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The Use of Presnloothing and
Postsnloothing to Increase the Precision
of Equipercentile Equating
Benjamin A. Fairbank, Jr.
Performance Metrics, Inc.

The effectiveness of smoothing in reducing sample-
dependent errors in equipercentile equating of short
ability or achievement tests is examined. Fourteen
smoothers were examined, 7 applied to the distribu-
tions of scores before equating and 7 applied to the
resulting equipercentile points. The data for the study
included both results of simulations and results ob-
tained in the operational administration of a large test-
ing program. Negative hypergeometric presmoothing
was more effective than the other presmoothers.
Among the postsmoothers, both orthogonal regression
and cubic splines were effective, especially the latter.
The use of smoothing methods must be considered in
light of their costs (increases in average signed devia-
tions) and benefits (decreases in root mean square de-
viations). For many purposes, the benefits of smooth-
ing with the negative hypergeometric may outweigh its
costs.

Test equating is the process of finding which
scores on two or more similar tests correspond to
the same level of ability (or other trait) in a pop-
ulation of examinees. In principle, when two tests
have been equated, either can be used with equal
confidence to measure ability. The tests under in-
vestigation in this study were four-option, multiple-
choice tests that are scored on the basis of the

number of correct responses.
Test equating may be implemented in a wide

variety of ways. Some of these methods are of

recent origin and are technically sophisticated; oth-
ers have been in use for several decades (see Hol-
land & Rubin, 1982). This study addressed only
equipercentile test equating as applied to two
equivalent groups (Angoff, 1971). Lord (1980)
demonstrated that two tests cannot be equated un-
less they are either perfectly reliable (an impossi-
bility) or are strictly parallel, in which case they
would not need to be equated. In practice, how-
ever, it is possible to equate highly similar tests,
sometimes called &dquo;roughly parallel&dquo; tests, by the
equipercentile method in such a way that the errors
of equating are very small in comparison with other
errors associated with testing (e.g., the errors of
measurement arising as a consequence of the un-
reliability of tests, particularly the inherent lower
reliability of short tests). In any case, although
there may be some purposes to which it would be

misleading to put equated scores, Lord (1980)
pointed out that if scores are equated by the equi-
percentile method, then, when equated cutting scores
are used, the different equated forms will result in
the selection of the same proportion of examinees
on all forms of the test, except for errors related
either to sampling in the equating process or to the
particular examinees tested operationally.

As with any procedure having the goal of esti-
mating population characteristics based on data ob-
tained from a sample, there are always sample-
dependent errors present in test equating. If an

equipercentile equating were to be done twice with
similar samples from the same population, the re-
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suits would differ. The extent of such differences
has been estimated by Lord (1982) and their mag-
nitudes appear as the standard errors of equiper-
centile equating. As expected, the size of the errors
decreases linearly with the square root of the sam-
ple size. It is thus operationally impractical to re-
duce error beyond a certain amount by increasing
sample size. As a consequence, practitioners of
equipercentile test equating have sought other ways
to reduce equating error. They have frequently used
the methods of smoothing (Angoff, 1971; Cureton
& Tukey, 1951; Divgi, 1983; Kolen, 1984; Lind-
say & Prichard, 1971).

Smoothing

Two general classes of smoothing methods are
defined here. Presmoothing is defined as the pro-
cess of smoothing the observed score frequency
distributions prior to equating. Postsmoothing is
defined as the process of smoothing the equiper-
centile points after equating. The common intent
of both smoothing methods is to remove small sam-
ple-dependent fluctuations from the nonsmoothed
equatings so that the small-sample equatings will
more nearly approximate the asymptotic equatings,
or those which would result from the use of samples
so large that the sample-dependent errors approach
zero. The extent to which the various methods
achieve this common intent is investigated by this
research.

Presmoothing

Presmoothing methods are based on the concept
that an observed data point in a sequence of points
shows the combined effect of an underlying sys-
tematic relation among the points and sample-spe-
cific fluctuation or error of observation. If each

point were replaced by a value jointly determined
by the point replaced and the vicinal points, then
the influence of the error of observation should be

reduced, and the influence of the underlying regular
function should be maintained. Seven presmooth-
ing methods were used in this study:
1. Three-point moving medians
2. Five-point moving medians

3. Three-point moving weighted averages
4. Five-point moving weighted averages
5. Five-point moving weighted averages with root

transformation
6. 4253H Twice

7. Negative hypergeometric
Six of these seven presmoothing methods are gen-
eral-purpose methods which were developed for the
smoothing of sequences of observations such as
time series data (Tukey, 1977; Velleman, 1980;
Velleman & Hoaglin, 1981). Detailed technical de-
scriptions of the methods are available in the ref-
erences cited; short descriptions are provided here.
Moving medians and moving averages were used
for presmoothing, as were a combined or com-

pound presmoother and a presmoothing method
based on a particular model of test scores, the neg-
ative hypergeometric distribution.
Of the seven methods for presmoothing the score

distributions, three are described by Tukey (1977).
In the first method, frequency distributions are

smoothed by moving medians of span 3. Smooth-
ing by moving medians of span 3 involves replac-
ing each observed frequency with the median of
three frequencies: that of the score of interest, that
of the frequency associated with the next lower
score, and that associated with the next higher score.
The end values of the distribution, those corre-

sponding to scores of 0 and perfect scores, cannot
be smoothed effectively by moving medians. Mov-
ing medians of span 5 are found analogously, ex-
cept that each frequency is replaced with a value
which is the median of the frequency of interest,
the two preceding frequencies, and the two follow-
ing frequencies. The end points are not smoothed,
but the next-to-end points are replaced by the
smoothed values found by smoothing by medians
of span 3.

