Coefficients for Interrater Agreement

Frits E. Zegers
University of Groningen

The degree of agreement between two raters
who rate a number of objects on a certain
characteristic can be expressed by means of an
association coefficient (e.g., the product-moment
correlation). A large number of association coeffi-
cients have been proposed, many of which belong
to the class of Euclidean coefficients (ECs). A
discussion of desirable properties of ECs
demonstrates how the identity coefficient and its
generalizations, which constitute a family of ECs,
can be used to assess interrater agreement. This
family of ECs contains coefficients for both
nominal and non-nominal (ordinal and metric)
data. In particular, it is pointed out which infor-
mation contained in the data is accounted for by
the various coefficients and which information is
ignored. Index terms: association coefficients, cor-
relation, Euclidean coefficients, generalized identity
coefficients, interrater agreement.

It often occurs that a number of persons or
objects are rated on a certain characteristic by two
or more judges (e.g., ratings of social helplessness
of mentally disabled people, the quality of songs,
or the quality of scientific papers). Consequent-
ly, there are two or more judgments or scores for
each judged entity. Moreover, judges generally
will not agree completely, unless the judgment
task is trivial. Of course, a certain degree of
discrepancy between judges cannot be avoided,
but when there is a large amount of discrepancy,
the value of the judgment procedure will be
doubtful. Thus, the question arises of how to
assess the degree of agreement between judges.
This agreement is often expressed by means of
the product-moment correlation (PMC), also
known as Pearson’s r. Two properties of the
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PMC are related to the idea of agreement: If
the two judges produce two identical sets of
scores, the PMC will attain its maximum value
(+1), and if the judgments are randomly made,
the PMC will be approximately zero.

In many situations, however, the PMC is
not the proper measure of agreement. If the
scores are qualitative (nominal data), for exam-
ple, the PMC cannot be computed. In addi-
tion, some properties of the PMC may be
undesirable in a given situation. Consider two
teachers who grade the papers of three students
on a 10-point scale ranging from 1 (very poor)
to 10 (excellent), and scores of 6 or higher are
considered ‘‘sufficient’” and scores of 5 or
lower are considered ‘‘insufficient.”’ If one
teacher gave grades of 7, 8, and 9, and the other
teacher gave grades of 2, 3, and 4 to the same
papers, the PMC between these two sets of three
scores would be +1. The teachers did not fully
agree, however. They agreed about the relative
positions of the three papers, but they did not
agree in an absolute sense about the quality of
the papers.

The PMC is one of the many association
coefficients that can be used in such an in-
stance to assess agreement between judges.
This paper explores the question of how to select
an appropriate association coefficient, given
a specific judgment task. After a discussion of
the class of E coefficients (ECs), which is
an important class of association coefficients, a
family of association coefficients belonging to
this class of ECs is discussed. Coefficients
for non-nominal data (i.e., data with at least or-
dinal information) are described, and the family
of ECs is generalized for nominal (categorical)
data.
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E Coefficients

The association coefficients that will be
discussed here belong to the class of ECs (Jan-
son & Vegelius, 1978b)—the E referring to Eu-
clidean. A specific association coefficient is an
EC if the association matrix has certain char-
acteristics, which are discussed below. For a given
number of variables, the association matrix con-
tains the association coefficients of all pairs of
variables. A well-known example is the correla-
tion matrix (with PMCs). In order to be an EC,
the association coefficient itself does not need to
be a PMC. In principle, however, variables should
exist that have the association matrix as their cor-
relation matrix with PMCs. These hypothetical
variables need not have a simple relation to the
original variables.

If an association coefficient is an EC, it will
have a number of properties:

1. The association coefficient is symmetric
(i.e., the association between variables X and
Y equals the association between Y and X);

2. The maximum value of the association co-
efficient is 1;

3. The association coefficient of a variable with
itself is I;

4. The value of the association coefficient is
never less than -1; and

5. If the association between variables X and Y
is perfect (+1), the association between X
and an arbitrary third variable W equals the
association between Y and W.

Property 5 implies the transitivity of perfect
association: If the association between X and Y
and between Y and W are both perfect, then the
association between X and W is perfect.

ECs have a number of desirable properties.
First, some of the properties of ECs mentioned
above fit with the concept of agreement. The
symmetry of an EC (Property 1) mirrors the idea
that there generally is no reason to distinguish
the agreement between Judges A and B from the
agreement between Judges B and A. Properties
2 and 3 imply that no person can agree more with
a judge than the judge him/herself. Second, in

order to facilitate the interpretation of the value
of an agreement measure, this measure should be
normed on a bounded interval. ECs are normed
on the interval [-1, +1] (see Properties 2 and 4).

