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Abstract

Teams of mobile robots are becoming increasingly popular to measure and estimate quan-

tities of interest at spatially distributed locations. They have been used in tasks such as

surveillance, search and rescue, and underwater- or space exploration. For these tasks, ac-

curate localization, i.e., determining the position and orientation (pose) of each robot, is a

fundamental requirement. Instead of localizing each robot in a team independently, Coop-

erative Localization (CL) incorporates robot-to-robot observations and jointly estimates all

robots’ poses, which improves localization accuracy for all team members. However, such

joint estimation also creates significant challenges. In particular, initializing a joint estima-

tion algorithm requires knowledge of all robots’ poses with respect to a common frame of

reference. This initialization is straightforward using GPS or manual measurements, but

is difficult in the absence of external references. The second difficulty of CL is that it re-

quires communicating large amounts of data, e.g., the robots’ sensor measurements or state

estimates. However, transmitting all these quantities is not always feasible, either due to

bandwidth or power constraints.

This thesis offers novel solutions to the aforementioned problems. In the first part of

the thesis, we investigate the problem of CL initialization, using robot-to-robot measure-

ments acquired at different vantage points during robot motion. We focus on the most

challenging case of distance-only measurements, and provide algorithms that compute the

guaranteed global optimum of a nonlinear weighted Least Squares problem formulation.

These techniques exploit recent advances in numeric algebraic geometry and optimization.

In the second part, we investigate the problem of CL under communication constraints.

To reduce communication bandwidth, we propose using adaptively quantized measurements.

We extend existing quantized filtering approaches to batch MAP estimators, and apply these

techniques to multi-robot localization. We provide results on optimal threshold selection,

as well as optimal bit allocation to efficiently utilize time-varying bandwidth. Our results

are validated in simulation and experiments.

By providing solutions for two important problems in CL – motion-induced estimator

initialization, and estimation under communication constraints – the research presented

in this thesis aims to promote use of cooperative mobile robots in challenging real-world

applications.
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Chapter 1

Introduction

1.1 Multi-robot Cooperative Localization

Teams of mobile robots, or mobile wireless sensor networks (WSNs), are becoming in-

creasingly popular to measure and estimate quantities of interest at spatially distributed

locations. They have been used in tasks such as habitat construction [90, 129], inspection

of industrial areas such as nuclear power plants or pipelines [21], aerial surveillance [9],

search and rescue operations [114], and underwater- [17] or even space exploration [55].

Mobile sensor networks are not limited to robots. More and more portable devices, like

cell phones, PDAs, and even cars are equipped with sensing and networking capabilities,

enabling a totally new generation of location-based services, like monitoring of air-quality

by pedestrians [93] or traffic flow from moving cars [26]. Compared to an individual robot

or sensor, multi-robot systems have the advantages of faster and more extensive coverage,

increased reliability to sensor failures, and higher estimation accuracy through sensor fusion.

Accurate localization, i.e., estimation of the robot’s position and orientation or attitude

(pose), is a key requirement for successful completion of any higher level task that involves

motion in, sensing of, and interaction with the robot’s environment. To make inferences

from and act upon sensor observations (e.g., a rover detecting an interesting geologic for-

mation on a planet’s surface, or an unmanned aerial vehicle (UAV) spotting a victim in a

search and rescue mission), it is of critical importance to know where this observation was

made. In order to coherently fuse data in a distributed sensor network, the location and

viewing direction of each sensor has to be known. As yet another example, navigation of

mobile robots requires accurate knowledge of the robot’s pose to successfully plan a path

to reach the goal location. In most cases in practice, precise localization is achieved by

fusing measurements from proprioceptive sensors (e.g., odometry or inertial measurement

units [IMUs]) and exteroceptive sensors (e.g., GPS, cameras, or laser scanners). Localiza-

tion based purely on proprioceptive sensors, also known as dead reckoning, suffers from

unbounded error accumulation over time. This is due to the fact that dead reckoning con-

tinuously integrates noise and biases affecting the sensor measurements. For this reason,
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exteroceptive sensor observations are often used to bound the error or reduce its growth

rate. Localization, and simultaneous localization and mapping (SLAM), i.e., the process of

localizing a robot while concurrently constructing a map of its surroundings, have been the

subject of intense research over the last decades.

Teams of multiple robots or mobile sensors have the potential to improve their position-

ing accuracy by performing Cooperative Localization (CL). CL is a form of sensor sharing,

and as such requires communication, either between the robots themselves, or between the

robots and a fusion center. In CL, all robot poses are estimated jointly, using all available

measurements from the entire team, including relative observations between the robots,

for example of their mutual distance or bearing (see Fig. 1.1). Relative observations can-

not bound the localization error, but significantly reduce the error growth rate [79]. CL is

therefore particularly attractive in GPS-denied applications, such as underwater or indoors.

Compared to (cooperative) SLAM, CL has the advantage of being independent of the en-

vironment, in the sense that it does not require solving the difficult perception problem of

natural feature extraction and matching, nor does it in fact require the presence of stable

features in the environment at all. Using robot-to-robot observations greatly simplifies the

data association problem, since the robots or the signals used to obtain the measurements

can be specifically designed for easy detection. CL allows to abstract much of the perception

problem which is the cause of many difficulties in SLAM. At the same time, CL creates

significant challenges of its own, some of which will be addressed in this thesis.

1.1.1 Initialization

In order to fuse geometric observations and relative measurements, e.g., of distance or

bearing between the robots, the measurements have to be expressed with respect to a

common frame of reference. This requires either estimating all robot poses with respect

to the same reference frame, or estimating the relative pose between the robots. However,

since the system and measurement models in CL are often nonlinear, the performance (in

terms of convergence, consistency, and precision) of any linearized estimator such as the

EKF greatly depends on the accuracy of the initial relative pose estimate. The process for

determining this relative transformation between any two sensors (or a sensor and a given

reference frame) is also known as extrinsic calibration. Accurate extrinsic calibration is a

prerequisite not only for CL, but for any spatially distributed geometric estimation task,

e.g., cooperative mapping, tracking, etc.

Often extrinsic calibration is performed using external references, such as manual mea-

surements, GPS, or matched features in overlapping sensor observations. GPS in particular

renders extrinsic calibration straightforward, since the measurements directly provide the

position of all team members in a common global frame of reference. However, there exist

many interesting application scenarios for multi-robot systems (e.g., indoors, underwater,

or underground) where external references are either unavailable (e.g., in GPS-denied or
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Figure 1.1: Schematic depiction of CL: Two robots localize using dead reckoning. Over
time, their estimated poses (dashed lines) deviate from their true trajectories (solid lines),
and their localization uncertainty, depicted by the 3σ error ellipses, grows. At times t0, t1,
and t2, the robots acquire observations, e.g., of their relative distance or bearing (arrows),
which allow them to update their pose estimates and to reduce their localization uncertainty
as shown by the smaller ellipses centered around their updated position estimates.
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textureless areas), or do not yield results of sufficient accuracy. In these cases, alternative

methods, referred to as motion-induced extrinsic calibration, can be used to determine the

relative pose between robots based only on dead reckoning and robot-to-robot observa-

tions. More precisely, these methods seek to determine the relative pose by exploiting the

geometric constraints arising from robot motion and interrobot measurements.

Motion-induced extrinsic calibration algorithms can be classified as minimal vs. overde-

termined, and as deterministic vs. probabilistic. Roughly speaking, minimal problems have

as many constraints as unknowns, and are often used in outlier rejection algorithms such

as RANSAC [33]. Minimal problems described by systems of polynomials, such as the ones

described in this thesis, may have multiple solutions. In contrast, overdetermined problems

have more constraints (e.g., due to additional measurements) than necessary to solve the

problem, which usually results in a unique solution and can sometimes be used to simplify

the solution algorithm. Deterministic algorithms rely purely on system geometry, and do not

consider measurement noise. If noise is present, overdetermined problems become inconsis-

tent and no guarantees can be given for the accuracy of a deterministic, numerical solution.

For this reason, it is preferable to use probabilistic algorithms (e.g., maximum likelihood

estimators) that account for noise and uncertainty in a statistically sound fashion. Under

certain assumptions, such as additive Gaussian measurement noise, these probabilistic es-

timators result in nonlinear weighted Least Squares (WLS) problems, which are typically

solved iteratively, using methods like Gauss-Newton or Levenberg-Marquardt, initialized

with the solution of a deterministic algorithm. However, any iterative, gradient-related op-

timization algorithm can at best provide guarantees about local optimality (more precisely,

convergence to a stationary point), and can converge to a local minimum far from the true

solution if poorly initialized. To overcome this problem, this thesis presents a new paradigm

for motion-induced extrinsic calibration, where the the guaranteed global optimum of poly-

nomial WLS problem formulations is computed analytically. Our results show that global

optimality can be achieved at reasonable cost and provides considerable increase in accuracy

over existing deterministic or stochastic approaches.

1.1.2 Communication

Once the initial transformation between any two robots has been determined, subsequent

measurements can be processed in order to continuously track the current pose of all robots

in the team, expressed with respect to a common frame of reference. For this purpose, a

variety of estimation techniques have been proposed for CL, such as extended and unscented

Kalman filters, particle filters, MAP estimators, etc. As previously discussed, CL treats lo-

calization as a joint estimation problem, entailing significant processing requirements whose

reduction has been the subject of research over the past few years [53, 88, 83]. At the same

time, joint estimation also imposes considerable communication requirements either between

the robots themselves, or between the robots and a fusion center. Communication in CL
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often encompasses exchange of individual motion measurements (i.e., linear and rotational

velocity and acceleration), robot-to-robot relative distance and bearing measurements, and

can be extended to also include GPS measurements, observations of point landmarks in the

environment, or more comprehensive information for data association (e.g., camera images

or laser scans).

In many cases, however, mobile sensor networks have to operate with only limited band-

width that might preclude full communication of this large amount of data. Communication

constraints can arise due to (i) the nature of the operational environment (e.g., limited band-

width caused by strong signal attenuation and perturbation underwater or underground),

(ii) the specific application domain (e.g., limited payload and power budgets, or stealth

requirements in military operations), or (iii) economic motivations (e.g., in order to extend

the operational life-span through lower power consumption resulting from reduced data

transmissions). Exacerbating the problem of limited communication is the fact that the

available communication resources will in general not be constant over time. For mobile

robot applications, bandwidth will vary depending on a number of factors such as the dis-

tance between robots, the presence and nature of obstacles, available power, and current

network load.

These consideration motivate the need for CL algorithms that can work efficiently under

severe, time-varying communication constraints. Several approaches have been proposed to

reduce communication in CL, e.g., based on approximate decoupling of the robot estimates,

or based on sensor scheduling. In many of these cases, either correlations are not properly

accounted for, or measurements are completely discarded, which may lead to suboptimal

estimates. Instead, this thesis introduces a CL algorithm that reduces communication

requirements through adaptive compression, i.e., quantization, of the transmitted measure-

ments.1 This approach requires novel estimation techniques, since standard methods such

as the Kalman filter can only operate with real-valued measurements. Existing quantization

techniques are mostly designed for signal reconstruction or parameter estimation, but not

for estimation of dynamic random processes as in CL. Notable exceptions are the quantized

filters of Ribeiro et al. [102] and Msechu et al. [81]. Inspired by these algorithms, this

thesis develops novel batch MAP estimators for quantized measurements that are better

suited to mitigate the strong nonlinearities arising not only from the robots’ motion and

measurement models, but also from quantization itself. Moreover, these algorithms allow

using current surplus bandwidth to refine past quantized measurements and can thus make

better use of time-varying bandwidth than filters.

1In most cases, real-valued measurements are available in digital representation, and are as such already
“generically quantized”, e.g., to 32 or 64 bits depending on the hardware. However, we are interested in
“non-generic”, adaptive quantization using 1 − N bits per measurement, optimized for the task of estima-
tion. Hence, we will from now on refer to real-valued vs. quantized measurements when speaking about
“generically” vs. task-specifically quantized measurements, respectively.
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1.2 Research objectives

To summarize, this thesis investigates two of the key challenges in CL: relative robot pose

estimation (initialization) and multi-robot pose tracking under communication constraints

(bandwidth limitations).

1.2.1 Distance-based motion-induced extrinsic calibration

The first important contribution of this thesis is an algorithm for CL initialization in the ab-

sence of external references such as GPS. In particular, we formulate and solve the problem

of estimating the relative transformation between two robots in 2-D and 3-D, using dead

reckoning and robot-to-robot distance observations acquired during robot motion. By ap-

plying this algorithm pairwise to all members of the group, and selecting one of the robots’

frames as the common frame of reference one can compute the team pose estimate required

for CL initialization.

In contrast to traditional, only locally optimal approaches that first compute a coarse

initial guess for the relative pose and then refine it using iterative nonlinear WLS, we de-

velop and analyze algorithms that compute the guaranteed global optimum of the nonlinear

WLS formulation. Specifically, we transform the WLS cost function into polynomial form,

and then employ recent techniques from polynomial system solving and polynomial opti-

mization to efficiently determine either all stationary points of the cost function, or directly

its global minimum. We first analyze the WLS problem corresponding to the maximum like-

lihood estimate (MLE), show its poor scalability, and then provide relaxations that achieve

virtually indistinguishable performance in near-real time.

In our analysis, we limit ourselves to the case of distance-only measurements between

two robots, leaving other measurement modalities such as relative bearing or relative posi-

tion as possible extensions for future work. Moreover, we assume that the robot-to-robot

observations are outlier-free, and that all measurements are correctly time-stamped, i.e.,

that the robot clocks are synchronized. Finally, we assume that during initialization the

robot localization errors are small, and discuss possible solutions when this assumption is

violated.

Polynomial WLS problems arise often in robotics (kinematics) and computer vision, and

the presented global optimization methods hold the promise of being applicable to a wide

range of applications beyond the particular problem of CL initialization.

1.2.2 Cooperative Localization under communication constraints

The second important contribution of this thesis is an algorithm for CL that can adaptively

and efficiently operate under severe, time-varying bandwidth limitations. More generally, we

develop a batch MAP estimation algorithm for dynamic random processes using quantized

measurements. In contrast to recently proposed minimum mean square error (MMSE) es-
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timators (sign-of-innovation Kalman filter (SOI-KF) [102], or iteratively quantized Kalman

filter (IQKF) [81]), which estimate the state at the current time step given all previous quan-

tized measurements, we introduce novel maximum a posteriori (MAP) estimators, termed

(single-bit) quantized MAP (QMAP) and iteratively quantized MAP (IQMAP), which pro-

vide state estimates over an entire time window. As in real-valued estimation, such batch

estimation techniques enjoy certain advantages over filters in that (i) they act as a smoother,

and can better mitigate linearization errors, and (ii) they can retroactively process past and

time-delayed measurements. In the context of quantized estimation these advantages are

very important, since quantization is a highly nonlinear process which violates the recurrent

Gaussian approximation made by the SOI-KF and IQKF. Secondly, particularly in robotic

applications, we are often faced with time-varying bandwidth availability. Batch estimators

can efficiently make use of surplus bandwidth to refine the quantization of the most informa-

tive past measurements, whereas filters are limited to refining only the current observations.

However, it is known from IQKF performance analysis that the accuracy gained by using

additional bits to refine a single measurement quickly levels off, meaning that refining only

the current observations becomes inefficient after some point. In this thesis, we introduce

the QMAP and IQMAP formalisms, present optimal quantization thresholds for single- and

multi-bit quantization of measurements, and analyze an efficient bit allocation scheme to

address time-varying bandwidth. We then apply these algorithms to the problem of CL in

simulation and experiments.

In this work, we operate under the assumption that a communication protocol is in

place that ensures error-free, synchronous transmissions without packet loss throughout the

network. Note that sufficiently powerful error-correction codes necessary to achieve this

might require significant communication overhead. The reduced bandwidth requirements

mentioned in this thesis refer to “goodput”, i.e., the net amount of usable communication

for the estimation task after subtracting the overhead. The estimation architecture itself

assumes known system- and measurement models throughout the network, and operates

in a “multi-centralized” fashion, so that every robot executes the exact same estimation

algorithm using the same quantized measurements and quantization thresholds, resulting

in an identical, common state estimate throughout the team.

Quantized estimation is very relevant in CL, since many of the most interesting ap-

plication environments for multi-robot teams are subject to severe bandwidth limitations.

Independently of the operating environment, modern robotic platforms are equipped with

ever increasing numbers of sensors providing data at higher and higher rates and resolu-

tions. Since it is unlikely that future communication links will be able to accommodate this

growing information stream for too long, the use of adaptive, task-specific data compression

approaches such as the ones presented in this thesis has the potential to significantly im-

pact the operation of distributed robotics systems, by improving their ability to efficiently

exchange information and adjust to varying resource availability.
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1.3 Organization of the manuscript

Chapter 2 provides an overview of related work in CL, with particular focus on initialization

and estimation using quantized measurements. Chapter 3 describes the distance-based

relative pose estimation problem, and presents algorithms for global minimization of the

WLS formulation and its relaxations. Their superior accuracy over traditional iterative

minimization techniques is demonstrated through simulations and experiments. Chapter 4

describes the multi-centralized, quantized estimation framework for multi-robot CL under

communication constraints. Results from simulation and experiments demonstrate and

validate the performance and accuracy of MMSE and MAP estimators as a function of

available bandwidth. Finally, chapter 5 provides concluding remarks and an outlook on

future research directions.
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Chapter 2

Related Work

2.1 Cooperative Localization

Robots that localize individually usually determine their pose by combining measurements

from proprioceptive (motion) sensors (e.g., wheel encoders or inertial measurement units

[IMUs]) and exteroceptive sensors such as sonars, laser scanners, or cameras. When mul-

tiple robots can communicate and measure relative distance and/or bearing to each other,

they can combine these measurements and jointly estimate their poses, thus increasing the

localization accuracy of the entire team [105, 79, 116]. This process is termed Cooperative

Localization (CL).

Some CL algorithms determine the relative pose of the robot team at each time step

independently, solely by combining all current (possibly redundant) exteroceptive measure-

ments, e.g., via triangulation and LS [32, 109]. Under the assumption of bounded noise, this

problem setup of CL has been solved by set intersection and cast as a convex optimization

problem [110, 115]. These methods, often referred to as set membership approaches, have

also been extended to cooperative SLAM [24]. Using only exteroceptive measurements to

determine the pose of a robot team is closely related to the concept of static sensor net-

work localization, since these methods make no use of measurements of the robots’ motion.

Dieudonné et al. [25] have shown that deterministic relative pose determination in a static

2-D sensor network based on relative distance and/or bearing information is NP-hard.

A more accurate way to solve CL is to consider relative measurements from multiple

time steps as well as motion information from proprioceptive sensors in a filtering or batch

estimation approach. One of the earliest forms of CL was presented in [64, 63, 61, 62], where

only a subset of the robots moves while using the remaining ones as stationary landmarks in

a triangulation-based localization scheme. Similar techniques for enhancing localization ac-

curacy by careful coordination of robot motion were used in [36] and [99]. Later approaches

removed the requirement for carefully coordinated robot motion, and applied different esti-

mation techniques to address CL. Howard et al. [44], for example, combined proprioceptive

and exteroceptive measurements of all robots and computed the MLE of the entire robot
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team’s pose history. In order to reduce the computational complexity ensuing from such

batch estimators, recursive filtering has also been applied to CL [103, 73]. EKF-based CL in

2-D has recently been shown to be inconsistent [46], unless it is ensured that the estimator

preserves the observability properties of the underlying nonlinear system (i.e., the three de-

grees of freedom corresponding to global translation and orientation are unobservable). If in

addition a map of the environment is known, robots can perform global localization within

the map, e.g., using Monte Carlo-based methods [22]. By exchanging their belief functions,

cooperating robots can improve accuracy and speed of convergence of such algorithms [34].

As map-based localization is outside the scope of this work, we will not consider it further.

Despite the benefit of increased localization accuracy, CL is known to suffer from in-

creased computational complexity (O(N4) for N robots observing each other) compared

to individual localization. Several researchers have investigated methods to reduce this

complexity, either by exactly distributing the computations among the robots [103, 83],

or by approximately decoupling [45, 53, 88] or hierarchically restructuring the estimation

problem [74].

Until now, however, little attention has been given to the problems of CL initialization

and operation under communication constraints.

2.2 Distance-based motion-induced extrinsic calibration

The initialization problem of CL, in other words, estimating the pose of all team members

with respect to a common frame of reference, is often assumed solved. Indeed, if GPS

is available, this task is straightforward. Other techniques involve matching features in

overlapping sensor observations. A common example is the use of laser scan matching to

derive the relative pose between the origins of two scans [70, 87], e.g., using the iterative

closest point (ICP) algorithm [13]. The relative pose can also be determined using camera

images, for example from observations of matching points from two stereo cameras using

Horn’s method [42].

In this thesis, we focus on initialization methods that do not require external references,

but instead rely on estimates of robot motion and robot-to-robot relative measurements.

Our paper [118] gives an overview of deterministic algorithms for such motion-induced

extrinsic calibration in 3-D, for the cases of distance and bearing measurements, bearing-

only measurements, and distance-only measurements. In this thesis, we concentrate on the

distance-only case, which is arguably the most difficult problem.

Previous research on leveraging sensor-to-sensor distance measurements to solve the

relative localization problem has focussed primarily on static sensor networks. These ap-

proaches usually only determine the position of sensor nodes, not their relative orientation,

using measurements to so-called anchor nodes with known global position. The position of

the remaining sensors in the network can be uniquely determined if certain graph-rigidity
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constraints are satisfied [4]. A number of algorithms for node localization using distance

or squared distance measurements have been proposed, e.g., based on convex optimiza-

tion [28, 10], centralized [108] or distributed [18] multidimensional scaling, or sum-of-squares

relaxation [107, 84]. There also exist methods for simultaneous localization and mapping of

a single mobile robot in 2-D using range measurements to static beacons [27], or to moving

vehicles equipped with GPS, which are treated as moving beacons [7].

In 3-D, the (minimal) problem of extrinsic calibration based on six distance mea-

surements is mathematically equivalent to the forward kinematics problem of the general

Stewart-Gough mechanism [112]. This parallel manipulator consists of a base platform and

a moving platform connected by six articulated legs of variable lengths. The forward kine-

matics problem is to determine the relative pose of the end effector with respect to the base,

given the six leg lengths (distances) and the coordinates of the leg attachment points in

the base and end effector frames, respectively. This deterministic problem has 40 (real and

complex) solutions [97], which can be found based on nonlinear techniques from algebraic

geometry [48, 67, 117]. In 2-D, similar analogies between robot pose estimation and the

kinematics of planar linkage mechanisms can be drawn [131].

Recent work by Zhou and Roumeliotis [133] and by Trawny et al. [122, 117, 118] has

addressed the problem of relative pose estimation based on distance measurements for

two mobile robots moving in 2-D and 3-D, respectively, by providing deterministic and

probabilistic methods for minimal and overdetermined problems. For the probabilistic ap-

proaches, the authors propose computing the MLE of the relative pose in a two-step process:

First, they derive methods to compute a coarse estimate for the relative pose, based on solv-

ing a deterministic, overdetermined system of polynomial constraints using 4 or 5 distance

measurements (2-D), or at least 10 distance measurements (3-D). In a second step, they use

the result as an initial guess in i-WLS refinement.

Following a different paradigm, Shames et al. [107] present a probabilistic method de-

signed for 2-D and 3-D network localization, which employs SOS relaxation to directly

compute the global optimum of an (unweighted) LS cost function using squared distances,

without the need for an initial guess. In an extension, they employ this strategy to indirectly

infer the relative pose of two robots in 2-D by computing the positions of robot 2 expressed

in robot 1’s frame of reference. This directly yields the relative position, whereas the rela-

tive orientation has to be computed in a subsequent optimization step not further specified

in the paper. Their proposed cost function contains components from n measurements of

the squared distance between the robots, and 1/2n(n− 1) distance constraints between the

positions of robot 2 at different time steps as inferred from odometry.

Two-step methods, such as the ones proposed by [133, 122] can produce an initial guess

that is far from the MLE. As a result, the i-WLS refinement may converge to a local

minimum, or exceed the maximum number of iterations allowed to converge. In contrast,

the approach of Shames et al. is a one-step method, but unfortunately, since the number
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of unknowns grows with the number of measurements, it does not scale well. Moreover,

this method effectively decouples position and orientation estimation, leading to suboptimal

results. In chapter 3, we will investigate efficient, scalable algorithms to jointly estimate

relative position and orientation by computing the global optimum of a polynomial LS cost

function.

