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Abstract

With transistor scaling nearing atomic dimensions and leakage power dissipation im-

posing strict energy limitations, it has become increasingly difficult to improve energy

efficiency in modern processors without sacrificing performance and functionality. One

way to avoid this tradeoff and reduce energy without reducing performance or function-

ality is to take a cue from application behavior and eliminate energy in areas that will

not impact application performance. This approach is especially relevant in embedded

systems, which often have ultra-low power and energy requirements and typically run

a single application over and over throughout their operational lifetime. In such pro-

cessors, application behavior can be effectively characterized and leveraged to identify

opportunities for “free” energy savings. We find that in addition to instruction-level se-

quencing, constraints imposed by program-level semantics can be used to automate pro-

cessor customization and further improve energy efficiency. This dissertation describes

automated techniques to identify, form, propagate, and enforce application-based con-

straints in gate-level simulation to reveal opportunities to optimize a processor at the

design level. While this can significantly improve energy efficiency, if the goal is truly to

maximize energy efficiency, it is important to consider not only design-level optimiza-

tions but also architectural optimizations. That being said, architectural optimization

presents several challenges. First, the symbolic simulation tool used to characterize

gate-level behavior of an application must be written anew for each new architecture.

Given the expansiveness of the architectural parameter space, this is not feasible. To

overcome this barrier, we developed a generic symbolic simulation tool that can han-

dle any design, technology, or architecture, making it possible to explore application-

specific architectural optimizations. However, exploring each parameter variation still

requires synthesizing a new design and performing application-specific optimizations,

which again becomes infeasible due to the large architecture parameter space. Given the

wide usage of Machine Learning (ML) for effective design space exploration, we sought

the aid of ML to efficiently explore the architectural parameter space. We built a tool

that takes into account the impacts of architectural optimizations on an application and

predicts the architectural parameters that result in near-optimal energy efficiency for
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an application. This dissertation explores the objective, training, and inference of the

ML model in detail. Inspired by the ability of ML-based tools to automate architecture

optimization, we also apply ML-guided architecture design and optimization for other

challenging problems. Specifically, we target cache replacement, which has historically

been a difficult area to improve performance. Furthermore, improvements have histori-

cally been ad hoc and highly based on designer skill and creativity. We show that ML

can be used to automate the design of a policy that meets or exceeds the performance

of the current state-of-art.
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Chapter 1

Introduction

One of the main challenges that processor architects face in recent times is improving

the energy efficiency of a design. Dennard Scaling has ended and transistor size scaling

has slowed down. Irrespective of scale, from servers to embedded systems, improving

energy efficiency is becoming increasingly challenging. Energy efficiecy is especially vital

for embedded systems that run applications such as implantables [1,2], wearables [3,4],

and IoT applications [5–10], since these systems are often powered by batteries or energy

harvesting. One defining characteristic of such systems is that they tend to run the same

software over and over, as defined by their application. Based on the application-specific

nature of such systems, a recent line of work has proposed application-specific power and

energy reduction techniques that identify hardware resources (e.g., gates) in a processor

that cannot be exercised by the application running on the processor and eliminate

the power used to support those resources [11–13]. However, such application-specific

optimizations can only be safely applied if an analysis technique can guarantee that the

application running on the processor will never use the resources for any possible exe-

cution of the application, for any inputs. Eliminating gates or power for resources that

could be used by the application could lead to incorrect execution of the application. For

example, power gating a gate that was incorrectly identified as “unused” but is actually

exercised by an application can result in the application producing incorrect outputs or

crashing. Given the need for guarantees and the inability to achieve such guarantees

through input-based application profiling, recently-proposed application-specific power

management techniques rely on a symbolic simulation [14] of the application on the

1
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processor hardware to identify hardware resources that are guaranteed to not be used

across all possible executions of an application. By propagating symbols that represent

unknown logic values for all inputs to an application, it is possible to determine all pos-

sible hardware resources that could be used by the application in an input-independent

fashion [11,12]. Recent work has demonstrated that the input-independent activity pro-

files generated by such a symbolic simulation of an application running on a processor

can be leveraged to identify worst-case timing, power, and energy characteristics for a

low-power system and to eliminate power used by resources that the system’s captive

application is guaranteed to never use [11–13].

This approach is sound and characterizes the application based on the instructions

in the application binary. However, some of the program semantics are lost because of

optimization techniques used in prior works. To handle the large number of possible

execution paths for applications with complex control structures, prior work [15] main-

tains conservative states at PC-changing instructions. A conservative state encompasses

a superset of all observed states every time the simulation re-visits the PC. If a state is

a sub-state of the conservative state maintained at the PC, that state has already been

simulated, and execution from the state can be terminated.

The conservative state based approach allows analysis to complete sooner, but suf-

fers from the pessimism of marking too many gates as exercisable, potentially leaving

significant benefits on the table. This is due to the nature of conservative state con-

struction, where states are merged by replacing locations that are different with Xs,

representing unknown logic values; thus, the number of states represented by the result-

ing super-state can be exponentially more than the number of states used to generate

the conservative state. This can lead to covering states that are not possible in the

original application. In this work, we characterize the behavior of an application by

analyzing the binary to determine constraints, e.g., bounds of a particular memory el-

ement. Such bounds can be used to constrain the value of the memory element from

being overly pessimistic (i.e., containing too many Xs), leading to fewer gates marked

as exercisable and reduced simulation times.

Constraints from application software help us to optimize an existing processor de-

sign for better energy efficiency. However, design optimization for energy efficiency
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should consider not only design-level optimization but also architecture-level optimiza-

tion. Some architectures may suit one application better than another. For example, an

architecture that contains a hardware multiplier may perform multiplication operation

in one cycle but consume more energy than an architecture that uses repeated addition

to perform multiplication. Depending on the energy requirements, we may chose to add

or remove the hardware multiplier for the architectures. In another example, a pipelined

design has shorter critical paths than a non-pipelined version of the same design allow-

ing the gates to have a lower drive strength. In contrast, increasing pipeline stages

could cause energy overhead from both inserted registers and clock distribution [16].

Depending on factors that are dominating, either the pipelined or the non-pipelined

version of a design could be more energy-efficient. Clearly, if energy efficiency is the

goal, the processor architecture must also be optimized. Given the wide variety of archi-

tectures for embedded processors, there are a lot of choices to consider. This brings in

new challenges. We need a tool that analyzes application behavior on any architecture.

Despite the significant potential of application-specific design and optimization tech-

niques, applicability has been limited, since the symbolic co-analysis tools developed in

previous works [13] were developed for a single processor (openMSP430), and extending

them to analyze and optimize other processor designs or architectures requires the chal-

lenging and time-consuming task of developing a new custom simulation tool for each

new design. This simulation approach is not scalable, especially for industry, as each

application may use a different design, and it is infeasible to write a custom simulation

tool for each design. So, we built a design-agnostic simulation tool that can handle any

design, technology or architecture. For this, we use iverilog - an open source synthesis

and simulation tool. In this work, we discuss how we restructured iverilog to allow us to

perform application specific processor optimization on any given processor-application

pair.

Another challenge that the architecture choices bring is the enormous design-space

to evaluate. A processor’s architecture can be different depending on microarchitectural

features such as register-file, memory, adders, multipliers, and many more. In addition

to number of microarchitectural features, the choice of the feature implementation also
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adds to exploration. For example, a multiplier can have a and-gate, nand-gate, or mux-

based implementation. In another example, an adder can be implemented as a ripple-

carry adder, carry-save adder, or several other options. All these options exponentially

increase the architectural parameter space. Enumerating and exploring this search space

includes applying design automation techniques such as synthesis, placement, and rout-

ing of the design in addition to symbolically evaluating the application on the hardware.

Though we have a generic tool to evaluate any architecture, the run time to evaluate all

the possibilities is prohibitively expensive. Moreover, the impact of application-specific

hardware optimizations on the energy profile of an architecture is non-trivial. There is

no deterministic way to identify an architecture that is most energy-efficient without

performing the hardware optimizations and then evaluating the application on the op-

timized design. Considering the enormous design space, significant simulation time and

non-trivial impact of the hardware optimizations, we rely on Machine Learning (ML) to

help us minimize the number of architectural options that we must evaluate. We present

a tool that takes into account the impacts of application-specific optimizations on dif-

ferent architectural features and predicts near-optimal architecture that best suits the

application in terms of energy efficiency. We evaluate top few predicted architectures

using our generic tool and pick the design with most energy-efficiency.

With the help of Machine Learning, we were able to solve the design space explo-

ration problem efficiently. This motivated us to use ML in other complex problems. ML

expedites tedious processes and augments human intelligence to solve problems where

heuristic-based solutions have limitations. Because of these benefits of ML, there is a

surging interest in applying machine learning (ML) to challenging computer architec-

ture design problems. Building an effective cache replacement policy has been one of

the important challenges in computer architecture. There has been considerable work

on designing efficient cache replacement algorithms [17–22]. The design of novel policies

has historically been based on the designer’s skill and creativity to derive insights from

common cache access patterns and use them to develop a cost-effective cache replace-

ment policy. Firstly, it takes enormous skill and effort to analyze an access pattern

and come up with valuable insights. Secondly, new applications emerge every day and

existing applications keep evolving, exposing caches to new access patterns. The cache
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architecture needs to adapt to the ever-changing demands. Therefore, we need an au-

tomated way of generating insights and developing cache replacement policies. In this

work, we develop a tool that analyzes a set of applications and learns a near-optimal

replacement policy using ML. The designer can then derive a cost-effective replacement

policy using the insights from the learned policy. In this work, we show one way of de-

veloping a cost-effective cache replacement policy that meets or beats the performance

of current state of art policies.

This dissertation is organized as follows. Chapter 2 provides the background for co-

analysis techniques used to devise application-specific hardware optimizations. Chapter

3 introduces application-based software constraints and discusses the means and im-

pact of using them for application-specific hardware optimizations. Chapter 4 presents

a generic tool that performs application-specific analysis on any design. Chapter 5 em-

phasizes the importance of modifying architecture for energy-efficiency and shows how

Machine Learning can help contain the design-space exploration when several architec-

tural parameters are considered. Chapter 6 extends the use of Machine Learning in

architecture optimization by showing how a cost-effective cache replacement policy can

be built using machine learning that beats the current state of art. Chapter 7 concludes

the thesis and discusses a few future research directions.



Chapter 2

Background

This chapter provides background information on co-analysis techniques used to devise

application-specific hardware optimizations.

2.1 Symbolic Simulation Based Hardware Software Co-

analysis

Application-specific nature of emerging ultra-low-power systems [1–10] provides the op-

portunity to make application-specific optimizations on the processor used in such sys-

tems. A recent line of work [11–13] has proposed application-specific power and energy

reduction techniques that identify hardware resources (e.g., gates) in a processor that

cannot be exercised by the application running on the processor and eliminate the power

used to support those resources. However, such application-specific optimizations can

only be safely applied if an analysis technique can guarantee that the application run-

ning on the processor will never use the resources for any possible execution of the

application, for any inputs. Eliminating gates or power for resources that could be used

by the application could lead to incorrect execution of the application. For example,

power gating a gate that was incorrectly identified as “unused” but is actually exer-

cised by an application can result in the application producing incorrect outputs or

crashing. Given the need for guarantees and the inability to achieve such guarantees

through input-based application profiling, recently-proposed application-specific power

management techniques rely on a symbolic simulation [14] of the application on the

6
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processor hardware to identify hardware resources that are guaranteed to not be used

across all possible executions of an application. By propagating symbols that represent

unknown logic values for all inputs to an application, the work in [11–13] characterizes

the gate-level activity of a processor executing an application for all possible inputs.

During the gate-level simulation, the simulator sets all inputs to Xs, which are treated

as both 1s and 0s. In each simulation cycle, gates where an X propagated are considered

as toggled, since some input assignment could cause the gates to toggle. The set of gates

that have toggled during the simulation determines the possible hardware resources that

could be used by the application for any application input.

Symbolic simulation is an effective methodology to analyze a design for all appli-

cation inputs using a single simulation. However, replacing application inputs with

symbols makes it challenging to handle input dependent control flow paths. For ex-

ample, if an X propagates to the PC, it is unclear how execution must proceed. The

work in [11–13] branches the execution tree and simulates execution for all possible

branch paths, following a depth-first ordering of the control flow graph. Since this naive

simulation approach does not scale well for complex or infinite control structures which

result in a large number of branches to explore, the work in [15] employed a conservative

approximation method that allows the analysis to scale for arbitrarily-complex control

structures while conservatively maintaining correctness in identifying exercisable gates.

For the approximation to work, [15] generates and maintains conservative states.

2.2 Conservative State

A conservative state is defined as the gate-level state of a processor that conservatively

represents multiple observed states for each control-flow changing instruction of the

application. For example, a conservative state with a register value of XX can represent

four different states with the same register possessing one of the 00,01,10,11 values as

shown in Figure 2.1. The approximation works by tracking the most conservative gate-

level state that has been observed for each PC-changing instruction (e.g., conditional

branch). When a branch is re-encountered while simulating on a control flow path,

simulation down that path can be terminated if the symbolic state being simulated is

a substate of the most conservative state previously observed at the branch (i.e., the
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Figure 2.1: Example of conservative state representing register values at different exe-
cution states for the same PC.

states match or the more conservative state has Xs in all differing variables), since the

state (or a more conservative version) has already been explored. If the simulated state

is not a substate of the most conservative observed state, the two states are merged to

create a new conservative symbolic state by replacing differing state variables with Xs,

and simulation continues from the conservative state. This conservative approximation

technique allows gate activity analysis to complete in a small number of passes through

the application code, even for applications with an exponentially-large or infinite number

of execution paths.

This conservative approximation method is effective. However, it still treats the

application as a black box, and hence, suffers from the pessimism of marking too many

gates as exercisable, potentially leaving significant benefits on the table. This is due

to the nature of conservative state construction, where states are merged by replacing

locations that are different with Xs; thus, the number of states represented by the

resulting super-state can be exponentially more than the number of states used to

generate the conservative state. This can lead to covering states that are not possible

in the original application. In the next chapter, we discuss how application information

can help reduce the conservativeness of this approximation method.



Chapter 3

Constrained Conservative

Symbolic Hardware-Software

Co-analysis

Conservative state based symbolic hardware-software co-analysis allows the gate activity

analysis to complete in a small number of passes through the application. However, the

conservative approximation results in exploring execution paths that are not actually

possible for the application. In this chapter, we demonstrate the concept of conservative

state using an example and illustrate its limitations. We also show how application

information can be exploited to reduce some of the over approximation.

3.1 Conservative State Limitation

Conservative states are generated from previous simulated states by replacing locations

that are different with Xs. The idea is to represent all simulated states with one con-

servative state. Conservative states allow terminating a simulation when the simulation

encounters a previously simulated branch and the simulation state is a substate of the

most recent conservative state for the corresponding PC. We illustrate the behavior and

limitation of Conservative states using an example.

The example code in Figure 3.2 (compiled from C-code in Figure 3.1) represents a

9
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int p=2, q=*val;int i;
for(i=16; i>0; i--){ 
      ...
      if (p < q){
          p += q; 
      }
} // i > 0; i--

return;

Figure 3.1: Example C program.

 1. mov #16, r5
 2. mov #2, r13
 3. mov &200, r14
 loop:
 4.   ...    
 5. cmp r13, r14
 6. jnc then
 7. add r14, r13

then:
 8.dec r5
 9.jnz loop
10. ret

Figure 3.2: Compiled MSP430 program.

simple subroutine that updates an internal variable (represented by r13 (p)), based on

an external value (represented by r14 (q)), over 16 iterations (tracked by r5 (i)). The

first section of the code (red) initializes the registers r5, r13, and r14. The next two

sections (blue and yellow) are the loop body, where r13 is compared against r14. If

r14 ≥ r13, line 7 is executed to increase r13 by r14. Otherwise, simulation iterates

again, after decreasing the loop counter (r5) in the next section (green). After exiting

the loop, we return from this subroutine.

