer to many different processes, the common thread

is the use of a chemically patterned surface to produce a desired shape. In lithographic

printing, this is accomplished through hydrophobic (image) and hydrophilic (non-image)

areas on the plate roll (see figure 1.6). An emulsion is created on the plate roll using separate

ink and fountain solutions. This emulsion is designed to provide the desired amount of ink

while maintaining an appropriate fluid viscosity. The hydrophobic ink displaces water from

the image area, filling in the pattern on the plate roll. The ink is then transferred to a

rubber blanket roll, which can deform to allow printing on non-planar surfaces (MacPhee,

1998).

Because the fluid is transferred using surface forces, the wetting/dewetting properties of

the fluid and plates must be carefully designed to ensure the fidelity of the printed pattern.

Viscous inks, up to 500 poise (MacPhee, 1998), are often used to minimize spreading during

drying, which helps to create high resolution images. This is a distinct advantage over

gravure or flexographic printing processes, where low viscosity inks (1-100 cp) are required

to properly fill the cells in the gravure/anilox roll (Gamota et al., 2004). The ability to

print viscous fluids also allows inks with high solids content to be used, which is important

when printing electronic circuits. However, the chemical pattern wears more easily than the

mechanical pattern used in gravure, leading to relatively short production runs before a new
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Table 1.1: A summary of the fabrication techniques for flexible/organic electronics. Unless otherwise cited,
all information is from Gamota et al. (2004)

Method Speed Resolution Strength Weakness

Ink-jet 10 kHza 20 µm Drop-on-demand Slow
Screen 3 m/s 50 µm Very cheap Slow, poor resolution

Gravure 15 m/s 15 µm Fast, high resolution Expensive
Flexography 7 m/s 40 µm Balance of cost/speed Moderate resolution
Lithography 15 m/s 20 µmb Cheap image plates Short plate lifetime

aCreagh and McDonald (2003). The speeds for ink-jet are normally given in Hz, which represents the
number of drops formed per second

bParashkov et al. (2005)

plate roll must be fabricated. Lithographic printing has been used to print source/drain

structures for field-effect transistors (Zielke et al., 2005) and batteries (Southee et al., 2007).

1.1.6 Comparison of methods

Each of the methods discussed in this section has advantages and disadvantages, and it is

possible that they will all have their own niche applications. For example, when fabricating

display screens it is not important to make thousands of feet per minute, but the print

quality must be very high and many printed components are required, so ink-jet may be

the most appropriate technology. However, radio-frequency identification (RFID) tags must

be mass-produced to be economical, though they do not generally require micron-sized

features. Therefore, gravure or flexography are likely the best options for this type of

application. We summarize the key factors one should consider when choosing a particular

printing technique in table 1.1.

1.2 Review of literature relevant to gravure

Because of its high speed and resolution, as well as its mechanical simplicity, gravure is

considered to be one of the most promising printing techniques for the mass-production of

organic electronics. However, as we discussed in section 1.1.3 gravure is a poorly understood

process, and its operation is still considered to be somewhat of an art. The purpose of this

section is to provide context for the work performed in this thesis, which builds on the

existing literature. We organize this section into three major areas of study: doctoring in

gravure, gravure coating, and gravure printing.

1.2.1 Doctoring in gravure

The metering action in gravure is provided by a doctor blade, which cleans excess fluid off

the lands in an attempt to ensure that only the fluid in the cavities is transferred to the

web. This is a sensitive process, as under-doctoring can lead to overfilled cells and wet lands,
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which increases the coating thickness and decreases the pattern resolution. Conversely, over-

doctoring can result in poor contact between the web and the liquid, leading to a decrease

in the amount of liquid removed from the cavity, and potential gaps in the printed pattern.

Therefore, an understanding of the doctoring process is essential in achieving consistent,

high quality products with gravure.

Our understanding of doctoring in gravure is largely built through the use of lubrication

theory, which takes advantage of the fact that the gap between the blade and the roll is

generally much smaller than the width of the blade. As a blade glides over a lubricating

liquid film, the pressure in the film increases as the gap between the blade and the surface

decreases. In gravure, this results in higher pressures over the lands, where the gap is

small, than within the cavities. Therefore, doctoring is able to clear the lands by driving

liquid into the cavities (Kistler, 1988). As the capillary number is increased and viscosity

becomes more important the blade deflects more significantly, leading to a smaller pressure

differential and thus a thicker film on the land (Patel and Benkreira, 1991). Therefore,

good doctoring is obtained at low capillary numbers. However, if the capillary number

is too low it is possible that the meniscus will drag liquid out of the cavity, resulting in

under-doctoring and poor liquid transfer.

Another study on doctor blades was motivated by an observation that the mean coating

thickness from a gravure roll decreases steadily after installation of a new blade. To under-

stand this, Hanumanthu (1999) used a lubrication model to describe the flow between the

blade and a flat surface, including a model for the wear of the blade. The coating thickness

was calculated as a function of time, and then fit to experimental data using the blade

thickness as a regression parameter. The theory accurately predicts experimental results,

showing that blade wear alone is enough to account for the change in coating thickness with

time.

1.2.2 Gravure coating

Once doctoring is complete, a substrate is pressed against the gravure roll and the cavities

are emptied. This is where the differences between gravure printing and coating become

apparent. In coating, the cavities are organized in a way that promotes hydrodynamic

interaction between each cavity, so that the features merge properly and a uniform film

is produced over the entire substrate. In printing, however, this merging would ruin any

discrete pattern, and so proper spacing between each feature must be included. This results

in completely different flow profiles for coating and printing, and thus separate studies are

required to understand and optimize the dynamics of each process.

Much of the early understanding of gravure was confined to the trade and patent lit-

erature, and was focused on observations of specific systems without any attempts to gain

insight into the fundamental science of the process. While there is no summary of these

works in the literature, there are several reference sources for the gravure practitioner (Ka-
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sunich, 1998; Kipphan, 2001; Gamota et al., 2004). Pulkrabek and Munter (1983) performed

the first systematic study of gravure, finding that stable coatings at high speeds could be

obtained in trihelical gravure by matching the wavelength of the grooves on the gravure roll

to the wavelength of the ribbing instability, as predicted at the same conditions for smooth

rolls. Benkreira and Cohu (1998) were able to expand the operating window of Pulkrabek

and Munter (1983) to include several cavity geometries, while also observing that if the

substrate speed is much higher than the roll speed, an air-entrainment limit is reached.

Benkreira and Patel (1993) were the first to relate the coated film thickness to the

process variables, such as the Reynolds number and the cavity shape. They found that

at a high enough Reynolds number, the film thickness depends only on the cavity geome-

try/arrangement. However, they ignored the effect of surface tension, which was shown by

Kapur (2003) to be a key parameter in controlling the amount of liquid removed from the

cavities. Kapur (2003) also found that complete cavity emptying could be achieved by in-

creasing the speed of the substrate relative to the gravure roll, producing a shearing motion.

This is an excellent example of the differences between gravure coating and printing. While

shear may help in emptying a cavity, it can also potentially distort any discrete features,

which would be catastrophic for a printing application.

There has been some success in developing theoretical models to describe the fluid

mechanics of gravure coating. Kapur et al. (2001) used a lubrication model to study the

onset of ribbing in offset gravure, which does not include the presence of the cavities. This

model was extended to include trihelical cavities with a square geometry by Hewson et al.

(2006) and with an arbitrary shape and inclination relative to the coating direction by

Hewson et al. (2010). Lee et al. (2010) showed that the amount of liquid transferred from

a trihelical gravure roll can be related simply to the angle of inclination of the grooves

relative to the substrate, with a higher inclination leading to a decrease in the amount of

liquid transferred. In all of these cases, convincing agreement with experimental results was

observed. However, offset and trihelical gravure present rare cases where two-dimensional,

steady state operation is possible. In the more general case the cavities are three-dimensional

(see figure 1.4), and no steady state reference frame can be found.

To address these issues, one must at a minimum consider the transient motion of an

interface over an array of cavities. This has been done with a lubrication model by Schwartz

et al. (1998), who found that better emptying was obtained with wider cavities, which is in

agreement with the experimental results of Kapur (2003). The same model was also used by

Schwartz (2002) to understand the effect of cavity arrangement on the transfer of liquid to

the web. For the patterns studied, the amount of liquid initially removed from the cavities

was nearly identical in all cases. However, as the cavities were emptied the meniscus would

eventually impinge on the cavity walls and on the lands, causing liquid to flow back into

the cavity and decreasing the final liquid transfer. It is during this refilling stage that the

cavity arrangement becomes relevant, with different amounts of refilling for each pattern.
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While this work provides important insight into the mechanism of liquid transfer, it also

makes several unrealistic simplifications, most importantly that the contact line remains

pinned on the roll surface. While this may be reasonable over a short enough period of time

for gravure coating, it is certainly not the case in gravure printing, where the contact line

motion is key in achieving complete cavity emptying.

1.2.3 Gravure printing

Work related to printing is often focused on developing an understanding of how drops of

liquid move from one surface to another, with an emphasis on how this transfer is altered

by process conditions, such as the fluid properties or the surface geometry. A common

assumption in much of this research is therefore to examine the dynamics of a single drop of

fluid, instead of the more complex network of cavities and grooves that is actually present

on the surface of a gravure roll.

As a first approximation in understanding the detailed fluid mechanics of gravure print-

ing, Yin and Kumar (2005) used a lubrication model to study the effect of a deformable

substrate on the liquid within a trapezoidal cavity. Their results compared well to a two-

dimensional finite element study by the same authors (Yin and Kumar, 2006b), indicating

that despite rapid changes in the vertical length scale at the cavity walls, lubrication anal-

ysis remains a useful tool for studying gravure. The work of Yin and Kumar (2005, 2006b)

shows that when viscous forces are large relative to the web elasticity/tension, large web de-

formations are observed that can significantly alter the flow profile within the cavity. In this

work, the effect of web stiffness is implicitly ignored through the use of a one-dimensional

spring model for the substrate, though it was later shown by Hewson et al. (2009) that web

stiffness is the more important factor in the typical operating range for gravure. However,

none of these studies include the effect of the liquid/gas interface, and they are therefore

unable to make quantitative conclusions about the transfer of liquid from the cavities.

Another simplified approach is to consider a single meniscus being dragged over a 2D-

planar groove by a moving web, which is similar to cavity filling for nano-imprint lithography

(Reddy et al., 2005; Chauhan et al., 2009; Maŕın et al., 2010). Using the finite element

method, Powell et al. (2000) found that the limiting factor in cavity emptying was the

impingement of the free surface with the cavity corner. This implies that the dewetting

speed of the contact line must be faster than the rate at which the meniscus is drawn

across the cavity. Emptying can therefore be improved by either making the cavity less

wettable, or by increasing its width relative to its depth. This was confirmed through flow

visualization experiments by Yin and Kumar (2006a). Hoda and Kumar (2008) studied a

similar system using the boundary integral method, and found that while cavities could

be completely emptied when the web velocity has both shear and extensional components,

they could not be emptied by either component alone.

While the planar geometries discussed in the previous paragraph are relevant to trihelical
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gravure, the typical cavity height, width, and depth are often of the same order of magnitude

in gravure printing (see figure 1.4). In this case, the liquid will form a cylindrical thread

away from the cavity due to surface tension, leading to a nearly axisymmetric feature. This

allows one to approximate the drop as a cylindrical liquid bridge, a system which has been

studied extensively in the literature (see for example Gaudet et al., 1996; Zhang et al., 1996;

Yao and McKinley, 1998, as well as chapter 2). In these studies, it is common to assume

that the contact lines are pinned in place, which greatly simplifies both experimental and

theoretical analyses. However, this is not the case in most printing processes, where the

motion of the contact lines is required for the transfer of liquid to be optimized. Therefore,

to capture the dynamics of printing, one must consider the motion of the contact lines.

Despite this importance, the role of surface wettability has until recently been studied

only in liquid bridge systems at low capillary numbers (Pepin et al., 2000; Darhuber et al.,

2001; Cai and Bhushan, 2008; De Souza et al., 2008). However, in realistic printing processes

both viscous and inertial forces can become significant (see chapters 2 and 3 for scaling

analyses), and therefore must be included in any realistic model. Powell et al. (2002) began

to address this, though Panditaratne (2003) was the first to perform a systematic study of

surface wettability on liquid bridge dynamics. Huang et al. (2008) used the volume-of-fluid

method to model liquid bridges stretched between either two flat plates or a flat plate and a

cavity. However, their work on cavities was restricted to low capillary numbers (∼ O(10−2)),

which we show in chapter 2 produces significantly different breakup behavior than higher

capillary numbers.

Efforts to visualize the liquid transfer process are challenging because of the small lengths

and high speeds involved in most printing processes. Gravure is especially problematic be-

cause the gravure roll is opaque, making it difficult to observe the fluid within the cavity.

Therefore, most of the experimental studies performed have been restricted to liquid bridges

between flat surfaces (Chadov and Yakhnin, 1979; Yakhnin and Chadov, 1983; Gupta et al.,

2007; Huang et al., 2008). Two notable exceptions to this are the work of Yin and Ku-

mar (2006a), discussed earlier, and of Chuang et al. (2008), who studied the emptying of

gravure cavities onto a cylindrical roll. They found that networks of cavities were inher-

ently more difficult to empty due to hydrodynamic interaction between the cavities. This

is an extremely important point, as truly isolated cavities are rarely encountered, and it is

therefore vital to understand this interaction to design optimal cavity networks for printing.

1.3 Thesis overview

While the work presented in section 1.2 provides a foundation of knowledge for both gravure

coating and printing, there is still much that is not well-understood. In particular, the

mechanisms through which system parameters such as inertia, wettability, and cavity shape

alter breakup and liquid transfer remain unclear. Therefore, it is difficult to extend results
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(a) (b)

Figure 1.7: Schematics of the two types of problems studied in this thesis. (a) Offset printing between two
cylinders, using gravure offset as an example. (b) Gravure printing.

from a specific study on gravure to a more general system.

In an attempt to elucidate these mechanisms, we focus on the dynamics of a single

liquid bridge in one of two different types of geometries. In the first case, we consider

a liquid bridge between two flat plates. This is a model for any type of offset printing,

where a pattern is transferred onto a rubber roll before being printed on the web. Figure

1.7(a) depicts gravure offset printing, though lithographic (or flexographic) offset could

just as easily have been used as a demonstration. The second geometry that we consider

is stretching between a flat plate and a trapezoidal cavity, depicted in figure 1.7(b), as a

model for gravure printing.

In this thesis we make several additional approximations. First, we assume that the

characteristic size of the printed features are much smaller than the roll radii, allowing the

roll curvature to be ignored. Second, with the exception of chapter 4, we assume that the

shear rates are small so that the plates undergo a purely extensional motion. This is a

reasonable approximation so long as the rolls have similar sizes and rotational rates, so that

they are not moving relative to each other. Third, we assume that the extensional velocity

remains constant during stretching to simplify analysis of our results. Finally, with the

exception of chapter 4, we assume that the bridge remains axisymmetric during stretching.

The remaining chapters in this thesis each consist of the study of a model problem used

to isolate a specific physical phenomena (i.e., wettability, inertia, etc.) relevant to industrial

printing processes. Each chapter is described in further detail in the following paragraphs.

1.3.1 Stretching liquid brides in Stokes flow

As we have repeatedly stressed in this chapter, a primary motivation for further study of

printing processes is the desire to print small-scale features, typically 10 µm or less. These

small length scales, combined with stretching speeds on the order of cm/s allow us to neglect

the inertial terms in the Navier-Stokes equations, greatly simplifying analysis. In chapter 2

we solve Stokes equations for an axisymmetric stretching liquid bridge with moving contact
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lines, and evaluate the effect of surface tension, viscosity, wettability, and cavity geometry

on the dynamics of breakup and the transfer of liquid from one surface to the other. We

also compare our results to the Rayleigh-Plateau stability limit for static cylinders of fluids,

to isolate the role that viscosity plays in modifying breakup.

1.3.2 Stretching liquid bridges with inertia

While current interest is generally in producing small-scale features, there are many sit-

uations where printed patterns are on the order of hundreds of microns (Mäkelä et al.,

2005; Pudas et al., 2005). At these sizes inertial forces can become significant, resulting in

nonlinear effects that produce substantial departures from the bridge behavior observed in

Stokes flow. In chapter 3 we solve the Navier-Stokes equations for an axisymmetric liquid

bridge, and evaluate the effect of inertia, wettability, and cavity shape on the dynamics of

breakup and the transfer of liquid from one surface to the other. In particular, we consider

the creation of secondary drops, known as satellites, to better understand how the fluid and

geometric parameters can be used to suppress their formation.

1.3.3 Stretching liquid bridges in three dimensions

In chapters 2 and 3 we consider cylindrical liquid bridges, allowing the use of the 2D-

axisymmetric Navier-Stokes equations. However, in real printing processes the stretching

motion may combine extension with either a shear or rotational component if the roll

radii/speeds are not properly matched. Additionally, the liquid bridge need not be cylin-

drical, but can instead have a non-axisymmetric shape. To account for these more complex

situations, we solve the three-dimensional Navier-Stokes equations in chapter 4 using a novel

extension of the two-dimensional finite element technique presented in chapters 2 and 3.

1.3.4 Stretching liquid bridges with bubbles

Finally, the entrapment of small air bubbles in gravure cavities is known to lead to a defect

known as spackle, which can significantly reduce the amount of liquid transferred. In chapter

5 we use flow visualization to understand the dynamics of these bubbles during stretching

at low capillary numbers. In particular, we consider the effect of wettability on the motion

of the bubble from one plate to the other.



CHAPTER 2

Stretching liquid bridges in Stokes flow

The dynamics of liquid bridges are relevant to a wide variety of applications including high-

speed printing, extensional rheometry, and floating-zone crystallization. Although many

studies assume that the contact lines of a bridge are pinned, this is not the case for printing

processes such as gravure, lithography, and microcontacting. To address this issue, we use

the Galerkin/finite element method to study the stretching of a finite volume of Newtonian

liquid confined between two flat plates, one of which is stationary and the other moving.

The steady Stokes equations are solved, with time dependence entering the problem through

the kinematic boundary condition. The contact lines are allowed to slip, and we evaluate

the effect of the capillary number and contact angle on the amount of liquid transferred to

the moving plate. At fixed capillary number, liquid transfer to the moving plate is found to

increase as the contact angle on the stationary plate increases relative to that on the moving

plate. When the contact angle is fixed and the capillary number is increased, the liquid

transfer improves if the stationary plate is wetting, but worsens if it is non-wetting. The

presence of a cavity on the stationary plate significantly affects the contact line motion, often

causing pinning along the cavity wall. In these cases, liquid transfer is controlled primarily

by the cavity shape, suggesting that the effects of surface topography dominate over those

of surface wettability. At low capillary numbers, bridge breakup can be understood in terms

of the Rayleigh-Plateau stability limit, regardless of the combination of contact angles or

the plate geometry. At higher capillary numbers, the bridge is able to stretch beyond this

limit, though the deviation from this limit appears to depend on contact line pinning, and

not directly on the combination of contact angles or the plate geometry.1

1This chapter is reproduced with minor modifications from S. Dodds, M. S. Carvalho, and S. Kumar.
“Stretching and Slipping of Liquid Bridges near Plates and Cavities”, Physics of Fluids, 21 (2009) 092103
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2.1 Introduction

The breakup of liquid columns has been studied extensively for over one hundred years,

dating back to pioneering works by Lord Rayleigh (1878) and Plateau (1863). This topic

has generated so much interest because of its relevance to a diverse range of practical

applications, such as oil recovery (Gaudet et al., 1996), rheological measurements (Yao

and McKinley, 1998), high-purity crystallization (Meseguer, 1983), and industrial printing

processes (Powell et al., 2002). An equally important motivation for the study of the

breakup of liquid columns is the rich mathematical and physical nature of the problem, as

discussed by Eggers (1997) and Eggers and Villermaux (2008).

The breakup of liquid columns is normally studied using one of two experimental sys-

tems: a liquid jet ejected from a nozzle and subjected to controlled perturbations, or by

stretching a mass of liquid between two solid plates, a setup known as a liquid bridge.

These two systems are often modelled using a periodic (repeating) domain for the jet, or

an axisymmetric, cylindrical column of liquid with pinned contact lines between two flat,

parallel plates for the liquid bridge. However, by pinning the contact lines the effect of the

wettability of either plate is ignored, so it is not possible to generalize the results currently

in the literature to systems with a liquid bridge between two chemically different surfaces.

These kinds of systems are observed in a variety of places, including the agglomeration of

particles (Pepin et al., 2000), and industrial printing processes such as gravure, flexography

and lithography. In addition, geometric variations on the surfaces could affect the dynamics

of the bridge breakup by altering the contact line speed, and so represent another important

area of study. The goal of this chapter is to address these issues using a finite element model

(FEM) of an axisymmetric liquid bridge, including both contact line slip and plates with

cavities.

There have been many studies on the stability and breakup dynamics of static liquid

bridges (Lord Rayleigh, 1878; Plateau, 1863; Gillette and Dyson, 1971; Rivas and Meseguer,

1984; Tjahjadi et al., 1992), including the famous Rayleigh-Plateau stability limit (Plateau,

1863; Lord Rayleigh, 1878), which states that the length of a static liquid column cannot be

greater than its circumference. These studies motivated work on stretching jets by Tomotika

(1936), who used a linear stability analysis to show that the stretching of a viscous jet also

stretches any perturbations, creating a slower growth rate than is predicted for static jets.

Tomotika’s analysis laid the groundwork for many later studies such as those of Mikami

et al. (1975), who improved on Tomotika’s model and included experimental results, and

Frankel and Weihs, who studied the stability of stretching liquid jets in the inviscid flow

limit (Frankel and Weihs, 1985), as well as solving the full Navier-Stokes equations (Frankel

and Weihs, 1987).

Work on stretching liquid bridges, however, did not become popular until the early 1990s,

and was initially motivated by a necessity for accurate measurement of the extensional

viscosity of low viscosity liquids. First proposed by Sridhar et al. (1991), the filament
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stretching rheometer stretches a drop of liquid while tracking the radius of the thinnest

cross-section of the liquid bridge. Then, by performing a stress balance, the extensional

viscosity can be calculated. This system was modeled by Shipman et al. (1991) using the

finite element method, though they were limited by a computational model which required

a fixed axial length. Therefore, instead of modelling the entire bridge, they modeled only

the regions near the end-plates and strongly imposed the theoretical extensional stress that

the bridge should be experiencing as an outflow boundary condition. Despite this serious

limitation, they achieved reasonable agreement with the experimental results presented by

Sridhar et al. (1991).