Presmoothing by three-point moving weighted
averages is analogous to three-point moving me-
dian smoothing, but instead of replacing each point
in the raw frequency distribution with its median,
it is replaced with a value that is calculated by
taldng the sum of twice the point being smoothed,
the previous point, and the following point, then
dividing the result by 4. This is equivalent to using
weights of 1, 2, and 1. Again, the end values are
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not smoothed. Five-point moving weighted aver-
are found by talcing the raw frequencies five
at a time and replacing each frequency with a
weighted average of the frequency and the four
surrounding values. The weighting function is one
recommended by Angoff (1971); it weights the five
points by the factors - 3, 129 17, 12, - 3, and
divides the resulting sum by 35. The recommended
weights limit the effect of the smoothing process
on the linear, quadratic, and cubic components of
a curve. The end frequencies are not smoothed,
but the next-to-end frequencies are smoothed by
the three-point moving weighted average using
weights of 1, 2, .
The five-point moving weighted average with

root transformation is identical to the five-point
moving weighted average, except that before the
smoothing is applied, all of the frequency values
are transformed by taking their square roots. The
square roots are then smoothed. Following the
smoothing, the inverse transformation, a squaring, 9
is applied. The use of the square root transfor-
mation has the effect of decreasing the influence
of larger values relative to the effect of the same
smoother without the square root transformation.

As a result, if a frequency is higher than surround-
ing frequencies, it is more effectively reduced with
the root transformation. Conversely, if a frequency
is lower than surrounding frequencies, it is more

effectively raised to the surrounding values when
the root transformation is not used. At the range
of frequencies reported here, however, the differ-
ences are very slight.
The sixth smoother is a combination of smooth-

ers proposed by Velleman (1980). Designated as
4253H Twice, it requires the successive application
of four different smoothers, including moving me-
dians of spans 4, 5, and 3, then finding the dif-
ferences between the smoothed and unsmoothed

distributions, the smoothing of that sequence of
differences by the same compound method, and,
finally, adding the smoothed differences back into
the smoothed distribution. (For details, see Tukey,
1977; Velleman & Hoaglin, 19~ .
The final presmoothing method (Keats ~z Lord,

1962; Lord & Novick, 1968, pp. 515-520) is one
devised explicitly for smoothing or fitting fre-

quency distributions of test scores. The distribution
is the negative hype~°~e&reg;~~tri~9 the appropriateness s
of which is derived from a binomial error model

of test scores. The model assumes several technical

conditions, one of which is equivalent to the as-
sumption that all of the items on the test whose
score distribution is being fit are equally difficult.
That condition is known to be false in the case of

virtually all operational tests but the fit of the neg-
ative hypergeometric is still good enough to make
it promising for her study (Keats & Lord, 1962).

~&reg;st~ ~&reg;~~~~~

Equipercentile equating starts with tables which
show the frequency of each score in the samples
tested for each of two tests, and ends in a table
which associates with each score on one test a score
on the other test. An integer score on one test is
usually found to correspond to a non-integer score
on the other test; the non-integer score may be
estimated by linear interpolation. A plot of the score
pairs shows a monotonically nondecreasing func-
tion whose form depends on characteristics of the
sample and characteristics of the two tests being
equated.

Postsmoothing is the process of passing a straight
line or a curve among the points which define the
equipercentile relationship. The equated scores are
then determined by the resulting function. Post-
smoothing methods have traditionally required the
practitioner to judge where to pass a curve through
a set of points (Angoff, 1971). In place of the use
of a draftsman’s French curve or analogous draw-
ing aid, a number of analytic postsmoothing meth-
ods have been developed. Seven such methods were
investigated here:
1. Linear regression
2. Quadratic regression
3. ° Cubic regression
4. Orthogonal regression
5. o Logistic ogive
6. Cubic splines
7. ° Five-point moving weighted averages
The simplest equation which may be fit to the

points resulting from an equipercentile equating is
a straight line. This study investigated two different
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straight lines: that defined by conventional least
squares and that defined by orthogonal regression.
The conventional least-squares procedure mini-
mizes the sum of the squared vertical deviations
from the line. In effect, the scores on the experi-
mental test are considered to be known without

error, and the line which best fits the equipercentile
equivalents on the reference test is found. In or-
thogonal regression (Madansky, 1959), the quan-
tity minimized is not the sum of the squared de-
viations parallel to the y-axis, but rather the sum
of the squared deviations when those deviations are
taken in a direction perpendicular to the regression
line.

Orthogonal regression is appropriate when the
variables represented on both axes are subject to
measurement error, and neither can properly be
considered the dependent or independent variable.
This is frequently the case in test equating, for two
reasons. First, such an equating can be used to
convert scores from either test to the other. It is

thus dissimilar to a least-squares regression equa-
tion in which the regression of y on x is rarely the
same as that of x on y. Second, there are usually
similar amounts of error associated with the ref-

erence and the experimental test.
The first two postsmoothing methods, then, are

straight lines fit by conventional regression and by
orthogonal regression. When conventional regres-
sion is used, the independent variable is the set of
scores on the experimental test ranging from the
lowest observed score to the highest observed score.
The dependent variable is made up of the equi-
percentile points. Only under certain circumstances
is it possible to fit resulting points well with a
straight line. A straight line is appropriate if the
two tests have the same skewness and kurtosis.
The positioning and slope of the straight line will
compensate for differences in means and standard
deviations in the two tests. If there is a curvilinear

component to the relationship defined by the equi-
percentile equating, then it must be fit by a cur-
vilinear function. Quadratic and cubic functions
have been used to fit such curves.

This investigation considered quadratic and cu-
bic best-fitting (criterion of minimum least-squares
deviations) smoothing curves. Quadratic curves can

fit points whose best-fitting line is concave either
upward or downward, whereas cubic equations can
fit curves with an inflection point, so that part of
the curve is concave upward and part of it is con-
cave downward. The third and fourth postsmooth-
ing methods, then, were quadratic and cubic
regression functions, fit by the method of least
squares and modified by the requirement of mono-
tonicity. e

In some equatings it is observed that the equi-
percentile equating function is relatively flat at both
of its ends and steeper in the middle. Such a shape
can be fit by a cubic curve, but it can also be fit
by a logistic ogive, a curve defined by

where A, B, C, and D are fitted constants. The

points resulting from equipercentile equating were
fit by a logistic ogive, the fifth postsmoothing
method.