To get the gate activity of the example code, the symbolic simulation replaces the

external value (represented by r14 (q)) with Xs. Figure 3.3 shows the execution tree

of conservative state based symbolic simulation and the values of two registers r13 and

r5 at various states that the processor reaches during execution. The simulation starts

in the red block and reaches the end of the blue block. Since r14 contains Xs, the

subsequent jump jnc’s path is inconclusive, and an X propagates to the PC. We split

the simulation to execute both branch paths – the yellow block and the green block.

The state of the processor at the end of the blue block is represented as S0, and the

states of the processor at the start of false and true paths are represented as SF
0 and ST

0 ,
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respectively. The same convention is used for the rest of the states in the tree. Each

state in the table contains two rows for the values of the registers r13 and r5. The

upper row represents the value of the register observed when the simulation reaches the

corresponding point in the execution tree. The lower row represents the conservative

value computed by merging this value with the previous conservative state observed at

this point.

Simulation proceeds using this conservative value instead of the observed value. One

example of conservative approximation is that of register r5 for state S1. Since S1 and

S0 correspond to the same PC, we build a conservative state to represent both the

states S1 and S0 when we simulate down S1; this is achieved by replacing the values

that differ between the two states with Xs. In the case of r5, the two states differ in

the least significant 5 bits, which are replaced by Xs to represent both the states. This

X-ification of the states leads to skipping execution of several states downstream and

thus a faster completion of application analysis.

However, the conservative over-approximation of r5 at S1 represents not only the

two states merged but also all 32 states representable by varying the lower 5 bits of

r5. Therefore, when we execute the instruction dec r5 in the green block just be-

fore state S3, the value 16’bXXXXX can represent 32 different values, including 16’b0

and 16’b1. Decrementing 16’b0 by 1 results in 16’b1111111111111111 (two’s comple-

ment arithmetic), while decrementing 16’b1 by 1 results in 16’b0. To represent both

these states, r5’s value becomes 16’bXXXXXXXXXXXXXXXX. Unfortunately, this

represents all the 216 possible values for a 16-bit number. However, from the exam-

ple code, we know that r5 only actually assumes values between 0 and 16 and the

code only toggles lower order five bits of the register r5. By propagating the value of

16’bXXXXXXXXXXXXXXXX for r5, the conservative state based symbolic simula-

tion also toggles the upper ten bits of r5. Considering the fanout gates of the upper ten

bits of r5, the simulation exercises many more gates in the processor than necessary.

In our work, constrained conservative state symbolic hardware-software co-analysis,

we translate constraints on variables at the software level to constraints on memory

elements in the processor-memory system. In this example, since 0 ≤ r5 < 17, we con-

strain the value of r5 to 16’b00000000000XXXXX, preventing the unnecessary propa-

gation of Xs. Figure 3.4 shows the execution of the example code in Figure 3.2 using
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Figure 3.3: Conservative state-based scalable symbolic co-analysis can analyze applica-
tions with infinite loops and input-dependent branches by simulating conservative states
that capture the activity of multiple possible states.
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Figure 3.4: Constraining memory elements based on bounds from the software level
reduces pessimism in estimating the number of gates marked as exercisable and also
reduces the number of paths that need to be explored.
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Figure 3.5: Methodology for CCS

constrained conservative state symbolic execution. This not only reduces the number

of gates toggled; it also reduces the number of execution paths simulated, leading to

faster convergence.

3.2 Proposed Work

In this section, we explain Constrained Conservative State Symbolic Hardware-Software

Co-Analysis. Our co-analysis tool (see Figure 3.5) is based on the observation that cer-

tain constraints on variables at the software level are lost when the application is simu-

lated at the gate-level, leading to overly pessimistic estimates of the hardware resources

(i.e., gates) needed to execute the application. We translate software-level constraints

to the gate level in three steps. First, we encode high-level program constraints as

constraints on the operand values of static instructions. Our tool generates these con-

straints from a pattern-based static analysis of the application binary. Second, these

encoded constraints are loaded into the conservative symbolic simulator and propagated

from source operands to destination operands during simulation. Third, when operands

containing Xs are updated by an instruction, encoded and propagated constraints are

applied so that the operands’ symbolic values observe the constraints. Pseudocode of

our implementation is shown in Algorithm 1 and Algorithm 2. Changes to the con-

servative symbolic co-analysis in Algorithm 1 are presented in red. In the following

subsections, we explain each step in greater detail.
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Algorithm 1 Constrained Conservative State Symbolic Co-analysis

1. Procedure GateActivityAnalysis(app binary, design netlist)
2. Initialize all memory cells and all gates in design netlist to X
3. Load app binary into program memory
4. Propagate reset toggle signal
5. s← State at start of app binary
6. Symbolic Execution Tree T .set root(s)
7. Unprocessed execution points queue, U .push(s)
8. C.init() // Initialize conservative system state map
9. CT .load constraints() // Load Static constraints map
10. while U != ∅ do
11. e← U .pop()
12. if e.isConditinalBranch() and e.PC ∈ C then
13. a← C.getState(e.PC)
14. if e.isConservativeSubstateOf(a) then
15. continue
16. else
17. e← buildConservativeState(a, e)
18. C ← C.update(e.PC, e)
19. end if
20. else if e.isConditionalBranch() then
21. C ← C.add(e.PC, e)
22. end if
23. while e.nextPC != X and !e.END do
24. e.setInputsX() // set all peripheral port inputs to Xs
25. e′ ← propagateGateValues(e) // perform simulation for this cycle
26. if e′.aboutToCommit() then
27. // instruction will be committed in the next cycle
28. ct ← getConstraints(CT , e′.PC)
29. e′ ← propagateConstraints(e′, ct) // transfer constraints, source to destination
30. e′ ← enforceConstraints(e′, ct)
31. end if
32. e.annotateGateActivity(e, e′) // annotate tree point with activity
33. e.addNextState(e′) // add to execution tree
34. e← e′ // process next cycle
35. end while
36. if e.nextPC == X then
37. for all a ∈ possibleNextPCVals(e) do
38. e′ ← e.updateNextPC(a)
39. U .push(e′)
40. T .insert(e′)
41. end for
42. end if
43. end while

3.2.1 Encoding Constraints From Binary

In order to constrain simulation values, our tool must know what memory element’s

values should be constrained, what its valid set of values are, and at what execution

points those constraints are valid. As shown in Figure 3.6, our tool takes value bound

constraints (e.g., 0 to 17) on instruction operands (e.g., r5) for specific instructions (e.g.,

the mov, dec, and jnz instructions at PCs 3, 9, and 10, respectively).
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{
int p=2,q=*val; int i;
mov #2, r13
mov &200, r14
for(i=16; i>0; i--){
mov #16, r5  
loop:   
    ...
    if (p < q){
     cmp r13, r14 
    jnc then        
        p += q;    
        add r14, r13
    }
then:
dec r5
jnz loop
}
return;
ret
}

mov #16, r5
loop:
...
dec r5
jnz loop

1 App Binary

2 Match Pattern

3 Encoded Constraints
Constraint:{
  R5: {
   Lower_bound: 0,
   Upper_bound: 17,
   Scope: {
    3, 9, 10
   }
  }
}

Figure 3.6: Example of constraint encoding during static analysis of the application
binary.
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An example instruction pattern is shown in Figure 3.6. Many possible static analyses

at different abstraction levels, from C compiler to binary analysis, could be used to

generate constraints, with varying trade-offs of coverage and precision [23–25]. For

our work, we chose to use a pattern-based binary analysis approach where we map

known binary patterns resulting from high-level program structures (e.g., loops and if

statements) into constraints (e.g., register holding a loop iterator is bounded between its

initialization and termination values at loop boundaries). We have identified nine such

patterns involving different types of loops and nested loops. Note that for pattern-based

analysis, the relevant patterns can depend on compiler options. Our library of patterns

covers the most common patterns observed in our benchmark set (see Section 4.4).

3.2.2 Propagating Constraints

Once we encode all the constraints, we load them into the co-analysis tool as Fixed

(i.e., immutable) constraints on operands (i.e., register and memory values) at specific

static instructions, and we start symbolic co-analysis. During co-analysis, we intercept

every instruction when it is about to be committed in the processor pipeline, read

the constraints on the instruction’s source operands, and update the constraint on the

destination operand if that operand does not have a Fixed constraint at the current

PC. This updating creates a Dynamic constraint for the memory element.

Consider the instruction mov #2, r13, with r13 having no constraint before the

instruction is executed. At the end of the execution of the instruction, we will have a

constraint on r13 as 2 ≤ r13 < 3, representing its constant value. Consider another

instruction, add r5, r13, with constraints on r5 as 1 ≤ r5 < 17 and on r13 as 2 ≤
r13 < 3. Since the value of r5 does not contain Xs (it is 16), the constraint of r13 is

updated by adding r5’s value (16) to the lower and upper bounds of r13’s constraints

to produce the constraint: 18 ≤ r13 < 19. However, if the value of r5 is 16’bXXXXX,

the constraint on r13 is updated to 3 ≤ r13 < 20, by adding the lower bounds and the

upper bounds of the two constraints, respectively. This ensures that constraints are as

tight as possible while encompassing all possible values.
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3.2.3 Enforcing Constraints

Encoding and propagating constraints ensures that values of registers or memory lo-

cations that are constrained cannot go out of bounds of these constraints. To ensure

this, we monitor all register and memory location values for changes during simulation.

Whenever a register or a memory location is modified, we check its value against any

constraint it has. If the value of the register or memory location could be out of bounds

of the constraint, we enforce the constraint on the register or memory location by modi-

fying its value appropriately. Our technique ensures that enforcing constraints does not

eliminate exploration of any reachable states for a given application. A formal proof is

presented in Section 3.3.

In addition to constraining memory and register values, it is important to ensure

that memory addresses do not go out of bounds. In an indirect addressing mode, if

the register holding the memory address contains Xs, there are several possible ad-

dresses that could be accessed. In such a case, the constraint on the register restricts

the number of possible memory locations. While performing memory reads, all possi-

ble memory addresses (defined by the constrained conservative value) are read, and a

conservative value is generated out of data read from memory. This value is sent to

the data bus and used by the instruction. Similarly, while handling a memory write,

both the address and the value could have Xs. In this case, we first resolve the con-

straint on the address by identifying the permissible locations for the element, based

on the constraint and the value of the address. We then generate conservative val-

ues and update the constraints at all the resolved addresses. For instance, consider

the instruction mov r5, -5(r6). Assume that both r5 and r6 contain Xs. To handle

proper execution of this instruction, we first obtain the constraint for r6 and adjust

the address constraint for -5(r6) according to the offset (i.e., Lower_bound -5(r6)

← Lower_bound (r6) - 5 ) and Upper_bound -5(r6) ← Upper_bound (r6) - 5).

Then, for each address represented by -5(r6)’s value in the simulator (the value with the

Xs), we check if the address is in the range of the constraint (i.e., Lower_bound -5(r6)

< address < Upper_bound -5(r6)). For the addresses that are in the bound of the

constraint, we write the conservative value of r5 combined with the existing memory

value to the locations pointed by the resolved addresses. This algorithm is presented in

Algorithm 2.
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Algorithm 2 Constraint Enforcement

1. // e : Execution state of the processor
2. // ct : Constraint
3. Procedure enforceConstraints(e, ct)
4. if e.isOutputOutOfBounds(ct) then
5. if e.isMemoryOp() then
6. e← handleMemoryEnforcement(e, ct)
7. else
8. e.dstRegVal ← genConstrainedVal(e.dstRegVal, ct)
9. end if
10. end if
11. return e

12. //e : Execution state of the processor
13. // ct : Constraint
14. Procedure handleMemoryEnforcement(e, ct)
15. if containsX(e.memAddress) then
16. for all addr ∈ possibleAddresses(e.memAddress) do
17. if isAddressInBounds(addr, ct.addressConstraint) then
18. if e.memOperation == read then
19. val ← generateConstrainedConservativeVal(val,

e.dMemory[addr], ct.valConstraint)
20. else if e.memOperation == write then
21. e.dMemory[addr] ← generateConservativeVal(e.val, e.dMemory[addr])
22. end if
23. end if
24. end for
25. if e.memOperation == read then
26. e.dataBus.put(val)
27. end if
28. else
29. addr ← e.memAddress
30. if e.memOperation == read then
31. val ← e.dMemory[addr]
32. e.dataBus.put(val)
33. else if e.memOperation == write then
34. e.dMemory[addr] ← e.val
35. end if
36. end if
37. return e

3.3 Proof of CCS Correctness

Theorem 1 (Application Execution State Coverage). Given a constraint c and an

element (register/memory address) e, enforcing c on e at a PC p does not eliminate

exploration of any reachable states for application A.

Proof. Let S1S1S1,S2S2S2, . . . ,SnSnSn be consecutive conservative states generated at PC ppp by the

Conservative State (CS) approach. By definition of conservative state, S1S1S1 ⊂ S2S2S2 ⊂ . . . ⊂
SnSnSn. Let SiSiSi be the first state where eee violates ccc. Thus, SiSiSi covers all executions leading

to ppp that have been explored until the ith encounter of ppp. I.e., for all states before
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Table 3.1: Benchmarks

Embedded Sensor Benchmarks [29]

mult, binSearch, div, inSort, tea8, rle, tHold, intAVG, intFilt

EEMBC Embedded Benchmarks [30]

AutoCorr, convEn, FFT, Viterbi

Complex Benchmarks

MergeSort , graph500 [31], highCC

SiSiSi (S1S1S1,S2S2S2, . . . ,Si−1Si−1Si−1), the Constrained Conservative State (CCS) approach and CS are

identical. Since SiSiSi violates ccc, it necessarily covers some states that are not reachable

by AAA. Constraining eee using ccc generates S′iS
′
iS
′
i such that S′iS

′
iS
′
i covers all possible values that eee

can assume in AAA; only unreachable states are eliminated through the application of ccc.

Thus, continuing the simulation from S′iS
′
iS
′
i will explore all valid states that are reachable

by AAA.

3.4 Evaluation

We perform evaluations on a silicon-proven openMSP430 [26] processor, synthesized,

placed and routed in TSMC 65GP (65nm) technology using Synopsys Design Com-

piler [27] and Cadence EDI System [28]. The processor was implemented for an operat-

ing point of 1V and 100MHz. We implemented our constrained conservative state-based

scalable symbolic co-analysis in a custom gate-level simulator that was built in-house in

C++. We also developed a custom static binary analysis tool in Python for encoding

constraints. The static constraints were stored in a JSON file and fed to the custom gate-

level simulator, which the simulator uses for Propagation and Enforcement. We show

results for all benchmarks from [29], all EEMBC benchmarks [30] that fit in the pro-

gram memory of our processor, as well as complex and recursive benchmarks1 designed

to stress-test the scalability of our symbolic hardware-software co-analysis technique

with complex control structures not found in the rest of our benchmarks (Table 3.1).

Experiments are performed on a server housing two Intel Xeon E-2640 processors (8-

cores each, 2GHz operating frequency, 64GB RAM).

To illustrate the benefits of our proposed technique for symbolic co-analysis, we

1MergeSort is a recursive sorting algorithm. graph500 runs BFS on a graph. highCC (high Cyclo-
matic Complexity) is a synthetic benchmark that uses cyclic array accesses to alter the control flow of
the application and has 1632 possible control flow paths.



21

Table 3.2: Constrained conservative state symbolic co-analysis reduces analysis time
compared to naive and conservative state-based co-analysis and enables analysis of ap-
plications with complex control structures.

