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Abstract 

 Quantum cascade lasers are of great interest because of their working range and high 

output power. Many investigations about these lasers are being done both experimentally 

and theoretically and part of the experimental work is mainly concerned with the 

confirmation of theoretical predictions. On the theory part, simulating the laser operation 

demands many mathematical approximations and physical interpretations. To a very 

good extent, results of the simulation conform to the experiment. Incorporating nonlinear 

effects to the QC lasers makes them even more interesting as it becomes easier to go 

beyond the level of performance and limitations dictated by the materials of the laser.  

In this thesis, we tried to understand the effect of nonlinearity on propagation of a 

pulse inside the medium of the laser. Specifically, we looked at saturable absorber (SA) 

effect on the propagation of pulse. Saturable absorber is the basis of some other major 

nonlinear effects as well. A finite difference approximation (up to second order 

truncation error) was used to numerically solve the Maxwell-Bloch equations with SA 

term and graphs were produced to compare the shape of the wave with and without the 

influence of SA.  
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CHAPTER 1 
 

Introduction 

1.1. Overview of Development of Quantum Cascade Lasers 

First semiconductor laser was invented in 1962 and shortly after Kramer invented 

the Double Heterostructure Laser (DHLs) in 1963. In the DHL the active region is 

sandwiched by semiconductors of larger bandgap which results in carrier confinement 

and laser light is generated based on stimulated emission. The Quantum Well (QW) laser 

was invented in 1974 by Dingle and Henry in which the active region is a DHL with 

stacked quantum wells. Another improvement was made to semiconductor lasers in 1990 

by introducing the Vertical Cavity Surface Emitting Lasers (VCSELs) in which the laser 

beam propagates perpendicular to the top surface or QWs plane. The Quantum-dot (QD) 

lasers are also in the category of semiconductor lasers but they exhibit performance that 

is close to gas lasers, and that’s due to the tight confinement of the electron in quantum 

dots which resembles a structure similar to atoms. Temperature insensitivity is the main 

characteristic of this laser. The level of manufacturing sophistication has been increasing 

through the years parallel to the new developments in semiconductor technology and 

specifically crystal growth [1]. 
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Figure 1-1 Conduction band energy diagram of Quantum Cascade Laser. The active 
regions where lasing occurs are shown with emitting photon and intersubbands and 
transition regions are marked with yellow. 

The first experimental demonstration of a Quantum Cascade laser (QCL) was 

performed by Faist et al in 1994 with 4.3 μm wavelength only at cryogenic temperatures 

[2]. Since then, the lasers’ performance has greatly improved. For instance, operation 

spanning the mid- to far-infrared (wavelength range from 3.5 to 24 μm), peak power 

levels in the watt range, and above room temperature (RT) pulsed operation for 

wavelengths from 4.5 to 16 μm are some of the major improvements.  

Quantum cascade lasers take advantages of superlattice structures to construct 

conduction bands for electron transition. Unlike semiconductor diode lasers, which work 

based on electron transition between the valence band and conduction band and gas lasers 

which rely on population inversion between two energy levels in atom, the formation of 

laser light in QCLs is based on the transition of electrons between discrete energy states 

inside the conduction bands. QCLs are compact and high power light sources that can 
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operate in single or multi-mode, pulsed or continuous wave mode. By using band gap 

engineering, QCLs can be design to emit light at any wavelength in a broad energy range 

and this range is determined by the fundamental properties (e.g. band gap) of the material 

system of the superlattice [1].  

 

1. 2. Band Engineering of Quantum Cascade Lasers 

Designing QCLs is therefore a sophisticated process in band-structure engineering 

which is a powerful technique that allows building band diagrams with arbitrary and 

continuous band-gap variations. This lets QCL designers tune the transport properties of 

electrons and holes independently and continuously. From the quantum mechanics point 

of view, the energy states that electrons can occupy take a quantized form in the periodic 

potential structure. Solving the Schrödinger equation with this periodic potential for 

electrons results in a set of discrete allowed states for electrons in a semiconductor. And 

since there are stacks of different semiconductors in devices like QCLs, it’s even more 

complicated to calculate the path of an electron in the device. These properties stem from 

the position of conduction and valence bands of the material which, depends on the 

concentration of electrons. The concentration of electrons is determined by the materials 

that were used in growing the device. Band-structure engineering combined with 

molecular beam epitaxy (MBE) has played a key role in the invention and development 

of many modern semiconductor devices and materials with tunable electronic and optical 

properties. Molecular beam epitaxy is a crystal growth technique capable of depositing 

thin films down to a thickness of one molecular layer. Fabricating QCLs for instance, 
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requires MBE with sophisticated band-gap calculation of the material system [3]. In an 

MBE machine different materials are deposited layer by layer and the thickness of the 

layers can be controlled down to single atom per layer. A diagram of this machine is 

shown in figure 1-2. 

 

Figure  0-2  Diagram of MBE[20]. 

In the recent years, some improvements have been made to several types of 

material systems composing QCL structures. By using liquid nitrogen cooled 

environment, the GaAs/AlGaAs material system can emit beyond 13 ߤm with maximum 

working temperature of 230 K [2]. This improvement is done through better design of the 

active region through three-well vertical transition active region, better injection 

efficiency with funnel injectors and low doping concentration in the injector and using 

InP cladding layer to optimize the heat dissipation[4]. The working temperature in many 

designs is important. For example in long-wavelength QC lasers, the frequency is small 

due to the long wavelength of the pulse, which means that the separation between the 
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states must be small so that the transition of electron releases lower frequencies. A small 

gap between the states makes the laser vulnerable to thermal excitation. A small increase 

in the temperature causes the electrons to leave the states and disturb the population 

inversion. However, the working temperature cannot be too low (e.g. cryogenic 

temperatures) if the laser is to be used in wide range of applications.  

Although, semiconductors lasers serve in many purposes, QCLs have made them 

obsolete in many applications. The major differences between the conventional 

semiconductor lasers and QCLs stem from the structure of the band gap. Some of the 

major differences are listed in the table below.  

Conventional Laser Quantum Cascade Laser 

Holes and electrons are exhausted at 

each emission 

Electrons are reused several times for 

photon emission 

Both electrons and holes are needed for 

lasing (bipolar device) 

Only electrons do the transition and emit 

photons (unipolar device) 

Photon emission relies transition 

between conduction and valence band 

Photon emission relies on intraband 

transitions between quantized conduction 

band states in quantum wells.   

Wavelength depends on the material’s 

band gap. 

