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A model is proposed that combines the theoret- maximum likelihood estimates of item parameters
ical strength of the Rasch model with the heuristic for each class. No a priori assumption about the
power of latent class analysis. It assumes that the item order in the latent classes or the class sizes is
Rasch model holds for all persons within a latent required. Application of the model is illustrated,
class, but it allows for different sets of item both for simulated data and for real data. Index
parameters between the latent classes. An estima- terms: conditional likelihood, EM algorithm, latent
tion algorithm is outlined that gives conditional class analysis, Rasch model.

An increasing amount of research has been done on the integration of Rasch models and latent
class analysis during the past five years (e.g., Langeheine & Rost, 1988). Using the concept of located
classes by Lazarsfeld and Henry (1968), Formann (1985, 1989a) described the Rasch model (RM) as
a latent class model (LCM) with constrained logistic parameters. Clogg (1988), and Clogg, Lindsay,
and Grego (1989), employed similar restrictions for the LCM, and obtained a model that not only
provides conditional maximum likelihood estimates for the item parameters, but also satisfactory
person parameter estimates.

However, latent class analysis can do more than simply imitate the Rasch model. It can be used
to weaken the strong assumptions of the Rasch model—specifically, the assumption of parallel item
characteristic curves or item response functions (IRFs). Rost (1988a) pointed out that the latent classes
must be ordered whenever the IRFs are monotone and vice versa. This makes the LcM a tool for check-
ing the unidimensionality of a test without specifying the shape of its IRFs. Croon (1988), Heinen,
Hagenaars, and Croon (1989), and Formann (1989b) describe ways of imposing these order restric-
tions on the LCM.

Likewise, in the case of polychotomous generalizations of the Rasch model, an integration with
latent class analysis has occurred. Rost (1988b) transferred the threshold approach of modeling mul-
ticategorical item responses in generalized Rasch models into the framework of latent class models.

This paper presents a new, straightforward way of combining Rasch and latent class models that
overcomes the deficiencies of both approaches and retains their positive features. The idea is that
the RM describes the response behavior of all persons within a latent class, but that different sets
of item parameters hold for the different latent classes. Because the classes are not known before-
hand (i.e., they are ‘‘latent’’), such a model is heuristic in the sense that it identifies subpopulations
of individuals as being Rasch scalable. On the other hand, the prominent feature of the RM—namely,
allowing for distribution-free item parameter estimates—is a great advantage for parameter estima-
tion in the proposed extension, because ability distributions within classes are unknown and should
not be made subject to a priori assumptions.

Item analysis using the Rasch model requires the item difficulties to be constant for all persons.
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This is a strong requirement that may be violated in some cases by poorly-constructed items. In other
cases, the diagnostic intention is to have items with varying difficulties for different subgroups of
persons, because they indicate alternative strategies of solving items or distinguishing cognitive struc-
tures. Hence, a latent class approach to item analysis would be desirable.

LC models require response probabilities, however, that hold for all individuals in a latent class.
This is also a very strong requirement, and experience has shown that for every cognitive structure
or solution strategy, several latent classes are needed in order to account for individual differences
in ability (see example below). Therefore, a generalized LC model allowing for ability differences with-
in classes would be desirable.

The Mixed Rasch Model

Let p,, denote the probability of person v giving a correct answer or ‘‘yes’’ response to item i un-
der the condition that this person belongs to latent class g. It is assumed that these response proba-
bilities can be described by the dichotomous Rasch model

P = exp(t,, + 6,)/[1 + exp(t, + o,)] , M)
where 1,, is the person’s ability and o, is the item easiness parameter. The usual indeterminancy con-

straint Z .0, = 0 must hold within each class g. If it is further assumed that the latent classes are
mutually exclusive and exhaustive, the well-known latent class structure appears:

D = ;ngpvig

= ;ng exp(t,, + 0,)/[1 + exp(t,, + 0,)] , V)]
where p,; is the unconditional response probability and =, is the class size parameter or ‘‘mixing
proportion’’ with constraints 0 < n, < 1 and X%, = 1.

These equations do not yet define the entire model because they do not specify what to do with
the person parameters t,,. The solution used here is to condition out the person parameters, which
can only be done with a Rasch-like model structure. The advantages of this choice are outlined below.