All of the smoothing methods mentioned above
have the disadvantage that they impose a function
of a given form on the data, even if it is not ap-
propriate. Such a Procrustean requirement is con-
trary to the rationale of smoothing, especially when
the shape of the function is not appropriate to the
points to which it is to be fit. The sixth and seventh
postsmoothing methods do not define the shape of
the function in advance of the fitting. The sixth
function fit to the points was not a continuous func-
tion, but rather a smoothing of the discrete resulting
points. The smoothing function replaces each point
with a point which is the weighted average of the
point being replaced and the four surrounding points.
The method is that of five-point moving weighted
averages, as described earlier. The equating re-
quires interpolation between the resultant points.
The final postsmoothing function was used by

Kolen (1984), who obtained good results by fitting
cubic smoothing spline functions to the points re-
sulting from the equipercentile equating. A
smoothing spline differs from an interpolating spline
in that the latter is constrained to pass through
exactly known points, while the former is con-
ceived of as passing among approximately known
points. As used by Kolen, a cubic smoothing spline
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for N points (in the present case, an equipercentile
equating of two N-item tests) is a set of N - 1 cubic
functions, each of which takes as its domain the
interval from the Ith point to the (I+ 1 )th point on
the x-~xis. The range and specific form of the func-
tion are determined by the data in the interval. The
cubic functions come together with the same func-
tion value and slope (or derivative) at each of the
interior N- 2 points, which are called ducks or
knots in the language of spline fitting. The resulting
curve can be of almost any differentiable shape.

Objectives

The aim of the present effort was to evaluate the
effects of different methods of presmoothing and
postsmoothing on the accuracy of test equating.
The study was exploratory in nature, designed to
determine which methods hold the most promise
for operational use.

Method

This investigation used three different ap-
proaches to determine the effectiveness of each of
the 14 smoothing methods. The first approach used
simulated tests and examinees; the second and third
used data from tests administered to examinees un-

der operational conditions. The advantage of sim-
ulated tests and examinees is that all quantitative
aspects of the tests and examinees are completely
specified, and it is possible to know in advance the
results of theoretically errorless equatings or those
equatings which are unaffected by sanple-depen-
dent errors. Operational data have the advantage
that they are obtained under conditions typical of
the ones under which smoothing methods would
be used. The data contain all of the departures from
theory that may be found in operational test set-
tings
The first of the three methods of evaluation in-

volved comparing each of the smoothed equatings
with a known errorless equating. The known er-
rorless equating was based on a method that yielded
results typical of an equating using an infinitely
large sample. The method requires deriving a dis-
tribution of expected score frequencies, the distri-

button being that which would result from admin-
istering the test to a sample so large that the observed
proportions at each score were observed essentially
without error. The results of the simulated test

administrations were compared to that criterion

equating.
The second method was a similar comparison of

sample and criterion equatings, but in place of data
based on simulations and on an errorless equating,
the comparison used operationally obtained data
and an equating based on an unusually large sample
size. The third method used the statistical jackknife
(Mosteller & Tukey, 1977) to estimate the size of
standard errors of smoothed and unsmoothed equat-
ings using operationally obtained data and simu-
lated data. As a methodological cross-check, the
errors for unsmoothed equating were also com-
pared to standard errors computed by means of
Lord’s (1982) formula.

Simulations

The objective of the simulations was to provide
data that modeled those which might result from
administration of tests similar to the subtests of the
Armed Services Vocational Aptitude Battery (AS-
VAB ; United States Military Entrance Processing
Command, 1984). The range of test lengths in-
vestigated covered the range of subtest lengths in
the operational ASVAB. Three test lengths were used:
15 items, 30 items, and 50 items. For each test

length, two very similar tests were created in sim-
ulation. The tests were not strictly parallel. They
were, however, as similar to each other as are AS-
VAB subtests within a single subject area in ASVAB
8, 9, and 10 (Ree, I~~zllins, Mathews, & Massey,
1982).
A sample of 2,000 randomly selected simulated

examinees (simulees) was administered one test,
while a second sample of 2,000 was administered
the other test. This process was repeated for a total
of 100 simulated administrations for each test length.
The same two simulated tests were used, but the

sample of simulees was drawn anew for each sim-
ulated administration. Different simulated samples
were used for each of the test lengths. Detailed
descriptions of the methods of simulation and the
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characteristics of the resulting tests may be found
in Fairbank (1985).
The simulations were implemented within the

framework of item response theory (IRT). Each as-
pect of the simulated tests and of the simulees was
specified in IRT te in such a way as to model
operational subtests in the ASVAB testing program.
(See United States Military Entrance Processing
Command, 1984, for a description of the ASVAB
program.) Simulated items were generated at ran-
dom so that the items’ distributions of ca, b, and c
parameters approximately matched those reported
by Ree et al. (1982) for the operational subtests.
The method used to simulate the administration

of a test is similar to a method developed by Ree
(1980) for use in a simulation implemented in an-
other context. Such a simulation results in response
vectors which include correct responses due to the

joint influences of ability and guessing, just as op-
erational data show both such influences. 5~hea~ all

2,000 simulees had &dquo;responded&dquo; to all items in a
test, the test was scored and analyzed to determine
the mean and standard deviation of scores, the item

difficuities, the item biserial correlation coeffi-

and other statistics. The test sta-
tistics and distributions were compared with the
results of the subtests which the simulated tests
were designed to match. After several iterated ad-
justments of the simulation parameters, the tech-
nical aspects of the resulting simulated tests resem-
bled the technical of the ASVAB tests very
closely.