2.3 Estimation under communication constraints

2.3.1 Real-valued estimation

In estimation, we distinguish between classical estimation, where the object to estimate is

considered unknown but deterministic and constant, and Bayesian estimation, where the

estimated quantity is a random variable distributed according to some probability density

function (pdf) called prior. Parameter estimation reasons about the pdf of the measure-

ments parameterized by the unknown parameter, whereas Bayesian estimation uses the

posterior pdf, i.e., the pdf of the estimated state conditioned on the measurements. Maxi-

mum Likelihood estimation (MLE) is a prominent parameter estimation technique, whereas

minimum mean square error (MMSE) or maximum a posteriori (MAP) estimation are ex-

amples of Bayesian estimators [76, 54].

Bayesian estimation is particularly prevalent in estimation of random processes, in which

the estimated quantities (the system state variables) change over time according to a spec-

ified dynamic system model. Estimation techniques for random processes are further cat-

egorized depending on the time-horizon of the measurements processed for estimating the

state at a particular time instant (or over a certain time interval).

• Filters compute the best estimate of the current state at time step k based on all

available measurements up to that time, by considering the posterior p(xk|z0:k). For

linear problems with Gaussian noise, the optimal solution to the filtering problem

is the well-known Kalman Filter [52]. For nonlinear problems, optimal filtering is

intractable in general, and suboptimal approaches like the extended Kalman filter

(EKF) [77], the unscented Kalman filter (UKF) [50], Gaussian Sum filters [2, 49], or

particle filters (PF) [29] are used instead.

• Smoothers, on the other hand, compute the best estimate of the state at time step k ≤
K from the pdf p(xk|z0:K), i.e., based on all available measurements over the entire

time horizon1. Smoothers are usually more accurate than filters, since intermediate

states are estimated based on past, current, and future observations2.

1The predictor, which is not considered in this work, is another type of estimator that estimates future
states from past measurements, based on the pdf p(xk+l|z0:k), where l > 1.

2For example, for a time horizon of K = 100 time steps, the smoothed estimate of the state at time
step k = 10 is based on measurements from time step k = 1 through time step K = 100, whereas the filter
estimate of the state at time step k = 10 is only based on the measurements recorded between k = 1 and
k = 10.
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• Batch estimators only use past and current measurements, but estimate the entire

state history concurrently, i.e., they reason about p(x0:K |z0:K). The MAP estimator3

is a common representative of this class of estimators. Since batch estimators, as

opposed to filters, estimate the entire state history (or a subset thereof), they can

incorporate time-delayed measurements and retroactively correct data association er-

rors. Their main benefit, however, is mitigation of linearization errors in nonlinear

problems. For this reason, batch estimation is the method of choice in highly nonlin-

ear computer vision problems like structure from motion or scene reconstruction [123].

Smoothing and batch LS have also found renewed interest in robotic applications (e.g.,

in CL [44, 83], and in SLAM for single [23, 51] and multiple robots [3, 56]).

A common assumption underlying the estimation techniques typically applied in robotics

is that the measurements are real-valued. In our case, however, we seek to reduce commu-

nication requirements by quantizing the measurements.

2.3.2 Parameter estimation with quantized observations

If only quantized versions of the real-valued measurements are available, commonly used

estimators (e.g., MLE or batch LS) are not applicable without modifications. Estimation

with quantized observations has recently received growing interest in the research commu-

nity, but compared to the wealth of research in real-valued estimation, our knowledge in

this domain is still quite limited. Early work on distributed, quantized estimation was con-

cerned mostly with estimation of scalar, deterministic parameters, based on noisy sensor

observations that were quantized and transmitted to a fusion center.

Before we discuss the work on quantized parameter estimation, we want to emphasize

that the design of an optimal quantizer (i.e., partitioning of the input space, design of

the decoder, and choice of the distortion measure) is task-dependent [37]. In other words,

quantizers for signal reconstruction, estimation, detection, or distributed processing will, in

general, be different. For this reason, the well-known solution to signal reconstruction from

quantized measurements, the Lloyd-Max quantizer [69, 75], is not necessarily the optimal

solution to signal estimation.

To allow estimation of noisy parameters (noisy source coding) instead of pure signal

reconstruction, the Lloyd-Max algorithm has been modified and generalized [31, 98]. The

MSE distortion measure used in the original Lloyd-Max algorithm was replaced with the

expected MSE of the estimated quantity, conditioned on the quantized, noisy observations.

While in [98] the noisy measurements are encoded, transmitted, and used in an MMSE

estimator at the decoder, it can be advantageous, under certain conditions, to first form

an optimal estimate at the sensor, and then optimally quantize it using the usual MSE

distortion metric [31].

3In the case of additive Gaussian noise, the MAP estimator can be written as a batch LS problem.
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The above methods focus on estimation based on quantized observations from a single

source. Lam and Reibman [65] extend the generalized Lloyd algorithm to estimation at a

fusion center receiving quantized observations from multiple sensors. They investigate both

MMSE and MAP distortion measures, and conclude that decoder (or estimator) design is

more challenging for the MAP criterion, while the MMSE distortion entails a more diffi-

cult computation of partitions at the encoder; hence the choice between these two criteria

depends on the task at hand. In either case, the optimal quantizer will require knowledge

of the complete joint probability distribution of the parameter and all the sensor measure-

ments. Gubner [39] alleviates this problem by constraining the structure of the estimator to

find a locally optimal MMSE quantizer that requires only knowledge of the bivariate joint

distribution of the parameter and the individual sensor measurements.

Papadopoulos et al. [89] introduce the concept of information loss as the ratio of the

Cramer-Rao bounds achievable by quantized and real-valued estimators. In their analysis

of a scalar signal corrupted by additive noise, they show that this loss is in general a

function of the true parameter value, and that adding an extra signal strongly influences

the shape of this function. Surprisingly, addition of a random signal (i.e., noise) with known

covariance can greatly improve the worst-case information loss, while only slightly increasing

the minimum information loss. This technique bears strong similarity to a process called

nonsubtractive dithering [128] used in lossy compression of, e.g., audio or image data.

In addition to random input, the authors evaluate the impact of adding a deterministic

control feedback from the fusion center before quantization. Essentially, the signal estimate

computed at the fusion center can be used to move the signal to be quantized to the region

of minimal information loss.

Ribeiro and Giannakis [100] build on Papadopoulos’ observations to study MLE of scalar

parameters corrupted by Gaussian noise. In particular, they investigate optimal threshold

design for different SNR scenarios, defined as the ratio of parameter dynamic range vs.

measurement noise variance. Interestingly, they find that using carefully selected, different

quantization thresholds at each sensor can generate the same effect as the control input

proposed in [89]. Also, they show that the likelihood functions appearing in MLE for the

Gaussian noise case are log-concave, a result we will find to carry over to our proposed

MAP estimators (cf. Lemmas 1 and 3 in chapter 4.3).

The work of Luo [71, 72, 130] describes the design and analysis of algorithms for MMSE

estimation of a quantized, scalar parameter corrupted by zero-mean noise with unknown pdf

but known support. Initial work [72] where a pre-defined subset i of all nodes estimated

the i-th most significant bit of the parameter, was later extended to an isotropic estimation

scheme [71], in which each node executes the same estimation algorithm, and the choice

of which significant bit to estimate was determined by the outcome of a random process.

Finally, [130] analyzes even more general scenarios where the noise pdf is allowed to vary

from sensor to sensor.
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In [101], Ribeiro and Giannakis analyze the middle ground between quantized MLE of

scalar parameters corrupted by noise with completely unknown pdf, noise with known pdf

up to a finite set of parameters (e.g., the variance), and known noise distribution. Judicial

choice of quantization thresholds allows estimation of the unknown parts of the noise pdf

and leads to asymptotically efficient estimators with performance close to the unquantized

estimator. The results of Luo [71, 72, 130] are thus extended in [101] in that the assumption

of known support of the noise pdf is relaxed.

Finally, Shah et al. [106] analyze how to incorporate prior knowledge about the parame-

ter within a MAP estimator based on binary observations. In particular, they consider linear

functions of vector parameters corrupted by additive noise of known pdf. They establish

that the posterior pdf is log-concave if the prior pdf and the cumulative noise distributions

(cdfs) are log-concave. Vector observations corrupted by Gaussian noise are treated as a set

of independent scalar observations, by appropriate pre-whitening of the measurements. We

will use a similar approach for vector observations in multi-robot localization. For the case

of Gaussian prior and noise, Shah et al. compute the approximate performance loss as the

ratio of the corresponding diagonal elements of the Fisher information matrices of the quan-

tized and real-valued estimators. We will extend this approach in our work to determine

the performance loss of quantized MAP estimation for dynamic random processes.

Notice that all these approaches are designed to estimate a constant parameter, treated

either as deterministic (e.g., [100, 71, 89]) or as a random variable (e.g., [106, 65, 39]). In

the next section, we will consider estimating dynamic random processes, i.e., quantities

that change over time. Estimation of dynamic quantities is of particular interest in robotic

applications (e.g., CL [103], or tracking of a moving object [132]), and therefore the focus

of our work.

2.3.3 Random process estimation with quantized observations

Despite the large number of publications on parameter estimation using quantized obser-

vations, only few approaches exist that use the same type of observations for estimating

random processes.

Abdallah and Papadopoulos [1] extend their earlier work [89] on constant scalar esti-

mation to estimating a time-varying scalar output of a linear random process with Gaus-

sian system and measurement noise. They investigate the impact of control signals, noisy

feedback, and channel corruption on the attainable estimation performance. The authors

propose a two-tiered estimator, that first obtains a MAP estimate of the current signal

based on the single-bit quantized sensor observations (without regard of the system dynam-

ics), and then uses this estimate as a real-valued measurement update in a centralized EKF

that considers the dynamics of the random process. However, this approach fails if the

signal cannot be reconstructed completely from the quantized observations of a single time

step. Instead, it would be desirable to have a filter that can directly incorporate quantized
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observations.

This is exactly the subject of work by Ribeiro et al. [102] and Msechu et al. [81]. They

develop a filtering scheme for scalar observations of a linear Gaussian random process,

quantized with one (Sign-of-Innovation Kalman filter or SOI-KF) or multiple bits per mea-

surement. For the multi-bit filtering approaches, they distinguish between batch-quantized

(BQKF) [82] and iteratively-quantized (IQKF) [80] Kalman filters. Both single- and multi-

bit approaches approximate the posterior pdf at each time step by a Gaussian, an ap-

proximation often employed in nonlinear estimation [58]. This approximation renders the

estimation problem tractable, and, interestingly, results in a filter structure very similar

to that of the regular Kalman filter. Even more surprising is the fact that the IQKF’s

performance (in terms of the trace of the covariance matrix) comes very close to that of the

analog KF (i.e., the KF that processes real-valued, unquantized measurements), even if ev-

ery measurement is quantized using only a few bits. In particular, the covariance reduction

per measurement is 63.7% of that of the analog KF with only a single bit, and more than

98% with as little as 4 bits per measurement. This shows that quantization optimized for

estimation can realize significant savings in communication with vanishingly small impact

on estimation performance.

Despite these very promising results, the above quantized filtering methods still suffer

from certain important limitations. First, even for linear systems with linear measurement

models, quantization introduces nonlinearities. Moreover, realistic multi-robot applications

that consider motion in 2-D or 3-D usually involve nonlinear models. Treating the posterior

pdf as a Gaussian in this case is only approximate, and results in suboptimal estimation.

As is the case for nonlinear estimation with real-valued measurements, we expect that batch

estimation can mitigate errors resulting from linearization effects, and lead to improved es-

timation accuracy. Second, BQKF and IQKF cannot efficiently use time-varying bandwidth

resources. Both filtering schemes discard the analog measurements after quantization. If

additional bandwidth (i.e., bits) become available later on, they can only be used to refine

the quantization of the current measurement. However, the performance analysis in [81]

shows that the benefit of using more than 3 or 4 bits per measurement becomes marginal.

Instead, the additional bits would be more useful if spent on earlier measurements to cor-

rect the state history, which is precisely what a batch algorithm allows. The development

and evaluation of a quantized batch MAP estimator applied to the problem of CL is the

subject of chapter 4 of this thesis.

2.3.4 Cooperative Localization with reduced communication

Several algorithms have been devised in an attempt to reduce computational complexity

of CL. Unfortunately, the resulting savings in communication often come at the cost of

optimality and estimation accuracy. We can broadly distinguish between different classes

of approaches.
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The first class reduces communication by communicating the condensed measurement

information in form of state estimates and covariances, instead of communicating all mea-

surements. Roumeliotis and Bekey [103] show that a centralized EKF estimator can be

exactly distributed across the team. Each robot can propagate its own state separately,

and information only needs to be broadcast across the network when robots meet and

record relative measurements. Cross-correlations are fully accounted for by decomposing

the corresponding submatrices of the covariance, and propagating the separate terms on

each robot. Despite reduced computation and communication, this algorithm cannot cope

with fluctuations in available bandwidth.

The following methods are approximate variants of the first class, that do not require

broadcasting the measurements to all members of the team. Karam et al. [53] propose to

reduce the communication load of a centralized EKF by replacing the exchange of mea-

surements with intermittent exchange of state estimates and their covariances computed

based on these measurements. The approach does not assume unique identification of other

robots, and can handle intermittent communication with only a subset of the team. In their

algorithm, each robot maintains a separate EKF-based pose estimate of the entire team,

using proprioceptive sensors for egomotion estimation, and its own exteroceptive sensor

observations (relative pose measurements) together with a tracking model to estimate the

pose of the other vehicles. To achieve CL, all robots sporadically broadcast these estimates

across the team. The states from other team members are then fused in a separate estima-

tor (maintained by each robot) that identifies matching robot states in the different state

vectors, and yields an improved group estimate by processing all available state estimates

corresponding to the same robot as independent observations in a Kalman filter update.

Without properly accounting for correlations arising from repeated fusion of the states and

also from using a common tracking model, this algorithm can over time result in incon-

sistent estimates. Moreover, the method requires each robot to broadcast data quadratic

in the number of observed robots per vehicle (state estimate plus covariance matrix), each

time a fused estimate is desired. Hence, this method offers no means to adapt to variable

bandwidth availability.

Bahr et al. [6] propose an algorithm where each robot maintains a bank of filters, each

of which incorporating only the most recent relative measurements to a unique subset of

other vehicles. The robots, assumed to be uniquely identifiable, periodically broadcast

their set of own 3-D position estimates and corresponding covariance matrices, as well as

bookkeeping information about the subset of vehicles whose measurements contributed to

each estimate. This method is designed to explicitly avoid re-use of measurements and

resulting inconsistency, but it has to discard a significant amount of information and is

hence suboptimal.

Panzieri et al. [88] employ the interlaced EKF to perform CL without having to broad-

cast information to all robots. In their approach, each robot solves a decoupled estimation
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problem, using the other robots as uncertain mapped landmarks. Specifically, when two

robots are within measuring range, they exchange their current state estimates and co-

variances. In the relative measurement models, the robot positions are replaced by their

respective estimates, and the measurement noise covariances are inflated by the uncertainty

of the state estimates. A similar approach is proposed by Bahr et al. [7], where an au-

tonomous underwater vehicle localizes using range measurements to GPS-equipped surface

ships. Although such decoupling greatly reduces computational and communication re-

quirements, it neglects correlations ensuing from robot-to-robot observations, which will

eventually lead to inconsistent estimates.

The second class of methods reduce communication by restructuring the estimator. As

an example, Martinelli [74] reduces communication and computation cost by introducing

an estimation hierarchy. In particular, a team of robots is divided into subgroups, which

perform CL only with their group leaders, who in turn perform CL among each other. This

approach, however, is an approximation of the centralized EKF, since it neglects correlations

arising across groups and can hence result in inconsistent estimates.

A third class of methods reduces communication by only selectively processing mea-

surements. Mourikis and Roumeliotis [78], for example, consider CL for robot formations

with limited communication bandwidth. The authors address this problem by optimally

adjusting the measurement frequency of the different sensors within the given constraints.

This is an example of optimal sensor scheduling to maximize steady-state localization accu-

racy under constrained communication. Measurements that do not contribute sufficiently to

localization accuracy (as determined by the optimization process) are discarded; the remain-

ing are transmitted as real-valued quantities. The proposed algorithm is only applicable to

robots traveling in fixed formations, which renders the estimation problem approximately

linear.

The above solutions attempt to reduce complexity and to decentralize the Cooperative

Localization task, usually by transmitting less information (e.g., states and covariances

instead of measurements, or only a subset of the measurements) to fewer nodes (e.g., only

one-hop neighbors instead of broadcasting to the entire team). In many of these cases,

either correlations are not properly accounted for (e.g., [88, 74]), or measurements have to

be discarded (e.g., [78, 6]), resulting in suboptimal estimates compared to the centralized

estimator that uses all measurements. Moreover, none of the existing approaches to CL is

designed to efficiently exploit time-varying bandwidth resources.

In our work, we introduce a new approach to CL that reduces communication through

compression, e.g., by means of quantization of sensor observations. If faced with commu-

nication restrictions, our algorithms will trade off bandwidth requirements for estimation

accuracy, at the same time being able to refine the state estimate once more bandwidth

becomes available. The details are described in chapter 4.

Note that the problem of asynchronous measurements and communication, i.e., not all
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robots being able to communicate with all other robots at any given time, can be considered

as another type of communication constraint, which, however, is not considered in this

thesis. Only a few works address this problem, either exactly via the notion of check-points

as in the work by Leung et al. [68], or approximately as in the work of Karam et al. [53] and

Panzieri et al. [88]. Extending our proposed method to handle asynchronous communication

would be an interesting subject of future work.
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Chapter 3

Distance-based Motion-Induced

Extrinsic Calibration

In this chapter, we describe a method for determining the relative transformation between

two robots in the absence of GPS and other external references. In particular, we discuss

how to estimate the relative pose between two robots based on robot-to-robot distance mea-

surements and robot motion. By computing the pairwise relative pose between all robots

in a team, this algorithm can be used to determine an estimate of the initial position and

orientation of all robots with respect to a common reference frame, x̂ini, and the corre-

sponding covariance, P0. Having an accurate prior for the joint robot pose is an important

prerequisite for CL, but is also necessary whenever data obtained by sensors at different

locations are to be spatially correlated. Parts of this chapter have been published in a

conference paper [120].

3.1 Introduction

Sensor fusion between multiple mobile robots critically relies on accurate extrinsic calibra-

tion, i.e., the knowledge of the robots’ relative position and orientation (pose). In CL,

knowledge of the relative pose is necessary to initialize the joint pose estimation problem.

In other sensor fusion tasks, such as target tracking, geometric measurements have to be

expressed with respect to a common frame of reference in order to allow matching and cor-

relation, implying the need for knowing the relative pose. Common methods to determine

the relative transformation between two robots make use of external references. Examples

are direct manual measurements, absolute measurements with respect to a common frame

(e.g., using GPS), or indirect correlation of overlapping sensor measurements (e.g., map or

image matching). However, there exist scenarios, e.g., in GPS-denied or featureless areas,

where these methods either provide insufficient accuracy or are even infeasible.

In the absence of external references, the robots can determine their relative pose based
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on robot-to-robot sensor measurements and dead reckoning. Our recent paper [118] de-

scribes deterministic algorithms for computing the relative pose between pairs of robots

based on motion and observations of robot-to-robot distance, bearing, or both. Arguably

the most challenging case of such motion-induced extrinsic calibration occurs when the

robots can only measure distance between each other. Loosely speaking, distance measure-

ments offer the least amount of information in that they require the highest number of

measurements from different positions (at least three in 2-D, six in 3-D) to determine a set

of possible relative poses.1 Mathematically, estimating relative pose from distance measure-

ments requires solving systems of polynomial equations, which is to this day an active field

of research. Robot-to-robot distance measurements can be acquired by various sensors such

as sonar, radar, or laser, or indirectly as a function of the received communication signal

(e.g., in terms of received signal strength or signal time of flight). Distance-based relative

pose estimation in 2-D and 3-D will be the focus of this chapter (see Fig. 3.1).

Current approaches to this problem [133, 122] follow a two-step process. A deterministic

algorithm is used to compute a coarse initial solution, followed by iterative WLS (i-WLS)

refinement, e.g., using the Gauss-Newton algorithm [12]. Such a two-step procedure is a

standard technique for solving nonlinear WLS problems. However, regardless of the iterative

algorithm used (e.g., Gauss-Newton, Levenberg-Marquardt, Conjugate Gradient, etc.) or its

numerical properties, algorithms using gradient-related search directions can only guarantee

convergence to a stationary point, but cannot make any claims about global optimality

(unless, of course, the cost function is convex). Instead, in this chapter we present a

fundamentally different way to compute the maximum likelihood estimate (MLE), by solving

the nonlinear WLS directly for the guaranteed global optimum. The approach is based

on transforming the WLS cost function into polynomial form, and then employing recent

techniques from polynomial system solving [16, 117, 60, 20] and polynomial optimization [92,

66, 126] to efficiently find either all stationary points of the cost function, or directly its

global minimum.

The main contributions of this chapter are threefold:

1. We present the nonlinear WLS cost function for the relative pose problem, and a

method to find its global minimum in 2-D and 3-D. Under the assumption of Gaussian

noise, the optimal solution to the WLS will yield the MLE. We derive the correspond-

ing first-order optimality conditions and show how to transform them into a system of

polynomials, which can be solved for all stationary points, e.g., using homotopy con-

tinuation [124]. Our results show that this method is a feasible approach to find the

MLE for a small number of measurements in 2-D, but scales poorly and is impractical

in 3-D.

2. We present and analyze a relaxed WLS formulation based on squared distance mea-

1In general, i.e., for non-singular configurations, at least four (2-D) or seven (6-D) distance measurements
are required in order to uniquely determine the relative pose.
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Figure 3.1: Robot 1 (airplane) and 2 (helicopter) take N distance measurements, d1, . . . , dN ,
as they move. The robots know their positions ui, vi, in their respective global frames,
{1} and {2}, e.g., from odometry (2-D) or inertial navigation (3-D). The objective is to
determine the translation, p and rotation, C, between frames {1} and {2}.

surements (SD-WLS). The resulting polynomial system is shown to have constant

solution complexity, independent of the number of measurements.

3. We describe how to efficiently compute the global optimum of the SD-WLS, using a

hybrid algebraic-numeric technique based on the eigendecomposition of a generalized

companion matrix [117] in 2-D, and in 3-D using SOS relaxation [126]. In the latter

case, we also present a fast technique for certifying global optimality of candidate

stationary points that is based on Lagrange relaxation.

Results from simulations and experiments show that the SD-WLS estimator significantly

outperforms the deterministic algorithms of [133] and [122], even if followed by i-WLS re-

finement, and yields performance almost indistinguishable from the original WLS estimator.

3.2 Geometric problem formulation

Consider two robots that acquire N robot-to-robot distance measurements di, i = 1, . . . , N

while moving in 2-D or 3-D, as illustrated in Fig. 3.1. We assume that each robot can

localize with respect to its own global frame of reference ({1} and {2}), for example, using

wheel odometry (2-D) or inertial measurements (3-D). Therefore, at the time the robots

acquire the distance measurements, the coordinates of the first robot, ui := 1ui, and the

second robot, vi := 2vi, are considered known. We further assume that the robots’ clocks
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are synchronized. The objective is to compute the 3 degree-of-freedom (2-D), or 6 degree-

of-freedom (3-D) transformation between frames {1} and {2}, i.e., the translation vector

p := 1p2 and rotation matrix C := 1
2C.

The robot-to-robot distance di can be expressed as the length of vector wi, i = 1, . . . , N ,

connecting the two robots at the time of measurement (see Fig. 3.1):

di = ||wi||2 =
√

wT
i wi , wi := p + Cvi − ui. (3.1)

We parameterize rotation using a 4× 1 unit quaternion

q̄ =
[
q1 q2 q3 q4

]T
=
[
qT q4

]T
, q̄T q̄ = 1. (3.2)

Employing the (non-Hamiltonian) convention for quaternions specified in [15], the rota-

tion matrix C can be written as a nonsingular, quadratic expression in the elements of the

quaternion q̄

C(q̄) = (q2
4 − qTq)I3 − 2q4bq×c+ 2qqT (3.3)

where I3 is the 3 × 3 identity matrix, and the symbol bq×c denotes the skew-symmetric

3× 3 matrix corresponding to the cross-product, so that

q× p = bq×cp =

 0 −q3 q2

q3 0 −q1

−q2 q1 0

p. (3.4)

More details about quaternion algebra can be found in the technical report [119].

