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1 Applications of magnetic anisotropy data
Magnetic fabrics are a powerful, rapid and non-destruc-
tive tool to characterize mineral alignment and dynamic 
processes, and as such are widely applied in structural 
geology and tectonics, volcanology, sedimentology, and 
pore fabric studies. Rock deformation, sediment trans-
port and compaction, lava and pyroclastic flow direc-
tions and emplacement of igneous bodies are some ex-
amples of processes that can be studied using magnetic 
anisotropy. Furthermore, paleomagnetic remanence data 
may exhibit a dependence on the magnetic fabric and 
magnetic anisotropy can be used to correct those data. 
Different minerals, including the characteristic rema-
nence carriers, contribute differently to the observed 
magnetic fabrics, and understanding their contributions 

to the anisotropy allows better interpretation of geody-
namic processes and paleomagnetic data (e.g., Bieder-
mann & Bilardello, 2021, IRMQ31-3). 
 Numerous anisotropy parameters and ways to visual-
ize magnetic fabric data exist, and choice of parameters 
and plots to use is by no-means homogeneous across the 
different research communities. Choice of parameters is 
often adapted to the specific application: for example, 
certain parameters for lineation (L) and foliation (F), 
more below, are often used for structural geology be-
cause they relate to the equivalent parameters as derived 
from other strain markers and are often plotted against 
each other as conventionally done for strain ratios (e.g., 
see Tarling & Hrouda (1993) for a more extensive dis-
cussion). Likewise, in “applied” magnetic fabric studies, 
the anisotropy degree is commonly described by the pa-
rameters P or PJ (also referred to as P’); however, studies 
that focus on single crystals’ magnetocrystalline anisot-
ropy more commonly use the Δk or k’ parameters.
 Describing non-ellipsoidal particles or quantities is 
even more complex, and requires additional parameters, 
such as roundness, angularity, sphericity, or irregularity 
(e.g., Blott & Pye, 2007). Similarly, complicated anisot-
ropies arising from higher-order tensors need additional 
descriptors (e.g., Biedermann et al., 2020; Flanders & 

Practical Magnetism VIII: reporting and 
visualization of magnetic anisotropy data

Figure 1. Schematic representation of full vs deviatoric tensors. In full tensors, the eigenvalues correspond to the semi axes of the 
anisotropy ellipsoid, whereas in the deviatoric tensors, the eigenvalues are defined as the difference between the semi axes of the 
ellipsoid and the “isotropic radii” approximated by the mean susceptibility km.
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The Paleocene-Eocene Thermal Maximum (PETM, ~56 
Ma ago) is the largest carbon cycle perturbation of the 
Cenozoic (Westerhold et al., 2020). Although the rate 
of warming during the PETM pales in comparison to 
the Anthropocene, it is one of the best natural analogs 
for understanding and predicting outcomes associated 
with modern climate change (McInerney & Wing, 2011; 
Zeebe et al., 2016). It is globally identified by a nega-
tive carbon isotope excursion (CIE) (Kennett & Stott, 
1991; Thomas & Shackleton, 1996) and is best described 
by six stratigraphic intervals that reflect the structure of 
the CIE: the pre-CIE, CIE onset, CIE core, CIE recovery 
phase I, CIE recovery phase II, and post-CIE intervals 
(Westerhold et al., 2018). 
 The CIE is recorded at high temporal resolution 
within the Marlboro Clay that was deposited along the 
Paleogene New Jersey, Maryland, and Delaware coast 
(Bralower et al., 2018; John et al., 2008; Kent et al., 
2003; Self-Trail et al., 2012, 2017; Stassen et al., 2012; 
Zachos et al., 2006). The magnitude of the CIE recorded 
within bulk carbonate from the CIE core interval varies 
by depth in the Marlboro Clay, with more negative δ13C 
values nearshore than offshore, although the magnitude 
of the CIE recorded in benthic foraminifera shows little 
to no deviation (Bralower et al., 2018; John et al., 2008; 
Kent et al., 2003; Self-Trail et al., 2012, 2017; Stassen 
et al., 2012; Zachos et al., 2006). This off-shore gradient 
has been variably attributed to differences in coastal ma-
rine productivity (Gibbs et al., 2006; John et al., 2008; 
Stassen et al., 2012), sediment reworking (John et al., 
2008; Stassen et al., 2012), cometary debris (Kent et al., 
2003), or as an artifact of authigenic siderite (Bralower 
et al., 2018; Self-Trail et al., 2017). This last interpreta-
tion is supported by clast counts and clast morphology 
of siderite in washed samples of PETM sediments from 
the Maryland and New Jersey coast (Bralower et al., 
2018; Self-Trail et al., 2017), including sediments from 
the Wilson Lake-A core (Bralower et al., 2018) that have 