A later study by Gaudet et al. (1996) used the boundary integral technique to model

the extension of Newtonian liquid bridges in Stokes flow, and found that the bridges can

be stretched well beyond their static stability limits. This effect is greater at high capillary

numbers, indicating that viscosity works to stabilize the bridge as it is stretched. These

results are complemented by FEM computations using a 1D slender jet approximation by

Zhang et al. (1996), who were able to obtain very good agreement between their computa-

tional and experimental results. They were also able to predict the formation of satellite

drops at a moderate Ohnesorge number, which represents a ratio of viscous to surface ten-

sion forces, but found that the inclusion of gravity in their model could prevent satellite

drops if the ratio of gravitational forces to surface tension forces was high enough.

The mechanism of jet or bridge breakup is the rising capillary pressure created as the

liquid column thins. This thinning produces a small azimuthal radius of curvature, which

creates a large capillary pressure that drives liquid away from the thinning region, acceler-

ating breakup. The breakup event has been shown to produce self-similar interface profiles

in the vicinity of the breakup location for a wide variety of flow regimes, such as when

surface tension and viscosity are in balance and inertia is ignored (Papageorgiou, 1995), or

when surface tension, viscosity and inertia are all in balance (Eggers, 1993), as well as for

non-Newtonian liquids (Renardy, 2002; Doshi et al., 2003; Renardy and Renardy, 2004).

A large body of work has been built upon these earlier studies, mostly examining non-

Newtonian or surfactant effects. Yao and McKinley (1998) studied the extension of Oldroyd-

B fluids using a 2D FEM model, and found that the bridge strain-hardens during stretching,

and therefore thins uniformly along its mid-section, i.e. the bridge remains cylindrical far

away from the end-plates. Therefore, pinch-off occurs close to the end plates, producing

a large satellite drop. This is in contrast to viscous Newtonian liquids, which do not thin

evenly, but instead break at the mid-point of the bridge. Yildirim and Basaran (2001)

used a 1D FEM model to study shear thinning liquids, and found a decrease in the bridge

length at breakup because of the low viscosities produced in the high-shear neck region.

This results in a local capillary number that is lower than in the bulk liquid, which leads

to faster breakup.

Ambravaneswaran and Basaran (1999) studied the effect an insoluble monolayer of sur-
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factant has on breakup using a 1D FEM model. They found that at high Péclet numbers

the surfactant is convected away from the neck, resulting in a surface tension gradient that

drives liquid back into the neck, and thus stabilizes the bridge. However, for high exten-

sional velocities the neck thins too quickly for the surfactant to redistribute on the surface,

and so no benefit from the surfactant is observed. These results were extended by Liao

et al. (2006) to include experimental validation, as well as gravitational effects using a 2D

FEM model.

A common feature of the works reviewed so far is the assumption that the contact lines

remain pinned as the bridge is stretched. While this may be the case in some applications

where the contact line can be easily pinned to geometrical features, such as in extensional

rheology, it is not obvious that the contact lines will pin during the printing of liquids. In

fact, when printing it is desirable for the contact lines to slip, so that the transfer of liquid

from one surface to the other can be maximized. However, there has been relatively little

research into the effect that moving contact lines might have on liquid transfer during the

stretching of a mass of liquid. Motivated by the gravure printing process, Powell et al.

(2000) performed FEM computations on an interface being dragged through a 2D planar

square cavity by a moving plate, and found that incomplete liquid transfer would occur

if the trailing free surface reached the upper cavity corner before the contact line. These

results were confirmed experimentally by Yin and Kumar (2006a). Reddy et al. (2005) used

FEM computations to show a similar trend for the filling of a square cavity.

Hoda and Kumar (2008) extended the results of Powell et al. (2000) to explore a larger

parameter space, as well as to study the effect of extensional motion on liquid transfer.

They found that complete liquid transfer could not be obtained with shear motion alone

under the parameter set studied, but could be achieved if shear and extension were used

simultaneously. However, by assuming a 2D planar geometry, neither Powell et al. (2000)

nor Hoda and Kumar (2008) were able to study 3D effects. One such effect is the azimuthal

radius of curvature, which is responsible for the high pressures developed in the bridge as

it thins, accelerating breakup. Powell et al. (2002) began to address this issue, using a 2D-

axisymmetric FEM model to study the removal of liquid from trapezoidal cavities, though

they did not perform a systematic study of the effect of surface wettability or of cavity

shape. Huang et al. (2008) used a volume-of-fluid method to track the shape of a 2D planar

liquid bridge being stretched between a flat surface and a trapezoidal cavity. They studied a

variety of contact angles and cavity shapes, and so addressed some of the limitations of the

study by Powell et al. (2002), though by choosing a planar geometry they do not account

for the effect of the azimuthal radius of curvature. In addition, the results presented on

the emptying of gravure cavities were only for a capillary number of 0.01, which as we will

show in section 2.4, is too low to see the effect of cavity shape and contact angle.

Schwartz et al. (1998) and Schwartz (2002) used a two-dimensional lubrication model to

study the emptying of networks of cells during gravure coating. However, they treated the
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contact line as being pinned, and so were unable to study the effects of surface wettability

on liquid transfer. Therefore, further investigations incorporating moving contact lines are

needed to improve our understanding of liquid transfer in gravure printing.

Finally, there have also been contributions to the study of liquid bridges that attempt

to understand the adhesive forces created when a liquid is trapped between solid particles,

e.g. grains of sand, dating back to early work by Orr et al. (1975), who solved the Young-

Laplace equation for the interface shape of static liquid bridges between spherical and flat

particles in terms of elliptic integrals. Orr et al. (1975) laid the groundwork for many future

studies which utilized the Young-Laplace equation, along with mass conservation, to obtain

interface profiles and adhesive forces for stretching liquid bridges between spherical particles.

Of interest to the current discussion is a body of work which attempts to account for the

effect that contact line slip has on adhesion (Pepin et al., 2000; Urso et al., 2002; Cai and

Bhushan, 2008; De Souza et al., 2008; Vagharchakian et al., 2009; Davis and Frenkel, 1992).

However, these works are restricted by the presupposition of an equilibrium interface shape,

which implies a pseudo-steady-state stretching process. While this assumption should be

valid in the low capillary number limit, at more moderate capillary numbers one would

expect that the fluid mechanics of the system play an important role in determining the

interface shape.

To address some of the issues presented in this section, we set forth a computational

model to study the transfer of liquid from a stationary to a moving plate using an axisym-

metric liquid bridge as a model system (Section 2.2). The Galerkin finite element method

is used to solve the governing equations, and elliptic mesh generation is used to track the

position of the interface as it evolves in time. To account for differences in surface wet-

tability between the two plates, we allow the contact line to slip along the plates with a

constant contact angle, while imposing a Navier slip law to relieve the stress singularity that

develops near the moving contact line. The steady Stokes equations are solved, with time

dependence entering the problem through the kinematic boundary condition. We begin by

examining the effect of contact line slip on liquid bridges between two flat plates by varying

the contact angles on either plate, as well as the capillary number (Section 2.3). Our goal

is to characterize how changes in surface wettability and surface tension affect the amount

of liquid found on either plate after breakup. We then replace one of the flat plates with

a trapezoidal cavity, to study how geometric features alter the breakup dynamics of the

liquid bridge (Section 2.4). When our results are compared to the Rayleigh-Plateau limit,

we see good agreement at a low capillary number, even though the liquid-air interface in our

computations is highly curved (Section 2.5). Finally, we end by summarizing and discussing

the key conclusions presented in this work (Section 2.6).
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Figure 2.1: A schematic of a liquid bridge between flat plates.

2.2 Problem formulation

2.2.1 Governing equations

We consider an axisymmetric liquid bridge of an incompressible Newtonian liquid with

a constant volume V , viscosity µ, surface tension σ, and density ρ (see figure 2.1). The

viscosity of the fluid outside the bridge is taken to be small relative to that within the bridge.

Therefore, the outer phase is taken as a passive gas and its dynamics are neglected. While

it is important to consider the outer fluid to obtain an accurate representation of the fluid

interface during the late stages of breakup (Lister and Stone, 1998), the shape of the large

drops resting on either plate will be unaffected by these late-time dynamics. Therefore, we

assume that ignoring the outer fluid will have a negligible effect on the amount of liquid

resting on either plate after breakup, which is the variable of interest in this study.

For this problem, length is scaled with the initial liquid bridge radius R, velocity with

the constant extensional velocity U , time with R/U , and pressure with µU/R. We can

define a Reynolds number Re = ρUR/µ and a Stokes number St = ρgR2/µU , where g is

the acceleration due to gravity, such that the Navier-Stokes equations can be written as:

Re
Dv

Dt
= −∇P + ∇2v + Stĝ, (2.1)

∇ · v = 0. (2.2)

where v is the velocity, P is the pressure, and ĝ is a unit vector in the direction of the

gravitational field.

In many printing processes the goal is to produce small features, on the order of 10

µm. The liquid viscosity can range anywhere from 1-100 cp. The extensional velocity

experienced by the liquid is on the order of 1 - 10 cm/s, and so estimates for the range of

Reynolds and Stokes numbers during printing are Re ≈ 0.001 − 1 and St ≈ 10−5 − 10−1.

While inertial effects can be important at the upper range of the listed operating conditions,
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they can generally be ignored. Therefore, we will neglect the effects of inertia and gravity

in equation (2.1), and will solve equation (2.2) along with the Stokes equations:

∇P = ∇2v. (2.3)

At the gas-liquid interface, we need to satisfy kinematic and interfacial stress boundary

conditions:

n · v = 0, (2.4)

n · T = − κ

Ca
n, (2.5)

where n is the outward pointing normal at the interface, T is the total stress tensor, Ca =

µU/σ is the capillary number, and κ is the curvature, which can be calculated by taking

the surface divergence of the normal vector:

κ = −∇s · n, (2.6)

where ∇s = (I − nn) · ∇ is the surface gradient operator, and I is the identity tensor. It

should be noted that when writing equation (2.5), we have assumed that the pressure of the

ambient fluid surrounding the liquid bridge is zero. Using the operating conditions listed

above, and a surface tension of 20-70 mN/m, an estimated range for the capillary number

experienced during printing is Ca ≈ 10−4 − 0.5.

At the two solid surfaces we apply no-slip and no-penetration conditions:

t · v = 0, at z = 0, L(t), (2.7)

n · v =







0 for z = 0,

U for z = L(t).
(2.8)

An important point to note is that we will observe the same results pulling the two plates

apart at ±U/2 as we will using equation (2.8) because we can perform a Galilean trans-

formation to move the reference frame for the system (Papageorgiou, 1995). Because we

are studying axisymmetric cylindrical liquid bridges, we must impose symmetry boundary

conditions along the bridge axis:

t · (n · T) = 0, (2.9)

n · v = 0, (2.10)

where t and n are the tangent and normal vectors to the symmetry line.

Finally, as a key objective of this work is to evaluate the effect of chemically different

surfaces on the breakup behaviour of liquid bridges, we must allow the contact lines to slip

along the two surfaces. However, this produces a well known singularity in the stress tensor

as the contact line is approached (Huh and Scriven, 1971). To relieve this singularity, we
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replace equation (2.7) at the contact line with a Navier slip boundary condition and force

the liquid to maintain a constant contact angle with the solid surface:

twall · (nwall · T) =
1

β
twall · v, (2.11)

nwall · ninterface = cos (θ) , (2.12)

where β is the slip coefficient. In the FEM discretization of the solution, equations (2.11)

and (2.12) are applied only at the node located on the contact line, i.e. the slip length is

taken to be less than the length of an element, and the value of β was taken to be 1010,

implying that equation (2.11) represents a zero-stress condition. However, the results were

found to be independent of β down to β = 0.1, indicating that the slip coefficient does not

have a significant effect on the bulk fluid motion.

It is important to note that equation (2.12) imposes a constant contact angle on both

plates, regardless of the wetting velocity. This approach is technically only valid for small

wetting velocities, whereas typical contact line velocities observed during computation were

on the order of -0.5 dimensionless units, which corresponds to dimensional velocities on the

order of 0.5-5 cm/s. While more realistic models exist which account for the dependence

of the contact angle on the slip velocity (Blake, 2006), one would expect the qualitative

trends predicted by these models to be the same as ours. Therefore, we assume that despite

utilizing such a simplistic slip model, we will capture the essential features of stretching

liquid bridges with moving contact lines.

2.2.2 Numerical methods

To solve equations (2.2) and (2.3), subject to boundary conditions (2.4) through (2.12), we

use the Galerkin finite element method. The moving interface is tracked using elliptic mesh

generation, which utilizes a set of elliptic partial differential equations to map the physical

coordinates (r, z) onto a square computational domain with coordinates (ξ, η):

∇ · (Dξ∇ξ) = 0,

∇ · (Dη∇η) = 0,
(2.13)

where Dξ and Dη can be thought of as mesh diffusion coefficients, and are used to specify

the spacing of the elements within the physical domain. The details of this method are

provided in Christodoulou et al. (1997), and so are not repeated here. Because this is a

moving mesh method, we must subtract the effect of mesh convection from any calculated

time derivatives, i.e.

(

∂v

∂t

)

actual

=

(

∂v

∂t

)

node

−
(

∂x

∂t

)

node

· ∇v. (2.14)
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Time integration is performed using the second-order adaptive time-stepping algorithm

outlined by Gresho et al. (1980). To avoid spurious oscillations in the solution, the first

three time steps are performed using a first-order forward difference predictor and a first-

order backward difference corrector, all with a fixed time step. After this, the trapezoid

rule is used as a corrector with a second-order Adams-Bashforth predictor to integrate our

system of equations, as well as to provide an estimate of the local truncation error in the

integration. The time step is then adjusted such that the predicted error at the next time

step is less than a prescribed tolerance, taken here to be 2× 10−4. The resulting non-linear

system of equations is then solved using Newton’s method and LU-decomposition to obtain

values for the unknown coefficients in the FEM approximation of the solution. Normally,

two to three Newton iterations were required to obtain convergence at each time step.

Because the length of the liquid bridge increases with time, the elements often become

stretched during computations. Therefore, it is occasionally necessary to add additional

elements to the domain. New columns of elements are distributed evenly throughout the

liquid bridge when needed, and the position, velocity and pressure at each node in the

refined mesh are interpolated from the solution with the old mesh. The time stepping is

then re-started, using a fixed time step size with a first-order backward Euler method for

the first three time steps, after which the trapezoid rule with adaptive time stepping is used,

as explained earlier in this section. The remeshing procedure was not required more than

three times for each liquid bridge computation. It should be noted that, during computation,

we track the total volume of liquid in the bridge. To ensure that no mass is gained/lost

during remeshing, we calculate the percent deviation of the liquid bridge volume using

100 ∗ (Vmax −Vmin)/Vini, where Vmax and Vmin are the maximum and minimum volumes of

the bridge during stretching, and Vini is the initial bridge volume. This value was generally

on the order of 0.01%, and if it was greater than 0.1% the results were deemed inaccurate,

and the run was repeated with a refined mesh/time step.

As the bridge nears breakup, thin threads of liquid connect two primary drops resting on

either plate. In these threads the elements become extremely elongated and the numerical

algorithm eventually fails, often at a dimensionless thread radius of roughly 10−3. At this

point the computation is considered to be complete. While this large mesh deformation

will certainly introduce error into the solution, it occurs only during the very late stages

of breakup. Therefore, it is not expected that the final shape of the interface on the scale

of the primary drops will be significantly affected by the error in the connecting thread,

which is therefore ignored. Indeed, we generally observe less than 1% variation in the final

breakup time and position of the contact lines when doubling the number of elements in

the axial direction.



2.2 Problem formulation 24

Figure 2.2: A schematic of the trapezoidal cavity used in this study.

2.2.3 Geometry

For the computations involving flat plates, the initial condition used is a cylindrical liquid

bridge with a length equal to its diameter. This value was chosen for easy comparison to

results already in the literature (Gaudet et al., 1996; Zhang et al., 1996), and not with

any particular application in mind. However, we do not expect a different initial condition,

such as a larger aspect ratio or an equilibrium interface shape, to qualitatively affect any

predicted trends between the wettability of the plates and the amount of liquid transferred

during stretching. Therefore, we will proceed with this initial condition to outline the

physics of stretching liquid bridges with moving contact lines. The computational mesh

used for these runs contained 16 elements in the radial direction and 70 elements in the

axial direction. For these runs, remeshing was not generally required.

For the computations involving plates with cavities, we chose an axisymmetric trape-

zoidal cavity, shown in figure 2.2, as a model system. This particular geometry was selected

because it allows us to easily evaluate the effect of a variety of topographical features,

such as corners and inclined surfaces, on the flow field and liquid transfer. Additionally,

this geometry is relevant to the gravure printing process (Powell et al., 2002; Yin and Ku-

mar, 2006a; Hoda and Kumar, 2008), which uses micron-sized cavities to deliver liquid to

a substrate. Despite being commonly used in industry, gravure is not a well-understood

technology, so a theoretical study of the removal of liquid from trapezoidal cavities could

help improve our understanding of the gravure printing process.

The cavities are modelled using a hyperbolic tangent function to define the left (sta-

tionary) plate:

z =
1

2
δ

(

1 − tanh

(

r − rc

rs

))

, (2.15)

where r and z are the radial and axial positions along the wall, δ is the depth of the cavity,

rc corresponds to the distance from the axis of symmetry to the centre of the wall (see figure
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2.2), and rs is related to the curvature of the corners and to the steepness of the cavity wall.

Sharp corners and steep walls are obtained by using small values of rs. The length scales

presented in this chapter are non-dimensionalized using the depth of the cavity, which is

roughly 50µm for most printing processes.

Before stretching the liquid bridge, we first find a static meniscus shape by solving the

system of equations (2.2)-(2.12) with equation (2.8) replaced by the condition

n · v = 0 for z = 0, L. (2.16)

This equilibrium bridge shape is then used as an initial condition for the computations

involving stretching bridges. For these computations, an initial mesh with 35 elements in

the radial direction and 30 elements in the axial direction was used.

2.3 Results: Flat plates

We first validated our code with results presented by Gaudet et al. (1996), who used the

boundary integral method to model the stretching of a Newtonian liquid bridge with no

inertia and pinned contact lines. For these computations, equations (2.11) and (2.12) were

replaced with the condition that at z = 0 and L(t), the contact lines are fixed at r = 1.

We compared the predicted interface shapes from our results to those presented in figures

6 and 10 of Gaudet et al. (1996) and found excellent agreement. An important observation

is that, because we have assumed Stokes flow and the contact lines are pinned in place,

there is nothing in the governing equations to differentiate the liquid adjacent to one plate

from the liquid adjacent to the other plate. Therefore, the breakup is always symmetric

about the mid-point of the bridge, and exactly half of the liquid will rest on each plate after

breakup.

If one of the contact lines is allowed to slip while the other remains pinned in place, we

can begin to evaluate how motion of the contact line might alter the breakup of the bridge.

Physically, this corresponds to the stretching of a liquid bridge between a surface with

a surface discontinuity at which the contact line will pin readily, and a perfectly smooth

surface. We present results for the case where the contact line on the left plate is unpinned.

However, if we instead allow the right contact line to slip while pinning the left contact line,

we would observe the mirror image of the results presented here.

Figure 2.3 shows the evolution of the interface shape at Ca = 0.1, and a contact angle

on the left plate θleft = 60◦. While the bridge initially has a cylindrical shape, it quickly

evolves to have a shape which is asymmetric about the mid-point of the bridge, leading

to drops of different size resting on either plate after breakup. The drop on the left plate

becomes larger as the bridge is stretched because, with a contact angle of 60◦ the liquid

will spread over the plate. If we repeat these computations for different capillary numbers,

we can probe the effect of surface tension relative to viscosity. In figure 2.4(a) we have
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Figure 2.3: Interface shapes at various times for Ca = 0.1, and θleft = 60◦

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Dimensionless time, t

M
in

im
um

 b
rid

ge
 r

ad
iu

s

(a)

0 1 2 3 4 5 6 7 8 9
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

Dimensionless time, t

Le
ft 

co
nt

ac
t l

in
e 

po
si

tio
n

(b)

Figure 2.4: A comparison of results obtained at Ca = 1, 0.1 and 0.01 for θleft = 60◦, plotting (a) the
minimum radius of the liquid bridge and (b) the position of the left contact line vs. time. The
runs presented are for Ca = 0.01 (—), Ca = 0.1 (−−), and Ca = 1 (− · −).
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Figure 2.5: The fraction of liquid resting on the right plate after breakup vs. the contact angle on the left
plate. The runs are for Ca = 0.01 (¤), Ca = 0.1 (△) and Ca = 1 (◦),

shown the evolution of the minimum radius of the liquid bridge (i.e. the thinnest part of

the bridge) with time at Ca = 0.01, 0.1, and 1. As Ca rises, the bridge is able to stretch

to greater lengths. The same trend was observed when both contact lines were pinned, and

is shown in figure 16 of Gaudet et al. (1996). In figure 2.4(b), we have shown the position

of the left (moving) contact line vs. time at the same conditions as in figure 2.4(a). At

Ca = 1, the relatively low strength of surface tension allows the contact line to effectively

pin in place, moving only ∼ 15% from its initial position and resulting in breakup that

is nearly symmetric about the midpoint of the bridge. This is explained by noting that a

higher capillary number allows for a greater amount of interface deformation, which in turn

allows the interface to compensate for the contact angle boundary condition by deforming

near the contact line, instead of slipping along the plate. However, as the capillary number

is decreased and surface tension is made more important, the contact line slips a great deal

along the plate, moving ∼ 50% from its initial position for Ca = 0.01. This is because at a

low capillary number, the interface is unable to deform enough to allow the contact line to

maintain the same angle and position.

Figure 2.5 shows the fraction of liquid in the right-hand drop after breakup, φ, as a

function of θleft at Ca = 0.01, 0.1, and 1. The amount of liquid transferred to the right

plate falls with increasing θleft for all three capillary numbers studied. This is an intuitive

result because as the left plate becomes more wettable, liquid is drawn towards that plate.