Technical and statistical details of the tests, in-

eluding their test characteristic curves and test in-
formation curves, are presented in Fairbank (1985).
Each of the six simulated examinations was ’taken’’

by 100 groups of 2,000 simulees. Either of two
methods was used to administer a test in simula-
tion. The first method is that described by Ree
(1980). The second method involved taking a sam-
ple of 2,000 observations at random from the ex-
pected observed score distribution (EOSD), found
using a method of Lord and Wingersky (1983), for
a test. Score distributions were tabulated for each
simulated administration. For each test length, 100
equipercentile equatings and smoothings were then
performed using the methods described below. The

smoothings and equatings were the same for the
operational and simulated data, and are described
following the description of the operational data.

Criterion Equatings

The preparation of simulated tests allows total
control of the simulated test situation. It is, there-
fore, possible to know in advance the criterion or
&dquo;true&dquo; equating of the tests used. IRT makes pos-
sible several approaches to the determination of the
criterion equating. It is possible, for example, to
determine the true scores associated with various
abilities (or 0 values) and equate true scores through
common 0. Analogously, a variant of true-score
equating can be performed, and for each integer
true score on the experimental test, the correspond-
ing 0 can be computed (usually by means of inverse
interpolation); then the score on the reference test
which corresponds to that value of 0 can be found.
This method has the advantage of giving equated
scores for each number-correct true score, and in-

terpolation of tabled values is not required.
True scores are never known in actuality, how-

ever ; the above method thus is not entirely appro-
priate. The method used to establish the criterion
equatings for the simulations used in the present
study is based on the EOSD for each test. The al-
gorithm developed by Lord and Wingersky (1983)
was used to prepare distributions of expected ob-
served scores for each of the six simulated tests.

In an EOSD, each score has associated with it a

proportion of examinees, not a frequency. The dis-
tributions model the result of administering the test
to an infinitely large number of examinees and ob-
serving the relative frequency of each score.
The EOSD method of establishing a criterion

equating is appropriate because the aim of the pres-
ent research was to determine methods of smooth-

ing which compensate for the relatively small sam-
ple sizes that must be used operationally. By
comparing the small-sample equatings (N = 2,000)
with those that result from an &dquo;infinite&dquo; sample
(i.e., those based on the EOSD), the extent of im-
provement resulting from smoothing is directly ob-
servable. The criterion equatings, then, were the
unsmoothed equipercentile equatings which result

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



251

from using the EOSDs in the unsmoothed equiper-
centile method.

Operational Data

The operational data were taken from a set of
ASVAB scores with very large sample sizes (ap-
proximately 100,000 examinees) for three roughly
parallel forms of each of several subtests. Among
those subtests were two forms of Mathematics

Knowledge (25 items) and two forms of Electronics
Information (20 items). In addition to the frequency
distributions of test scores for all examinees, there
were available 100 samples of 2,000 scores for
of the four subtests (two forms each of Math-
ematical Knowledge and Electronics Information).
e samples were drawn at random without re-
placement from the larger samples of 100,000 ex-
aminees. Two test lengths were thus available in
the operational data: 20 and 25 items.
The test lengths used were constrained in part

by the availability of data and in part by the aim
of increasing the generalizability of the study by
employing a number of different test lengths for
operational and simulated tests. For the operational
data, criterion equatings were established by using
the full sample of 100,000 examinees. Although
sample equating is not totally error-free, it is
based on a sample 50 times as large as the samples
of size 2,000 and thus was expected to have sam-
ple-dependent errors only approximately one-seventh
as large as those found in the small equatings. As
with the simulated data, the criterion equatings were
unsmoothed equipercentile equatings, as described
below. As with the simulated data, 100 reduced-

sample equatings were made for each of the test
pairs, both without smoothing and with each of the
14 smoothing methods.

Equatings

All test equatings were performed using the equi-
percentile method described by Lindsay and Pri-
chard (1971). For the unsmoothed equatings and
the equating to which only postsmoothing was to
be applied, the raw frequency files were equated.
When the equatings involved presmoothing, the

smoothed frequency estimates were equated. Fol-
lowing the equatings and smoothings (which are
described below), each test or simulated test had
associated with it a criterion equating, an un-