Benchmark
Analysis Time (Number of Simulation Cycles)

Naive Consv. CCS %Reduction (w.r.t. Naive) %Reduction (w.r.t. Consv.)

div ∞ 186 178 - 4.30

intAVG ∞ 337 329 - 2.37

rle ∞ 7431 5951 - 19.92

rle small 25496 6495 2153 91.56 66.85

binSearch 100468 9994 1551 98.46 84.48

tHold 20520 2615 1986 90.32 24.05

inSort ∞ 22205 12120 - 45.42

inSort small 24427 9106 5089 79.17 44.11

Viterbi ∞ 69265 26389 - 61.90

MergeSort ∞ 104574 16093 - 84.61

graph500 ∞ 185341 79663 - 57.02

highCC ∞ 116290 80276 - 30.90

Table 3.3: Use of constraints reduces the number of explored symbolic execution paths.

Benchmark
Symbolic Execution Paths

Naive Consv. CCS %Reduction (w.r.t. Naive) %Reduction (w.r.t. Consv.

div ∞ 9 7 - 22.22

intAVG ∞ 15 13 - 13.33

rle ∞ 129 101 - 21.71

rle small 504 113 33 93.45 70.80

binSearch 2048 91 41 98.00 54.95

tHold 460 247 39 91.52 84.21

inSort ∞ 121 67 - 44.63

inSort small 476 115 65 86.34 43.48

Viterbi ∞ 771 291 - 62.26

MergeSort ∞ 1453 235 - 83.83

graph500 ∞ 1350 1124 - 16.74

highCC ∞ 1604 756 - 52.80

Table 3.4: Use of constraints reduces the number of gates identified as exercisable.

Benchmark
Exercisable Gates Identified

Naive Consv. CCS %Increase (w.r.t. Naive) %Reduction (w.r.t. Consv.)

div N/A † 3627 3566 - 1.68

intAVG N/A † 3675 3648 - 0.73

rle N/A † 4488 3759 - 16.24

rle small 3185 4487 3740 17.43 16.65

binSearch 3065 3454 3424 11.71 0.87

tHold 2893 3530 3368 16.42 4.59

inSort N/A † 5406 3518 - 34.92

inSort small 3134 5418 3523 12.41 34.98

Viterbi N/A † 5449 5449 - 0.00

MergeSort N/A † 5134 4294 - 16.36

graph500 N/A † 5988 5987 - 0.02

highCC N/A † 4007 3558 - 11.20

† Since these simulations did not finish, naive simulation would be forced to report that all 7218 gates
of the design might be exercisable.
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compare our constrained conservative state (CCS) symbolic co-analysis technique (Al-

gorithm 1 black+blue+red text) against the naive symbolic co-analysis technique (Al-

gorithm 1 black text only) and the state-of-the-art conservative symbolic co-analysis

technique [15] (Algorithm 1 black+blue text). We compare analysis time and ex-

ercisable gate counts for the benchmarks described in Table 3.1. We show that the

constrained conservative approach addresses the limitations of the naive and conser-

vative approaches by yielding an exercisable gate count closer to the accurate naive

approach, while also significantly reducing simulation time compared to the state-of-art

with minimal overhead.

For benchmarks with simple control flow (i.e., no input-dependent branches), sym-

bolic simulation only needs to consider a single execution path through the program;

conservative states are never created, and the conservative and constrained conservative

approaches will perform the same simulation as the naive approach. Since the results

for these benchmarks (mult, intFilt, tea8, FFT, AutoCorr, convEn) do not show any

variation between the simulation approaches and thus cannot be used to compare the

techniques, we omit these benchmarks from our results tables due to space limitations.

However, we did use these benchmarks to verify that the results for all three simulation

approaches are consistent. Furthermore, our constrained conservative approach does

not increase the execution time or number of execution paths considered.

3.4.1 Analysis Time

Table 3.2 compares analysis times for performing the symbolic simulation of each bench-

mark application. We use simulated clock cycles of the openMSP430 processor as a

proxy of analysis time that is independent of the host computer’s computational capa-

bility and load.2 Constrained conservative analysis achieves the lowest analysis time for

all benchmarks by effectively pruning the execution tree to eliminate consideration of

already-visited states and states that are precluded by application constraints. For six

of the benchmarks, naive symbolic simulation was not able to complete within 24 hours

and was eventually killed after using all of our server’s memory (64 GB RAM and 125

GB swap). These benchmarks are marked with ∞ in the naive column of Table 3.2.

2The overhead introduced by the constrained conservative analysis indicated by red text in Algo-
rithm 1 is between 1.1% and 1.9% per cycle.
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Meanwhile, the conservative state approach is able to analyze all of the benchmarks

in under an hour. By applying application constraints on top of the conservative ap-

proach, CCS reduces analysis time for each benchmark, with a maximum reduction

of 84.61% compared to the state-of-art conservative state approach. Applying soft-

ware constraints to the symbolic simulation keeps conservative values within their legal

ranges, significantly pruning the state space and resulting in a more efficient exploration

of the application’s possible states.

Table 3.3 shows the number of symbolic execution paths each symbolic simulation

approach explores (as described in Section 3.1). In the conservative approach, new

symbolic execution path subtrees are created at conditional branches and simulated if

they have not been previously explored. By constraining the values of registers/memory

elements in the processor, the constrained conservative approach reduces the number of

symbolic execution paths that must be simulated to completely characterize all possible

executions of an application. This significantly reduces analysis time for several appli-

cations. For MergeSort, an application with complex input-dependent control flow, the

conservative state approach continues simulating symbolic execution paths until all bits

of the loop iterator (for the loop that merges two sorted arrays) become Xs for a given

recursive step. In the proposed constrained approach, simulation only proceeds until 6

Xs propagate into the loop iterator, since the maximum bound on the loop iterator is

34 (array size). The result is an 84% reduction of the number of symbolic execution

paths that are explored and a corresponding 85% reduction in the number of analy-

sis cycles. As processor complexity increases, the state space of the hardware-software

symbolic co-analysis increases, and the potential benefits of constraining the symbolic

simulation increase. E.g., a 64-bit processor has exponentially more possible states than

a 16-bit processor, so the same loop bounds constraint applied to both would eliminate

exponentially more states from consideration in a 64-bit processor vs. a 16-bit processor.

3.4.2 Exercisable Gates

Table 3.4 presents the count of exercisable gates reported by the three symbolic simula-

tion approaches. All three approaches guarantee identification of all possible gates that

can be exercised by any possible execution of an application; however, the approaches
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vary in their overestimation of the exercisable gates due to conservative state approx-

imations. The naive approach does not use conservative states to cover multiple real

states, and therefore, provides the most accurate report of the exercisable gate set. How-

ever, because naive simulation attempts to simulate all possible states of an application

without approximation, naive simulation is not scalable and does not always complete.

For some benchmark applications (e.g., inSort and rle), significantly reducing the input

size (e.g., to 5 elements) reduces the size of the symbolic execution tree sufficiently to

allow the naive approach to finish. We include small versions of those benchmarks in the

results tables to enable further analysis and comparison of the simulation approaches.3

The conservative state approach identifies more exercisable gates than the naive

approach. For applications with complex control flow, the overapproximation of the

conservative state approach can be significant. The small versions of rle and inSort

demonstrate that the conservative approach can significantly increase the number of

gates marked as exercisable compared to naive symbolic simulation (e.g., 73% increase

in exercisable gates reported for inSort small). With the proposed constrained simula-

tion, however, there is only a 12% increase in reported exercisable gates for the same

application. Applying application constraints to the symbolic states avoids simulation

of states that are not actually possible for the application and can significantly reduce

the pessimism of applying conservative states to achieve a scalable symbolic simulation.

Compared to the conservative state approach, CCS reports fewer exercisable gates

for all benchmarks, except Viterbi where the result is identical, with a maximum reduc-

tion of 35% (inSort). The static analysis used in this work generated a maximum of 7

constraints (for graph500) and a minimum of 1 constraint (for div). More sophisticated

static analysis techniques may generate more constraints. Nevertheless, our work shows

that even applying a small number of constraints can result in significant reduction of

exercisable gates and analysis time compared to state-of-art conservative state symbolic

co-analysis. The largest benefits come from benchmarks such as inSort, MergeSort, and

3Conservative symbolic simulations report slightly more exercisable gates for inSort small than for
inSort. At first, this seems counterintuitive; however, our analysis revealed that a few instructions were
different between the two binaries. These instructions cause different gates to be exercised by each of the
binaries. We confirmed that the additional exercisable gates in inSort small trace back to instruction
source/destination operand registers. These gates contribute to fewer than 0.2% of the total gates in
the processor design and do not change the behavior of the core algorithm in the benchmarks.
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rle, that access data using addresses containing Xs. This can potentially cause the ad-

dress handler in openMSP430 to exercise all the peripherals, since they are in a unified

address space. Constraining the addresses avoids this overapproximation of exercisable

resources. Although binSearch also accesses data using addresses containing Xs, its

structure already limits the number of Xs in addresses during conservative symbolic

simulation, since the binSearch algorithm uses a right shift that guarantees that the

upper 8 address bits are always zero. This reduces the exercisable gates reported by

the conservative state approach for binSearch. Viterbi implements an iterative pointer

chasing algorithm that involves many memory-accessing instructions. With the random

memory access pattern of the application, the inputs of these instructions are all Xs,

causing all the gates in the memory and peripheral path to be presumed exercisable.

Constraints do help to restrict the number of memory accesses with unknown pointer

values, since the accesses are made in a loop, and the loop bound can be determined by

static analysis. This significantly reduces analysis time (by 62%) but does not help to

reduce the exercisable gate count. Graph traversal in graph500 also involves a pointer

chasing random memory access pattern. Similar to Viterbi, reduction in exercisable

gates is negligible, but determining loop bounds via static analysis significantly reduces

analysis time, by 57%.

Table 3.5: Symbolic simulation approach comparison.

Approach Precision Guarantees Runtime

Naive

Conservative

CCS

3.4.3 Final Remarks

In summary, we qualitatively compare the three symbolic simulation approaches in Ta-

ble 3.5. All three approaches guarantee identification of all possible exercisable gates

for any possible execution of an application. The naive approach identifies the tog-

gled gates most precisely; however, this approach suffers in simulation runtime, as it

attempts to explore all possible execution paths of an application without any approxi-

mation. The conservative state-based approach makes symbolic co-analysis practical in
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terms of simulation runtime but sacrifices significant precision with overly-conservative

representation of simulation states. The constrained conservative approach further im-

proves analysis runtime compared to the conservative approach and also significantly

improves precision by applying application-based constraints to the simulation that re-

duce both the number of symbolic execution paths simulated and the propagation of

unknown logic values (Xs) through the netlist.

3.5 Related Work

3.5.1 Static Analysis

Static analysis of programs is a helpful technique used in many works. The work in

[24] presents an algorithm that detects infinite loops in program using symbolic ex-

ecution based static analysis. The work in [23] presents a fast static loop analysis

that estimates loop iteration counts and execution frequencies of code elements. Such

static loop analyses are useful in compiler optimizations such as loop unrolling, loop

tiling, feedback-directed optimizations and many more. Another area where static loop

analyses is used is the worst-case execution time(WCET) analysis. [23] elaborates in

detail on some of the applications of static loop analysis. The work in [25] uses static

analysis to determine iteration domains of syntactic statements in programs. The it-

erations domains capture the dynamic instances of the statement during the program

execution and are used by the program transformations in the polyhedral model and

polyhedral code generation. In our work, we perform static analysis on program binary

to map binary patterns resulting from high-level program structures (e.g., loops and if

statements) into constraints.

3.5.2 Hardware-Software Co-analysis

Co-analysis techniques presented in prior work [11–13] identify all exercisable gates for

an application in a processor through symbolic simulation of the application on the

processor netlist. Unfortunately, this co-analysis technique cannot analyze applications

with complex control flow or infinite loops. To resolve this issue, prior work [11] pro-

poses maintaining conservative states for each PC-changing instruction (e.g., conditional
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branch). A conservative state is a state that covers all simulated states observed at a

particular PC-changing instruction. An execution path is simulated only if the current

state is not a subset of a previously observed conservative state, in which case a more

conservative state is created by merging the current state with the conservative state

maintained for the PC-changing instruction and continuing simulation from the new

conservative state. The conservative approximation technique enables a scalable gate

activity analysis that completes in a small number of passes through the application.

However, this conservative over-approximation still treats the application as a black box,

and hence, suffers from the pessimism of marking too many gates as exercisable, poten-

tially leaving significant benefits on the table. In our work, we proposed a constrained

conservative state symbolic hardware-software co-analysis technique that characterizes

the behavior of an application by analyzing the binary and determines constraints that

constrain the value of the memory elements from being overly pessimistic (i.e., contain-

ing too many Xs), leading to fewer gates marked as exercisable and reduced simulation

times.

3.6 Summary

In this chapter, we proposed a constrained conservative state symbolic hardware-software

co-analysis technique that applies constraints to symbolic states to reduce the pessimism

in marking gates as exercisable. In addition to guaranteeing identification of all possible

exercisable gates for an application execution, the proposed technique significantly re-

duces simulation time and number of symbolic execution paths explored. Compared to

the state-of-art analysis based on conservative states, our constrained approach reduces

the number of gates identified as exercisable by up to 34.98%, 11.52% on average, and

analysis runtime by up to 84.61%, 43.83% on average.



Chapter 4

Design-Agnostic Symbolic

Co-analysis Tool

Symbolic co-analysis has proven to be an effective technique for application-specific

design optimizations. We further improved the state-of-art symbolic co-analysis tech-

nique with software constraints, allowing application information to impact hardware

optimizations. Despite the significant potential of application-specific design and opti-

mization techniques, applicability has been limited, since the symbolic co-analysis tools

developed in previous works were developed for a single processor (openMSP430), and

extending them to analyze and optimize other processor designs or architectures requires

the challenging and time-consuming task of developing a new custom simulation tool

for each new design. This simulation approach is not scalable, especially for industry,

as each application may use a different design, and it is infeasible to write a custom

simulation tool for each design. In this chapter, we introduce a general, automated tool

for hardware-software co-analysis that can analyze any processor design and enable the

benefits of application-specific design and optimization.

4.1 Gate-Level Simulator

Application-specific optimizations are effective because they remove gates that are not

exercised for any execution of the application. One important feature of hardware-

software co-analysis tools is the ability to run gate-level simulations. Modern gate-level

28
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simulators such as VCS [32] can perform cycle accurate simulations; however, they do

not support all features necessary to run hardware-software co-analysis. For example,

modern simulators do not support custom propagation of symbols, management of

conservative states, and splitting the simulation on observing a particular symbolic

signal. In our work, we developed a design-agnostic simulation tool that performs

symbolic hardware-software co-analysis with cycle-accurate precision at the gate level.

We extend an open-source design synthesis and simulation tool – iverilog – to support

symbolic simulations and enable the use of conservative gate-level execution states.

In this chapter, we describe how we extended iverilog to support symbolic hardware-

software co-analysis for an arbitrary digital design.

4.2 Extending Iverilog For Symbolic Hardware-Software

Co-Analysis

Performing the symbolic hardware-software co-analysis of an application on a micropro-

cessor design involves performing a gate-level simulation in which all application inputs

are replaced by symbols (X) indicating unknown logic, thus simulating the behavior

of the microprocessor for all possible application inputs. When an X is propagated to

an instruction that affects control flow (e.g., branch, jump), multiple simulations are

spawned to cover all possible execution paths of the application from the instruction.

To handle execution path explosion in complex applications, we follow the approach of

using a conservative state to represent all execution states observed at the same pro-

gram counter (PC) [33]. This guarantees coverage of all possible execution states while

allowing the simulations to converge. To accommodate symbolic co-analysis, we make

the following modifications to iverilog source code.

1) Monitor critical microprocessor signals: To identify when X propagates to an in-

struction that affects control flow, we implement a system task function called monitor x()

in iverilog that monitors a list of signals. For example, the signals could be a combi-

nation of the ALU flags, like N, Z, C, and V (negative, zero, carry, and overflow) that

determine the result of a conditional branch instruction that indicates if a branch is

taken.