This leads to a larger drop on the left plate than the right plate after breakup. If we

consider a fixed contact angle and examine the effect of the capillary number, we see that

the relationship between φ, Ca, and θleft is more complex. If the contact angle of the left

plate is high, then as the capillary number falls more liquid is found on the right plate after
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Figure 2.6: Liquid bridge shapes at various times for Ca = 0.1, θright = 60◦, and (a) θleft = 80◦ (b)
θleft = 120◦.

breakup than on the left plate. This is because in the case of a less-wettable left plate,

surface tension forces aide in moving liquid to the right, and thus work to increase liquid

transfer. Therefore, if we decrease Ca we see an increase in φ. If we instead examine a

low contact angle, the liquid shows a preference for the left plate, and so surface tension

forces drive the liquid towards the left, resulting in a decrease in φ as the capillary number

is increased. However, as the capillary number is increased, the contact line slips less along

the surface (see figure 2.4(b), and so the effect of the wettability of either plate becomes less

important, as was noted in the previous paragraph. Therefore, at a high enough capillary

number, the effect of the contact angle on the interface shape will be small, and the breakup

event will be nearly symmetric about the midpoint of the bridge, so we will observe φ ≈ 0.5.

This result is consistent with experimental observations (Yakhnin and Chadov, 1983), and

is observed at Ca = 1 in figure 2.5, where φ remains close to 0.5 up to a contact angle of

110◦.

If both contact lines are allowed to slip, we see qualitatively similar behavior to the

results obtained with a single moving contact line. Figure 2.6(a) shows the interface profile

at several times as the liquid column is stretched with θright = 60◦ and θleft = 80◦. Here,

the right plate pulls liquid away from the left plate because it is more wettable. So, despite

the left plate being wettable (i.e. θleft < 90◦), the contact line moves down this surface. In

figure 2.6(b) we show an extreme case of this behaviour, where θleft = 120◦. In this example

the left plate is non-wettable, so the contact line slips down this plate more quickly than

the bridge can thin, and all the liquid after breakup rests entirely on the right plate, leading

to complete liquid transfer.

Figure 2.7(a) shows φ as a function of the difference between θleft and θright, hereafter

referred to as ∆θ, at different values of θleft. The first point of interest in this figure is that

the plate with the largest drop after breakup is always the plate which is most wettable,
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Figure 2.7: Mass fraction transferred to the right plate after breakup, φ, vs. the difference in the contact
angles of the two plates, ∆θ = θleft − θright for (a) Ca = 0.1 and (b) Ca = 0.01. In both plots
the symbols correspond to θleft = 40◦ (◦), 60◦ (¤), 80◦ (△), 100◦ (∗), 120◦ (▽).

and the difference in the amount of liquid on either plate increases as ∆θ rises. Therefore, if

the two plates have the same contact angle, breakup will be symmetric about the midpoint

of the bridge. This is the reason curves of constant θleft meet at (∆θ = 0, φ = 0.5), with

the exception of the curves for θleft = 100◦ and θleft = 120◦. In these two cases, because

both plates are non-wettable, the contact lines slip down the plates more quickly than the

bridge can thin, as shown in figure 2.8(a). This forces the bridge to reach a maximum at the

bridge midpoint, instead of a minimum, as was observed for all other computations when

∆θ = 0.

Because the contact angles on either plate are equal in this situation, the contact lines

slip off both plates at the same speed, as shown in figure 2.8(b), where the time evolution of

the left and right contact line positions, along with the minimum bridge radius, are indis-

tinguishable. Therefore, the breakup event occurs at both plates simultaneously, instead of

in the middle of the bridge, and so no liquid is transferred to the right plate. However, it is

important to note that the incorporation of a more realistic contact line model (Blake, 2006)

could affect the dynamics of breakup if the two surfaces have different dewetting speeds.

This would result in the liquid slipping off of one surface before the other.

The second point to note in figure 2.7(a) is that, as the left plate becomes less wettable,

φ becomes more sensitive to changes in θright. This indicates that there is no simple rela-

tionship between ∆θ and φ, but that φ must depend on the absolute values of the contact

angles at either plate as well. This is because the contact angle can greatly alter the shape

of the interface, i.e. the interface should assume a different shape if θleft = 60◦, θright = 40◦,

vs. when θleft = 100◦, θright = 80◦, even though ∆θ = 20◦ in both cases.

Figure 2.7(b) shows results from a set of computations which are identical to those

presented in figure 2.7(a), but at Ca = 0.01. Qualitatively, this plot is similar to figure
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Figure 2.8: Results from a computation with Ca = 0.1 and θleft = θright = 100◦. Panel (a) shows the
interface shape at various times, while panel (b) shows the minimum radius (—), left contact
line position (−−), and right contact line position (− ·−), all as a function of time. Note that
these three curves are indistinguishable.

2.7(a), though the curves of constant θleft change more rapidly around ∆θ = 0. The reason

for this is similar to that discussed when only one contact line was pinned (see figure 2.5),

i.e. as surface tension forces become stronger, the liquid will move rapidly towards the more

wettable surface, and therefore more liquid will be found on that surface after breakup than

at a higher capillary number.

It is of interest to compare our computational results to experiments performed by

Gupta et al. (2007) on stretching liquid bridges between chemically different surfaces. They

observed that the static contact angle, θS , could not be used to predict which surface would

receive more liquid after breakup. They postulated instead that whichever surface had the

smallest difference between θS and the receding contact angle, θR, would be the surface

that experienced the greatest amount of slip. This additional slip would then leave the

surface with a smaller drop of liquid on it after breakup than the surface with a larger

value of θS − θR. While our computations do not account for a difference between static

and dynamic contact angles, figure 2.7 agrees with Gupta et al.’s conclusion that the liquid

transfer should depend on the dynamic contact angle. It should also be noted that the

experiments by Gupta et al. (2007) did not test whether θS −θR or simply θR could explain

the trends in their data, as the plate with the largest value of θS − θR was also the plate

with the lowest θR in the experiments discussed. We note that there are also several

experimental and theoretical studies examining liquid transfer between flat plates in the

quasi-static regime (Chadov and Yakhnin, 1979; Darhuber et al., 2001; Kang et al., 2009),

which are not discussed here.

The results from this section illustrate the rich nature of the problem of stretching

liquid bridges with dynamic contact lines. Even when ignoring the relationship between

contact line velocity and dynamic contact angle (see the review by Blake (2006) for more
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Figure 2.9: Liquid bridge shapes at various times for Ca = 0.1, rc = 0.8, rs = 0.3, Ca = 0.1 and
θleft = θright = 70◦. The thick black line on the right-hand side of the plot shows the outline
of the gravure cavity.

information), we observe a diverse range of breakup behaviors. We have shown that more

liquid rests on the plate with the lowest contact angle after breakup, and that the amount

of liquid is proportional to the difference in contact angle between the two plates. We also

find that this difference becomes more important as the capillary number is decreased, i.e.

as surface tension becomes more important, the difference in wettability between the two

surfaces has a greater effect on liquid transfer. The next step is to address the effect that

cavities with corners and slanted walls have on liquid transfer.

2.4 Results: Trapezoidal cavities

If we replace one of the flat plates with a trapezoidal cavity (figure 2.2), we find that the

evolution of the free surface, and thus the liquid transfer, is quite different. Figure 2.9

shows the evolution of the interface shape at Ca = 0.1, θleft = θright = 70◦, rc = 0.8, and

rs = 0.3. For this computation, the right plate was initially touching the top of the cavity,

such that L(t = 0) = 0, and the liquid meniscus was placed slightly below the upper cavity

corner, similar to the example shown in figure 2.2. The interface was allowed to reach a

static equilibrium shape from a cylindrical shape before stretching began, as discussed at

the end of section 2.2.3. As the bridge thins, the contact line initially slips down both

plates. However, despite having the same contact angle on both plates, the liquid slips

down the left plate much more slowly than the right plate. This is shown in figure 2.10(a),

which plots the time evolution of the contact line position on both plates, as well as the

minimum bridge radius. The relatively slow slippage of the left contact line down the cavity
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Figure 2.10: Results from a computation at the same conditions as figure 2.9. Panel (a) shows the time
evolution of the minimum bridge radius (—), the left contact line position (−−), and the
right contact line position (− · −). Panel (b) shows the fraction of liquid on either the left
(—) or the right (−−) of the minimum.

wall creates a large difference in the size of the drop resting on either plate after breakup.

Figure 2.10(b), which shows the evolution of the fraction of liquid on either the left or right

of the minimum bridge radius, indicates the same trend, with φ ≈ 0.2, despite both plates

having the same contact angle. This is in contrast to our observations on liquid transfer

with flat plates, where we find that when ∆θ = 0, φ = 0.5.

To explain this difference in slip down flat plates and cavities, it is useful to examine the

pressure contours near the contact lines, as is shown in figure 2.11 for the same conditions

as the computation presented in figures 2.9 and 2.10. The contour plots were created for

results taken at a dimensionless time t ≈ 0.4, which was just before the left contact line

pinned. At the right plate (figure 2.11(b)), the pressure gets very high near the contact line,

and decreases gradually as the distance from the contact line is increased. This indicates

a strong driving force pumping liquid from the right contact line towards the rest of the

bridge, causing the contact line to slip down the plate. The pressure also increases at the

left contact line (figure 2.11(a)), but not nearly as much as at the right contact line. The

relatively small driving force for flow at the left contact line, compared to the right contact

line, creates the effective contact line pinning observed on the cavity wall.

The relatively low pressure gradient at the left plate can be explained by noting that

the curvature of the free surface near the cavity wall is nearly constant. Because the plate

is angled towards the inside of the bridge, the liquid interface does not need to deform as

much as it approaches the cavity wall to maintain a constant contact angle as it does when

it approaches the flat plate. Therefore, while a large pressure gradient develops near the

right plate due to capillary forces, the gradient near the left plate remains small, producing

the contact line pinning observed in figure 2.10.

Figure 2.12 shows how φ varies with the cavity aspect ratio at Ca = 0.1 for five com-
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Figure 2.11: Contours of the dimensionless pressure for a liquid bridge being stretched under the same
conditions as in figures 2.9 and 2.10. These plots were produced using results at a dimen-
sionless time of t ≈ 0.4. Panel (a) shows the liquid region near the contact line on the cavity
wall, while panel (b) shows the liquid region near the contact line on the flat plate

binations of contact angles. The initial cylindrical bridge was made to intersect the cavity

wall at the same axial position for all runs (see figure 2.13), so that the location of the

contact line relative to the cavity corners did not change as the cavity width was increased.

The results are shown in dimensionless form, using cavity depth as the characteristic length,

which is typically on the order of 50µm for industrial printing processes. As with the re-

sults presented in figures 2.9-2.11, the meniscus was initially located just beneath the upper

cavity corner, and the right plate was initially touching the top surface of the cavity, so

L(t = 0) = 0.

As was observed with flat plates, if the cavity geometry and θleft are fixed, φ rises as

θright falls, i.e. as the right plate is made more wettable it receives more liquid. Also, φ

rises as θleft rises for constant θright, i.e. as the cavity is made less wettable it receives less

liquid. Therefore, for a given cavity shape, the dependence of φ on the contact angles can be

understood through our results obtained using flat plates. If the cavity is made wider while

holding the contact angles fixed, more liquid is transferred to the right plate, indicating

that it is easier to empty wide cavities. This is due to the existence of two inherent time-

scales in the stretching bridge: the time required for breakup of the liquid bridge due to

rising capillary pressures in the neck, and the time it takes the contact line to slip off of

the cavity wall. With the former, one would expect that this time depends only on the

initial thickness of the bridge, and not on external parameters such as the cavity geometry

or contact angles, whereas the wall slip time should depend strongly on both the cavity

geometry and the contact angle. If a wide cavity is used, the capillary breakup timescale

will be larger than for a narrow cavity because the bridge is thicker. However, because the
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Figure 2.12: Mass fraction transferred to the right plate after breakup, φ, vs. cavity width for δ = 50µm,
rs = 15µm and Ca = 0.1. The curves represent (θleft/θright): 70/50 (◦), 70/70 (¤), 70/90
(△), 90/50 (•), 90/70 (¥).

Figure 2.13: Trapezoidal cavity geometries for the runs presented in figures 2.12 and 2.14. The left and
right lines represent the cavity and flat plate respectively. The dashed lines show the location
of the bridge symmetry axis (r = 0) for the aspect ratio listed on the right side of the figure.
The initial meniscus (—) for a run with θright = θleft = 70◦ is also included.
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Figure 2.14: As for figure 2.12, but at Ca = 0.01

slope of the cavity wall has not changed (figure 2.13), the time it takes the contact line to

slip down the wall and onto the cavity bottom will not have changed either. Therefore,

the contact line will be able to slip further down the cavity wall for a cavity with a large

aspect ratio, which will increase φ. In fact, at an aspect ratio of 2 and with θleft = 90◦, the

contact line has enough time to slip around the bottom corner of the cavity and onto the

cavity bottom, producing the sudden increase in φ for these widths.

Predictions at a lower capillary number, Ca = 0.01, are shown in figure 2.14. For nearly

all the contact angle combinations and geometries, φ has decreased from the values shown

in figure 2.12. While the optimal capillary number for liquid transfer depends on the sign of

∆θ when flat plates are used (figure 2.7), figures 2.12 and 2.14 show that φ increases with

increasing Ca when a cavity is present, except when rc/δ = 2, θright = 90◦ and θleft = 50◦,

where φ increases as Ca is decreased. This one data point occurs because, for this contact

angle/geometry combination, the contact line has enough time before the bridge breaks to

slip around the bottom corner and onto the flat base of the cavity. At this point, the system

behaves as if it were a bridge between flat plates, and so the large difference in wettability

drives liquid towards the right plate, completely emptying the cavity.

This decrease in liquid transfer normally observed is due to contact line pinning, which is

found to be stronger as the capillary number is lowered. As was discussed earlier, the right

contact line slips quickly down the flat plate due to the high capillary pressure gradient

developed there, relative to that seen on the cavity wall (figure 2.11). Therefore, if we

increase the effect of surface tension, we will also increase the capillary pressure gradient

developed near the right contact line, and so the liquid will slip down the flat plate more

quickly at a lower capillary number. However, the relatively constant curvature of the free

surface by the cavity wall (figure 2.11(a)) indicates that when surface tension forces are
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made stronger the capillary pressure gradient will not increase significantly. In fact, we

observed a slight decrease in the capillary pressure gradient because the stronger surface

tension forces further smoothed the curvature of the interface. Therefore, as the capillary

number is lowered, the contact line on the cavity wall pins more strongly while the contact

line on the flat plate slips more quickly, leading to much lower liquid transfers than at a

high Ca.

If the capillary number is increased to Ca = 1, the effect of plate wettability essentially

vanishes, as would be expected from our results with flat plates (see figure 2.5), and the

liquid transfer becomes only a weak function of contact angle (results not shown). However,

the effect of cavity aspect ratio remains significant, with larger cavities emptying more

completely than smaller cavities, for the same reason discussed above for Ca = 0.1.

Another parameter to study is the location of the contact line relative to the upper

cavity corner. This is an important parameter to understand because of its relevance to the

doctoring process in gravure printing, which is used to remove excess liquid from the area

between cavities. Doctoring can result in either over- or under-filled cavities, which will

affect the amount of liquid transferred onto the substrate. To model this, we no longer have

the right plate touching the top surface of the cavity, but instead will allow for a thin film of

liquid initially outside the cavity. We assume an initial dimensionless gap of L(t = 0) = 0.07

units between the top of the cavity and the flat plate. This distance was chosen to be as

small as possible, without producing excessive mesh distortion during the early stages of

stretching. For this analysis, we chose rs = 0.3, rc = 0.8, and varied the initial meniscus

position from 0.6 to 1.4. This value corresponds to the radius of the initially cylindrical

bridge of liquid that is allowed to relax to a steady state configuration, as discussed in the

last paragraph of section 2.2.3. Figure 2.15(a) shows some examples of this initial meniscus

shape for θleft = θright = 70◦.

Figure 2.15(b) shows that as the meniscus is moved further up the cavity wall, φ increases

for all contact angle combinations considered. If the meniscus initially lies far down the

cavity wall, the contact line motion will be slow because it will pin in place quickly, as was

noted earlier. This results in a large amount of liquid being unavailable for transfer to the

right plate. However, as we move the meniscus up the cavity wall, the wall becomes less

slanted, eventually resembling a flat plate. This change in the cavity topography allows the

contact line to move more freely down the upper portion of the wall, resulting in an increase

in the fraction of liquid that can be transferred to the right plate. When the meniscus lies

well within the cavity, as shown by the bottom interface profile in figure 2.15(a), the low

liquid transfer is likely due to the disparity between the initial radial position of the right

and left contact lines, which has produced a very thin initial bridge. However, for all the

other initial conditions this effect does not appear to be large.

The results presented in this section highlight the effect that geometrical features, such

as corners and slanted walls, have on liquid transfer. We find that the relatively constant
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Figure 2.15: (a) Initial meniscus locations (− − −) for computations with θleft = θright = 70◦. The left
and right lines represent the cavity and flat plate respectively, and the liquid lies beneath
the dashed line. The numerical value to the right of each meniscus profile corresponds to the
initial liquid level used when representing the results. (b) Mass fraction transferred to the
right plate after breakup, φ, vs. initial meniscus position for rs = 0.3, rc = 0.8, and Ca = 0.1.
The curves represent (θleft/θright): 70/70 (¤), 70/90 (△), 90/70 (¥).

interfacial curvature near the cavity wall produces a correspondingly small pressure gradient

near the contact line, relative to that developed near the flat plate. This allows the contact

line to pin in place on the cavity wall, while the contact line on the flat plate is forced to

slip down the plate. The pinning event has a significant effect on liquid transfer, decreasing

the amount of liquid found on the moving plate after breakup relative to the computations

with flat plates. If the cavity is made wider, more liquid is transferred to the flat plate. This

is because a wider cavity allows the liquid to slip a greater distance down the cavity wall

before breakup. Finally, if the initial position of the contact line is moved up the cavity

wall, we find that contact line pinning is delayed, allowing the bridge to stretch further

before breakup. This increase in stretching time allows for a greater fraction of liquid to be

transferred to the flat plate, indicating that an over-filled cavity will transfer liquid more

efficiently.

2.5 Comparison to the Rayleigh-Plateau limit

If surface tension is dominant, a stretching liquid bridge will progress through a series of

equilibrium shapes, determined by conservation of mass and the Young-Laplace equation

of capillarity. This concept has been applied frequently in the literature to simplify the

computation of the interface shape at low capillary numbers (Pepin et al., 2000; Urso et al.,

2002; Cai and Bhushan, 2008; De Souza et al., 2008; Vagharchakian et al., 2009). However,

it is not clear at which capillary numbers this quasi-static assumption becomes applicable,

and when viscosity needs to be incorporated in the model. A comparison of our results

on stretching liquid bridges to the static Rayleigh-Plateau limit (RPL), which states that
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Figure 2.16: Schematic of the system considered for figure 2.17

a cylinder of liquid with a length greater than its circumference is unstable, could provide

an upper bound on the capillary number for which a quasi-static assumption can be used,

and could also provide insight into the nature of the stabilizing effect of viscosity on the

stretching bridge. We note that one could perform a comparison between our results and

the stability of a surface of revolution, such as a nodoid, but we choose to compare to the

RPL because the comparison is much simpler.

To do this, we have tracked the length of the bridge, Lbrid, defined as the axial distance

between the two contact points, as the bridge thins. If we then consider a static cylinder of

length Lbrid and radius rmin, as shown in figure 2.16, we can apply the RPL to determine

whether this liquid cylinder is stable. The value of Lbrid(t) at which the hypothetical

cylinder is elongated just enough that it is unstable is referred to as LRP . This length

is then compared to the final breakup length, Lbreakup, as seen in figure 2.17, for the data

presented in this chapter with two moving contact lines. The solid line in the plots represents

the line LRP = Lbreakup. A data point that lies on this line represents a computation

where the bridge broke immediately after the hypothetical cylinder reached the RPL. Figure

2.17(a) shows results for a capillary number of 0.1. The data is shifted to the right of the

RPL, indicating that the bridge was able to stretch beyond where the hypothetical cylinder

becomes unstable. This implies that viscosity acts to stabilize the bridge during stretching,

which has already been noted for flat plates (Gaudet et al., 1996). This stabilization occurs

because the viscous normal stresses, which become more important as Ca is increased,

oppose surface tension driven thinning. It is interesting to observe that, despite covering a

wide range of contact angles, initial conditions and cavity geometries, all of the data points

for flat plates appear to lie on a single line, while all the results for cavities appear to lie on

another line. This indicates that the role viscosity plays in stabilizing the stretching bridge

depends only on the inclination of the cavity wall. In fact, the two computations where the

liquid was able to slip onto the flat cavity bottom (seen at Lbreakup ≈ 5 and 5.5 in figure
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Figure 2.17: A comparison of the length at which a static cylinder with Lbrid and rmin becomes unstable
to the final bridge length. The line LRP = Lbreakup (—) is plotted along with the results
presented in this chapter for both flat plates with unpinned contact lines (◦) and cavities (•).
Panel (a) presents data for Ca = 0.1 and Panel (b) for Ca = 0.01.

2.17)(a), appear to fall on the trend line for flat plates. This provides further support for

our hypothesis that the inclination of the plate is the only factor determining the level of

stabilization of the bridge.

At a lower capillary number the bridge breaks shortly after the hypothetical cylinder

reaches the RPL, regardless of the contact angle or plate geometry, as shown in figure

2.17(b). While not all of the data lies on the line LRP = Lbreakup, there is very little devia-

tion, and a further decrease in the capillary number is expected to improve the agreement

between LRP and Lbreakup. This is a surprising observation because the RPL is valid for

static cylinders of liquid, whereas we have modeled highly curved, stretching interfaces with

both flat plates and cavities, as is shown in figure 2.16. However, the agreement between our

dynamic results and the static RPL indicates that, at a capillary number below Ca ≈ 0.01,

our system can be treated as if it were in a quasi-static state.