In order to derive the likelihood function, the pattern probabilities p(x)—the probabilities of a
response vector X = (x,, X, ..., X;, ..., X;), where x, = 0 or 1—are needed first. Under the usual
assumption that the partition into latent classes holds for all k items of a test, the pattern probability
can be written as
pix) = Tm,pixlg) ®)

" where the conditional pattern probability p(x|g) is simply the product of response probabilities de-
fined by Equation 1 over all items. It is well known that in the Rasch model the number of correct
responses (i.e., the score r = X, x,) is a sufficient statistic for estimating t; hence, all persons with
the same score r obtain the same 1 estimate. Consequently the pattern probability p(x|g) can be con-
ditioned on the score r associated with a given pattern so that the following equation holds:

pixlg) = p(xlg.,n+plle) - 4)
This is a useful factorization because only the first factor depends on the item parameters o,
p(x|g,r) = exp(zi,xioig)/d),[exp(o] , 3

where ®, are the symmetric functions of order r of the delogarithmized item parameters, and only
the second factor depends on the ability distribution in class g. There is no need to restrict the score
probabilities p(r|g) in any case (e.g., by fitting a normal distribution). In the model presented here,
the class-specific score probabilities p(r|g) themselves are treated as model parameters, so that no
further assumptions about the ability distributions within the latent classes are required. The ‘‘mixed
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Rasch model”” is ‘‘distribution-free’’ in the same sense as the simple Rasch model.
Combining these elements, the likelihood function defining the model is

L= ]:[{Ehtgn,g exp(zi:x,-o,g)/<1>,[exp(o)]}"m , ©6)

where n(x) denotes the observed number of response patterns X, and the score probabilities
n, = p(r|g) have been renamed, in keeping with the convention of using greek letters to denote model
parameters.

Hence the number of independent model parameters is composed as follows:

1. h -1 class size parameters n,, where % is the number of classes,

2. (k - Dh class-specific item parameters, where k is the number of items and must be decreased
by 1 because of the norming constraint, and

3. 2 + h(k - 2) class-specific score probabilities, because one parameter in each class depends on
the sample size and the class size, and the two parameters for the 0 and 1 vectors are class in-
dependent (see below).

It can easily be verified that the Rasch model is the 1-class solution of the proposed model in

Equation 6. Similarly, the simple latent class model is a special case of Equation 6. It is obtained
from the restriction that there is no ability variation within the classes (i.e., the individual parameters
of all persons in a latent class are constant). In such a case, the response probability in a latent class
(Equation 1) can be reparameterized in the following way:
P = €xp(t, + 6,)/[l + exp(t, + 6,)] = &, . @)
Because only k - 1 item parameters o,, in a particular class g are independent, the additive constant
1, serves as the kth parameter. The probability parameters n,, defined in this way are the “‘latent prob-
abilities”’ of regular latent class analysis. Consequently, the proposed model in Equation 6 is the
common generalization of both the Rasch and the latent class models.

Kelderman and Macready (in press) treated the Rasch model as a special case of the general log-
linear model with a latent categorical variable, as introduced by Haberman (1979). Their point of
view is more general; the mixed Rasch model proposed here is only one of several ways of combining
a latent trait variable with a latent class variable. The mixed Rasch model corresponds, in particular,
to Model 5, Table 1, in Kelderman and Macready (in press). Yet this embedding into the most general
model structure makes the model somewhat difficult to apply with currently-available
software.

The algorithm proposed in the following section is capable of dealing with more than two (e.g.,
four or five) latent classes and a relatively large number of items (15 to 20), and can be directly gener-
alized to polychotomous item response models (see Rost, in press). Furthermore, it makes no require-
ments on the starting values for the parameter estimates, and no a priori hypotheses about item
difficulties within the latent classes are needed.

Mislevy and Verhelst (in press) proposed a mixed Rasch model based on such a priori hypotheses
about item difficulties under different solution strategies. They employ a marginal likelihood method
that seems to be limited in its applicability with regard to the number of latent classes and the number
of items.

An EM Algorithm for Parameter Estimation

The EM algorithm (Dempster, Laird, & Rubin, 1977) has been shown to work well for all types
of latent class models (cf. Rost, 1988a); consequently it was used in this research.
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E Step

In the Expectation step of this iterative procedure, the expected pattern frequencies within each
latent class are estimated on the basis of the observed global pattern frequencies and preliminary
estimates of the model parameters. These pattern frequencies within classes n(x,g) are obtained by
weighting the observed frequencies with a proportion indicating the probability of observing this pattern
in the class under consideration:

A(x.g) = n(x)m,px|g)/ [T p(xlg)] ®
and
pxlg) = m, exp(Txo,)/®[exp(o)] . o)

This proportion depends only on the model parameters n,, 6,, and =,,, as specified by Equations
4 and 5.