Third, from the definition of an EC, it follows
that the association matrix of an EC can be used
in components analysis (e.g., to look for struc-
ture in judgment data). Moreover, such a matrix
may be converted into a matrix with distances
between the variables in Euclidean space (Gower,
1966); this distance matrix can be used in metric
multidimensional scaling.

Often it is difficult to determine whether or
not a certain association coefficient is an EC.
Sometimes it can be shown that a coefficient
lacks one or more properties of an EC, which im-
plies that the coefficient does not belong to the
class of ECs. A practical way of proving that an
association coefficient is an EC is to show that
the coefficient belongs to a family of ECs.
Association coefficients can be classified into
(partially overlapping) families of coefficients.
Coefficients within a family have a common
structure: They can be written as variations on
one basic formula. If it can be proven that such
a basic formula yields an EC, then, by implica-
tion, all members of the family belong to the class
of ECs.

A general family of ECs has been proposed by
Zegers (1986b). This family comprises various
other families of association coefficients (e.g., the
family proposed by Daniels, 1944, which includes
Kendall’s tau and Spearman’s rho; the family of
Cohen, 1969, with coefficients for profile com-
parisons; the families of Janson and Vegelius,
1978a, 1978b, 1979, 1982a, 1982b, which include
coefficients for variables of mixed measurement
level; the family of Zegers and ten Berge, 1985;
and the family of Zegers, 1986a, with coefficients
for metric scales).

Coefficients for Non-Nominal Data

The scores of a judge may be numbers or
labels. If these numbers or labels refer to various
categories without any order relation among the
categories, the data are called nominal. In all
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other cases, the data are non-nominal. The choice
of a coefficient to assess agreement depends part-
ly on whether the data are nominal or non-
nominal; therefore, the coefficients for these two
types of data are discussed separately.

As argued above, two judges will rarely pro-
duce identical sets of judgments. Yet it is useful
to analyze the circumstances under which various
association coefficients indicate perfect agree-
ment. In general, association coefficients belong-
ing to the class of ECs attain their maximum
value of 1 if the sets of scores of two judges are
identical. Conversely, an association coefficient
of +1 does not imply that the two sets of scores
are identical. For example, a PMC of +1 implies
that the two sets of scores are identical within a
positive linear (or affine) transformation (e.g., the
example above of two teachers grading a number
of papers). The identity coefficient introduced by
Zegers and ten Berge (1985) as an association
coefficient for absolute scales is +1 if and only
if the two sets of scores are identical.

The identity coefficient is based on the sum
of squared differences between corresponding
scores of the two judges. If the two judges com-
pletely agree, this sum is 0, and the more the
judges disagree, the larger this sum will be. By
subtracting the sum of squared differences from
+1, an index is obtained that is +1 in the case
of identical judgments, and is smaller the more
the judges differ. In order to obtain a coefficient
that cannot have a value smaller than -1, the sum
of squared differences is divided first by a factor
d before it is subtracted from +1. This factor d
is the sum of the two sums-of-squared scores, and
the identity coefficient is obtained. If the scores
of the two judges is given by X; and Y,, respec-
tively, with i deneting the ith judged object, then
the ideptity coefficient (e,) is given by

Y
—,,‘=’—— s 4))
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i=1

e, =1-
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1
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where n is the number of judged objects. An
equivalent but computationally simpler formula
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The identity coefficient belongs to the class of
ECs (Zegers & ten Berge, 1985). The problem of
assessing the agreement between the two teachers
mentioned above now seems solved: Contrary to
the PMC, the identity coefficient is not +1, but
is smaller (.66), which indicates imperfect agree-
ment. Suppose, however, that the scores only
serve to give first, second, and third prizes to the
three students. In this case, the usual meaning
of the school grade scale is irrelevant; only the
rank order of the scores given by the judges is
of importance. The nonperfect identity coeffi-
cient now wrongly suggests disagreement among
the teachers with respect to the distribution of
the prizes. Clearly, a rank correlation coefficient
in this situation is a better method for assessing
agreement.

Stine (1989) argues that only certain relation-
ships among the scores of one judge are em-
pirically meaningful, and that other relationships
are irrelevant. An agreement coefficient should
express the agreement between the judges in
terms of the empirically meaningful relationships
among the scores, and it should ignore the
(dis)agreement with respect to the irrelevant rela-
tionships. The empirically meaningful relation-
ships are termed here meaningful information, and
the irrelevant relationships are termed irrelevant
information. According to Stine (1989), the scale
type (measurement level) of the data determines
which relationships among the data are em-
pirically meaningful and which are irrelevant. It
is impossible, however, to prove in a formal way
the scale type of judgment data. It will be im-
possible, therefore, to determine on this basis
which information will be meaningful and which
will be irrelevant. A pragmatic approach to the
issue of meaningful information is proposed
below.