The analysis presented in this section has shown that the effect of viscosity on stabilizing

a stretching liquid bridge depends only on the inclination of the end plates and not any

other geometrical feature, contact angles, or initial condition. Also, we have shown that

at a low capillary number, the breakup length of stretching liquid bridges agrees with the

Rayleigh-Plateau limit applied to a static cylinder of liquid with radius rmin and length

Lbrid. While this analysis does not aid in predicting the breakup length of the bridge before

performing a computation, it does provide an upper bound on the capillary number for

which a quasi-static analysis (Pepin et al., 2000; Urso et al., 2002; Cai and Bhushan, 2008;

De Souza et al., 2008; Vagharchakian et al., 2009) can be trusted. This is an important

finding because quasi-static analyses are much less computationally intense than transient,

2D FEM computations.
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2.6 Conclusions

We have used a 2D Galerkin FEM to study the stretching of axisymmetric liquid bridges

in Stokes flow, while allowing the contact lines to slip along the end plates. If both surfaces

are flat and have the same contact angle (∆θ = 0), then the size and shape of the droplet

resting on either plate after breakup are identical. If there is a difference in wettability

between the two surfaces, more liquid is found after breakup on whichever surface has the

lower contact angle, or the higher wettability. The relative amount of liquid on either

plate is then determined by the capillary number, with a low capillary number producing

a much larger drop on the surface with the higher wettability, and a high capillary number

producing nearly equal-sized drops on both surfaces. The presence of a cavity on one of

the plates was also studied in an attempt to understand how geometric features affect the

breakup dynamics. The qualitative conclusions from this work can be applied to any curved

surface, though the cavity shape chosen was motivated by gravure printing. We find that the

constant interfacial curvature in the vicinity of the contact line on the cavity wall produces

a smaller pressure gradient than is observed on the flat plate, which forces the contact line

to pin in place on the cavity wall. Because contact line pinning is tied to the curvature of

the interface, we find that a lower capillary number produces stronger pinning, and thus

smaller drops on the flat plate, unless the cavity is both wide and hydrophobic enough to

allow the contact line to slip onto the cavity base. At this point, the large difference in

wettability between the two plates drives liquid towards the flat plate, and a higher liquid

transfer is observed at a lower capillary number.

While we did not perform any studies to determine the effect of the cavity wall incli-

nation, rs, we can postulate the effect that varying this parameter would have on contact

line slip, and thus liquid transfer. If rs is increased the inclination of the cavity wall will

decrease, producing a flat plate in the limit that rs → ∞. Because contact line pinning

does not occur on flat plates, we therefore expect to observe weaker pinning on the cavity

wall as rs increases, which will lead to higher liquid transfer. Conversely, if we decrease rs

and so increase the inclination of the cavity wall, we would expect to see stronger contact

line pinning, and thus a decrease in liquid transfer.

Finally, we performed a simple analysis comparing the breakup length of the stretch-

ing bridges to the Rayleigh-Plateau limit by comparing the maximum stable length of a

hypothetical cylinder of static liquid with a radius given by the minimum radius of the

bridge, to the breakup length of the bridge for the data presented in this chapter with

two moving contact lines. At a capillary number of 0.1 we find that the bridges are able

to stretch beyond the point where the hypothetical cylinder becomes unstable, and that

the additional distance the bridge stretches depends on the inclination of the cavity wall,

but not on the cavity width, contact angle combination, or initial meniscus location. This

indicates that the stabilizing effect of viscosity is related to how strongly the contact line

pins on the cavity wall, which is the manifestation of increasing the inclination of the cavity
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wall. At a capillary number of 0.01 the bridge broke at approximately the same length that

the hypothetical cylinder became unstable, regardless of the shape of the plates or combina-

tion of contact angles. This agreement between the breakup length of our stretching liquid

bridges and the static model allows us to set an upper bound on the capillary numbers for

which the often used quasi-static approximation (Pepin et al., 2000; Urso et al., 2002; Cai

and Bhushan, 2008; De Souza et al., 2008; Vagharchakian et al., 2009) can be applied when

modeling stretching liquid bridges.

The present work provides an important extension of previous work on stretching liquid

bridges by considering the effect of contact line slip along flat plates and plates with cavities.

These results are applicable to any system with chemically different plates and plates with

corners or slanted walls, but they are especially relevant to the gravure printing process,

because an understanding of the cavity emptying process will aid the gravure practitioner

in designing gravure rolls that can print smaller features than is currently possible. While

industrial printing inks are rarely Newtonian and the cavities are not normally axisym-

metric, the incorporation of moving contact lines and geometrical features with Newtonian

liquid bridges provides an important first step in the analysis of industrial printing pro-

cesses. However, non-Newtonian effects can produce drastically different breakup shapes

from stretching Newtonian liquid bridges and jets (Yao and McKinley, 1998; Renardy, 2002;

Doshi et al., 2003; Renardy and Renardy, 2004; Yildirim and Basaran, 2001), and therefore

it is important to understand their effect on liquid transfer to improve our understanding

of industrial printing processes.

Another important effect to study is the interaction of liquid between multiple cavi-

ties (Chuang et al., 2008). If a continuous pattern is to be printed, it is generally done

by transferring liquid from multiple cavities spaced closely together, so that the printed

droplets can combine to create a continuous feature. This interaction is especially impor-

tant when printing electronic circuits, because if two drops do not connect the circuit will

not function properly. To model these systems, however, requires a 3D FEM model, devel-

oped in chapter 4. Such a model would also allow us to describe non-axisymmetric bridge

shapes and stretching velocities, such as combinations of shear and extensional motion,

which has already been shown to improve liquid transfer in 2D planar systems (Hoda and

Kumar, 2008).



CHAPTER 3

Stretching liquid bridges with inertia

Liquid bridges with moving contact lines are found in a variety of settings, such as capillary

feeders and high-speed printing. Although it is often assumed that the length scale for

these flows is small enough that inertial effects can be neglected, this is not the case in

certain applications. To address this issue, we solve the Navier-Stokes equations with the

finite element method for the stretching of a liquid drop between two surfaces for non-zero

Reynolds numbers. We consider an axisymmetric liquid bridge between a moving flat plate

and either a stationary flat plate or a cavity. The contact lines are allowed to slip, and we

evaluate the effect of the Reynolds number and contact angles on the transfer of liquid to

the moving plate. In the case of two flat plates, we find that inertia forces the interface to

map onto a similarity solution in a manner that shifts the breakup point toward the more

wettable surface. Inertia and wettability are thus competing effects, with inertia driving

fluid toward the surface with the higher contact angle, and wettability driving fluid toward

the surface with the lower contact angle. When a cavity is present, contact line pinning

on the cavity wall biases breakup toward the cavity as the Reynolds number is increased,

leading to improved cavity emptying. As the flat plate is made more wettable, a second

pinch-off point can form near that plate, leading to a satellite drop and a reduction in liquid

transfer to the plate. Therefore, higher liquid transfer is not always obtained with a more

wettable substrate when inertia is present, in contrast to Stokes flow. We also compare our

results to those obtained using a model based on the long-wave approximation and find

good qualitative agreement, with the long-wave model overpredicting the amount of liquid

transferred after breakup.1

1This chapter is reproduced with minor modifications from S. Dodds, M. S. Carvalho, and S. Kumar.
“Stretching Liquid Bridges with Moving Contact Lines: The Role of Inertia”, accepted for publication in

Physics of Fluids
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3.1 Introduction

Liquid columns are relevant to a variety of industrial (Gaudet et al., 1996; Yao and McKin-

ley, 1998; Meseguer and Sanz, 1985; Powell et al., 2002; Cai and Bhushan, 2008; Vogel and

Steen, 2010) and natural (Vogel and Steen, 2010; Prakash et al., 2008; Reis et al., 2010)

systems, and as such, they have been the subject of research for nearly 150 years (Plateau,

1863; Eggers, 1997; Eggers and Villermaux, 2008). A convenient platform often used to

study liquid columns is the liquid bridge, which consists of a drop of liquid connecting two

solid surfaces that can be stretched apart. To simplify both computational and experimen-

tal analyses of liquid bridges, the three-phase contact line at the intersection of the solid,

liquid, and gas phases is often pinned in place. While this is a reasonable approximation in

some applications, such as extensional rheometry (Yao and McKinley, 1998) and float-zone

crystallization (Meseguer and Sanz, 1985), it is not true for all systems. In fact, the motion

of the contact line often plays a key role in the bridge dynamics, and thus it is vital to

understand this effect for many applications (Powell et al., 2002; Cai and Bhushan, 2008;

Vogel and Steen, 2010; Prakash et al., 2008). This is especially true for industrial print-

ing processes, where it is desirable for the contact lines to slip along the surfaces, so that

the amount of liquid transferred from one surface to another can be maximized. Despite

their importance, the effects of contact line motion and surface wettability on liquid bridge

dynamics have received very little attention until recently (Powell et al., 2002; Cai and

Bhushan, 2008; De Souza et al., 2008; Vagharchakian et al., 2009; Balu et al., 2009; Dodds

et al., 2009; Villaneuva et al., 2007; Gupta et al., 2007; Qian et al., 2009; Qian and Breuer,

2011).

A common motivation for the study of liquid bridges is the printing and patterning

of small-scale features, which includes various techniques such as contact drop dispensing

(Qian and Breuer, 2011) and gravure printing (Dodds et al., 2009). In these processes,

current interest is often in producing small features, typically 10 µm or less. These small

length scales, combined with stretching speeds on the order of cm/s or lower, allow the

inertial terms in the Navier-Stokes equations to be ignored, greatly simplifying theoretical

analysis of the stretching and breakup process. However, not all printed patterns are this

small, and gravure in particular is often used to produce features on the order of hundreds of

microns. In particular, the solution processing of electronic devices often requires features

on this length scale (Mäkelä et al., 2005; Pudas et al., 2005). At these scales inertial forces

can become significant, resulting in nonlinear effects that produce substantial departures

from the bridge behavior observed in Stokes flow, such as the formation of secondary drops

during breakup.

Gravure is a common printing and coating technique that is currently used in the pro-

duction of a variety of consumer products, such as magazines, stamps, and packaging (Ka-

sunich, 1998; Kipphan, 2001). In gravure, a network of micron-sized cavities is engraved

into the surface of a cylindrical roll. The cavities are filled with liquid and then pressed
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against a substrate, transferring liquid wherever there is a cavity. To date, most of the work

on gravure has focused on coating (Patel and Benkreira, 1991; Benkreira and Patel, 1993;

Schwartz et al., 1998; Kapur et al., 2001; Schwartz, 2002; Kapur, 2003; Hewson et al., 2010),

where the goal is to produce a continuous film, as opposed to printing, where a discrete

pattern is desired. This seemingly subtle difference between the two techniques leads to

fundamental differences in the fluid mechanics. In coating, for example, the cavities are

organized in a way that promotes hydrodynamic interaction between each cavity, so that

the features merge properly and a uniform film is produced over the entire substrate. In

printing, however, this merging would ruin any discrete patterns, and so proper spacing

between each feature must be included. This results in completely different flow profiles for

coating and printing, and thus separate studies are required to understand and optimize

the dynamics of each process.

There has been a recent burst of activity on gravure printing (Chuang et al., 2008; Hoda

and Kumar, 2008; Huang et al., 2008; Kang et al., 2009) due to its ability to produce small

features at high speeds, making gravure a promising technique for the large-scale production

of electronic devices (Pudas et al., 2005; Krebs, 2009; Noh et al., 2010) and solar cells (Santa-

Nokki et al., 2006; Ding et al., 2009; Kopola et al., 2010). A key step in the printing process

is the transfer of liquid between two surfaces, which is difficult to visualize directly due to

the high speeds and small length scales involved in gravure. Therefore, theoretical analysis

provides the best opportunity to understand the dynamics of cavity emptying. In chapter

2, we used a two-dimensional (2D) axisymmetric Stokes flow model to study the emptying

of a single cavity. They found that while the wettability of the two surfaces is a key factor

in controlling liquid transfer when both of the surfaces are flat, the presence of a cavity on

one of the surfaces alters the dynamics significantly. In this case, the contact line effectively

pins along the cavity wall, causing the liquid transfer to the flat surface to decrease. This

pinning can be overcome by making the surface of the cavity non-wetting, which increases

the dewetting speed, or by increasing the cavity width, which gives the contact line more

time to slip off the cavity wall before breakup.

While there have been several other studies on the fluid mechanics of gravure printing

(Lee and Na, 2010; Kim and Na, 2010; Lee et al., 2010; Ahmed et al., 2011; Ghadiri et al.,

2011), the role of inertia on the dynamics of breakup and liquid transfer has not yet been

studied systematically. The nonlinear nature of the Navier-Stokes equations makes it diffi-

cult to infer how inertia will modify results obtained in Stokes flow. In particular, the way

in which inertia interacts with wettability and/or cavity geometry to produce changes in

the amount of liquid transferred represents a fundamentally important relationship that to

date has not been examined in the literature. The primary goal of this chapter is to better

understand this interaction.

The role of inertia on the asymptotics of breakup of liquid columns is well understood,

with several studies describing the self-similarity of breakup when inertia is present (Papa-
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georgiou, 1995; Eggers, 1993; Chen and Steen, 1997; Chen et al., 2002). It has been shown

that while the interface shape and velocity are symmetric about the breakup point in Stokes

flow (Papageorgiou, 1995), this symmetry is broken when inertial effects are considered (Eg-

gers, 1993). As we will show, this has significant implications for the shape of liquid bridges

at breakup, including the production or suppression of satellite drops, which are secondary

drops that form between the two primary ones. Satellite drops are generally considered to

be undesirable because if a satellite does not merge with one of the two primary drops, it

could land elsewhere on the printed image and decrease the fidelity of the final pattern.

Additionally, if the drop is entrained as a mist this can waste potentially valuable com-

pounds, and pose a health hazard if the liquid is toxic. The asymptotic analyses performed

in the above references cannot say anything about the behavior of the bridge far away from

breakup, and the effect of variables such as surface geometry and wettability remains un-

known. Therefore, an improved understanding of the conditions under which satellite drops

are formed is an important practical matter, as well as a topic of fundamental scientific

interest.

In this chapter we solve the Navier-Stokes equations with the appropriate boundary

conditions using the finite element method (FEM), to study the transfer of liquid from a

stationary to a moving plate during stretching of an axisymmetric liquid bridge. To account

for variations in the wettability of the two surfaces, we allow the contact lines to slip along

the solid plates using a Navier slip law, while holding the contact angle constant. Our

goal is to understand how wettability and inertial effects interact to produce changes in

breakup shape and liquid transfer. We first use a 2D axisymmetric model (section 3.2)

to study the effect of the Reynolds number and contact angle on the breakup of liquid

bridges stretched between two flat plates (section 3.3 and figure 3.1(a)). We then compare

the results from our 2D model to those from a simpler one-dimensional (1D) long-wave

model (section 3.4), which has been used extensively in the study of liquid bridges and

jets (Eggers, 1993; Papageorgiou, 1995; Zhang et al., 1996; Doshi et al., 2003; Yildirim and

Basaran, 2001; Ambravaneswaran and Basaran, 1999; Liao et al., 2006; Qian and Breuer,

2011; Panditaratne, 2003; Bhat et al., 2010). Finally, we use our 2D model to study the

stretching of a liquid bridge between a trapezoidal cavity and a flat plate (section 3.5 and

figure 3.1(b)) to understand how changes in wettability and surface geometry alter liquid

bridge dynamics.

3.2 Problem formulation

3.2.1 2D axisymmetric model

Our system consists of an axisymmetric liquid bridge with a constant volume V , viscosity

µ, surface tension σ, and density ρ. We scale length with the initial liquid bridge radius R,

velocity with the constant extensional velocity U , time with R/U , and pressure with µU/R.
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Figure 3.1: Schematics of the geometries considered in this work. (a) A liquid bridge between two flat
plates, and (b) a liquid bridge between a cavity and a flat plate.

We can define a Reynolds number Re = ρUR/µ, which represents a ratio of inertial to

viscous forces, such that the Navier-Stokes equations can be written in dimensionless form:

Re
Dv

Dt
= −∇P + ∇2v, (3.1)

∇ · v = 0, (3.2)

where v is the velocity and P is the pressure. We assume that the outer phase is a low

viscosity gas, and thus ignore its effect on the dynamics of the liquid bridge.

At the gas-liquid interface, we must conserve mass and momentum, leading to the

kinematic and interfacial stress boundary conditions:

n · v = 0, (3.3)

n · T = − κ

Ca
n, (3.4)

where n is the outward pointing normal at the interface, T is the total stress tensor, Ca =

µU/σ is the capillary number, which is a ratio of viscous to surface tension forces, and

κ is the curvature of the interface. We take the pressure of the ambient gas surrounding

the liquid bridge to be zero when writing equation (3.4) without loss of generality, as this

simply sets the pressure datum for the system.

The liquid is thus parametrized by two dimensionless variables, Re and Ca. It should be

noted that one could instead scale length with R and time with the capillary breakup time,

tc ∼
√

ρR3/σ, leading to a velocity scale of R/tc. In this case the problem is characterised

by an Ohnesorge number, Oh = µ/
√

ρRσ, which is a capillary number with a velocity of
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R/tc, and a Weber number, We = ρRU2/σ, which is a ratio of inertial to surface tension

forces. We choose Re and Ca for this work because this allows us to easily isolate the role

of inertia on the dynamics of the bridge, though understanding the role of viscosity and

stretching speed becomes more difficult as these parameters appear in both Ca and Re.

To finish specifying the boundary conditions in our system, we apply no-slip and no-

penetration conditions at the two solid surfaces (figure 3.1):

t · v = 0, at z = 0, L(t), (3.5)

n · v =







0 for z = 0,

1 for z = L(t),
(3.6)

and because we are studying axisymmetric cylindrical liquid bridges, we impose symmetry

boundary conditions along the bridge axis:

t · (n · T) = 0, (3.7)

n · v = 0, (3.8)

where t and n are the tangent and normal vectors to the solid surfaces or the symmetry

line.

We allow the contact lines to slip along the solid surfaces by replacing (3.5) at the contact

line with the Navier slip boundary condition, while fixing the contact angle θ instead of the

contact line position:

twall · (nwall · T) =
1

β
twall · v, (3.9)

nwall · n = cos (θ) , (3.10)

where twall and nwall are the tangent and normal vectors at the solid surface, n is the

outward pointing normal at the liquid-gas interface, and β is the slip coefficient. We set β

to 1010 for all computations, producing a shear-free contact line. While our treatment of

the contact line neglects the dependence of the contact angle on the slip velocity (Blake,

2006), one would expect the results predicted from this approach to be qualitatively similar

to those obtained with a more realistic model. Therefore, as in our previous work in the

Stokes-flow regime (chapter 2), we assume that despite utilizing such a simplistic slip model

we are able to capture the essential features of stretching liquid bridges with moving contact

lines.

Finally, as in chapter 2, we consider two different geometries for the stationary left

surface. We first consider a flat plate, defined simply by the plane z = 0 (figure 3.1(a)). In
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the second case, we use a hyperbolic tangent function to define a cavity wall (figure 3.1(b)):

z =
1

2
δ

(

1 − tanh

(

r − rc

rs

))

, (3.11)

where r and z are the radial and axial positions along the wall, δ is the depth of the cavity,

rc corresponds to the distance from the axis of symmetry to the center of the wall, and rs

is related to the curvature of the corners and to the steepness of the cavity wall. Sharp

corners and steep walls are obtained by using small values of rs.

To solve equations (3.1)-(3.10) we use the finite element method along with elliptic mesh

generation to track the interface, and a second-order trapezoid rule scheme to perform the

time integration. The details of the methods used are described in chapter 2 in detail, and

so are not repeated here.

3.2.2 1D long-wave model

A common approach used when studying liquid jets and bridges is to assume that varia-

tions in the interface shape are small when compared to the length of the jet/bridge. This

leads to a set of greatly simplified lubrication (or long-wave) equations governing the ax-

ial velocity and the interface shape. This approximation has been widely used because it

provides a simple enough description of the liquid to allow analytical (Eggers, 1993) and

efficient numerical solutions (Zhang et al., 1996), while maintaining good agreement with

experiments (Zhang et al., 1996; van Hoeve et al., 2010) and with 2D axisymmetric compu-

tations (Yildirim and Basaran, 2001; Eggers and Dupont, 1994). However, the long-wave

model has been used to describe systems with moving contact lines in only one study to

date (Qian and Breuer, 2011), and it has not been systematically validated against a full

solution of the Navier-Stokes equations to determine its ability to capture the dynamics of

moving contact lines.

If we define ǫ as the ratio of the length scale of variations in the interface position to

the length of the bridge, we can perform an asymptotic expansion in the axial velocity v

and pressure p:

v(r, z) =vo(z) + ǫv1(z) + ǫ2v2(z) + · · ·
p(r, z) =po(z) + ǫp1(z) + ǫ2p2(z) + · · ·

(3.12)

Because the radial dependence in this expansion appears in the small parameter ǫ, this

indicates that to leading order the variables are constant along a radial slice of fluid. This

has important implications when modeling moving contact lines, as will be discussed later.

We can now substitute equation (3.12) into equations (3.1)-(3.4) to obtain the following set

of evolution equations at leading order (Eggers and Dupont, 1994), while dropping the ‘o’
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subscripts for clarity:

Re (vt + vvz) = − 1

Ca
κz+

3

h2

(

h2vz

)

z
,

ht + vhz+
1

2
hvz = 0,

(3.13)

where h is the interface position, κ is the curvature:

κ =
1

h (1 + h2
z)

1/2
− hzz

(1 + h2
z)

3/2
, (3.14)

and all other variables have the same definition as in the previous section. As in Eggers and

Dupont (1994), we keep the full curvature term to allow for a more accurate description of

the interface.

To solve these equations, we use the finite element method as described in Zhang et al.

(1996). This requires the introduction of a new variable, Ω, which augments equations

(3.13):

Ω − ∂h

∂z
= 0. (3.15)

We take this approach to decrease the order of equations (3.13) from third-order in height

to second-order, allowing the use of lower-order basis functions in our FEM analysis.

The boundary conditions that we apply on the velocity are no-penetration at either

plate:

v(z = 0; t) = 0, v(z = L; t) = 1. (3.16)

For h, we set either the position of the contact line or the contact angle. In the first case,

the height at both plates is fixed, and no boundary conditions are applied on Ω:

h(z = 0, L; t) = 1. (3.17)

If we instead wish to fix the contact angle we can use a simple geometric relation between

Ω and θ, since:

Ω =
∂h

∂z
= cot(θ). (3.18)

In this case, we apply the contact angle as a Dirichlet condition on Ω, and we apply no

boundary conditions on h.