2) Save the simulation state: To cover all possible executions from a branch with
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Figure 4.1: We add a new type of event to capture ‘symbolic events’ in iverilog’s event
queue. This enables us to monitor control signals for X and halt the simulation when
necessary. The VVP engine is a part of iverilog source that executes an iverilog compiled
assembly code that is generated from the verilog testbench.

unknown outcome, we first dump the simulation state before the execution of the in-

struction that affects control flow. The simulation state indicates the state of the mi-

croprocessor along with the state of the simulator (e.g., the event queue).

3) Continue simulation from a saved state: To simulate all possible executions from

the instruction affecting control flow, we make multiple copies of the saved simulation

state and modify each copy with the status that allows the microprocessor to take one

of the possible executions. We enhance the simulator to read the modified simulation

state and continue the simulation from the halted state. For this, we implement another

system task called initialize state().

4.2.1 Iverilog Software Flow Enhancement

iverilog is an event-driven simulator, where a set of events represents a time step. Upon

the execution of these events, the simulation time progresses. Events are categorized

into five event regions, and each region represents a similar set of events. The event

regions are executed in the order shown in Figure 4.1. Since we implement symbolic

simulation as a plug-in feature to iverilog, we ensure that our modifications do not

affect the existing flow. Therefore, we create a new event region called Symbolic events

and execute them after the other event regions. Symbolic events includes monitoring

control flow signals, halting the simulation when X is detected, serializing and saving

the processor and simulator state, and restarting the simulation from a saved state. By
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Figure 4.2: Our design-agnostic symbolic co-analysis tool is built on top of iverilog to
allow hardware-software co-analysis of any digital design.

executing symbolic events last, we ensure that all events for the time step have already

executed. When the simulation restarts, there may be a few events not belonging to

the symbolic events region that are executed before initialization. However, the state

initialization in the symbolic events region overrides the entire simulator and processor

state. This nullifies the effects of any event executed before initialization. As this

override occurs only in the first time step, the overhead of this process is minimal.

4.3 Symbolic Hardware-software Co-analysis Using Iver-

ilog

Figure 4.2 illustrates the entire simulation flow of our design-agnostic symbolic co-

analysis tool. To perform symbolic co-analysis, the user provides the application binary

and the gate-level netlist to a testbench harness, along with a list of control flow signals

to monitor. The testbench instantiates the design, loads the application binary, and

provides inputs (Xs) to the application. The testbench also calls the monitor x()

system task, providing the user-specified control flow signals as argument. iverilog

assimilates all the information into an iverilog-specific intermediate representation (vvp

assembly) [34] and starts the simulation. Once the simulation reaches a PC-changing

instruction where any of the signals that determine control flow are X, the execution

path becomes non-deterministic, and we must explore all possible execution paths. At

this point, the simulation is halted, the simulation state is saved, and the Conservative
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State Manager (CSM) is alerted. The CSM is a program that maintains a repository

of previously-simulated states. A simulation state is indexed by the PC of the PC-

changing instruction at which it was observed. When the simulator halts the simulation

and provides the simulation state to the CSM, the CSM compares the state with the

most conservative state that has been simulated thus far for the same PC. If the current

state is a strict subset of the previously-simulated state, this state has already been

evaluated, and hence, further simulation is not required. If the current state is not a

strict subset, the CSM generates a more conservative state that covers both states by

merging the current state and existing conservative state. Once the new conservative

state is formed, appropriate control flow signals are set to continue down the possible

execution paths from the PC-changing instruction. Algorithm 3 describes the simulation

procedure.

The simulation is complete when there are no new states to simulate. We then

obtain gate activity information for all explored paths. We combine the activity infor-

mation to generate the gate activity information for the entire application. The gate

activity information indicates all the gates that are exercisable by the application. This

information can be used for subsequent application-specific design optimizations. For

example, to generate a bespoke processor, unexercisable gates are pruned away and the

microprocessor design is re-synthesized to generate a new gate-level netlist with lower

area and power consumption. During re-synthesis, fanout values of pruned gates are set

to the constant value seen during the symbolic simulation of the target application.

4.3.1 Designing A Testbench For Symbolic Hardware-Software Co-

Analysis For Iverilog

Listing 4.1 describes a simple testbench that uses the symbolic simulation feature of

the iverilog tool. The user must follow the steps described below to perform symbolic

hardware-software co-analysis.

1) The testbench calls two system tasks: monitor x() and

initialization state() in an initial block. monitor x() accepts a list of signals that

affect control flow as argument, allowing iverilog to halt simulation when the execu-

tion path is non-deterministic. initialization state() accepts simulation state as

argument to allow iverilog to initialize the processor and simulator states, and begin
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Algorithm 3 Symbolic Hardware-Software Co-analysis using iverilog

1. Procedure symbolic simulation(app binary, design netlist, control signals)
2. Load the design netlist and initialize the Memory.
3. Load app binary into program memory
4. Propagate reset signal
5. s← State at start of app binary
6. cs← control signals
7. Table of previously observed symbolic states, T .insert(s)
8. Stack of un-processed execution paths, U .push(s)
9. Tp ← ϕ // Initialize empty toggle profile
10. Tn ← ϕ // Initialize empty toggle nets
11. while U != ∅ do
12. e← U .pop()
13. e.set control signals() // set control signals for a execution path
14. $initialize state(e)
15. // halt if any of the control signal becomes X
16. while $monitor x(cs) == 0 do
17. e′ ← propagate gate values(e) // simulate this cycle
18. e← e′ // advance cycle state
19. end while
20. c← T .get conservative state(e)
21. if e′ ̸⊂ c then
22. e′′ ← T .make conservative superstate(c,e′)
23. U .push(e′′)
24. Tp.save toggle profiles(e′′)
25. else
26. break
27. end if
28. end while
29. // Merge toggled nets of all the toggled paths.
30. for all p ∈ Tp do
31. Tn.append(p)
32. end for
33. // Mark driver gates of the corresponding nets as toggled.
34. for all n ∈ Tn do
35. if n.toggled() then
36. g ← n.getDriverGate()
37. g.setToggled()
38. end if
39. end for
40. for all g ∈ design netlist do
41. if g.untoggled then
42. annotate constant value(g,s) // record the gate’s initial (and final) value
43. end if
44. end for
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Listing 4.1: Simple verilog test bench harness for starting symbolic simulation

initial

begin

$monitor_x("control_signals.ini");
$initialize_state("sim_state.log");

RST_n = 1’b0;

#100 RST_n = 1’b1;

end

reg [7:0] data_memory [7999:0]; // 8kB data memory

// Instantiate Design.

GateLevelNetList dut(input reg1 , reg2 ,..., data_memory);

initial

begin

reg1 = 16{1’bx};

reg2 = 16{1’bx};

// set input dependent memory locations as X

for (i = start_loc; i < end_loc; i = i + 1)

begin

data_memory = 8’bxxxxxxxx;

end

end

... // other necessary initializations

simulation from a previously halted state.

2) The testbench must instantiate and reset the processor.

3) The testbench must initialize the processor inputs – registers and memory – to Xs

to allow iverilog to simulate all possible execution paths of the application.

4.3.2 Conservative State Management

Simulation halts if one or more Xs is encountered in a monitored state variable or if the

simulation terminating condition is met, indicating that all possible application states

have been simulated. In case of an X in a monitored signal, we launch multiple instances

of iverilog that execute the branches of the simulation where the Xs in the monitored

state are re-interpreted as ones or zeros to cover all legal scenarios. Alternatively, we

can apply the conservative state optimization proposed in prior works [13]. Using this

optimization, a more conservative state of the saved state is generated by merging all the
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Figure 4.3: Various approaches for conservative state generation exhibit trade-offs be-
tween simulation effort and conservative over-approximation. To capture all states in
the first row (green) we could either create two conservative states as shown in the
second row (blue) or one uber-conservative state as shown in the third row (red).

previously-observed states that match the PC of the current saved state. Applying the

conservative state optimization significantly accelerates simulation by allowing many

simulation paths that are covered by the conservative state to be discarded.

How conservative states are formed can be configured in the simulator. A designer

can choose any approach to form conservative states, depending on convergence and ac-

curacy requirements, as long as the approach ensures that the formed conservative state

covers all observed states. For example, the approach used in prior work is to generate

a single conservative state by merging simulation states and replacing all differing bits

with Xs. Generating a single state to cover all observed states allows the simulation

to converge the quickest and is most scalable, but it is also the most conservative, and

represents some gates as exercisable that may not actually be exercisable. Consider

the in Figure 4.3, where the observed states for a given PC are represented by the

green circles. A conservative state of XXX encompasses all the observed states, and

in addition, covers a few unobserved states. Though this approach reduces simulation

time significantly, it can lead to over-approximation of exercisable gates. As another

example, consider using a conservative state of 0XX along with the state 100, repre-

sented by blue circles. This conservative state formulation requires simulation of two
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Figure 4.4: Our symbolic tool allows rules for symbol propagation to be customized. The
left sub-figure shows a case where circuit inputs are propagated as separate symbolic
values, while the right sub-figure shows a case where the symbolic values carry no
identifying information and thus cannot be distinguished.

execution paths rather than the original five and avoids representing unobserved states.

In our tool, the CSM supports the ability to specify a custom conservative state genera-

tion approach by providing the rules of conservative state generation. Another example

of a custom approach could be using application constraints to constrain conservative

states [?]. The CSM accepts constraints in the form of a text file and uses them to

reduce over-approximation of conservative states. The CSM keeps track of all the saved

states along with their PC values and generates conservative states to be fed into the

next branch in the simulation. CSM is also responsible for triggering the launch of the

iverilog instance that simulates the next branch. Since each branch of the simulation

can be run by a separate process, launching these processes in parallel can drastically

improve simulation time.

4.3.3 Propagation Of Symbols

The simulation tool also allows customization of symbol propagation. Different ap-

proaches for propagating Xs are used for different application-specific optimizations.

For example, optimizations that require the identification of unexercisable gates must

track the propagation of Xs, as this indicates the possibility of a gate being exercised for

some application input, while to provide security guarantees, symbols must also prop-

agate taint information [35]. For a less conservative simulation, we may want to track

the propagation of each unknown value individually. This can allow simplification when

the same symbol recombines at a gate. For example, the left sub-figure of Figure 4.4

shows a case where inputs to the circuit are propagated as separate symbolic values. In
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this case, it can be determined that the inputs to the XOR gate have the same unknown

value, and the output of the XOR gate is logic 0. In the right sub-figure, no identifying

information is propagated with the symbols, so it cannot be determined that the inputs

to the XOR gate have the same value, and the output must be assumed to be unknown

(X). The latter approach is easier and more scalable to simulate, while the former is

less conservative.

4.4 Evaluation

In this section, we demonstrate the generality of the novel analysis tool by evaluating

our methodology on three different processor implementations, each based on a differ-

ent ISA – openMSP430 [26] – an open-source version of one of the most popular ULP

processors [36, 37], a custom implementation of an open-source 32-bit MIPS processor

– bm32 [38] – and DarkRISCV SoC [39], a RISCV implementation that implements

the RV32e ISA [40] with integer registers reduced to 16 bits. Our implementation of

DarkRISCV only modeled the processor core and memory. The processor designs are

synthesized, placed, and routed in TSMC 65GP technology (65nm) for an operating

point of 1V and 100 MHz using Synopsys Design Compiler [27] and Cadence EDI Sys-

tem [28].

Gate-level simulations are performed by running full benchmark applications on the

placed and routed processor using our symbolic simulation tool. Table 5.4 lists our

benchmark applications. We show results for the benchmarks that fit in the program

memory of the processors. Table 4.2 lists the selected processors and their features.

The gate-level simulations were performed using an enhanced version of iverilog [34]

written in C++ and a Conservative State Manager written in Perl. The CSM uses the

conservative state approach used in prior work [13].

Benchmarks are chosen to be representative of emerging ULP application domains

such as wearables, internet of things, and sensor networks [29]. Also, benchmarks were

selected to represent a range of complexity in terms of control flow and execution length.

Experiments were performed on a server housing two Intel Xeon E-2640 processors

(8-cores each, 2GHz frequency, 64GB RAM).
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Table 4.1: Benchmark applications

Benchmark Description

Div Unsigned integer division
inSort in-place insertion sort

binSearch Binary search
tHold Digital threshold detector
mult unsigned multiplication
tea8 TEA encryption algorithm

Table 4.2: Target platform characterization

Design ISA Features

bm32 MIPS32 32-bit MIPS implemen-
tation, with hardware
multiplier.

openMSP430 MSP430 16bit microcontroller
with 16x16 Hardware
Multiplier, Watchdog,
GPIO, TimerA

dr5 RV32e 32-bit RISCV embed-
ded ISA with 16 in-
teger register, 3 stage
pipeline.

Using our tool, we run conservative-state based symbolic simulation for all the ap-

plications in Table 5.4 on three microprocessor designs – openMSP430 (MSP430), bm32

(MIPS32), and dr5 (RV32e) and generate the input-independent gate activity profile.

We then prune away the unused gates and re-synthesize the design to generate an area

and energy efficient bespoke processor, as in [13].

4.4.1 Validation

To verify that the bespoke netlist generated with our generalized simulation tool works

correctly, we simulate the application behavior using fixed known inputs on both the

original and the bespoke gate-level netlist. We verified that the outputs from both the

designs are the same. We also verified that the set of exercised gates for the fixed input

run is a subset of the set of exercisable gates reported by our tool. Also, to ensure
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Table 4.3: Gate count analysis

Benchmark
BM32 tgc: 16795 omsp430 tgc: 7218 darkriscv tgc: 7578

GateCount % reduction GateCount % reduction GateCount % reduction

Div 12008 28.5 3175 56.01 6399 15.56

inSort 12210 27.3 3098 57.08 6402 15.52

binSearch 12200 27.36 3115 56.84 6324 16.55

tHold 12139 27.72 2970 58.85 6259 17.41

mult 12707 24.34 3651 49.42 6299 16.88

tea8 12340 26.53 2755 61.83 6577 13.21

that the bespoke optimization enhancements made to iverilog do not affect the existing

simulation capabilities, we verified that the event list from the baseline iverilog version

matches the iverilog version after our enhancements at simulation points for applications

that are picked at random.

4.4.2 Exercisable Gates

Table 4.3 shows the number of gates marked as exercisable by an application for the

three designs. The total number of gates in the three microprocessor designs – bm32,

openMSP30, dr5 – are 16795, 7218, and 7578, respectively. Using our tool to perform

symbolic hardware-software co-analysis, we achieve a gate count reduction of 27%, 56%

and 16% for these processors, respectively. Figure 4.5 shows the percentage reduction of

the toggled gates for all benchmarks in Table 5.4. We observe that designs with external

peripherals tend to have a higher gate count reduction. This is because, for applications

that do not use peripherals, the set of gates representing the peripheral logic will not

be exercised and can be safely removed. Since dr5 does not contain any peripheral logic

such as a multiplier, it exhibits a relatively smaller reduction in the toggled gate count.