Judgment data are collected with a certain
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purpose. This purpose determines which infor-
mation is meaningful and which is irrelevant. In
one of the examples above, school grades were
collected in order to distribute prizes to the
students; thus, only the ordinal information was
meaningful. If the school grades were collected
in order to make pass/fail decisions, the mean-
ingful information would be whether a score was
above or below the pass/fail criterion. The ques-
tion of how reliably the judgment procedure
yields meaningful information can be answered
by computing an appropriate agreement coeffi-
cient (i.e., a coefficient that takes into account
only the meaningful information, and ignores the
irrelevant information). In Stine’s approach, the
meaningful information results from the
measurement level; in the pragmatic approach ad-
vocated here, the measurement level is implied by
the identification of the meaningful information.

The concept of meaningful information can
be used in situations in which an agreement co-
efficient should attain its maximum value of +1:
An agreement coefficient should attain the value
+1 if and only if the sets of scores of the two
judges are identical in terms of the meaningful
information. One method of finding a coefficient
that satisfies this demand is to transform the
scores of each judge to a meaningful version and
then compute the identity coefficient between
these meaningful versions. With this method, the
problem of selecting an appropriate agreement
coefficient is replaced by the problem of deter-
mining the meaningful versions of the scores
given by the judges.

Transforming scores to their meaningful ver-
sion consists of removing irrelevant information
while preserving meaningful information, in
order to obtain some kind of standardized ver-
sion of the scores. A simple example of such a
transformation is the standardization of
variables, which results in standard scores with
mean 0 and variance 1. Standardization preserves
the interval information, but it removes informa-
tion about the mean and the scaling. Zegers and
ten Berge (1985) provide another example of such
a transformation, including standardization as a

special case (i.e., the uniforming of variables).

The construction of the meaningful version is
performed here in three steps: (1) rank ordering
or not rank ordering, (2) subtracting or not sub-
tracting a reference point, and (3) rescaling or not
rescaling. These steps are described in detail
below; steps 2 and 3 use the scores resulting from
the previous step(s).

1. If the only meaningful information is rank
order information, the scores are replaced by
their rank orders.

2. The scores are expressed as differences to a
reference point by subtracting the value of
the reference point from the scores. The
reference point may be absolute or relative.
An absolute reference point is sample-
independent, which means that it does not
depend on the observed scores. An absolute
reference point may be thought of as a type
of natural zero point, or a neutral point of
the judgment scale (e.g., pass/fail point on
a grade scale). A relative reference point
depends on the observed scores (e.g., the
mean or another sample-dependent measure
of central tendency). The sample mean is the
only relative reference point that is con-
sidered here.

3. If the scaling of the scores is arbitrary, the
scores are rescaled to obtain a mean squared
score equal to 1. This is done by dividing the
scores by the square root of the mean
squared score. Equation 2 shows that the
value of the identity coefficient is not af-
fected by multiplying or dividing both X and
Y scores by the same constant. Therefore,
rescaling as described here affects the re-
sulting identity coefficient only if X and Y
scores have different mean squares after step
2. Such a difference in mean squares may be
the result of different rating styles of the two
judges: one judge may be inclined to use more
extreme points of the rating scale than the
other. Whether a difference in scaling is con-
sidered meaningful depends on the specific
judgment task. If it is not, the scores of both
judges should be rescaled as described here
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to remove the irrelevant scaling difference.

The three steps described above yield the
meaningful versions of the scores. Inserting the
meaningful versions in the formula of the iden-
tity coefficient (Equations 1 or 2) vyields the
desired agreement coefficient, which is in prin-
ciple a specific agreement coefficient for each
combination of the three steps. These coefficients
are presented in Table 1; these coefficients were
derived by examining the conditions in which
agreement coefficients should be maximal (+1).

The combination of absolute reference point
with rescaling and with reference point ¢, yields
Cohen’s (1969) r. coefficient. In the special case
of ¢ = 0, this coefficient is identical to Tucker’s
(1951) congruence coefficient. The combination
of absolute reference point with no rescaling and
with ¢ = 0 yields the identity coefficient (¢) of
Zegers and ten Berge (1985). By analogy with the
r. coefficient, the coefficient that results from the
combination of absolute reference point with no
rescaling and with ¢ # 0 is denoted by ¢, or ¢
identity.

The combination of relative reference point
with rescaling yields ordinary standard scores
(with mean 0 and variance 1) as meaningful ver-
sions, with the PMC as the resulting coefficient.
The combination of relative reference point with
no rescaling yields the additivity coefficient
(Zegers & ten Berge, 1985).