been the focus of several of our studies on magnetofos-
sils (Lippert & Zachos, 2007; Wagner, Egli, et al., 2021; 
Wagner, Lascu, et al., 2021). 
 Siderite (FeCO3) is a common diagenetic carbonate 
in iron and carbon-rich marine sediments (Ellwood et 
al., 1986, 1988; Vuillemin et al., 2019). Paleomagneti-
cally, iron-rich carbonates can be problematic because 
they can quickly oxidize to magnetite, maghemite, or 
hematite with little or no heating and produce aberrant 
remanence directions and secondary nanoparticles of 
magnetite (Ellwood et al., 1986, 1988; Golden et al., 
2004). Although siderite carries no remanence at room 
temperature (RT), it is antiferromagnetic below 37 K. 
Thus, it can be detected in bulk sediments using Field-
Cooled (FC) and Zero-Field Cooled (ZFC) remanence 
experiments (Bilardello & Jackson, 2013; Housen et al., 
1996; Pan et al., 2002).
 A principal goal for my fellowship was to understand 
the composition and remanence characteristics of the 
PETM magnetofossil assemblage from the Wilson Lake-
A core. I also wanted to test if I could use non-destruc-
tive low temperature (LT) remanence measurements to 
assess the presence and relative abundance of siderite in 
these bulk samples. This approach allows me to direct-
ly compare the interpretations regarding siderite to our 
previous work distinguishing and quantifying morpho-
logically distinct magnetofossil assemblages (Wagner, 
Lascu, et al., 2021). 
 Seventeen samples were selected from the Wilson 
Lake-A core that span four of the six PETM intervals: 
the pre-CIE, CIE onset, CIE core, and post-CIE inter-
vals. The Wilson Lake-A core does not record either of 
the CIE recovery intervals. I measured the FC and ZFC 
LT saturation remanent magnetization (SIRM) and the 
LT demagnetization of RT SIRM of each of these sam-
ples using the Magnetic Properties Measurement System 
instruments at the Institute for Rock Magnetism (IRM). 
I then normalized the FC-ZFC-RT data for each speci-
men to the initial FC remanence. The derivatives of the 
FC and ZFC curves are shown here to better observe the 
LT remanence behavior in the samples, such as phase 
transitions like the Verwey transition (TV) for magnetite 
(e.g., Stacey & Banerjee, 1974), the double TV which 
distinguishes abiotic from biotic magnetite (Chang et 
al., 2016), and the Néel temperature for siderite (Jacobs, 
1963). 
 The FC-ZFC-RT datasets from each of the four PETM 
intervals at Wilson Lake show little to no variation with-
in each stratigraphic interval (i.e., pre-CIE, CIE onset, 
CIE core, and post-CIE intervals). Therefore, I focus on 
the variation, and similarities, observed between the in-
tervals in the descriptions below using a representative 
sample from each of the four intervals (Figure). 
Verwey transitions (TV) are observed between ~90-120 
K in each of the PETM intervals, indicating that mag-
netite is present within each of the samples (Figure). 
There is a weak double TV transition in the FC curves 
from the CIE onset interval, further suggesting mixtures 
of detrital and biogenic magnetite (Chang et al., 2016). 
This is consistent with our published RT measurements 
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and electron microscopy (Lippert & Zachos, 2007; Wag-
ner, Egli, et al., 2021; Wagner, Lascu, et al., 2021). A 
more thorough investigation of the different populations 
of magnetite as revealed by these LT measurements is 
discussed in a separate publication in preparation. 
 The LT remanence of specimens representing the 
CIE onset and core intervals show at least one other LT 
inflection between 25-30 K in the FC and ZFC curves 
(Figure). Although the FC and ZFC curves from both 
the pre- and post-CIE intervals do not show as clear an 
inflection over this temperature range, the remanence of 
both sets of curves decreases rapidly with warming over 
this range. Siderite was documented in smear slides from 
the Wilson Lake-A core (Bralower et al., 2018), so I con-
clude that this LT behavior is due to warming through 
the Néel temperature for siderite (Housen et al., 1996; 
Jacobs, 1963). 
 The LT data suggest that siderite is more abundant 
and well-mineralized within the CIE core interval at Wil-
son Lake: I interpret this from the muted magnetite sig-
natures and sharper transitions at the Néel temperature 
within this interval (Figure). This interpreted increase 
in siderite content is corroborated by a separate study 
that reports a small, concomitant increase in siderite 
grains and more negative carbon isotope values from 
the low carbonate interval (approximately equivalent to 
the CIE onset interval) to the non-low carbonate interval 
(roughly equivalent to the CIE core interval) in the Wil-
son Lake-A core (Bralower et al., 2018). I note that the 
LT remanence data from the CIE core interval samples 
are very similar to FC, ZFC, and RT cycling datasets for 
modern samples known to contain siderite (Abdulkarim, 
2020). A more thorough description and discussion of 
the implications of this siderite for magnetofossil and 
environmental interpretations is forthcoming in another 
publication.
 Identification of different iron mineral phases is im-
portant for understanding the depositional, diagenetic, 
and authigenic processes in sediments that underly our 
interpretation of climatic and ecological events in the 
geologic record. The LT remanence measurements con-
firm the presence of siderite at Wilson Lake-A (Bralower 
et al., 2018), underscoring the capability of these mea-
surements to detect iron minerals that otherwise elude 
RT measurements like first-order reversal curve mea-
surements (Wagner, Lascu, et al., 2021). 
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Schuele, 1964; Stacey, 1960). In this brief overview, 
we limit the discussion to the magnitude ellipsoids of 
second order tensors. While not describing every single 
parameter or plot (we do report many of the parameters 
proposed in Table 1), we share some general consider-
ations on reporting and visualizing magnetic anisotropy 
data that apply to different areas of research employing 
magnetic fabrics, hoping this will be useful in navigating 
the anisotropy jungle. A similar article on the selection 
of anisotropy of magnetic susceptibility parameters was 
already published by Cañon-Tapia (1994), and we refer 
the readers to that article for completeness.
 On a more general note, it is very common for “mag-
netic anisotropy” and/or “paleomagnetism” to be re-
ferred to as “tools”, as has also been done here. How-
ever, we take this opportunity to iterate that neither are 
tools in the sense that they can be applied blindly, but are 
in fact areas of research in their own right, and a-priori 
thought should be put into data acquisition and process-
ing schemes, parameters to be used, and data visualiza-
tion and interpretation. While for the most part we are 
certainly “preaching to the quire”, we hope that given the 
didactic nature of this article series we are able to make a 
broader group of users aware of the complexities behind 
applying paleomagnetism and, in this case, magnetic an-
isotropy.