In 2-D, the quaternion can be specified by q̄ =
[
0 0 sin(φ/2) cos(φ/2)

]T
. For sim-

plicity, we will instead (equivalently) define

q̄(2−D) :=
[
sinφ cosφ

]T
, q̄T(2−D)q̄(2−D) = 1 (3.5)

C(q̄)(2−D) :=

[
cosφ − sinφ

sinφ cosφ

]
(3.6)

and note that in the 2-D case, C(q̄)(2−D) is linear in the elements of q̄(2−D). To simplify

notation, we will drop the subscript (2−D) from now on as long as the correct expression

is evident from context.

The approach of [133, 122] (and of all other deterministic formulations of this prob-

lem) is to assume noise-free measurements, and to stack the constraints provided by each

observation into the following system of polynomial equations in the four (seven for 3-D)

unknowns p and q̄.
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Deterministic System:

wT
i wi − d2

i = 0, i = 1, . . . , N (3.7a)

q̄T q̄ − 1 = 0. (3.7b)

In 2-D, Zhou and Roumeliotis [133] show that N = 3 measurements are necessary for

this problem to have a discrete set of six possibly complex solutions (minimal problem).

Moreover, N > 3 measurements uniquely determine the relative pose. Further, they present

a linear algorithm to solve the overdetermined problem with N = 5 measurements for the

unique solution.

For the 3-D case, we know from research on the forward kinematics of the general

Stewart-Gough mechanism (e.g., [127, 48, 117]) that N = 6 measurements are necessary for

this problem to have a discrete set of 40 possibly complex solutions2 (minimal problem). In

our recent publications [122, 118], we show that N > 6 measurements uniquely determine

the relative pose. We also provide a linear algorithm to solve the overdetermined polynomial

system using N ≥ 10 measurements.

In practice, the robot-to-robot distance measurements are corrupted by noise

zi = di + ni, i = 1, . . . , N (3.8)

n =
[
n1 . . . nN

]T
∼ N (n; 0,R), (3.9)

where we have modeled the measurement noise n as zero-mean Gaussian, with covariance

matrix R. In case of independent measurements, R = diag(σ2
1, . . . , σ

2
N), but in the pres-

ence of correlated noise, R can be full. Replacing di by the noisy measurements zi, the

overdetermined system (3.7) with N > 3 (2-D), or N > 6 (3-D), will be inconsistent, and

no guarantees can be given for the solutions computed by the algorithms in [133] and [122].

In particular, these algorithms cannot account for the measurement noise in a statistically

sound fashion. Therefore, their results are usually used as an initial guess for a subsequent

i-WLS refinement [133, 122]. However, as shown in the simulation results in chapter 3.6,

i-WLS refinement with poor initialization can result in estimates far from the global opti-

mum.

As an alternative, we propose to combine the constraints (3.7a) arising from the mea-

surements in a WLS fashion, thus correctly accounting for the measurement noise. In what

follows, we present methods to solve the WLS problem directly for the globally optimal esti-

mate of the relative pose. The approach is to formulate the first-order optimality conditions

of the WLS cost function as a square system of polynomials, which can be solved directly

to obtain all stationary points. A desirable property of this formulation is that without

any modification it will yield the global optimum for the overdetermined system (N > 3,

2Since in 3-D q and −q represent the same rotation, system (3.7) has in fact 80 numerical, but only 40
physically distinct solutions.
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or N > 6), as well as all solutions to the minimal problem (6 solutions for N = 3 in 2-D, or

40 solutions for N = 6 in 3-D), which will be global minima of the WLS cost function with

cost function value identically equal to zero.

3.3 Weighted Least Squares (WLS)

Ideally, given (3.1) and (3.8), we would like to compute the MLE by solving the following

nonlinear WLS problem.

WLS Cost Function:

min
p,q̄

1

2
(hd − z)TR−1(hd − z) (3.10)

s.t. q̄T q̄ = 1

where the (distance) measurement function hd is given by3

hd =
[√

wT
1 w1 . . .

√
wT
NwN

]T
. (3.11)

Using the method of Lagrange multipliers [12], we write the Lagrangian

Ld =
1

2
(hd − z)TR−1(hd − z) + λ(q̄T q̄ − 1) (3.12)

and the corresponding KKT optimality conditions as

∇pLd =
[

w1√
wT

1 w1

. . . wN√
wT
NwN

]
R−1(hd − z) = 0 (3.13a)

∇q̄Ld =

[
∇q̄(wT

1 w1)

2
√

wT
1 w1

. . .
∇q̄(wT

NwN )

2
√

wT
NwN

]
R−1(hd − z) + 2λq̄ = 0 (3.13b)

∇λLd = q̄T q̄ − 1 = 0 (3.13c)

where

∇q̄(wT
i wi) = 2∇q̄

(
(p− ui)

TCvi
)

= 2(∇q̄vec(C)) vec
(
(p− ui)v

T
i )
)

(3.14)

3In what follows, different subscripts for the measurement function will indicate different formulations
and relaxations of the problem.
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and

∇q̄vec(C(2−D)) =

[
0 1 −1 0

1 0 0 1

]
(3.15)

∇q̄vec(C(3−D)) =

2


q1 q2 q3 q2 −q1 q4 q3 −q4 −q1

−q2 q1 −q4 q1 q2 q3 q4 q3 −q2

q3 q4 q1 −q4 −q3 q2 q1 q2 q3

q4 q3 −q2 −q3 q4 q1 q2 −q1 q4

 . (3.16)

Here, vec(.) denotes the column-wise vectorization operation.

In order to solve this system of equations and thus to determine all stationary points,

we transform it into a system of polynomials by introducing auxiliary variables. Our objec-

tive is then to apply efficient polynomial system solving techniques that can find all roots

simultaneously. In particular, choosing auxiliary variables

ai :=
√

wT
i wi, i = 1, . . . , N (3.17)

we have a new measurement function (distance as a function of the auxiliary variable a)

had

had =
[
a1 . . . aN

]T
(3.18)

and we obtain the Lagrangian

Lad =
1

2
(had − z)TR−1(had − z) +

N∑
i=1

µi(w
T
i wi − a2

i ) + λ(q̄T q̄ − 1). (3.19)

Taking the gradient with respect to the unknowns, we obtain the following system of

2N + 5 (2N + 8 in 3-D) polynomials in the 2N + 5 (2N + 8 in 3-D) unknowns p, q̄, λ, and

a :=
[
a1 . . . aN

]T
, µ :=

[
µ1 . . . µN

]T
.
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WLS First-Order Optimality Conditions:

∇pLad = 2
N∑
i=1

µiwi = 0 (3.20a)

∇q̄Lad =

N∑
i=1

µi∇q̄(wT
i wi) + 2λq̄ = 0 (3.20b)

∇aLad = R−1(had − z)− 2


a1µ1

...

aNµN

 = 0 (3.20c)

∇µiLad = wT
i wi − a2

i = 0, i = 1, . . . , N (3.20d)

∇λLad = q̄T q̄ − 1 = 0. (3.20e)

In 2-D, all polynomials are quadratic; in 3-D, (3.20a), (3.20b), and (3.20d) become cubic.

Notice that squaring the constraints on the ai (cf. (3.17) vs. (3.20d)) may introduce

spurious solutions with erroneous signs. Therefore, we will only accept real solutions that

fulfill the original constraint (3.17) as candidate stationary points.

Once all the stationary points of (3.10) are found by directly solving system (3.20), the

final step is to evaluate the cost function on the candidate points, and to choose the one

with minimum value as the final, guaranteed globally optimal WLS estimate of the relative

pose.

The numerical solution of (3.20) can be obtained, for example, using homotopy contin-

uation [124]. In 2-D, system (3.20) has 70 solutions for N = 3 measurements, 240 solutions

for N = 4, and 784 solutions for N = 5, as determined both through analysis of the Gröbner

basis using Macaulay 2 [38] and numerically using PHCpack [124]. In our experiments, we

solved example systems with N = 4 measurements in about 2 to 4 minutes (diagonal vs.

dense covariance matrix), and N = 5 measurements in 12 to 20 minutes, using PHCpack

on an Intel T9400 2.53 GHz laptop with 2GB of RAM. The reason for the increase in time

is the introduction of additional monomials in the polynomial system due to cross-coupling

induced by the off-diagonals of R. In 3-D, unfortunately, it turns out that this process is

computationally impracticable, as homotopy-based solutions require days of runtime, even

for the minimal case of N = 6 measurements.

As evident from these results, this formulation scales quite poorly, because the number

of unknowns (i.e., ai, µi) grows with the number of measurements. The complexity of

solving polynomial systems is exponential in the number of unknowns [30], rendering this

approach feasible only for small-scale problems. This leads us to the introduction of an

alternative formulation using squared distance measurements.
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3.4 Squared distances WLS (SD-WLS)

A much preferable approach from the point of scalability is to solve the WLS based on noisy

measurements of the squared distance

z′i = d2
i + n′i, i = 1, . . . , N (3.21)

n′ =
[
n′1 . . . n′N

]
∼ N (n′; 0,R′) (3.22)

where for simplicity we temporarily assume that the noise in the squared measurements is

zero-mean Gaussian. Under this assumption, the SD-WLS will actually yield the MLE. We

will relax this assumption in chapter 3.4.1.

The SD-WLS cost function is defined as

SD-WLS Cost Function:

min
p,q̄

1

2
(hsd − z′)TR′−1(hsd − z′) (3.23)

s.t. q̄T q̄ = 1

where

hsd :=
[
wT

1 w1 . . . wT
NwN

]T
. (3.24)

Forming the Lagrangian Lsd analogously to (3.12), setting its gradient to zero and

dividing by constant factors, we obtain the following polynomial system of 5 (8 in 3-D)

equations in the 5 (8 in 3-D) unknowns p, q̄ and λ.

SD-WLS First-Order Optimality Conditions:

∇pLsd =
[
w1 w2 . . . wN

]
R′−1(hsd − z′) = 0 (3.25a)

∇q̄Lsd =
[
∇q̄(wT

1 w1) . . . ∇q̄(wT
NwN )

]
R′−1(hsd − z′) + 2λq̄ = 0 (3.25b)

∇λLsd = q̄T q̄ − 1 = 0. (3.25c)

In 2-D, the polynomials (3.25a) and (3.25b) are cubic4, while in 3-D, they are quintic. The

quaternion unit-norm constraint (3.25c) is quadratic in both cases.

Analysis of this system’s Gröbner basis for different numerical instances using coefficients

from a finite field shows that in 2-D, this system has 28, and in 3-D 1424 (possibly complex)

solutions. This is a general result that holds for all cases of N and R′. In particular, we

have the following proposition:

4In practice, for the 2-D cases of both WLS and SD-WLS, we immediately eliminate λ and one equation
by pre-multiplying (3.20b) and (3.25b) by

[
cosφ − sinφ

]
, thus increasing their degrees by one. In contrast,

in 3-D similar elimination of λ requires six new equations, which would result in a non-square system of
equations and is therefore avoided.
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Proposition 1. The number of solutions of the system (3.25), and its solution complexity,

is independent of the covariance matrix, R′, and of the number of measurements, N , for

N ≥ 3 (N ≥ 6 in 3-D).

Proof. We base our proof on the following observation: If for a system of polynomials arising

from a specific problem class, different (non-singular) instantiations of the problem differ

only in the numeric coefficients but not in the structure of the polynomial system (i.e., the

monomials comprising each polynomial remain the same), the leading monomials of the

corresponding Gröbner basis will generally also be the same, with the consequence that the

standard basis of the quotient ring and the number of solutions of the system is constant [19,

60]. We therefore have to show that the structure of system (3.25) and the monomials in each

polynomial (3.25a)-(3.25c) are independent of N and R′ generically. Clearly (but in contrast

to the polynomial system (3.20)), the number of equations and the number of unknowns

of (3.25) is constant and independent of N and R′. Also, (3.25c) remains unchanged

for different problem instantiations. To see that the monomials in (3.25a) and (3.25b)

are independent of N and R′, consider rewriting these equations as
∑N

i,j=1 r
′−1
i,j (wT

i wi −
z′i)w

T
j and

∑N
i,j=1 r

′−1
i,j (wT

i wi−z′i)∇q̄(wT
j wj), where r′−1

i,j denotes the (i, j)-th entry of R′−1.

Generically, each polynomial wT
i wi − z′i, wi, and ∇q̄(wT

i wi) contains the same monomials

for every i. Analogously, each of the products (wT
i wi−z′i)wT

j and (wT
i wi−z′i)(∇q̄(wT

j wj))

contains the same monomials generically, regardless of i and j. Finally, linear combinations

of polynomials do not introduce new monomials, which concludes the proof.

3.4.1 Gaussian approximation of squared noisy measurements

As discussed in the beginning of the section, the noise model (3.21) of SD-WLS is only

an approximation if in fact only noisy measurements of the (non-squared) robot-to-robot

distances are available. In particular, replacing (3.8) by (3.21) cannot be achieved by simply

squaring the noisy measurements, i.e., z′i 6= z2
i . The reason is that z2

i = d2
i + 2dini+n2

i , and

the corresponding noise term si := 2dini +n2
i is not zero-mean Gaussian. Indeed, following

the standard formulas to compute the pdf of functions of random variables [111], the pdf

of the vector ζ :=
[
ζ1 . . . ζN

]
with ζi = z2

i is given by

p(ζ) =
2N∑
j=1

1

2N
∏
i

√
ζi
N (γj ; d,R) (3.26)

where each γj , j = 1, . . . , 2N , is a vector of the form
[
±√ζ1 . . . ±√ζN

]T
with one of the

2N possible different sign assignments for its individual elements, and d =
[
d1 . . . dN

]
.

However, the non-Gaussian pdf resulting from squaring a Gaussian random variable can

be well approximated by a Gaussian pdf with matching first and second order moments.
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Figure 3.2: Examples of approximating the pdf of squared distance measurements by a
Gaussian. (a) Scalar measurement case, with d1 = 3m and σ1 = 0.1m. (b) Two dis-

tance measurements with d =
[
3m 2m

]T
, and correlated noise with covariance R =[

(0.1m)2 (0.01m)2

(0.01m)2 (0.08m)2

]
. For small variances, the approximation is reasonably accurate: for the

examples shown here, the KL divergence is 8.34 · 10−4 and 2.0 · 10−3, respectively.

Specifically, computing the mean, s̄i, and covariance, Σ, of si yields

s̄i := E[si] = Rii (3.27)

Σii := E[(si − s̄i)2] = Rii(4d
2
i + 2Rii) (3.28)

Σij := E[(si − s̄i)(sj − s̄j)] = Rij(4didj + 2Rij)

We can now approximate (3.21) by setting

z′i ' z2
i − s̄i (3.29)

R′ ' Σ (3.30)

where we replace the distances di in the expression for Σ by their noisy measurements zi.

As illustrated in Fig. 3.2, using (3.29), (3.30) to approximate the non-Gaussian pdf (3.26)

by a Gaussian is reasonably accurate, particularly for high signal-to-noise ratios.

3.4.2 Accounting for uncertainty in robot positions

Our current noise models for WLS (3.8), and for SD-WLS (3.21) assume perfectly known

robot positions ui, vi. If these positions are estimated using odometry or inertial measure-

ments, this assumption will be violated. There are several possible approaches to address

this issue:

• Inflate the measurement noise covariance matrix, R. By doing so, uncertainty in

the robots’ positions is treated as an additional measurement error. Although this
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method is only an approximation, its main advantage is that the estimate can still be

obtained in a single step. It works particularly well when the position uncertainty is

small and independent of the robot position itself, and was therefore used in our 3-D

experiment, see chapter 3.7.2.

• Compute the Jacobians of the measurement function h with respect to the robots’

positions, Hu := ∂h
∂u , and Hv := ∂h

∂v . This corresponds to the following linearization

of the measurement model

z = h(p, q̄,u,v) + n ' h(p, q̄, û, v̂) + Huũ + Hvṽ + n (3.31)

where ũ and ṽ denote the error in the robot positions u and v, i.e., u ' û + ũ, and

v ' v̂ + ṽ. Compute an augmented noise matrix R̃ = R + HuPuuH
T
u + HvPvvH

T
v ,

where Puu and Pvv denote the covariance of ũ and ṽ, and use R̃ as weighting matrix

in the WLS cost function (see [122, 118] for details). This results in an iterative

estimation process, since the weighting matrix will depend on the linearization points

used for the Jacobians Hu and Hv, e.g., Hu = Hu(p̂, ˆ̄q, û, v̂). The initial linearization

point is obtained by solving the SD-WLS problem without accounting for position

uncertainty. The globally optimal estimate of the relative pose computed for a given

R̃ is used to compute the next linearization point. Despite losing all theoretical claims

of convergence and optimality, we find that in practice, this process converges after

very few iterations and in most cases leads to consistent estimates. This method was

employed in our 2-D experiment, see chapter 3.7.1.

• Augment the state vector to also include the robot positions, u and v, and augment

the measurement vector z with the odometry measurements (or any other measure-

ments used for robot localization). Compute the MLE batch estimate using bundle

adjustment [123, 56]. This is arguably the optimal treatment of position uncertainty,

but given the large number of unknowns in the state vector, is not amenable to the

global optimization procedures outlined in chapter 3.5.

In what follows, we will concentrate on the case where the robot positions are either perfectly

known, or the measurement covariance has been appropriately inflated to account for each

robot’s localization uncertainty. Further, we assume that the measurements are outlier-

free. If outliers are present, they can be removed using RANSAC [33] in combination with

minimal problem solvers [133, 117].

3.4.3 Initializing CL

Up to now, we have focused on how to compute the initial relative pose between the robots.

In order to use the results from the preceding methods to initialize the estimation process in

CL (that tracks the pose of the robot team as it moves), we need to compute an estimate of

31



the robot team pose in a common frame of reference, as well as a corresponding covariance

matrix.

For this purpose, we propose to use the relative pose estimated using the SD-WLS

algorithm as an initial guess for a bundle adjustment scheme similarly to the one discussed

in chapter 3.4.2 above, that fuses all odometric and relative observations, and computes

the robot poses at all times a measurement was obtained in a common frame, for example,

that of robot 1. It also provides a corresponding covariance in form of the inverse Hessian.

Subsequently, we extract the estimates corresponding to the pose of the robot team at the

last time instant, as well as their covariance, and use this as the Gaussian prior xini,P0

commonly used in CL (see also chapter 4).

3.5 Solving the SD-WLS problem

In this section, we will address different algorithms to efficiently solve the minimization

problem (3.23), or equivalently its KKT optimality conditions (3.25). Before, we will

have to introduce some additional notation. We define a monomial in n variables, x =[
x1 . . . xn

]T
, as xα := xα1

1 · . . . · xαnn , αi ∈ N ∪ {0}. The degree of a monomial is given

by
∑

i αi. A real polynomial is a linear combination of monomials, q(x) =
∑

i qix
αi , with

coefficients qi ∈ R. The degree of a polynomial is given by the maximum degree of its

monomials. Consider the vector y(d) of monomials in n variables of degree up to d with

length
(
n+d
d

)
y(d) =

[
1 x1 . . . xn . . . xd1 . . . xdn

]T
. (3.32)

We can write any real polynomial of total degree up to d as

q(x) = qTy(d) (3.33)

where q denotes the (possibly very sparse) coefficient vector of q(x). We will first discuss

a technique to solve the multivariate polynomial system (3.25), followed by relaxations to

directly solve (3.23).

3.5.1 Polynomial system solving via eigendecomposition of the multipli-

cation matrix

Given the constant structure of the polynomial system (3.25), we can avoid using general

purpose homotopy continuation solvers, such as PHCpack, and instead apply a faster, hybrid

algebraic-numeric method based on the eigendecomposition of a generalized companion

matrix [117, 20, 16, 5]. In particular, in the 2-D case we employ the normal set-based

method, described in detail in [117, 16], which exploits the specific system structure to
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provide all 28 solutions simultaneously, in a fast, non-iterative fashion.

The idea behind the normal set-based method is to first expand the polynomial sys-

tem (3.25), compactly written as

Ψ(p, q̄) = 0 (3.34)

by adding new polynomials of the form

ψ′i(p, q̄) = ψi(p, q̄) · pαp q̄αq̄ = 0 (3.35)

The new polynomials, ψ′i(p, q̄), are products of the original polynomials, ψi(p, q̄), with

monomials in the unknowns p and q̄. The new, expanded system of polynomials, consisting

of ψi(p, q̄) and ψ′i(p, q̄), involves monomials up to some degree `. For the SD-WLS problem

in 2-D, for example, we chose these monomials so as to create new polynomials up to degree

` = 8. Note that adding these new polynomials does not change the solution set, since all

ψ′i(p, q̄) vanish on the roots of the original system, and do not add new solutions.

The next step is to write the expanded polynomial system in matrix form

Cey
(`) = 0, (3.36)

gathering the monomials in the vector y(`), and the numeric coefficients in the expanded

coefficient matrix Ce. From this matrix one can extract a 28 × 28 generalized companion

matrix that defines multiplication by a function (which we chose to be the first component

of p) within the so-called quotient ring. All 28 solutions can be extracted simultaneously

from the left eigenvectors of this matrix [20, 117].

Our current Matlab implementation requires approximately 125 ms (as determined by

Matlab’s profiler) to solve an instance of the 2-D SD-WLS problem, of which approximately

16 ms are spent creating the expanded coefficient matrix Ce, which for this problem is of

dimension 532 × 495, with 4% non-zero entries. Extracting the multiplication matrix and

all 28 solutions requires 109 ms.

Unfortunately, in the 3-D case, this approach to solving the SD-WLS problem is un-

wieldy for practical applications, since a solution using homotopy continuation (PHCpack)

requires several hours, and the previously described multiplication matrix-based solvers

require excessive memory (> 14 GB) for the internal matrix decompositions.

In the next two sections, we will therefore investigate two different relaxations of the

SD-WLS problem, that can compute and certify the global optimum of SD-WLS within

practicable time and resources.
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3.5.2 Sum-of-Squares relaxation

SOS relaxation has been proposed as an efficient means to solve global polynomial opti-

mization problems [91] without having to compute all critical points. SOS relaxation works

by transforming real polynomial optimization problems into semidefinite programs (SDPs),

which can be solved efficiently using interior point methods such as SeDuMi [113]. In the

last decade, several toolboxes have been published to efficiently solve SOS problems, e.g.,

SOSTOOLS [94], GloptiPoly [40], or SparsePOP [126]. We have used SparsePOP to ob-

tain solutions to (3.23). In the following, we will briefly outline the underlying theoretical

principles, but refer the reader to [92, 66, 57, 125] for more details on SOS relaxation.

A polynomial f(x) = fTy(2d) of even degree 2d is a sum of squares, if it can be written

as

f(x) =
∑
i

qi(x)2 =
∑
i

(qTi y(d))2 = y(d)T

(∑
i

qiq
T
i

)
y(d) = y(d)TQy(d) (3.37)

for some polynomials qi(x) so that Q < 0 is positive semidefinite. Note that this decom-

position is not necessarily unique, and the set of matrices Q fulfilling (3.37) is an affine

subspace [92]. If a polynomial f(x) can be written as a sum of squares, it is necessarily

non-negative for all values of x. However, not all non-negative polynomials can be written

as sums of squares.

One can determine whether a polynomial can be decomposed as a sum of squares by

solving a convex semidefinite feasibility problem

find Q (3.38)

s.t. 〈Ai,Q〉 = fi

Q < 0

where fi are the
(
n+2d
n

)
coefficients of the polynomial f(x), 〈Ai,Q〉 = tr(AiQ), and Ai are

constant symmetric (selector or localizer) matrices, such that their (l,m)-th elements are

given by

ail,m =

1 if y
(d)
l y

(d)
m = y

(2d)
i ,

0 otherwise.
(3.39)

Ai can be found directly from expanding y(d)TQy(d) and comparing coefficients with f(x).

