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Abstract

We consider the problem of scattering in a planar optical waveguide.
An incident wave, in the form of a guided mode, is sent along the wave-
guide. It encounters an inhomogeneity in the core region of the waveguide,
and is scattered. We use the Green’s function for the planar waveguide to
derive a Lippman-Schwinger equation. We show that the integral equa-
tion admits a unique solution. The scattering problem is solved under
the Born approximation in several numerical examples.

1 Introduction

Our work is motivated by the need to obtain a detailed description of wave
phenomena in optical waveguides. This type of information is important in
engineering design of optical communication devices. Although the field of
optical waveguide is quite mature, there are areas where more investigation is
warranted. The problem under consideration is an example.

An optical waveguide is referred to as inhomogeneous if the index of refrac-
tion depends on the direction of propagation of a guided wave. To be precise,
let the waveguide occupy all of (z,z) € IR®>. The region |z| < h is considered
the core of the fibre, while the remainder is considered the cladding. The in-
dex of refraction in the core is larger than that in the cladding. Therefore, a
homogeneous, or unperturbed, waveguide has index of refraction given by

_ [ ng for |z|>h
TLO(I') - { Nco for |$| <h ~ (1)
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Here we assumed that both ng and nco are constants for simplicity. Indeed,
we expect our method to work also for the case where n¢go is a function of z,
which is more realistic. The perturbed waveguide has an index of refraction
which depend on z and 2, and we write it as

n(xaz)z = nO(x)z + m(xaz)a (2)

where m(z, z) is supported in Q := [—a, a] x [—b, b]. For simplicity, we assume
that a < h. Note that we define the perturbation m(z,z) through the square
of the index of refraction for convenience.

The perturbation in the index of refraction can be caused by an imperfection.
It can also be introduced as part of a design, such as in fiber Bragg grating.

The problem we wish to solve is to find u(z, 2) satisfying Helmholtz’s equa-
tion

Au + k*n(z,2)*u=0 (z,2) € R®. 3)

If the incident field is given, we can decompose u(z, 2) as
u(a:, Z) = Uinc(.’v, Z) + Ugcat (.Z', z)'

The scattered field ugcat must satisfy some form of radiation condition. Unfor-
tunately, not much is known about the exact form of this condition due to the
fact that the waveguide extends from —oo to oo in z. The work by Nosich and
Shestopalov [6] discusses the issue of boundary conditions.

We avoid this issue by first obtaining a representation for the Green’s func-
tion of the homogeneous waveguide. The Green’s function we obtain is based
on the requirement that waves be outgoing (in the sense to be made precise)
and remain bounded.

Using the obtained Green’s function, we derive a Lippman-Schwinger inte-
gral equation for the solution of the inhomogeneous waveguide problem. We
will attempt to make connection of our results with those from couple-mode
theory [7, 4, 5]. We show that under rather general conditions, the integral
equation admits a unique solution. We end the paper with numerical results
which are based on Born approximations. This approximation is valid in many
applications because the perturbation in the index of refraction is often quite
small.



2 Green’s function for unperturbed waveguide

We summarize and specialize the results obtained in [3]. The Helmholtz equa-
tion in the unperturbed waveguide is

Au + k*ng(z)?u =0 (z,2) € IR?, (4)
where no(z) is given in (1). We note that if the solution is of the form
u(z, z) = v(z, B) exp ikfz,
then v(z, B) satisfies
V" + k2[n(z)? — B*v = 0.
We rewrite the last equation by introducing

(x)—{ 0 for |z|] <h
1 k%(n2, — nzl) for |z|>h

and d® = k?(ng, —n2)). Letting A = k*(ng, — %), we get
v"+A-¢v=0 in IR (5)

We view ) as the ‘eigenvalue’ parameter.

We construct two linearly independent solutions va(z, ) and vs(z, A); the
subscripts indicate the symmetry of the solution with respect to the z axis. Let
Q = v\ — d?, then the solutions are given by

cos(hv/A) cos Q(z — h) — g sin(hv/A)sinQ(z — h), if = > h,
vs(z, ) ={ cos(zV/\), if |z| <h,
cos(hv/X) cos Q(z + h) + g sin(hv/\)sinQ(z + h), if < —h,
(6)

and

sin(hv/X) cos Q(z — k) + g cos(hv/X) sin Q(z — h), if z>h,

va(z, \) =< sin(zv/)), if |z| < h,
—sin(hv/A) cos Q(z + h) + g cos(hVA)sinQ(z + h), if z <—h.
(7)

Bounded solutions v(z, \) exist for certain values of \:



1. A discrete set of A for 0 < \ < d? satisfying

Vd2 — X —Vtan(hvVX) =0, for ws(z,)),
V2 =X+ VAcot(hVA) =0, for wva(z,)).

These are associated with the guided modes. Let us say that we have mg

and mg roots to the above equations, respectively.

2. For d? < \ < k?n2, where the solutions are associated with the radiation

modes.

3. For A > k?nZ,, making 3 imaginary, and the solutions are associated with

the evanescent modes.