2 The jungle of anisotropy parameters
2.1 Susceptibility tensors, eigenparameters and mean 
susceptibility
From here onwards we will adopt terminology specific 
to magnetic susceptibility for simplicity, but the reader 
should be aware that the same applies for determining 
anisotropy from magnetic remanences also. Anisotropy 
is normally described by either a second-order symmet-
ric tensor or a combination of mean susceptibility (kmean), 
principal susceptibilities (k1, k2, k3) and their directions, 
and parameters describing the degree or shape of the 
anisotropy. Tensors can be reported as full or deviatoric 
tensors (Fig. 1), either describing directional suscepti-
bilities or susceptibility differences (see the IRMQ31-1 
companion article by Bilardello & Biedermann, 2021). 
The eigenvalues of these tensors are k1 ≥ k2 ≥ k3 and 
can be normalized in different ways: for deviatoric ten-
sors, k1+k2+k3= 0; while for full tensors, k1+k2+k3= 3, 
k1+k2+k3= 1, or k1+k2+k3= 3kmean are commonly used 
(more on kmean or km, for brevity, below). These provide 
equivalent information, and it is normally clear from the 
reported values what normalization was used. However, 
note that the ranges adopted by some parameters defin-
ing anisotropy degree, magnetic lineation and foliation 
depend on the definition and normalization of km and the 
eigenvalues. Therefore, a clear description of how data 
are processed and presented will avoid confusion. Also 
note that for remanence anisotropy, a further normaliza-
tion may be made to the applied field when determining 
anisotropy of anhysteretic susceptibility (McCabe et al., 
1985). For a discussion on normalization and the differ-
ent anisotropy types we refer to the IRMQ30-2 article 
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by Bilardello (2020). Though km is seemingly an easy 
parameter, several ways of calculating km exist. The 
simplest calculation is that of an arithmetic mean, i.e., 
km= ⅓(k1+k2+k3) or k1+k2+k3. Because the susceptibility 
axes are often lognormally distributed, a logarithmic km 
notation (n) is also used, where n (or sometimes nm)= 
(n1+n2+n3)/3, and n1, n2, n3 are the natural logarithms of 
the principal susceptibilities. Additional ways of cal-
culating mean susceptibility include geometric means, 
kgeom= (k1∙k2∙k3)⅓, particularly useful where the anisot-
ropy correlates with strain, and the average geometric 
logarithmic mean kgeom= antilog [(Σi

N log k)/n], where n 
is the number of samples (we refer to Tarling & Hrouda 
(1993) for a discussion of these). 
 The definition of the eigenvalues is straightforward 

when these are all positive (k1≥ k2≥ k3> 0), but differ-
ent conventions exist when they are all negative or 
have mixed signs, for example in carbonate rocks (e.g., 
Hrouda, 2004). If all eigenvalues are negative, k3 may 
be defined as either the smallest in absolute values, or 
as the most negative. Using absolute values will yield 
anisotropy parameters that are most close to the known 
parameters for positive eigenvalues, and may therefore 
make the most sense. However, when a mix of positive 
and negative eigenvalues is (more rarely) observed, e.g., 
due to a superposition of diamagnetic and paramagnetic 
anisotropies (e.g., feldspar with impurities, Biedermann 
et al., 2016), then defining k3 as the most negative value 
is more intuitive. In this case, however, many anisot-
ropy parameters are not truly defined, and the best way 

Table 1. Broad selection of anisotropy parameters that have been proposed. Note how many are interrelated: e.g., lineation and foliation parameters 
are, in truth, categories of shape parameters and in some of their expressions are included in many of those (e.g., q= ΔkL/Excess Susceptibility). 
*Also, other parameters, e.g., ΔkH, ΔkL (Owens & Rutter, 1978) or %L (Taira, 1989) were already used by others (e.g., Granar, 1958) or Khan 
(1962)) nested in other parameters or simply normalized (e.g., by km and/or expressed as percentage), so that their origin/original use is not obvi-
ous. For example, ΔkF, un-normalized, had not been defined before, but its normalized counterpart was already defined by Khan (1962) as for 
ΔkL**Note that Stacey et al. (1960) calculated L, and F (and therefore R) using the differences of the demagnetizing factors (N2-N1 and N3-N2, 
which may be compared to k1/k2 and k2/k3, respectively).***These parameters are yet unpublished to the best of our knowledge, and we are there-
fore jokingly “claiming” them here as a testament to the seemingly endless possibility of anisotropy parameters. 

Parameter Range  
S = 1 

Reference Parameter Range  
S = 1 

Reference 

Anisotropy degree      
Anisotropy degree, P or P2=  
k1/k3 

1 − ... Nagata (1961) Percent anisotropy= (k1-k3)2km 0 − 1.5 Khan (1962) 

Orientation strength, C=  
ln(k1/k3) 

0 − ... Woodcock (1977) Absolute anisotropy= (k1-k3)/k2 0 − ... Rees (1966) 

Percent anisotropy=  
100(k1-k3)/k1 

0 − 100 Graham (1966) Corrected anisotropy, P’ or PJ= 
exp{2[(n1-n)2+(n2-n)2+(n3-n)2]}1/2 

1 − ... Jelinek (1981) 

Percent anisotropy, %A=  
100(k1-k3)/km 

0 − 300 Taira (1989) Deviatoric Susceptibility, K’=  
{[(k1-km)2+(k2-km)2+(k3-km)2]/3}1/2 

0 − … Jelinek (1984) 