smoothed equating, and 14 smoothed equatings,
one for each of the smoothing methods used.

~~~h~~~ Methods

Most of the smoothing methods require no de-
scription beyond that given above. Two of the
postsmoothing methods, however, are more com-
plex and require further description. The fifth

postsmoothing method was the fitting of a logistic
ogive to the data. The ogive was fit by the method
of the simplex, which is an iterative, rather than
an optimal, method. The method requires an initial
estimate of the four parameters (upper and lower
asymptotes, slope, and location) which define the
ogive; it then successively finds better and better
sets of parameters.
The procedure used for fitting the cubic

spline departed in ways from that used by
Kolen (1984). First, Kolen fit two spline functions,
one using the equated experimental test scores as
the dependent scores, and the other using the ref-
erence test scores as the dependent variables. The
final equated values were obtained by averaging
the equatings resulting from the use of those two
spline functions. In order to retain comparability
with other smoothing methods used in this re-

search, the experimental test was used as the de-
variable in fitting the spline.

The second departure involved difficulties which
were encountered with cubic spline smoothing at
lower ends of the score distribution. Kolen (1984), 9
finding similar difficulties at both ends, addressed
it by applying the splines only in the interval of
test scores ranging from the .5th to the 99.5th per-
centile. The shortest of his tests, however, was 40
it~~s9 and few examinees scored at either of the
extremes. Smoothing by of cubic splines as
described by Reinsch (1967) requires an estimate
of the standard errors of the y variables at each

duck, but at the lower end point, where frequencies
are at or near zero, 9 the standard errors are not

defined or do not exist. For the purposes of this
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investigation, the end standard errors were assigned
the value of the closest defined standard error, where
66closest&dquo; means the numerically closest integer
score.

Initially, smoothing methods relied heavily on
human judgment and experience in passing a line
among the points. The hope of users of the more
analytic smoothing methods has been that an op-
timum or nearly optimum method might be found
so that judgmental methods would not be neces-
sary. Smoothing could then be automated and thus
replicable and objective. The work of Kolen (1984), 9
whose cubic splines have been among the most
effective postsmoothing methods described in the
literature, has not avoided the necessity of inter-
vening judgment in the application of the smooth-
ing process. For the current study, however, when
over 500 applications of the smoothing technique
were required, automated smoothing was a neces-
sity. Thus, the third departure was the use of stan-
dard errors in the cubic spline fitting procedure.
Kolen’s (1984) procedure for achieving ‘6rn&reg;der-

ate&dquo; smoothing was used by allowing the smooth-
ing parameter to take the value of K12, where K
equals the test length plus 1.

of Equating Results

Each of the five tests, three simulated and two

operational, had associated with it one criterion

equating, 100 unsmoothed equatings based on sam-
ple sizes of 2,000 (called the &dquo;small s ple&dquo;)9
and 100 sets of 14 smoothed equatings based on
the same samples. The question of interest was the
effect of the smoothings on the accuracy of the
equatings.
The measures used to define the accuracy of the

equatings are based on the concept of deviations.
A deviation is a difference between an equated
score obtained with a small sample and an equated
score based on a criterion equating. At each ob-
served score on the experimental test, the corre-
sponding score on the reference test was found
using the criterion equating. The equated scores
were found as decimal fractions not rounded to the

integer. The score corresponding to the s
experimental test score was then found for the un-

smoothed small-sample and for each of
the 14 smoothed The differences be-
tween the equated score based on the criterion

and the score based on the small-
sample were found for each possible score
on the experimental test, for the unsmoothed and
for the smoothed for all 100 replica-
ti&reg;~as.

These or were the raw
data used for the smoothings. A devia-
tion, associated with a given score on an ex-
test, unsmoothed or smoothed by ~ par-
ticular is thus defined by th~ formula
D = x - ~‘ where x is the equated score based on
criterion ~q~~ti~~ ~nd.~‘ is the equated score based
on small-sample Each test thus has as
many deviation scores, as there are items on a
test, plus I (for a score of 0). For each of the 100
smau-sainple the deviations at each score
were combined across to give a general
measure of deviation at each score.

Three such deviation measures were computed.
The first rr~~~s~re is the root mean square deviation

found by the square root of the sum
of the squares of the deviations across all 100 sam-

The second measure is the average absolute
deviation which is the mean of the
absolute value of the deviations across
all The third measure is the average of
the values of the deviations found
by the mean of the deviations across all 100
ASD differs from AAD in that the ab-
solute values are not found before the mean is com-

puted. Positive values of ASD indicate that the small-
sample resulted in a value which was gen-
lower than the criterion equating values,
whereas values indicate the These
three rr~e~s~res, RMSD 9 AAD, and ASD, were found
for each score on each test for the unsmoothed
and for each of the 14 smoothed equat-
across all 100 sample The three
r~~~s~res of deviation taken allow an eval-
uation of the effects of the methods.
AAD and RMSD both numbers which rep-

resent the of an average de-resent the unsigned magnitude mean of absolute
viation. AAD is the arithmetic mean of absolute

while RMSD has the effect of weighting (or
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emphasizing) the deviations which are far from the
criterion equating. ASD averages the deviations as
does AAD, but it includes their sign. The resulting
ASD shows how far the mean of the equated values
for all 100 samples is above or below the value
given by the criterion equating. This is a significant
value for two reasons. First, equipercentile test

equating has not been shown to be statistically un-
biased ; ASD estimates how large the ASD actually
is. Second, methods which reduce RMSD or AAD

may increase ASD. Thus, RMSD, AAD, and ASD must
be considered together in evaluating a smoothing
technique. e

Standard Errors

Two cross-checks were made to ensure the ac-

curacy of the methods used to determine RMSD.

First, the standard errors of equipercentile equating
were determined using a formula derived by Lord
(1982). The resulting standard errors, one at each
score level which was at or above chance, or ex-

pected guessing score level, were compared to (1)
Rn4sDs obtained from the simulated test adminis-

trations, (2) those obtained from the operational
data, and (3) those obtained from the results of the
jacldkmfmg. The observed RMSD values should be
empirical estimates of the same standard errors which
the Lord (1982) standard errors represent. In each
case, the data from the criterion equating were used
to develop the standard errors. e
