Assessment of Tissue Damage from Ultrasonic, Pneumatic and Combination Lithotripsy

Yuqing Cui1, Carl Sarkissian2, Kevin Mohsenian3, and Manoj Monga2
1. Department of Chemical Engineering and Materials Science, University of Minnesota, MN 55455
2. The Cleveland Clinic Foundation, OH 44195
3. Department of Biomedical Engineering, University of Minnesota, MN 55455

Introduction

Percutaneous surgery is now a commonly used treatment for large or complex renal calculi (kidney stones). During a percutaneous nephrolithotomy (PCNL), a lithotripter is placed into the urinary tract through a small puncture wound (up to approximately 1 cm) through the skin. A lithotripter can use two different energy sources to break up renal calculi, the pieces of which are suctioned out of the urinary tract. Ultrasonic and pneumatic energy are the two sources of energy commonly used in the urological field. The purpose of this experiment is to conduct a comparative evaluation of ultrasonic, pneumatic, and dual ultrasonic lithotripsy to predict the safety of probes on urinary tract tissue.

Materials and Methods

Lithotriptors tested were the Swiss Lithoclast Ultra (ultrasonic only - US, and ultrasonic-pneumatic combination US+P), and the Gyrus ACMi Cyberwand (dual ultrasonic). Fresh porcine ureters, bladders, and renal pelvis tissues were used for testing.

A hands-free set up was used with each probe to vertically apply no pressure, 400 g, or 700 g of pressure for duration of 3 seconds, 5 seconds or 180 seconds. Repetitive testing of each tissue, pressure and time combination was performed, for a total of 351 trials.

The damage score of all samples were zero at zero pressure, and renal pelvis tissues were only significantly damaged by Cyberwand dual ultrasonic operating mode at an equivalent pressure of 700 gm. Therefore, more analysis is done focusing on ureter and bladder tissue at 400 and 700 gm for the three devices. The comparison is presented in the following figures.

Experimental results

Conclusions

All devices afforded a level of safety at tissue durations typical of inadvertent intraoperative contact (3-5 seconds) at low pressures, though the Lithoclast US-only was superior with regard to perforation for all tissue types. Overall, Cyberwand is more damaging to urinary tract tissues than Lithoclast US+P than Lithoclast US-only.

References


Acknowledgements: This project was sponsored by the University of Minnesota’s Undergraduate Research Opportunities Program.