Total anisotropy, H= (k1-k3)/km 0 − 3 Owens (1974) !kH = k1-k3 0 − 1 Owens & Rutter (1978)* 
Lineation      
Lineation*, L= k1/k2 1 − ... Balsley & 

Buddington (1960) 
Lineation degree=  
2k1/(k2+k3) 

1 − ... Hrouda et al. (1971) 

Normalized lineation, L=  
(k1-k2)/km 

0 − 3 Khan (1962) Lineation, %L= (k1-k2)100/km 0 − 300 Taira (1989) 

Lineation, L=  
(k1+k3)/2k2 

1 − ... Urrutia-Fucugauchi 
(1980) 

!kL = k1-k2 0 − 1 Owens & Rutter (1978)* 

Foliation      
Foliation*, F= k2/k3 1 − ... Stacey et al. (1960) Foliation degree= 2k2/(k1+k3) 0 − 2 Urrutia-Fucugauchi 

(1980) 
Foliation, F= 1-(k3/k2) 0 − 1 Porath (1971) Excess Susceptibility= (k1+k2)/2-k3 0 − 0.5 Granar (1958) 
Normalized foliation, F=  
(k2-k3)/km 

0 − 1.5 Khan (1962) Foliation, %F= (k2-k3)100/km 0 − 150 this article*** 

Foliation, F= (k1+k2)/2k3 500 − 500 Balsley & 
Buddington (1960) 

!kF = k2-k3 0 – 0.5 this article*** 

Shape      
Prolateness= (k1-k2)/(k2-k3) 0 − ... Khan (1962) E-factor, F/L= k2

2/k1k3 0 − ... Hrouda et al. (1971) 
Prolateness=  
(2k1-k2-k3)/(k2-k3) 

1 − ... Urrutia-Fucugauchi 
(1980) 

Difference shape factor, U=  
(2k2-k1-k3)/(k1-k3) 

-1 − 1 Jelinek (1981) 

Oblateness=  
(k2-k3)/(k1-k2) 

0 − ... Khan (1962) Shape indicator=  
[k3(k1-k2)]/[k1(k2-k3)] 

0 − ... Stacey et al. (1960) 

Oblateness=  
(k1+k2-2k3)/(k1-k2) 

1 − ... Urrutia-Fucugauchi 
(1980) 

Shape parameter or angle, V=  
sin-1[(k2-k3)/(k1-k3)]1/2 

0 − 90 Graham (1966) 

Shape gradient, K=  
ln(k1/k2)/ln(k2/k3) 

0 − ... Woodcock (1977) Shape parameter, T=  
(2n2-n1-n3)/(n1-n3) 

-1 − 1 Jelinek (1981) 

R-factor, L/F= k1k3/k2
2 1 −... Stacey et al. 

(1960)** 
Ellipsoid shape=  
(k1-k2)(2k1-k2-k3)/(k2-k3)(k1+k2-2k3) 

0 − ... Urrutia-Fucugauchi 
(1980) 

q-factor, L/F=  
(k1-k2)/[(k1+k2)/2-k3] 

0 − 2 Granar (1958) Shape indicator=  
(k1k3-k2

2)/(k1k2-k1k3) 
-1 − 0 Urrutia-Fucugauchi 

(1980) 
Strain indicator=  
(k1k3-k2k3)/(k2

2-k1k3) 
-… − 1 Flinn (1962)    
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to proceed should be to describe each fabric component 
separately (e.g., Černý et al., 2020). In any case, stating 
which convention is used to define the eigenvalues is al-
ways recommended.

2.2 Anisotropy degree and shape
Parameters to describe anisotropy shape and degree, in-
clude P (or P2), P’ (or PJ), L, F, Δk, k’ amongst many oth-
ers (see Table 1). Cañon-Tapia (1994) notes that linea-
tion and foliation parameters are necessarily inextricably 
linked to each other, and both incorporated in other shape 
parameters that will similarly allow the identification of 
a fabric with either a prominently developed magnetic 
foliation or lineation. Note that parameters describing 
AMS degree also depend on the AMS shape; e.g., an 
extremely prolate anisotropy with k3= 0.01 (k1= 2.98, k2 
= 0.01, k3= 0.01, using k1+k2+k3= 3) and an extremely 
oblate anisotropy with the same k3 (k1= 1.495, k2= 1.495, 
k3= 0.01) would have Δk= k1-k3= 2.97 and 1.485, respec-
tively, and P = 298 and 149.5, respectively. Thus, prolate 
anisotropies always appear larger compared to the oblate 
counterpart.
 Of the many parameters, we will briefly discuss some 
of the simplest, and therefore straightforward, or popu-
larly used. For most researchers, a combination of linea-
tion (L), foliation (F), degree of anisotropy (P or P2), 
corrected degree of anisotropy (PJ or P’), and the shape 
parameter (U), or its lognormal-distributed equivalent 
(T), constitute the “bread and butter” of anisotropy pa-
rameters. Balsely and Buddington (1960) suggested de-
fining F as (k1 + k2)/2k3, which intuitively makes sense 
for foliated rocks; however, Stacey et al. (1960) point 
out that a rock with a lineation but no foliation should by 
definition have a foliation of unity, which is not the case 
here. In fact, both L and F calculated this way will reach 
the same maximum value for two perfectly lineated and 
foliated samples with the same k3, which is rather con-
fusing (see Table 1), and we only recommend use of this 
parameter to compare samples with similar foliation-
dominated fabrics with dispersed k1 and k2 axes, e.g., for 
sedimentary fabrics. 
 Parameters that are based on differences rather than 
ratios have also been proposed, e.g., the normalized lin-
eation of Khan (1962), L= (k1-k2)/km. Tarling & Hrouda 
(1993) recommend that use of this parameter should be 
abandoned, albeit merely based on the potential confu-
sion with other lineation parameters also defined “L”, 
though many other similarly defined lineation parameters 
also existed at the time, including the magnetic lineation 
(L= (k1-k2)100/km) of Taira (1989), which should ide-
ally be termed %L, as we have done here (see Table 1). 
More to the point, Cañon-Tapia (1994) argues that given 
the small departure from isotropy typically observed in 
natural rocks, there is no practical difference between 
using ratios or difference-parameters. In fact, Ellwood 
et al. (1988) and Tarling (1983) had already noted that 
the actual calculation of various parameters reduces to 
a simple arithmetical combination of the principal sus-
ceptibilities, provided that these can be uniquely deter-
mined, and consequently, they are all interdependent to 