Wavelength depends on the size of the 

quantum wells and super lattices  

Table 1-1 Comparison between QCLs and conventional semiconductor lasers. 
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1.3. Various Designs of Quantum Cascade Lasers 

There are several design types to QCLs. Fabry-Perot (FP) QCLs are made of 

optical waveguide with material system of quantum cascade and with two ends of the 

waveguide cleaved to form the Fabry-Perot (FP) resonator. So the medium of the laser is 

the medium in which the pulse propagates through. Fabry-Perot quantum cascade lasers 

can emit multimode pulses and the frequency of the pulse depends on the temperature. 

Ring cavity QCLs on the other hand, consist of a circular lasing medium and laser pulses 

go through a circular motion.  

The distributed feedback (DFB) QCL is explained in reference [5] in which a 

grating is incorporated in the structure of the laser. This feature enables the laser to 

operate above room temperature in the pulsed single mode with high peak power.  The 

distributed feedback QCLs are fabricated in two different ways: First approach is the top-

grating which is easier to build, and second approach is the buried-grating with epitaxial 

regrowth, which generally has a greater single-mode output as a result of larger coupling 

factor [6]. The coupling factor quantifies the amount of coupling between the forward 

and backward traveling waves in the cavity of DFB lasers [7]. Because of high optical 

power, room-temperature operation, and narrow intrinsic line width, QC-DFB lasers are 

excellent choices as narrow-band light sources in mid-infrared trace gas sensors [6]. In 

fact for gas sensing spectroscopy, the laser has to operate with stable single-mode 

emission and controlled tunability. By using techniques such as, tunable infrared laser 

diode absorption (TILDA) spectroscopy and knowing the finger print of gasses, it is 

possible to detect a specific gas of interest in a medium (e.g. in the atmosphere)[1]. In 
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reference [8] two types of DFB-QC lasers are proposed to meet the aforementioned aims. 

‘‘Loss-coupled’’ devices, emitting at ߣem=55.4 and 7.8 ߤm, with a metal-semiconductor 

grating etched into the top surface of the device, and ‘‘index-coupled’’ lasers at ߣem=55.4 ߤm with the grating located directly above the active material. Three distinct designs of 

the active region, the so-called ‘vertical’ and ‘diagonal’ transition as well as the 

‘superlattice’ active regions have emerged and are used either with conventional 

dielectric or surface plasmon waveguides. Fabricated as distributed feedback lasers, they 

provide continuously tunable single-mode emission in the mid-infrared wavelength 

range. This feature together with the high optical peak power and RT operation makes 

QC-lasers a prime choice for narrow-band light sources in mid-infrared trace gas sensing 

applications. Finally, a manifestation of the high-speed capabilities can be seen in 

actively and passively mode-locked QC-lasers, where pulses as short as a few 

picoseconds with a repetition rate around 10 GHz have been measured [8]. 

One of the most interesting applications of QCLs is in the terahertz spectrum (a 

frequency range defined approximately as the frequencies from 300 GHz to 10 GHz, or 

the wavelengths from 30 ߤm to 1000ߤm). Terahertz QCLs were first introduced by 

Köhler et al. [19] at the Scuola Normale Superiore in Pisa, Italy with pulse wavelength of 

 Currently, the range of the laser spectrum is from 0.84-5.0 THz at a maximum .݉ߤ 67

temperature up to 169K in pulsed mode and 117K in continuous wave mode and output 

powers of up to 250 mW in pulsed mode and 130 mW in continuous modes although 

these figures are not from the same device. This great performance of QCLs arises from 

the fact that they radiate below the longitudinal-optical phonon energy. Besides, other 
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sources, like gas lasers or free electron lasers have limited output power, require 

extensive cryogenic cooling or are not efficient in size or cost. However, it appears that 

generating long-wavelengths is more difficult than the mid-infrareds in QC laser for two 

reasons. First, because terahertz photon energies are small, it’s difficult to selectively 

inject or remove electrons by tunneling or scattering from such closely spaced subbands 

to achieve the population inversion necessary for gain. Second, as losses due to the 

absorption of radiation increases proportionally to the square of the wavelength, 

waveguides are required so that minimize the modal overlap with any doped 

semiconductor layers [9].  

 

1.4. Dynamic Behavior of Quantum Cascade Lasers 

The dynamics of QCLs is controlled by the ultrafast carrier lifetime in these 

devices (on the order of picoseconds) and this lifetime is determined mainly by the 

quantum well structure [1]. The carrier lifetime is the time that it takes to transit from one 

active region of the laser to the next. The combination of optical nonlinearities and 

ultrafast dynamics is one of the major characteristics of QCLs. Self-Mode-Locking is 

used in lasers to generate optical pulses with duration in the picoseconds and 

femtoseconds range. The origin of Self-Mode Locking is due to the transverse Kerr 

lensing mechanism in the lasing medium. Based on equation (1.4), if the nonlinear 

refractive index is positive, the total refractive index increases with the intensity. Any 

peak of the beam has a higher intensity than the edges and as a result has higher 

refractive index. This leads to an increase of the beam confinement at the center and the 
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beam diameter becomes narrower. This effect is known as Kerr lensing effect. In mode-

locking technique, the longitudinal modes of the laser cavity are locked in phase, by some 

external or internal mechanisms, to produce a train of pulses with ultrashort duration and 

repetition rate equal to the cavity roundtrip frequency. Self mode-locking of QC lasers 

with large optical nonlinearities is explained in reference [12], in which the intensity-

dependent refractive index of the lasing transition creates a nonlinear wave guide where 

the optical losses decreases with increasing intensity. This nonlinear effect prepares the 

system for generation of ultrashort pulses.  

