Laser Ablation of Alkali-Halides: Toward Understanding Ionic Dissociation at a Molecular Level

Shyam R. Iyer, Department of Chemistry - K. R. Leopold, Adviser

Molecular Clusters: Fundamental Chemistry
- Systems for understanding the transition from individual molecules to condensed matter

MOLECULE → CLUSTER → BULK

Molecular Clusters: Environmental Science
- Molecular Clusters help understand fundamental interactions relevant to:
 - Processing of tropospheric chlorine by atmospheric sea-salt aerosol
 - Formation of Acid Rain
 - Ozone Chemistry

We use microwave (rotational) spectroscopy to study molecular clusters.

What is rotational spectroscopy?
- Most accurate method of determining 3D geometry of small molecules
- Provides information about molecular and electronic structure
- (Right) Structure of H$_2$SO$_4$-H$_2$O complex with the bond lengths and bond angles

Pulsed-Nozzle Fourier Transform Microwave Spectroscopy (FTMW)

- Basic Setup
- Optical Pathway
- Spectrometer
- Frequency Doubled Nd:YAG Laser
- Heterodyne Detection
- Digitization and Fourier Transform

Gas

MW Pulse

Free Induction Decay

Mech. Pump

Diffusion Pump

MW Synthesizer

39K127I – Observing Transitions

KI transition peaks

What lies in store
- The study of hydrated complexes as a fundamental problem in cluster science
- Studying alkali-halide water complexes with water is our next goal

This project was supported by the Undergraduate Research Opportunities Program and the National Science Foundation and could not have been completed without the help and guidance of Brooke Timp and Professor Ken Leopold.