some extent. However, it will be shown below that for 
mixtures of paramagnetic and ferromagnetic minerals 
with different anisotropies, difference-parameters can 
prove extremely useful.
 Many commonly used parameters (L, F, P...) have the 
advantage that they are easily relatable to structural pa-

Figure 2. Mean susceptibility and anisotropy parameters 
for a rock consisting of perfectly aligned biotite and various 
amounts of isotropic magnetite. The anisotropy degree P de-
creases quickly with increasing magnetite concentration, and 
can only be interpreted in conjunction with km. The parameters 
k’ and Δk indicate the alignment of biotite independent of mag-
netite content.
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rameters, but the disadvantage that they are only valid for 
full tensors and cannot be applied to deviatoric tensors. 
Deviatoric tensors are often determined in single crystal 
studies, as they are more precisely defined because dif-
ferences are measured directly (e.g., Jelinek, 1996), and 
because some methods only provide deviatoric tensors. 
Additionally, P and related anisotropy parameters need 
to be interpreted in conjunction with km, when determin-
ing contributions to the overall fabric. For example, a 
rock consisting of 100% perfectly aligned olivine will 
have a P value of 1.07, which corresponds to the single 
crystal anisotropy of olivine (when the olivine is not per-
fectly aligned, the P-value will be lower) (Fig. 2). When 
isotropic secondary magnetite is added to this rock, the 
P-value rapidly decreases, and drops below 1.01 as the 
magnetite content becomes larger than 0.2 vol% (Fig. 
2). Therefore, this rock’s P-value will appear nearly iso-
tropic, leading to the misinterpretation that the rock is 
almost undeformed even though the olivine is perfectly 
aligned. When interpreting P in conjunction with km, it 
becomes clear that even a P-value of 1.01 for a high km 
may indicate strong alignment of the paramagnetic min-
erals. On the other hand, difference-parameters such as 
Δk or k’ reflect the anisotropy of the olivine independent-
ly of the magnetite content, avoiding misinterpretation 
of complex fabrics (Fig. 2).

2.3 Units of anisotropy parameters
Eigenvalue normalization not only affects parameter 
ranges (cf. 2.1), but also bears effects on the units of the 
parameters. Without any normalization, the units of the 
eigenvalues and their mean will reflect the quantities 
measured, i.e., the susceptibility or remanence, and these 
will vary depending on whether they are mass- (e.g., m3/
kg, Am2/kg) or volume-normalized (e.g., dimension-
less, SI, or A/m), or additionally normalized by field to 
convert remanences into susceptibilities (see Bilardello, 
2020, IRMQ30-2, for a discussion on normalization). If 
un-normalized eigenvalues are used, then the difference 
parameters will maintain the same units, whereas param-
eters based on ratios will all be dimensionless. It is of 
paramount importance, however, that some normaliza-
tion is performed if the parameters are to be compared 
among different rocks, possibly even within the same 
lithology. Normalizing difference-parameters by km will 
generate a dimensionless parameter, which is inher-
ently easier to compare among samples; however, one 
always needs to bear in mind that km and the difference 
parameters may not be carried by the same minerals, so 
that normalized parameters are only seemingly easier to 
compare, as demonstrated in the previous section.

2.4 Terminology for fabric shape
Finally, throughout the years a wide terminology has been 
used to refer to the different fabric shapes, regardless of 
how these are calculated. Terms include “flattened ellip-
soid”, “disk-shaped”, “uniaxial girdles”, “oblate” fabrics 
(also, “oblateness”), “constricted ellipsoids”, “elongated 
ellipsoids”, “rod-shaped”, “uniaxial clusters”, “lineated” 
or “prolate” fabrics (“prolateness”) (e.g., Borradaile & 

Jackson, 2004, 2010; Woodcock, 1977). Borradaile & 
Jackson (2004) note that terms such as “flattened” and 
“constricted” used in structural geology are meaningless 
in the context of magnetic anisotropy, and geometrical 
descriptors are more appropriate. A flattening or con-
strictional strain field is expected to align all grains with 
their long axes in a plane or along a preferred direction, 
respectively. However, the single crystal principal mag-
netic susceptibility axes do not necessarily correspond 
to the mineral shape. For example, for most amphiboles, 
the maximum susceptibility is along the crystallographic 
[010] axis, but the longest axis is normally [001]. Simi-
larly, the maximum susceptibility of most clinopyrox-
enes is at 45° to the [001] crystallographic axis, which is 
the longest axis (e.g., Biedermann, 2018). Other terms, 
such as “sedimentary fabrics” for oblate ellipsoids of 
sediments and sedimentary rocks, with scattered k1 axes 
within the sedimentary bedding plane and subvertical k3 
axes, are also widely used and appropriate in the right 
context. However, we do recommend that defining fab-
rics by a generic “type”, for example “type A for oblate 
fabrics” and “type B for prolate”, is unnecessary and 
confusing. 