The scores will not be rescaled if a difference
in original scaling should result in an agreement
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coefficient with a value less than + 1. In the case
of rank orders, a scaling difference indicates that
the two sets of rank orders have different
numbers of ties, or ties with different numbers
of elements. In these cases, both rescaling and
not rescaling will yield a coefficient with a value
less than +1. Rescaling vyields well-known
coefficients—namely Spearman’s rank correla-
tion (p) and r,, of Vegelius (1976; see Zegers,
1986b, pp. 42, 43)—and not rescaling yields two
new coefficients with no apparent advantages.

Negative Agreement and Zero Agreement

All coefficients in Table 1 change sign without
changing their absolute value if the scores of one
judge are reflected with respect to the reference
point. It can be verified easily that such a reflec-
tion changes the sign of the meaningful scores,
which results in a sign change of the coefficient
(see the numerator in Equation 2). With a relative
reference point (the mean), a sign change of the
scores is identical to reflection with respect to the
reference point, because a sign change of the
scores also changes the sign of the relative
reference point. With an absolute reference point
of 0 (¢ = 0), changing the sign of the scores is
clearly identical to reflection. The sign change of
an agreement coefficient as described here yields
an interpretation of negative agreement or an
anti-agreement.

In the case of coefficients based on scores with
a relative reference point (the PMC and addi-

Table 1
Agreement Coefficients for Non-Nominal Data

Reference Point

Relative Absolute ¢
(Mean) c=0 c#0
No Rank Ordering
Rescaling PMC Congruence Cohen’s r,
(Tucker, 1951) (Cohen, 1969)
No Rescaling Additivity Identity ¢ Identity

(Zegers & ten
Berge, 1985)

(Zegers & ten
Berge, 1985)

With Rank Ordering (for absolute ¢, ¢ is the rank of the neutral point)

Rescaling
No Rescaling

Spearman’s Rho
Not Recommended

r,. (Vegelius, 1976)
Not Recommended
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tivity coefficient), a second interpretation of
negative agreement results. The PMC (r,,) can be
expressed as

= S0 , G 3)

and the additivity coefficient (a,) can be €x-
pressed as

2s
axy = _Z___xy_z ] (4)
5+ 5
where s, denotes the covariance between the

(original) scores, s, and s, denote the standard
deviations, and s? and s? denote the variances of
the (original) scores. It is well known that the
covariance is 0 if the two variables are statistically
independent. In the case of agreement scores, the
covariance will have zero expectation if the judges
produce scores in an unsystematic or random
manner; this results in zero expectation of the
PMC and the additivity coefficient. Negative
agreement of these coefficients can be interpreted
as less agreement than expected under chance.

For the coefficients in Table 1 that are based
on scores with an absolute reference point, this
second interpretation of negative agreement is not
valid, because these coefficients cannot be ex-
pressed by means of a formula with only a
covariance term in the numerator. Consider, for
example, the identity coefficient for a rating scale
with only positive scale points. It is clear from
Equation 2 that the identity coefficient for this
scale is guaranteed positive even if the judges pro-
duce scores randomly, within the restrictions of
the rating scale. This demonstrates that a positive
value of an agreement coefficient does not
necessarily imply that the agreement is more than
expected under chance. Therefore, it is important
to determine the value of the coefficient under
chance for a valid interpretation of the value of
an agreement coefficient.

Agreement Coefficients Under Chance

Let the scores of two judges who judged n ob-
jects be given by X, and ¥, i =1, 2, ..., n,

which results in »n pairs of scores (X, Y)). If the
pairing of the scores has been achieved random-
ly, then any other pairing of the X and Y scores
will be as equally probable as the observed pair-
ing. Thus for a fixed order of the X scores, each
permutation of the Y scores is equally probable.
There are n! permutations, each resulting in a dif-
ferent pairing of the X and Y scores. For each of
the n! pairings, the value of the agreement coef-
ficient can be computed. The value of the agree-
ment coefficient under chance is defined as the
mean of these »n! values. For the identity coeffi-
cient under chance (é,) it is not necessary to
actually compute these n! values, as a simple
formula can be derived:

2 XX LY,
8y = L=l ®)
LX: + Xy?

(see Zegers, 1986a). The interpretation of the
observed value of the identity coefficient in Equa-
tion 2 can be compared with the value under
chance in Equation 5.