Since QCLs generate short pulses, both nonlinear and dispersive effects of the 

medium of the laser influence their shape and spectra. These effects arise from the fact 

that both electrons and nuclei respond to high intensity electric field in a different way 

that they do to a low intensity field. The wave equation for propagating pulse inside the 

cavity of laser is given by: 

 ∇ଶܧ − 1ܿ ߲ଶݐ߲ܧଶ = ଴ߤ ߲ଶ ௅߲ܲݐଶ + ଴ߤ ߲ଶ ேܲ௅߲ݐଶ  (1.1)

where ௅ܲ and ேܲ௅ are the linear and nonlinear polarization of the medium. The linear and 

nonlinear parts of the polarization are related to the electric field ݎ)ܧ,  In this .[p.31 ,13] (ݐ

equation ேܲ௅ is treated as a small perturbation to ௅ܲ. In this case, TM polarized electric 

field and components of polarization can be written in the form of: 

,ݎ)ሬԦܧ  (ݐ = 12 ,ݎ)ܧ] ௜ఠబ௧ି݁(ݐ + ܿ. ܿ.   ො (1.2.a)ݔ[

 ௅ܲሬሬሬሬԦ(ݎ, (ݐ = 12 ൣ ௅ܲ(ݎ, ௜ఠబ௧ି݁(ݐ + ܿ. ܿ. ൧ݔො (1.2.b)  
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 ሬܲԦே௅(ݎ, (ݐ = 12 ൣ ேܲ௅(ݎ, ௜ఠబ௧ି݁(ݐ + ܿ. ܿ. ൧ݔො (1.2.c)  

 ො direction is selected as any arbitrary direction perpendicular to the direction onݔ 

propagation of wave (in this case ̂ݖ) and dielectric constant of the medium is also 

frequency dependent with nonlinear part; 

(߱)ߝ  = 1 + ߯ଵ(߱) + ே௅ (1.3)ߝ

where ߯ is called the susceptibility of the medium. The dielectric constant can be used to 

define the refractive index ෤݊ and the absorption coefficient ߙ෤ which both become 

intensity dependent because of ߝே௅; 

 ෤݊ = ݊ + ݊ଶ|ܧ|ଶ (1.4)

 

෤ߙ  = ߙ + ଶ (1.5)|ܧ|ଶߙ

݊ is the linear refractive index which is the ratio of velocity of light in the vacuum to the 

velocity of light in the medium. ݊ଶ and ߙଶ are nonlinear-index coefficient and two-

photon absorption coefficient respectively.  

 

1.5. Motivation 

There are many giant optical nonlinearities influencing the propagation of pulse in 

the medium of the QCLs. Self-phase-modulation, self-mode-locking and saturable 

absorber effects that will be reviewed in the next chapter are manifestations of the 

nonlinearity in the medium of the laser. These effects give rise to extraordinary changes 

in the pulse while passing through the medium of the laser. Our research is focused on 
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understanding the evolution of a pulse inside the nonlinear medium of a QCL with and 

without nonlinear effects. We try to understand how the shape of the pulse changes under 

different circumstances and how the equations describing the physics of light propagation 

change in each case. Some approximations were used in deriving the equations to make 

them easier to solve and we will consider consistency in the results with the experimental 

results and also previously existing simulations. We are specifically interested in 

investigating the effect of saturable absorber in the medium because of its importance in 

generating ultrashort pulses and mode-locking and Q-switching in lasers.  

Thesis is organized as follows: The development and progress of QC lasers is 

discussed in Chapter One. Required theoretical background is provided in Chapter Two. 

Working principles of Saturable Absorber and Self-Phase Modulation effects are 

described. In Chapter Three, formalism of light propagation is explained and different 

ways of writing the equations for dynamic of pulse is presented. Finite difference 

approach to model the equations is used and included in this chapter. The conversion 

coefficients between the equations without the nonlinear effect and with the nonlinear 

effect are also given in Chapter Three. In Chapter Four, the results of the simulation are 

presented and the different graphs that we generated are pictured. And finally in Chapter 

Five, we discuss the results and compare them with other experimental and theoretical 

results.  
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CHAPTER 2 
 

Theoretical Background 

2.1. QCL Working Principles 

Quantum cascade lasers are different fundamentally from other semiconductor 

lasers. This difference has been made clear in figure 2-1. QCLs are made up of quantum 

semiconductor structures known as quantum wells. Based on the solution to Schrödinger 

equation, discrete energy levels are formed inside the quantum wells and electrons can 

tunnel to the adjacent well if the thickness of the barrier is small enough. As a result of 

this tunneling and diffusion of wave functions, minibands are formed within the array of 

quantum wells. This structure is pictured in figure 2-2. 

 

Figure 2-1 QCLs and conventional semiconductors energy diagrams.  

 

 

Conventional 
Semiconductor 

QCL 
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(a) 
 

 
 

(b) 
Figure 2-2 (a) Tunneling of electrons and diffusion of wave functions. (b) The 

minibands are formed in the array of quantum wells. 
 

Different regions can be distinguished in QCLs. The active region and injector region. 

The active region is the place where electrons do transitions between intersubbands 

(minibands) and emit photons and then they can tunnel through the injector to enter the 

next active region. Upon applying an electric potential to the system, electrons can stream 

down the superlattice, which now has a potential gradient, and sequentially emit photons. 

Population inversion, which is necessary part of the lasing process, is achieved by the 

controlled tunneling of electrons. Since the thickness of the different layers determines 

the rate of tunneling and also the wavelength of the emitted photon, band-structure 

engineering is the key to design the superlattice structure. The working range of quantum 
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cascade lasers is in mid-infrared and because of cascading of electrons and emitting 

photons at different steps the output power of this type of laser is higher than other 

semiconductor lasers [1].  

 

Figure  0-3 Conduction band diagram. Two active regions with intermediate injector are 
indicated. The laser transition is shown by the wavy arrow (from 3 to 2) [1]. 

 

2.2. Ring Laser Cavity 

All laser cavities (resonators) share two characteristics that complement each 

other: (1) they are basically linear devices with one relatively long optical axis, and (2) 

the sides perpendicular to this axis are open. In the case of ring lasers the long axis 

actually bends and closes on itself [14]. There is no standing wave formed in ring lasers 
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because of lack of reflectors at two ends so we don’t see spatial hole burning (SHB) 

effect in the ring laser for which the standing wave is a requirement. In FP cavity 

however, laser pulses go back and force between two coparallel reflecting plates which 

makes the existence of standing wave possible. We will consider QCL structures as a ring 

laser and light pulses can go around a loop in the cavity of laser. As shown in the figure 

below, the laser light comes out of the device and then it is directed by a set of mirrors to 

a ring shape. 

 
(a) 

 
(b) 

Figure 2-2  (a) The direction of pulse output from stacks of quantum wells. (b) 
Schematic diagram of ring cavity laser. Pulses go around a loop 

2.3. Self-Phase Modulation 

This effect is considered to originate from the optical nonlinear Kerr effect, which 

is a change in the refractive index of materials in response to an electric field passing 
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through them. The intensity dependence of the refractive index leads to a large number of 

interesting nonlinear effects. Self-phase modulation refers to the self-induced phase shift 

experienced by an optical field during its propagation in the medium. Magnitude of SPM 

can be obtained by knowing the fact that the phase of an optical pulse changes by:  

 ∅ = (݊ + ݊ଶ|ܧ|ଶ)݇଴(2.1) ܮ

where ݇଴ is the wave-vector of the pulse and ܮ is the cavity length, ݊ is the linear part of 

the refractive index and ݊ଶ is the nonlinear index coefficient. From this equation, 

intensity-dependent nonlinear phase shift, ∅ே௅ = ݊ଶ|ܧ|ଶ݇଴ܮ, is due to SPM. Among 

other effects, SPM is responsible for spectral broadening of ultrashort pulses and 

formation of optical solitons in the cavity. Self-phase-modulation was first observed in 

1967 in the context of transient self-focusing of optical pulses propagating in CS2 cells 

[15]. 