4.4.3 Simulation paths

From the simulation paths reported in Figure 4.6, we observe that bm32 and dr5 re-

quire significantly more simulation paths than openMSP430 to complete symbolic sim-

ulation. This is because of a fundamental difference in how compare instructions are

implemented in the designs and how that affects conditional jumps in an application. In
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Figure 4.5: Benchmarks run on MSP430 processor have a higher reduction in exercisable
gate count compared to MIPS and RISCV processors because of the presence of unused
peripherals in MSP430.

openMSP430, the result of the compare instruction is stored in program status word in

the form of N, Z, C, and V flags. Based on the value of these flags (1 or 0), conditional

jumps are resolved. In bm32 and dr5, on the other hand, the compare instruction is

implemented as a subtraction operation, and the resulting value is stored in a 16-bit

register, which is used to resolve conditional jumps. As discussed in Section 4.3 we halt

the simulation when the output of a compare instruction preceding a conditional jump

resolves to one or more Xs. In the case of openMSP430, this means when any of the

NZCV flags of the status register is an X. In the case of bm32 and dr5, this means that

the 16-bit register that holds the result of subtraction contains one or more Xs. If the

16-bit result register already contains an X, subsequent subtractions (such as compare

used to evaluate loop termination conditions) would increase the number of Xs in the

register. In most applications, all possible execution paths are only evaluated when the

entire register fills with Xs. This significantly increases the number of paths that need

to be evaluated for bm32 and dr5 processors. Since the NZCV flags in openMSP430

are 1-bit each, there are no additional Xs incurred at every compare instruction. This

means that openMSP430 is able to converge faster, while for bm32 and dr5, several
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Table 4.4: Simulation path and runtime analysis

Benchmark
BM32 tgc: 16795 omsp430 tgc: 7218 darkriscv tgc: 7578

paths created skipped simulated cycles paths created skipped simulated cycles paths created skipped simulated cycles

Div 327 112 53202 17 8 776 325 112 13149

inSort 315 130 35044 230 118 18086 319 132 9382

binSearch 941 190 154198 119 62 9715 829 190 2374

tHold 191 68 17168 293 184 13030 191 68 4690

mult 1 0 528 1 0 258 175 60 5790

tea8 1 0 10018 1 0 3852 1 0 4534

simulation instances are necessary to reach a simulation state that represents all pos-

sible subtraction operations. Due to the use of status bits (NZCV flags), benchmarks

compiled for openMSP430 also have fewer conditional branch instructions compared to

benchmarks in other processors, leading to fewer explored paths.

Another factor that significantly affected the simulation time for dr5 is the lack of

a hardware multiplier module. As such, the compiler for dr5 performs multiplication

in software using a library implementation of multiplication in the form of repeated

additions in a loop. This leads to the use of input-dependent conditional branches to

perform multiplication in dr5. Since input-dependent conditional branches lead to the

generation of multiple simulation paths, we see that for the benchmark mult, dr5 has

more than one simulation path in Figure 4.6, while the number of simulation paths for

the other two processors that use a hardware multiplier is one.

Finally, Figure 4.6 shows that for the benchmark tHold, the number of simulated

paths is higher for openMSP430 compared to bm32 and dr5, contradicting the trend

seen in the other benchmarks. This is because the compiled binary for openMSP430 had

three conditional branch instructions vs two in dr5 and bm32. Hence, in openMSP430,

the number of execution split points in each loop iteration of tHold is three, compared

to only two for dr5 and bm32. This difference quickly adds up as the symbolic execution

tree is built, leading to a higher number of simulation paths for openMSP430. Table 4.4

provides the number of simulation paths created and skipped, along with the simulated

cycles for each application in all the designs.
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Figure 4.6: Benchmarks run on MIPS and RISCV processors have a higher number of
simulated paths because a 16-bit register is used to indicate branch conditions, whereas
in MSP430, a 1-bit register is used, resulting in fewer conservative states.

4.5 Related Work

Prior works on application-specific system design and optimization propose symbolic

hardware-software co-analysis and demonstrate its use in a number of applications,

from providing security guarantees in embedded systems [35], to performing application-

specific optimizations that reduce power and energy without sacrificing performance or

functionality [11, 12, 15, 41], to automatically generating application-specific bespoke

processors for ultra-low-power embedded systems [13]. However, prior works rely on

developing a custom simulator for each processor to be analyzed and optimized. Since

this is a challenging and time-consuming endeavor that is not scalable, prior works only

demonstrated results for a single processor (openMSP430). In our work, we develop

a design-agnostic symbolic simulation tool that can apply symbolic hardware-software

co-analysis techniques to any digital design and application. Our tool offers a scalable

approach to easily extend symbolic analysis and subsequently enable application-specific

optimization for new designs.
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Prior work on property-driven automatic hardware transformation [42] developed a

property-driven framework for automatically generating hardware for a reduced ISA,

where a specified list of instructions or ISA features are not supported. The work uses

a property library to annotate all gates in the design and performs property checking

to identify gates for which the properties are verified. Developing a property library

that encodes ISA restrictions for each application is a manual process that can be both

challenging and time-consuming. Our symbolic simulation tool, on the other hand, can

easily analyze a new design with minimal user effort or expertise. Further, our tool

is able to handle designs in any format – RTL or gate-level netlist – described in any

hardware description language, e.g., verilog, VHDL, or system verilog.

In our work, we discuss saving and restoring simulation state in iverilog. Restoring

simulation state involves assigning values to design elements, such as nets and registers.

Prior works have used verilog constructs such as force and release for fault injection

in design elements [33]. However, at any simulation point, force and release allow us

to assign only one value to a design element. To assign a different value, the testbench

must be modified and recompiled. Also, the simulation must be restarted from the

beginning. By saving and restoring simulation states, we avoid this overhead. Using

force and release, we cannot split the simulation and launch multiple instances. Our

approach allows us to parallelize simulations for different execution paths.

4.6 Summary

Current state-of-the-art symbolic simulation tools for hardware-software co-analysis are

restricted in their applicability, since prior work relies on a costly process of build-

ing a custom simulation tool for each processor design. In this chapter, we described

how we modified iverilog to support propagation of symbolic values, conservative state

generation and simulation, monitoring of critical control signals, and saving and restora-

tion of simulation states, thus creating a design-agnostic symbolic simulation tool for

hardware-software co-analysis. We demonstrated the generality of our tool by perform-

ing symbolic analysis on three embedded processors with different ISAs, and we also

used analysis results from our tool to generate bespoke processors for each processor

design and discussed the impact of architectures on the results and simulation times.
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Our results demonstrate the versatility of our simulation tool and the uniqueness of

each design with respect to symbolic analysis and the bespoke methodology.



Chapter 5

Application-Specific Architecture

Selection

In the last chapter, we introduced a symbolic simulation tool that performs hardware-

software co-analysis on any processor-application pair. The versatility of our tool opens

the possibility of a wide scope of research and analysis. By facilitating symbolic sim-

ulation of an application on a processor netlist, our tool has simplified characterizing

gate-level behavior of an application. By pruning away gates in a processor that the

system’s target application is guaranteed not to use, significant energy savings can be

achieved. The resulting bespoke processor is a pruned-down version of the original and

the processor logic is unchanged from the perspective of the application, the benefits of

using a GPP remain largely intact.

Application-specific design-level optimizations are effective when optimizing a pro-

cessor. However, if the goal is to design a application-specific processor that is optimal in

terms of a metric such as energy efficiency, processor architecture must also be optimized.

But, architectural parameter space is huge considering the choices for design implemen-

tation, list of possible peripherals, size of register-memory space, and many more. Syn-

thesizing a new design for each parameter variation and performing application-specific

optimizations is not feasible due to the large architecture parameter space. Moreover,

application-specific optimizations impacts a processor in a non-linear fashion, i.e., the

45
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impact of an optimization is different for a different processor-application pair, superpo-

sition cannot be applied. Selecting the optimal processor architecture for an application

and applying application-specific optimization does not generate the optimal bespoke

processor for the application. Given the wide usage of Machine Learning (ML) for

effective design space exploration, we sought the aid of ML to efficiently explore the

architectural parameter space and predict the quality of a processor architecture choice

for a target application using features extracted from processor design choices and char-

acteristics of the application. In this chapter, we demonstrate the use of ML model in

navigating through the architecture parameter space. We also show how the predictions

from the ML model help improve the area and power savings by choosing the optimal

architecture for a bespoke processor for a target application.

5.1 Effect Of Bespoke Process On Architectural Variants

As discussed in previous chapters, a characteristic of many embedded devices is that

they run a single application over and over throughout their lifetime. This opened up

the door for application-specific optimizations to improve processor efficiency. Using

bespoke processor, we tailor a processor for a target application and reduce power and

area without sacrificing application performance or functionality. However, there are a

wide variety of general purpose embedded processors with different characteristics such

as ISA, memory size, and microarchitectural features, and for a single application, each

different processor can be used to generate a bespoke processor with different efficiency

for a system designer’s metric of interest (power, area, performance, energy, etc.). Some

processor architectures naturally lend themselves to greater optimization for a specific

application, and it is not clear how to choose the architecture that is best suited for a

bespoke processor’s target application and efficiency metric.

Figure 5.1 shows the gate count for several architectural variants of the darkriscv

processor [39]. Each architectural variant was generated by selecting different archi-

tectures for the adders and multipliers used in the processor. The orange data points

represent the total number of gates in the placed and routed design for each architec-

tural variant. The points are sorted so that the gate count increases from left to right.



47

Figure 5.1: This plot shows the total gate count for various architectural variants of the
darkriscv processor both before and after bespoke customization for the tea8 application.
The optimal processor variant before customization (green diamond) is different than
the optimal bespoke processor variant after customization (green star).

The blue data points correspond to the number of gates in a bespoke processor gener-

ated from each architectural variant. The bespoke processors are tailored for tea8 – a

popular encryption algorithm used in embedded systems [43] – using the conservative

state based symbolic hardware-software co-analysis technique.

In Figure 5.1, the leftmost architectural variant (marked with a green diamond)

has the lowest gate count. This design used an AND-based non-Booth multiplier and

a conditional sum adder [44]. However, after eliminating unexercisable logic for tea8

in each architectural variant, the leftmost variant does not correspond to the bespoke

processor with the lowest gate count. The bespoke design with the lowest gate count

(indicated by the green star) uses a Booth-encoded radix-8 multiplier and a carry-save

adder. Thus, for this example, selecting the optimal architectural variant on which to

perform bespoke customization leads to a suboptimal design after customization.

Furthermore, this example, which only considers changes to the adder and multiplier
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architectures for the processor, required a significant amount of simulation and design

automation effort to generate and evaluate all the design variants. As the architectural

parameter space expands to include more architectural options, the time required to

enumerate and evaluate all options in order to identify the optimal architectural variant

quickly becomes prohibitive.

5.2 Effect Of Architectural Variants On Efficiency Metric

In the last section, we discussed the effect of bespoke process on architectural vari-

ants, specifically adder and multiplier implementations. We showed that the impact

of bespoke process on architecture is non-deterministic. In this section, we show how

architecture impacts the efficiency metric.

5.2.1 Processor Architectures

Figure 5.2 shows the energy per bit and NAND-equivalent area per bit for different

bespoke processors tailored for applications based on multiplication (mult) and binary

search (binsearch). In this example, the architectural variants correspond to different

processor architectures – MSP430-based openMSP430 [26], MIPS-based bm32 [38], and

RISC-V-based darkriscv [39].1 Energy per bit is computed by dividing the energy

required to execute the application by the bit-width of the processor. Area per bit

is computed analogously. Per-bit efficiency metrics are used because the processors

have different bit widths; openMSP430 is a 16-bit processor while bm32 and darkriscv

are 32-bit processors. We observe that in terms of energy per bit, openMPS430 is

a better choice for the mult application while bm32 is a better choice for binSearch.

Both openMSP430 and bm32 have lower energy per bit than darkriscv for the mult

application due to the presence of hardware multipliers in those architectures. Although

the bespoke processors generated from the darkriscv architecture have higher energy per

bit than those generated from the other two architectures, the darkriscv-based bespoke

processors have the lowest area per bit for both applications. The results in Figure 5.2

demonstrate that the best processor architecture from which to generate a bespoke

1All processor architectural variants use a Booth-encoded radix-4 multiplier architecture and a Sklan-
sky adder architecture.
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Figure 5.2: The plots compare per-bit energy consumption (top) and area (bottom)
for bespoke processors tailored for mult and binsearch applications, starting from three
distinct processor architectures – MSP430, MIPS, and RISC-V. The MSP430-based
bespoke processor has the lowest per-bit energy consumption for the mult application,
but the MIPS-based design has the lowest energy for the binsearch application. On the
other hand, the RISC-V-based design has the lowest per-bit area for each application.
The results demonstrate that the best processor architecture from which to generate a
bespoke processor differs based on the target application and efficiency metric.
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processor differs based on the target application and efficiency metric.

5.2.2 Hardware Accelerators

In this section, we present results for bespoke hardware accelerators generated from

a 32-bit Discrete Cosine Transform (DCT) accelerator. We consider folded and un-

folded architectural variants of the accelerator, and we perform bespoke customization

for various applications in which the required bit precision of the input signal is varied

from 4 bits to 32 bits.2 We present the energy and area of the resulting bespoke

accelerators in Figure 5.3. Note that we do not compare per-bit efficiency metrics in

this case, since the different bit widths correspond to different applications for which

the accelerator is customized, not different architectural variants. The figure shows that

the folded architecture is more area-efficient independent of input bit width. This is not

surprising, since the un-folded design is essentially “parallelized” so that it can handle

multiple inputs at the same time.

Comparing the energy of the bespoke designs generated from the two architectural

variants, the un-folded architecture results the lower energy for an input bit width of

32, while the folded architecture results in lower energy for lower bit widths. At 32-bit

precision, the un-folded design, which generates the output faster than the folded design,

consumes less energy. However, since the area reductions for bespoke customization are

not significant as bit width reduces, the significantly lower area of the folded architecture

outweighs the time savings of the un-folded design at lower input bit widths. As in the

previous example, the best accelerator architecture from which to generate a bespoke

accelerator differs based on the target application and efficiency metric.

5.3 Motivation

The above discussions leads us to conclude that for a given target application and

efficiency metric, the architecture from which a bespoke processor or accelerator is

generated can have a significant impact on efficiency for a system designer’s metric of

choice. In addition to the differences between the un-tailored architectures themselves,

the significantly different and non-uniform impact of bespoke customization on different

2Both filter architectures use Booth-encoded radix-8 multipliers and Sklansky adders.
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Base Folded

Figure 5.3: The plots compare energy consumption (top) and area (bottom) for bespoke
accelerators tailored for applications with different input bit precision, starting from
folded and un-folded architectural variants of a 32-bit DCT filter DSP accelerator. The
x-axis represents input signal bit width, corresponding to different applications that
require different levels of precision. Bespoke accelerators generated from the folded
architecture have lower area for all input bit widths, but for a bit width of 32, the
un-folded accelerator has lower energy due to its lower computation time. The best
accelerator architecture from which to generate a bespoke accelerator differs based on
the target application (bit width) and efficiency metric.
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hardware architectures leads to a large and rich design space to be explored in order

to identify the most efficient bespoke design for an application. Given any non-trivial

architectural parameter space, a brute force approach for exploring this search space will

be prohibitively expensive due to the runtime complexity of symbolically evaluating the

application on the hardware to evaluate all possible executions of the application and

subsequently applying design automation techniques to perform bespoke customization,

synthesis, placement, and routing of the design, and metric evaluation on the placed and

routed design. This motivates us to explore intelligent and efficient means of identifying

the architectural variant from which to generate a bespoke design for an application

such that efficiency is optimized for a metric of choice. In the next section, we describe

the development of a machine learning model that can predict the value of a chosen

efficiency metric for a bespoke design that is tailored for a target application. This

model can be used to significantly speed up architecture selection for a bespoke design.

5.4 Application-Specific Architecture Selection

Selecting the starting architecture from which to generate a bespoke processor for a

given target application and efficiency metric can be a computationally expensive task.

As explained in Section 5.3, the computational overhead arises from the fact that even

a relatively small architectural parameter space can result in numerous architectural

variants, and generation of a bespoke processor from each variant requires a symbolic

simulation on the gate-level netlist of the processor that explores all possible execution

paths of the target application, plus running electronic design automation tools to per-

form design pruning and layout. For example, suppose the system designer wants to

explore an architectural parameter space with five processor architectures, ten different

adder architectures, and five different multiplier architectures. Even for this relatively

small parameterization, the resulting design space would contain 250 architectural vari-

ants. Even minor expansion of the architectural parameter space to include other mi-

croarchitectural parameters (e.g., divider architectures, floating point arithmetic units,

pipeline stage implementations, hazard avoidance mechanisms, etc.) can quickly cause

the number of architectural variants to explode. To identify the most efficient bespoke

design for an application, a designer would have to perform all the steps to generate
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Figure 5.4: Our machine learning model for selecting an architectural configuration from
which to generate a bespoke processor uses architecture features of the baseline design
and application characteristics to predict metric values for each architectural configu-
ration in the architectural parameter space. A short-list of candidate architectures is
evaluated more thoroughly to identify the most efficient architectural variant.

a bespoke processor from each variant and subsequently evaluate the efficiency metric

of choice on each bespoke design, making application-specific design space exploration

prohibitively expensive in most cases.