The various coefficients in Table 1 were de-
rived by using the formula of the identity coeffi-
cient with the meaningful versions of the scores.
In like manner, the coefficient under chance can
be determined by using the meaningful versions
of the scores in Equation 5. It can be verified
readily that the coefficients based on scores with
a relative reference point equal to the mean have
zero expectation under chance; under these cir-
cumstances, the numerator of Equation 5 con-
tains the sums of deviation scores, which is 0. The
comparison of the value of a coefficient (general-
ly denoted as g,,) and the value under chance
(2,,) is based on the difference (g,, - £,). This
difference can be used to construct a chance-
corrected version of the coefficient.

Chance-Corrected Agreement Coefficients

A well-known method of chance correction of
an association coefficient (g,) is to relate the dif-
ference of the coefficient and the coefficient
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under chance (g,) to the theoretical maximum
of this difference, which is (1 - g,)) for ECs. This
yields a chance-corrected coefficient (g},), given
by

1= 8y " 8y
gy = Epr =i ©

(sce Zegers, 1986a, 1986b). If g,, is an EC, then
chance-correction by Equations 5 and 6 yields a
chance-corrected coefficient g,,, which also
belongs to the class of ECs. The result (i.e., a
chance-corrected EC is an EC itself) is valid for
the proposed method of chance correction, but
it is not necessarily valid for other correction
methods. Chance correction by Equation 6 does
not affect the coefficients based on scores with
a relative reference point (the mean), because the
value under chance (2,,) is 0 for these coeffi-
cients. Whether or not corrected or uncorrected
coefficients should be used in the case of scores
with an absolute reference point depends on
whether the chance correction as described here
is adequate in the given situation.

It is important to note that for scores with an
absolute reference point, the interpretation of
negative agreement differs for uncorrected and
corrected coefficients. Negative agreement for
uncorrected coefficients can be interpreted as
anti-agreement, because the sign of the coeffi-
cient changes if the scores of one of the two
judges are reflected with respect to the reference
point. The corrected coefficients do not have this
property, because negative agreement for them
has to be interpreted as less agreement than ex-
pected under chance. For coefficients based on
scores with the mean as the relative reference
point, both interpretations are valid, as is argued
above; this agrees with the fact that these co-
efficients coincide with their chance-corrected
versions.

Consider, for example, a situation with a large
difference between corrected and uncorrected
coefficients in which two teachers (X and Y)
judge the quality of papers using a 10-point
school grade scale. The scores are given in
Table 2.
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Table 2
Scores of Two Teachers (X and Y)
for Four Papers Before and After
Subtraction of Reference Point (5.5)

Before After
Paper X Y X Y
1 8 8 2.5 2.5
2 8 9 2.5 3.5
3 9 8 35 2.5
4 9 9 3.5 3.5

The question of how well the two teachers
agree can be answered in two ways. In one
respect, the teachers show a high measure of
agreement: Both judge the quality of the papers
as ‘“‘good”’ (8) or “‘very good’’ (9). This agree-
ment is expressed by the identity coefficient,

» = .997. After subtracting the absolute
reference point 5.5 from each score, as shown in
Table 2, the value of the identity coefficient is still
very high: e,, = .973. Conversely, the teachers
also show no agreement: A relatively low score
of teacher X (8) is paired with both a relatively
low score (8) and a relatively high score of teacher
Y (9); and a relatively high score of teacher X
goes with both a relatively low score and a
relatively high score of teacher Y. This lack of
agreement is properly expressed by the chance-
corrected identity coefficient, ¢, = 0. A closer
investigation of the chance-correction method of
Equations 5 and 6 may shed some light on these
conflicting interpretations.

Although it was not stated explicitly, a null
model was used above to derive a coefficient
under chance; this model states that the observ-
ed scores show no agreement, except for agree-
ment obtained by random factors. In fact, the
null model underlying Equation 5 is relative or
sample dependent: Given the observed scores or
the observed marginal distributions, each specific
pairing of X and Y scores is equally probable.
If the agreement between the teachers in Table
2 is considered high (see the discussion above),
then an absolute or sample independent null
model should be used. Such an absolute null
model can have various forms, depending on the

Downloaded from the Digital Conservancy at the University of Minnesota,
May be reproduced with no cost by students and faculty for academic use. Non-academic reploductlon
requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/



APPLIED PSYCHOLOGICAL MEASUREMENT

328

supposed population distributions. In the case of
an absolute null model, the scores of the judges
are assumed to constitute a random sample from
a specified distribution. If the samples of both
judges are drawn independently, the coefficient
under chance is the expectation of the coefficient.

Suppose, for example, that teachers grading
papers with the 10-point scale generally produce
scores with the following frequency distribution:
10% for Grade 4, 15% for Grade 5, 25% for
Grade 6, 25% for Grade 7, 15% for Grade 8, and
10% for Grade 9. Using computer simulation, the
expected value of the identity coefficient for four
papers is .953, and the expected value of the iden-
tity coefficient using the absolute reference point
5.5 is .278. The identity coefficients obtained for
the data of Table 2 can be compared with these
expected values. Using Equation 6 yields chance-
corrected coefficients with values .936 and .963
for the ‘‘before’” and “‘after’’ ratings, respectively.