 

2.4. Saturable Absorber  

A saturable absorber is an optical material or component in which the absorption 

decreases with incident optical intensity. So with increasing intensity, absorption 

saturates, loss decreases, and the transmittance increases.  The effect of saturable 

absorbption can be simulated by Kerr-focusing: the high intensity part of the beam is 

focused by the Kerr-effect, whereas the low intensity parts remain unfocused. If this 

pulse is passed through a device, the low intensity parts are weakened and as a result 

pulse is shortened [15]. Several types of processes contribute to a semiconductor 

saturable absorber. The most straight forward mechanism in a saturable absorber is 
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caused by the dependence of the absorption coefficient on the carrier population in the 

saturable absorber material. Mainly in quantum wells and bulk materials, where we have 

slow saturable absorption, this is usually quantified by the simple approximation for the 

saturable absorption coefficient and is measured experimentally. We show this 

coefficient by ࢽ. 

A saturable absorber can be used as an optical switch to suppress low-intensity 

signals in favor of short and intense optical pulses. Or, it can be implemented to facilitate 

or enhance the mode locking of lasers.  

Saturable absorber may have two main geometries. The first that is used in 

semiconductor lasers and integrated optical circuits is the waveguide saturable absorber 

and the other construction is semiconductor saturable absorber mirror (SESAM) that is 

used as a saturable reflector.  

 

2.5. Maxwell-Bloch Formalism for Ring Cavity 

The initial equations are the laser matter equations and Maxwell’s equations. In 

Maxwell’s equations the effect of a material is usually described by the polarization of 

the medium. The matter equations determine the polarization under the influence of an 

electric field ܧ. The same concept can be applied to the active atoms of a laser. If we 

assume that the active material of the laser consists of two-level atoms, the laser matter 

equations for the polarization per unit volume ܲ and for the population inversion, which 

is difference between the number of electrons in two levels, of the two-state system per 

unit volume ܵ are given by [16]: 
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 ሷܲ + ⏊ߛ2 ሶܲ + ߱଴ଶܲ = − 23 ቆ|ܯ|ଶℏ ቇ ߱଴(2.2) ܵܧ

 ሶܵ = ଴݀)‖ߛ − ܵ) + ൬ 2ℏ߱଴൰ ܲ. (2.3) ܧ

In these equations, ߛ⏊describes the damping of the polarization, ܯ is the optical 

dipole matrix element, ߛ‖ is the relaxation constant of the population inversion and ݀଴ is 

the pumping, and ℏ߱଴ is the energy separation between the states. These equations can 

be derived from the two-level Schrodinger equation of density matrix equations. 

Maxwell’s equations together with matter equations and periodic boundary conditions 

describe the effect of an active material in a medium of the laser. 

 

 ∇ሬሬԦ × ሬሬԦܪ = ܲ + ሶܧ߳ +   (a.2.4) ܧ2߳݇

 ∇ሬሬԦ × ሬԦܧ = ሶܪߤ−  (2.4.b)  

 ∇ሬሬԦ. ܧ߳) + ܲ) = 0 (2.4.c)  

 ∇ሬሬԦ. ܪ = 0 (2.4.d)  

where, ݇ determines the loss of the medium (in this case ring cavity), ߳ and ߤ are 

susceptibility and permeability respectively. Now, if we apply the equations (2.2)-(2.4) to 

a one-dimensional ring laser by assuming that the field vectors are polarized 

perpendicularly to the laser axis, ݔ, and eliminate the magnetic field ܪ using Maxwell’s 

equations  the one-dimensional wave equation:  
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 ߲ଶܧ௬߲ݔଶ − ൬ 1ܿଶ൰ ߲ଶܧ௬߲ݐଶ − ൬2݇ܿଶ ൰ ݐ௬߲ܧ߲ = ߤ ߲ଶ ௬߲ܲݐଶ  (2.5)

where ܿ = ଵ√ఓఢ is the velocity of light in the host material. The boundary conditions of 

ring laser require that ௬ܲ, ܧ௬, and ܵ be periodic in ݔ with period ܮ; 

 ௬ܲ(ݔ + ,ܮ (ݐ = ௬ܲ(ݔ,   (a.2.6) (ݐ

ݔ)௬ܧ  + ,ܮ (ݐ = ,ݔ)௬ܧ   (b.2.6) (ݐ

ݔ)ܵ  + ,ܮ (ݐ = ,ݔ)ܵ   (c.2.6) (ݐ

where ܮ is the length of the cavity. 

To be able to find a solution for these equations, without disturbing the physics of the 

problem, we use rotating wave approximation which implies that ܧ෨ , ෨ܲ and ሚܵ are slowly 

varying functions of ݔ (with respect to the wavelength ߣ = ଶగ௖ఠబ  of the emitting photon) 

and t (with respect to the period ܶ = ଶగఠబ of the emitting photon). So in the ring cavity 

when propagation is in one direction we have: 

௬ܧ  = ,ݔ)෨ܧ ௜ఠబቀ௫௖ି௧ቁ݁(ݐ + ܿ. ܿ (2.7.a)  

 ܲ = ෨ܲ(ݔ, ௜ఠబቀ௫௖ି௧ቁ݁(ݐ + ܿ. ܿ. (2.7.b)  

 ܵ = ሚܵ(ݔ,   (c.2.7) (ݐ

by using this approximation, we can neglect second-order derivatives in the slowly 

varying functions of ܧ෨௬, ෨ܲ௬ and ሚܵ and obtain finally the following equations: 
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 ෨ܲሶ + ⏊ߛ ෨ܲ = − ൬3݅൰ ቆ|ܯ|ଶℏ ቇ ෨ܧ ෨ܲ (2.8)

 ሚܵሶ = ଴݀)‖ߛ − ܵ) + ൬2ℏ݅ ൰ ෨ܧ) ෨ܲ∗ − ∗෨ܧ ෨ܲ) (2.9)