Rather than enumerating, generating, and evaluating a bespoke design correspond-

ing to each architectural variant, our approach for identifying an efficient architecture

from which to generate a bespoke processor, outlined in Figure 5.4, uses a machine

learning model (ML-optimizer) that can quickly predict the metric of interest for a

given application-design pair. We extract features from the application and the base

processor design (see Section 5.4.1) and provide them as inputs to the machine learn-

ing model, along with the architectural configuration (e.g., the processor architecture

and type of adder and multiplier architectures) for which a prediction is desired. Note

that all the inputs to the model can be determined without requiring a simulation or

synthesis campaign. For example, the training of the ML model and the metric value

prediction for all possible DSP configurations took an average of 30 seconds for each
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metric. We then selectively run the expensive process of synthesizing the design, per-

forming symbolic simulation of the application, generating the bespoke processor, and

evaluating the metric on the pruned design for a limited number of candidate architec-

tures identified by the model. For example, we only run the bespoke flow on the top

10% of predicted designs. We then annotate the features of the evaluated designs with

the true metric that was generated and add the metric-annotated feature vector to the

training set. By storing the true features of the evaluated metrics in our training set,

we can train our model online.

Adding to the training set is performed using a lazy exploration algorithm which

only updates the training set if both the base design and the application for which

inference was performed are not in the training set. In the case where at least one of

base design and application are already seen in past training, we do not add new data

points to the training set.

5.4.1 Feature Extraction

Our machine learning model predicts the value of an efficiency metric for a bespoke

design that is generated from a starting architectural configuration using features ex-

tracted from two sources – the application and the baseline architecture.

Application Characteristics: Application features capture the microarchitecture-

agnostic characteristics of the application. We extract application features after the

application is compiled to a binary. Extracted features can include the bit-width of

the data that the application processes, the size of the application, and the mix of

instructions in the application.

Baseline Architecture Characteristics: These features capture the architecture

characteristics of the processor. To efficiently extract the baseline architecture features,

we synthesize the baseline architecture once and extract features from the synthesis

report, such as number of adders, number of multipliers, number of registers, number

of register-to-register paths, and average register-to-register path length in number of

gates. This significantly reduces the need for manually reading the design and extracting

design features. We also use pipeline depth as a feature, which requires designer input

to specify the pipeline depth.
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Architectural Configuration The architectural configuration refers to values of archi-

tectural parameters (e.g., architectures for various arithmetic units) for which a metric

prediction is desired. We use a one-hot encoded string to capture the type of functional

unit used in a particular optimization configuration. In our experiments we explore a

total of 58 different optimization configurations.

5.4.2 Model Selection

We evaluated several machine learning models for design space exploration; three rele-

vant candidates are explained below.

• Linear Regression with Lasso: Since the goal of the model is to predict the

value of a metric, the problem can be framed as a regression problem. We trained a

linear regression model with lasso using several features that we extracted from the

application, processor architecture, and optimization configuration. This model

performed poorly and was too simple to predict the metric value corresponding

to an input feature vector.

• Regression Trees: Since a linear regression model did not perform well, we

could infer that the features interact non-linearly to predict the metric. This led

us to use a regression tree-based machine learning model to predict the metric.

While the model did capture the impact of certain features on the metric to be

predicted, it did not scale well with the number of features that we wanted to

train the model on.

• Neural Networks: Finally, we developed a neural network-based model that not

only scaled well with the number of features but also predicted different metrics

accurately. We used a four layer neural network for each metric to be predicted,

where the final layer contained only a single value. The configuration of our neural

network is presented in Figure 5.5. The activation functions are not shown because

we chose different activation functions for different metrics. For predicting energy,

each layer had a tanh activation, and for predicting area, each layer had a ReLU

activation.
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Figure 5.5: We use a neural network that predicts different desired metrics. There is
a slight variation in the models that predict area and energy metrics. The model that
predicts energy uses the tanh activation function, while the model that predicts area
uses ReLU activation.

5.4.3 Training The Model

We employ a leave one out strategy to train our model, where we leave one data point

from our training set and train our model using the rest of the data points. We then

test our model for accuracy using the data point that was left out.

5.4.4 Prediction, Ranking, And Architecture Selection

We train our model to predict a metric value for the bespoke processors for a target

application generated from all possible architectural configurations. While our machine

learning models have high prediction accuracy, they do not always have perfect accuracy.

As such, it is possible that the predicted rank of each bespoke design may not perfectly

align with ground truth, i.e., the rank obtained by exploring the entire design space

by synthesizing, simulating, pruning, and evaluating. In other words, the true optimal

design might not have a predicted rank of 1. However, for a model with high accuracy,

the predicted rank of the true optimal design should be close to 1. We exploit this fact



57

by running several of the top-ranked designs through the full evaluation flow. In our

experiments, the top 10% predicted designs always contained the true optimal design

(see Section 6.4).

5.4.5 Application-Specific Architecture Selection For DSP Circuits

Several embedded processors use DSP accelerators to reduce energy consumption and

augment the processor’s performance for key computational kernels. Each DSP acceler-

ator can have multiple architectural variants. For example, a filter can be pipelined or

folded and can use a different number of taps or pipeline stages. Depending on the re-

quirements of the target software application, a DSP circuit can be analyzed and pruned

to create a bespoke accelerator with reduced power and area. This can be accomplished

by performing an input-independent simulation for the target application on the DSP

circuit and pruning away logic that is not exercised during the simulation.

Since each DSP accelerator can have several architectural parameters, including a

variety of choices for arithmetic unit architectures, there exists a large design space

to be explored to identify the optimal architectural variant from which to generate a

bespoke architecture. To explore this design space, we use the methodology outlined in

Figure 5.4 to train a neural network model for different DSP accelerators. Some design

features, such as pipeline depth, number of adders, number of multipliers, and input

width are even more relevant for DSP accelerators than general purpose processors.

5.5 Evaluation

In this section, we evaluate the accuracy of our machine learning model in predict-

ing the rank of the optimal architectural variant for a particular application. For the

evaluations on general purpose processors, we used three designs listed in Table 5.1:

openMSP430 [26] – an open-source version of the popular ultra-low-power processor

MSP430, bm32 [38] – a custom implementation of an open-source 32-bit MIPS proces-

sor, and DarkRISCV SoC [39] – a RISCV processor that implements the RV32e ISA [40]

with integer registers reduced to 16 bits. We also performed evaluations on ten DSP

accelerator designs listed in Table 5.2: FIR Filter (pipelined, folded and base), IIR
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Table 5.1: General purpose processors evaluated

Processor ISA Features

bm32 MIPS32
32-bit MIPS implemen-
tation with hardware
multiplier

openMSP430 MSP430
16-bit microcontroller
with 16x16 Hardware
Multiplier, Watchdog,
GPIO, TimerA

darcriscv RV32e
32-bit RISCV embed-
ded ISA with 16 in-
teger registers, 3-stage
pipeline

Filter, DCT (folded and base), Butterfly, L1 norm, L2 norm, and Sobel. DSP accel-

erators were chosen from prior work on noise-tolerant accelerator design [45, 46]. All

designs were synthesized using TSMC 65GP technology (65nm) for an operating point

of 1V and 100 MHz using Synopsys Design Compiler [27]. For each design, we explored

an architectural parameter space with 58 different architectural variants. The variants

are produced by using the Synopsys DesignWare Library [44] to select different adder

and multiplier architectures to be instantiated in each processor or accelerator design.

Table 5.3 distinguishes the architectural variants evaluated for each general purpose

processor and DSP accelerator architecture. We included seven adder architectures and

nine multiplier architectures, leading to a search space of 56 possible combinations. We

also used Design Compiler’s area and speed optimizations, which override any adder

or multiplier architecture choice. This leads to an architectural parameter space of 58

architectural variants for each architecture.

Table 5.4 describes the embedded benchmarks used to evaluate the general purpose

embedded processor designs. Benchmarks are chosen to be representative of emerging

ULP application domains such as wearables, internet of things, and sensor networks [29].

Also, benchmarks were selected to represent a range of complexity in terms of control

flow and execution length. To generate a bespoke design for a target application, we

identified unexercisable logic that can be pruned from a design by performing an input-

independent simulation of the application on the synthesized gate-level netlist of the
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Table 5.2: DSP accelerators evaluated

DSP Accelerator Architectural
Variants

Notes

FIR
pipelined, folded,

base
32-bit 4-tap FIR filter

IIR base 32-bit 4-tap IIR filter

DCT folded, base
32-bit Discrete Cosine

Transform

Butterfly base 32-bit Butterfly circuit

L1 base
32-bit L1 norm computation

circuit

L2 base
32-bit L2 norm computation

circuit

Sobel base Sobel Filter circuit

design using the tool described in Chapter 4. For model development, we used machine

learning models that are available in the Scikit-Learn module available in Python [47].

We present our evaluation in two parts. First, we evaluate our methodology and

model for general purpose processors described in Table 5.1 using the applications de-

scribed in Table 5.4. We then evaluate our methodology and model for DSP accelerator

circuits described in Table 5.2 with application input signals of varying precision. For

all evaluations, we generate bespoke designs using the architectural variants described

in Table 5.3.

5.5.1 Design Space Exploration For Bespoke General Purpose Proces-

sors

In this section, we evaluate our neural network architecture selection model for three

general purpose processors with different ISAs and microarchitectures. Since the opti-

mizations we applied are combinational, the sequential behavior of the processor mi-

croarchitecture is unaffected. This information is captured by the register-to-register

connectivity of a processor, which can be extracted from the processor’s synthesized

gate-level netlist. We synthesized the baseline architecture of the processor without any

explicit optimizations.We then extracted architectural features such as the number of

registers in the design, the number of bussed registers (registers that have more than one
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Table 5.3: Architectural variants explored

ALU type Architectural variant Description

Adder

ling adder Ling Adder
hybrid adder Hybrid Adder

carry select adder cell Carry Select
Adder

cond sum adder Conditional Sum
Adder

sklansky adder Sklansky Adder
brent kung adder Brent Kung

Adder
bounded fanout adder Bounded Fanout

Adder

Multiplier

and
AND-based
non-booth
encoded
multiplier

nand
NAND-based
non-booth
encoded
multiplier

and radix4
AND-based
non-booth

encoded radix 4
multiplier

nand radix4
NAND-based
non-booth

encoded radix 4
multiplier

benc radix4
booth encoded

radix-4 multiplier

benc radix8
booth encoded

radix-8 multiplier

benc radix4 mux
MUX-based

booth encoded
radix-4 multiplier

benc radix8 mux
MUX-based

booth encoded
radix-8 multiplier

- area

Pick the adder
and multiplier

architectures that
minimize area

- speed

Pick the adder
and multiplier

architectures that
minimize delay
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Table 5.4: Benchmark applications for general purpose processors

Benchmark Description

binSearch Binary search
div Unsigned integer division

inSort in-place insertion sort
intFilt integer Filter
mult unsigned multiplication
tea8 TEA encryption algorithm
tHold Digital threshold detector

bit) in the design, number of register-to-register paths (flop-to-flop paths) in the design,

and the average length (in gates) of register-to-register paths. Along with register-to-

register paths, we also extracted the number of port-to-port paths and average length

(in gates) of port-to-port paths. The application features we capture include the size

of the application binary and the width of the input. Along with these features, we

also specify the architectural configuration as a one-hot encoded vector. We used the

leave-one-out strategy to evaluate our model.

Figure 5.6 presents normalized per-bit energy and area for bespoke processors gener-

ated for the mult application. The architectural parameter space spans the three GPP

architectures in Table 5.1 and all architectural variants described in Table 5.3. Blue tri-

angles indicate actual metric values, and red circles show the corresponding predictions

from our model. The energy data in the top sub-figure show that while the absolute

prediction accuracy is low for individual metric values (mostly due to a significant offset

between actual and predicted values for MIPS), the predictions follow the rank ordering

of the actual data. This means that if a certain architectural configuration produces a

bespoke processor with a better metric value than another architectural configuration,

then the predicted metric values of the two configurations generally follow the same

ranking as well. Viewed another way, the slope of the lines that fit the red dots and

the blue triangles follow the same trend. We observe a similar trend in the bottom

sub-figure, which presents normalized area per bit for the bespoke processors. Note

that even though the actual and predicted trend lines would cross for the variants of

the MIPS processor, they still maintain roughly the same ordering.

With our model, we aim to discover the optimal architecture within the top 10% of
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Figure 5.6: This plot shows the normalized energy per bit (top) and normalized area per
bit (bottom) predictions of bespoke processors for mult. The x-axis denotes different
architectural configurations. The predicted and actual metric values follow a similar
trend.
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Application
Optimal

architecture
Optimal Adder
and Multiplier

Predicted
Rank out of

174

binSearch openMSP430
carry select adder cell

benc radix4 mux
3

div openMSP430
carry select adder cell

benc radix4 mux
3

inSort darkriscv
bounded fanout adder

nand
7

intFilt bm32
cond sum adder
benc radix8 mux

3

mult openMSP430
sklansky adder
benc radix4

11

tea8 bm32
cond sum adder
benc radix8 mux

5

tHold openMSP430
ling adder

benc radix8 mux
3

Table 5.5: Summary of optimal architecture in terms of area; the model predicts with
100% accuracy in top 10 predictions

architectural candidates predicted by the model. This limits search time by capping the

number of full evaluations we perform for architectural configurations. Table 5.5 shows,

for each of the benchmark applications, the rank predicted by our model for the archi-

tectural variant that minimizes area. The predicted rank of the optimal architecture is

always in the top 10% and is usually also in the top 5% or even higher. Also, while the

predicted optimal architecture does not always correspond to the actual optimal, the

actual metric values for the predicted and actual optimal architectures are very close.

Table 5.6 shows similar results to Table 5.5 for energy instead of area, from which

similar conclusions can be drawn. The results in Table 5.5 and Table 5.6 also present

the architectural configuration that resulted in the best metric for each application.

These results confirm our observations in Section 5.2 that for each application, the best

architectural configuration can be different.
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Figure 5.7: This plot shows predicted and actual values for normalized energy per bit
(top) and normalized area per bit (bottom) for bespoke DCT accelerators. The x-axis
denotes different architectural configurations. The predicted and actual metric values
follow a similar trend, indicating that our model can be used to predict the optimal
architecture.
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benchmark
Optimal
architec-

ture

Optimal
Adder and
Multiplier

Predicted
Rank out of

174

binSearch bm32
carry select adder cell

benc radix8
11

div openMSP430
carry select adder cell

nand radix4
7

inSort openMSP430
carry select adder cell

nand radix4
7

intFilt bm32
bounded fanout adder

benc radix8 mux
1

mult bm32
bounded fanout adder

benc radix8 mux
5

tea8 bm32
bounded fanout adder

benc radix8 mux
5

tHold openMSP430
bounded fanout adder

benc radix8 mux
7

Table 5.6: Summary of optimal architecture in terms of energy per bit; the model
predicts with 100% accuracy in top 10% of predictions

5.5.2 Design Space Exploration For Bespoke DSP Accelerators

Figure 5.7 presents results for bespoke accelerators for the 32-bit Discrete Cosine Trans-

form (DCT). The architectural parameter space spans folded and un-folded designs and

all the architectural configurations discussed in Table 5.3. The figure plots normalized

per-bit energy and area for different bespoke accelerators for an application that requires

16-bit input precision. Similar to the results for general purpose processors, although

there is an offset between the predicted and actual metric values, the rank ordering of

the predicted values follows the trend established by the actual values.