What we show is that the solutions vs(z,A) and va(z, ) can be viewed
as transform kernels, with the corresponding set of A for each solution as the

transform variable. The transform of a function f(z) is
. +w
Fioy = [ sl Nz,
The inverse transform is given by
fo= Y [P,
je{s,a}

where the weight

dfn) = Y YT A
(dp®,m) ;Hhm
+oo

Ms /dz Y
Ln(X) +

/ VA —d?
2m (A — @) cos?(hVA) + Asin®(hv/D)

d2

n(A) dA,

Ma 2 _ a
@) = YA ey
Py 1+ hy/d _’\l

1 +/°° VA&
2m (A = @) sin®(hvV/A) + Acos?(hv/))

d2

n(\) d.

(8)

(10)

(11)



The method employed in arriving at these weights is explained in generality in
[8, 1]; the details can be found in [3].
The desired Green’s function, g(z, z; &, ), satisfies

Ag +k*no(2)’g = 6(z — €)5(2 — ().
By applying the transform method above, we arrive at a representation for
9(z,2¢,C)

eikBlz—Cl
9(z,2,6,) = Y /v,z,\u, by % dp? (\). (12)

je{s,a}

Recall that A = k2?(n2, — %). The Green’s function has been constructed
so that all the waves are outgoing. As mentioned earlier, we do not know
the correct form of the outgoing boundary condition for g(z, z;&, (). But the
transform method allows us to identify incoming and outgoing components of
the transform of g. The reader is referred to [3] for numerical examples of the
Green’s function.

3 Lippman-Schwinger equation

We return to finding u(z, z) satisfying (3). Suppose we know the incident wave
is wipe(2, 2). Using the decomposition u = ujpe + ugcat and (2), we find that
ugcat (2, 2) satisfies

Augeat + kZ”O(-T)Uscat = —kzm(x,z)u. (13)

Since we have the Green’s function, and m(z, z) is supported in Q = [—a, a] x
[—b, b], we can write the solution to (13) as

scat (2 2) = — k2 / m(€, Cyult, Q)a(e, 2 €, ¢) ded. (14)

The field u(z, z) in Q is unknown and needs to be determined by solving the
integral equation

Wz, 2) = tine(®, 2) — K2 /Q m(&, Qule, Ogle, 26, Q) dedC. (15)

Once this is determined, we can use (14) to find the scattered waves.



To show that (15) has a solution, we use the approach presented in [2].
Define the operator T' through

Tu(z,z2) := —kz/(;m(g, Qul&, Q)g(z, z;€,¢) déd¢ for (z,z) € Q. (16)

We form the Neumann series

with
uo(z, 2) = Uine(,2),  un(z,2) = Tup_1(z, 2).

We need to show that the series converges. To this end, we need to establish
that ||T’|| is bounded. From (16), we see that

Tz, 2)| < k*M][u]|oo /Q 9z, 7€, ¢)| dédc. (17)

Here M = supgm(z,z) < co. Let K := k*M [, |g9(z, 2;£,¢)| déd(. Then as
long K < 1, the Neumann series converges. What remains is to show that

Jo l9(z, 2; €, {)| d€d¢ is bounded.
Consider the z-symmetric contribution to the Green’s function. We use the
weight in (10) and the representation for the Green’s function in (12) to write

expikBi|z — | DY
2tk 1+ hvd? — N

gs($,2;§, C) = sz(ma)\l)vs(ga )\l)
=1

1 [ exp ikB|z — (| VA —d?
*or |, s@NuEN——n5 (A — @) cos?(hv/2) + Asin?(hv/2) @A

For |z| < a we have from (6)
lvg(z, \)| <1, I=1,---,mg,

and moreover, it is easy to show that

> d2.

| < (A — d2) cos?(hv/A) + Asin? (hv/X)
|US($’ )| = \ — d2 ’



We have then, for (z,2) and (&,¢) in Q

|gs(:l7z7§’<)|<—§ :2‘ 2A

1 /k n 1 d)\ 1 /00 —k|Bllz—¢| d\
+— — :
271' d2 2k,8 m 271' k2ngo 2k|18| m
We observe now that 8; > n.,! = 1,---,mg and apply the substitutions A =
d? + p? and \ = k%nco + v2 to the two integrals to obtain

knq *V‘Z C‘
mg 1 /
T,258, +
|gs( &0l 2hkng 27w Jo /kz _N 271' /kzn +U2

ms /knco
<
- thncl 271' /kzn L+ 2
e—vlz—=¢|
.
2m knco k2’I’L + 1/2
Mg 1 Mco + V ngo + ncl
< -+ —1
- Qhkncl 4 * 2 08 el

1/ g
+_
2 knco “k2n +I/2

From the equation satisfied by \;’s, we know that mg < 1 + 7. Finally,
integrating the latter over Q2 and interchanging the order of integration, we get

[lostor.0l dedc < a1+ 2R 2 g (Soo )]
th e nCl

o [

T S knco VW

< ab [1 + LW + hd) + glog (4nco)]

whkng] T Ngl

n
arctanh cl

L@
Tkne /ngOJr_n‘z:l




Figure 1: The real part of the incident field. The boundaries between the core
and the cladding are highlighted with lines.