3. Data visualization – finding the right plot and “more 
processed” parameters
3.1. Fabric strength and shape
As for the parameters, certain plots are more appropri-
ate than others for different applications, exactly because 
they use the same, or comparable, derived quantities. For 
example, the Flinn diagram (Flinn, 1962) which plots L 
(k1/k2) versus F (k2/k3), with origin at F, L = 1, 1, is of-
ten used in structural geology to evaluate petrofabrics 
(Fig. 3a). Shape, on these diagrams, is represented by 
the slope of a line connecting the origin to the datapoint, 
and quantified by the confusingly named parameter k= 
(L-1)/(F-1), which has the further inconvenience of be-
ing asymmetric, so that oblate ellipsoids have 1> k ≥ 0 
whereas prolate ellipsoids have ∞ ≥ k > 1. A disadvan-
tage of the Flinn diagram is that weak anisotropies are 
clustered near the origin, which can make data hard to 
discern and evaluate their shapes. This effect is over-
come on the Ramsay diagram (Ramsay, 1967), also de-
rived for structural applications, where the logarithms of 
the eigenvalues are used, so that the origin is at 0, 0 and 
its shape parameter K = ln(L)/ln(F). 
 Unlike Flinn’s shape parameter k, Jelink’s (1981) U 
and T parameters range symmetrically between U or T= 
+1 for oblate ellipsoids and U or T= -1 for prolate ellip-
soids, noting, however, that U is zero when k1-k2 = k2-k3, 
while T= 0 when k1/k2 = k2/k3. 
 As other parameters, these shape parameters are also 
interrelated, so that T, which may also be expressed as 
(lnF-lnL)/(lnF+lnL), relates to Ramsay’s K as T= (1-K)/
(1+K), whereas U may also be expressed as (F-L)/(F+L). 
Likewise, Jelinek’s (1981) PJ parameter PJ= exp {2[(n1-
n)2+(n2-n)2+(n3-n)2]}1/2 relates to Nagata’s (1961) P pa-
rameter (k1/k3) as ln(PJ)= ln(P)∙{1+[(T2)/3]}1/2.
 The Jelinek diagram (Fig. 3b), which plots PJ versus 
the shape parameter T, is popular in the rock-magnetic 
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community. Compared to the Flinn diagram, this plot has 
the advantage of expanding the region of low anisotropy; 
however, expanding this area of the plot necessarily in-
creases the uncertainty around data, so that slight shape 
differences for weakly anisotropic fabrics appear just as 
significant as for larger degrees of anisotropy. In general, 
at low anisotropy degrees, shapes are poorly defined and 
subject to large uncertainty. Moreover, for perfect isot-
ropy (PJ= 1) the fabrics are spherical by definition, so 
any values of T at this point are not real, presenting a 
“non-possible” region, or axis, within the diagram itself.
 To obviate for these issues, Borradaile & Jackson 
(2004) proposed a polar plot in which PJ is the radius 
and T is the arc-length, which extends from 0 to π/4, 
representing increasingly oblate distributions, and from 
0 to -π/4, representing increasingly prolate ellipsoids 
(Fig. 3c). Borradaile & Jackson (2010) also extended 
the polar plot for negative values of PJ, making the plot 
symmetrical about the origin (not shown here), so that 
the negative PJ oblate field is on the bottom-left, while 
the prolate negative PJ field on the top-left part of the 
plot, allowing representation of diamagnetic fabrics on 

the same diagram, if the convention of k1 = largest nega-
tive susceptibility is used and substituting the terms in 
Jelinek's (1981) formula with ln(k1/ km) and so on.
 When representing data from the same lithology and/
or when there is not much variation among the fabrics 
of different specimens, another useful plot shows the 
cumulative distributions of the bootstrapped eigenval-
ues, introduced by Tauxe et al. (2018) (Fig. 4). Here, the 
bootstrapped individual eigenvalues are plotted with the 
intervals containing 95% of their means, versus their cu-
mulative distribution. Strongly overlapping distributions 
of the three eigenvalues readily indicate more isotropic 
fabrics, whereas non-overlapping distributions indicate 
unique eigenvalues and thus triaxial (or neutral) fabrics. 
Likewise, overlapping k1 and k2, but distinct k3 distribu-
tions indicate fabrics that tend to oblate, while overlap-
ping k2 and k3, but distinct k1 distributions indicate pro-
late fabrics. The larger the “spread” between k1 and k3, 
the stronger the anisotropy. Because the distributions are 
bootstrapped, including specimen-data or site-mean data 
that carry substantially different anisotropies will affect 
the cumulative distribution, so that the function becomes 

A B C

Figure 4. Cumulative distribution of the eigenvalues: a) triaxial-prolate data, note the similar magnitude of the minimum and in-
termediate eigenvalues that do not however fall within each other’s 95% confidence intervals, black solid lines for the minimum 
and blue dash-dot lines for the intermediate,  yet they are both much smaller than the maximum eigenvalue distribution, red line, 
indicating a dominantly prolate fabric; b) triaxial data showing significant spacing and no overlap between the three eigenvalue 
distributions; c) perfectly oblate data, with indistinguishable maximum and intermediate eigenvalue distributions, much larger than 
the minimum. Data from Bilardello (2021), plotted using the PmagPy software package of Tauxe et al. (2016).