Once a matrix Q is found, the polynomials qi(x) can be determined from an eigendecom-

position Q =
∑

i λiviv
T
i , so that qi(x) =

√
λiv

T
i y(d).

Consider now the unconstrained optimization problem

min f(x), (3.40)
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where f(x) is a real polynomial with global minimum f∗ = min f(x) that is achieved at x∗,

i.e., f(x∗) = f∗.

To convert this to an SOS problem, we first introduce an auxiliary variable γ as lower

bound for f(x)

max γ (3.41)

s.t. f(x)− γ ≥ 0 ∀x

and then replace the inequality constraint by

max γ (3.42)

s.t. f(x)− γ is SOS.

Again, the relaxed problem can be written as an SDP in the variables γ and Q (not in

x) and solved efficiently. Let γ∗ denote the optimal solution of (3.42). Since (3.42) is a

relaxation, we always have that γ∗ ≤ f∗. However, in many cases we can verify that γ∗ = f∗

and thus provide a certificate of global optimality. Moreover, if x∗ is the unique5 optimal

point, the Lagrange multiplier (i.e., the dual variable of (3.42)) is exactly equal to the

monomial vector y(d) evaluated at x∗, so that both the optimal function value, as well as

the optimal solution point can be directly recovered from the solution of the SDP [92, 66].

Evaluating f(x) on the point extracted from the dual variable at the solution of the SDP

and comparing it to γ∗ allows to verify if global optimality has been achieved.

As already stated above, not all nonnegative polynomials can be written as sums of

squares, so that there exist cases where γ∗ does not provide the exact global minimum of

f(x). In these cases, we can make use of the Positivstellensatz to form hierarchies of SOS

relaxations with increasingly tighter lower bounds [66, 57]. The Positivstellensatz also helps

to address constrained optimization, as needed for the SD-WLS problem.

The form of the Positivstellensatz used by Lasserre [66], due to Putinar [96], states

that under mild assumptions6, every polynomial p(x), strictly positive on the compact set

defined by polynomial inequalities gi(x) ≥ 0, i = 1, . . . , r, can be written as

p(x) = q(x) +

r∑
k=1

gk(x)tk(x) (3.43)

where q(x), tk(x) are SOS polynomials of sufficiently high degree.

For the unconstrained optimization problem, this means that even if solving (3.42) for γ

does not provide the exact global minimum of f(x), we can constrain the search within some

5If the global optimum is achieved by a discrete set of (multiple) points, other methods to recover their
coordinates are available [41, 126].

6One way to fulfil the assumption is for the set of polynomial inequalities gi(x) to include the ball
constraint a2 − xTx ≥ 0, which can always be added with a chosen sufficiently large.
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hypersphere and construct new SOS optimization problems to find progressively tighter

bounds that will converge asymptotically to the global optimum f∗ as the degree increases.7

Specifically, replace p(x) by f(x)− γ, and introduce g(x) = a2−xTx ≥ 0 for some a. Then

solve

max γ (3.44)

s.t. f(x)− γ − g(x)t(x) is SOS.

for increasing degree of t(x).

In the case of constrained optimization, i.e.,

min f(x) (3.45)

s.t. hi(x) = 0, i = 1, . . . , r

gi(x) ≥ 0, i = r + 1, . . . ,m

the inequality constraints can be used directly in the Positivstellensatz, and the equality

constraints are added as two inequalities, hi(x) ≥ 0,−hi(x) ≥ 0. The resulting SOS problem

will be

max γ (3.46)

s.t. f(x)− γ −
r∑
i=1

hi(x) (ti(x)− ui(x))−
m∑

j=r+1

gj(x)vj(x) = q(x)

ti(x), ui(x), vj(x), q(x) are SOS.

⇔ max γ (3.47)

s.t. f(x)− γ −
r∑
i=1

hi(x)ki(x)−
m∑

j=r+1

gj(x)vj(x) = q(x)

vj(x), q(x) are SOS.

Notice that we can replace (ti(x)− ui(x)) by arbitrary (non-SOS) polynomials ki(x). In-

terestingly, one can show that the polynomials ki(x) and vj(x) play the role of generalized

Lagrangian multipliers [57, 66].

To convert (3.46) into an SDP, one chooses the degree of q(x) as an even number Nq

with

Nq ≥ max
(

deg(f(x)), deg(gi(x)), deg(hi(x))
)
,

which determines the degrees of ki(x) and vj(x). Nq is increased iteratively until γ can be

7In many cases in practice, convergence occurs already for low degrees of q(x) and tk(x), but to our
knowledge only few results exist for guaranteed finite convergence (see, e.g., [85]).
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certified as the global optimum.

Having described the general process of constrained and unconstrained polynomial op-

timization using SOS relaxation, we now return to the specific application of minimizing

the SD-WLS cost function (3.23) subject to the quaternion unit norm equality constraint

h(x) = q̄T q̄−1. To solve it, we chose the degree of q(x) as Nq = 6, i.e., equal to the degree of

the cost function. We used SparsePOP [126] in combination with SeDuMi [113] to formulate

and solve the SOS program, since SparsePOP can exploit sparsity in the equation structure,

and performs variable scaling to improve numerical stability. In addition to the quaternion

unit norm constraint (3.25c), we also added the constraint q4 ≥ 0 in order to remove one

of the two physically equivalent solutions (q̄, −q̄). Increasing the default precision used in

SeDuMi to 10−11 helped to greatly reduce numerical errors of the solution. Bounding the

unknowns (box constraints) helped in some instances to improve numerics as well, at the

cost of increasing the size of the SDP problem. Increasing Nq, or adding a ball constraint

was generally not found necessary to certify global optimality. In our simulations we have

not encountered a case where global optimality could not be certified (up to numerical inac-

curacies). A typical instance of a SparsePOP program of SD-WLS led to an SDP problem

solved by SeDuMi of the form

min
x

cTx

s.t. Ax = b

x ∈ K

To provide a notion of computational requirements, the dimensions of A were dim(A) =

1582 × 13731, and the cone K had parameters (see SeDuMi user guide [113] for notation)

K.f = 330 (number of free primal components), K.l = 5 (number of nonnegative compo-

nents), K.s =
[
(110× 110) (36× 36)

]
(dimensions of positive semi-definite constraints).

A typical problem instance was solved in 50-70s on an Intel T9400 2.53 GHz laptop with

2GB of RAM.

3.5.3 Lagrange relaxation

In this section, we will introduce an alternative method that, contrary to SOS relaxation,

does not find a global optimal solution of the 3-D SD-WLS problem, but can be used to

certify global optimality of a given candidate stationary point. Its main advantage is that it

is at least an order of magnitude faster than SOS relaxation. This process is motivated by the

realization that particularly for the 3-D case, the process of finding a stationary point of the

SD-WLS problem using iterative optimization methods (e.g., Gauss-Newton) is considerably

faster than SOS relaxation. This is especially true if a good initialization point is available,

for example from deterministic methods [117] used during a preliminary RANSAC [33]

outlier rejection stage. The shortcoming of the iterative optimization methods, namely
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their inability to certify global optimality, can be overcome if one can establish equality

between the value of the cost function evaluated at the stationary point and a guaranteed

lower bound of the cost function (which then provides a certificate for global optimality).

In contrast to the previous section, where this lower bound was provided by SOS relaxation,

in this section we will compute a lower bound using Lagrange relaxation.

In particular, we will introduce additional auxiliary variables to form a new Lagrangian,

Lrs, and consider its dual optimization problem. The key insights will be that the dual

function, Q(µ, ν), can be evaluated very efficiently, and, more surprisingly, that despite the

non-convexity of this problem, strong duality holds in a significant percentage of problem

instances. A zero duality gap serves as certificate for global optimality of the SD-WLS

solution.

The auxiliary variables are defined as r := CTp and s := pTp, yielding the optimization

problem

min
p,q̄,r,s

1

2
(hrs − z′)TR′−1(hrs − z′) (3.48)

s.t. q̄T q̄ − 1 = 0

CTp− r = 0

pTp− s = 0

with

hrs =
[
wT

1 w1 . . . wT
NwN

]T
= H

p

r

s

+ b (3.49)

H =


−2uT1 2vT1 1

...
...

...

−2uTn 2vTn 1

 (3.50)

b =


uT1 u1 + vT1 v1 − 2uT1 Cv1

...

uTnun + vTnvn − 2uTnCvn

 . (3.51)

The corresponding Lagrangian is

Lrs =
1

2
(hrs − z′)TR′−1(hrs − z′) + λ(q̄T q̄ − 1) + µT (CTp− r) + ν(pTp− s) (3.52)

The stationary points can be found by solving the
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SD-WLS r/s First-Order Optimality Conditions:

∇[
pT rT s

]TLrs = HTR′−1

H

p

r

s

+ b− z′

+

Cµ + 2νp

−µ
−ν

 = 0 (3.53a)

∇q̄Lrs = (∇q̄hrs)R′−1

H

p

r

s

+ b− z′

+ (∇q̄µCTp) + 2λq̄ = 0 (3.53b)

∇λLrs = q̄T q̄ − 1 = 0 (3.53c)

∇µLrs = CTp− r = 0 (3.53d)

∇νLrs = pTp− s = 0 (3.53e)

where

∇q̄hrs = ∇q̄b = −2
[
∇q̄uT1 Cv1 . . . ∇q̄uTNCvN

]
(3.54)

∇q̄uTi Cvi = (∇q̄vec(C)) vec
(
uiv

T
i

)
(3.55)

∇q̄µCTp = (∇q̄vec(C)) vec
(
pµT

)
(3.56)

Notice that a stationary point p∗, q̄∗, λ∗ fulfilling the KKT conditions of the SD-WLS

problem (3.25) is also a stationary point for this formulation with auxiliary variables r

and s, since it will (exactly) fulfill the optimality conditions (3.53) above, after computing

r∗ = C(q̄∗)Tp∗ and s∗ = p∗Tp∗, as well as the corresponding Lagrange multipliers µ∗, ν∗

using the bottom part of (3.53a)

[
µ∗

ν∗

]
=
[
04×3 I4×4

]
HTR′−1

H

p∗

r∗

s∗

+ b− z′

 . (3.57)

To see this, compare the expressions for (3.25) and (3.53) evaluated at p∗, q̄∗, λ∗, r∗, s∗,µ∗

and ν∗.

To certify global optimality, we will now consider the Lagrangian dual [12] of this op-

timization problem, after only dualizing the constraints in r and s. For this, consider the

Lagrangian

LLag =
1

2
(hrs − z′)TR′−1(hrs − z′) + µT (CTp− r) + ν(pTp− s) (3.58)
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The dual function is given by

Q(µ, ν) = min
p,q̄,r,s

LLag(p, q̄, r, s,µ, ν) (3.59)

s.t. q̄T q̄ = 1

It is important to observe that in the minimization problem of computing the dual function,

the equality constraints on r (3.53d) and s (3.53e) are not explicitly enforced (however, they

hold for an optimal choice of µ and ν). For this reason, the dual function Q(µ, ν) always

provides a lower bound to the original minimization problem (3.48).

Next we will describe how to compute the dual function for arbitrary, but known values

of µ and ν. Computing the dual function (3.59) requires solving a minimization problem,

which will again be accomplished by computing its stationary points by solving a polynomial

system. As before, we use the method of Lagrange multipliers to obtain a new Lagrangian,

LLag′ , which is formally equal to (3.52), but differs in that µ, ν are now considered fixed

(known) parameters, not variable Lagrange multipliers.

LLag′ =
1

2
(hrs − z′)TR′−1(hrs − z′) + λ(q̄T q̄ − 1) + µT (CTp− r) + ν(pTp− s) (3.60)

The corresponding first-order optimality conditions consequently closely resemble those

of (3.53), except for the equality constraints.

SD-WLS Lagrangian Dual First-Order Optimality Conditions:

∇[
pT rT s

]TLLag′ = HTR′−1

H

p

r

s

+ b− z′

+

Cµ + 2νp

−µ
−ν

 = 0 (3.61a)

∇q̄LLag′ = (∇q̄hrs)R′−1

H

p

r

s

+ b− z′

+ (∇q̄µCTp) + 2λq̄ = 0 (3.61b)

∇λLLag′ = q̄T q̄ − 1 = 0 (3.61c)

The fact that the measurement function hrs is linear in p, r, and s results in a decoupled

problem structure and allows to first solve for p, r, and s in terms of q̄ from (3.61a) to obtain

the following quadratic expression in q̄p

r

s

 =

(
HTR′−1H +

[
2νI3×3 03×4

04×3 04×4

])−1
HTR′−1(z′ − b) +

−Cµ

µ

ν


 . (3.62)

We substitute this expression for p, r, s in (3.53b), and then proceed to solve the system

[(3.61b), (3.61c)] (recall that the values of µ and ν are considered known), which consists
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of one quadratic and four cubic polynomials in only five unknowns q̄ and λ. Analysis of

its Groebner basis reveals that this system has 80 (possibly complex) solutions and its

BKK bound is tight (the BKK bound is a formula due to Kushnirenko, Bernstein, and

Khovanskiisee that provides an upper bound to the number of solutions of a polynomial

system as a function of its monomial structure; see e.g., [19]). Importantly, it can be

solved very fast (in approx. 3-5s using PHCpack, with room for considerable speed-up by

using multiplication matrix-based methods as described in chapter 3.4). This system’s real

solutions, q̄∗, are backsubstituted into (3.62) to find all real critical points of (3.59). We

evaluate (3.59) on all critical points and retain the solution with minimum cost function

value as the dual function value Q(µ, ν). Weak duality states that the duality gap, 1
2 (hsd−

z′)TR′−1(hsd − z′) − Q(µ, ν), is always nonnegative, i.e., Q(µ, ν) is always a lower bound

to the global minimum f∗.

Despite the optimization problem(3.48) being non-convex, we have found empirically

that there exist a significant number of cases where the duality gap is zero.8 To exploit this

fact, we consider a stationary point of the SD-WLS problem, which is also a stationary point

of (3.48). We then compute the Lagrange multipliers µ, ν corresponding to this stationary

point using (3.57), and evaluate the dual function Q for this particular choice of µ, ν by

following the process described above. Note that at the solution of this process, the optimal

points p∗, q̄∗, r∗, s∗ that achieve Q(µ, ν) (i.e., the global minimum of LLag) do not have to

be the same as the values of these variables at the stationary point of the SD-WLS problem

under consideration9. If, however, they do coincide, and the cost function value of (3.48)

equals that of Q(µ, ν), we have a certificate of global optimality for the stationary point

under consideration. The total cost of computing the certificate comprises the cost for

finding the stationary point (e.g., by solving minimal problems and subsequent iterative

SD-WLS refinement using Gauss-Newton), the cost to compute corresponding values of

r, s,µ, and ν (see (3.57)), as well as the cost for solving the minimization problem (3.59) to

compute Q(µ, ν). The total cost will be at least one order of magnitude lower than solving

the SOS relaxation problem. Hence, this process can be used as a fast “pre-screening” step

before SOS relaxation. Notice that a candidate stationary point that fails the above process

cannot be ruled out as the global optimum. In the event that the stationary point cannot be

certified using Lagrange relaxation, one will have to fall back to the SOS relaxation method

described in chapter 3.5.2.

Alternatively, one could solve the actual dual problem, that is, to maximize Q(µ, ν)

with respect to the Lagrangian multipliers, which is a concave (but usually discontinuous)

optimization problem, without need of a candidate stationary point. To this end, we have

investigated the subgradient and cutting plane methods [12]. The cutting plane method

usually converges within about 50 iterations, but may not produce a usable approximation

8The conditions under which the duality gap is zero are subject of ongoing research.
9The original stationary point fulfilling (3.25) will be among the solution set, since it also fulfills (3.53).

However, there may be other stationary points in the solution set resulting in lower values of LLag.
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to the primal optimal solution if the duality gap is non-zero. The total cost, however,

starts to be comparable to that of SOS relaxation, which in our experiments has always

provided the global optimum and is hence the preferred approach. Notice that the process

of computing µ∗ and ν∗ at the candidate SD-WLS stationary point described above serves

to provide a good initial guess for the optimal solution of the dual problem. In principle, if

the duality gap is indeed zero, maximizing the (concave) dual function Q(µ, ν) with respect

to the Lagrange multipliers µ and ν will converge to the solution µ∗ and ν∗ at the global

SD-WLS optimum even without special initialization. However, this process takes about

as long as solving the SOS relaxation, but at the same time runs the risk of encountering

a case with nonzero duality gap and hence not being able to provide a certificate of global

optimality.

Algorithm 1 Certify global optimality of stationary point using Lagrange relaxation.

Require: Stationary point p∗, q̄∗, λ∗ of SD-WLS problem (3.23)
Ensure: Certificate of global optimality or FAIL

r∗ ← C(q̄∗)Tp∗

s∗ ← p∗Tp∗

Compute µ∗, ν∗ using (3.57)
Compute

[
pT rT s

]
as a function of q̄ using (3.62)

Substitute above into [(3.61b), (3.61c)] and solve for q̄, λ (80 solutions)
Backsubstitute solutions for q̄, λ into expression for

[
pT rT s

]
Evaluate (3.60) on all 80 stationary points, retain the one with lowest cost function value
as dual function value Q(µ∗, ν∗).
if Q(µ∗, ν∗) = Lrs(p∗, q̄∗, λ∗, r∗, s∗,µ∗, ν∗) then

return Global optimality certified
else

return FAIL (proceed with SOS relaxation)
end if

3.6 Simulation results

We compared the performance of the WLS, the SD-WLS, and the deterministic algorithms

of [133, 122] for the overdetermined case where N = 5 (N = 10) noisy (but outlier-free)

measurements are available. Specifically, we conducted Monte Carlo simulations using mea-

surement noise with diagonal covariance matrix R = σ2
dI for different values of σd, and 1000

trials per setting. The trajectories were chosen so that the robot-to-robot distances var-

ied randomly between 1-2 m, and the displacement between measurements varied between

3-6 m. The parameters z′i and R′ were determined based on the approximations (3.29)

and (3.30).

42



10
−3

10
−2

10
−1

10
−3

10
−2

10
−1

10
0

σ
d
 (m)

P
o

s
it
io

n
 e

rr
o

r 
||
d

p
||
 (

m
) Deterministic

SD−WLS

WLS

(a)

10
−3

10
−2

10
−1

10
−6

10
−4

10
−2

10
0

σ
d
 (m)

||
p
(⋅

)−
p
(W

L
S

)|
| 
(m

)

Deterministic

SD−WLS

(b)

10
−3

10
−2

10
−1

10
−4

10
−3

10
−2

10
−1

σ
d
 (m)

O
ri
e
n
ta

ti
o
n
 e

rr
o
r 

|d
φ
| 
(r

a
d
) Deterministic

SD−WLS

WLS

(c)

10
−3

10
−2

10
−1

10
−8

10
−6

10
−4

10
−2

10
0

σ
d
 (m)

|φ
(⋅

)−
φ
(W

L
S

)|
 (

ra
d
)

Deterministic

SD−WLS

(d)

Figure 3.3: 2-D simulation results from 1000 trials for each noise setting, comparing WLS,
SD-WLS and the linear algorithm of [133] (stand-alone), using 5 distance measurements
corrupted by zero-mean Gaussian measurement noise with covariance R = σ2

dI. Plotted
are the median and the 25% and 75% quantiles. The accuracy of the WLS and the SD-
WLS formulation is almost identical, and higher than that of the linear method by a nearly
constant factor. The SD-WLS solution is close to that of WLS particularly for small noise
values. (a) Norm of position error with respect to ground truth. (b) Difference in position
with respect to WLS estimate. (c) Orientation error with respect to ground truth. (d)
Difference in orientation with respect to WLS estimate.
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3.6.1 2-D case

For 2-D, the results are shown in Fig. 3.3. As evident, SD-WLS consistently and significantly

outperforms the deterministic algorithm (stand-alone). From the doubly logarithmic plot

one can deduce that the median position error of the linear algorithm in [133] with respect

to the true solution is approximately twice as large as the WLS and the SD-WLS error,

and the orientation error approximately 3.5 times as large, independent of the measurement

noise standard deviation. Even more remarkable is the fact that the performance of the

SD-WLS is virtually indistinguishable from that of WLS, despite it not being optimal in

the maximum likelihood sense (due to the approximation of chapter 3.4.1). The errors for

all algorithms grow approximately linearly with increasing noise standard deviation, with a

higher growth rate for the deterministic method than for WLS and SD-WLS. SD-WLS and

WLS achieve approximately the same percentage of inconsistent estimates (i.e., estimation

error > 3σ, see Fig. 3.4(b)). Note that WLS here refers to the global optimum of (3.20),

which we were able to compute exactly due to the small number of measurements.

In addition to the stand-alone output of the linear and SD-WLS algorithms, we have

also investigated the performance of Levenberg-Marquardt-based i-WLS using the outputs

of the deterministic and the SD-WLS algorithms, and even ground truth as initialization

points. The latter is of course not available in real applications, but serves as comparison

for best possible initialization. The results shown in Fig. 3.4 confirm that SD-WLS-based

initialization outperforms deterministic initialization in terms of required iterations and

number of inconsistent estimates. Furthermore, initializing i-WLS with the result of the

deterministic method can indeed lead to convergence to a local minimum, as illustrated in

Fig. 3.4(c). A more surprising result is the fact that SD-WLS initialization even outperforms

initialization with ground truth in terms of required iterations and in terms of achieving the

global WLS optimum. In fact, in the presence of large noise, the ground truth might not

reside within the basin of attraction of the global WLS optimum, that is, even initialization

of i-WLS with the ground truth might result in a local minimum. However, Fig. 3.4(b) also

shows that achieving the global optimum does not necessarily imply a consistent estimate.

3.6.2 3-D case

The results shown in Fig. 3.5 for the 3-D case using 10 measurements are very similar. The

improvement over the linear method is even more pronounced than in 2-D, with the error of

the deterministic method being up to 6 times larger than that of SD-WLS for position, and

up to 50 times for orientation. We attribute that to the increased number of variables and

increased degree of the polynomial system. We have observed that increasing the number

of measurements improves the performance of the deterministic method noticeably (see

Fig. 3.6), but it remains greatly inferior to SD-WLS.

Note that unlike the 2-D case, we were unable to compute the certified global optimum

of WLS for this set of simulations. What is referred to as WLS here is therefore based on
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Figure 3.4: 2-D: Comparison of Levenberg-Marquardt-based i-WLS initialized with the
result of the linear algorithm of [133], with the result of SD-WLS, and with ground truth.
(a) Number of iterations to convergence (median and 25% / 75% quantiles). (b) Percentage
of inconsistent cases (error > 3σ). (c) Percentage of cases where i-WLS does not reach the
global optimum, depending on the method of initialization.

45



the relative pose estimate with lowest WLS cost function value, chosen from the results of

i-WLS initialized with ground truth, linear algorithm, or SD-WLS, respectively, which we

hope is a reasonably good approximation of the true global optimum.

Figure 3.7 shows the comparison of i-WLS initialized with the solution from SD-WLS,

the linear method, and with ground truth. Again, initialization with SD-WLS requires

the smallest number of iterations (with lowest variability) in the Levenberg-Marquardt i-

WLS optimization, and also results in considerably fewer inconsistent estimates than i-WLS

initialized with the linear method.

Figure 3.7(c) shows the percentage of cases where i-WLS does not converge to the (ap-

proximate) global optimum. As in 2-D, we observe cases where i-WLS initialized with

ground truth fails to reach the global optimum, especially for large noise variance. Ini-

tializing i-WLS with the results from the linear algorithm results in a local optimum in

a significant percentage of cases (up to 10%, and more often than in 2-D), even for low

measurement noise standard deviation. If a solution has converged to a local optimum, the

median difference of the cost function value to the (approximate) global optimum is 46.3

(2,756%) if initialized using the linear method, 0.92 (55%) if initialized with ground truth,

and 0.05 (4.2%) if initialized with SD-WLS, which again shows that the linear method can

sometimes yield unusable estimates far from the optimal solution. The median distance

between a locally optimal and (approximately) globally optimal relative position estimate

is 0.99 m (linear initialization), 0.74 m (initialization with ground truth) and 0.24 m (ini-

tialization with SD-WLS). Given that the relative distance between the robots was only

between 1 m and 2 m, these errors are significant for all methods, and indicate that the

local optima can be physically far from each other and from the global optimum.