 ܿ ݔ෨߲ܧ߲ + ෨ሶܧ + ෨ܧ݇ = ቀ߱଴2߳ቁ ݅ ෨ܲ (2.10)

for more simplicity we limit the variables to the case where ݇, ܿ and ݀଴ are independent 

of ݔ, which means the medium is homogeneous in loss and gain distribution. with a new 

set of boundary conditions: 

 ෨ܲ(ݔ + ,ܮ ௜ఠబቀ௅௖ቁ݁(ݐ = ෨ܲ(ݔ,  (ݐ
(2.11.a)

ݔ)෨ܧ  + ,ܮ ௜ఠబቀ௅௖ቁ݁(ݐ = ,ݔ)෨ܧ  (ݐ
(2.11.b)

 ሚܵ(ݔ + ,ܮ (ݐ = ሚܵ(ݔ, (c.2.11) (ݐ

For more simplicity we limit the variables to the case where ݇, ܿ and ݀଴ are independent 

of ݔ, which means the medium is homogeneous in loss and gain distribution. And also we 

assume that one cavity mode is in resonance with frequency ߱଴, so ݁௜ఠబቀಽ೎ቁ = 1 and the 

new boundary conditions are: 

 ෨ܲ(ݔ + ,ܮ (ݐ = ෨ܲ(ݔ, (a.2.12) (ݐ

ݔ)෨ܧ  + ,ܮ (ݐ = ,ݔ)෨ܧ (b.2.12) (ݐ
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 ሚܵ(ݔ + ,ܮ (ݐ = ሚܵ(ݔ, (c.2.12) (ݐ

By using the reduced quantities: 

ܧ  =  ෨௖௪ܧ෨ܧ

ܲ = ෨ܲ෨ܲ௖௪ 

ߪ = ሚܵሚܵ௖௪ 

ߣ = (݀଴ − ሚܵ௖௪)ሚܵ௖௪  

(2.13)

where ߣ is called the normalized pumping parameter and the ܿݓ indices refer to 

normalized to stationary (continuous wave) and independent of  ݔ and ݐ solutions. Then 

equations (2.8) reduce to the following equations: 

 ሶܲ + ܲ⏊ߛ = (2.14) ߪ⏊ߛ

ሶߪ  + ߪ‖ߛ = 1]‖ߛ + ߣ − 12 ܲ∗ܧ)ߣ + (2.15) [(ܧ∗ܲ

ሶܧ  + ܿ݊ ݔ߲ܧ߲ = ݇(ܲ − (2.16) (ܧ

In deriving the above equations Rotating Wave Approximation (RWA) was used 

which is based on the assumption that the counterrotating wave terms (harmonics of 

electrics field and polarization oscillations with frequencies higher than resonant 

frequency) can be neglected [17]. Equation (2.14) is the rate of change in the 
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polarization. Equation (2.15) explains the rate of change in the population inversion and 

equation (2.16) defines the evolution of the electric field of the pulse in the medium. 

Another way of deriving the Maxwell-Bloch equations in a ring cavity is by 

modeling the gain medium of the laser as a two-level system described by Bloch 

equations. The equation for electric field, polarization and inversion inside the ring cavity 

with the effect of saturable absorber is given by [18]:  

 

ݐ෨߲ܧ߲  + ܿ݊ ݖ෨߲ܧ߲ = − ܿ݊ ෨ܲ − ൬12 ݈଴′ − ෨หଶ൰ܧหߛ ෨ܧ  (2.17)

 ߲ ෨߲ܲݐ = − 12 ෨ܧ෤ߪ − ෨ܶܲଶ (2.18)

ݐ෤߲ߪ߲  = ݈଴݌ଵܶ ଶܶ − ෤ܶଵߪ + ∗෨ܧ2) ෨ܲ + ܿ. ܿ. ) (2.19)

The SA effect is characterized by ߛ and ݈଴′  is the linear loss. ଵܶ and ଶܶ are the longitudinal 

and transverse relazation times respectively. In deriving these equations, slowly varying 

envelope approximation (SVEA) is used in which we assume that the envelope of the 

pulse varies slowly in time and space compared to …. Because of the similarities 

between equations (2.17)-(2.19) and the equations (2.14)-(2.16), we can find the 

conversion relations between the two sets which will help us in simulating the equations. 
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CHAPTER 3 
 

Dynamics Analysis of Quantum-Cascade Laser in Ring-Cavity 

 

3.1. Finite Difference Approximation to Maxwell-Bloch Equations 

for Ring-Cavity with Vacuum Medium 

As explained in chapter 2, Maxwell-Bloch equations describe the dynamics of a 

simple two level laser. We follow the derivation presented in Ref. [16]. Starting with 

equation set (2.14-2.16):   ሶܲ + ܲ⏊ߛ =  ߪ⏊ߛ

ሶߪ + ߪ‖ߛ = 1]‖ߛ + ߣ − 12 ܲ∗ܧ)ߣ +  [(ܧ∗ܲ
ሶܧ + ܿ ݔ߲ܧ߲ = ݇(ܲ −  (ܧ

In these equations, ܧ represents the electric field, ܲ is the polarization of the medium and ߪ is population inversion, ߛ⏊and ߛ‖ damping of the polarization and relaxation constant 

of the population inversion respectively. Since we focus on the real part of the 

polarization and electric field, therefore ܧ∗ = ∗ܲ and ܧ = ܲ. Equations (2.14)-(2.16) then 

can be written in the new form: 

 ሶܲ + ܲ⏊ߛ = (3.1) ܧߪ⏊ߛ
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ሶߪ  + ߪ‖ߛ = 1]‖ߛ + ߣ − (3.2) [(ܲܧ)ߣ

ሶܧ  + ܿ ݔ߲ܧ߲ = ݇(ܲ − (3.3) (ܧ

We use finite-difference method to find the evolution of electric field, polarization and 

population inversion in the cavity both in time and space. To meet that goal, we need to 

change the equations to discrete forms to be able to find the state of the system step by 

step based on the state of the system in one step before. We show the procedure for 

electric field and full form of equations for the two others. 

we divide the ݔ − ݉ plane into a ݐ × ݊ grid with spacing ∆ݔ and ∆ݐ in space and time 

respectively as in Figure 3-1. For the ring cavity, spatial spacing is ∆ݔ = ௅௠ and spacing 

in time is ∆ݐ = ∆௫௩ = ௅௡ೝ೐೑௠௖ . The spacing between the grid points was chosen fine enough 

to make sure there is not any uninspected variation inside the spacing. This was achieved 

by increasing the dimensions of grids (݉ and ݊) until we see consistency in the results. 