Because the radial velocity is ignored in this framework, we cannot impose a slip law. If

we substitute the expansion (3.12) into the Navier slip law (3.9), we find that the slip law

does not appear at leading order. Therefore, neglecting Navier slip is consistent with the

1D model. The contact line is thus able to move freely over the solid, which allows for a fair

comparison with our 2D model, where the slip parameter was chosen to be large enough so

that the contact line is shear-stress free.

Finally, we do not compare the 1D and 2D models when a cavity is present. Because
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the 1D model only contains information about the interface, it is unable to capture the

dynamics of the liquid deep within the cavity, where there is no interface.

3.2.3 Selection of parameters for study

The liquid bridge systems in this study provide a rich parameter space characterized by

Re, Ca, the left (θleft) and right (θright) contact angles, the cavity dimensions (δ, rc, and

rs), the liquid volume, and the initial interface shape and liquid velocity profile. In this

work, we restrict our study to understanding how inertia, wettability, and surface geometry

interact to modify the stretching dynamics of the liquid bridges.

For most printing processes, length scales vary from roughly 1-500 µm, the liquid viscos-

ity can be anywhere from 1 to 100 cp, and stretching speeds range from 0.01-1 m/s. If we

take the liquid density to be similar to that of water, and the surface tension to be between

20-70 mN/m, we get Re ≈ 10−4 - 102 and Ca ≈ 10−4 - 1. Based on the results in chapter

2, we fix the capillary number at Ca = 0.1, vary the contact angles between 50◦ and 90◦,

and have chosen to use one wide (rc = 0.90, rs = 0.14, δ = 0.45) and one narrow (rc = 0.8,

rs = 0.3, δ = 1.0) cavity. To evaluate the effect of inertia, we vary the Reynolds number

from Re = 0 to 100, choosing specifically Re = 0, 0.1, 1, 10, and 100 for all runs.

The initial bridge shape and velocity for the liquid present us with additional variables

which can be adjusted. In the case of flat plates, we begin with a cylinder of liquid that has a

length equal to its radius. We then solve either our 1D or 2D model equations holding both

plates still until a steady-state is achieved, which provides the initial interface shape. For the

velocity, we note that because the system is Galilean invariant (Papageorgiou, 1995), pulling

only one plate at a velocity of U gives the same result as pulling both plates apart at a

velocity of ±U/2, so long as the bridge initially has a linear velocity profile that matches with

these boundary conditions. Otherwise, there would be an initial acceleration during the first

time step as the top plate goes from static to moving, which would violate the assumption

that our system is in an inertial reference frame, as discussed in Ambravaneswaran and

Basaran (1999). To achieve this linear velocity profile in a manner that is consistent with

our equilibrium bridge shape, we use the Stokes-flow solution from the first time step after

stretching from equilibrium (at t = 10−6) as our initial condition for computations where

Re 6= 0.

When the left plate has a trapezoidal cavity, the procedure for developing the initial

condition is similar to that for flat plates. The right plate is initially in contact with the

top of the cavity so that L(t = 0) = 0, and the liquid meniscus is placed slightly below the

upper cavity corner (see figure 2.13, where the cavity shapes studied in this work are for

aspect ratios of 0.8 and 2.0). As when only flat plates are present, we allow the interface

to achieve an equilibrium shape, and then use the Stokes-flow solution from the first time

step during stretching as our initial condition when Re 6= 0.
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Figure 3.2: Interface shapes near breakup for Re = 0, 0.1, 1, 10, and 100, for a liquid bridge with θleft =
θright = 50◦ and Ca = 0.1.

3.3 Results: Flat plates

We first consider a case where the two plates have the same contact angle, θleft = θright =

50◦. Figure 3.2 shows the interface as the bridge approaches breakup for Re = 0, 0.1, 1, 10,

and 100. As the bridge is stretched it thins in its middle to conserve mass, resulting in two

large drops resting on either plate that are connected by a thin fluid thread. This leads to an

increased capillary pressure in the thread due to the increased azimuthal curvature, which

pumps fluid out of the neck and accelerates breakup. As the Reynolds number increases, the

relative strength of inertia to viscosity also increases. This slows the diffusion of momentum

and thus the fluid in the neck becomes more difficult to accelerate, resulting in a bridge that

is able to stretch further as Re is increased (see figure 3.2). A consequence of the increased

stretching length is the production of satellite drops, which have been observed previously

with pinned contact lines (Zhang et al., 1996). As the neck thins it can become extremely

elongated, leading to two pinch-off events and the formation of a satellite drop, which is

observed in figure 3.2 at Re = 1, 10, and 100. However, the breakup remains symmetric

about the bridge mid-point despite the satellite drops, because the contact angles on both

plates are the same.

If the contact angles are no longer the same on both plates, we expect the symmetry of

breakup to be broken. This is observed in figure 3.3(a), which shows the interface as the

bridge approaches breakup for θleft = 70◦ and θright = 90◦. The difference in wettability

between the two plates produces distinctly different breakup shapes from those seen in

figure 3.2. Here we observe only one breakup event, which shifts toward the left plate as Re
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Figure 3.3: (a) Interface shape Re = 0, 0.1, 1, 10, and 100, and (b) mass fraction transferred to the right
plate after breakup for a liquid with θleft = 70◦ and θright = 90◦, and Ca = 0.1.
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Figure 3.4: Interface profiles at three times during stretching for θleft = 70◦, θright = 90◦, Ca = 0.1, and
Re = 10.

is increased. This change in the breakup behavior can be understood by noting that, in the

region near the breakup point, the interface must map onto a similarity solution as time

progresses. As discussed by Eggers (1995), when surface tension, viscosity and inertia are all

present the similarity solution is asymmetric, with the interface approaching the pinch-off

location at a much greater slope on one side than the other. This higher slope occurs in our

system near the more wettable plate because the liquid will have a larger contact radius on

this plate, providing a natural orientation for the similarity solution. We observe this in

figure 3.4, where we plot the interface profile at three times near breakup. At the earliest

time shown the bridge is far from breakup, but already the interface is asymmetric about

the minimum. As breakup is approached, the region near pinch-off takes on a shape similar

to that predicted by Eggers (1993), and the pinch-off location is convected to the left due

to the high capillary pressure developed on the right of the pinch-off, resulting in a single

breakup point near the left plate.

The shift in the breakup location observed in figures 3.3(a) and 3.4 comes along with
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Figure 3.5: (a) Transfer ratio, which is the ratio of liquid transfer at Re = 100 to that at Re = 0, versus
the difference in contact angles between the right and left plates at Ca = 0.1. (b) Liquid
transfer to right plate versus difference in contact angle for Re = 0 (◦) and Re = 100 (¤).

an increase in the liquid transfer to the right plate, seen in figure 3.3(b). We hypothesize

that this is related to the curvature of the interface near the contact line. As the breakup

point shifts to the left, the interface must curve more sharply in the vicinity of the left

contact line to satisfy the contact angle condition, eq. (3.10), while still mapping onto the

similarity solution at the breakup location. This produces a large gradient in curvature

near the contact line, which in turn produces a large gradient in pressure. This gradient

in pressure will then drive fluid away from the contact line, resulting in a smaller contact

radius on the left plate near breakup as Re is increased. This is observed in figure 3.3(a),

where the contact line position on the left plate is seen to decrease significantly as Re is

increased.

In the previous two paragraphs we have shown that when the left plate is more wettable

than the right, the breakup point shifts toward the left, causing an increase in the liquid

transfer to the right plate. One would then expect that if the right plate were more wettable

these trends would reverse. This is seen in figure 3.5(a), which plots the transfer ratio,

defined here as the ratio of the liquid transfer to the right plate at Re = 100 to that at

Re = 0, versus the difference in wettability between the two plates. If the left plate is

more wettable than the right, i.e., θright − θleft > 0, the transfer ratio is greater than

one, indicating that inertia is improving the liquid transfer. However, when θright − θleft is

negative the transfer ratio is less than one, indicating that liquid transfer to the right plate

is hindered by inertia. It should be noted that because the breakup is symmetric when the

two contact angles are equal, the liquid transfer at Re = 100 has been set to 0.5 in these

cases, even though the presence of a large satellite drop will alter the actual liquid transfer

after breakup.

Finally, we note that the transfer ratio does not indicate anything about the actual liquid

transfer to the right plate, which is shown in figure 3.5(b). In Stokes flow, we observe that

as the right plate becomes less wettable relative to the left the liquid transfer decreases, as
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was noted in chapter 2. However, at Re = 100, the liquid transfer is nearly independent of

the contact angles, even though the interface shape at breakup varies significantly between

each of these cases.

The results from this section illustrate how inertial effects modify the breakup behavior

of stretching liquid bridges with moving contact lines. We have shown that inertia and

wettability are competing effects, with the amount of liquid transferred to the more wettable

plate decreasing with an increase in Re. The origin of this competition lies in the interaction

between surface wettability, which characterizes the global behavior of the system, and the

similarity solution near breakup, which characterizes the local behavior of the system. This

is an unexpected result that has important practical implications, since operating in a high-

Re regime can help to overcome the poor liquid transfer observed when the right plate

is less wettable than the left. We have also shown that the formation of satellite drops

depends not only on the liquid parameters Re and Ca, as it does when the contact lines are

pinned, but also on surface wettability. This has practical implications as the wettability

can be used to suppress the formation of satellite drops, which are generally seen as being

detrimental. We now compare some of the results from this section to those obtained using

a one-dimensional model.

3.4 Comparison of 1D and 2D models

The use of 1D long-wave equations has led to a great deal of advancement in our under-

standing of the breakup dynamics of liquid columns. The simplicity of these 1D equations

often allows for the derivation of analytical descriptions of breakup (Eggers, 1993), while

the use of only one dimension allows complex phenomena to be included (e.g., surfactant

dynamics) without the computational expense of solving the full two-dimensional problem.

While 1D long-wave equations have been used to study a number of different systems, to

the authors knowledge only one paper has taken this approach in studying moving contact

lines. In their work, Qian and Breuer (2011) used a long-wave model to study the breakup

of a liquid column with one moving contact line at low Ca and Re, and compared the

model predictions to their experiments. They found that while they did not observe good

agreement between theory and experiment when the contact angle was fixed, there was very

good agreement when using a Tanner’s law relation for the contact angle with two fitting

parameters.

We begin by validating our implementation of the long wave equations using our 2D code

with pinned contact lines (figure 3.6). We see good agreement between the two models at

all three Re shown, as is expected given previous comparisons Yildirim and Basaran (2001).

When we compare the two models with moving contact lines (figure 3.7), we observe that

while there is reasonable qualitative agreement, there are significant quantitative differences.

In particular, the 1D model predicts a much greater extent of contact line motion than the
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Figure 3.6: Comparison of 1D (−−) and 2D (—) models for Re = 0.1 (black), Re = 1 (red), and Re = 10
(blue). Both contact lines are pinned in place during stretching, and Ca =0.1. Panel (a)
compares the variation of the minimum bridge radius with time during stretching, and panel
(b) compares the shape of the interface just before breakup.
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Figure 3.7: Same as in figure 3.6 but with moving contact lines. For these computations, θleft = 70◦ and
θright = 50◦.

2D model. This results in a significant overestimate of liquid transfer to the moving plate

with the 1D model at low Reynolds numbers (see table 3.1). As Re is increased and the

strength of inertia relative to surface tension goes up, the 1D model better predicts the

liquid transfer for the conditions considered here. This is most likely due to the decreasing

importance of the contact lines, as surface tension effects become less pronounced. However,

the 1D model continues to do a poor job of capturing the shape of the free surface, and in

particular cannot predict the overturning of the interface that is observed near pinch-off at

higher Re.

A key assumption in the development of the long-wave model is that there are no radial

variations in the system variables, and thus the pressure within the liquid is determined

solely by the normal stress boundary condition at the interface. While this assumption is

valid when the contact lines are pinned, the stress singularity that arises when the contact

lines are allowed to move leads to an exponentially increasing pressure as the contact lines

are approached (Huh and Scriven, 1971). Therefore, in the vicinity of the contact lines the
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Table 3.1: Comparison of the liquid transfer to the right plate after breakup for the 1D and 2D models,
with θleft = 70◦, θright = 50◦, and Ca = 0.1. Liquid transfers are given as fractions, and the
percent difference is calculated relative to the liquid transfer from the 2D model.

Re = 0 Re = 1 Re = 10 Re = 100

1D model 0.845 0.820 0.704 52.6
2D model 0.723 0.711 0.652 53.3
Difference 16.9% 15.3% 8.0% 1.3%

pressure is no longer constant along a radial slice and the assumptions for the 1D model

break down. However, as the Reynolds number is increased and the effect of surface tension

decreases relative to inertia, the contact line motion becomes less important and the model

becomes more accurate, as seen in table 3.1.

It is important to note that, because the error in the 1D model is due to the singularity

that develops near the contact lines, one cannot expect the long-wave equations to be

quantitatively accurate unless the contact line model eliminates this singularity (e.g. the

model presented in Shikhmurzaev, 1993). Therefore, while Qian and Breuer (2011) obtain

good agreement between their model and experiments, this might be due to the two fitting

parameters that were used in the Tanner’s law expression, and not to any fundamental

ability of the 1D model to properly capture the dynamics of moving contact lines.

We have shown that while the long-wave model can greatly improve computational

efficiency, it is unable to capture the complex dynamics which arise due to the motion of

the contact line. However, the model is able to predict the qualitative behavior of the

bridge, and thus is still a valuable tool for understanding the dynamics of liquid bridges

with moving contact lines. Our next step in this work is to return to our 2D-axisymmetric

model to study how the presence of topographical features, such as cavities, affects breakup

and liquid transfer for non-zero Re.

3.5 Results: Trapezoidal cavities

We now consider how breakup is altered by the presence of a trapezoidal cavity on the

stationary plate, shown schematically in figure 3.1(b). Figure 3.8(a) shows the interface

shape near breakup for various Reynolds numbers with a wide cavity and θleft = θright =

70◦. Qualitatively, the results are similar to those observed in figure 3.3, i.e., the breakup

point shifts toward the left as the Reynolds number is increased, leading to an increase

in liquid transfer (figure 3.8(b)). However, in figure 3.8 the contact angles are symmetric,

and thus the asymmetric breakup could not have been caused by a difference in wettability

between the two plates (as was the case in figure 3.3), but must instead have been caused

by the presence of the cavity. As discussed in chapter 2, the inclination of the cavity wall

allows the interface to approach the wall without a large curvature gradient. This results

in a lower pressure near the contact line at the cavity than at the flat plate, and thus



3.5 Results: Trapezoidal cavities 57

−0.5 0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

Dimensionless axial coordinate

D
im

en
si

on
le

ss
 r

ad
ia

l c
oo

rd
in

at
e

(a)

Re

10
−2

10
0

10
2

0

0.1

0.2

0.3

0.4

0.5

Reynolds number

M
as

s 
fr

ac
tio

n 
on

 r
ig

ht
 p

la
te

(b)

Stokes flow

Figure 3.8: (a) Interface shape at Ca = 0.1 and Re = 0, 0.1, 1, 10, and 100, and (b) mass fraction
transferred to right plate after breakup for the wide cavity (rc = 0.90, rs = 0.14, and δ = 0.45)
and a liquid with 70◦ contact angles at both plates. The thick black line on the left side of
panel (a) is the cavity outline.

the contact line at the cavity effectively pins in place. Because this pinning prevents the

contact line from continuing to slip down the cavity wall, the contact radius in the cavity

will generally be much larger than on the flat plate. In Stokes flow, this reduces the liquid

transfer to the right plate compared to the case where the cavity is absent. In flows with

finite Re, the sharp interface deformation near the cavity forces the interface to map onto a

similarity solution in a manner that shifts the breakup closer to the cavity, similar to what

was discussed in section 3.3 for flat plates. The simple presence of a cavity is thus able to

force asymmetric breakup at high Re, even in the absence of a wettability difference.

In figure 3.8 the problem parameters were such that only a single breakup point was

observed. However, if the right plate is made more wettable, this can produce a second

breakup point on the other side of the bridge. This is observed in figure 3.9, which was

obtained for the same parameters as figure 3.8, but with θright = 50◦ instead of 70◦. Here we

see that while the cavity drives pinch-off on the left, the lower contact angle drives pinch-off

on the right as well. We see the clear formation of two breakup points, resulting in the

eventual formation of a satellite drop. It is important to note that it becomes difficult to

quantify liquid transfer when a satellite drop is present because there is no way to know

where the satellite will end up after breakup. It is possible that the satellite merges with

either primary drop, or is simply entrained as a mist and removed from the system. For the

purposes of this work, the liquid transferred to the right plate is computed by calculating

the volume of liquid to the right of the first breakup point. In figure 3.9, for example, the

liquid contained within the satellite will be included as part of the liquid transferred to the

right plate.

To further examine the formation of satellite drops, we tabulate the liquid transfer at

Re = 0 and Re = 100, and the transfer ratio for a number of cases listed in table 3.2. Here

we vary both contact angles as well as cavity geometry, using the wide and narrow cavities

defined in section 3.2.3, and we group the results based on whether or not a satellite drop is
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Figure 3.9: The same as figure 3.8(a), but with θright = 50◦ instead of θright = 70◦.

formed. We consider only θright = 50◦ and 70◦ because significant error is introduced into

the solution for small angles (∼ 30◦ or lower for quadrilateral elements), while for angles

higher than θright = 70◦, no liquid was found on the flat plate after breakup in the cases

we studied. We observe that for θright = 50◦ satellite drops are observed in all but one

case, whereas for θright = 70◦ satellites are observed in only one case. This suggests that

by properly balancing the tendency of the cavity to force pinch-off on the left, and the

wettability of the flat plate to force pinch-off on the right, one can promote (or suppress)

the formation of satellite drops. It should be noted that we found no correlation between

the formation of satellite drops and the cavity contact angle or cavity shape when a cavity

is present. This is because the effect of contact line pinning becomes the predominant factor

controlling the interface shape at the cavity, as we noted in chapter 2.

While the production of satellite drops can be predicted by considering only the wetta-

bility of the flat plate, the transfer ratio depends more clearly on the difference in contact

angles, shown in figure 3.10. Here we note that as the wettability of the cavity is increased,

i.e., as θleft − θright becomes smaller, the transfer ratio increases, indicating that the effect

of inertia on liquid transfer becomes stronger. We also see an increase in the transfer ratio

when the cavity is narrow, for a fixed wettability difference. In both cases, this is due to the

resistance that the contact line experiences when trying to slip down the cavity wall, which

is made stronger by a more wettable cavity or by a more narrow cavity. This increased

resistance creates a larger contact radius for the drop resting in the cavity, which drives

breakup further into the cavity, as discussed earlier. Therefore, the effect of inertia on liquid

transfer relative to the Stokes-flow case will be more pronounced for a narrower or more

wettable cavity.
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Table 3.2: Comparison of results obtained with a trapezoidal cavity at Ca = 0.1. Definitions for wide and
narrow cavities are in section 3.2.3, and the transfer ratio is defined in figure 3.5.

θleft θright cavity Liquid transfer Liquid transfer Transfer
shape at Re = 0 at Re = 100 ratio

No satellite drop observed

110◦ 70◦ narrow 0.273 0.367 1.34
90◦ 70◦ narrow 0.186 0.319 1.72
70◦ 70◦ narrow 0.150 0.280 1.87
110◦ 70◦ wide 1.000 1.000 1.00
70◦ 70◦ wide 0.245 0.393 1.60
90◦ 50◦ wide 0.673 0.409 1.72

Satellite drop observed

90◦ 50◦ narrow 0.321 0.295 0.92
70◦ 50◦ narrow 0.251 0.296 1.18
50◦ 50◦ narrow 0.208 0.279 1.34
90◦ 70◦ wide 0.416 0.360 0.87
70◦ 50◦ wide 0.347 0.358 1.03
50◦ 50◦ wide 0.288 0.377 1.31
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Figure 3.10: Transfer ratio, as defined in figure 3.5, vs. θleft − θright for both wide (¤) and narrow (◦)
cavities, at Ca = 0.1. Filled data points represent computations where satellite drops are
predicted.
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In this section we have shown that the presence of a cavity on one of the plates can have

a significant effect on the breakup dynamics. The cavity causes the contact line to pin along

its wall, which shifts the breakup point closer to the cavity and improves liquid transfer.

This indicates that inertia can help to overcome the decrease in liquid transfer observed

when a cavity is present in Stokes flow. This effect is balanced by the wettability on the flat

plate, which can produce an additional pinch-off point and a satellite drop. This leads to the

surprising conclusion that, when inertial effects are present, the best operating condition is

not always to use the most wettable substrate possible. A more wettable substrate promotes

the formation of satellite drops which not only present a potential health hazard, but can

actually lead to a decrease in the amount of liquid transferred if the satellite does not end

up on the right plate.

3.6 Conclusions

We have shown that the presence of inertia can greatly affect the breakup dynamics of

stretching liquid bridges, sometimes in surprising ways. This can lead to potentially dras-

tic changes in the amount of liquid transferred to one surface after breakup, as well as

the possible formation of satellite drops. When the bridge is stretched between two flat

plates with the same contact angles, a satellite drop is formed, though the breakup remains

symmetric about the bridge mid-point. If there is a difference in wettability, the breakup

point shifts closer to the more wettable surface as the Reynolds number is increased. This

can lead to large increases in the amount of liquid transferred to the less wettable surface,

including the six-fold improvement observed in figure 3.3(b). In addition, we compare our

2D Navier-Stokes results to those obtained using a 1D long-wave approximation. There are

significant quantitative differences between the two models because the long-wave model

is unable to capture the pressure singularity at the contact lines, which creates a radially

varying pressure profile in the bridge. However, the qualitative agreement between the two

models is still quite good, making the long-wave model a useful tool for understanding the

dynamics of liquid bridges with moving contact lines.

When a cavity is present on the stationary plate, the contact line pins on the cavity

wall. This produces a high interfacial curvature, which pushes the breakup location toward

the cavity and increases the liquid transfer to the moving plate. As the wettability of the

moving plate is increased a second breakup point is produced near this plate, resulting in

the formation of a satellite drop. This may result in a decrease in liquid transfer, though

this depends on whether the satellite merges with the primary drop on the substrate or the

one in the cavity after breakup.