Figure 3.8 depicts the percentage of problem instances for which SD-WLS optimality

can be certified using the method of Lagrange relaxation described in chapter 3.5.3. Notice

that for 12 measurements, 99% of cases can be certified efficiently, but even for 10 mea-

surements, Lagrange relaxation certifies 42% of problem instances. Therefore, in particular

with growing number of measurements, checking optimality using Lagrange relaxation be-

fore resorting to SOS relaxation can lead to significant savings of time and computation.

Note that Figure 3.8 shows the percentage for very small distance measurement noise. We

have observed that the curve flattens slightly with increasing measurement noise, with a

minimum of approximately 65% of cases certified for 12 measurements with σd = 0.1 m,

which is still considerable.

The simulation results demonstrate the superiority of SD-WLS over the deterministic

algorithms, both if used stand-alone and with i-WLS refinement. However, we also note

that the computational complexity of the deterministic solvers and Levenberg-Marquardt

i-WLS is significantly lower than the SD-WLS solution methods presented in this chapter.

Our simulation results are intended to provide decision guidelines for the tradeoffs between

accuracy and computation requirements, which are usually application dependent.
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Figure 3.5: 3-D Simulation results from 1000 trials for each noise setting, comparing WLS,
SD-WLS and the linear algorithm of [122], using 10 distance measurements corrupted by
zero-mean Gaussian measurement noise with covariance R = σ2

dI. Plotted are the median
and the 25% and 75% quantiles. The accuracy of the WLS and the SD-WLS formulation
is almost identical, and higher than that of the linear method by a constant factor. The
SD-WLS solution is close to that of WLS particularly for small noise values. (a) Norm
of position error with respect to ground truth. (b) Difference in position with respect to
WLS. (c) Orientation error with respect to ground truth. (d) Difference in orientation with
respect to WLS.
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Figure 3.6: 3-D: Median position error and 25% and 75% quantiles for σd = 0.013 m as
a function of the number of measurements. WLS (dashed line) and SD-WLS (solid line)
show indistinguishable performance that decreases monotonically with increasing number of
measurements. The deterministic algorithm of [122] (dash-dotted line) also benefits from an
increased number of measurements, but exhibits considerably larger errors and variability.

3.7 Experimental results

In addition to simulations, we have tested the distance-based relative pose estimation algo-

rithms in 2-D and 3-D in two real-world experiments. The 2-D experiment was carried out

using two Pioneer-II robots, with ground truth established by a calibrated overhead camera.

In the 3-D experiment we performed extrinsic calibration of two Scorbot ER-VII manipu-

lator arms instead of mobile robots, in order to obtain reliable ground truth. The results

clearly demonstrate the ability of the proposed algorithms to provide accurate estimates in

realistic applications.

3.7.1 2-D case: Extrinsic calibration of two Pioneer-II robots

The 2-D experiment was carried out using two Pioneer-II robots moving randomly in an area

of 4 m × 5 m (see Fig. 3.9(a)). Each robot estimated its position from 10 Hz wheel odometry,

using a differential drive kinematic model with noisy wheel velocity measurements having

standard deviation of σv = 8 mm/s. The ground truth was established from observations

using a calibrated ceiling-mounted camera. These data also provided synthetic relative

distance measurements by adding white, zero-mean Gaussian noise with standard deviation

σd = 0.05 m.

We compared the estimates of the initial relative pose obtained using the SD-WLS, the

linear algorithm with 5 measurements, and the i-WLS initialized with SD-WLS. For the SD-

WLS solution we processed two iterations. The first accounted only for noise in the distance

measurements, and its optimum was used as linearization point for the Jacobians with

respect to the robot positions, in order to correctly account for uncertainty due to odometry

in the second iteration (see chapter 3.4.2). The results in Fig. 3.9(b) show that SD-WLS
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Figure 3.7: 3-D: Comparison of i-WLS initialized with the result of the linear algorithm
of [118], that of SD-WLS, and with ground truth. (a) Number of iterations to convergence
(median and 25% / 75% quantiles). (b) Percentage of inconsistent cases (error > 3σ).
(c) Percentage of cases where i-WLS does not reach the global optimum, depending on the
method of initialization.
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as a function of the number of measurements, for σd = 0.001m.

is significantly more accurate than the linear method. Notice that the accuracy is almost

independent of the number of measurements, since the growing position uncertainty due to

integrated odometry errors cancels gains from processing additional distance measurements.

The errors after i-WLS refinement are in the order of 10 cm for relative position and 3 degrees

for relative orientation.

3.7.2 3-D case: Extrinsic calibration of two Scorbot ER-VII manipulators

For the 3-D experiment, we computed the relative pose between the base frames of two

Scorbot ER-VII manipulator arms mounted on two tables (see Fig. 3.10). For this purpose,

we moved the manipulator tips to 12 random positions, and manually measured the distance

between them using a measuring tape. The position of the tips, i.e., the values of ui and vi,

were determined from the encoder readings and the robot forward kinematics. We assumed

the measurement uncertainty as σd = 3 mm, which accounted for measurement errors, as

well as for inaccuracies in the manipulator intrinsic calibration.

To establish ground truth, we operated under the assumption that the robots’ z-axes

were aligned, and perpendicular to the table surfaces. As a result, the true relative roll and

pitch angles are assumed to be zero. Also, the true difference in height can be determined

by measuring the vertical distance between the table surfaces, and by reading off the z-

coordinate of the table surface from the gripper position when it is touching the table top.

The remaining degrees of freedom, i.e., the true relative position in x and y, as well as

the yaw angle, were measured using a 2-D Sick-LMS laser scanner. The laser scan plane

intersected the cylindrical robot base, as well as two flat panels attached to the robots’ arms

when they were moved to their home positions aligned with the robots’ x-axes. The vector

connecting the centers of two circles fitted to the reflections of the robots’ bases provided

the relative position p between the robots’ base frames, expressed in the laser frame. Two

lines fitted to the panel reflections provided the direction of the robots’ x-axes in the laser

frame. Together with the assumption that both robots’ z-axes were aligned with the laser
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Figure 3.9: Experiment with two Pioneer robots equipped with markers for optical tracking
using an overhead camera. (a) The camera images provided ground truth for relative pose,
and served to create 7 synthetic relative distance measurements at the marked points (for
clarity, only the first two measurements are drawn as dotted lines). (b) Error in relative
pose as a function of the number of measurements. Shown are i-WLS refinement of SD-
WLS (blue x) and corresponding 3σ-bounds (red +), as well as the output of pure SD-WLS
(magenta square) and the linear algorithm (black star, for 5 measurements only).

z-axis, this completely determined the orientation of the robots’ base frames with respect

to the laser frame. This in turn allowed computing the true yaw angle, and the ground

truth value of p expressed in either manipulator’s frame.10

We have compared the ground truth with the results of the linear algorithm [118] with 10-

12 measurements, SD-WLS, and of i-WLS initialized with SD-WLS (see Fig. 3.11). Clearly,

the results from SD-WLS and i-WLS are almost indistinguishable, which was expected due

to the small measurement noise variance. The large errors incurred by the linear algorithm

using 10 and 11 measurements demonstrate the possibly large errors of deterministic algo-

rithms when faced with noisy measurements, even in relatively low noise settings. However,

notice that using 12 measurements, the linear algorithm yields a relatively accurate solution,

even though it is still clearly outperformed by the least squares approaches.

The accuracy achieved with 12 distance measurements is in the order of 3 cm for position,

and 2.1 deg for orientation (3σ). The residuals between measured and expected distances

for the least squares solution with 12 measurements are less than 3.5 mm, indicating a

very precise fit. Contrasting this to the relatively large uncertainty in the final calibration

confirms the relatively low information content of distance measurements for the purpose of

relative pose estimation, as compared, e.g., to relative distance and bearing. An important

10As evident from the description, the process to obtain ground truth is rather tedious, and does not
provide an easy mechanism to accurately compute all rotational degrees of freedom for general configurations.
This should be contrasted to the easy process of obtaining distance measurements between the tool tips,
which lends itself to automation.
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Figure 3.10: Experiment to determine the relative pose between the base frames of two
Scorbot ER-VII manipulators. Distance between the gripper tips was measured manually
using a measuring tape.

topic of ongoing research is the impact of measurement geometry on the estimation accuracy

(similar to geometric dilution of precision (GDOP) in GPS), and the problem of determining

the optimal gripper locations to obtain the most informative distance measurements.

3.8 Summary

In this chapter, we have presented methods to estimate the relative pose between two robots

based on robot-to-robot distance measurements and knowledge of the robots’ egomotion,

both in 2-D and in 3-D. In particular, we have proposed to directly determine the global

optimum of the corresponding WLS problem by finding all stationary points as the roots

of a square multivariate polynomial system. We have shown how to construct this poly-

nomial system for the WLS of the original problem, which is also the MLE for distance

measurements corrupted by Gaussian noise. The complexity of solving this system was

shown to scale very poorly, since the number of variables grows with the number of mea-

surements. On the other hand, the alternative SD-WLS formulation, using squared distance

measurements, was shown to have constant solution complexity, independent of the number

of measurements or the structure of the covariance matrix. In 2-D, solving the problem is

carried out very efficiently using recent hybrid algebraic-numeric techniques to solve mul-

tivariate polynomial systems based on the eigendecomposition of a generalized companion

matrix [117]. In 3-D, we have presented SOS- and Lagrange relaxations to efficiently solve
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Figure 3.11: Extrinsic calibration of two Scorbot ER-VII manipulators. (a) Error in relative
position as a function of the number of measurements. Shown are i-WLS refinement of SD-
WLS (blue x) and corresponding 3σ-bounds (red +), as well as the output of pure SD-WLS
(magenta square) and the deterministic algorithm [118] (black stars, for 10-12 measurements
only). (b) Error in relative orientation.

the SD-WLS problem. Despite its name, SOS relaxation is able to find and certify the

globally optimal solution to the SD-WLS problem. Lagrange relaxation was presented as

a fast, alternative method to certify global SD-WLS optimality of a candidate stationary

point. Simulation results showed zero duality gap for a significant percentage of problem

instances, rapidly growing with increasing number of measurements. Despite losing opti-

mality in the MLE sense, the SD-WLS method performed almost indistinguishably from the

WLS estimator in simulation, and was shown to be far more accurate than the deterministic

methods presented in [133] and [118], over a wide range of noise levels.

In a broader context, the research presented in this chapter demonstrates that the newly

available tools for polynomial-system solving allow moving towards global optimization, if

the cost function and the first-order optimality conditions can be transformed into poly-

nomial form. The latter is often the case for geometric problems in robotics (kinematics)

and computer vision. Moreover, we have provided a concrete application example (i.e.,

robot-to-robot extrinsic calibration) for which we showed that for overdetermined systems,

combining polynomial constraints in a WLS formulation is far more accurate than solving

the non-square system of polynomial constraints deterministically.
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Chapter 4

Cooperative Localization under

Communication Constraints

While the previous chapter has presented a method to initialize CL, this chapter will focus

on the joint estimation task of CL itself once initialization is complete. In particular, we

will concentrate on CL when communication bandwidth is severely limited and fluctuating.

To adapt to these communication constraints, we propose to use quantized measurements

in the estimation process. To this end, this chapter will describe existing MMSE and novel

MAP estimators to estimate dynamic random processes using quantized measurements, and

apply them to the problem of CL. Part of this chapter has been published in a conference

paper [121].

4.1 Introduction

Networks of mobile robots have recently been proposed for tasks such as aerial surveil-

lance [9], search and rescue operations [114], underwater- [17] or even space exploration [55].

For any robotic task, accurate localization, i.e., determining the position and orientation

(pose) of each robot, is a fundamental requirement. In contrast to the simple solution of

localizing each robot in a team independently, Cooperative Localization (CL) [99, 44, 103]

incorporates robot-to-robot observations and jointly estimates all robots’ poses, which sig-

nificantly improves localization accuracy for all team members [79]. Unfortunately, this

benefit comes at the cost of increased computation and communication.

Recent research has focussed primarily on reducing the computational requirements of

CL (e.g., [88, 53, 74, 83]). However, also the communication requirements of CL are sub-

stantial, since, depending on the approach, either measurements from both proprioceptive

and exteroceptive sensors, or state estimates and covariance matrices have to be exchanged.

Communicating all these quantities might be infeasible if the robots are subject to com-

munication constraints due to (i) the nature of the operational environment (e.g., limited
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Figure 4.1: Multi-centralized, Cooperative Localization using quantized measurements with
two robots. At every time step k, each robot i quantizes its measurements (e.g., linear and
rotational velocity, robot-to-robot distance and bearing) and broadcasts the resulting bit
sequences, bik, to its partner. Every robot computes the same estimate, x̂0:k|0:k, of the pose
of the entire team, based on all quantized measurements available up to time step k, as
well as on shared knowledge of system- and measurement models and their associated noise
characteristics.

bandwidth caused by strong signal attenuation and distortion underwater or underground),

(ii) the specific application domain (e.g., stealth requirements in military operations), or

(iii) economic motivations (e.g., in order to extend the operational life-span through lower

power consumption resulting from reduced data transmissions).

In this chapter, we investigate algorithms that can perform CL with significantly reduced

communication, by transmitting (severely) quantized instead of real-valued sensor observa-

tions. For this purpose, we present a minimum mean square error (MMSE) filter [81] and

derive a new maximum a posteriori (MAP) batch estimator specifically designed for dynamic

random process estimation with quantized observations. We show that, despite significantly

reduced communication requirements, their performance in CL comes very close to that of

real-valued estimators. In particular, we propose a “multi-centralized” system (cf. Fig. 4.1),

where each robot executes the exact same estimation algorithm, and broadcasts its quan-

tized observations to all other robots. Combined with the shared knowledge of system- and

sensor models, all robots are able to compute identical quantization thresholds and identical
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joint state estimates.

The contributions of this chapter are threefold: (i) we develop for the first time single-

and multi-bit MAP estimators for estimation of random processes with quantized observa-

tions, (ii) we develop optimal threshold selection and bit allocation schemes for time-varying

bandwidth, and (iii) we apply quantized filter and MAP algorithms as a novel solution to

the problem of multi-robot Cooperative Localization under communication constraints.

4.2 MMSE estimation

Let us assume a discrete-time, linear dynamic system with Mk scalar measurements per

time step

xk = Fk−1xk−1 + Gk−1wk−1, x0 ∼ N (x0; xini,P0) (4.1)

zkm = hTkmxk + vkm, m = 1, . . . ,Mk (4.2)

with zero-mean, white Gaussian, uncorrelated system and measurement noise with covari-

ance

E[wkw
T
l ] = δklQk, E[vkmvln] = δkm,lnσ

2
km (4.3)

where δkl is the Kronecker delta (δkl = 1 if k = l, else δkl = 0). Following the discussion in

chapter 3, we will assume that initialization has been completed, and the initial estimate,

xini, and its covariance, P0, are known (see chapter 3.4.3).

Notice that in this formulation the only control input is system noise. Usually in mobile

robotics, the system dynamics are given by a kinematic model, with linear and rotational

velocity and/or acceleration measurements acting as control input. Here, we assume in-

stead a statistical motion model (e.g., zero acceleration driven by white noise [8]), allowing

us to include the control variables (e.g., linear and rotational velocities) in the state vec-

tor. As a consequence, measurements from proprioceptive and exteroceptive sensors can be

treated identically. Notice further that this formulation also allows vector-valued measure-

ments, since these can be decomposed into several scalar measurements after appropriate

pre-whitening. Finally, we note that the linear formulation (4.1)-(4.3) is used for ease of

presentation. Later on, we will use linearization to accommodate the nonlinear system and

measurement models prevalent in robotics.

4.2.1 Kalman filter

It is well known that the optimal MMSE estimate of the state xk given all measurements

up to time step k (denoted as x̂k|k and z0:k, respectively) is the conditional mean of the

56



posterior pdf p[xk|z0:k]

x̂k|k := E[xk|z0:k] =

∞∫
−∞

xkp[xk|z0:k]dxk (4.4)

For a linear system with Gaussian noise, both the prior and the posterior pdf are Gaus-

sian, and hence are completely characterized by their mean and covariance. Both moments

of the pdf are computed by the regular Kalman filter, described in Algorithm 2. Notice

that the state update requires knowledge of the (real-valued) measurement zkm.

Algorithm 2 Kalman filter

1: KF Propagation

x̂k|k−1 = Fk−1x̂k−1|k−1

Pk|k−1 = Fk−1Pk−1|k−1F
T
k−1 + Gk−1Qk−1G

T
k−1

2: KF Measurement Update, m = 1, . . . ,Mk

x̂k|k,m = x̂k|k,m−1 +
Pk|k,m−1hkm

hTkmPk|k,m−1hkm + σ2
km

(zkm − hTkmx̂k|k,m−1)

Pk|k,m = Pk|k,m−1 −
Pk|k,m−1hkmhTkmPk|k,m−1

hTkmPk|k,m−1hkm + σ2
km

x̂k|k,0 := x̂k|k−1, x̂k|k := x̂k|k,Mk
, Pk|k,0 := Pk|k−1, Pk|k := Pk|k,Mk

4.2.2 Single- and multi-bit Kalman filter (SOI-KF and IQKF)

Assume now, that due to communication constraints we cannot afford to transmit the entire

measurement zkm, but only a quantized version bkm. Further, assume that each robot can

broadcast its quantized measurements to all other robots (i.e., by transmitting at a fixed

frequency, or in a round-robin fashion), and that error-correcting codes ensure error-free

transmission1. Finally, assume known system-, measurement-, and noise models, and a

commonly shared state estimate throughout the entire network. The last assumption is

guaranteed (after appropriate initialization) by requiring each member of the network to

execute the same estimation algorithm using the same quantized observations (a process

we refer to as “multi-centralized” estimation). As a result, every robot is able to reproduce

the quantization thresholds used by the other robots, since they are uniquely determined

based on the shared estimate [102].

The quantization of the measurements introduces nonlinearity into the system, causing

the Gaussianity of the posterior pdf to break down, even when the prior pdf is Gaussian

1The specific design of the scheduling and routing algorithms is beyond the scope of this work.
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Algorithm 3 SOI-KF

1: SOI-KF Propagation ≡ KF Propagation (cf. Alg. 2)
2: SOI-KF Quantization Rule

bkm =

{
+1 if zkm − hTkmx̂k|k,m−1 > 0

−1 otherwise

3: SOI-KF Measurement Update, m = 1, . . . ,Mk

x̂k|k,m = x̂k|k,m−1 +

√
2

π

Pk|k,m−1hkm√
hTkmPk|k,m−1hkm + σ2

km

bkm

Pk|k,m = Pk|k,m−1 − (2/π)
Pk|k,m−1hkmhTkmPk|k,m−1

hTkmPk|k,m−1hkm + σ2
km

x̂k|k,0 := x̂k|k−1, x̂k|k := x̂k|k,Mk
, Pk|k,0 := Pk|k−1, Pk|k := Pk|k,Mk

and both system- and measurement models are linear. As a result, exact MMSE estimation

becomes, in general, intractable. However, if the quantized measurement is chosen as the

sign of the innovation, and at each time step the posterior pdf p[xk|b0:k] is approximated

as Gaussian with mean x̂k|k and covariance Pk|k, then, as shown in [102], the resulting

SOI-KF estimator (cf. Algorithm 3) has a form very similar to the KF. Remarkably, one

can show that in a continuous-time formulation, the performance (in terms of MSE) of the

SOI-KF is the same as that of a real-valued KF with π/2 times larger measurement noise

variance [102]. In other words, by transmitting only a single bit instead of a real-valued

scalar, one still achieves about 64% of the performance of the regular KF.

More recent work [81] has shown that similar results hold for quantization with more

than one bit per measurement. Specifically, the SOI-KF measurement update shown in

Algorithm 3 can be repeated for each bit in an iterative fashion, leading to the iteratively

quantized KF, or IQKF. The performance is shown to improve with the number of bits,

and even for as little as 4 bits, it reaches 98% of the performance of the real-valued KF.2

4.3 MAP estimation

Notice that neither SOI-KF nor IQKF are exact, since they approximate the (non-Gaussian)

posterior pdf by a Gaussian at every step. For nonlinear systems, the additional linearization

of system- and/or measurement model in the EKF (or, analogously, in the SOI-EKF [102]

or IQEKF [81]) will only exacerbate this problem, and may lead over time to filter in-

consistency. To overcome these limitations, in this section we investigate real-valued and

2In order to properly account for correlations, the state has to be augmented with the measurement noise
in this case. For further details, we refer the interested reader to [81].
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quantized batch MAP estimation. We expect the smoothing effect of batch estimation to

mitigate errors arising from linearization and Gaussian approximation.

A batch MAP estimate is the best estimate of the entire state history (denoted as x0:K)

given all measurements up to time K (denoted as z0:K). Contrary to the MMSE, which is

the mean of the posterior pdf, the MAP estimate is given by its mode. Using Bayes’ rule

and the Markov property of the dynamic system, we can write the batch MAP estimate as

x̂0:K|0:K = arg max p(x0:K |z0:K)

= arg max
1

p(z0:K)
p(z0:K |x0:K)p(x0:K)

= arg max
K∏
k=0

Mk∏
m=1

p(zkm|xk)
K−1∏
k=0

p(xk+1|xk) · p(x0)

= arg min
(
−

K∑
k=0

Mk∑
m=1

log p(zkm|xk)−
K−1∑
k=0

log p(xk+1|xk)− log p(x0)
)

(4.5)

For the linear system with Gaussian noise (4.1)-(4.3), the conditional pdfs in (4.5) are

also Gaussian, and their logarithm is a quadratic form (up to a constant), so that the

MAP estimate can be formulated as a standard weighted Least Squares (WLS) problem

(see Sec. 4.3.3).

4.3.1 Single-bit quantized MAP estimation (QMAP)

The situation becomes significantly more challenging when replacing real-valued by quan-

tized measurements. For illustrative purposes, we first analyze the case where each mea-

surement is quantized with exactly one bit. Similarly to the SOI-KF, we will compute the

quantized measurement using as threshold, τkm, the expected measurement based on the

current MAP estimate, which is the optimal choice as shown later in Lemma 2.

QMAP Quantization Rule:

bkm =

+1 if zkm − τkm > 0

−1 otherwise
(4.6)

where τkm = hTkmx̂k|0:k,m−1

For computing the posterior pdf and the MAP estimate as in (4.5), we will have to

determine the quantized measurement likelihoods p(bkm|xk) instead of p(zkm|xk). Due

to the assumption of Gaussian measurement noise, we can compute these measurement
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likelihoods in terms of the Gaussian tail probability or Q-function (see Appendix A.1) as

p(bkm|xk) = Q

(
bkm(τkm − hTkmxk)

σkm

)
(4.7)

since p(bkm = 1 |xk) = Pr {zkm − τkm > 0 |xk}
= Pr

{
vkm > τkm − hTkmxk |xk

}
and similarly for p(bkm = −1 |xk). We are now ready to state the main result for the

single-bit quantized MAP in the following proposition:

Proposition 2 (Single-Bit Quantized MAP (QMAP)). Assume the linear model of (4.1)-

(4.3). If a single bit is allocated per measurement, with a quantization rule as in (4.6), the

posterior pdf is given by

p(x0:K |b0:K)

=
1

p(b0:K)

K∏
k=0

Mk∏
m=1

p(bkm|xk)
K−1∏
k=0

p(xk+1|xk) · p(x0)

∝
K∏
k=0

Mk∏
m=1

Q

(
bkm(τkm − hTkmxk)

σkm

)K−1∏
k=0

N (xk+1; Fkxk,GkQkG
T
k ) · N (x0; xini,P0) (4.8)

The proposition makes again use of Bayes’ rule and the Markov property of the system,

just as in the derivation of (4.5), with the important difference of using the quantized

instead of the analog (Gaussian) measurement likelihood.

The following Lemma is an important consequence of this proposition:

Lemma 1. The posterior pdf of the QMAP given in (4.8) is log-concave in x.

Proof. The lemma follows from the facts that the Gaussian pdf is log-concave [14], integrals

of log-concave pdfs over convex sets are log-concave [95], hence making p(bkm|xk) log-

concave, and log-concavity is closed under multiplication [14].