The values of the expected identity coefficients
given above were computed with 200,000 samples
of size 4. An alternative is to use results obtained
by Fagot and Mazo (1989). Without making any
distributional assumption, they derived an
asymptotically correct formula for the expecta-
tion of the identity coefficient between two
independent variables. This expectation is ex-
pressed in terms of population means and vari-
ances of both variables; these parameter values
are available in the case of an absolute null
model. )

Even in the small example used here and the
assumed distribution, the computer simulated
values were close to the values computed by
means of the Fagot and Mazo formula (.954 and
.328, respectively). This result suggests that even
with moderate sample sizes, the Fagot and Mazo
formula may be used safely for computing the
expected value of the identity coefficient in the
case of an absolute null model. Using expected
values based on an absolute null model in the for-
mula of chance correction (Equation 6) has one
serious drawback, however: The resulting cor-
rected coefficient is not guaranteed to be an EC.

Assessing agreement between two judges with

non-nominal scores, which is discussed above,
can be summarized as follows: First, the scores
of the judges are transformed to their meaningful
versions, which may involve rank ordering, sub-
traction of an absolute or relative reference point,
and rescaling. Next, the identity coefficient be-
tween these meaningful versions is computed.
The obtained value may be compared with the
expected value, using a relative (sample depen-
dent) or absolute (sample independent) null
model. A potential drawback of the identity co-
efficient is discussed below.

Gower’s Coefficient

Suppose two judges X and Y rate four objects
on a 5-point scale, ranging from 1 to 5, with an
absolute reference point of 3 (the scale center).
Two different sets of meaningful scores are given
in Table 3, with values of 2/3 and 1/2 for the
identity coefficient. After chance correction by
Equations 5 and 6, these values are 49/81 and
1/2. The agreement apparently differs for the two
sets of data. It can be argued, however, that the
agreement between the two sets of data in this
table is equal, because the differences between the
judges for each single object are the same. The
numerator of the identity coefficient in Equation
1 contains the sum of the squared differences,
and these sums are equal for the two datasets.
But the denominators differ because it is the total
sum of squares. Therefore, the values of the iden-
tity coefficient are not equal.

Table 3
Meaningful Scores of
Two Sets of Judges

Set 1 Set 2
Object X Y X Y
1 2 1 2 1
2 1 2 0 1
3 0 1 -1 0
4 0 1 -1 0

A coefficient that does have equal values for
the data in Table 3 has been developed by Gower
(1971):
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where X, and Y, are scores of the two judges; n
is the number of objects; and R is the range of
the rating scale, that is, the maximum value of
the absolute difference |X, - Y,{(R = 4 in Table
3). For both sets of data in Table 3, G,, = .75.

Gower (1971) showed that G,, is an EC. It is
obvious from Equation 7 that G,, uses the sum
of absolute differences, not the sum of squared
differences. In order to obtain a normed co-
efficient, this sum of absolute differences is divid-
ed by the theoretical maximum of that sum, #R;
this maximum is obtained if the judges differ
maximally for each object. Under these cir-
cumstances, the judges use the opposite extremes
of the rating scale for each object, which results
in G,, = 0. Obviously, G,, can have values on the
interval [0,1]. The main difference between
Gower’s coefficient and the identity coefficient
is the way in which the coefficients are normed.
The identity coefficient is normed in a relative
or sample-dependent manner by means of the
sums of squares of the meaningful versions.
Gower’s coefficient, however, is normed in an
absolute or sample-independent manner using
the range of the rating scale.

As a result of the absolute method of
norming, Gower’s coefficient can be interpreted
as a measure of average agreement between
judges per object. If

G :1_|Xvi_Yi|

o, R @®)

denotes the agreement between X and Y in
terms of object i, then the mean of this object
agreement (averaged over the n objects) is equal
to Gower’s coefficient.

Agreement Coefficients for Nominal Data

Nominal data are obtained if a judge has
to place a number (n) of persons or objects into
a number (k) of mutually exclusive catego-
ries without ordinal relationships between the
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categories. If two judges place the same n objects
into categories, they can use the same set of
categories or different sets. This results in two
classes of agreement coefficients for nominal
data.