The role of inertia is notable because it demonstrates that inferences built on Stokes-

flow behavior of liquid bridges is not always accurate. At a first glance, it seems reasonable

to assume that higher liquid transfer will always be obtained by making the right plate
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more wettable, improving the tendency of the liquid to exit the cavity and spread onto the

moving surface. We have shown that in the presence of inertia, a more wettable right plate

does not necessarily improve liquid transfer, and that it can also lead to the formation of

satellite drops. Therefore, for practical applications, one needs to carefully consider the

regime in which stretching will occur before making a final decision on material properties.

The work presented here is an important extension of existing work on liquid bridges,

which had not previously addressed the interplay between inertia, wetting, and surface

geometry. These results are especially relevant to industrial printing processes, such as

gravure, where O(1) or higher Reynolds numbers are often achieved. However, the printing

inks used in industry are rarely Newtonian, and the cavities are generally not axisymmetric.

Three-dimensional effects in particular can significantly modify the breakup behavior (Lock-

wood et al., 2011), and effects such as a combined shearing and extensional plate motion

have been shown to improve liquid transfer from cavities in 2D-planar geometries (Hoda

and Kumar, 2008) (though it remains to be seen how including the azimuthal curvature of

the bridge will alter this conclusion). Due to the computational difficulties associated with

solving 3D free-surface problems with moving contact lines, these effects are still poorly

understood but promise to be a rich area for further investigation (see chapter 4).



CHAPTER 4

Stretching liquid bridges in three dimensions

Liquid bridges with moving contact lines are relevant in a variety of natural and industrial

settings, ranging from printing processes to the feeding of birds. While it is often assumed

that the liquid bridge is two-dimensional in nature, there are many applications where

either the stretching motion or the presence of a feature on a bounding surface lead to

three-dimensional effects. To investigate this we solve Stokes equations using the finite

element method for the stretching of a three-dimensional liquid bridge between two flat

surfaces, one stationary and one moving. We first consider an initially cylindrical liquid

bridge that is stretched using either a combination of extension and shear or extension and

rotation, while keeping the contact lines pinned in place. We find that whereas a shearing

motion does not alter the distribution of liquid between the two plates, rotation leads to an

increase in the amount of liquid resting on the stationary plate as breakup is approached.

The mechanism can be understood by considering a rotation-induced fictitious force that

pumps liquid toward the stationary surface. This suggests that a relative rotation of one

surface can be used to improve liquid transfer to the other surface. We then consider the

extension of non-cylindrical bridges with moving contact lines near non-cylindrical features.

We find that dynamic wetting, characterized through a contact line friction parameter,

plays a key role in allowing the bridge to maintain its original shape after breakup. By

adjusting the friction on both plates it is possible to drastically improve the amount of

liquid transferred to one surface while maintaining the fidelity of the initial bridge shape.1

1This chapter is currently in preparation for publication.
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4.1 Introduction

Free-surface flows represent one of the most important realms of fluid mechanics. In addition

to their natural elegance (Py et al., 2007; Jung et al., 2009), free-surface flows are found

in an incredibly diverse array of settings, from coating (Kistler and Scriven, 1984) and

printing (Dodds et al., 2009) flows, oil recovery (Gaudet et al., 1996), and rheological

measurements (Yao and McKinley, 1998), to natural defense systems (Vogel and Steen,

2010), the feeding of birds (Prakash et al., 2008), and the lapping of cats (Reis et al., 2010).

The importance of this field can be measured in part by the large number of review articles

on the subject (see, for example, Stone, 2010; Oron et al., 1997; Craster and Matar, 2009;

Eggers, 1997; Eggers and Villermaux, 2008; Weinstein and Ruschak, 2004; Blake, 2006;

Bonn et al., 2009). From an analytical perspective, free-surface flows present a formidable

challenge because the location of the interface is not known a priori, but must be included

as part of the solution for the flow field. This has led to a great deal of work involving the

development of numerical techniques to solve the Navier-Stokes equations with a moving

boundary, including the volume-of-fluid (VOF, see Scardovelli and Zaleski, 1999), level set

(Sethian and Smereka, 2003), and arbitrary Lagrangian-Eulerian (ALE, see Christodoulou

et al., 1997) methods. While computations of free-surface flows are becoming increasingly

routine in two dimensions, only recently has there been progress in solving for the dynamics

of three-dimensional systems (Cairncross et al., 2000; Dimitrakopoulos and Higdon, 2003;

Walkley et al., 2005b; Xie et al., 2007; Zhou et al., 2010).

A common example of a free-surface flow is a stretching liquid bridge, which is a mass of

liquid connecting two solid surfaces that are pulled apart. Stretching liquid bridges are found

in a variety of settings, ranging from printing processes (Dodds et al., 2009) to capillary

feeders (Prakash et al., 2008), and so have been extensively studied (see Eggers, 1997; Eggers

and Villermaux, 2008, and the references within). It is often assumed that the three-phase

contact lines connecting the bridge to the solid remain pinned during stretching, which

significantly simplifies both experimental and computational analyses. While this may be

a reasonable approximation in some applications, such as extensional rheometry (Yao and

McKinley, 1998), it is certainly not the case in others. In printing processes in particular, it

is desirable for the contact lines to move so that the amount of liquid transferred from one

surface to the other can be maximized. Despite this importance, liquid bridges with moving

contact lines have only recently received much attention in the open literature (Powell et al.,

2002; Gupta et al., 2007; Villaneuva et al., 2007; Prakash et al., 2008; Balu et al., 2009;

Qian et al., 2009; Qian and Breuer, 2011; Dodds et al., 2009, 2011a,b).

In addition to the assumption that the contact lines remain pinned, many prior stud-

ies on stretching liquid bridges assume an axisymmetric geometry (Gaudet et al., 1996;

Zhang et al., 1996; Ambravaneswaran and Basaran, 1999; Yildirim and Basaran, 2001;

Kang et al., 2009; Dodds et al., 2009, 2011b). This is a reasonable assumption as surface

tension will drive the bridge toward axisymmetry in an attempt to minimize the interfacial
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area. However, there are many relevant applications where three-dimensional effects become

important. Lockwood et al. (2011) showed that for liquid bridges on the nanometer scale,

the roughness of the surface can significantly alter breakup and produce asymmetric bridge

shapes due to the topography of the substrate. Darhuber et al. (2001) studied the stretching

of non-axisymmetric liquid bridges that were confined by a rectangular chemical pattern,

finding that higher capillary numbers are required to ensure that the bridge maintained the

pattern shape after breakup. Hoda and Kumar (2008) studied the emptying of liquid from

2D planar cavities as a model system for gravure printing, and found that optimal emptying

is obtained when the stretching motion combines both shear and extensional components.

Shear is generally avoided during printing in an attempt to minimize pattern distortion,

and so this work suggests that one may need to balance emptying with pattern fidelity.

However, by using a 2D planar model Hoda and Kumar neglect the azimuthal curvature

of the bridge, which can significantly alter its breakup behavior (Huang et al., 2008). To

include a combination of shear and extensional motion along with the azimuthal curvature

requires a three-dimensional model. An improved understanding of the manner in which

three-dimensional effects alter the dynamics of the bridge is therefore of interest in a variety

of applications.

Gravure offset printing, shown schematically in figure 4.1, is a typical roll-to-roll printing

technique that has shown promise in the solution processing of electronic devices (Hagberg

et al., 2001; Pudas et al., 2004, 2005). In this process a pattern is produced by engraving a

series of small cavities into the surface of a cylindrical roll, creating an image of the pattern.

The cavities are filled with ink and the ink is transferred first onto a rubber backing roll

and then onto a moving substrate, after which the ink is dried so that the pattern is fixed

in place. This second transfer stage can be idealized as the stretching of a liquid bridge

between two flat, rigid surfaces, significantly simplifying analysis. One can then examine

the effect of system parameters such as wettability and capillarity on the transfer of liquid to

the substrate, which has been done for both 2D-planar and axisymmetric systems (Gupta

et al., 2007; Huang et al., 2008; Kang et al., 2009; Dodds et al., 2009, 2011a,b; Ahmed

et al., 2011; Ghadiri et al., 2011). However, these studies neglect the three-dimensional

nature of the printing process, which arises through several mechanisms. First, the cavities

engraved on the roll appear in a network, and the interaction between the cavities can

have a significant effect on the emptying process (Schwartz et al., 1998; Schwartz, 2002).

Second, the transfer of liquid between rotating, cylindrical rolls implies that the idealization

of stretching as a purely extensional motion may not be accurate, as shear and/or rotation

can become important during printing. Third, the printed features may have an asymmetric

cross-section, as would be the case when printing a letter or a line for a conductive circuit.

In this case it is important to understand how the feature shape can be maintained after

printing, as surface tension will drive the bridge toward a cylindrical geometry. These issues

are difficult to address because printing systems generally incorporate high speeds, small
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Figure 4.1: Schematic of the gravure offset printing process, and the analogous liquid bridge system.

length scales, and opaque surfaces that make direct visualization difficult, while numerical

studies require an algorithm that can solve the Navier-Stokes equations in three dimensions

with a free surface and moving contact lines. Such algorithms have only recently been

developed (Baer et al., 2000; Dimitrakopoulos and Higdon, 2003; Walkley et al., 2005a;

Saha and Mitra, 2009; Zhou et al., 2010).

The goal of this chapter is to evaluate the role of three-dimensional effects on the dy-

namics of liquid bridges, focusing in particular on the role of either asymmetric stretching

or asymmetric initial bridge shapes. To achieve this, we solve the Navier-Stokes equations

using the finite element method (FEM) along with the elliptic mesh generation technique

discussed by Christodoulou et al. (1997), which has not previously been extended to three

dimensions (section 4.2). We then consider how asymmetric stretching alters breakup and

liquid transfer while the contact lines remain pinned (section 4.3). Specifically, we examine

the effect of either combined extension and shear or extension and rotation, and evaluate

how the stretching rates alter the breakup length and the amount of liquid transferred to

the moving surface. Finally, we consider how wettability and capillarity affect the stretch-

ing of asymmetric bridge shapes, similar to those studied by Darhuber et al. (2001). To do

this, we allow the contact lines to slip along the solid surfaces using a Navier slip law and

the linearized molecular-kinetic model, which relates the contact angle to the slip velocity

(Blake, 2006).

4.2 Problem formulation

4.2.1 Navier-Stokes equations and boundary conditions

We begin by considering a three-dimensional liquid bridge with a constant volume V , vis-

cosity µ, surface tension σ, and density ρ. If we take the bridge radius R to be a typical

length scale and the stretching speed U to be a typical velocity scale, we can define a time

scale R/U and a pressure scale µU/R. This allows us to write the Navier-Stokes equations

in dimensionless form:

Re
Dv

Dt
= −∇P + ∇2v + Stĝ, (4.1)
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∇ · v = 0, (4.2)

where v is the velocity, P is the pressure, ĝ is a unit vector in the direction of the gravita-

tional field, Re = ρUR/µ is a Reynolds number, and St = ρgR2/µU is a Stokes number.

We assume that the outer phase is a low viscosity gas, and thus ignore its effect on the

dynamics of the liquid bridge.

Solving equations (4.1) and (4.2) requires initial and boundary conditions for the veloc-

ity, as well as a pressure datum. We impose conservation of mass and momentum at the

gas-liquid interface, leading to the kinematic and interfacial stress boundary conditions:

n · (v − ẋint) = 0, (4.3)

n · T = − κ

Ca
n, (4.4)

where n is the outward pointing normal at the interface, T is the total stress tensor, Ca =

µU/σ is a capillary number, κ is the curvature of the interface, and ẋint is the velocity of

the mesh at the interface. When writing equation (4.4) we have without loss of generality

assumed that the pressure of the ambient gas surrounding the liquid bridge is zero, which

sets our pressure datum. Along solid surfaces that do not have a moving contact line we

apply no-slip and no-penetration conditions by equating the liquid velocity and the velocity

of the surface, vsurf :

v − vsurf = 0. (4.5)

The system is therefore parametrized by three dimensionless numbers: Re, Ca, and St.

In typical printing systems the feature sizes are often on the order of 10 µm, which leads

to extensional velocities on the order of 1-10 cm/s. As in previous chapters, we assume

that the liquid density is 1 g/L, that its viscosity is between 1-100 cp, and that its surface

tension is between 20-70 mN/m. This leads to estimates of Re = 0.001-1, Ca = 10−4 -

1, and St = 10−5 - 1. It was shown in chapter 3 that for Re ≤ 1 the bridge dynamics

are not significantly affected by inertia and we therefore set Re = 0 for all computations,

though we note that for larger feature sizes inertial effects can become important. We also

set Ca = 0.1 and St = 0 based on our prior work in this thesis.

We take advantage of problem symmetry and include either one or two symmetry planes

depending on the bridge geometry (see sections 4.3 and 4.4 for further details). While

this prevents us from studying fully three-dimensional problems, it provides significant

computational savings. At each of these symmetry planes we apply the following conditions

on the momentum equations:

nsym · v = 0, (4.6a)

t1 · (nsym · T) = 0, (4.6b)

t2 · (nsym · T) = 0, (4.6c)
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Figure 4.2: Schematic of a three-dimensional wetting line

where nsym is an outward pointing normal to the symmetry plane, and t1 and t2 are tangent

vectors in the symmetry plane.

In section 4.4 we allow the contact lines to move along the solid surfaces. To do this we

apply conservation of mass at the contact line, using what Baer et al. (2000) refer to as an

edge kinematic condition (see schematic in figure 4.2):

ncl · (v − ẋcl) = 0, (4.7a)

tcl · (v − vsurf ) = 0, (4.7b)

nw · (v − vsurf ) = 0, (4.7c)

where nw is a vector that is normal to the solid surface, ncl is a vector in the plane of

the solid that is normal to the contact line, tcl is a vector in the plane of the solid that is

tangent to the contact line, and ẋcl is the velocity of the mesh at the contact line.

Because the contact line position is no longer fixed we specify the angle that the interface

makes with the solid (the contact angle). To do this, we relate the contact angle to the

velocity at the contact line using a linearized version of the molecular-kinetic model:

cos θ = cos θs − ΓCa (ẋcl − vsurf ) , (4.8)

where θ is the actual contact angle that the liquid makes with the solid, θs is the static

contact angle and Γ is the coefficient of wetting-line friction (defined as ζ/µ in Blake, 2006).

We note that the parameter Γ can vary over several orders of magnitude, from roughly 10

for water on polyethylene terephthalate (Blake, 2006) to nearly 1,000 for some silicone oils

on glass (Ranabothu et al., 2005). In the limit that Γ → 0 the velocity has no effect on the

contact angle, and so the contact line maintains the static angle as it slips over the surface.

In the limit that Γ → ∞ the contact line velocity must approach zero so that the cos θ term
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Figure 4.3: Velocity vectors on a solid surface with a moving contact line for (a) β = 10−2 and (b) β = 102

stays between -1 and 1. While this linear model cannot capture all the features of a real

contact line, such as the hysteresis between the advancing and receding angles, it remains

a useful tool because it allows the contact angle to vary along the wetting line. This is

an important feature when modelling three-dimensional flows with moving contact lines, as

can be seen when a drop of water slides down a surface (Baer et al., 2000). Finally, to avoid

a well-known singularity in the stress as the contact line is approached (Huh and Scriven,

1971) we apply Navier slip along the solid surface when a wetting line is present:

tcl · (nw · T) =
1

β
tcl · (v − vsurf ) , (4.9)

where β is a slip parameter that controls the size of the region over which the contact line

velocity dissipates to the no-slip condition. Figure 4.3 shows that for small β the velocity

dissipates quickly, and no-slip is recovered after a short distance, whereas for larger values of

β the velocity remains non-zero over most of the solid. We also note that whereas a smaller

value of β produces a relatively constant contact line velocity in this particular example,

when β is large the velocity over the solid clearly has a strong influence on the contact line

velocity. Finally, taking a typical slip length on the order of 100 nm and a characteristic

bulk length scale of 10 µm, we set β = 10−2 for all computations in this work.

4.2.2 Numerical solution technique

In the previous section we constructed a set of time dependent, nonlinear equations that

must be solved. We use the method of lines to separate the problem into a spatial com-

ponent that is discretized using the Galerkin finite element method, and a time-dependent

component that is solved using a second-order adaptive time-stepping scheme, as described

in Gresho et al. (1980). We refer the reader to chapter 2 for specific details on the time-
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stepping and finite element algorithms used in this chapter.

To track the moving interface we extend the elliptic mesh generation technique discussed

by Christodoulou et al. (1997) to three dimensions. In this technique the moving interface

is tracked by solving a set of diffusion equations which map the physical coordinates (x, y, z)

of the mesh onto a cubic computational domain with coordinates (ξ, η, ζ):

∇x · (Dα∇xα) = 0, (4.10)

where α = ξ, η, or ζ, ∇x indicates a gradient operator taken with respect to the physical

coordinates, and the Dα can be thought of as diffusion coefficients for the mesh, which

allow the mesh spacing to change dynamically as the domain changes shape. Equation

(4.10) is solved for all three coordinates simultaneously with equations (4.1) and (4.2),

producing a set of seven fully coupled PDEs. While the solution of this large equation set

requires greater computational effort than solving the mesh and fluid equations separately,

it provides a better convergence rate and a more accurate representation of the interface.

At this point it is worthwhile to compare the current mesh generation approach and

the pseudo-solid mesh generation technique used by Cairncross et al. (2000), which is quite

similar in formulation. With the pseudo-solid method the mesh is formed by solving a set

of elliptic equations that govern the displacement of the mesh from an initial state, i.e., the

mesh displacement is treated as a fictitious solid mechanics problem. If the deformation

from this initial mesh state becomes large the initial state must be reset, which is known

as annealing. Because the diffusion-based technique developed here does not consider the

initial state of the mesh, it does not explicitly require this annealing step. In fact, one can

interpret the diffusion-based method as a special case of the pseudo-solid method which has

automatic annealing at every iteration. An additional difference is that the pseudo-solid

technique requires the mesh to be formulated in a normal-tangent reference frame to avoid

the development of spurious mesh stresses at the boundaries, as discussed by Cairncross

et al. (2000). The rotation of the equations is not a trivial task, and it requires significant

analytical work to derive the residual equations and their derivatives in this new reference

frame. With our diffusion-based technique the mesh stress is never computed, and so the

method is insensitive to the orientation of the reference frame. Our approach is therefore

much simpler to implement. The trade-off is that the pseudo-solid approach can be used

with unstructured meshes, allowing it to be more broadly applied, whereas our diffusion-

based technique cannot.

Our equation set is nonlinear because the interface position is unknown, and we therefore

use the Newton-Raphson method to obtain a linear matrix problem of the form:

(

1

∆t
M + J

)

δn

(

δn+1 − δn
)

= −R|δn , (4.11)

where δ is the solution vector containing the velocity, pressure and position unknowns, n
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is the iteration number in the Newton-Raphson scheme, R is the residual vector, J is the

Jacobian matrix, ∆t is the time step size, and M is the mass matrix. The derivatives in

the Jacobian and mass matrices are calculated analytically to ensure high accuracy and

convergence rate when solving the system. We use Gaussian quadrature to evaluate all

integrals in the assembly of R, J, and M.

There are many techniques that can be used to perform the matrix inversion required to

solve equation (4.11). Iterative solvers, such as the conjugate gradient and the generalized

minimum residual (GMRES) methods, are the most commonly employed because they

provide significant computational savings by solving equation (4.11) indirectly. However,

we found that these techniques did not give satisfactory solutions for the stretching bridges

studied in this work, where at late times the mesh elements would become elongated. We

therefore perform a full Gauss-elimination step using the frontal solver package MUMPS

(Amestoy et al., 2001). While this requires significantly more memory and computational

time, it allows us to solve for the liquid bridge profile much closer to breakup.

4.3 Asymmetric stretching with pinned contact lines

We first validated our code with a variety of test problems. We compared results produced

by our code for a cubic lid-driven cavity at Re = 100 to those in Ku et al. (1987), for a

rotating bucket with a free-surface to those in Baer et al. (2000), and for an axisymmetric

liquid bridge with both pinned and moving contact lines to those in 2. In all cases we

observed excellent agreement between our results and those in the literature. We now

consider how asymmetric stretching affects the breakup dynamics of liquid bridges with

pinned contact lines.

4.3.1 Stretching with shear

We begin by studying the effect of a combined stretching and shearing motion on the

breakup dynamics of liquid bridges. While shear is known to improve cavity emptying in

gravure coating (Kapur, 2003), its effect is often ignored when studying printing processes

(Darhuber et al., 2001; Huang et al., 2008; Dodds et al., 2009, 2011b). Work by Hoda

and Kumar (2008) began to address this by showing that shear is required to completely

empty a 2D-planar cavity, though by neglecting the azimuthal curvature of the bridge they

are omitting physics that can significantly alter the breakup dynamics. In this section we

evaluate the role of shear on the breakup of a three-dimensional liquid bridge with pinned

contact lines that is stretched between two flat plates.

We assume that the liquid bridges are small relative to the size of the two rolls (see

figure 4.1), so that the plates can be treated as flat surfaces and the rotation of the rolls can

be ignored. During stretching the bottom surface remains fixed in place while the velocity
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Figure 4.4: Schematic of a liquid bridge undergoing both shear and extension, viewed from (a) the side,
and (b) the top. A y − z symmetry plane is used in this configuration.

of the top surface is set to a linear combination of shear and extension:

vsurf = V î + U k̂, (4.12)

where V is the shear velocity, U is the extensional velocity (set to 1 for all computations),

and î and k̂ are unit vectors in the x and z directions, respectively. Based on the work of

Kapur (2003), V is expected to range from 0 to several hundred, depending on the relative

speed of each roll, though in this work computational limitations restrict us to 0 ≤ V ≤ 1.4.

Because stretching occurs exclusively in the x − z plane, a y − z symmetry plane exists in

the middle of the bridge, as seen in figure 4.4. Therefore, we solve for the dynamics of only

one half of the bridge. The initial condition is a cylinder of static liquid between two flat,

parallel plates, with a height and radius of equal magnitude.

We first note that, as one might expect, when V is increased the horizontal separation

between the center of the bridge on each plate at breakup also increases. This increase

in horizontal separation is accompanied by a decrease in the vertical separation between

the two plates at breakup due to conservation of mass (results not shown). A more inter-

esting observation is that the shape of the drops resting on either plate remain identical

as stretching progresses, i.e., the bridge is maintaining some level of symmetry about its

breakup point (see figure 4.5). We can understand this result by noting that because the

top plate is moving at a constant speed our system is frame invariant. We can therefore

observe the stretching from the perspective of either plate and expect the same result. The

relevant parameter governing breakup is therefore not the absolute velocity of either plate,

but the difference in velocity between the two plates. This implies that the liquid is unable

to distinguish one plate from the other, and so the amount of liquid resting on either plate

after breakup must remain the same regardless of the shear or extensional velocity.