Log-concavity ensures that the MAP estimate is unique for every choice of τkm and

can be found using efficient convex optimization techniques [14], which are guaranteed to

converge to the global optimum.

Fig. 4.2 illustrates the difference between real-valued and QMAP estimation for a simple

case of a scalar prior, and a single, scalar measurement. Note that while the real-valued

posterior is Gaussian, the quantized posterior is skewed and heavy-tailed. However, its

log-concavity ensures that the MAP estimate is unique and can be computed efficiently.

The following lemma states that for the case of a Gaussian prior and scalar measurement,

quantized by a single bit, choosing the quantization threshold τkm as the expected value of

the measurement is not only optimal for MMSE [102], but also for MAP estimation.
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(a) Pdfs for real-valued estimation, and the corresponding MAP estimate x̂r.
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Figure 4.2: Comparison of real-valued and quantized measurement-based posterior pdfs for
scalar prior and one scalar measurement z = x+ v, x ∼ N (x; 5, 1), v ∼ N (v; 0, 0.3), for the
realization z = 4.2 quantized with a single bit at the threshold τ = xini = 5. The posterior
for the quantized measurement is skewed and heavy-tailed, compared to the real-valued
(Gaussian) posterior.
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Lemma 2. Assume the linear model of (4.1)-(4.3). If a single bit is allocated per measure-

ment, with a quantization rule as in (4.6), this choice of quantization threshold minimizes

the Bayesian “hit-or-miss” risk function used in MAP estimation.

Proof. See Appendix A.2

4.3.2 Multi-bit iteratively quantized MAP estimation (IQMAP)

In case multiple bits are available for quantizing a particular measurement, we require an

iterative, multi-bit quantization scheme with adaptive quantization thresholds. For this

purpose, we define the following quantization rule to determine the ith bit allocated to

measurement zkm.

IQMAP Quantization rule:

bkm,i =

+1 if zkm − τkm,i > 0, i = 1, . . . , I

−1 otherwise
(4.9)

We will address how to choose τkm,i momentarily.

The idea behind this approach is to define an interval containing zkm and iteratively

reduce its size. Before receiving the first bit, the measurement zkm is known trivially

to lie in the interval −∞ < zkm < ∞. When the first bit arrives, e.g., bkm,1 = 1,

we can update this interval to be τkm,1 < zkm < ∞. After receiving a sequence of bits

bkm =
[
bkm,1 . . . bkm,I

]
, we can establish successively tighter lower and upper bounds,

i.e., τkm,` < zkm ≤ τkm,u, depending on the specific quantization outcomes and thresh-

olds. In this case, the measurement likelihood of the bit sequence bkm can be computed as

p(bkm|xk) = Pr {τkm,` < zkm ≤ τkm,u|xk} = Q
(
τkm,`−hTkmxk

σkm

)
− Q

(
τkm,u−hTkmxk

σkm

)
, leading

to the following proposition:

Proposition 3 (Iteratively quantized MAP (IQMAP)). Consider the linear system (4.1)-

(4.3). If multiple bits are allocated per measurement according to the quantization rule (4.9),

the posterior pdf is given by

p(x0:K |b0:K)

=
1

p(b0:K)

K∏
k=0

Mk∏
m=1

p(bkm|xk)
K−1∏
k=0

p(xk+1|xk) · p(x0) (4.10)

∝
K∏
k=0

Mk∏
m=1

[
Q

(
τkm,` − hTkmxk

σkm

)
−Q

(
τkm,u − hTkmxk

σkm

)]

·
K−1∏
k=0

N (xk+1; Fkxk,GkQkG
T
k ) · N (x0; xini,P0) (4.11)
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Notice that if the measurements are quantized with a single bit, the IQMAP becomes

identical to the QMAP algorithm (see Proposition 2). Following similar arguments as in

the QMAP case, we also have the following lemma:

Lemma 3. The posterior pdf of the IQMAP, given by (4.11), is log-concave.

Proof. We first show that p(bkm|xk) is log-concave. We have

p(bkm|xk) =

τkm,u∫
τkm,l

p(zkm|xk)dzkm , where p(zkm|xk) = N (zkm; hTkmxk, σ
2
km) (4.12)

This is an integration over a convex set of a conditional pdf that is log-concave in both

arguments, zkm and xk. According to [95, p.12] it follows that p(bkm|xk) is also log-

concave. To show that the entire posterior is log-concave, we note that the Gaussian prior

is log-concave, and log-concavity is closed under multiplication.

As for the QMAP, the consequence is that the IQMAP estimate is unique and can be

found efficiently. Recall that these results hold for linear system and measurement models.

Unfortunately, as in real-valued estimation, global log-concavity cannot be guaranteed in

general if IQMAP is applied to systems with nonlinear dynamic- and measurement models.

Fig. 4.3 shows an illustrative example of the effects of iterative quantization of a scalar

measurement with a scalar prior, using one to four bits. The example demonstrates that

both measurement likelihood and posterior pdf using quantized measurements approximate

their counterparts using real-valued measurements increasingly well with growing number

of bits. With as little as four bits, the curves in the two cases are visually almost indistin-

guishable, resulting in nearly identical estimates.

We now address the question of how to successively select new quantization thresholds.

We propose to choose τkm,i so that, given all previous quantized observations, the measure-

ment zkm could lie on each side of the new threshold with equal probability, and hence both

possible realizations of the next bit, bkm,i, are equiprobable.

Proposition 4 (IQMAP Threshold Selection). Assume measurement zkm has been quan-

tized using i− 1 bits, yielding lower and upper thresholds τkm,` and τkm,u. Further, approx-

imate the conditional pdf p(zkm|b0:k) by a Gaussian with mean hTkmx̂k|0:k and covariance

hTkmPk|0:khkm + σ2
km, where x̂k|0:k denotes the current MAP estimate of the state at time

step k conditioned on all quantized observations b0:k, and Pk|0:k its covariance. The new

threshold τkm,i that divides the interval between τkm,` and τkm,u into two equiprobable regions

can then be computed as

τkm,i = hTkmx̂k|0:k +
√

hTkmPk|0:khkm + σ2
kmQ

−1

(
1

2

[
Q
(
τ ′km,`

)
+Q

(
τ ′km,u

)])
(4.13)
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Figure 4.3: Comparison of real-valued and quantized measurement-based posterior pdfs for
scalar prior and one scalar measurement z = x+ v, x ∼ N (x; 5, 1), v ∼ N (v; 0, 0.3), for the
realization z = 4.36 iteratively quantized with one [(a), (b)] up to four bits [(g), (h)]. The
figures on the left show the quantization thresholds along with the measurement probability.
The figures on the right show the prior, the measurement likelihoods, and the posterior pdfs
for quantized and real-valued measurements. Quantization with four bits results in visually
nearly indistinguishable posteriors.
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where τ ′km,∗ :=
τkm,∗−hTkmx̂k|0:k√
hTkmPk|0:khkm+σ2

km

To see this, we utilize the Gaussian approximation of p(zkm|b0:k) to express the proba-

bility that zkm lies on either side of the new threshold in terms of the Q-function. The new

threshold τkm,i should then fulfill

Pr
{
τkm,`<zkm≤τkm,i

∣∣b0:k

}
=Pr

{
τkm,i<zkm≤τkm,u

∣∣b0:k

}
⇔Q

(
τ ′km,`

)
−Q

(
τ ′km,i

)
= Q

(
τ ′km,i

)
−Q

(
τ ′km,u

)
From this, the proposition follows.

The choice of equiprobable quantization is optimal with respect to maximizing the

entropy of the next bit. More formally:

Lemma 4. Consider the linear system (4.1)-(4.3). If multiple bits are allocated per mea-

surement according to the quantization rule (4.9), the choice of quantization threshold τkm,i

according to (4.13) maximizes the entropy of bit bkm,i.

Proof. Consider the definition for the entropy of bit bkm,i

Hbkm,i = −Pr {bkm,i = 1} log(Pr {bkm,i = 1})− Pr {bkm,i = −1} log(Pr {bkm,i = −1})
(4.14)

= −Pr {bkm,i = 1} log(Pr {bkm,i = 1})− (1− Pr {bkm,i = 1} log(1− Pr {bkm,i = 1})
(4.15)

Setting the first derivative with respect to Pr {bkm,i = 1} to zero yields

dHbkm,i

dPr {bkm,i = 1} = − log(Pr {bkm,i = 1}) + log(1− Pr {bkm,i = 1}) = 0 (4.16)

⇒ Pr {bkm,i = 1} = 1− Pr {bkm,i = 1} ⇒ Pr {bkm,i = 1} =
1

2
(4.17)

The second derivative evaluated at this solution is

d2Hbkm,i

dPr {bkm,i = 1}2
∣∣∣∣
Pr{bkm,i=1}= 1

2

= − 1
1
2

− 1

1− 1
2

< 0 (4.18)

proving that equiprobable thresholds indeed maximize the entropy.

Entropy-maximizing thresholds are a robust choice for a quantizer, however, they do

not necessarily guarantee optimality with respect to the MAP Bayes risk function as in the

case of single-bit quantization. Note that neither the QMAP nor the IQMAP threshold

selection schemes (nor MAP estimation in general) are designed to minimize the MSE (as

is the case for the IQEKF). The MAP estimator rather minimizes the “hit-and-miss” Bayes

risk (see Appendix A.2). However, a typical criterion for estimator performance evaluation
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is the Root Mean Square (RMS) error, which is closely related to the MSE. Therefore,

using the RMS as comparative performance metric confers an inherent advantage to the

IQEKF over the IQMAP estimator. Still, the IQMAP has the capability of relinearization

and smoothing, giving it an edge over the filters that can potentially compensate this

shortcoming. If RMS error was the design metric for an application, it is conceivable

to combine the advantages of both estimators, by using the thresholds computed by the

IQEKF, and smooth the estimates over a time window using the IQMAP algorithm, possibly

at a lower frequency to amortize the computations to solve the MAP optimization problem

over several time steps.

4.3.3 Solving the (IQ-)MAP estimation problem

We will now describe how to actually solve the IQMAP optimization problem. To start,

we review how to solve the real-valued MAP estimation problem. We first write (4.5) as a

standard WLS problem

x̂0:K|0:K = arg min

( K∑
k=0

Mk∑
m=1

1

2
‖zkm − hTkmxk‖2σ−2

k

+
K−1∑
k=0

1

2
‖xk+1 − Fkxk‖2(GkQkG

T
k )−1 +

1

2
‖x0 − xini‖2P−1

0

)
. (4.19)

Here, xini and P0 are the initial or prior state estimate for the robot team and its covariance.

The notation ‖x‖W denotes the weighted L2-norm, which can be converted to a regular

L2-norm by pre-whitening

‖x‖W =
√

xTWx = ‖W1/2x‖2 (4.20)

where W1/2 denotes the matrix square-root so that (W1/2)TW1/2 = W.

Following the appropriate pre-whitening step, we can stack the summands of (4.19) to

form a large regular Least Squares system with the closed-form solution given by the normal

equations

x̂0:K|0:K = arg min
1

2
‖Ax0:K − b‖22 (4.21)

= (ATA)−1ATb (4.22)

where A, b are functions of the quantities Fk,Gk,Qk, zkm,hkm, σ
2
k,xini, and P0. The

covariance of this estimate is given by P0:K|0:K = (ATA)−1.

We will solve the WLS problem using QR-decomposition, which according to Golub

and van Loan [35] is numerically more accurate than the method of normal equations for

problems with small residual Ax̂0:K|0:K − b. Let A = QR denote the thin QR decompo-
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Figure 4.4: Measurement matrix, information matrix, and Cholesky factor for 2-D Coop-
erative Localization with 4 robots and 20 time steps. The five banded structures in A
correspond to contributions from initial conditions and stochastic motion model, linear and
rotational velocity measurements, and relative distance and bearing measurements, respec-
tively. All matrices are extremely sparse (1.3%, 5.1%, 5.8% non-zero elements respectively)

sition [35] of A, such that Q is rectangular and has the same dimension as A and R is a

square, upper triangular matrix. Then, ‖Ax0:K − b‖22 = ‖Rx0:K −QTb‖22 + ‖d‖22, where

d is a constant independent of x0:K (d is the projection of b onto the left Nullspace of A),

and we can efficiently compute the WLS estimate by solving Rx̂0:K|0:K = QTb via back-

substitution. The matrix R is the Cholesky factor of the information matrix (the inverse

covariance), hence P = (RTR)−1. Figure 4.4 shows the structure and sparsity patterns of

the measurement matrix A, the information matrix ATA, and the upper triangular matrix

R for a 2-D localization example.

For nonlinear system and/or measurement models, we obtain a nonlinear version of 4.19

x̂0:K|0:K = arg min

( K∑
k=0

Mk∑
m=1

1

2
‖zkm − hkm(xk)‖2σ−2

k

+

K−1∑
k=0

1

2
‖xk+1 − fk(xk)‖2(GkQkG

T
k )−1 +

1

2
‖x0 − xini‖2P−1

0

)
. (4.23)

which we linearize around the current estimate.

The optimization problem is then solved using i-WLS, with the p-th iteration given by

the linearized subproblem

δx∗ = arg min
1

2
‖A(x̂

(p)
0:K|0:K)δx− b(x̂

(p)
0:K|0:K)‖22 (4.24)

x̂
(p+1)
0:K|0:K = x̂

(p)
0:K|0:K + δx∗ (4.25)

The notation is chosen to explicitly indicate the dependence of A and b on the current

linearization point x̂
(p)
0:K|0:K .

In QMAP, (4.8), and IQMAP, (4.11), the measurement likelihoods are not Gaussian,

and hence the above process does not apply directly. The optimization problem to solve is
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(recall (4.8))

x̂0:K|0:K = arg min

( K∑
k=0

Mk∑
m=1

− logQ

(
bkm(τkm − hTkmxk)

σkm

)

+

K−1∑
k=0

1

2
‖xk+1 − Fkxk‖2(GkQkG

T
k )−1 +

1

2
‖x0 − xini‖2P−1

0

)
. (4.26)

Following a sequential quadratic programming strategy, the Newton optimization step can

be cast into a form analogous to i-WLS.

In particular, let ukm =
bkm(τkm−hTkmx̂k|0:K)

σkm
. Then the second-order Taylor series expan-

sion of − log p(bkm|xk) for the QMAP is given by

− logQ

(
bkm(τkm − hTkmxk)

σkm

)
≈ − logQ(ukm)− N (ukm; 0, 1)

Q(ukm)
· bkm
σkm

hTkmδxk

+
1

2σ2
km

−ukmN (ukm; 0, 1) ·Q(ukm) +
(
N (ukm; 0, 1)

)2
Q2(ukm)

δxTk hkmhTkmδxk (4.27)

=
1

2
‖ckm

hTkm
σkm

δxk − dkm‖22 + ekm (4.28)

where we have used the fact that b2km = 1 and denoted

ckm =

√
−ukmN (ukm; 0, 1) ·Q(ukm) +

(
N (ukm; 0, 1)

)2
Q(ukm)

(4.29)

dkm =
bkm · N (ukm; 0, 1)√

−ukmN (ukm; 0, 1) ·Q(ukm) +
(
N (ukm; 0, 1)

)2 (4.30)

and ekm is an additive constant irrelevant for optimization.

Analogously, for the IQMAP the optimization problem becomes (see (4.11))

x̂0:K|0:K = arg min

( K∑
k=0

Mk∑
m=1

− log

[
Q

(
τkm,` − hTkmxk

σkm

)
−Q

(
τkm,u − hTkmxk

σkm

)]

+

K−1∑
k=0

1

2
‖xk+1 − Fkxk‖2(GkQkG

T
k )−1 +

1

2
‖x0 − xini‖2P−1

0

)
. (4.31)

We define ukm =
τkm,u−hTkmx̂k:0:K

σkm
and lkm =

τkm,l−hTkmx̂k:0:K

σkm
, and obtain the following
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Figure 4.5: Comparison of quantized and real-valued measurement likelihood [(a),(d),(g)],
measurement vector scaling factor c [(b),(e),(h)], and residual d [(c),(f),(i)], for τu− τ` = 10
[(a)-(c)], τu − τ` = 4 [(d)-(f)], and τu − τ` = 1 [(g)-(i)], as a function of the normalized

measurement residual z−hTx
σ . The graphs x-axis is the normalized residual z−hTx

σ , with
z = 0 assumed for centering, and σ = 1. Quantized likelihood, measurement vector, and
residual approximate their real-valued counterparts increasingly well as τu − τ` → 0.
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second-order Taylor series expansion of − log p(bkm|xk) for the IQMAP

− log

[
Q

(
τkm,` − hTkmxk

σkm

)
−Q

(
τkm,u − hTkmxk

σkm

)]
≈ − log

[
Q(lkm)−Q(ukm)

]

+
1

σkm

N (ukm; 0, 1)−N (lkm; 0, 1)

Q(lkm)−Q(ukm)
hTδxk

+
1

2σ2
km

((
ukmN (ukm; 0, 1)− lkmN (lkm; 0, 1)

)
·
(
Q (lkm)−Q(ukm)

)
+
(
N (ukm; 0, 1)−N (lkm; 0, 1)

)2
)

1(
Q (lkm)−Q(ukm)

)2δxTk hkmhTkmδxk (4.32)

=
1

2
‖ckm

hTkm
σkm

δxk − dkm‖22 + ekm (4.33)

where

ckm =

((
ukmN (ukm; 0, 1)− lkmN (lkm; 0, 1)

)(
Q(lkm)−Q(ukm)

)

+
(
N (ukm; 0, 1)−N (lkm; 0, 1)

)2
) 1

2

· 1

Q(lkm)−Q(ukm)
(4.34)

dkm = −(N (ukm; 0, 1)−N (lkm; 0, 1))

·
((

ukmN (ukm; 0, 1)− lkmN (lkm; 0, 1)
)(
Q(lkm)−Q(ukm)

)

+
(
N (ukm; 0, 1)−N (lkm; 0, 1)

)2
)− 1

2

(4.35)

and again ekm is an additive constant irrelevant for optimization.

In comparison, in the real-valued case the negative log likelihood is given by

1

2
‖zkm − hTkmxk‖2σ2

km
(4.36)

which, after pre-whitening and second-order Taylor expansion around x̂k:0:K can be written

as

1

2

∥∥∥∥∥hTkm
σkm

δxk −
zkm − hTkmx̂k|0:K

σkm

∥∥∥∥∥
2

2

(4.37)

Note that since this is a linear measurement model, the Taylor series expansion is unneces-

sary, but will help to illustrate the relationship to the quantized measurement case. From

these expressions, we see that the quantized equals the real-valued measurement vector up

to a scale factor ckm (cf. (4.28) and (4.33) vs. (4.37)).

70



To better understand the meaning of the expressions for ckm and dkm, consider the

graphical depiction for different values of ukm− lkm shown in Fig. 4.5, for z = 0 and σ = 1.

Observe that the measurement likelihood exhibits a flat center region for large values of

ukm − lkm. Intuitively, as long as a residual falls within the lower and upper bound, its

likelihood is approximately constant, since we do not have any more precise information

about its exact location. Mathematically, this flat region is explained by the difference of

the two shifted Q-functions appearing in the likelihood, which themselves are relatively flat

outside the sigmoidal region around zero.

The flat region translates into a near-zero value of ckm, and hence near-zero scaling of the

measurement vector around the origin. Note that loosely speaking, due to the connection

between the measurement matrix A and the information matrix ATA, this also means less

information coming from this measurement within the region around zero. Consider now

the value for dkm, corresponding to the normalized residual in the real-valued case. We

see that it is asymptotically bounded by ukm and lkm, which are shifted versions of the

45 degree bisecting line through the origin. Notice that in the real-valued case, this line

and the graphic depiction of dkm should coincide. For large values of ukm − lkm, the value

for dkm is reduced to almost zero, as long as the predicted measurement is well within the

thresholds. As the difference between upper and lower thresholds decreases, we see that

the flat region slowly vanishes, the dip in the curve of ckm diminishes, and the curve of bkm

approaches a straight line.

We further observe from the graphs, as expected, that in the limit as the upper and

lower thresholds converge to the actual measurement and the difference between ukm and lkm

tends to zero, the expressions for ckm and dkm tend to 1 and
zkm−hT x̂k|0:K

σkm

(
= ukm = lkm

)
respectively, which are the values known from real-valued iterative MAP estimation.

Implementation issues

As a note for implementation in software, the numeric expressions for ckm and dkm are

not very stable in regions far away from the origin. However, Fig. 4.5 provides the graph-

ical asymptotes, which can be used in place of the numerical expressions in these regions.

Further, we note that

Q(lkm)−Q(ukm) = 1−Q(−lkm)− (1−Q(−ukm)) = Q(−ukm)−Q(−lkm). (4.38)

In a computing system with finite precision, this can be used to convert expressions numer-

ically close to 1 − 1 (negative arguments of the Q-function) into expressions numerically

close to 0− 0 (positive arguments of the Q-function), which can be computed with greater

accuracy.

Further, in order to compute the quantization thresholds for the IQMAP, we further

require knowledge of the covariance matrix Pk|0:k. If the state k corresponds to the final m
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elements in the state vector, this covariance can be obtained efficiently by inverting only a

small, m×m portion of the upper triangular Cholesky factor R, which can be done using

back-substitution. In particular, note that P = (ATA)−1 = (RTR)−1 = R−1R−T , and

recall the fact that the inverse of an upper triangular matrix is upper triangular. Assume

the matrix P is of dimension n × n. We can compute the lower right submatrix Pmm :=

P(n −m + 1 : n, n −m + 1 : n) (in Matlab notation) by computing the upper triangular

matrix Rmm = R(n−m+ 1 : n, n−m+ 1 : n), followed by the product Pmm = R−1
mmR−Tmm.

Especially for constant-rate quantization, having to compute the covariance only for the

final states in the state vector in order to quantize the current measurements is a very

typical operation. If other parts of the covariance matrix are needed, it might be necessary

to compute the full covariance matrix, and then extract the required submatrix.

Finally, in order to prevent unbounded growth of the state vector (and hence of matrix

A) and the associated computational cost, it is advisable to marginalize out past states (see,

e.g., [83] for a discussion of marginalization in MAP-based CL). Marginalization allows to

maintain a constant-size state vector commensurate with the available computing resources.

Depending on the choice of states to marginalize, this corresponds to an estimate of a sliding

time window (as opposed to the entire state history) with uniform or non-uniform spacing

in time.

4.3.4 Optimal bit allocation

MAP estimation, contrary to filtering, allows to include information from asynchronous,

i.e., time-delayed measurements. In the context of quantized distributed estimation, it

also allows to utilize unexpectedly available bandwidth resources to transmit additional

information about earlier measurements. This section will address the question of how to

allocate those additional bits. The performance criterion will be the expected reduction in

uncertainty, as measured by the trace of the posterior covariance matrix.

A filter is forced to spend additionally available bits to refine only the measurements at

the current time step. However, we know from the performance analysis in [81], that the gain

in performance after spending more and more bits to quantize a particular measurement

follows a law of diminishing returns, which will be confirmed by the simulation results later.

A batch MAP estimator can spend the bits to refine previously quantized measurements,

and there exist a variety of methods to determine which particular measurements to refine.

The optimal allocation would be the one that yields the global minimum of the perfor-

mance criterion for the entire batch of bits to be allocated. This is a resource allocation

problem and known to be hard, since it in principle requires to evaluate all possible combina-

tions of measurements to refine. In order to avoid the associated combinatorial complexity,

we will resort to heuristic allocation approaches.

The first (näıve) heuristic would be to uniformly allocate the bits over all available

measurements, i.e., to evenly spread the available bits over the time horizon, if necessary
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including tie-breaking rules, such as starting with oldest or most crudely quantized bits

first.3 This approach is clearly suboptimal, as not all measurements carry the same amount

of information. Intuitively, spending bits on a measurement with large measurement noise

variance, these bits will mostly quantize noise and hence be essentially wasted.

Instead, we propose a (greedy) per-bit optimal approach that allocates each bit in-

dividually by determining the one measurement to refine (using the iterative threshold

selection scheme described in Sec. 4.3.2) which yields the maximum expected reduction

in the trace of the posterior covariance matrix. This process is iterated until all bits are

allocated. To this end, we compute for each measurement the new threshold τkm,⊕ accord-

ing to the threshold selection rule described in Proposition 4. Depending on the outcome

of the quantization, there are two possible new likelihoods for this measurement, either[
Q
(
τkm,l−hTkmxk

σkm

)
−Q

(
τkm,⊕−hTkmxk

σkm

)]
or
[
Q
(
τkm,⊕−hTkmxk

σkm

)
−Q

(
τkm,u−hTkmxk

σkm

)]
.