There is an exception, however, for the two response patterns with scores 0 and & (i.e., the 0 and
1 vectors). The proportion of these vectors belonging to one of the latent classes cannot be deter-
mined by means of the model parameters. The ratio of Equation 9 is 1 for both of these patterns
because the symmetric functions of order 0 and k equal 1, and the numerator is 1 because of the
norming condition. Consequently, the expected pattern frequencies n(0|g) and n(1|g) depend not on
the item parameters ¢, but only on the score parameters n,,. The 0 and 1 vectors are the only
patterns in their score groups, r = 0 and r = k; thus, no improvement of their expected frequencies
is obtained from Equation 8. The expected frequencies of these two patterns do not diverge from
the initial estimates of their score probabilities.

This makes sense, of course: A “‘distribution-free’’ item response model cannot predict the class
membership of a response pattern for which its occurrence depends only on the ability distribution
and not on the item parameters. The situation calls for a practical solution, however. The solution
used in this study makes no arbitrary assumption about the proportion of these two pattern frequen-
cies in the latent classes. Instead, they were excluded from the estimation procedure. This did not
affect the item parameter estimates because a conditional maximum likelihood method was employed
(see M step below); nor did it affect the score parameter estimates where r > 0 and r < k. The only
consequence was that the class size parameters n, no longer summed to 1, but the following side
constraint held:

Zn, = [N-n0) - nYN , . 10

where N is the sample size, and n(0) and n(1) are the observed frequencies of the 0 and 1 vectors,
respectively.

M Step

In the M step, maximum likelihood (ML) estimates of the model parameters are computed on the
basis of the expected pattern frequencies within the classes provided by Equation 8. The item parameters
and score parameters can be estimated separately for each latent class by maximizing the log-likelihood
function of the data in a class g:
log L, = En(x,g [log(m,) + Zxo - log(®,)] , a1
where ®, = ® [exp(o)] is an abbrev1ated notation for the symmetric functions of all item parameters.
When the first partial derivatives of this function are set to zero, the following system of estimation
equations is obtained for the item parameters (Gustafsson, 1980):

exp(aig) = "ig/z(nrgq)r—-l,i/Qr) ] (12)

Downloaded from the Digital Conservancy at the University of Minnesota,
May be reproduced with no cost by students and faculty for academic use. Non-academic reproductlon
requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/




CSUIIJICIvV NV 1

RASCH MODELS IN LATENT CLASS ANALYSIS 275

In this equation, ®,_, ; denotes the symmetric functions of order r - 1 of all item parameters ex-
cept item / (i.e., the first partial derivative of ®,). The sufficient statistics n,, (i.e., the number of per-
sons giving a 1 response to item / in class g) are simple summations of the expected pattern frequencies
n(x,g), as are the score frequencies n,,. The only difference from typical data is that these ‘‘counts”’
are not integer-valued because they are expected counts.

The system of equations described by Equation 12 can be used to improve the item parameter
estimates iteratively. The computations of the symmetric functions are not problematic, even for large
numbers of items, when the so-called ‘‘summation algorithm’’ described by Gustafsson (1980) is em-
ployed. One iteration of item parameter estimation within each M step proved to be sufficient, as
the estimates converged during the iterations of the EM algorithm.

The estimators of the score probabilities are explicit:

e = Ny /My (13)
and

, = Zn(xg) (14)
they cause no problems at all. Likewise the class size parameters are estimated by the total number
of patterns in a class divided by the sample size:

n, = n/N . 15)

It should be noted again that the frequencies of the 0 and 1 vectors are excluded from all these
computations because their proportional count in a latent class cannot be predicted by the model.
Although the EM algorithm converges very slowly, none of the computations reported below took
more than a few minutes on a 24 MHz PC-AT. The program was applied to a maximum number of
15 items, but it should also work with higher numbers if the sample of persons is sufficiently

large.

n

Example Application

Data

As part of a larger study on physics education (Rost, Haupler, & Hoffmann, 1989), the physics
knowledge of adults between the ages 20 and 40 years was assessed by means of a paper-and-pencil
test (N = 869). A subtest containing 10 items was analyzed with the Rasch model and latent class
analysis.