Figure 3. a) Flinn diagram of L versus F, with superimposed curves for T(J) and PJ to demonstrate the relationship between these 
parameters in this space; b) Jelinek plot of T versus PJ, which avoids the clustering of low anisotropy data towards the origin of 
the Flinn diagram, yet introduces distortion of the same data (see text for details); c) Polar plot of T(J) (diagram arc-length) and PJ 
(diagram radius) of Borradaile & Jackson (2004). Original figures by Borradaile & Jackson (2004 and 2010).

A CB
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somewhat blocky. Such observation will alert the user 
that one or more fabric determinations may either be dif-
ferent from the others, or problematic. In this respect, 
however, to some extent both the sampling scheme and 
data do dictate which plots one should use, so that if 
there is a range in anisotropy degree and/or shape, the 
more isotropic data will be strongly clustered on a Flinn 
diagram, whereas the cumulative distribution plot will 
be somewhat off.
 Triangular or ternary diagrams of the normalized ei-
genvectors have also been used for eigenvalues, with 
apices at k1=1, k2= 0.5, and k3=0.33 (Mark, 1974; Mark 
& Andrews, 1975), and are analogous to Harland and 
Bayly's (1958) stress plot (Fig. 5). Such plots have a 
curved line separating the fields for clustered (lineated) 
and girdled (foliated) fields, and the overall lack of sym-
metry makes them somewhat difficult to interpret (Fig. 
5a). Nevertheless, ternary diagrams are commonly used 
within the glaciology community, for example, where 
fabric elongation (1- k2/k1) is plotted against fabric isot-
ropy (k3/k1). In this diagram, the apices represent three 
end-member fabric shapes: [l - (k2/k1)= 0; k3/k1 = 1] for 
isotropic fabrics; [l - (k2/k1)= 0; k3/k1= 0] for planar gir-
dles; and [l - (k2/k1)= 1; k3/k1 = 0] for perfect axial clus-
ters. (Benn, 1994).
 As a final remark about different ways of plotting an-
isotropy parameters, one must bear in mind that for per-
fect fabrics, ranging from neutral to infinitely prolate and 
oblate, the magnitudes of the eigenvalues vary asymmet-
rically from being equal to one axis being unique and 
infinitely long (k1) and the other two equal and infinitely 
small (k2= k3) for the prolate case, or one being infinitely 
small (k3), and the other two equal and infinitely long 
(k1= k2) in the oblate case. Therefore, for prolate fabrics 
with finite, not infinite, principal axes, the maximum ei-
genvalue will always be twice the size of the maximum 
(and intermediate) eigenvalues of the oblate counterpart 
(see Fig. 5a). This condition necessarily generates an in-
herent asymmetry in any possible plot and shape param-
eter, as mentioned above for Flinn’s k, Ramsey’s K, or 
Jelinek’s PJ, for which prolate fabrics will always have 
more range. Moreover, incrementally reducing prolate-
ness to neutrality and subsequently increasing oblate-
ness, the path will not follow a linear trajectory (cf. Fig. 
1.6 of Tarling and Hrouda, 1993). For all the consider-
ations made so far, every plot has its faults, so that choice 
of diagram is mostly a matter of preference, and to some 
extent dictated by the data at hand and/or sampling strat-
egy.

3.2. Fabric orientation.
Plotting eigenvector orientation data on an equal area 
lower hemisphere stereonet is the most widely used and 
appropriate fabric orientation representation (Fig. 6a). 
However, how to represent the confidence of a mean 
eigenvector of a group of samples varies among users. 
Granted that confidence circles (e.g., α95 circles) should 
never be used for anisotropy, Jelinek’s (1978) confidence 
ellipses are probably the most commonly used method of 
representing uncertainties (Fig. 6b). Alternatively, Con-

stable and Tauxe (1990) developed a bootstrap represen-
tation for anisotropy data, where the bootstrap “cloud” 
distribution of eigenvectors is plotted on a stereonet 
(Fig. 6c). The bootstrap method relies on the assump-
tion that the full statistical variability is represented in 
the data set, and therefore about 20 or more specimens 
should be included. However, if the standard deviations 
around the tensor elements are normally distributed it 
is possible to perform a parametric bootstrap on fewer 
specimens, possibly as few as six (Tauxe et al., 1998). 
The mean eigenvectors of the distribution and a contour 
line enclosing 95% of the bootstrapped eigenvectors may 
also be represented instead, the bootstrap ellipses, yield-
ing uncertainties around the means that, for sufficient 
specimen numbers, are virtually identical to the Jelinek 
(1978) ellipses (Fig. 6d). The “real-data” example in Fig. 
6 highlights that when sufficient numbers of specimens 
are present, n= 41 in this case, not only the Jelinek and 
bootstrap confidence ellipses, and bootstrap distributions 
are comparable, but demystifies the notion that the boot-
strap method tends to minimize the distributions, granted 
that the original data should always be shown or, at a 
minimum, reported.
 An alternative way of representing directional data is 
to plot colormap images of the anisotropy, which is more 
commonly used by anisotropy modelers and/or for seis-
mic anisotropy. On such plots, the color reflects the mag-
nitude of directional susceptibility, which includes the 
values of principal susceptibility directions, but provides 
more complete information on the variation of suscepti-
bility in 3D. However, note that some color scales may 
work better than others and not only for questions of ac-
cessibility (e.g., color-blindness). For example, different 
color scales are shown in Fig. 7 for the susceptibilities of 