For the purpose of ring cavity we use periodic boundary condition which means that the 

red lines in figure 3-1 must be equal. The initial condition is also marked with purple line 

which is the state of the system at time zero and in the different positions in the ring. 
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Figure 3-1 Simple mxn grid for finite difference approximation points. Here 
m=10 and n=10. The boundary conditions are shown by red dots and initial 
condition by purple dots.  E(m,n+1) is shown with pink dot and its value is 
dependent on the values in previous steps, the green dots. 

First we find the derivative of variables in time and space. This can be done by 

writing the Taylor expansion about the grid point (݉, ݊).  

ݐܧ߲߲  = ,݉)ܧ ݊ + 1) − ,݉)ܧ ݐ∆(݊ − 12 ݐ∆ ߲ଶܧ(݉, ଶݐ߲(݊  (3.4)

ݔ߲ܧ߲  = ,݉)ܧ ݊) − ݉)ܧ − 1, ݔ∆(݊ + 12 ݔ∆ ߲ଶܧ(݉, ଶݔ߲(݊  (3.5)

as mentioned above, similar expressions can be written for డ௉డ௧  and డఙడ௧ . Starting with the 

left-hand side of equation (3.3) for electric field we have: 
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ሶܧ  + ܿ ݔ߲ܧ߲ = ,݉)ܧ ݊ + 1) − ,݉)ܧ ݐ∆(݊ − 12 ݐ∆ ߲ଶܧ(݉, ଶݐ߲(݊
+ ,݉)ܧ ݊) − ݉)ܧ − 1, ݐ∆(݊
+ 12 ܿଶ∆ݐ ߲ଶܧ(݉, ଶݔ∆(݊  

= ,݉)ܧ ݊ + 1) − ݉)ܧ − 1, ݐ∆(݊
+ 12 ݐ∆ ቈܿଶ ߲ଶܧ(݉, ଶݔ߲(݊ − ߲ଶܧ(݉, ଶݐ߲(݊ ቉
= ݇(ܲ −  (ܧ

(3.6)

here, selecting the second equality helps us to eliminate the terms with first derivative; 

 ݇(ܲ − (ܧ = ,݉)ܧ ݊ + 1) − ݉)ܧ − 1, ݐ∆(݊
+ 12 ݐ∆ ቈܿଶ ߲ଶܧ(݉, ଶݔ߲(݊ − ߲ଶܧ(݉, ଶݐ߲(݊ ቉ 

(3.7)

solving (3.7) for ܧ(݉, ݊ + 1): 

,݉)ܧ  ݊ + 1) = ܲ)ݐ∆݇ − (ܧ
+ 12 ଶݐ∆ ቈ߲ଶܧ(݉, ଶݐ߲(݊ − ܿଶ ߲ଶܧ(݉, ଶݔ߲(݊ ቉
+ ݉)ܧ − 1, ݊) 

(3.8)

the second derivatives are calculated by differentiating (3.3) and substituting the first 

order difference approximation from equations (3.2) and (3.1). In this way, we obtain an 

approximation to the derivatives with a truncation error of order (∆ݐ)2. 
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 ߲ଶܧ(݉, ଶݐ߲(݊ = ሷܧ = ݇൫ ሶܲ − ሶܧ ൯ − ܿ ߲ଶݐ߲ݔ߲ܧ (3.9)

 

 ߲ଶܧ(݉, ଶݔ߲(݊ = ݇ܿ ൬߲߲ܲݔ − ൰ݔ߲ܧ߲ − 1ܿ ߲ଶ(3.10) ݐ߲ݔ߲ܧ

multiplying (3.9) by ܿ2 and subtracting it from (3.8): 

 ߲ଶܧ(݉, ଶݐ߲(݊ − ܿଶ ߲ଶܧ(݉, ଶݔ߲(݊
= ݇൫ ሶܲ − ሶܧ ൯ − ܿ݇ ൬߲߲ܲݔ −  ൰ݔ߲ܧ߲

(3.11)

 

we know: ሶܲ = ܧߪ)ୄߛ − ܲ) 

and 

ሶܧ = ݇(ܲ − (ܧ − ܿ ݔ߲ܧ߲  

then right-hand side of the equation (3.10) becomes: 

 ߲ଶܧ(݉, ଶݐ߲(݊ − ܿଶ ߲ଶܧ(݉, ଶݔ߲(݊
= ݇ ൤ܧߪ)ୄߛ − ܲ) − ݇(ܲ − (ܧ + ܿ ൨ݔ߲ܧ߲
+ ܿ݇ ൬߲ݔ߲ܧ −  ൰ݔ߲߲ܲ

= ܧߪ)ୄߛ]݇ − ܲ) − ݇(ܲ − [(ܧ + 2ܿ݇ ݔ߲ܧ߲ − ܿ݇ ݔ߲߲ܲ  

(3.12)
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= ܧߪ)ୄߛ]݇ − ܲ) − ݇(ܲ − [(ܧ + 2݇ ,݉)ܧ ݊) − ݉)ܧ − 1, ݐ∆(݊
− ݇ ܲ(݉, ݊) − ܲ(݉ − 1, =ݐ∆(݊ ܧߪୄߛ]݇  − ୄߛ) + ݇)ܲ + [ܧ݇
+ 2݇ ,݉)ܧ ݊) − ݉)ܧ − 1, ݐ∆(݊
− ݇ ܲ(݉, ݊) − ܲ(݉ − 1, ݐ∆(݊  

 

where we used the following relationship for wave propagation in vacuum:  

ܿ = ݐ∆ݔ∆  

therefore evolution of electric field in time and space is given by: 

,݉)ܧ  ݊ + 1) = ݉)ܧ − 1, ݊) + ܲ)ݐ∆݇ − (ܧ
+ 12 ܧߪୄߛ]ଶ݇ݐ∆ − [ߪୄߛ) + ݇)ܲ + [ܧ݇
+ ,݉)ܧ]ݐ∆݇ ݊) − ݉)ܧ − 1, ݊)]
− 12 ,݉)ܲ]ݐ∆݇ ݊) − ܲ(݉ − 1, ݊)] 

(3.13)

rearranging the equation results in: 
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,݉)ܧ  ݊ + 1) = (1 − ݉)ܧ(ݐ∆݇ − 1, ݊)
+ ൬12 ݐ∆݇ − 12 ୄߛ)݇ + ଶ൰ݐ∆(݇ ܲ(݉, ݊)
+ 12 ,݉)ܧଶ(ݐ∆݇) ݊) + 12 ,݉)ߪଶݐ∆ୄߛ݇ ,݉)ܧ(݊ ݊)
+ 12 ݉)ܲݐ∆݇ − 1, ݊) 