For both cases, we can compute the new vector ckm,⊕
hTkm
σkm

from Eq. (4.34). Notice that

the particular measurement in question corresponds to exactly one line containing the row

vector ckm
h̆Tkm
σkm

in the measurement matrix, where h̆Tkm =
[
0 . . . 0 hTkm 0 . . . 0

]
is a

vector of zeros with the measurement jacobian inserted at the column position corresponding

to the state at time k. After allocating the bit to refine this measurement, this row vector

would now be replaced by the new vector ckm,⊕
h̆Tkm
σkm

.

Let us assume that at the current estimate, the least squares problem can be written as

min ‖A · δx− b‖22 (4.39)

and from solving this system we also have the current QR-factorization

A =


A1

ckm
h̆Tkm
σkm

A2

 = Q ·R (4.40)

Further, the covariance of the current estimation error is given by

P = (ATA)−1 = (RTR)−1 = R−1R−T (4.41)

To help decide whether to choose measurement zkm as the candidate measurement for

which to allocate the bit, we have to quantify the impact that the corresponding change in

the measurement vector has on the trace of the posterior covariance matrix. If we choose

3Notice that in the (I)QMAP framework, only whole bits can be allocated per measurement.
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to refine the quantization of zkm, the new measurement matrix will be given by

A⊕ =


A1

ckm,⊕
h̆Tkm
σkm

A2

 (4.42)

Our goal is to compute the new posterior covariance matrix, whose trace we seek to minimize

P⊕ = (AT
⊕A⊕)−1 (4.43)

=

(
AT

1 A1 + AT
2 A2 + c2

km,⊕
h̆kmh̆Tkm
σ2
km

)−1

(4.44)

=

(
AT

1 A1 + AT
2 A2 + c2

km

h̆kmh̆Tkm
σ2
km

− c2
km

h̆kmh̆Tkm
σ2
km

+ c2
km,⊕

h̆kmh̆Tkm
σ2
km

)−1

(4.45)

=

(
ATA + (c2

km,⊕ − c2
km)

h̆kmh̆Tkm
σ2
km

)−1

(4.46)

Notice that this is a rank one update on P, so that we can compute P⊕ using the Sherman-

Morrison formula as a special case of the matrix inversion lemma [43].

P⊕ =

(
ATA + h̆km

c2
km,⊕ − c2

km

σ2
km

h̆Tkm

)−1

(4.47)

= P−Ph̆km

(
h̆TkmPh̆km +

σ2
km

c2
km,⊕ − c2

km

)−1

h̆TkmP (4.48)

We are interested in minimizing the trace of the updated covariance matrix

tr P⊕ = tr

P−Ph̆km

(
h̆TkmPh̆km +

σ2
km

c2
km,⊕ − c2

km

)−1

h̆TkmP

 (4.49)

= tr P− tr

Ph̆km

(
h̆TkmPh̆km +

σ2
km

c2
km,⊕ − c2

km

)−1

h̆TkmP

 (4.50)

= tr P− tr

h̆TkmPPh̆km

(
h̆TkmPh̆km +

σ2
km

c2
km,⊕ − c2

km

)−1
 (4.51)

= tr P− tr

h̆TkmR−1R−TR−1R−T h̆km

(
h̆TkmR−1R−T h̆km +

σ2
km

c2
km,⊕ − c2

km

)−1


(4.52)

74



Minimizing the trace of the updated covariance corresponds to

max tr

h̆TkmR−1R−TR−1R−T h̆km

(
h̆TkmR−1R−T h̆km +

σ2
km

c2
km,⊕ − c2

km

)−1
 (4.53)

which is a scalar. This quantity can be computed efficiently using Alg. 4.

Algorithm 4 Computing the reduction in tr P due to a new bit

Require: h̆km, σkm, ckm,⊕, ckm, and R−1, the latter computed using backsubstitution

Ensure: ∆tr =

(
h̆TkmR−1R−T h̆km +

σ2
km

c2km,⊕−c
2
km

)−1

h̆TkmR−1R−TR−1R−T h̆km

v1 ← R−T h̆km (n× 1 vector)
v2 ← h̆TkmR−1R−T h̆km = vT1 v1 (scalar)

v3 ← R−1R−T h̆km = R−1v1 (n× 1 vector)
v4 ← h̆TkmR−1R−TR−1R−T h̆km = vT3 v3 (scalar)

∆tr ← v4

(
v2 +

σ2
km

c2km,⊕−c
2
km

)−1

Notice that the most costly operation, the inversion of R, needs to be done only once.

The cost for inverting a triangular matrix is generally quadratic in the size of the state

vector, but here, since R is generally banded, the cost is linear. The remaining operations

from Alg. 4 have to be carried out once for each measurement, with the exception of the

final step, which has to be performed twice for both of the candidate ckm,⊕ from the two

possible outcomes of the quantization. Based on the threshold selection rule described in

Proposition 4, we assume that the outcome of the quantization with the additional bit

will occur with equal probability. Therefore, we can compute the expected reduction of

the trace of the covariance by simply averaging the results obtained from the two different

values of ckm,⊕. We repeat this process for all possible measurements, and finally choose for

refinement the measurement that results in the maximum expected covariance reduction.

Notice that this approach is approximate, since computation of the final covariance

matrix would require iteration to convergence which we disregard due to excessive compu-

tational complexity. The simulation results confirm that the approach outlined above yields

sufficient results for practical purposes.

4.4 Simulation results

We tested the IQEKF and the IQMAP for CL with two robots moving in 2D, using the

real-valued EKF and MAP as benchmark. The system model for each robot was given by

a constant-velocity motion model [8]. The continuous-time dynamics for each robot were
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given by

ẋ = f(x) + Gc

[
wV̇
wω̇

]
(4.54)

with the state defined as x =
[
x y φ V ω

]T
, f(x) =

[
V cosφ V sinφ ω 0 0

]T
, and

Gc =
[
0T3×2 I2×2

]T
. Further, we chose σV̇ = 0.6325 m/s2/

√
Hz, and σω̇ = 0.4967 rad/s2

/
√

Hz as the continuous-time noise standard deviations for the motion model. The simulated

trajectories followed these characteristics.

After first-order discretization with time step δt we obtain

xk+1 = xk + δtf(xk) + wd (4.55)

with system Jacobian

Φk =


1 0 −Vkδt sinφk δt cosφk 0

0 1 Vkδt cosφk δt sinφk 0

0 0 1 0 δt

0 0 0 1 0

0 0 0 0 1


and discrete noise covariance E[wdw

T
d ] = Qd where

Qd =

tk+1∫
tk

Φ(tk+1, τ)GcQcG
T
c Φ(tk+1, τ)Tdτ (4.56)

The odometry measurements of linear and rotational velocity, corrupted by zero-mean

Gaussian noise with σV m = 0.07 m/s and σωm = 0.28 rad/s, were recorded at 10 Hz and

treated as regular measurement updates.

We assumed robot-to-robot distance and bearing measurements at a frequency of 1 Hz,

corrupted by additive Gaussian measurement noise with σd = 0.05 m and σθ = 0.09 rad.

Notice that none of the robots received absolute position measurements, rendering the

system unobservable, with pose estimation errors increasing over time.

We compared the performance of IQEKF and IQMAP with all measurements quantized

with 1-4 bits (constant per run) against that of real-valued EKF and MAP in Monte Carlo

simulation. The RMS errors are shown in Fig. 4.6. We can see that the error decreases with

increasing number of quantization bits, and that the performance comes close to that of the

real-valued estimators with as little as 4 bits per measurements. Moreover, the performance

gain per additional bit becomes increasingly small. Both quantized and real-valued MAP

estimators perform consistently and considerably better than their filtering counterparts (up

to 30% improvement in orientation error), as was expected due to their ability to mitigate
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Figure 4.6: RMS error for NR = 2 robots and NMC = 60 Monte Carlo trials,
for EKF, MAP, IQMAP (1-4 bits) and IQEKF (1-4 bits), computed as RMS(t) =√

1
NR

1
NMC

∑NR
i=1

∑NMC
j=1 (x̂i,j(t)− xi,j(t))2.

linearization errors in nonlinear problems such as CL. Also, the noticeable sawtooth pattern

in the filters, resulting from the 1 Hz robot-to-robot measurements, is effectively smoothed

out by the MAP estimators.

A typical result for the estimation error and the corresponding 3σ-bounds for the case

of single-bit quantization is shown in Fig. 4.7. As expected, real-valued MAP outperforms

QMAP, which in turn is more accurate than SOI-EKF. However, note the behavior of the

quantized filter for the velocity estimate: Since both system and measurement function for

this quantity are considered linear by the SOI-EKF, it (wrongly) converges and reaches

steady state. The QMAP estimator, however, correctly accounts for the nonlinearity in-

troduced by quantization, and more accurately depicts the evolution of uncertainty, as

indicated by the tighter but variable 3σ bounds.

In a next simulation, we tested time-varying bit allocation. Using the same simulation

setup as before, we quantized all measurements using two bits, and halted the simulation

after 50 time steps. We then simulated the availability of additional 50 bits, roughly 10%

of the 424 bits allocated up to that point. We computed the trace of the covariance matrix
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Figure 4.7: Typical errors and 3σ-bounds (dashed) for the state estimates of one of the
robots, for real-valued MAP, QMAP, and SOI-EKF (one bit). The quantization incurs
performance loss (as well as considerable savings in communication). QMAP has better
performance than SOI-EKF, showing its ability to better cope with linearization errors.
The velocity covariance estimates of the SOI-EKF (but not of the QMAP) wrongly converge
to steady state.
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Figure 4.8: Time-varying bit allocation. After two robots perform CL for 50 time steps and
quantize each measurement using two bits, we simulate availability of additional 50 bits
(roughly 10% of the 424 bits spent so far). Comparison of three strategies: Allocation only
at final time step (solid line), uniform allocation (dashed line), and the proposed optimal
strategy (dash-dotted line). The trace of the covariance achieved by real-valued MAP is
shown for comparison (dotted line). (a) Final allocation of bits per time step. (b) Evolution
of the trace of the covariance matrix.

of the entire state history after each of the bits was allocated.

We compared three strategies, with results shown in Fig. 4.8. The first strategy spent all

bits evenly on measurements acquired only at the last time step. This mimics the behavior

of a filter, which only maintains an estimate of the current state and is therefore incapable

of refining past measurements. As shown in [81] for the MMSE estimator, the gain in

precision drops rapidly when increasing the number of bits spent per measurement (law of

diminishing returns). In accordance with this finding, we see the reduction in uncertainty

leveling off after about 15 additional bits, and the overall reduction in uncertainty being

rather minimal. The second strategy allocated bits sequentially and uniformly one per time

step. This appears to be a reasonable heuristic, and simulation results show that it performs

better than the previous strategy. Finally, we evaluated the one-step optimal (greedy)

strategy described in Sec. 4.3.4 designed to maximize the expected reduction in uncertainty

per bit, as measured by the reduction in the trace of the covariance. As evident from the

plots, this strategy is the most efficient of all three methods at reducing uncertainty. For this

particular simulation, after spending only an additional 10% of the previously allocated bits,

it reduces the difference in tr P between IQMAP (2bit) and real-valued MAP by about 32%,

compared to 16% for the uniform bit allocation, and 2% when refining only the observations

at the last time step.
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Figure 4.9: Experimental setup: (a) Four Pioneer I robots with mounted calibration targets
as viewed by the overhead camera, moving in a 2.5×4.5 m arena. (b) True robot trajectories.
Starting points are marked with a square.

4.5 Experimental results

The quantized MAP estimation algorithms were also tested in a real world experiment. For

this purpose, we employed four robots moving randomly in a 2.5 × 4.5 m arena, having

odometry and relative position estimates available at 1 Hz (see Fig. 4.9). The robots moved

at 0.1 m/s while avoiding collisions and obstacles. A calibrated overhead camera was used

to establish ground truth as well as to provide synthetic measurements of relative distance

and bearing.

Despite being of the same model, the robots exhibited heterogeneous noise characteris-

tics in their odometry, with the noise standard deviations varying between σV m = 0.3 cm/s

to σV m = 0.6 cm/s for linear velocity, and σωm = 0.0078 rad/s to σωm = 0.02 rad/s for

rotational velocity. These different values can be attributed to different tire pressures, or

manufacturing imperfections. The standard deviation for the constant velocity statistical

motion model were set to σV = 0.12 m/s and σω = 0.45 rad/s, which were tuned after the

experiment based on the maximum observed change per time step in measured velocity and

turn rate for all robots. The observations of relative distance and bearing were extracted

from the overhead camera images and corrupted by Gaussian noise with standard deviation

of σd = 0.05 m for distance and σθ = 2 deg for relative bearing.

The error plots (see Figs. 4.10-4.13) show that the IQEKF and the IQMAP perform

very well in a real-world CL application. Moreover, with as little as four bits, the quantized

estimators closely approach the performance of their real-valued counterparts. Again, we

see that the IQEKF estimators incorrectly converge to steady state, whereas the IQMAP

algorithms bound the error more dynamically, which helps to avoid overconfidence. Spikes

in errors and corresponding 3σ-bounds, e.g., robot 4 at t = 120 s, coincide with an abrupt

change in robot velocity or turn rate. This behavior is expected, since these points repre-

sent outliers with respect to the constant-velocity statistical motion model. The IQMAP
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Table 4.1: Experimental results for quantized MAP CL with four robots.

RMS Position error (m)

Robot 1 Robot 2 Robot 3 Robot 4
IQMAP (1bit): 0.1637 0.2680 0.2748 0.2346
IQMAP (2bit): 0.1285 0.1608 0.1312 0.1596
IQMAP (3bit): 0.1593 0.1805 0.1522 0.1761
IQMAP (4bit): 0.1423 0.1546 0.1454 0.1570
MAP (real-valued): 0.1247 0.1616 0.1185 0.1453

RMS Orientation error (rad)

Robot 1 Robot 2 Robot 3 Robot 4
IQMAP (1bit): 0.2046 0.2330 0.2133 0.1971
IQMAP (2bit): 0.0564 0.0702 0.0623 0.0835
IQMAP (3bit): 0.0435 0.0470 0.0452 0.0509
IQMAP (4bit): 0.0384 0.0388 0.0424 0.0435
MAP (real-valued): 0.0465 0.0481 0.0474 0.0477

NEES

Robot 1 Robot 2 Robot 3 Robot 4
IQMAP (1bit): 3.7119 3.8164 3.7352 4.6111
IQMAP (2bit): 5.5733 6.3689 4.7954 6.8632
IQMAP (3bit): 7.7805 9.8302 7.5528 13.9581
IQMAP (4bit): 8.0233 8.2656 7.2866 12.6239
MAP (real-valued): 9.1525 9.9432 6.6416 8.1227

estimators almost always achieve lower RMS over the MMSE estimators, particularly for

orientation (see Tables 4.1 and 4.2). We observe that in this particular experiment, the RMS

error of the IQMAP using 4 bits per measurement is even slightly lower than the analog

MAP. This is not a general result, an on average we would expect the analog estimators to

consistently outperform their quantized counterparts (as is the case for the filter). Another

interesting observation is the fact that the NEES for the IQMAP is very low for very low

quantization rates, and increases with increasing number of bits. We attribute that to the

fact that the covariance estimates tighten up faster than the estimation error decreases, or,

in other words, that the 1-bit QMAP is very conservative in estimating uncertainty, whereas

the higher-rate IQMAP estimators rather tend toward overconfidence, reflecting in a higher

NEES value. Again, these results are for a single experiment, and may not hold generally.

4.6 Extension to hybrid estimation architectures

One of the shortcomings of the proposed multi-centralized estimation architecture is that

it forces each robot to use only quantized measurements, even though it has access to its

own, unquantized measurements. This way, each robot voluntarily relinquishes informa-
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Figure 4.10: Experimental results. Estimation errors and corresponding 3σ-bounds for
robot 1. (a) Filters. (b) MAP estimators.
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Figure 4.11: Experimental results. Estimation errors and corresponding 3σ-bounds for
robot 2. (a) Filters. (b) MAP estimators.
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Figure 4.12: Experimental results. Estimation errors and corresponding 3σ-bounds for
robot 3. (a) Filters. (b) MAP estimators.
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Figure 4.13: Experimental results. Estimation errors and corresponding 3σ-bounds for
robot 4. (a) Filters. (b) MAP estimators.
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Table 4.2: Experimental results for quantized MMSE CL with four robots.

RMS Position error (m)

Robot 1 Robot 2 Robot 3 Robot 4
IQEKF (1bit): 0.2035 0.2841 0.2211 0.3050
IQEKF (2bit): 0.1426 0.2434 0.1512 0.2200
IQEKF (3bit): 0.1407 0.2775 0.1730 0.2186
IQEKF (4bit): 0.1594 0.2702 0.1354 0.2030
EKF (real-valued): 0.1302 0.2218 0.1165 0.1718

RMS Orientation error (rad)

Robot 1 Robot 2 Robot 3 Robot 4
IQEKF (1bit): 0.1500 0.1573 0.1400 0.1601
IQEKF (2bit): 0.1110 0.1147 0.1089 0.1183
IQEKF (3bit): 0.1428 0.1448 0.1413 0.1398
IQEKF (4bit): 0.1018 0.1053 0.1045 0.1043
EKF (real-valued): 0.0874 0.0900 0.0881 0.0880

NEES

Robot 1 Robot 2 Robot 3 Robot 4
IQEKF (1bit): 5.1338 5.7128 4.8443 6.3003
IQEKF (2bit): 4.5735 4.5177 4.0932 5.2185
IQEKF (3bit): 8.4986 8.4313 7.3373 9.0999
IQEKF (4bit): 9.0996 9.0798 7.9321 10.4721
EKF (real-valued): 10.4850 11.3549 7.3406 9.0899

tion it could use to obtain more accurate estimates4. The reason this is necessary is that

multi-centralized quantized estimation only works if all robots agree on the quantization

thresholds, which are computed directly from the current estimate. For this to be equal

among all robots, the estimators must only use information available to all team mem-

bers, a symmetry which would be violated if one robot were to use its own unquantized

measurements.

To overcome this limitation, we propose an extended, hybrid estimation architecture,

which comprises two estimators per robot (see Fig. 4.14). For robot i, the quantized esti-

mation module works as before, by processing the quantized measurements from the entire

robot team, and using the resulting estimate x̂
0:K|bi0:K ,b

j 6=i
0:K

to compute the quantization

thresholds. Note that the notation bj 6=i0:K refers to quantized measurements from all robots

except for robot i, hence it can be thought of as a set of vectors. An additional, hy-

brid estimation module processes its own, unquantized measurements, together with the

quantized measurements from the other team members j 6= i, to obtain a hybrid estimate

x̂
0:K|zi0:K ,b

j 6=i
0:K

. These hybrid estimates will differ between robots, but will be more accurate

than the quantized estimates since they process more information. The performance of this

estimator will be between that of the multi-centralized IQMAP, and that of the real-valued

4This holds under the assumption that the quantized measurements communicated from the other robots
provide more information compared to the case where the robot localizes on its own
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Figure 4.14: Hybrid estimator structure. Each robot i has an additional estimation module
that uses its own, unquantized measurements zi, together with the bit sequences bj from
all other team members j 6= i, to produce an estimate x̂

0:K|zi0:K ,b
j 6=i
0:K

. Note that unlike the

quantized estimates x̂
0:K|bi0:K ,b

j 6=i
0:K

, these hybrid estimates will differ from robot to robot.

MAP estimator. Especially in cases of relatively large bit rates, where the performance of

IQMAP closely approaches that of the real-valued MAP, the gain in accuracy achieved by

a hybrid estimator might only be small. However, we expect that this hybrid estimator

will outperform the IQMAP under extreme bandwidth limitations, where the own analog

measurements carry more information than the crudely quantized observations from the

rest of the team.

A subject of ongoing research is how to use this more accurate estimate for the benefit

of the remaining team members. Any such attempt of course has to comply with the strict

bandwidth constraints, so it is of great importance to minimize any ensuing communication

overhead. Moreover, the two estimates x̂
0:K|bi0:K ,b

j 6=i
0:K

and x̂
0:K|zi0:K ,b

j 6=i
0:K

are not independent,

and so any further information sharing between the two corresponding estimators must

properly account for correlations. For these reasons, exact feedback approaches might turn

out computationally demanding and instead call for approximate methods. Possible ideas

involve creating new, inferred measurements (e.g., a function of the difference between the

two state estimates), or biasing the quantization outcome in order to minimize the difference

between the two estimators.
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4.7 Summary

In this chapter, we have derived a new MAP estimator (IQMAP) for estimation of random

processes with quantized observations. We have shown its application, as well as that of a

quantized filter (IQEKF) [81], to the problem of multi-robot Cooperative Localization under

communication constraints. Compared to the regular encoding using 32 or 64 bits per real

scalar measurement, both algorithms can significantly reduce communication requirements

by allowing to encode scalar measurements using as little as 1 bit (or more, depending on

the available resources).

We have further shown that the IQMAP estimator offers increased accuracy compared

to the IQEKF, due to mitigation of linearization errors. For linear (or linearized) systems,

finding the IQMAP estimate was shown to be a convex optimization problem, which guar-

antees a unique solution and allows the use of highly-efficient solvers. We have provided

optimal threshold selection schemes for the case of single- and multi-bit quantization of

scalar measurements. Additionally, the IQMAP offers the ability to efficiently utilize time-

varying bandwidth, by using surplus bits to refine current and past measurements. To this

end, we have proposed a one-step optimal (greedy) bit allocation scheme and shown in sim-

ulation that it outperforms two other bit allocation strategies. In particular, it was shown

to use additionally available bits to greater benefit (i.e., resulting in larger reduction of un-

certainty) than the IQEKF, which can only refine the current measurements and therefore

suffers from rapidly diminishing gain in accuracy per additional bit spent.
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Chapter 5

Concluding Remarks

5.1 Summary of contributions

The work presented in the preceding chapters has focussed on providing new techniques for

challenging problems in Cooperative Localization, particularly the issues of CL initialization

in the absence of GPS, and of CL under severe communication constraints. The main

contributions of this work can be summarized as follows:

• Globally optimal range-based relative pose estimation

Chapter 3 provided a novel method for relative pose estimation between robots in 2-D

and 3-D, based on robot-to-robot distance measurements and estimates of the robots’

motion. Knowledge of the relative pose between robots is necessary to initialize the

CL estimation problem. It can be obtained, e.g., from external references (manual

measurements, GPS, correlating overlapping sensor measurements, etc.), but these

may not always be available or may not yield results of sufficient accuracy. Our

proposed method exploits the mobility of the robots by determining the relative pose

from distance measurements acquired at different vantage points during robot motion.

The key contribution of this chapter, however, lies in the guaranteed globally optimal

solution of the corresponding nonlinear WLS problem formulation, which by far tran-

scends the problem of relative pose estimation. In our approach, we first transform

the problem into the minimization of a polynomial cost function and then exploit

novel tools from algebraic geometry and optimization theory for an efficient solu-

tion. This approach is potentially applicable to many geometric problems in robotics

(kinematics) and computer vision. Additionally, it allows to go beyond the tradi-

tional approach of coarse initialization (e.g., using deterministic methods) followed

by iterative optimization, which can at best guarantee local optimality. Moreover, it

provides a benchmark for suboptimal, but potentially more computationally efficient

approaches, and also offers tantalizing insights into nonlinear least squares problems

in general, e.g., the observation that for low SNR, a local optimum might be closer to
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the ground truth than the global optimum.

• Quantized MAP estimator

Chapter 4 presented a novel MAP estimation scheme for dynamic random processes

using severely and adaptively quantized measurements. Estimators usually assume

access to real-valued measurements. Existing quantization schemes have until now ei-

ther focussed on signal reconstruction or on parameter estimation. Only recently have

there been (MMSE) filters for linear, dynamic Markov random processes [102, 81] with

quantized observations. In this thesis, we have extended this approach to quantized

MAP estimation with a single (QMAP) and multiple bits (IQMAP) per measurement.