As described above, the criterion equatings for

the simulations were established on the basis of

expected observed scores, which correspond to
‘6i~hn~t~&dquo; sample sizes, while the criterion equal-
for the operational data were based on 100,000
cases In order to make the standard errors of the
criterion equatings comparable to the RMSD figures
calculated from the samples of size 2,000, a figure
of 2,000 was used to represent the sample size in
calculating the standard errors for the criterion

equatings, although the proportions called for by
the formula were those obtained from the full cri-
terion equating samples.

Lord ’ (1982) method allows calculation of stan-
dard errors for the unsmoothed case of equiper-
centile equating. The simulations discussed above

allow empirical estimations of the standard error
for all of the smoothing conditions as well as for
the unsmoothed condition. The agreement or non-

agreement of the Lord formula values with the val-
ues generated through simulation indicate the ex-
tent to which the simulations and evaluations, in
the unsmoothed case, are behaving as intended.
There is no corresponding analytical cross-check
on the values of the standard errors in the smoothed
cases because formulas for standard errors in those

cases do not exist.

In order to provide corroborating or noncorro-
borating estimates of the standard errors for smoothed
equatings, the equatings were conducted with the
use of ~’~~ey9s statistical jackknife. The jackknife
(~&reg;st~ii~r ~ Tukey, 1977) provides an estimate
of the standard error of a procedure regardless of
whether analytical formulas for such errors are

available. Estimated standard errors were com-

puted for each of the nonchance score levels on
the tests; these standard errors were averaged over
all such test scores. Thus, each test combined with
each smoothing method resulted in a mean standard
error of equating as estimated by the jackknife and
as estimated by the RMSD of the small-sample
equatings. o

Results

Fairbank (1985) provided extensive graphical
presentation of the results of each of the five tests
smoothed by each of the smoothing methods. Sum-
maries of the data are included here, but the figures
are too extensive to reproduce in full. Two of these
figures are presented here, illustrating (1) the ef-
fects of a particularly effective case of presmooth-
ing with the negative hypergeometric, and (2) a
modestly effective postsmoothing with cubic splines. e

Figures I and 2 each represent one test length
and one method of smoothing. Each figure is di-
vided into three panels. Each panel shows measures
of deviation as a function of the raw score on the

experimental test, both with and without smooth-
ing. In each figure, the top panel shows the effect
of smoothing on RMSD, the middle panel shows its
effect on AAD, and the bottom panel shows the
effect on ASD. Two functions are shown on each
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Figure I
Effect of Presmoothing With the Negative
Hypergeometric on Measures of Deviation

for a Simulated 30-Item Test
(Solid Lines Represent Unsmoothed Equatings;

+ Signs Represent Smoothed Equatings)

panel of each figure. The continuous line shows
the RMSD, AAD, or ASD which results from equating
samples of size 2,000 without smoothing, while
the + signs indicate the RMSD, AAD, Or ASD when
the same sa-mples are equated with smoothing. Each
point on the graph is an average of the deviations
over the 100 samples; deviations are differences
between the criterion equating and the s~~~~-s~r~-
ple equating. When there is a horizontal line plotted
in a graph, that line represents zero deviation. For
the figure panels which depict AAD and RMSD, +

signs which lie below the continuous line indicate
that an improvement, or a reduction of deviations,
resulted from smoothing. The situation with ASD
is slightly more complex, because ASD may be
either positive or negative. Improvement, or re-
duction of ASD, is indicated when the + signs lie
either between the continuous line and the x-axis

of the graph, or closer to the x-axis than the con-
tinuous line. In order to show the more relevant
deviations effectively, the figures do not present
information on the levels of RMSD, AAD, or ASD at
test scores below the guessing level for each test.

Figure 1 shows the effects of presmoothing with
the negative hypergeometric, as applied to a sim-
ulated 30-item test. The top two panels of the figure
show that both RMSD and AAD are reduced by the
use of the smoother, while the bottom panel shows
that ASD is sharply increased at many score points
for the test. Thus there is a trade-off between re-
duced RMSD and increased ASD. Figure 2, in con-
trast, shows the results of postsmoothing the 25-
item operational test with cubic smoothing splines,.
It is seen that there is but consistent im-
provement in RMSD and AAD with the use of the

spline smoother, but very little effect on ASD.
Tables 1 and 2 present a summary of the devia-

tions associated with the unsmoothed and
with four of the most effective smoothed equatings.
A briefer summary is presented in Table 4 for all
14 equatings. Table 1 shows the RMSD, AAD, and
ASD as averaged across all test scores above the
guessing level with no smoothing. The averages
of the ASD were taken over the absolute values of
ASD so that positive and negative values would not
cancel out.

Table 2 shows results for the smoothed equat-
ings. The averages of RMSD, AAD, and ASD are
presented as proportions of the deviations in Table
1. Thus, values less than 1 indicate that smoothing
reduced the deviation, while values greater than 1
indicate an increase in deviations. For example, a
value of .9 indicates that a particular smoothing
method reduced the mean measure of a deviation
to 90% of its unsmoothed value, when that mean
was taken over all scores on a test which were
above chance level. The table indicates the effects
of the smoothers in a global sense. The effects are

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



255

Figures2
Effect of Postsmoothing With Cubic Smoothing

Splines on Measures of Deviation
for an Operational 25-Item Test

(Solid Lines Represent Unsmoothed Equatings;
+ Signs Represent Smoothed Equatings)

averaged over all scores above chance and thus

may obliterate the locally high deviations. The
standard errors of equating and the related mea-
sures of RMSD, AAD, and ASD are summary mea-
sures of the extent to which a test equating is sub-
ject to sample-dependent error.

Jackknifing

Table 3 presents the standard errors of un-
smoothed equating as estimated by Lord’s (1982)

analytic formula with those estimated by means of
repeated reduced-sample equating (i.e. , RMSD from
simulated or operational tests) and those estimated
by means of the jackknife. The standard errors are
presented in the metric of test items. They are av-
eraged over all test scores which are higher than
chance level. The standard errors thus indicate that
standard errors of equating vary with the length of
the tests, and vary with the method used to estimate
them. More important, however, is that the sizes
of the errors differ only slightly with the different
methods of estimating them.

Table 4 presents the standard errors of smoothed

equatings, as estimated by the RMSD of the reduced-
sample equatings (100 samples of 2,000) and as
estimated by Tukey’s jackknife (Mosteller & Tu-

key, 1977). Again, in order to facilitate evaluating