(3.14)

to avoid recalculating the constants and reduce the amount of calculations, equation 

(3.13) can be written as: 

,݉)ܧ  ݊ + 1) = ܽଵܧ(݉ − 1, ݊) + ܽଶܲ(݉, ݊)+ ܽଷܧ(݉, ݊) + ܽସߪ(݉, ,݉)ܧ(݊ ݊)+ ܽହܲ(݉ − 1, ݊) 

(3.15)

where  ܽଵ = (1 −  (ݐ∆݇

ܽଶ = 12 ݐ∆݇ − 12 ୄߛ)݇ +  ଶݐ∆(݇

ܽଷ = 12  ଶ(ݐ∆݇)

ܽସ = 12  ଶݐ∆ୄߛ݇

ܽହ = 12  ݐ∆݇

following a similar procedure for P and ࣌ we have: 
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 ܲ(݉, ݊ + 1) = ܾଵܲ(݉, ݊) + ܾଶߪ(݉, ,݉)ܧ(݊ ݊) + ܾଷܧ(݉, ݊)+ ܾସߪ(݉, ݊)ܲ(݉, ݊) − ܾହܲ(݉, ,݉)ଶܧ(݊ ݊)+ ,݉)ߪ6ܾ ݉)ܧ(݊ − 1, ݊) 

(3.16)

with the following coefficients: 

ܾଵ = ൤1 − ݐ∆ୄߛ + 12  ଶ൨(ݐ∆ୄߛ)

ܾଶ = 12 1]ݐ∆ୄߛ − (݇ + ୄߛ +  [ݐ∆(∥ߛ
ܾଷ = 12 ଶ(1ݐ∆∥ߛୄߛ +  (ߣ

ܾସ = ଵଶ ଶ  ,    ܾହݐ∆ୄߛ݇ = ଵଶ ଶ   ,    ܾ଺ݐ∆ߣ∥ߛୄߛ = ଵଶ  ݐ∆ୄߛ

and for population inversion we have: 

,݉)ߪ  ݊ + 1) = ,݉)ߪ ݊) ൤1 − ݐ∆∥ߛ + 12 ଶ൨(ݐ∆∥ߛ)
+ ܲ(݉, ,݉)ܧ(݊ ݊) ൤− 12 ݐ∆∥ߛߣ + 12 ୄߛ)∥ߛߣଶݐ∆ + ∥ߛ + ൨(ߣ
+ ,݉)ߪ ,݉)ଶܧ(݊ ݊) ൤12 ଶ൨ݐ∆ߣୄߛ∥ߛ
− ܲଶ(݉, ݊) ൤12 ଶ൨ݐ∆∥ߛ݇ߣ
− ܲ(݉, ݉)ܧ(݊ − 1, ݊) ൤12 ൨ݐ∆∥ߛߣ + 1)ݐ∆∥ߛ + 1)(ߣ
− 12  (ݐ∆∥ߛ

(3.17)

this is simply:  
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,݉)ߪ  ݊ + 1) = ܿଵߪ(݉, ݊) + ܿଶܲ(݉, ,݉)ܧ(݊ ݊)+ ܿଷߪ(݉, ,݉)ଶܧ(݊ ݊) − ܿସܲଶ(݉, ݊)− ܿହܲ(݉, ݉)ܧ(݊ − 1, ݊) + ܿ଺ 

(3.18)

where 

ܿଵ = 1 − ݐ∆∥ߛ + 12  ଶ(ݐ∆∥ߛ)

ܿଶ = − 12 ݐ∆∥ߛߣ + 12 ୄߛ)∥ߛߣଶݐ∆ + ∥ߛ +  (ߣ

ܿଷ = 12  ଶݐ∆ߣୄߛ∥ߛ

ܿସ = 12  ଶݐ∆∥ߛ݇ߣ

ܿହ = 12  ݐ∆∥ߛߣ

using finite difference equations demands that we introduce initial conditions to the 

system. The initial condition for electric field is a simple Gaussian pulse according to the 

reference [16]. 

,ݔ)ܧ  0) = 0.1݁ିଵ଴଴(௫௅ିଵଶ)మ
 

(3.19)

while polarization is zero and population inversion is ݌. 
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3.2. Finite Difference Formulism for Ring-Cavity with Non-Vacuum 

Lasing Medium 

We can apply the derivation procedure in the last section to the non-vacuum 

lasing medium characterized by refractive index n. The set of equations with saturable 

absorber effect in the lasing medium is given by [18]: 

ݐ෨߲ܧ߲  + ܿ݊ ݖ෨߲ܧ߲ = − ܿ݊ ෨ܲ − ൬12 ݈଴ − ෨หଶ൰ܧหߛ ෨ܧ  (3.20)

 ߲ ෨߲ܲݐ = − 12 ෨ܧ෤ߪ − ෨ܶܲଶ (3.21)

ݐ෤߲ߪ߲  = ݈଴݌ଵܶ ଶܶ − ෤ܶଵߪ + ∗෨ܧ2) ෨ܲ + ܿ. ܿ. ) (3.22)

In these equations, ܿ is speed of light, ݊ is the refractive index, 1ܶ and 2ܶ are the 

longitudinal and transverse relaxation times, respectively. The saturable absorber with 

lowest order approximation in ܧ෨  is presented by ߛ and the linear loss is ݈଴. The equations 

(3.19) explains the propagation of electric field in the medium with loss and varying 

polarization. Equation (3.20) is the rate of change in the polarization which is a function 

of magnitude of electric field and inversion.  