Table 5.7 presents the minimum-area bespoke accelerator generated using the be-

spoke methodology and its rank as predicted by our model. For each DSP accelerator,

the number of variants generated is different, because the number of baseline architec-

ture variants for each DSP accelerator circuit is different (see Table 5.2). To account

for this difference, the predicted rank columns for each DSP accelerator are presented

with reference to the total number of circuits evaluated. The predicted rank of the best

design is within the top 10% of the predicted designs, with a few exceptions. However,
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in the few cases where the optimal architecture is not in the top 10% of predictions,

the actual metric values for the predicted and actual optimal architectures are still very

close.

Just like for general purpose processors, the best architecture for a DSP accelerator

can vary based on the application input precision and chosen efficiency metric. For

example, the optimal FIR variant from which to generate a bespoke accelerator for an

application with 4-bit input precision is a folded architecture, but for an application that

requires 32-bit precision, the best variant is a pipelined architecture. Also, the optimal

arithmetic unit architectures are different for these application scenarios; a bounded-

fanout adder with a Booth-encoded radix-8 multiplier is best for a 4-bit input, and a

conditional sum adder with a NAND-based radix-4 multiplier is best for a 32-bit input.

Furthermore, although it is not shown explicitly in the results, the optimal architecture

before bespoke customization is different than the optimal architecture after bespoke

customization.

Similar to the results above, Table 5.8 presents the minimum-energy bespoke design

and its predicted rank (shown with respect to the total number of architectural config-

urations). The results again confirm that with a few exceptions, the predicted rank of

the optimal architecture is within the top 10% of candidates identified by our model.

5.5.3 Final Remarks

Across all the designs, general purpose processors and DSP accelerators, our models

had an accuracy of ∼88% in placing the optimal design in the top 10% of the search

space. Our model was able to place architectural configurations in the top, middle, and

bottom buckets with an accuracy of 91% for area and 88% for energy for general purpose

processors and 88% for area and 87%, respectively, for DSP accelerators. Finally, using

design space exploration, we were able to observe power and area saving improvements

of up to 82% and 83%, respectively, 12% and 27%, respectively, on average, compared

to a bespoke processor generated from the baseline design.
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Table 5.7: This table presents the optimal architectural variant for each bespoke accel-
erator and its rank as predicted by our model for area. In most cases, our model ranks
the optimal architecture within the top 10% of candidate architectures.

Design
4-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base cond sum adder & nand 15/58

DCT folded cond sum adder & nand 11/116

IIR base cond sum adder & radix4 2/58

L1 base carry select adder cell & nand radix4 2/58

L2 base cond sum adder & radix4 2 /58

Sobel base carry select adder cell & nand radix4 2/58

FIR folded bounded fanout adder & benc radix8 2/174

Design
8-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base cond sum adder & nand 8/58

DCT folded cond sum adder & nand 11/116

IIR base hybrid adder & benc radix8 mux 9/58

L1 base carry select adder cell & nand radix4 2/58

L2 base cond sum adder & radix4 2/58

Sobel base cond sum adder & nand radix4 1/58

FIR folded bounded fanout adder & benc radix8 2/174

Design
16-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base cond sum adder & and radix4 2/58

DCT folded cond sum adder & nand 16/116

IIR base hybrid adder & benc radix8 mux 10/58

L1 base carry select adder cell & nand radix4 2/58

L2 base cond sum adder & and radix4 2/58

Sobel base carry select adder cell & nand radix4 2/58

FIR base hybrid adder & benc radix8 1/174

Design
32-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base hybrid adder & nand radix4 8/58

DCT folded cond sum adder & nand radix4 10/116

IIR base cond sum adder & and radix4 1/58

L1 base carry select adder cell & nand radix4 3/58

L2 base cond sum adder & and radix4 2/58

Sobel base cond sum adder & nand radix4 1/58

FIR pipeline cond sum adder& nand radix4 6/174
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Table 5.8: This table presents the optimal architectural variant for each bespoke accel-
erator and its rank as predicted by our model for energy. In most cases, our model
ranks the optimal architecture within the top 10% of candidate architectures.

Design
4-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base brent kung adder & and 5/58

DCT folded brent kung adder & nand radix4 5/116

IIR base cond sum adder & and radix4 2/58

L1 base brent kung adder & nand 7/58

L2 base hybrid adder & nand 15/58

Sobel base brent kung adder & nand radix4 45/58

FIR base hybrid adder & benc radix8 1/174

Design
8-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base brent kung adder & and 4/58

DCT folded brent kung adder & nand radix4 2/116

IIR base cond sum adder & benc radix8 1/58

L1 base brent kung adder & and 9/58

L2 base hybrid adder & nand 13/58

Sobel base brent kung adder & nand radix4 42/58

FIR base hybrid adder & benc radix8 1/174

Design
16-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base brent kung adder & and 22/58

DCT folded brent kung adder & nand radix4 1/116

IIR base cond sum adder & benc radix8 2/58

L1 base brent kung adder & and 11/58

L2 base hybrid adder & nand 5/58

Sobel base hybrid adder & and 1/58

FIR base hybrid adder & benc radix8 1/174

Design
32-bit input

Variant Best Design’s Adder & Multplier Pred. Rank

Butterfly base ling adder & benc radix8 9/58

DCT base brent kung adder & and radix4 5/116

IIR base carry select adder cell & nand radix4 5/58

L1 base cond sum adder & and 9/58

L2 base brent kung adder & and radix4 7/58

Sobel base brent kung adder & and 5/58

FIR pipelined cond sum adder & nand radix4 6/174
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5.6 Generality And Limitations

The methodology presented in this paper quickly predicts the rank of an architectural

configuration for a bespoke design with respect to other possible architectures for the

same baseline design. To accomplish this, features were extracted from the baseline

design and application binary, since the goal of our methodology is to predict the quality

of an application-specific bespoke processor. However, the goal in a typical design flow is

to optimize the design for power, area, and performance, irrespective of the application

that will be run on the processor. Our methodology can be extended to a traditional

flow by disregarding application-specific features while training our model.

Our methodology was evaluated on embedded processors and DSP accelerators.

However, for larger more complex designs such as superscalar processors, multi-core

processors, GPUs, or deep learning accelerators our methodology may need to be aug-

mented with more complex and advanced models, such as a deeper model with more

layers or graph convolutional layers to extract local/global connectivity information

about the design’s architecture and microarchitecture. Similarly, many more microar-

chitectural parameters can be extracted as features to train our model. For example,

various structural widths (fetch, dispatch, execute, commit, etc.), forwarding path con-

figuration, branch predictor size and design, cache configuration, etc. can be used to

train a model to explore the design space. In such systems, a richer set of metrics can be

targeted to train our model. For example, a designer may only be interested in improv-

ing the L1 cache hit rate or prefetcher accuracy instead of overall efficiency. Similarly,

a designer may also be interested in not only predicting metrics such as power, energy,

area, and performance but also metrics such as the maximum temperature attainable by

a processor architecture while running a real application. By using a proper model, our

methodology could conceivably be used to quickly explore the design space for these

metrics and identify candidate architectural configurations that could optimize these

metrics.
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5.7 Related Work

5.7.1 Design Space Exploration

Design Space Exploration (DSE) for processor architectures has been significantly ex-

plored in prior art. Authors in [48] discuss microarchitecture optimization of the In-

tel Pentium Pro processor by tuning various microarchitectural parameters, such as

pipeline length, cache size, and load store ports. [49] discusses a framework for explor-

ing the design space of low-power application-specific programmable processors (ASPP),

in particular media processors. The core idea of this work is reliance of high-quality

compilers that exploit instruction-level parallelism (ILP) and reliable instruction-level

simulators with modifiable architectural parameters such as issue width, size of cache,

and number of execution units. Using their framework, they believe a designer could

quickly evaluate the quality of an architecture for a set of applications that can be simu-

lated on the simulator to evaluate power and area trade-offs of an architecture. Another

work [50] presents techniques based on hill climbing, genetic algorithm, and ant colony

optimization for design space exploration.

While the above works discuss design space exploration for single-core processors,

several DSE techniques have been proposed for multi-core processors. Authors in [51]

and [52] propose techniques to pose the multi-core architecture design space exploration

problem as a multi-objective optimization problem and use evolutionary algorithms to

explore and identify pareto-optimal solutions. Further [53] and [54] explore techniques

for design space exploration in a single ISA heterogeneous chip multiprocessor setting.

Going beyond multi-core processors, authors in [55] develop an optimization frame-

work for a setting where multiple chiplets are used to build multiple systems, targeting

different subset of applications.

While all the above techniques discuss design space exploration techniques for op-

timizing metrics such as power, area, and performance for processors and application

domains, they do not explore the effect of producing the best design for a single appli-

cation by trimming logic that is unusable by the application.
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5.7.2 Application-Specific Processor Cores And High-Level Synthesis

One of the closest related work to our paper would be Extensible processors such as

Xtensa [56], where a designer can specify configurations including structure sizing, op-

tional modules (like debug and exceptions), and custom application-specific functional

units. While this methodology enables a designer to generate a custom processor tar-

geting QoR metrics such as power, performance, and area, this methodology does not

allow for generating a custom processor for a single application at the granularity of logic

gates. Several other techniques explore the space of application-specific processor core

generation such as [57] and [58] that automatically develop hardware implementations

connected to a general-purpose processor at the data cache and target compute-heavy

parts in the workload. Such cores, while improving energy efficiency and power may

not be area efficient, especially in ultra-low-power and area settings. Chip Multiproces-

sor Generators [59] allow a designer to generate different families of chips from scratch

based on the application domain. However this requires domain expertise and knowl-

edge which may not be automatable. These techniques still do not trim a processor at

the finest granularity of gates.

High-Level Synthesis offered by tools such as Cadence Stratus [60] and Siemens

Catapult [61] do produce a custom ASIC for a given C program. However, the process

of HLS can be significantly slower and more expensive, since the high-level specification

of the application behavior still needs to be specified, and this specification itself needs

to be verified. In contrast, optimizing an already-verified core for a single application

in an automated fashion can significantly reduce design costs.

5.8 Summary

In this chapter, we have presented a novel methodology that quickly explores the design

space of architectural configurations of a hardware design and predicts the configura-

tion that will produce the optimal application-specific bespoke design for a particular

target application and metric. Our methodology uses machine learning to train a neural

network on various features extracted from the application binary, base hardware de-

sign, and architectural configurations to predict a metric of interest. For a given target

application, we use the predicted metric for each architectural configuration to identify
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near-optimal candidates for more detailed evaluation and ranking.

Our evaluations show that for all GPP designs evaluated, the true optimal architec-

tural configuration is in the top 10% of the predicted ranks. For DSP accelerators, except

for a few cases, the top 10% predicted architectural configuration contained the optimal

architecture. In the few exceptions, the top 10% contained at least one near-optimal

architectural candidate. Overall, our model had an accuracy of ∼88% in identifying the

optimal design within the top 10% of the search space. Our model was able to place

architectural configurations in top, middle, bottom buckets with an accuracy of 91%

for area and 88% for energy, for general purpose processors. For DSP accelerators, our

model was able to place the designs in the right buckets with an accuracy of 88% for

area and 87% for energy. Finally, we showed that by exploring the architectural design

space we can improve power and area savings by up to 82% and 83% for power and area,

over generating a bespoke design from the baseline design. On average, we showed that

the power and area savings of exploring the architectural design space over all designs

and applications were 12% and 27%, respectively.

In this work, we explored the vastness of architectural parameter space and identified

near-optimal architecture for a given application optimized for a given metric. We

also successfully navigated through the non-linear relationship between the impact of

bespoke methodology and the processor-application features. Handling these problems

with human intuition and creativity alone would have been challenging. There is also

the problem of enormous simulation time and manual effort. Machine learning proved a

useful tool in effectively handling these challenges. This motivated us to apply machine

learning to other complex computer architecture problems. In the next chapter, we

will discuss how we used machine learning to develop a cost-effective cache replacement

policy.



Chapter 6

Designing Cost-Effective Cache

Replacement Policy Using

Machine Learning

In the previous chapter, we used Machine Learning to efficiently handle the architecture

exploration problem. Inspired by the ability of ML techniques to explore an expansive

architectural design space efficiently and effectively, handle complicated non-linear in-

teractions between architecture features, and deliver near-optimal solutions, we use ML

to automate and enhance the architecture design process. Historically, computer archi-

tecture/system designs are carried out based on expert intuitions and heuristics [62].

However, this approach is not scalable considering the increasing complexity of modern

systems. In this chapter, we discuss a methodology where ML is used to gain new in-

sights that help design new architectures and automate the system design process. In

our work, we used ML to design a cost-effective cache replacement policy.

6.1 Motivation

Caches are an important component in modern processors. The effectiveness of a cache

is largely influenced by its replacement policy. An efficient cache replacement policy

73
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Table 6.1: Hardware overhead for different replacement policies in a 16-way 2 MB cache

Policy Uses PC Overhead

LRU No 16KB
DRRIP [63] No 8KB
KPC [69] No 8.57KB

MPPPB [64] Yes 28KB
SHiP [65] Yes 14KB

SHiP++ [66] Yes 20KB
Hawkeye [67] Yes 28KB
Glider [68] Yes 61.6KB

RLR (this work) No 16.75KB

can effectively reduce off-chip bandwidth utilization and improve overall system per-

formance. There is a large body of prior work on cache replacement policies; however,

designing cost-effective cache replacement policies is still challenging for chip designers,

especially under stringent hardware constraints.

Cost-effectiveness is becoming increasingly important, as Moore’s Law has slowed

down and Dennard scaling has ended. A cost-effective cache replacement policy should

be able to reduce misses-per-kilo-instructions (MPKI) without introducing significant

hardware modification and storage overhead. Commonly used Least Recently Used

(LRU) and Re-Reference Interval Prediction (RRIP) polices [63] incur minor hardware

overhead for storing the recency bits or re-reference counters. However, these static

heuristic-driven policies are only effective for a limited class of cache access patterns.

Using program counter (PC) information, state-of-the-art replacement policies are ca-

pable of capturing dynamic phase changes in cache access patterns, and they can effec-

tively reduce the MPKI for a wide spectrum of workloads [64–68]. belady compares the

last-level cache hit rate among different replacement policies, in which Belady is the the-

oretical optimal. Unsurprisingly, the PC-based policies (SHiP, SHiP++, and Hawkeye)

outperform non-PC-based policies (LRU and DRRIP) in almost all benchmarks.

Unfortunately, incorporating PC into the replacement policy not only requires ad-

ditional storage overhead but also involves significant modifications to the processor’s

control and data path. Accessing PC at the LLC requires propagating PC through all

levels of the cache hierarchy, including widening the data path, modifying cache archi-

tecture to store PC, adding extra storage for PC in the Issue Queue, Reorder Buffer
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Figure 6.1: LLC hit rate comparison (Belady is the theoretical optimal).

(ROB) and Load/Store Queue (LSQ), and more [69].

More costly than the overhead of implementing PC-based policies is the fact that

these changes require an overhaul of the entire processor pipeline, which would re-

quire significant design and verification overheads. Given the extensive modifications

required, chip manufacturers have thus far been unwilling to implement PC-based re-

placement policies, favoring instead incremental design enhancements with similar per-

formance/overhead tradeoffs that do not require significant redesign and verification.

For example, for the same memory overhead of implementing SHiP++ in LLC, a de-

signer could implement DRRIP in LLC and also increase L1 size by 12KB. Given that

increasing L1 size may provide similar or even better benefits without requiring signif-

icant redesign and verification, processor manufacturers have as yet not implemented

PC-based replacement policies. overhead summarizes the hardware overhead of different

cache replacement policies.