the effects of smoothing, the RMSD and jackknifed
estimates of the error associated with the smoothed

equatings are presented as proportions of the RMSD
and error associated with the unsmoothed equat-
ings. Thus, values in Table 4 greater than 1.0 in-
dicate that smoothing increased the RMSD, whereas
values less than 1.0 indicate a reduction in RMSD.

Discussion

To evaluate the effects of smoothing, particu-
larly its effects on deviations, it is helpful to con-
sider such deviations within the context of the ac-

curacy of ability or achievement tests more generally.
The standard errors of equating discussed here are
not the only measurement errors which arise in the
testing process. There are also standard errors of
measurement that are intrinsic to any test which is

not perfectly reliable. Equation 2 relates reliability
(r~), standard error of measurement (sEm), and test
score standard deviation (SD):

Thus, the SEM for the experimental 15-item test,
based on a reliability (KR-20) estimate of ~&reg; and

a standard deviation of 3.28, is 1.47. Similarly,
the SEM for the experimental 30-item test is 2.20,
that for the experimental 50-item test is 2.74
(values of the SD are typical of those found for tests
used in the present study). The corresponding av-
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Table 1

RMSD, AAD, and ASD Averaged All Samples At All
Scores Above Chance Level for Unsmoothed Equatings~

for Simulated Operational Tests,
As a Function of Test Length

erage standard errors of as estimated by
Lord’s s f&reg;rr~~~l~.9 in Table 4, are 15, .30, and
.5 1. Thus the standard error of equating ranges
from only 10%&reg; to 20%&reg; of the stan-
dard error of measurement. A method
which reduces RMSD by ~0%&reg; will thus reduce total
test error by 29l to 4%. e

Presmoothers

Table 4 shows that smoothing by the method of
three-point medians had no overall bene-
hci~l effect. it resulted in less accurate
than unsmoothed Similar re-
sults were obtained from the use of five-point mov-
medians. There is no consistent beneficial ef-
and deleterious effects, on all three
measures of deviation. Whatever local are
achieved are offset by losses elsewhere.
The method of three-point moving weighted av-

erages, the results of which are given in detail in
Table 2, showed generally encouraging res~lts9 ~l-
the gains are modest. The gains are partic-
evident on the 15-item simulated test and
the 20-item operational test. There was a modest
increase in the ASD at the score levels in both
tests. The method of five-point moving weighted
averages has generally effects on all three
measures of deviation. The result of the
method of five-point moving averages
with root transformation was virtually identical to

the result of applying the method of five-point mov-
ing weighted averages without root transformation,
as described above. There was no significant bene-
fit achieved. Smoothing by the method of 425 3H
Twice was generally ineffective and resulted in
local increases and local decreases in the measures
of deviation.

The results of smoothing by means of the neg-
ative hypergeometric, as shown in detail in Table
2, show consistent improvement in RMSD and AAD
as a consequence of smoothing. The effects are
particularly impressive with the simulated tests,
presumably in part because the criterion equatings
for those tests are nearly perfect, not estimated
from very large samples. The gains are not uniform
across the tests. On the shorter tests at lower scores,
the measures Of RMSD and AAD actually increased
as a consequence of using the negative hypergeo-
metric. The beneficial effects of the negative hy-
pergeometric do not extend to the measures Of ASD.
The ASD increases both globally and locally, some-
times quite dramatically. These increases were ex-
pected at the lower end of the test, where guessing
is a factor, but increases at the upper end were not
expected. It must be noted, however, that the ASD
figures were initially low (see Table 1), so that a
tripling Of ASD may still denote an acceptably low
level.
The question of the amount Of ASD that can be

considered acceptable is complex. Until there are
equating methods which can be shown to be con-
sistent, sufficient, efficient, and unbiased, it will
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be necessary to balance such properties against each
other to determine the mix which is for a&reg;t~~~ t&reg; d~t~~~i~e t~~ ‘~ ~hi~h is &reg;~ti~~i ~~r ~
given purpose. The largest increase in ASD occurred
for the 50-item test. The increase, by a factor of
approximately 7.5, resulted in an increase in the
mean ASD (Table 1) from .015 score points to .11 i

score points. The mean RMSD for the same test was
.24 without smoothing, and .23 with smoothing.
Thus, for the 50-item test used in this study the
increase in ASD was greater than the reduction in

RMSD, although the resulting ASD was only half
the magnitude of the RMSD.

Table 2

Proportion of Mean Deviation for RMSD, AAD, and ASD
(Based on Unsmoothed in Table 1) for Simulated
d Operational Tests, Using the Method of 3-Point
Moving Weighted Averages, Method of Negative

Hypergeometric, the Method of Cubic Splines,
the Method of 5-Point Moving Weighted Averages
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Table 3
Standard Errors Over All Scores Above Chance Level)

of Unsmoothed Equating Estimated Three Methods
As a Function of Test Length for Simulated and Tests

An increase in ASD may be more acceptable when
two tests are equated so that they may be used
interchangeably than the same increase would be
when the objective of the equating is to replace
one operational test with another. If two tests are
used interchangeably, then a systematic tendency
to deviations in one direction on one test will be

offset by scores on the other test. Thus, if the forms s
of the test are administered at random to examin-

ees, will be no expected advantage to any
examinee. If, in contrast, a test is equated to an-
other so that the older test may be replaced, then
ASD will result in equated scores which give results
that differ systematically from the scores expected
on the test which was replaced.
Why does the negative hypergeometric smooth-

ing method outperform the other presmoothers? One
likely reason is that it takes into account all of the
information in a distribution’s mean and standard
deviation in arriving at the smoothed frequency for
each point. The other presmoothers respond only
to local conditions and so may incorporate, rather
than eliminate, some sample-dependent local fluc-
tuations. Furthermore, among the seven pre-
smoothers investigated, only the negative hyper-
geometric is based on a mathematical model of

testing. The other smoothers work by applying gen-
eral algorithms which have been shown to be useful
in a wide variety of circumstances. It appears that
those smoothers do not bring the sample score dis-
tributions closer to the shape of the distribution of
the parent population, whereas the negative hy-
pergeometric does. However, the negative hyper-
geometric does so at the cost of increased ASD at
some specific test scores.

Postsmoothers

The use of both linear quadratic regression
postsmoothing resulted in modest reductions Of RMSD
and AAD at the middle score ranges, but increases
at the upper ranges. The increases in the deviations
of the upper score ranges were especially promi-
in the 50-item simulated test. Improvements
in RMSD and AAD were partially offset by increases