The Same Categories

If two judges place the same n objects into the
same k categories, the data can be represented by
means of a bivariate frequency table, with k rows
and k columns. An arbitrary entry (g, #) of this
table contains the number of objects placed into
category g by judge X and into category s by
judge Y. An arbitrary diagonal entry (g, g) con-
tains the number of objects placed into category
g by both judges. The categories contain no or-
dinal information; therefore, the order in which
the categories are displayed is arbitrary, but it
must be the same for both judges in order to
ensure that category g of judge X is the same as
category g of judge Y. Table 4 represents the
judgments of two judges X and Y who judged
10 objects (n = 10) using three categories A, B,
and C (k = 3).

An obvious agreement coefficient is the pro-
portion agreement (p,), defined as the sum of the
diagonal entries of the bivariate frequency table
(shown for these data in Table 5) divided by n.
For the data in Tables 4 and 5, p, = 5/10 =
Obviously, the proportion agreement is bound-
ed on the interval [0,1].

Table 4
Nominal Data
Categorizations of
10 Objects by
Judges X and Y

Object X Y

1 A B

. 2 A A
. I 2 B B
5. A B

6 C C

-7 ¢ cC

‘8 ‘B B

9 C A

10 B C
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Table §
Bivariate Frequency Table
for the Data in Table 4

Judge Judge Y
X A B C Sum
A 1 2 0 3
B 0 2 1 3
C 1 1 2 4
Sum 2 5 3 10

The proportion agreement can be compared
with the value under chance, which is deter-
mined as follows: A column with row sums is
added to the bivariate frequency table. The gth
element of this column is the number of objects
placed into category g by judge X. This column
will be called the marginal distribution of judge
X. In like manner, the marginal distribution of
judge Y can be added (as a row) to this table.
Given these marginal distributions, the value
under chance (expected frequency) can be com-
puted for each entry (g,4) in the table. This ex-
pected frequency is the product of the gth ele-
ment of the marginal distribution of X and the
hth element in the marginal distribution of ¥,
divided by n (cf. the computation of y2). The
proportion agreement under chance (p,) is the
sum of the expected frequencies on the diagonal,
divided by »n. For the data of Table 35,

= (.6 + 1.5 + 1.2)/10 = .33. Obviously, this
computation is based on a relative or sample-
dependent null model, given the observed
marginal distributions.

Correcting the proportion agreement for
chance yields Cohen’s (1960) kappa coefficient,
which is expressed as

kK = P Pe )

with p, as described above. For the data of Table
4, k = (.50 -.33)/(1 - .33) = .17/.67 = .25.
Both k and various other agreement coefficients
for nominal data with the same categories can
be derived in a manner analogous to that used
for the coefficients for non-nominal data de-
scribed above (Gower’s coefficient excluded). A

short outline of this procedure follows, which is
based on indicator matrices. For a more detailed
description, see Zegers (1986b, pp. 45-53).

Nominal data of one judge can be represented
by means of an indicator matrix with n (the
number of objects) rows and k (the number of
categories) columns. Entry (i, g) of this matrix
is 1 if the judge placed object i into category g;
otherwise, it is 0. Each row of the indicator
matrix contains a single 1 and & - 1 0s. The in-
dicator matrices of the two judges of Table 4 are
given in Table 6.

The indicator matrix may be interpreted as a
quantification of the nominal data of one judge,
without loss of information. This quantification
enables the use of (adapted) coefficients for non-
nominal data. The identity coefficient can be
generalized to assess the amount of identity of
two matrices of scores instead of the identity of
two columns of scores. A necessary and sufficient
condition is that corresponding rows and col-
umns of the two matrices have the same mean-
ing. The indicator matrices of two judges who
judge the same n objects using the same &
categories satisfy this condition.

The generalized identity coefficient for two
matrices is obtained as follows: (1) the numerator
of the last term of Equation 1 is replaced by the
sum of squared differences of corresponding en-
tries of the two matrices; and (2) the denominator
is replaced by the sum of the sum of squared en-
tries of the first matrix and the sum of squared

Table 6

Indicator Matrices for the Data of Table 4

Judge X Judge Y
Object A B C A B C
1 1 0 0 0 1 0
2 1 0 0 1 0 0
3 0 1 0 0 1 0
4 0 0 1 0 1 0
5 1 0 0 0 1 0
6 0 0 1 0 0 1
7 0 0 1 0 0 1
8 0 1 0 0 1 0
9 0 0 1 1 0 0
10 0 1 0 0 0 1
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entries of the second matrix (the same result is
obtained by placing the columns of each matrix
under each other and computing the ordinary
identity coefficient between these long columns).
This formulation demonstrates that the general-
ized identity coefficient, being the ordinary iden-
tity coefficient between long columns, is an EC.
It can be verified that the generalized identity
coefficient used with indicator matrices yields the
proportion agreement (p.). If X; and ¥, (with
i=1,2, , 30) denote the scores in the long
columns derived from the indicator matrices in
Table 6, then ZX;¥Y; = 5 and XX? = ¥£¥? = 10.
The resulting value of the identify coefficient is
2 X 5/(10 + 10) = 1/2 = p, (the proportion
agreement).