As batch estimation approaches, QMAP and IQMAP have two distinct advantages

over the corresponding filter variants: (i) they are better suited to handle nonlinear-

ities due to quantization and nonlinear measurement models prevalent in robotics,

since they allow relinearization and utilize all measurements over an entire time hori-

zon, and (ii) they can exploit time-varying bandwidth, by retroactively refining past

measurements if more bits become available. These characteristics are important in

order to apply quantized estimation in mobile robotics.

Chapter 4 derived the optimization problem for the QMAP and IQMAP estimators

and established their log-concavity for linear models. Moreover, we provided threshold

selection rules for both cases, and established their optimality with respect to the hit-

and-miss Bayes risk function used in real-valued MAP for the single bit case, and

with respect to entropy for the IQMAP case. Finally, we provided a one-step optimal

(greedy) method to allocate additional bits that minimized the expected reduction in

uncertainty per bit.

With this work, we provide new tools to the robotics community that will enable and

foster cooperative navigation in mobile sensor networks even in bandlimited and GPS-denied

application domains.

5.2 Future research directions

The work on globally optimal WLS estimation for motion-induced relative pose estimation

in chapter 3 opens a number of avenues for future research. The most straightforward idea

is to exploit a similar technique for other sensing modalities, i.e., relative bearing or range-

and bearing measurements [118], either in homogeneous or heterogeneous robot teams.

Additional constraints could come in form of relative velocity measurements (e.g., from

Doppler radar), or other external information such as observations of a common gravity

vector. Similarly, it would be desirable to extend this approach to not only estimate the

relative pose between two robots at a time, but between the entire robot team concurrently.

Finally, multi-robot systems will always face the issue of precise clock synchronization,
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which might be mitigated by including the unknown clock offset in the state vector.

More generally, the techniques for global optimization of polynomial cost functions can

be applied in a variety of robotics and computer vision problems. One potential application

we are currently investigating is inconsistency of nonlinear estimation problems. It is well-

known that estimators such as the I-EKF can compute a single local minimum of a particular

least squares cost function [11], which is a serious limitation for multimodal cost functions.

The presented techniques allow to compute all stationary points, which in turn permits

to track all local minima (or a subset thereof) in an efficiently steered multi-hypothesis

estimation approach. We have already successfully applied this approach to the problem of

target tracking using range-only [47] and bearing-only measurements. In computer vision,

polynomial techniques have been predominantly applied to solve minimal problems (e.g.,

the 5-point algorithm [86]), which have important application in outlier rejection methods

such as RANSAC [33]. However, given the results of chapter 3, it would be natural to

apply global WLS optimization to the overdetermined variants of these problems. This is

the subject of ongoing research.

Many of these extensions may increase the number of unknowns to levels infeasible

to tackle in reasonable time with currently available processing and memory resources.

However, the demonstrated success in smaller scale problems, together with the ongoing

trend to faster and more capable computing hardware, gives reason to believe in a great

future for polynomial global optimization methods.

Concerning quantized estimation, even though the results of chapter 4 have demon-

strated applicability of the quantized MAP estimation methodology in CL, a number of

capabilities should be added in order to find widespread use in mobile robotics applications.

Most obvious among these are the extension to cooperative simultaneous localization and

mapping (C-SLAM), and the extension to 3-D. The first will require techniques for land-

mark initialization, in turn necessitating additional prior assumptions on landmark location

(e.g., uniformly within a limited region defined by maximum sensing range), and extension

of the estimation framework to non-Gaussian pdfs. The latter, i.e., the extension of CL

to 3-D, is a subject of intense current interest also in the classical real-valued estimation

community, since it is seen as a major stepping stone to widespread practical use of mo-

bile sensor networks. In this context we should also mention research efforts to reduce

computational complexity. Currently, the quantization thresholds are computed based on

the best MAP estimate, requiring very frequent solution of the entire MAP optimization

problem. Other approaches might be less costly, e.g., employing a quantized filter variant

(SOI-KF or IQKF) to propagate the state and determine the thresholds, and to solve the

MAP problem less frequently, allowing amortization of the computational cost over sev-

eral time steps. Moreover, the current multi-centralized architecture requires duplication

of computations in all robots. It would be interesting to investigate distributed estimation

schemes such as the one proposed by Nerurkar et al. [83] and modify them to work with
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limited communication. Additionally, especially for robot networks that communicate and

perform relative measurements very infrequently, it would be desirable to allow local in-

tegration of unquantized motion information measurements between relative observations,

and to appropriately quantize this integrated information prior to transmission instead of

sending each quantized proprioceptive measurement individually.

The optimality criteria used for threshold selection and bit allocation could also be

further investigated. It might be of value to replace the maximum entropy criterion for

multi-bit thresholds by other objective functions, such as the MAP Bayes risk as for the

single bit case. Simulations for linear, 1-D CL toy problems suggest that quantization

threshold selection has significant impact on estimator performance. Also the method for

bit allocation is currently designed to optimally allocate a single bit. Finding the best

subset of measurements to allocate several bits simultaneously is known to be a hard prob-

lem, but the theory of submodularity might offer a route for efficient suboptimal selection

schemes with constant factor performance guarantees [59]. Moreover, bit allocation bears

a relationship to sensor scheduling, in that the available resources are directed towards the

most informative measurements. In this sense, investigating synergies between the tech-

niques used by Mourikis and Roumeliotis [78] for sensor scheduling in robot formations and

bit allocation in quantized CL as outlined in chapter 4.3.4 might be worthwhile. Another

assumption we would like to relax is that of synchronous measurements. In the current

framework, all robots have to have access to all measurements at the same time so as to

ensure equal quantization thresholds. In practice, however, this assumption may not hold

in multi-robot systems communicating over asynchronous, multi-hop networks. One avenue

to pursue would be the concept of check points that has been introduced to address asyn-

chronous communication for regular CL [68]. Finally, we have mentioned extended hybrid

estimation architectures. Since it is only natural for each robot to use as much informa-

tion as is available (i.e., to process its own unquantized measurements in addition to the

quantized measurements received from the other team members), the question of how to

reconcile the hybrid and a purely quantized estimate deserves further research.

As we finish this work, we are excited to find multi-robot systems and mobile sensor

networks standing at the brink of widespread field deployment in real-world applications.

We hope that our work helps to bring mobile robotics one step closer to this goal.
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Appendix A

Appendices for Chapter 4

A.1 Properties of the Q-Function (Gaussian tail function)

Definition

Q(x) :=

∞∫
x

1√
2π
e−

u2

2 du (A.1)

= Pr {X > x} if X ∼ N (X; 0, 1) (A.2)

The Q function is monotonically decreasing and log-concave (cf. Fig. A.1) [14, Ex. 3.39].

Example values

Q(−∞) = 1 Q(0) =
1

2
Q(∞) = 0 (A.3)
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Figure A.1: The Q-function and its negative logarithm. The Q-function is monotonically
decreasing and log-concave.
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Q(-x)

Q(−x) =

∞∫
−x

1√
2π
e−

u2

2 du (A.4)

= 1−
−x∫
−∞

1√
2π
e−

u2

2 du |v = −u (A.5)

= 1 +

x∫
∞

1√
2π
e−

v2

2 dv (A.6)

= 1−
∞∫
x

1√
2π
e−

v2

2 dv (A.7)

= 1−Q(x) (A.8)

= Pr {X ≤ x} if X ∼ N (X; 0, 1) (A.9)

Relation to erf and erfc

erf(x) :=
2√
π

x∫
0

e−t
2
dt (A.10)

= 1− 2Q(
√

2 x) (A.11)

erfc(x) :=
2√
π

∞∫
x

e−t
2
dt (A.12)

= 1− erf(x) (A.13)

= 2Q(
√

2 x) (A.14)

Q(x) =
erfc

(
x√
2

)
2

(A.15)

=
1

2

(
1− erf

(
x√
2

))
(A.16)
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General normal distribution If X ∼ N (X;µ, σ2) then

Pr {X > x} =
1√

2π σ

∞∫
x

e−
1
2

(v−µ)2

σ2 dv |u =
v − µ
σ

, du =
1

σ
dv (A.17)

=
1√
2π

∞∫
x−µ
σ

e−
u2

2 du (A.18)

= Q

(
x− µ
σ

)
(A.19)

Pr {X ≤ x} = Q

(
−x− µ

σ

)
(A.20)

Inverse Function

Q−1(y) =
√

(2) erfinv(1− 2y) (A.21)

Derivatives

dQ(x)

dx
=

d

dx

∞∫
x

1√
2π
e−

u2

2 du (A.22)

= − 1√
2π
e−

x2

2 (A.23)

= −N (x; 0, 1) (A.24)

where we made use of the Leibniz-rule for parameter integrals.

d2Q(x)

dx2
= −(−x)

1√
2π
e−

x2

2 (A.25)

= xN (x; 0, 1) (A.26)

A.2 Optimal quantization threshold for single-bit quantiza-

tion

In this appendix, we will prove Lemma 2 which states that the optimal quantization thresh-

old in terms of minimizing the hit-or-miss Bayes cost for a single bit quantization of a linear

measurement with Gaussian noise and Gaussian prior is the expected measurement.

In a MAP framework, we minimize the Bayes risk with respect to the vector “hit-or-
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miss” cost function [54, p. 372]

C(x− x̂) =

0 ||x− x̂||2 < ε

1 else
(A.27)

for some small ε. The Bayes Risk R is then

R = E[C(x− x̂)] (A.28)

=

∫
C(x− x̂+)p(x, b = +1)dx +

∫
C(x− x̂−)p(x, b = −1)dx (A.29)

where x̂+ and x̂− refer to the estimates depending on the realization of the quantized

measurement b.

When substituting the cost function into the first term, it can be decomposed as∫
C(x− x̂+)p(x, b = +1)dx =

∫
||x−x̂+||≥ε

1 · p(x, b = +1)dx +

∫
||x−x̂+||<ε

0 · p(x, b = +1)dx

(A.30)

where the first part represents almost the complete marginalization of x, except for the

contribution of the region within the epsilon-hypersphere, that is,∫
C(x− x̂+)p(x, b = +1)dx =

∫
p(x, b = +1)dx−

∫
||x−x̂+||<ε

p(x, b = +1)dx (A.31)

where the first part now equals p(b = +1).

Proceeding analogously with the contribution of the negative quantization outcome, we

can transform the Bayes Risk into

R = p(b = +1)−
∫

||x−x̂+||<ε

p(x, b = +1)dx + p(b = −1)−
∫

||x−x̂−||<ε

p(x, b = −1)dx (A.32)

≈ 1−
(
p(b = +1|x)p(x)

∣∣∣∣
x=x̂+

+ p(b = −1|x)p(x)

∣∣∣∣
x=x̂−

) ∫
||x||<ε

dx (A.33)

= 1−
(
Q

(
τ − hT x̂+

σ

)
N (x̂+;µ,P) +Q

(
−τ − hT x̂−

σ

)
N (x̂−;µ,P)

) ∫
||x||<ε

dx

(A.34)

where we assume that ε is sufficiently small so that the pdf is approximately constant within

the ε-hypersphere, and we use the fact that p(b = +1) + p(b = −1) = 1.

The goal is now to minimize R with respect to the quantization threshold τ and the
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estimates x̂+ and x̂−. To this end, we compute the partial derivatives

∂R
∂x̂+

= −
[

1

σ
N
(
τ − hT x̂+

σ
; 0, 1

)
N (x̂+;µ,P)h

−Q
(
τ − hT x̂+

σ

)
N (x̂+;µ,P)P−1(x̂+ − µ)

] ∫
||x||<ε

dx (A.35)

∂R
∂x̂−

= −
(
− 1

σ
N
(
−τ − hT x̂−

σ
; 0, 1

)
N (x̂−;µ,P)h

−Q
(
−τ − hT x̂−

σ

)
N (x̂−;µ,P)P−1(x̂− − µ)

) ∫
||x||<ε

dx (A.36)

∂R
∂τ

= − 1

σ

(
N
(
−τ − hT x̂−

σ
; 0, 1

)
N (x̂−;µ,P)

−N
(
τ − hT x̂+

σ
; 0, 1

)
N (x̂+;µ,P)

) ∫
||x||<ε

dx (A.37)

Setting the derivatives to zero, we obtain the following optimality conditions

x̂+ = µ + λ+Ph (A.38)

x̂− = µ− λ−Ph (A.39)

N
(
−τ − hT x̂−

σ
; 0, 1

)
N (x̂−;µ,P)−N

(
τ − hT x̂+

σ
; 0, 1

)
N (x̂+;µ,P) = 0 (A.40)

where the defining equations for λ+, λ− are given by

λ+ =
1

σ

N
(
τ−hTµ−hTλ+Ph

σ ; 0, 1
)

Q
(
τ−hTµ−hTλ+Ph

σ

) (A.41)

λ− =
1

σ

N
(
− τ−hTµ+hTλ−Ph

σ ; 0, 1
)

Q
(
− τ−hTµ+hTλ−Ph

σ

) (A.42)

To demonstrate that τ = hTµ is a stationary point, we first observe that in this case

λ+ = λ− = λ, since for both the defining equations reduce to (see Fig. A.2)

λ =
1

σ

N
(
−hTλPh

σ ; 0, 1
)

Q
(
−hTλPh

σ

) (A.43)
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and, moreover, the first order optimality condition for τ , (A.40) holds, since

N
(
−τ − hTµ + hTλ−Ph

σ
; 0, 1

)
N (µ− λ−Ph;µ,P)

−N
(
τ − hTµ− hTλ+Ph

σ
; 0, 1

)
N (µ + λ+Ph;µ,P) (A.44)

= N
(
−hTλPh

σ
; 0, 1

)
N (−λPh; 0,P)−N

(
−hTλPh

σ
; 0, 1

)
N (λPh; 0,P) (A.45)

= 0 (A.46)

where the last equality exploits the fact that a zero-mean Gaussian pdf is symmetric.

To show that this stationary point is in fact a minimum, we consider the Hessian of the

Bayes risk function. We determine the following second derivatives:

∂2R
∂x̂+2 = −

[
τ − hT x̂+

σ
N (

τ − hT x̂+

σ
; 0, 1)N (x̂+;µ,P)

1

σ2
hhT

−N (
τ − hT x̂+

σ
; 0, 1)N (x̂+;µ,P)P−1(x̂+ − µ)

hT

σ

−N (
τ − hT x̂+

σ
; 0, 1)N (x̂+;µ,P)

h

σ
(x̂+ − µ)TP−1

+Q(
τ − hT x̂+

σ
)N (x̂+;µ,P)P−1(x̂+ − µ)(x̂+ − µ)TP−1

−Q(
τ − hT x̂+

σ
)N (x̂+;µ,P)P−1

] ∫
||x||<ε

dx (A.47)

∂2R
∂x̂+∂x̂−

= 0 (A.48)

∂2R
∂x̂+∂τ

= −
[
− 1

σ2

τ − hT x̂+

σ
N (

τ − hT x̂+

σ
; 0, 1)N (x̂+;µ,P)h

+
1

σ
N (

τ − hT x̂+

σ
; 0, 1)N (x̂+;µ,P)P−1(x̂+ − µ)

] ∫
||x||<ε

dx (A.49)
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∂2R
∂x̂−2 = −

[
−τ − hT x̂−

σ
N (−τ − hT x̂−

σ
; 0, 1)N (x̂−;µ,P)

1

σ2
hhT

+N (−τ − hT x̂−

σ
; 0, 1)N (x̂−;µ,P)P−1(x̂− − µ)

hT

σ

+N (−τ − hT x̂−

σ
; 0, 1)N (x̂−;µ,P)

h

σ
(x̂− − µ)TP−1

+Q(−τ − hT x̂−

σ
)N (x̂−;µ,P)P−1(x̂− − µ)(x̂− − µ)TP−1

−Q(−τ − hT x̂−

σ
)N (x̂−;µ,P)P−1

] ∫
||x||<ε

dx (A.50)

∂2R
∂x̂−∂τ

= −
[

1

σ2

τ − hT x̂−

σ
N (−τ − hT x̂−

σ
; 0, 1)N (x̂−;µ,P)h

− 1

σ
N (−τ − hT x̂−

σ
; 0, 1)N (x̂−;µ,P)P−1(x̂− − µ)

] ∫
||x||<ε

dx (A.51)

∂2R
∂τ2

= − 1

σ2

[
−τ − hT x̂−

σ
N
(
−τ − hT x̂−

σ
; 0, 1

)
N (x̂−;µ,P)

+
τ − hT x̂+

σ
N
(
τ − hT x̂+

σ
; 0, 1

)
N (x̂+;µ,P)

] ∫
||x||<ε

dx (A.52)

Evaluating these at τ = hTµ and the corresponding optimal solutions for x̂+ and x̂−

(see (A.38),(A.39)), and employing the substitution N
(
−hTλPh

σ ; 0, 1
)

= λσQ
(
−hTλPh

σ

)
from (A.43), we have

∂2R
∂x̂+2 = −N (λPh; 0,P)Q(−λhTPh

σ
)

[
−
(hTPh

σ2
+ 1
)
λ2hhT −P−1

] ∫
||x||<ε

dx (A.53)

∂2R
∂x̂+∂x̂−

= 0 (A.54)

∂2R
∂x̂+∂τ

= −N (λPh; 0,P)Q(−λhTPh

σ
)

[(hTPh

σ2
+ 1
)
λ2h

] ∫
||x||<ε

dx (A.55)

∂2R
∂x̂−2 = −N (λPh; 0,P)Q(−λhTPh

σ
)

[
−
(hTPh

σ2
+ 1
)
λ2hhT −P−1

] ∫
||x||<ε

dx (A.56)

∂2R
∂x̂−∂τ

= −N (λPh; 0,P)Q(−λhTPh

σ
)

[(hTPh

σ2
+ 1
)
λ2h

] ∫
||x||<ε

dx (A.57)

∂2R
∂τ2

= −N (λPh; 0,P)Q(−λhTPh

σ
)

[
−2

hTPh

σ2
λ2

] ∫
||x||<ε

dx (A.58)
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We can now write the Hessian, evaluated at the critical point, as

H = N (λPh; 0,P)Q(−λhTPh

σ
)

∫
||x||<ε

dx

·

P−1 + (1 + hTPh
σ2 )λ2hhT 0 −(1 + hTPh

σ2 )λ2h

0 P−1 + (1 + hTPh
σ2 )λ2hhT −(1 + hTPh

σ2 )λ2h

−(1 + hTPh
σ2 )λ2hT −(1 + hTPh

σ2 )λ2hT 2hTPh
σ2 λ2

 (A.59)

It remains to show that it is positive definite. To this end, we first observe that the leading

scalar factors are positive. Also, the two matrices on the block-diagonal are each positive

definite, since they are inverse covariance matrices with positive, additive rank-one updates.

This further implies that all leading principal submatrices are positive definite, and hence

their determinants are positive. This, together with a positive determinant of H would

imply that H is positive definite [43].

The determinant of H can be computed using the Schur complement, as

det(H) = (N (λPh; 0,P)Q(−λhTPh

σ
)

∫
||x||<ε

dx)k

· det

([
P−1 + (1 + hTPh

σ2 )λ2hhT 0

0 P−1 + (1 + hTPh
σ2 )λ2hhT

])

·
(

2
hTPh

σ2
λ2 − (1 +

hTPh

σ2
)2λ4

·
[
hT hT

] [P−1 + (1 + hTPh
σ2 )λ2hhT 0

0 P−1 + (1 + hTPh
σ2 )λ2hhT

]−1 [
h

h

])
(A.60)

where k denotes the number of rows/columns of H. Since the scalar factors are positive

and the block-diagonal matrix is positive definite, we only need to concern ourselves with

the final scalar expression. After invoking the matrix inversion lemma, this factor can be

written as

2
hTPh

σ2
λ2 − (1 +

hTPh

σ2
)2λ4

·
[
hT hT

] [P−1 + (1 + hTPh
σ2 )λ2hhT 0

0 P−1 + (1 + hTPh
σ2 )λ2hhT

]−1 [
h

h

]
(A.61)

= 2
hTPh

σ2
λ2 − 2(1 +

hTPh

σ2
)2λ4 hTPh

1 + hTPh(1 + hTPh
σ2 )λ2

(A.62)

= 2
hTPh

σ2
λ2 1− λ2σ2(h

TPh
σ2 + 1)

1 + hTPh(h
TPh
σ2 + 1)λ2

(A.63)
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What remains to be shown is therefore

1− λ2σ2(
hTPh

σ2
+ 1) ≥ 0 (A.64)

Our strategy will be to find an upper bound for λσ and show that the above inequality

is satisfied for this upper bound (see Fig. A.2). Recall the definition (A.43) of λσ

λσ =
N
(
−λhTPh

σ ; 0, 1
)

Q
(
−λhTPh

σ

) (A.65)

We perform a change of variables to obtain

x = −λhTPh

σ
(A.66)

λσ = −x σ2

hTPh
(A.67)

−x σ2

hTPh
=
N (x; 0, 1)

Q(x)
(A.68)

Let us further introduce the functions

f(x) := −x σ2

hTPh
(A.69)

g(x) :=
N (x; 0, 1)

Q(x)
(A.70)

We remark that g(x) is well-studied in the statistics community where its reciprocal is

known as the Mill’s ratio. Further, it is known [104] that g(x) is upper bounded by the

function

h(x) :=
2√

x2 + 4− x
≥ g(x) ∀x (A.71)

Among the properties of g(x) and h(x) are that both are strictly positive and monotonically

increasing [104], which can be verified by checking global non-negativity of their derivative.

In contrast, f(x) is linear and monotonically decreasing, since − σ2

hTPh
< 0.

Let us denote the solution of (A.68) as x1, so that f(x1) = g(x1). Also, define as x2

the solution of the modified system f(x) = h(x), where g(x) has been replaced by its upper

bound. We now show that x2 ≤ x1 by contradiction. Assume that x2 > x1. Then, using

the defining equations, the bounding property of h(x), and function monotonicity, we have
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the following chain of inequalities

Ass. x2 > x1 (A.72)

f(x1) = g(x1) ≤ h(x1) ≤ h(x2) = f(x2) (A.73)

⇒f(x1) ≤ f(x2) Contradiction! (A.74)

which is a contradiction since f(x) is monotonically decreasing.

Notice further, that from the definition of f(x), we have

(λσ) = f(x1) (A.75)

(λσ)′ := f(x2) ≥ (λσ) (A.76)

which follows from x2 ≤ x1. We therefore now have an upper bound for λσ which can be

computed analytically. In particular, after some algebraic manipulations,

f(x2) = h(x2) (A.77)

x2 = ±
hTPh
σ2√

1 + hTPh
σ2

(A.78)

of which only the negative solution is valid. We further have

(λσ)′ = h(x2) =
1√

1 + hTPh
σ2

(A.79)

Inserting this into our original positivity constraints from the determinant, we have

1− λ2σ2(
hTPh

σ2
+ 1) ≥ 1− (λσ)′2(

hTPh

σ2
+ 1) = 1− 1

1 + hTPh
σ2

(
hTPh

σ2
+ 1) = 0 (A.80)

From this, we conclude that indeed the Hessian is positive definite at the stationary

point, and that therefore the choice of threshold τ = hTµ is a minimizer of the MAP Bayes

risk.

As a side note for the interested reader, we also have an additional bound, (λσ)′′ =
√

2
π ,

which follows from g(0) =
√

2
π and the monotonicity of g(x) (see Fig. A.2). We can use

these bounds on λσ to compare the corresponding bounds on the solutions for the estimates

x̂ to the estimate from the SOI-KF. In particular, we have that

x̂ = µ + bλPh (A.81)
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Figure A.2: Graphical depiction of the computation and upper bounding of λσ.

where

λSOI−KF =

√
2

π

1√
hTPh + σ2

(A.82)

λ′ =
1√

hTPh + σ2
(A.83)

λ′′ =

√
2

π

1√
σ2

(A.84)

so that

λ′ > λSOI−KF, λ′′ ≥ λSOI−KF (A.85)

In simulations we have further observed that λSOI−KF ≥ λMAP. Although not proven,

this observation appears reasonable in view of the mean-median-mode inequality, since the

SOI-KF as an MMSE estimator determines the mean of the posterior pdf whereas the

QMAP determines the mode, and the quantized posterior is unimodal and heavy-tailed.
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