We have two ways to choose from. One is to write the finite difference equations for each 

of the variables in equations (3.19)-(3.21) and run the simulation for the new set of 

equations. The other way is to figure out the correlation between the equations (3.1)-(3.3) 

and (3.19)-(3.21) and incorporate the conversion coefficients into equations (3.1)-(3.3) 

with the inclusion of saturable absorber effect. We adopt the second method which is 
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simpler. By figuring out the correlation between the two sets of equations, the following 

conversion rules are obtained, 

 ଶܶ =  ୄߛ1

ଵܶ =  ∥ߛ1

݌ = ߣ + 1 

݇ = 2ܿ݊ (݈଴ − ଶℏଶߤ  (ଶ|ܧ|(ߣୄߛ∥ߛ2)ࢽ

෨ܧ = ඥ2݌)ୄߛ∥ߛ −  ܧ(1

෨ܲ = − ݈଴2 ට2݌)ୄߛ∥ߛ − 1)ܲ 

෤ߪ = ݈଴ߪୄߛ 

(3.23)

So by inserting these coefficients in the finite difference equations (3.2)-(3.4), we can 

form the new effect of new terms in the equations. The values that are used for the 

parameters are as follow [18]: gain recovery time, ଵܶ, is 0.5 picoseconds, dephasing time, 

2ܶ, is 0.067 picoseconds, and linear cavity loss, ݈0, is 500 ݉ିଵ. The value for refractive 

index, ݊௥௘௙, is 3. 
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CHAPTER 4 

 

Results 

To run the simulation, MATLAB software with 64-bit operating system and 4 

gigabyte memory was used. Obviously, since the equations are nonlinear and coupled, 

the results are very sensitive to the initial conditions and to the constants that we use in 

the code. With small change in the amplitude of the initial Gaussian pulse the results 

would change dramatically. For some cases we had to extend the iteration to higher 

values so the variables pass the transient state and settle in a stable mode. Therefore, for 

some of the values we were not able to get the right results because of the limited 

computer memory or we discarded some of the values because graphs did not make 

sense. 

In order to assure the accuracy of the code, we first verify our results based on our 

finite difference approximations for equations (3.1)-(3.3) by comparing them with the 

presented results in Ref. [16]. With the same parameters and initial conditions in Ref. 

[16], we generated the graph for the intensity versus time. The initial conditions are  

,ݔ)ܧ 0) = 0.1݁ିଵ଴଴(௫௅ିଵଶ)మ
,ݔ)ܲ  0) = ,ݔ)ߪ 0 0) = λ + 1 
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polarization is chosen to be zero initially because there is no excitation in the medium 

and inversion is the threshold pumping (the amount of minimum current needed to be 

injected in the medium so the laser can be started) plus one to give a total pumping. 

Figure 4-1 Graph of Intensity as a function of time ࢚ = ࢉࡸࡺ  where N is number of trips. In 

this graph, ࡸ ,15=ߣ = ૛ࢉ࣊૜.૛࢑ ,⏊ࢽ = ૚૚૙ ‖ࢽ and ⏊ࢽ = ૚૛  After a few round trips, the variables .⏊ࢽ

reach the approximate continuous wave solution. Intensity reaches the stable mode from a 
Gaussian disturbance. 

Figure 4-1 shows transient buildup of the intensity for ring cavity without saturable 

absorber effect. After a few round trips ܧ, ܲ and ߪ reach the approximate steady state. 

This graph agrees with results in Ref. [16]. 

 To investigate the effect of saturable absorber, we change the variables in the 

code to appropriate counterparts in (3.19)-(3.21) using the conversion coefficients (3.22). 

In order to compare the results presented in the Ref. [18], we study the optical spectrum 

of the lasing intensity under various saturable absorber strengths. The optical spectrum is 

obtained based on Fourier transform of the optical intensity in the time domain and a grid 
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size of 500 × 100000 was used which correspond to ∆ݔ = 1.2 × 10ି5݉ and ∆ݐ = 1.2 ×
value 10ିଵଵ ࢽ We select .ݏ10ି13 ௠௏మ, which is based on Ref. [18].  We observe optical 

spectrum of the lasing intensity for various pumping ratio ݌.  The values for ݌ are chosen 

as 5.0, 5.5 and 5.6 which are above the lasing threshold. 

 

Figure 4-2 Graph of intensity as a function of frequency for = ૞. ૟ , ࢽ = ૚૙ି૚૚ ࡸ . ૛ࢂ࢓ = ૟ ࢓࢓ to account 
for round trip with the same time as a ૜ ૙࢒ .Fabry-Perot cavity ࢓࢓ = ૠ૙૙  ૚  to account for theି࢓

mirror losses. 

 

Figure 4-3 Graph of intensity as a function of frequency for ݌ = ૞. ૞. 

Detuning Frequency 

Detuning Frequency 
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Figure 4-4 Graph of intensity as a function of frequency for ݌ = ૞. ૙. 

In the three graphs above the spectrum of the pulse is shown. Under the same saturable 

absorber strength, as the ݌ increases, side peaks around the central peak start to grow. 

The existence of the side modes is due to the instability of the lasing behavior under 

higher pumping ratio. The magnitude of variations is better represented in logarithmic 

graphs. This observation is similar to that presented in Ref. [18]. 

 

Figure 4-5 Logarithmic graph of intensity as a function of frequency for = ૞. ૟ ,  ࢽ = ૚૙ି૚૚ ࡸ . ૛ࢂ࢓ = ૟ ࢓࢓ for round trip with the same time as a ૜ ૙࢒ .Fabry-Perot cavity ࢓࢓ = ૠ૙૙  ૚ି࢓

 

Detuning Frequency 

Detuning Frequency 
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Figure 4-6 Logarithmic graph of intensity as a function of frequency for ݌ = ૞. ૞. 

 

 

Figure 4-7 Logarithmic graph of intensity as a function of frequency for ݌ = ૞. ૙ 

For �=0, which means no saturable absorber effect, is ignored, we didn’t see any change 

in the optical intensity spectrum under various pumping ratio.  This shows that the 

saturable absorber lowers the threshold of lasing instability. Lasing instability is observed 

as the rise of the side modes in the lasing spectrum.   

Detuning Frequency 

Detuning Frequency 
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CHAPTER 5 
 

Conclusion 

In this thesis, we employed a new technique using the correlation relationship to 

find the finite difference formalism for the Maxwell-Bloch equations for a QCL ring 

cavity with saturable absorber effect. We performed simulation of optical spectrum based 

on the formalism derived. We observed the lasing spectrum with influences from the 

pumping strength and saturable absorber. We found out that the lasing instability, 

exhibited as the side modes in the optical spectrum, appears with higher pumping ratio 

under the same saturable absorber effect. Under the same pumping strength, the 

instability behavior favors the medium with stronger saturable absorber effect. This 

agrees with conclusion presented in the previous literature.  

The derived finite-difference formalism is a favorable numerical method to 

analyze both static and dynamic behaviors of QCLs. It could be explored to include 

various physics effects in a QCL medium. In the formalism, the saturable absorber effect 

is modeled as the intensity-modulated optical field amplitude. Thus, the formalism could 

also be extended to apply to analysis of the self-phase-modulation effect, which could be 

described as the intensity-modulated phase of the optical field.  
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