Results

The test did not prove to be Rasch scalable. The conditional likelihood ratio statistic by Andersen
(1973) resulted in %® = 63 with 9 degrees of freedom when the sample was divided into high- and
low-scoring examinees. Table 1 shows that item fit indices defined by Wright and Masters (1982) sug-
gest that misfit was not a question of selecting single items. This fit index is a standardized weighted
squared residual with mean 0 and variance 1 (Wright & Masters, 1982, p. 101). For the data in Table
1, 6 out of 10 items had a poor fit (i.e., values above or below two standard deviations from the mean).

Latent class analysis of these data showed an interesting result. For up to three latent classes, the
response probabilities of all items were in the same order across the classes (see Figure la). According
to the concept of ordered classes, this could be taken as an indication of monotone IRFs (see Rost,
1988a), but even this does not indicate why the Rasch model fit so badly. The answer was given by
the four-class solution (see Figure 1b).
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Table 1
Item Fit Indices for
the Physics Knowledge Test

Item No. Item Fit

3.0
-1.6
-5
5
2.2
-4.0
1.1
-2.2
-3.5
3.2

SO ARALNE LN~

Although the upper and lower latent classes remained stable when moving from three to four classes,
the middle class split up into two classes with intersecting profiles. Items 1 to 5 were easier for ex-
aminees in class 3, and items 6 to 10 were easier for class 2 (the items were reordered according to
this result). This result has an obvious interpretation: The first five items asked for knowledge that
is of a more theoretical nature (e.g., knowing that a ‘‘perpetuum mobile’’ would not work), and the
last five items asked for more practical knowledge (e.g., drawing a circuit diagram for two lamps).
This result suggests that the population seemed to be heterogeneous, in the sense that there are both
practically-oriented and theoretically-oriented people with respect to the knowledge measured by this
test.

Nevertheless, there are strong differences in people’s abilities, as shown by the two extreme classes.
This example is typical of the analysis of achievement and attitude data by means of latent class
models (e.g., Rost, 1985). The first three or four latent classes are usually used to represent quantita-
tive differences between people’s abilities (i.e., they have nonintersecting profiles). Structural or ‘‘quali-
tative’’ differences (e.g., practical versus theoretical orientation) only occur in the 4- or 5-class solutions.

Figure 1
Profiles of Item Response Probabilities of Ordinary Latent Class Analysns for the Physics Knowledge Test
(a) Three-Class Solution (b) Four-Class Solution
1. 1. 5
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This effect should disappear when the mixed Rasch model in Equation 6 is applied. Figure 2 shows

the item parameter profiles of the two-class solution. Taking the different scaling of response proba-

- bilities and logistic item parameters into account, the profiles look much the same as the two middie
classes in Figure 1b. As expected, the structural differences in the examinees’ abilities are already
shown in the two-class solution.

Figure 3 gives the score distributions for both classes. It can be seen that the score distribution
and the related ability distribution of the practically-oriented examinees (class 2) is flatter and less
left-skewed than the abilities of the theoretically-oriented examinees (class 1). 46% of all examinees
in the sample belonged to class 1 and 36% to class 2. 18% could not be classified because they solved
none [r(0) = 150] or all [n(1) = 8] of the items.

The model fit can be compared by means of the AIC index (Bozdogan, 1987), which is a simple
function of the log-likelihood (L) and the number of independent parameters (m) of a model:

AlC = -2 InL + 2m . (16)

According to this criterion, the four-class solution of the simple LC model fit the data better
than the two-class solution of the mixed Rasch model (see Table 2). This is an indication that the test
is not really Rasch scalable, even if examinee heterogeneity is allowed for in the sense of the proposed

Figure 2
Item Parameter Profiles of the Two-Class Solution of the Mixed Rasch Model for the Physics Knowledge Test
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Figure 3
Score Distributions of the Two-Class Solution of the Mixed Rasch Model
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model. It can be seen, however, that the improvement of model fit is most drastic if the two-class
mixed Rasch model is compared with the simple Rasch model one-class solution) or the simple two-
class model.