These are not obvious conclusions as the presence of an interface produces an inher-
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(a) (b)

Figure 4.5: Front view of liquid bridges near breakup for (a) V = 0.4 or (b) V = 1.4.

ently nonlinear equation set, and so it is difficult to tell beforehand what level of symmetry

in the problem may or may not be maintained. Additionally, the interface has deformed

significantly at breakup and does not maintain symmetry about its midpoint, so it is sur-

prising that the distribution of liquid remains symmetric. Finally, it has been reported in

the literature that when a liquid bridge is stretched over a cavity the presence of shear can

help to improve cavity emptying (Kapur, 2003; Hoda and Kumar, 2008). Our results shed

some light on this phenomenon by showing that a shearing motion alone cannot produce

any change in the distribution of liquid on either plate, so long as the shearing motion

remains frame invariant. Therefore, it must be the combination of a gravure cavity with

the shearing motion that is responsible for the improved cavity emptying.

4.3.2 Stretching with rotation

In addition to the shearing motion discussed in the previous section, the cylindrical geometry

of the rolls implies that rotational effects may become important if the liquid bridges are

large enough. It has previously been assumed that this rotational effect can be approximated

with only one rotating surface (Chuang et al., 2008), and we take the same approach here.

The goal of this section is to understand how the combination of rotation and extension

on one plate relative to the other alters the breakup dynamics and the liquid transfer. To

model this motion we use a linear combination of stretching and solid-body rotation about

the plate midpoint, so that the velocity of the top plate is given by:

vsurf = −ωzî + (ωx + U) k̂, (4.13)

where ω is the rotation rate, and U is set to 1 for all computations, as in the previous

section. Typical gravure systems operate at rotation rates of up to 100 s−1, which leads to

a dimensionless range from 0 to roughly 0.5 when using characteristic length and velocity
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Figure 4.6: (a) Minimum radius of the bridge vs. time for rotation rates from ω = 0 to 0.6 in increments
of 0.1. The thick line presents results at ω = 0. (b) Fraction of liquid resting on the top plate
after breakup versus the rotation rate.

scales of 500 µm and 0.1 m/s respectively. As in section 4.3.1 there exists a y− z symmetry

plane at the center of the bridge, and we solve for the dynamics of only one half of the

bridge. The initial condition for these computations is the same as in section 4.3.1.

In figure 4.6(a) we plot the minimum radius of the bridge, calculated in the y − z

symmetry plane, versus stretching time for several values of ω. Here we see that at a given

time the minimum bridge radius becomes larger as ω is increased, leading to a corresponding

increase in the time to breakup. However, as ω is increased we also note that the liquid

transferred to the rotating plate decreases (see figure 4.6(b)). Therefore, while the rotational

motion stabilizes the bridge during stretching, allowing it to stretch to a greater extent, it

also leads to a decrease in the liquid transfer to the rotating plate.

These two results can be understood by examining the axial velocity of the liquid. To

isolate the effect of rotation from that of extension we subtract the extensional velocity

from the axial velocity vz, i.e., v′z(x, z) = vz(x, z)−Uz/zplate(x), where zplate is the position

of the top plate. In figure 4.7 we plot contours of the velocity v′z within the bridge for

ω = 0.1 and 0.6, with light gray indicating v′z > 0, i.e. liquid moving to the top, and black

indicating v′z < 0, i.e. liquid moving to the bottom. For ω = 0.1 capillarity remains the

dominant force, and the effect of rotation is confined to a small region near the top plate.

Because of this, v′z is nearly symmetric about the bridge midpoint, with a plane of v′z = 0

along the center of the bridge. Liquid is thus being pumped away from this plane toward

both plates simultaneously, leading to a further thinning of the bridge and accelerating

breakup. At ω = 0.6 the effect of rotation has begun to overcome that of capillarity, and v′z

is negative in the majority of the liquid. This net downward flow explains the decrease in

liquid transfer to the top plate when ω is increased, as seen in figure 4.6(b). Additionally,

because the rotation has begun to dominate over capillary forces v′z is no longer zero in the
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Figure 4.7: Side views of the bridge at t = 1.015 for (a) ω = 0.1 and (b) ω = 0.6. The shades indicate
the sign of the axial velocity v′

z after the contribution from the extensional velocity U has
been subtracted. Light gray indicates liquid where v′

z is positive, and black liquid where v′

z is
negative.

middle of the bridge, and therefore the capillary pumping mechanism that leads to breakup

is temporarily overwhelmed by the rotation of the upper plate. This stabilizes the bridge,

allowing it to stretch to a greater extent before capillarity produces rupture, as observed in

figure 4.6(a).

This change in the distribution of liquid can be explained by noting that the rotating

plate is no longer in an inertial frame of reference relative to the stationary plate. Therefore,

if one wishes to observe the stretching motion in a reference frame fixed with the upper plate

one must include additional fictitious forces to account for this acceleration. Therefore, one

way to rationalize the results of this section is through a rotation-induced fictitious force

that is driving liquid toward the stationary plate.

The implication of these results is that a mismatch in the size of the two rolls, which

will produce a rotation of one roll relative to the other, can be used to produce changes in

the amount of liquid transferred. Specifically, if the blanket roll is smaller than the backing

roll in a gravure offset press (see figure 4.1), this will increase the liquid transferred to the

moving substrate. This is a possible explanation for the success of microgravure coating,

where a gravure roll with a small radius (2-5 cm) is used to produce extremely thin films

(Hanumanthu, 1996).

4.4 Asymmetric bridge shapes with moving contact lines

In any printing process the primary goal is to reproduce a given pattern. This can be done

in a variety of ways, though industrially it is often performed by first creating an image
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Figure 4.8: Schematic of the geometry used in section 4.4. For all computations presented here, L = 0.5
and R = 1

surface with a pattern embedded on it either chemically, as in lithographic printing (Lenz

and Kumar, 2007), or mechanically with a series of engraved cavities, as in gravure printing

(see figure 4.1). This allows the liquid to be located on the image surface only where

it is needed, so that when the image is pressed against a substrate the desired pattern

is reproduced. Therefore, while the amount of liquid transferred to the substrate is an

important measure that can be used to gauge the success of a printing process, the ability

to transfer the desired pattern to the substrate is also relevant. This pattern transfer is

not guaranteed, as surface tension will drive the bridge toward a cylindrical geometry in an

attempt to minimize the interfacial area, potentially destroying any pattern that may be

present. Despite this importance, the fluid mechanics of pattern transfer has been examined

in only one case (Darhuber et al., 2001), where it was shown that pattern transfer could be

improved by using a high capillary number or a high substrate wettability. The goal of this

section is to better understand how the dynamics of the contact line alter both the pattern

and the liquid transfer during the stretching of a liquid bridge.

We have chosen to investigate a model geometry consisting of a bridge whose initial

profile combines a rectangular inner portion of length 2L, with two semi-cylinders of radius

R at the left and right ends. While we will allow the surface properties of the two plates

to be different from each other, the values of θs and Γ are treated as constant over each

individual surface. In this geometry there exist two symmetry planes and we therefore

solve for the dynamics of only one quarter of the bridge (see figure 4.8). For all of the

computations presented in this section we have set R = 1 and L = 0.5, with an initial

separation of 1 between the two plates. To obtain a suitable initial condition we allow the

liquid bridge to relax from its initial geometry for a very brief amount of time (∼ O(10−6))

with the desired static contact angles, and with Γ and U set to zero on both plates. The

solution at this point is then used as the initial condition for further stretching with U = 1

and the desired values of Γ on each plate. If this initial step was not performed, we found

that spurious oscillations would develop in the contact line velocity that led to errors in the

result.
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Figure 4.9: (a) The final aspect ratio, defined in the text, versus Γ. (b) The contact line profile near
breakup for Γ = 0 (blue), Γ = 10 (—), Γ = 100 (−−), and Γ = 500 (− · −). The red line
indicates the initial interface profile before stretching. Stretching was performed with θs = 80◦

on each plate.

We begin by presenting results for a liquid bridge stretched between two plates with

the same value of Γ and θs = 80◦. Figure 4.9(a) shows the final aspect ratio of the bridge,

which is defined as the position of the contact line at breakup in the x− z symmetry plane

over that in the y − z symmetry plane. When Γ is small the final aspect ratio is close to

1, indicating that the bridge is nearly cylindrical at breakup, whereas when Γ is large the

final aspect ratio is close to 1.5, indicating that the bridge has nearly maintained its initial

shape. We observe the same trend in the profile of the contact line at breakup, seen in

figure 4.9(b). The shape of the bridge is thus strongly influenced by Γ, and these results

indicate that some amount of dynamic wetting is necessary to maintain the fidelity of the

original pattern under the conditions studied.

While figure 4.9 shows that the contact line friction plays a key role in pattern transfer,

the results presented are for two identical plates. The breakup is thus symmetric about

the bridge midpoint, and the size of the drops resting on either plate after breakup are

equal. We now consider how a wettability difference interacts with Γ to produce variations

in liquid and pattern transfer. We will consider cases where the static contact angles are

θb
s = 80◦ on the bottom and θt

s = 60◦ on the top. Because Γ can have a different value on

each plate, we label the contact line friction on the top and bottoms plates with Γt and Γb,

respectively.

In figure 4.10 we show how the final aspect ratio and interface profiles on both plates are

affected as Γb is varied. As expected, Γb has a significant effect on the contact line profile

on the bottom plate (figure 4.10(c) and (d)), with a low value of Γb resulting in a small,

nearly cylindrical contact area. However, Γb has very little effect on the contact line on the

top surface for the conditions studied (figure 4.10(a) and (b)). In chapter 2, where we used

a two-dimensional axisymmetric Stokes flow model with Γt = Γb = 0, we found that both
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Figure 4.10: (a) The final aspect ratio on the top plate versus the contact line friction on the bottom plate,
Γb. (b) The contact line profile near breakup on the top plate for Γb = 0 (blue), Γb = 10
(—), Γb = 100 (−−), and Γb = 200 (− ·−). The red line indicates the initial interface profile
before stretching. Panels (c) and (d) are analogs to panels (a) and (b) for the bottom plate.
Stretching was performed with θb

s = 80◦, θt
s = 60◦, and Γt = 100.

the wettability of the individual plates as well as the wettability difference between the two

plates significantly alters the shape of the bridge at breakup. Therefore, it is surprising that

the dynamics of the two contact lines appear to be decoupled when Γ 6= 0, as we have shown

here when Γt = 100. This indicates that the contact line friction diminishes the influence

of each plate on the other by reducing the velocity with which the contact line slips over

the surface.

While the pattern transfer to the top plate is not strongly influenced by Γb, the liquid

transfer to the top plate decreases significantly as Γb is increased (see figure 4.11). This is

because the contact line is able to slip easily off of the bottom surface when Γb is small,

allowing the top surface to receive a larger fraction of liquid. When Γb is increased to 200 the

breakup becomes nearly symmetric, as both contact lines have slowed to the point that the

effect of the wettability of each surface is negligible. The amount of liquid resting on either
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Figure 4.11: Volume fraction of liquid resting on the top plate for the computations presented in figure
4.10

plate therefore approaches 50%. This is similar in nature to stretching at a high capillary

number where the effect of wettability is overcome by that of viscosity, and so the bridge

also breaks symmetrically about its midpoint. However, the contact line friction allows

for a greater degree of control because it is a local effect, so one can choose a liquid/solid

combination to produce a difference in Γ that drives liquid from one surface to the other. We

note that, in addition to Γ being a property of a given liquid/solid combination, recent work

has shown that it can be adjusted by roughly an order of magnitude using surface charge

(Puah et al., 2010). This gives the experimenter additional control over the contact line

dynamics, and allows them to tune their system to achieve the desired result. In contrast,

because the capillary number affects only the bulk liquid, using a high Ca to overcome an

adverse wettability difference will always tend toward symmetric breakup. Finally, these

results highlight the importance of considering dynamic wetting, as we have shown that for

the conditions studied here the static contact angle and capillary number are not enough

to fully characterize the dynamics of liquid bridges.

4.5 Conclusions

In this work we have shown that even simple deviations from axisymmetry can produce

drastic changes in the dynamics of stretching liquid bridges. When an initially cylindrical

bridge is stretched under both shear and extension we find that, regardless of the shearing

speed, the drops resting on either plate have the same shape and volume after breakup

due to the frame invariance of the system. This is in contrast to the behavior of a bridge

that is stretched under both extension and rotation, where a rotation-induced fictitious

force develops that drives liquid toward the stationary plate. The nature of the stretching
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motion, and in particular the acceleration of one plate relative to the other, thus has a

significant effect on the bridge dynamics and the transfer of liquid.

If we stretch a non-cylindrical liquid bridge while allowing the contact lines to move we

find that as the contact line friction is increased on a surface the contact line velocity on

that surface decreases, effectively pinning the contact line at a high enough Γ. Therefore,

by using a substrate with a high value of Γ it is possible to significantly increase the amount

of liquid resting on that surface after breakup, while maintaining the fidelity of the initial

bridge shape. This result is of key importance in many printing processes, where the goal

is to reproduce a desired pattern.

The work presented here is an important extension of the existing literature on stretch-

ing liquid bridges which has, with only a few rare exceptions (Darhuber et al., 2001; Walkley

et al., 2005a; Bonito et al., 2006), been confined to two-dimensional studies. Although the

specific cases we examine focused on the gravure offset printing process, the physical un-

derstanding gained through this work can be applied more broadly to any liquid bridge

system. While the liquids studied in this chapter are Newtonian, industrial printing inks

often contain particulate or polymeric additives which can alter the rheology of the liquid.

It is thus important to understand how non-Newtonian effects are able to alter the dynamics

of the bridge. In particular, viscoelasticity is known to produce fascinating star-like insta-

bilities during the stretching of liquid bridges (Rasmussen and Hassager, 1999; McKinley

and Sridhar, 2002), and an understanding of how such effects combine to alter liquid and

pattern transfer during printing promises to be an exciting area for further study.



CHAPTER 5

Stretching liquid bridges with bubbles

Liquid bridges containing bubbles are relevant to industrial printing, and are also a topic of

fundamental scientific interest. We use flow visualization to study the stretching of liquid

bridges, both with and without bubbles, at low capillary numbers. We find that while

the breakup of wetting fluids between two identical surfaces is symmetric about the bridge

mid-point, contact line pinning breaks this symmetry at slow stretching speeds for non-

wetting fluids. We exploit this observation to force air bubbles selectively towards the least

hydrophillic plate confining the liquid bridge.1

5.1 Introduction

Stretching liquid bridges are found in numerous industrial (Powell et al., 2002; Yao and

McKinley, 1998; Vogel and Steen, 2010) and natural (Vogel and Steen, 2010; Reis et al.,

2010; Prakash et al., 2008) systems, and as such, they have been a focus of research for

over a century (Eggers and Villermaux, 2008). Of particular importance in many of these

cases is the wettability of the solid surfaces, which can significantly alter the stretching and

breakup dynamics of the bridge, as we saw in the previous three chapters. However, the

presence of a moving contact line complicates both experimental and computational analysis

of liquid bridges, and so has received relatively little attention despite its fundamental

importance (Chadov and Yakhnin, 1979; Darhuber et al., 2001; Gupta et al., 2007; Cai and

Bhushan, 2008; Balu et al., 2009; Dodds et al., 2009; Kusumaatmaja and Lipowsky, 2010;

De Souza et al., 2008; Huang et al., 2008; Kang et al., 2009; Qian et al., 2009; Villaneuva

1This chapter is reproduced with minor modifications from S. Dodds, M. S. Carvalho, and S. Kumar.
“Stretching Liquid Bridges with Bubbles: The Effect of Air Bubbles on Liquid Transfer”, Langmuir, 27

(2011) 1556-1559

80
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et al., 2007; Panditaratne, 2003).

The dynamics of bubbles are also believed to be important in various applications, such

as the formation of aerosols (Bird et al., 2010), the debonding of adhesives (Foteinopoulou

et al., 2004), and in industrial printing. In printing processes such as gravure or flexography,

bubbles can become trapped in the liquid bridge which connects the image and the substrate.

These bubbles can reduce the amount of liquid transferred to the substrate, resulting in a

defect known as spackle. This is a potentially catastrophic defect in the manufacture of

printed electronics, where any gap in the final pattern could ruin the entire device.

The goal of this chapter is to understand the role of bubbles on the dynamics of stretching

liquid bridges, where the authors are aware of only three studies, all computational, that

have been published to date (Foteinopoulou et al., 2004, 2006; Chatzidai et al., 2009).

These studies do not consider the role of surface wettability on either the liquid bridge or

the bubble dynamics, and thus are unable to evaluate the effect that the bubble may have

on liquid transfer. We also examine how the stretching of non-wetting fluids differs from

that observed with wetting fluids, which is of fundamental scientific importance.

5.2 Experimental Details

The apparatus used in this chapter is shown in figure 5.1. A glass microscope slide was

used for the bottom plate, and a steel post 3.25mm in diameter was used for the top

plate. Both plates could be covered with one of polyethylene terephthalate (PET), low-

density polyethylene (LDPE), or polyoxymethylene (Delrin), allowing for the variation of

the wettability of either plate (table 5.1). A 1µL drop of distilled water was placed onto the

bottom plate and, for certain experiments, a 0.1µL air bubble was inserted into the drop with

a syringe (Hamilton company, model 7001KH). The upper plate was brought into contact

with the water, and the drop was compressed. The upper plate was then pulled away

from the bottom, stretching the bridge at a constant velocity. In experiments performed

with bubbles, the bubble was initially in contact with both plates before stretching. The

stretching was visualized using a high-speed camera, with a frame rate of 60 to 3,000 frames

per second, depending on the stretching speed.

Results were quantified using ImageJ analysis software (Abramoff et al., 2004). Fluid

volumes were calculated using Pappus’ theorem, which relates the volume of a solid of

revolution to its cross-sectional area in the r − z plane. Because this analysis technique

assumes an axisymmetric drop shape, we are unable to account for asymmetries in the

drop shapes. However, the calculated drop volume, both before and after stretching, was

generally within 10%, and often within 5% of the expected volume of 1µL, indicating that

our analysis is reasonably accurate.

The maximum stretching speed used in these experiments was 69.3mm/s, and the char-

acteristic length scale for the drop was on the order of 0.5mm. Therefore, the maximum
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Table 5.1: Material characteristics used in this chapter, where θa and θr are the advancing and receding
contact angles

Material θa θr

LDPE 95.9±2.9◦ 79.8±3.6◦

PET 78.5±1.8◦ 60.4±2.5◦

Delrin 68.5±3.4◦ 23.0±4.1◦

Figure 5.1: Schematic of the apparatus used for the experiments in this chapter.
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Figure 5.2: Fraction of fluid resting on the top plate after bridge breakup for pure water (◦) and water
with an air bubble (•). Both the top and bottom surfaces were covered in PET. The dashed
line represents φ = 0.5.

capillary, Weber, and Bond numbers were on the order of 10−3, 0.01, and 0.1, respectively,

indicating that surface tension dominates inertial and viscous forces. While the Bond num-

ber suggests that gravitional effects may be important, we did not observe this to be the

case, within our experimental error. Additionally, Slobozhanin and Perales (1993) found

that, for the experimental conditions studied here, there was a negligible difference in the

stability of a liquid bridge between a Bond number of 0 and of 0.1 (see supporting informa-

tion at the end of the chapter), further supporting our assumption that gravitational forces

do not play a significant role in our experiments.

5.3 Results and discussion

We first studied the stretching of water between two PET surfaces. Figure 5.2 shows the

volume fraction of fluid resting on the top plate after breakup, φ, for different stretching

speeds. The volume of fluid on the top plate is found to be the same as on the bottom

plate, giving φ ≈ 0.5, regardless of the stretching speed. Because the effects of inertia

and gravity are small in our experiments, any hydrodynamic force that might move the

fluid preferentially towards one surface or the other is small. In addition, because the two

plates are covered with the same material, there is no wettability difference to drive fluid

towards one plate or the other. Therefore, it is expected that the breakup should be nearly

symmetric about the bridge mid-point.

When an air bubble is introduced into the bridge prior to stretching, the volume of fluid

on the top plate is still the same as on the bottom plate, where we use the term fluid to
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Figure 5.3: Time-series of images taken during stretching of a bridge without a bubble (top) and with a
bubble, highlighted in red (bottom). The bridges were stretched between two PET surfaces,
at a speed of 0.89mm/s.

refer to the total volume of liquid and gas. This suggests that the presence of the bubble

does not have an effect on the breakup of the liquid bridge. To understand this result, it is

helpful to examine a time-series of images taken during stretching, both with and without

a bubble (see figure 5.3). Comparing the shape of the outer air/liquid interface at a given

time, there is virtually no difference in the shape of the interface with or without a bubble.

This indicates that the dynamics of the two interfaces are decoupled, and so the outer

interface evolves as if no bubble is present.

Examination of the dynamics of the bubble in figure 5.3, which has been highlighted

in red (images are included without modification in the supporting information at the end

of the chapter), shows that the air bubble slips entirely off of the bottom surface and onto

the top surface. Therefore, while the volume of fluid on the top plate is the same as on the

bottom, the volume of liquid on the top plate is significantly lower. This is highlighted in

the final two panels of the bottom series in figure 5.3, where the bubble pops, leaving behind

only the liquid that was transferred to the top surface. It should be noted that, while the

bubble slips onto the top surface in figure 5.3, we observed it resting on the bottom surface

with equal frequency. This indicates that the bubble motion is not buoyancy driven.

The effect of stretching speed on bubble breakup is shown in figure 5.4. As was noted in

the previous paragraph and in figure 5.3, at slow speeds the bubble slips entirely off of one

surface and onto the other. However, at faster speeds, the bubble breaks up near its centre,

resulting in breakup that is more symmetric than at slower speeds. That we observe the

symmetry of the bubble dynamics breaking as the speed is decreased is a surprising result,

because one would expect surface tension, which is the dominant force in this system, to

maintain symmetry during stretching for two plates that are covered with the same material.