It is clear now that for every choice of M we can choose k sufficiently small so
that in (17), K < 1. Under these conditions, the Neumann series converges.

4 Born approximation

Under the Born approximation, we use the first term of the Neumann series.
That is, we replace the (¢, ¢) with u;,. (€, ¢) in (15) to get

uscat (2, 7) & —k? /Q (€, Otine (€, O)g (e, 23 €, €) déd. (18)

This approximation will be accurate for small k£ and m(z, z).
We now connect this expression to modal theory from the study of optical
waveguides. In modal theory, we consider solutions of the form

u(z,z) = Avj(z, \)e*P?

where v;(z,\) have been given in (6) and (7). A mode is such a solution for
a particular value of 8. Recall that there are three types of modes depending



on (3: guided, radiation, and evanescent. The inhomogeneity in the index of
refraction couples an incoming incident mode with other modes. To see this,
we use the representation for the Green’s function (12), and insert it in (18).
We get

Ugeat (T,2) ~ _k2Lm(§,C)uinc(§’C)

ikB|z—(| .
> vj(x,A)vj(f,A)zTﬁ dof ()| dedc.

je{s,a}

Exchanging the order of integration and using the transform defined by the pair
(8) and (9), we arrive at

, eikBlz—C|
Uscas (20~ k2 | (€, Quime(6,0) S ded.
The above relation provides a formula to compute the coefficients of the scat-
tered modes which are excited by the incident field. The individual scattered
modes are of the form
Uscat (2, A)vj (2, A)-

Particular care should be used in computing the excited guided modes as the
eigenvalue A will be associated with either symmetric or antisymmetric v;(z, \)
(see (6) and (T7)).

When the incident field is a mode, then

Uinc(%,2) = AOUj(ﬁ,)\o)eikﬂoz, for j € {s,a},

where A\g = \/k2n2o — 52. The coefficients for the scattered modes are

b oo eikBoC kBl z—(|
Useat 20 % <240 [ | [ e upteno) de] 5 ac
b L/ —a Zk'B
The formula above can be found in standard optical waveguide texts such as
Snyder and Love [7] and Marcuse [4, 5].

To end this section, we describe some numerical results obtained using the
Born approximation. In all the calculations, we used & = 10. The homogeneous
waveguide has n; = 1 and nco = 2, with A = 0.2. There are three guided
modes; two symmetric and one antisymmetric. The incident wave in all the
calculations is the lowest eigenvalue symmetric guided mode. The real part of
the incident wave is shown in Figure 1.



Three perturbation profiles are chosen. In the first one, the perturbation
is a constant m(z, z) supported on [—0.5,0.5] X [—.2,.2]. The scattered wave,
shown in Figure 2b, consists mostly of transmitted wave, some reflected wave,
both of the same mode as the incident wave, and some radiation.

The second profile is a periodic perturbation whose period is half of the
incident wavelength (in the z-direction). The function m(z,z) is piecewise
constant, and is zero for |z| > h. The periodicity is at the Bragg condition
and is one that will couple the incident mode to forward and backward going
modes of the same wavenumber. This phenomenon can be seen in Figure 3
(bottom). In comparing the scattered waves to that in Figure 2 (bottom), we
see that there is a lot more reflected mode whose wavenumber is the same as
the incident wave.

The final profile is an asymmetric constant perturbation as shown in Figure
4 (top). The resulting scattered wave includes symmetric and antisymmetric
guided modes, in addition to radiation modes.

5 Discussion

We consider the problem of determining the scattered field in a 2-D optical
waveguide when the guide contains an anomaly in the index of refraction. Start-
ing with an explicit representation for the Green’s function for a 2-D optical
waveguide, we derived a Lippman-Schwinger integral equation for the solution
of the scattering problem. We show that the integral equation admits a so-
lution. For the case where the index of refraction perturbation is small, we
can approximate the scattered field using the Born approximation. The Born
approximation is related to the classical modal analysis. The use of the Born
approximation is demonstrated in several numerical computations. Finally, we
note that while our results are for piecewise constant waveguides, we are confi-
dent that they can be extended to the case where the index of refraction in the
core is variable.
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Figure 2: The block perturbation is supported on [—0.5,0.5] x [—.2,.2]. The
scattered field consists mostly of transmitted waves of the same form as the
incident wave. However, a small amount of radiation has been generated.



Figure 3: The perturbation, supported on [—0.5,0.5] x [—.2,.2], is piecewise
constant and periodic at the Bragg condition. The scattered field has a strong
reflection and transmission which are forward and backward going versions of
the incident mode. The amount of radiation appears smaller than in Figure 2.



Figure 4: The perturbation is a small block and does not have symmetry in the
vertical direction. Therefore, guided modes which are symmetric and antisym-
metric are excited, in addition to radiated modes.
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