Simulation Analyses

Three sets of data were simulated in order to demonstrate the power of the algorithm in detecting
the heterogeneity of the data or its ability to ‘‘recognize’’ that there is nothing to detect. One set
was Rasch scalable, and one set consisted of two equally-large subgroups of Rasch scalable ‘‘examinees”’
(simulees) with reverse order of item difficulties. The third dataset was composed of three heterogeneous
subgroups, each of a different size, and one with a zero variance of abilities and a near-to-zero varia-
tion of item parameters.

The sample size of all datasets was N = 1,800 with 10 items. Within each subgroup of Rasch
homogeneous simulees, four levels of T were specified, namely, 2.7, -9, +.9, and -2.7 each for a
quarter of the subpopulation. The item parameter sets used to simulate the data and the estimated
parameter values under the mixed Rasch model with appropriate number of classes are shown in

Table 2
AIC Goodness-of-Fit Statistic, Log Likelihood (L), and
Number of Parameters (m) for the Latent Class Model
and the Mixed Rasch Model

No. of Latent Class Model Mixed Rasch Model
Classes L m AIC L m AIC
1 -4976 10 9972 -4332 19 8702
2 -4359 21 8760 -4282 39 8642
3 -4295 32 8654 -4256 59 8630
4 -4258 43 8602 -4240 79 8638
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Table 3; the parameter values were reproduced very well by the model, even in the most difficult third
case.

Table 3
Item Parameter Values Used for Data Simulation and Their Estimates
of the Mixed Rasch Model With the Appropriate Number of Latent
Classes: One Class for Dataset 1 (C,), Two Classes for Dataset 2
(C,, C,), and Three Classes for Dataset 3 (C,, C,, C;)

Sets of Item Estimates of the Mixed Rasch Model
Item Parameters Dataset 1 Dataset 2 Dataset 3
No. 1 2 3 C, C, G C, C G
1 27 27 5 -2.7 -27 26 -28 28 .5
2 -2.1 2.1 -5 -2.1 =22 21 -22 22 -5
3 -1.5 1.5 5 -1.6 -5 1.5 -1.7 1.3 .6
4 -9 9 -5 -9 -.9 9 -7 1.0 -4
5 -3 d 5 -3 -3 3 -3 2 6
6 3 -3 -5 3 3 3 3 -6 -4
7 9 -9 5 1.0 8 -1.0 1.0 -9 5
8 1.5 -1.5 -5 1.5 1.5 -14 1.6 -1.5 -4
9 2.1 =21 5 2.1 2.2 2.0 22 22 5
10 2.7 -2 -5 2.7 2.6 -2.8 2.7 -2.6 -5

Dataset 1

The least difficult set of data for single datasets was Dataset 1, in which the same item parameters
held for all examinees. Results for Dataset 1 in Table 3 show estimates that are nearly identical to the
first set of item parameters. Table 3 does not provide information about the two-, three-, and four-class
solution of this homogeneous dataset. However, when such a model with two or more classes was
applied to this dataset, latent classes were constructed according to the random fluctuations in the
data. This meant that the latent classes were substantial (i.e., t, = .24, n, = .27, and n, = 4l in
the three-class solution), but the parameters had nearly the same (correct) order in all classes, except
for some switches among adjacent item difficulties. In some cases, single parameter values became
extremely high in order to fit perfectly an outlying pattern frequency.

These attempts at maximizing the likelihood of the data by assuming additional classes can be
easily identified as an unsuitable fitting of random variation. As Table 4 shows, the log-likelihood
increased much more slowly than the number of parameters, so that the one-class solution had the
lowest AIC index in all cases.

Dataset 2

The second artificial example consisted of two subpopulations that were equal in size, but whose
item difficulties were in reverse order (see Table 3). This caused the global item scores and, conse-
quently, the item parameters of the one-class solution to fluctuate only randomly (i.e., all item scores
were between 879 and 922, and all item parameters, including one latent class, were between -.07
and .05). Those unfamiliar with 1.C models may be surprised that the algorithm succeeded in ‘‘un-
mixing’’ these data and reproducing the correct distributions (see Table 3). Moreover, the solution
was found after only 50 iterations, starting from random initial values and reaching the accuracy
criterion .0001 for the log-likelihood. The estimates for the class sizes were 1, = .453 and ©, = .457,
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Table 4
AIC Goodness-of-Fit Statistic, Log Likelihood (L), and Number of
Parameters (m) for the Three Simulated Datasets

No. of Dataset 1 Dataset 2 Dataset 3

Classes L m AIC L m AIC L m AIC
1 -8338 19 16714 -11080 19 22198 -11565 19 23168
2 -8325 39 16728 -9407 39 18892 -10972 39 22022
3 -8312 59 16742 -9397 59 18912 -10830 59 21778
4 -8300 79 16758 -9377 79 18912 -10820 79 21798

indicating that both classes had equal size; 9% of the individuals could not be assigned because they
solved all items or none.