Figure 5. Triangular diagrams: a) undistorted ternary diagram, after Woodcock 
(1977), with the isotropic condition at the bottom, oblate fabrics, or girdles, 
at the right, and prolate fabrics, or clusters, at the top. The inset demonstrates 
how the maximum eigenvalues must be between 0.3 (1) and 1 (3), while the 
intermediate eigenvalue cannot exceed 0.5 (1.5) and the minimum 0.3 (1), 
when normalized so that their sum equals 1 (3); b) “distorted” ternary diagram 
of Benn (1994) with the isotropic condition at the top, elongated fabrics at the 
lower right, and flattened fabrics at the lower left. Note that although we ar-
gued above that terms such as “constricted” or “elongated” should be avoided 
when describing magnetic fabrics, we maintained “Fabric Elongation” to re-
main consistent with the descriptions of Benn (1994), whereas “Fabric Flatten-
ing” was chosen by us for consistency.
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olivine and hornblende single crystals, in relation to their 
crystallographic axes. The figure demonstrates that the 
rainbow scale visually distorts data because the yellow 
is the brightest color, attracting the eye the most, yet it is 
not located at the center of the map, whereas the green 
shades form a wide band with low perceived color con-
trast, opposed to the narrow band with high contrast of 
the red tones, so that the maximum eigenvector location 
appears more clustered than the minimum counterpart 
(Crameri, 2018; Crameri et al., 2020): a bimodal scale 
with a neutral (white) color midway between the maxi-
mum and minimum eigenvector locations is more appro-
priate. In any case, adding contour lines to counter any 
distortion effect is recommended; similar considerations 
and plotting improvements have been made by Ramon 
Egli in the context of FORC diagrams, from which we 
have extensively “borrowed” here and whom we thank 
for the discussion.
 To some degree the choice of plot will be defined by 
the data used, e.g., colormaps are great for single speci-
mens, while bootstrapped data can only be applied when 
averaging a sufficient number of samples. Other than 
that, it is mainly the authors’ (or sometimes the review-
ers’) personal preference that will define the type of plots 
used.

4. Finding the way through the jungle
To summarize, we put together a number of recommen-
dations for processing and visualizing anisotropy data. 
One important topic that was left out, however, is that of 

data significance and uncertainties, which will be cov-
ered in a subsequent article.
 The first step is to determine whether the data are 
from full or deviatoric tensors, which will likely corre-
spond to the type of work one performed. These require 
different parameters, whereby only k’, Δk and U work 
for deviatoric tensors, and P, PJ, T, L, F, etc., are only 
applicable to full tensors.
 Data should be normalized, so that they are compara-
ble among specimens: choice of normalization will also 
dictate the ranges of calculated parameters, so care is 
needed if comparisons to other data are to be made. For 
difference-parameters, a normalization by km is useful, 

Figure 6. Eigenvector orientation data plotted on lower hemisphere stereonets 
(red squares, blue triangles and black dots are the maximum, intermediate and 
minimum eigenvectors, respectively): a) original data; b) Jelinek confidence 
ellipses; c) bootstrap cloud distribution; d) bootstrap confidence ellipses. Data 
from Bilardello (2021), plotted using the PmagPy software package of Tauxe 
et al. (2016).

Figure 7. Paramagnetic anisotropy of olivine (left) and horn-
blende (right) single crystals. The sketches show the principal 
susceptibility axes with respect to the crystallographic axes. 
Lower hemisphere equal area stereoplots show either the ori-
entation of the principal susceptibility axes or color-coded 
directional susceptibility in 3D. Note that colormaps show a 
single tensor, while multiple tensors can be represented by the 
standard stereoplot. Different colormaps of the same data in-
clude ‘standard’ rainbow, which is often used but distorts data 
visually, enhancing the red colors, and perceptually uniform 
sequential (‘oslo’) and diverging (‘broc’) colormaps from Cra-
meri (2018). Contours further highlight the visual distortion of 
the rainbow colormap.

Data Jelinek ellipses

Bootstrap Bootstrap ellipses
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bearing in mind the caveats when several carrier miner-
als contribute to the magnetic anisotropy. Also note that 
the definition and normalization of km controls the ranges 
adopted by other parameters.
 Of the multitude of parameters proposed in the litera-
ture many different measures for F exist, for example, 
and each bears some implications. What is the purpose 
of the study and target audience? For structural appli-
cations one should use parameters that are more easily 
correlated with similar data (e.g., P, L, F). For separating 
fabric components, k’ and Δk can be interpreted with-
out knowing km, avoiding the caveat referred to above. If 
data are to be compared to single-crystal data, then k’ and 
Δk etc., are also the most appropriate, since most single 
crystal data are reported with these parameters. For pa-
leomagnetic applications, for example anisotropy cor-
rections for deflection of remanences or paleointensity, 
one must use full remanent tensors that characterize the 
mineral sub-populations carrying the remanence. These 
include the appropriate type of anisotropy (of TRM, 
ARM or IRM) to correct a natural or laboratory rema-
nence, in the correct units, and to isolate the magnetic 
carriers in the grain size range of interest.
 One should next evaluate the amount of data, which 
dictates choice of plot and parameters: for many speci-
mens, plots that involve bootstrap confidence bounds 
may be used, but for fewer data, plots that use analytical 
uncertainties are more appropriate.
 Next, the range and distribution of the data will in-
form what plot is better-suited. Whether all data are 
comparable among each other, or whether they necessar-
ily need to be grouped by sites or different lithologies, 
and whether site-means may be plotted together, will 
dictate which plots one can use. These considerations 
also fall within the scope of the study and will dictate 
what “shape and magnitude” plots one should use, par-
ticularly with linear versus logarithmic distributions, and 
whether cumulative distribution plots are appropriate.
 Finally, all parameters and visualization options have 
their advantages and limitations (e.g., large uncertainty 
in anisotropy shape for low anisotropy degrees is ampli-
fied by the Jelinek plot). It is important to be aware that 
the choices made bear implications for each parameter 
and plot.
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