The method of deriving a coefficient under
chance, based on permutations of the scores of
one judge, also may be generalized by permuting
rows of one of the two matrices. A permutation
of rows is a specific ordering of the rows. With
n rows in the indicator matrix, there are n! dif-
ferent orderings or permutations of these rows.
In the case of indicator matrices, this yields the
proportion agreement under chance (p,). This
proves that k in Equation 9 can be considered
a chance-corrected generalized identity coeffi-
cient, which implies that x is an EC (see also
Zegers, 1986b, p. 47).

Non-nominal scores can be transformed into
meaningful versions (as has been discussed
above). Using the identity coefficient with these
meaningful versions yields various specific coef-
ficients. In an analogous way, indicator matrices
may be transformed (e.g., by centering rows
and/or columns). Using the generalized identity
coefficient with specifically transformed in-
dicator matrices yields specific ECs. Well-known
coefficients which can be obtained in this way are
the C and S coefficients of Janson and Vege-
lius (1979) and the simple matching coefficient
(Sokal & Sneath, 1963; see Zegers, 1986b, pp.
59-60).

The concept of meaningful versions is not very
useful with nominal data. In fact, all meaningful
information is contained in the indicator matrix
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and no meaningful information is removed or
added by a transformation of the indicator
matrix. In practice, that transformation will be
selected which leads to a coefficient with which
the researcher is familiar, or which fits in the
tradition of a particular field of research. The
main advantage of expressing an agreement co-
efficient as a (chance-corrected) generalized
identity coefficient is that this implies that the
coefficient in question is an EC.

Different Categories

Sometimes judges must classify a number of
objects in a number of nonoverlapping classes,
the meaning of which has to be determined in-
dependently by each judge. The number of
classes may be specified in advance, or it may be
left to the judge. The nominal categories are the
names or labels of the distinct classes. The pro-
portion agreement cannot be computed with this
kind of data, because the categories of one judge
do not correspond with the categories of the
other (i.e., the gth category of judge X does not
match the gth category of judge Y). For the same
reason, it makes no sense to compute the iden-
tity between the two indicator matrices.

One possible solution is to base the agreement
coefficient on the number of pairs of objects that
are placed in the same category by both the first
and the second judge. Dividing this number by
the total number of pairs of objects yields the dot
product (see Popping, 1983, p. 96). This dot prod-
uct can also be expressed as a generalized iden-
tity coefficient—not between (transformations
of) indicator matrices, but between two object
matrices. The object matrix of a judge is a square
matrix with n rows and columns. Entry (i, /) is 1
if the judge placed objects i and j in the same
category, and is 0 otherwise. It can be shown that
the generalized identity coefficient between two
object matrices is identical to the dot product.

The generalized identity coefficient can also
be computed between transformations of the
object matrices (see Zegers, 1986b, pp. 50-53).
Depending on the type of transformation the
following coefficients result: The T? coefficient

Downloaded from the Digital Conservancy at the University of Minnesota,
May be reproduced with no cost by students and faculty for academic use. Non-academic reploductlon
requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/




332 APPLIED PSYCHOLOGICAL MEASUREMENT

(Tschuprow, 1939); the gamma coefficient
(Hubert, 1977); the J coefficient (Janson &
Vegelius, 1982b); and the I coefficient (Saporta,
1975), which is identical to the T coefficient (Jan-
son & Vegelius, 1978b). A detailed discussion of
the J and T coefficients and their relation with
the C and S coefficients (for nominal data with
the same categories) can be found in Zegers and
ten Berge (1986). As in the case of nominal data
with the same categories, the choice of a specific
coefficient does not depend on considerations
with respect to meaningful information, but
depends rather on preferences or tradition.

Conclusions

A large number of agreement coefficients have
been discussed. The choice of a coefficient in a
specific context depends on a number of implicit
or explicit assumptions with respect to the nature
of the data and chance correction.

This overview, however, is not at all complete.
In particular, association coefficients for
variables of mixed measurement levels have not
been discussed, because such coefficients do not
play an important role in the context of assess-
ing agreement between judges. However, ECs
which can also be expressed as generalized iden-
tity coefficients have been developed for variables
of mixed measurement levels, (see Janson and
Vegelius, 1982a; Zegers, 1986b, pp. 55-56; and
Zegers & ten Berge, 1986). With such coefficients,
it would be possible to reflect the association be-
tween variables such as income, educational level,
gender, weight, and blood group in a single
association matrix.
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