One possible explanation for this behaviour is that wetting fluids (water on PET) behave

in a different manner during stretching than do non-wetting fluids (air on PET). Some

evidence for this is provided in figure 2.8(a), which shows the computed interface profile
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Figure 5.4: Comparison of the bubble position for (a) slow stretching speeds (0.89mm/s) and (b) fast
stretching speeds (61mm/s), for water stretched between two PET surfaces.

just before breakup for the stretching of a non-wetting liquid bridge between two identical

plates. These computations indicate that while the breakup of the bridge remains symmetric

about its mid-point, as one would expect since the plates are identical, the thinnest portion

of the bridge is now located near the two plates, instead of at the centre. This change

in behaviour can be rationalized by noting that, because the fluid is non-wetting, it will

attempt to dewet the two plates as the bridge is stretched. If the stretching rate is slower

than the dewetting rate, then the contact lines will move quickly enough to slip off of both

plates, and the bridge will break at the solid surfaces, instead of near its centre.

Because the bridge is connected to the plates by thin fluid threads, the region with the

highest capillary pressure is near the contact lines. If one of the two contact lines pins, say

on the top surface, while the other contact line continues to slip (as in the second panel

on the bottom in figure 5.3), then the highest pressure in the bridge will be at the bottom

plate. This high pressure causes more fluid to be pumped away from the bottom plate,

further thinning the connecting fluid thread, and eventually driving all of the fluid off the

plate. Because the contact line pinning should be due primarily to surface roughness, which

surface the bubble pins on will be random. This explains why, at slow speeds, the bubble

rests on both surfaces with equal frequency. Additionally, as the stretching rate is increased,

the contact lines will no longer have time to completely dewet one surface, forcing breakup

closer to the centre of the air column instead of at one of the two plates, as is observed in

figure 5.4(b).

If the behaviour of the bubble is related purely to the wetting dynamics of the air on

the PET surface, as we suggest, and has nothing to do with any interaction between the

bubble and the outer gas/liquid interface, then identical behaviour should be observed for a

single, non-wetting fluid, which presents a simpler system to study and understand. Figure

5.5 shows the liquid fraction of the largest drop vs. stretching velocity for water between

two LDPE plates. This presents a system where the liquid is non-wetting, in contrast to

figure 5.2, where the liquid is wetting and the air non-wetting. It should be noted that

the largest drop was found on the top and bottom surface with equal frequency over all
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Figure 5.5: Fraction of fluid composing the largest drop after bridge breakup for stretching between two
LDPE plates. The dashed line represents φ = 0.5.

stretching speeds (see supporting information at the end of the chapter). For slow stretching

speeds, the liquid is found almost entirely on one surface or the other. As the stretching

speed is increased, however, the size of the largest drop begins to decrease, approaching

the expected result of φ = 0.5 for a fluid stretched between two identical plates. Therefore,

water between two hydrophobic surfaces exhibits the same behaviour as the more complex

liquid bridge/bubble system from figure 5.3, supporting our hypothesis that the bubble

motion is governed by wetting and contact line pinning, and not by any hydrodynamic

interactions between the water and the bubble.

If we now consider a liquid bridge system with two chemically different surfaces, PET

and Delrin, then the air bubble should wet the PET preferentially2, even though air is not a

wetting fluid on either surface. In addition, we showed in chapter 2 that small differences in

wettability have been shown to produce large differences in liquid transfer for non-wetting

fluids, and we therefore expect that the entire bubble will slip onto the PET surface, leaving

only water on the Delrin. While it is difficult to accurately measure the volume of the bubble

because of the resolution of the bubble interface, we find that the bubble does appear to

have transferred entirely to the PET surface after breakup, regardless of the stretching

speed (see supporting information at the end of the chapter).

In the PET/Delrin systems, the bubble would nearly always pop after stretching. We can

therefore compare the volume of the drop, both before and after popping, to get an estimate

of the size of the bubble on each surface (figure 5.6). We find that there is a negligible change

in volume for the drop on the Delrin surface, indicating that if any air remains, it did not

pop during visualization. We also find that the drop on the PET consistently decreases

2since θair = π − θwater, θair > π/2
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Figure 5.6: Change in volume of the fluid drop resting on Delrin (◦) or PET (¤), after the bubble pops.
The dashed line represents the initial bubble volume inserted into the drop, 0.1µL.

in volume by approximately 0.1µL, which is the volume of the bubble originally inserted

into the drop before stretching. This supports our hypothesis that the bubble has moved

entirely to the PET surface, leaving only water on the Delrin surface.

The time between breakup and the bubble popping was on the order of one second. In an

industrial printing process, where the pattern may dry within milliseconds of being printed,

it is possible that the bubble does not pop, but is instead dried into the final product. This

type of defect could go unnoticed in graphics arts applications, because the bubble may

not make the printed feature visibly different from a feature that had printed correctly.

However, a bubble in a printed circuit could significantly alter the electrical properties of

the device. This highlights the importance of understanding and controlling the dynamics

of the bubble during printing, as we have attempted to do here.

The work presented in this chapter has shown that the breakup behaviour of a non-

wetting fluid stretched between two plates is fundamentally different from that of a wetting

fluid. When the two solid surfaces are made of the same material, we find that at slow

stretching speeds a non-wetting fluid will slip entirely onto whichever surface its contact

line first pins on. This behaviour was found to be robust, occurring both when water alone

was stretched between hydrophobic plates, and when water with an air bubble was stretched

between hydrophilic plates. We were then able to use a wettability difference between the

two plates to drive the bubble selectively toward the most hydrophobic plate, allowing us

to remove the bubble defect entirely from one of the plates.



5.4 Supplementary information 88

5.4 Supplementary information

5.4.1 The effect of gravity

To determine the importance of gravity in our systems, we look to Slopozhanin and Perales,

Phys. Fluids A, 1993, Vol. 5, hereafter referred to as S&P. In this work, Slobozhanin and

Perlaes, calculated the stability of liquid bridges between two equal disks in a gravitational

field. First, we would like to note that the analysis of S&P is restricted to pinned contact

lines and so, strictly speaking, is not applicable in our experiments. However, we found

that the contact line would pin well before breakup in our experiments, allowing us to use

the analysis from S&P. While it is difficult to determine the exact reason for this pinning,

we believe it is due to contact line hysteresis. During stretching, the contact line will

initially recede. At late times, our 2D-axisymmetric computations (chapter 2) show that

as the capillary pressure builds up in the bridge, and fluid begins to be pumped from

the neck towards the substrates, the contact line velocity switches sign, and the contact

line begins to advance along the surface, causing the drop to spread. In a real system,

however, once the contact line velocity becomes small enough, the contact line will pin

in place until the interface has deformed enough that the contact angle is equal to the

advancing angle, at which point the drop will begin to spread. This pinning prevents us from

comparing our computational results directly to our experiments, because our computations

cannot currently capture such complex contact line behaviour, and so we do not observe

quantitative agreement between our model and our experiments. However, this pinning is

also what allows us to use S&P’s analysis with some confidence.

If we revisit the experiment shown in the top series of fig. 5.3, we can obtain the length

of the bridge and radius of contact area between the liquid and solid, one frame (∼17ms)

before breakup is observed. From our results (and using the notation of S&P), R=0.64mm,

L=1.63mm and V =0.87mm3. To compare to the analysis presented in S&P, we calculate

V=V/(πLR2)=0.415 and Λ=L/2R=1.27. If we then compare these values to Fig. 2 in S&P,

we see that for Λ=1.27, we get V of approximately 0.42, which agrees with our experimental

finding. This indicates that the analysis performed in S&P is valid for our experiments,

as we argued in the previous paragraph, and can be used here to understand the effect of

gravity.

At these values of V and Λ, the curve for the stability envelope at a Bond number of 0

is indistinguishable from the curve for a Bond number of 0.1 or even 0.2 (fig. 4a of S&P).

This implies that the shape of the interface near breakup for Bo=0.1 is identical to that

for Bo=0 under these conditions, and thus that gravity does not play a significant role

on the stability of the bridge. Therefore, one would not expect that the breakup of the

bridge would produce significantly different drop shapes after breakup between the Bo=0

and Bo=0.1 cases. However, we do not exclude the possibility that gravity is affecting the

results within our experimental error.
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5.4.2 Supplementary figures

Figure 5.7: Figure 5.3, without highlighting the location of the bubbles. The bubbles can be discerned by
a slight change in the way the light is refracted through the bridge.

Figure 5.8: Figure 5.4, but without highlighting the bubble location.
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Figure 5.9: The data used to construct figure 5.5. Each mark represents the fraction of liquid on the
top plate for an individual experiment. The number in brackets next to each cluster of data
represents the number of experiments that compose each cluster. In total, the largest drop
rested on the top surface 13 times, and on the bottom surface 13 times.



CHAPTER 6

Final remarks

In this thesis we have considered several model problems that were motivated by a desire

to better understand the dynamics of liquid bridges with moving contact lines, with an

emphasis on the liquid transfer process in gravure printing. In this chapter we summarize

our key findings, and suggest future research directions to further understand this liquid

transfer process.

6.1 Conclusions

In chapters 2 through 4 we used the Navier-Stokes equations to study stretching liquid

bridges with moving contact lines. In chapter 2 we solved Stokes equations for a two-

dimensional axisymmetric liquid bridge between either two flat plates or a flat plate and a

cavity. We found that while the wettability of the two surfaces is a key factor in controlling

liquid transfer when both of the surfaces are flat, the presence of a cavity on one of the

surfaces alters the dynamics significantly. In this case the contact line effectively pins along

the cavity wall, causing the liquid transfer to the flat surface to decrease. Cavity designs

can therefore be improved by minimizing this contact line pinning. If the cavity is made

less wettable the contact line will slip more easily along its wall, improving cavity emptying.

However, to avoid defects during printing the wettability of the cavity must be high enough

that the cavity can be properly filled and doctored. Another way to minimize contact line

pinning is to consider the cavity geometry. If the cavity is made wider (for a fixed depth),

the contact line will have more time to slip down the cavity wall before breakup, improving

emptying. Alternatively, if the slope of the cavity wall is made less steep contact line pinning

will be less pronounced, again improving emptying. There are therefore several parameters

that can be adjusted in the design of gravure systems to optimize the liquid transfer.
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Contact line pinning was also shown to be relevant in the formation of satellite drops

during stretching at non-zero Reynolds numbers (chapter 3). In the presence of inertia the

bridge must map onto a similarity solution that is asymmetric about the pinch-off point

as breakup is approached. This asymmetry pushes the pinch-off location toward whichever

surface has the larger contact radius with the liquid, decreasing liquid transfer to that

surface. The pinned contact line will naturally have a large contact radius, often resulting

in an increase in cavity emptying as the Reynolds number is increased. However, as the

flat surface (web) is made more wettable a second pinch-off location can form near the

web, resulting in the production of a satellite drop. While the work presented in chapter

2 suggests that optimal operating conditions include using the most wettable web possible,

the work presented in chapter 3 shows that when inertia is present the web wettability

should be balanced with the increased tendency of the liquid to form satellite drops during

breakup.

In chapter 4 we relax the assumption that the liquid bridges are axisymmetric, and we

present results on the stretching of a three-dimensional liquid bridge between two flat plates.

We find that the acceleration of the plates relative to each other is a key factor in controlling

the distribution of liquid after breakup when the contact lines are pinned and the bridge is

stretched asymmetrically. If the plates are separated from each other at a constant velocity

the frame-invariance of the system dictates that the liquid must be evenly distributed, as

observed when extension and shear are present (§4.3.1). However, if one of the plates is

accelerating relative to the other then additional fictitious forces can arise, depending on

the reference frame chosen (§4.3.2). This produces an asymmetry in the breakup, and in

the case of a combined extension and rotational motion results in a decrease in the amount

of liquid resting on the rotating plate after breakup.

Another case where three-dimensional effects may play a role is in the stretching of

non-cylindrical features, examples of which are printing a letter or a line instead of a pixel.

Because surface tension will attempt to drive the bridge toward axisymmetry, a better

understanding of the conditions under which the pattern is able to maintain its original

shape after breakup is relevant. In §4.4 we find that the contact line friction plays a key role

in pattern transfer by slowing the movement of the wetting line over the solid. Therefore, if

two systems have the same wettability and capillarity, the manner in which the contact line

slips over the surface can still produce significantly different results between each system.

This highlights the importance of dynamic wetting in printing processes, which has not

previously been recognized.

In chapter 5 we used flow visualization to study the stretching of liquid bridges between

both hydrophobic and hydrophillic surfaces. In particular, we examined the effect of small,

non-wetting air bubbles on the breakup of liquid bridges. We found that the dynamics of

non-wetting fluids stretched between two flat plates are fundamentally different from those

of wetting fluids. When the two solid surfaces are made of the same material, a non-wetting
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fluid stretched at slow speeds slips entirely onto whichever surface its contact line first

pins on. This behavior is robust, occurring both when water alone is stretched between

hydrophobic plates, and when water with an air bubble is stretched between hydrophilic

plates. To remove the bubble entirely, one can use a wettability difference between the two

plates, as the bubble will move selectively toward whichever surface is the most hydrophobic.

When a bubble was present it would often pop approximately one second after bridge

breakup. In an industrial printing process, where the pattern may dry within milliseconds

of being printed, it is possible that the bubble does not pop but is instead dried into the

final product. This type of defect could go unnoticed in graphics arts applications, because

the bubble may not produce a visibly different feature from one that had printed correctly.

However, a bubble in a printed circuit could significantly alter the electrical properties of

the device. This highlights the importance of understanding and controlling the dynamics

of the bubbles during printing.

6.2 Future research directions

In this thesis we have worked to understand how a variety of physical phenomena alter

the stretching and breakup behavior of liquid bridges. We have discussed several avenues

through which liquid transfer can be improved, including the use of wider cavities to mini-

mize contact-line pinning, and of inertia to overcome an unfavorable wettability difference.

While this work has begun to eke out some of the physical mechanisms through which liq-

uid transfer occurs, there are still many questions that must be answered before a complete

picture of gravure printing is obtained. Here we summarize a few of the areas which warrant

further investigation.

First and foremost, industrial printing inks are hardly ever Newtonian, and often contain

polymeric resins and/or ink particles. This can significantly alter the dynamics of printing

as these compounds can affect both the surface tension and the viscosity of the printing fluid.

Fluid rheology is an especially important factor to consider because printing inks are often

viscoelastic, and so a better understanding of how viscoelasticity interacts with wettability

is important in improving our understanding of printing. The presence of particles or

polymer will also modify our definition of the print quality, as the important parameter

is no longer the liquid transfer but the ink transfer. In a non-homogeneous system it is

possible that one achieves a high solvent (liquid) transfer but a low ink transfer, resulting in

poor pattern resolution after drying. To study these effects we suggest the use of the long-

wave model, presented in §3.2.2. This model allows for the inclusion of additional physics,

such as viscoelasticity or the interfacial transport of surfactant, with only a small increase in

computational cost as compared to a full two- (or three-) dimensional simulation. However,

because the long-wave model cannot account for the fluid within a cavity, it can only be

used to study stretching between flat plates, which is a model problem for offset printing.
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A two- (or three-) dimensional technique is still required to study cavity emptying.

In addition to rheological effects, gravure printing is often performed with an applied

electric field to aid in cavity emptying. This electric field is thought to play two separate

roles. First, by distorting the interface of the liquid in the cavity the electric field ensures

that good contact is obtained between the liquid and the substrate, without the need for

excessive pressure from the backing roll (George, 1982). Second, if a conductive ink is being

printed the electric field can improve the transfer of particles to the substrate. Modeling

the effect of an electric field on both the wetting and bulk fluid dynamics is most easily

done using the long-wave model for the same reasons discussed in the previous paragraph,

though again a two or three dimensional simulation is required to study cavity emptying.

In this thesis we have treated the web as a rigid, flat surface, even though the deforma-

bility of the web has been shown to play an important role in modifying the fluid mechanics

within the cavity (Yin and Kumar, 2005, 2006b; Hewson et al., 2010). Incorporating the

mechanics of the solid surfaces into our model is thus important in capturing the dynam-

ics of gravure printing. Additionally, this would allow the study of flexographic printing,

described in section 1.1.4, where liquid transfer occurs between an (ideally) rigid substrate

and a flexible rubber post. Of particular interest is the deformation of the rubber posts,

which can wear over time and reduce the fidelity of the printed pattern. An improved under-

standing of how the fluid and solid mechanics couple to alter the bridge breakup dynamics

should make it possible to suggest material properties for optimal pattern transfer over a

long print run.

It is important to note that one of the biggest limitations in any printing process model

is our current understanding of wetting phenomena. Even seemingly simple matters such

as the spreading of a drop over a surface are not completely understood (Blake, 2006),

and the dynamics of wetting remains a hotly studied field (see for example Vandre, 2013).

The motion of the contact line in a liquid bridge system is especially complex because it

involves dynamic wetting with both advancing and receding contact lines, and therefore

is also subject to contact angle hysteresis. There is currently no model available that

can account for such complex behavior, which leads most authors (ourselves included) to

simplify the wetting dynamics in the interest of gaining some insight into the problem at

hand. Additionally, it is unclear how effects such as fluid rheology alter the motion of the

contact line, complicating studies of liquid bridges with non-Newtonian fluids. Therefore,

until a more complete understanding of the dynamics of wetting exists only qualitative

agreement between theory and experiments can be expected.

In sections 1.2.2 and 1.2.3 we alluded to the importance of hydrodynamic interaction

between adjacent cavities in understanding liquid transfer. Modeling such a system requires

resolving multiple liquid bridges in three dimensions, which is not currently feasible with

the finite element technique discussed in chapter 4. Experimental studies thus provide

the best opportunity to understand this interaction between cavity arrangement and liquid
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transfer. While preliminary work in this area has already been performed by Chuang et al.

(2008), the use of opaque rolls prevented them from visualizing the liquid transfer process.

Flow visualization experiments using a transparent backing roll can help in providing insight

into the dynamics of cavity emptying (Hanumanthu, 1999). However, it would be extremely

difficult to observe the dynamics of the liquid within the cavity through the backing roll. We

propose the fabrication of transparent cavities through which the liquid transfer process can

be directly observed. Rigid, transparent cavities can be made using a polyurethane casting

mold, whose surface can be modified chemically to control the wettability. This allows

for direct visualization of the fluid within the cavity using the technique implemented in

chapter 5 so that we can develop an understanding of how the cavity shape/arrangement

alters the breakup dynamics and liquid transfer during stretching.

While the work in this thesis has focused on the emptying of cavities, an equally rel-

evant problem is the filling and doctoring of cavities. These are important phenomena to

understand because they set the initial state of the liquid as it enters the printing nip. If

the cavity is under-filled because of poor filling/doctoring, this can lead to the entrapment

of bubbles and a decrease in liquid transfer (see chapter 5). In contrast, if the cavity is

over-filled the printed feature will be larger than expected, resulting in poor pattern resolu-

tion. A better understanding of the conditions under which cavities are properly filled and

doctored is vital for the development of a printing operability window.

Ultimately, the goal of research on gravure is in developing a complete, predictive model

for the entire process, including cavity filling, doctoring, and emptying. Because of the

complex physics and disparity in length scales present in a typical printing press, the best

hope for this is to build coarse-grained models for each individual step into an overall process

model. This kind of multi-scale approach has already been implemented at Sandia National

Labs to study the imbibition of liquid for nano-imprint lithography (Roberts and Schunk,

2010). The successful application of such a model to gravure printing would represent a

huge leap forward in our understanding of the process.

6.3 Final remarks

Liquid bridges have been studied for nearly two centuries because of their elegance and

simplicity. The recent burst in research for applications including the lapping of cats and the

self-defense of beetles, not to mention the industrial printing processes discussed throughout

this thesis, has shown that liquid bridges play a vital role in many aspects of our lives. We

have attempted to advance our understanding of how wetting dynamics interact with various

physical properties of liquid bridge systems to alter their breakup dynamics. While there

is still much that remains unclear, we hope that this thesis has provided a starting point

toward a deeper understanding of liquid transfer and printing.
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APPENDIX A

Selection of an appropriate velocity scale

When performing a scaling analysis for gravure it is tempting to use the linear web speed,
Vw, as the characteristic velocity. In this appendix we use simple geometric arguments
to show that the web speed is not the relevant velocity scale, but that the liquid instead
experiences a much slower extensional velocity VE .

We begin by considering how the velocity in the vertical direction varies over the surface
of a roll of radius R, shown schematically in figure A.1. At the bottom of the roll, which
we define as the origin (x, z) = (0, 0) in our system, the extensional velocity is zero:

VE(0, 0) = 0. (A.1)

At any point (x, z) on the surface of the roll the vertical velocity is given by:

VE(x, z) = Vw sin θ, (A.2)

where θ is the angle that a vector tangent to the roll makes with the horizontal direction at
(x, z). We know from trigonometry that the distance x is given by x = R sin θ (see figure
A.1), so that equation (A.2) becomes:

VE = Vw
x

R
. (A.3)

We see from this equation that VE increases linearly with x, from VE = 0 at x = 0 to
VE = Vw at x = R. However, the bridge will break well before it has reached the point
x = R, and so the extensional velocity will never be as large as the web velocity.

To obtain a more reasonable estimate of the maximum extensional velocity experienced
by the bridge, which is given by VE at breakup, we note that the equation for the surface
of the cylindrical roll is:

x2 + (z − R)2 = R2, (A.4)

which can be rearranged to give:

x =
√

2zR − z2. (A.5)
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Figure A.1: Schematic of an ink jet printing apparatus

We can now substitute equation (A.5) into (A.2) to give:

VE = Vw

√

2
Lbreak

R
−

(

Lbreak

R

)2

, (A.6)

where we have set z = Lbreak because we are only concerned with the extensional velocity at
breakup. This simple relationship allows us to estimate the maximum extensional velocity
experienced by the bridge during printing. For a typical printing operation we assume that
Vw is on the order of 10 m/s, and R is on the order of 6 in. Based on the results presented
throughout this thesis, a reasonable estimate for the breakup length is two to five times
the original feature size. Therefore, if the desired feature is on the order of 10 µm, the
breakup length will be roughly 20-50 µm. After entering all of these parameters in equation
(A.6), we find that VE is roughly 0.2 m/s, which is two orders of magnitude lower than Vw.
This highlights the importance of considering the geometry of the system, as simply using
the web velocity to estimate the relevant dimensionless numbers (such as the capillary and
Reynolds numbers) will lead to a faulty balance of the forces relevant during breakup.