When three or four classes were assumed, the effects observed in the first data example recurred.
Again, the AIC index clearly identified the correct number of latent classes (see Table 4).

Dataset 3

In this dataset, the correct number of latent classes was three, but there was one subpopulation
with mean size n, = .33, which had practically no variation of item difficulties (the third set of item
parameters in Table 3), and there was a constant level of ability; these examinees may be considered
to be a ‘‘guessing’’ group. The remaining two classes had the same item profiles as in Dataset 2,
but one of these groups was twice as large as the other. When the two-class solution was computed,
the guessing group was mixed with the ‘‘profiled’’ groups where the ‘‘disturbance’’ was stronger for
class 1, which was originally the smaller one of these two groups (see Table 5).

Table 5
Item Parameter Estimates of
the Two-Class Solution for the
Third Set of Simulated Data

Item Class 1 Class 2
No. =&, = .48 x, = 46

1 1.2 -2.5
2 3 -1.9
3 .9 -1.2
4 1 -7
5 4 0.0
6 -4 2
7 0.0 1.0
8 -7 1.2
9 -3 1.9
10 -1.2 2.0

The correct three-class solution was found without any problems (see Table 3), and the estimated
class sizes were close to the correct parameter values: n, = .39, n, = .20, and n, = .35. From the
AIC values (Table 4) it is clear that the two classes were not sufficient, and four classes were not neces-
sary to explain the data.

Discussion

The EM algorithm for the proposed mixed Rasch model proved to be efficient in detecting ex-
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aminee heterogeneity in the data, and in determining the item profiles, the latent score distributions,
and the sizes of the latent classes. Thus one possible field of application is to test the fit of the Rasch
model for a given set of data. The sample of individuals is usually split by means of manifest criteria
(e.g., score, gender, or age) in order to check the invariance of item parameter estimates across sub-
groups of individuals, which is a central property of the Rasch model. The ‘“‘power’’ of these model
tests, however, depends on finding the appropriate splitting criterion, and that is not always the test
score or any known criterion. The mixed Rasch model makes it possible to find a partition of the
population for which the item parameters differ most, and between-group heterogeneity is maximized.

Testing the fit of the Rasch model, however, is only a side issue of the mixed Rasch model. The
primary diagnostic potential of this model lies in its property to account for qualitative differences
among examinees, and its simultaneous ability to quantify their abilities with respect to the same tasks.
This might be a new idea for statistical models in psychological testing, where multidimensionality
is often seen as the only way out of the inaccuracies of unidimensional models; yet it is an obvious
idea for the psychological practitioner who knows that relevant individual differences are not only
differences in how well somebody can do something, but also in Aow he/she does these things.

Mixture distribution models are a promising way of taking qualitative individual differences into
account without losing the strong but necessary assumptions of the basic models—those models that
hold for the unmixed data (i.e., the Rasch model in the present case). The Rasch model calls for
this extension because its theoretical strength is better used for identifying groups of examinees who
are really scalable, than for refuting the unidimensionality assumption for the entire population, and
then moving on to a weaker model. Future applications of the model will show whether this promise
is warranted.

Some theoretical elaborations would also be desirable. One of these extensions is the generaliza-
tion of the model for polychotomous item responses (Rost, in press). This would make the model
applicable to attitude questionnaires or other kinds of items with a graded response format, as well
as for achievement items with partial credit scoring. Research (Rost, 1988b) has shown that the larger
amount of information provided by polychotomous item responses can be well employed to find proper
solutions in latent class analysis.

A further extension would be to introduce a distributional assumption of abilities within the la-
tent classes. This is not consistent with the spirit of the “‘distribution-free’” Rasch model, but it saves
many parameters (nearly half), it may accelerate the algorithm, and it may also ‘‘smooth’’ the likeli-
hood function.
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