in ASD. Deviation measures tended to be high at
the upper end, especially with the 50-item test. Use
of cubic polynomial regression smoothing had less
benefit than did quadratic regression in most cases,
but it also caused less increase in RMSD at high
scores, and less of an effect on ASD.

Because a cubic function can follow a given
curve more accurately than can a quadratic func-
tion, it would be expected that the cubic regression
smoothing would lead to more accurate equating
than linear or quadratic regression smoothing.
Findings to the contrary suggest that the cubic func-
tions may have been following and fitting sample-
dependent fluctuations in the individual equatings. °
Smoothing by means of orthogonal regression had
effects which were very similar to those which
resulted from the use of linear regression. The del-
eterious effects at the high end of the test, however,
were less pronounced. Postsmoothing by means of
the logistic ogive resulted in modest reductions in
RMSD and AAD, at the usual cost of increases in

t~~~9 and with the previously noted problems at the
highest scores.

Smoothing by cubic smoothing splines (Table 2)
provides the most promising results among the
postsmoothing methods. There were modest re-
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Table 4
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ductions throughout in the amounts Of RMSD and
AAD; no end-point problems occurred at either end,
and the problem of increases in ASD was not par-
ticularly severe. Table 4 shows that the gains, though
modest, are consistent for the cubic smoothing spline
method. Finally, as Table 2 shows, the effect of
postsmoothing by five-point moving weighted av-
erages was very minor, but consistently beneficial
at all scores and with all three measures.

Estimates

The close agreement of the standard errors as
estimated by the three methods, shown in Table 3,
supports the contention that each of the three es-
timation methods is both appropriate and correctly
executed. Although there are slight differences in
the estimates, they are not large enough to call into
question the appropriateness of the methods. As
Table 4 shows, the mean RMSD and jackknifing
methods do give somewhat divergent results in some
cases; therefore, a conservative criterion for the
recommendation of adopting a smoothing method
is that the method should appear advantageous with
both estimation techniques. The method best meet-
ing that criterion at all test lengths is the method
of presmoothing by the negative hypergeometric.

Conclusions

One presmoother and one postsmoother stand
out as deserving further study and consideration for
future operational use. The presmoother is the neg-
ative hyper~e&reg;rnetri~9 the postsmoother is the cubic
smoothing spline. When its effect is estimated by
jackknifing, the cubic smoothing spline was not
effective in reducing RMSD with the 20-item op-
erational test, nor with any of the simulated tests.
There was, however, consistent improvement re-
sulting from the use of the smoothing splines as
measured by RMSD. This divergence of measures
of effectiveness suggests the need for further study
before unequivocal recommendations can be made.

Presmoothers other than the negative hypergeo-
metric were either ineffective, inconsistent in their
effects, &reg;r have associated with them disadvantages
such as greatly increased ASD. Divgi (1983) like-

wise found merit in the use of the negative hyper-
geometric, although he also found that the three-
and ibur-parametcr beta binomial distributions were
more effective than the negative hypergeometric.
The lack of effectiveness of the other presmoothers
may say less about the presmoothers than it does
about the robustness of equipercentile equating.
The various cumulative frequency counts used in
equating may be degraded by all of the smoothers
except the negative hypergeometric. o
The cubic smoothing spline has a number of

intuitively appealing characteristics: It can follow

a curve of any shape, it can pass as close to the fit
points as appropriate, and it is theoretically neutral
in the sense that its use does not depend on the
applicability or appropriateness of any statistical
theory of testing. Its effectiveness, which is also

reported by Kolen (1984), is thus not surprising.
Although the improvements due to the splines were
modest, the fact that there is no concomitant in-
crease in ASD makes their use particularly attrac-
tive. The cubic smoothing splines perform, in ef-
fect, exactly what hand smoothing attempts: It passes
a theoretically neutral curve among the points.

Limitations

The present study is limited in several respects,
all of which may tend to reduce its generalizability
to other applications. First, only five tests were

used: two operational and three simulated. Gen-
eralizations to other tests may be inadvisable if the

tests do not statistically resemble those used for
this study. Second, the tests used, especially the
simulated tests, may be more similar to each other
than are most operationally equated tests. Gener-
alization to less similar tests is of questionable ap-
propriateness. Third, all equated pairs were pairs
of tests of the same length, a condition not always
found operationally.

Another issue of potential importance could not
be investigated using the current methodology. One
of the particularly significant advantages of equi-
percentile test equating is that when tests equated
by the equipercentile method are used interchange-
ably to select only persons who score at or above
a certain percentile, then there is no expected ad-
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vantage to any examinee in taking any particular
form of the test in place of any other form. It is
not clear that presmoothed equipercentile equatings
retain that property. In applications where such
percentile invariance is an essential consideration,
the use of presmoothing should await further re-
search.

Finally, it may be asked whether any benefit
would be realized from smoothing both before and
after equating, thus combining the two methods.
Four combinations of presmoothers and post-
smoothers were investigated, but not reported here
because of limitations of space. Such combinations
did not give better results than the more effective
method in each pair when used separately.

Recommendations

Among the presmoothing methods, the negative
hypergeometric deserves consideration for opera-
tional use. If any of the presmoothers studied here
is to be adopted, then the negative hypergeometric
would be the most appropriate. It has the effect of
reducing RMSD by about 1 &reg;~l&reg; a benefit which could
also be achieved by increasing sample size by about
20%. Among the postsmoothers, gains were not
as evident with linear, quadratic, and cubic regres-
sion smoothing, as had been anticipated. In those
cases where an a decision has been made
that the smoothing shall be linear, the use of or-
thogonal regression should be favored over the use
of standard regression. Where the shape of the
regression fitting is not determined in advance, then
the use of cubic splines appears appropriate. These
two postsmoothing methods, orthogonal regression
and cubic splines, are appropriate for operational
use with tests similar to those studied here, and

may be useful with other tests if further research

confirms their usefulness.
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