How can we improve the cache replacement policy without using PC ? We realized

this is a difficult challenge. To answer this question in a cost-effective way in terms of

reducing product development time, we turned to machine learning for help. Machine

learning is a useful tool to augment human intelligence and expedite the chip design

process, and computer architects have been using ML to advance computer architecture

designs. There has already been work on utilizing ML to improve branch predictors [70],

memory controllers [71], reuse prediction [72], prefetchers [73], dynamic voltage and

frequency scaling management for network-on-chip (NoC) [74,75], and NoC arbitration

policy [76,77].
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In this work, we explore the capability of ML in designing a cost-effective cache

replacement policy. Specifically, we use reinforcement learning (RL) to learn a last-level

cache (LLC) replacement policy. The RL algorithm takes into consideration a collection

of features that can be easily obtained at the LLC without modifying the processor’s

control and data path. After successfully learning a replacement policy that achieves

good performance, we analyze the learned policy by applying domain knowledge, with

the goals of distilling useful information, verifying the important features, understand-

ing the relative importance of each feature, and gaining insights into how these features

interact. Guided by ML, we frame a cost-effective cache replacement policy – Reinforce-

ment Learned Replacement (RLR). Overall, RLR does not require heavy modification

to the CPU microarchitecture and outperforms LRU and DRRIP for most evaluated

benchmarks. belady compares LLC hit rate for several replacement policies, including a

policy learned by RL and our static adaptation (RLR) based on RL.1 The performance

of the RL policy is better than LRU, DRRIP, SHiP, and Hawkeye in most benchmarks,

while it is marginally lower than SHiP++. RL performance can be improved by in-

cluding PC-based features in the feature set, but one goal of our work is to design a

cost-effective replacement policy that does not rely on PC at the LLC. The performance

of RLR shows the effectiveness of the insights learned from RL.

6.2 Machine Learning-Aided Architecture Exploration

Reinforcement Learning is a machine learning paradigm in which an agent tries to

navigate through an environment by choosing an action from a set of allowed actions [78].

Using the suggested action, the environment moves from the current state to the next

state and meanwhile generates a reward as a feedback to the agent. The agent trains

itself to maximize cumulative reward. In this process, the agent learns a policy that

selects the optimal action in a given state. One way to keep track of the optimal action

for a given state is to maintain a table for all state-action pairs. However, it could be

infeasible to implement such a table when the state and action space is large. In such

a scenario, a neural network can be used as a function approximator in lieu of a table.

1Due to the computational complexity of running RL simulations and the need to look at future
accesses, RL and BELADY simulations are run in a python-based simulator; the rest of the policies use
ChampSim. Further details are explained in Section 6.2.
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RL has the potential to learn a theoretical optimal policy, given that the effects of

actions are Markovian [79]. Because RL has the ability to adapt to dynamic changes in

the environment and handle the non-trivial consequences of chosen actions, it is a good

fit for the cache replacement problem. We pose cache replacement as a Markov Decision

Process (MDP), where an agent makes replacement decisions. Given a cache state, the

replacement decision made by the agent moves the cache to a new state. The agent is

assigned a reward based on how close the replacement decision is to BELADY (optimal).

In our framework, we train a neural network using RL algorithms to learn a replacement

policy. Although the learned policy can be efficient, we do not want to build a neural

network in hardware, due to power, area, and timing constraints. Instead, we analyze

the neural network and use the insights gained from the neural network to derive a

replacement algorithm that is feasible to implement in hardware. In this section, we

describe our simulation framework and architecture exploration flow in detail.

6.2.1 RL-based Simulation Framework

At high level, our simulation framework consists of two parts: trace generation and

RL training. We use ChampSim [80] from the 2nd Cache Replacement Championship

(CRC2) to generate LLC access traces. The trace file comprises a record of ⟨PC, Ac-
cess Type, Address⟩ for each LLC access. Access types include load (LD), request for

ownership (RFO), prefetch (PR), and writeback (WB). We use LRU as the default

replacement policy to ensure that the generated traces are not biased towards other

policies that we compare against.

The trace is fed into a Python-based cache simulator that includes an RL agent to

make replacement decisions. The cache simulator uses the same LLC configuration as

ChampSim and populates the LLC based on the accessed addresses. Each cache line

is associated with a collection of cache states, as described later in this section. The

simulation framework is shown in Figure 6.2. On a hit, the cache simulator updates

the cache states and moves on to the next access. On a non-compulsory miss, the

cache simulator interacts with the agent to make a replacement decision 1. Information

regarding the missed access and the accessed set is sent to the agent in the form of a

state vector 2. The agent evaluates the state vector and generates an output vector

of n elements for an n-way set associative cache 3. Each element in the output vector
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Table 6.2: List of features considered by the RL agent

Classification Feature Description

Access
Information

offset Lower order 6 bits of accessed address
preuse Set accesses since last access to the accessed

address
access type Type of access (LD, RFO, PR, WB)

Set Information
set number Set that was accessed
set accesses Total number of set accesses

set accesses since miss Set accesses since last miss to the set

Cache Line
Information

offset Lower order 6 bits of cache line address
dirty Dirty bit of the cache line
preuse Set accesses between last two accesses to the

cache line
age since insertion Set accesses since cache line insertion
age since last access Set accesses since last access to the cache line
last access type Type of last access to the cache line (LD,

RFO, PR, WB)
LD access count Number of load accesses to the cache line
RFO access count Number of read-for-ownership accesses to the

cache line
PF access count Number of prefetch accesses to the cache line
WB access count Number of write-back accesses to the cache

line
hits since insertion Number of hits to cache line since its

insertion
recency Order of cache line access with respect to

other cache lines in the set

corresponds to a way in the cache set, and the value represents how beneficial it is (from

the agent’s perspective) if a certain way is chosen for eviction. The cache simulator

then makes a replacement decision based on the output vector generated by the agent;

meanwhile, a numerical reward is generated and sent to the agent for further training

4. Below we explain the critical components is detail.

State Vector: LLC state vector contains information required to make a replacement

decision. We segregated LLC state into three classes of features: a) access information

that describes the current access to the cache; b) set information that describes the set

that is being accessed; and c) cache line information that describes each cache line in

the set that is being accessed. On every LLC access, statistics of the accessed set are

updated. For example, the counter set access is incremented on every access to the set.

As another example, the counter set access since miss is incremented on every hit to
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Figure 6.2: Simulation framework overview.

the set and reset to zero on a miss. Similar counters are maintained for every cache

line in the set. The cache line counters are reset in the event of an eviction to start

counting for the newly inserted cache line. Cache lines are also augmented to store other

information such as their recency, last access type, dirty bit and other relevant features.

The entire feature list representing LLC state is listed in Table 6.2. Categorical features

such as last access type are one-hot encoded. Numerical features such as access count are

normalized by their respective maximum values and represented as a fractional value

between 0 and 1. The only exception is the feature offset, for which we use a 6-bit

binary representation (assuming 64-byte cache lines). For a 16-way set associative LLC,

we represent a state vector using 334 floating point values.

Agent: The agent consumes the state vector and generates an output vector of size

equal to the set associativity of the LLC. Each value in the output vector indicates the

estimated quality of choosing the cache line in the corresponding way as a victim. In this

work, we use a neural network to estimate the quality. After extensive exploration on
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neural network architecture and hyperparameter tuning, we chose to use a multi-layer

perceptron (MLP) with one hidden layer, because it is simple enough for interpretation

but performs almost as well as denser networks. We also found that tanh activation for

the hidden layer and linear activation for the output layer yielded better performance

than other combinations. The neural network has 334 input neurons, 175 hidden neurons

and 16 output neurons (because of the 16-way LLC). On every cache miss, the simulator

queries the agent to select a victim. In our simulation framework, there is only one

neural network for victim selection for all sets of the LLC. This is similar to following

a common replacement policy for all sets. Designers can choose to use multiple agents

by training them using different combination of cache sets.

Replacement Decision: The agent returns a vector of n values, one for each cache

way (e.g., 16-element vector for a 16-way cache). The replacement decision is made by

an ϵ greedy approach [81], in which we choose the victim with the maximum value with

a probability of 1 − ϵ and randomly select a victim with a probability of ϵ. Random

actions explore new trajectories and expand the search space. In our experiment, we

found that an ϵ value of 0.1 yielded better performance than other ϵ values.

Reward: The reward steers the agent towards learning a more optimal replacement

policy, so reward function must be chosen carefully. A theoretically optimal replacement

policy, such as Belady, replaces the cache line that has the farthest reuse distance among

lines in a set. To allow the agent to learn this behavior, a positive reward is returned

when the agent makes a good decision and evicts the cache line with the farthest reuse

distance. A negative reward is returned when the agent evicts a cache line with a lesser

reuse distance than the cache line that is inserted in cache, since the evicted cache line

would hit sooner than the inserted cache line if retained in cache. A neutral reward is

awarded when any other cache line is evicted. Only the optimal replacement decision is

assigned a positive reward, differentiating it from the other decisions and allowing the

agent to learn a near-optimal policy faster.

Replay Buffer: For training, we use a technique called experience replay [81]. Each

replacement decision is stored as a transaction in a replay memory. A transaction is

represented by a tuple of ⟨state, action, next state, reward⟩. A replay memory is a cir-

cular buffer with a limited number of entries, and the oldest transaction is overwritten

by a new transaction. Instead of using the most recent transaction, the neural network
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Table 6.3: Parameters and configuration for RL training

Neural Network

Input Dimension 334
Output Dimension 16

Activation linear
Number of Hidden Layers 1
Hidden Layer Dimenstion 175

Activation tanh
Optimizer Stochastic Gradient Descent

Learning Rate 0.01
Loss Function Mean-Squared
Discount Factor 0.1

Replay Memory Number of entries 500

Benchmarks
459.GemsFDTD,403.gcc,429.mcf,450.soplex,

470.lbm,437.leslie3d,471.omnetpp,483.xalancbmk

is trained using a batch of randomly sampled transactions from replay memory. Experi-

ence replay breaks the similarity of subsequent training samples, which in turn reduces

the likelihood of the neural network from being directed into local minima. In addition,

experience replay allows the models to learn the past experience multiple times, leading

to faster model convergence and reduced training time. In our work, we used a replay

buffer consisting of 500 entries.

Training: Table 6.3 shows the summary of RL agent parameters and configuration used

for training. For our training, we selected 8 memory intensive SPEC2006 benchmarks,

that showed significant IPC improvement for the optimal replacement policy (Belday)

compared to the contemporary replacement policies. For all benchmarks, we generated

LLC access traces for 100M instructions and trained on them individually. In our

training, each epoch constituted simulating all memory accesses in the trace file. The RL

agent performance improved significantly in the first three epochs for all the benchmarks.

Since each epoch of training took significant time and the agent performance did not

improve to a great extent beyond three epochs, we stopped the training process after

three epochs.

6.2.2 Insights From Neural Network

Neural networks have the ability to achieve better performance by learning a favorable

policy after sufficient training. However, it is likely not cost effective to implement
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a neural network in LLC due to significant power and area overheads. To achieve

performance similar to that of a neural network while avoiding the associated hardware

overhead, we analyze and draw insights from a trained neural network to derive a

practically implementable replacement policy.

Applications that show significant difference in LLC hit rates between Belady and

LRU replacement policies were chosen for testing. Although state-of-the-art replacement

policies perform better than LRU in these applications, there is still a performance gap

between these policies and Belady, which provides scope for us to improve our policy. We

use reinforcement learning to guide us through the process. We allow a neural network to

explore paths unexplored by the contemporary replacement algorithms with the target

of closing the performance gap between Belady and other replacement policies. After

training, we analyze neural network weights for all selected benchmarks. As stated

insection 6.2.1, on a LLC miss, the LLC state representing features of missed access and

the accessed set is sent as input to the agent. Then, the agent provides a replacement

decision to be followed. To comprehend important features in the LLC’s state that

affect the agent’s decision, we compute the average weight of each individual input layer

neuron over all neurons in the hidden layer. For cache line features, we also compute

the average across all cache ways in a set. Figure 6.3 shows the heat map of feature

weights such that the higher and lower magnitude weights are depicted at different ends

of the color spectrum.

Typically, a feature is more important if it has higher magnitude weights (darker

color in the heap map). Although the heat map can help identify important features

for making good replacement decisions, it is left to us to understand why these features

are important and how they impact replacement decisions. Ultimately, we would want

to utilize these features and derive a practical replacement policy. Implementing the

agent’s neural network directly in hardware is unlikely practical.

The first challenge in the process of deriving our own replacement policy is to mini-

mize the search space and focus only on critical features. We use hill-climbing analysis

together with machine learning to finalize our target feature set. We started by training

the agent with only one feature at a time. After doing this for each individual feature,

we select the feature that performs the best. Then we enable this feature with one

additional feature and evaluate all such feature pairs. We repeat the process by adding
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Figure 6.3: Heat map of neural network weights. The y-axis shows features representing
LLC state, and the x-axis shows the benchmarks used in the agent simulation. The
features with high magnitude of weights are (considering at least three benchmarks)
access preuse, line preuse, line last access type, line hits since insertion, and line recency.
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one more feature at a time until no further performance improvement is seen. This

hill-climbing analysis yields a set of five features.

In this section, we define each of these features and discuss the insights that we

derive from them. Later, we design a new policy based on these features that can be

implemented in hardware with acceptable overheads.

Preuse Distance

We define preuse distance as the past reuse distance of a cache line. It is computed as

the number of set accesses between the last access and the current access of the cache

line. Based on the heat map, both access preuse and line preuse features show high

magnitude of weights.

Access Preuse is the preuse distance of the cache line that is accessed by the current

request. To obtain the preuse distance for every cache access, one must keep a record

of all previously accessed addresses, refer to the record when serving a new access, and

compute its preuse distance accordingly. Although we implement the record keeping

and lookup function in our simulation framework, doing so in hardware can be very

costly. As a result, we do not consider this feature for our final policy.

Line Preuse refers to the preuse distance of a cache line. To compute line preuse, we

add counters for every cache line. On a set access, the counters of all cache lines in that

set are incremented. If the access is a hit, the counter value corresponds to its preuse

distance. On a miss, a new cache line is installed. We then reset the counter and start

counting the preuse distance of the newly inserted cache line. In Section 6.3, we propose

optimizations to reduce the counter overhead.

How does preuse distance contribute to the policy that the agent learned? Recall in

Section 6.2.1 that the agent tries to learn the behavior of Belady optimal policy, i.e.,

replace the cache line with the farthest reuse distance. However, reuse distance is not

provided as an input feature. Our conjecture is that preuse distance is related to reuse

distance in certain scenarios. During a program execution, the distance between two

accesses of an address could be constant. For example, the number of memory accesses

in each iteration of a for loop can be the same. In such a scenario, if the same address

is accessed in every iteration, its reuse distance will be constant. However, this may not

be true in the case of an LLC access because of the filtering effect of private caches. In
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Figure 6.4: Difference between preuse and reuse distance for reused cache lines.

addition, prefetch and writeback accesses can impact reuse distance.

To comprehend the relationship between preuse and reuse distance at LLC, we ana-

lyze the difference between preuse and reuse distance for every LLC access. Figure 6.4

shows the percentage of reused cache lines with absolute difference between preuse and

reuse distance below 10 (i.e., |preuse distance − reuse distance| <10), between 10 and

50, and greater than 50. For a significant number of cache lines, we can approximate

the reuse distance using preuse distance, as the difference between preuse and reuse

distance is less than 10 accesses. For more than 50% of the reused cache lines, the

difference between preuse and reuse distance is less than 50 accesses. To allow these

cache lines to be reused, we can retain the cache lines for a few more accesses after

their preuse distance has been reached. We should also note that Figure 6.4 shows the

absolute difference between preuse and reuse. This means that the reuse distance could

be smaller than the preuse distance, so some cache lines might be reused before reaching

their respective preuse distances.

Line Last Access Type

Last Access type of a cache line is defined as the latest access’ type. To understand

its significance, Figure 6.5 shows the average victim age for each access type. We

accumulate the age since the last access for each victim chosen by the RL agent and
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Figure 6.5: Average victim age for each access type.

compute the average for each access type. In almost all benchmarks, prefetch access

has the lowest average victim age. This implies that the prefetched cache lines have

the lowest cache life time, and the agent prefers to evict them sooner than the cache

lines from other access types. However, prefetched cache lines contribute to significant

number of demand hits for a few benchmarks, like 459.GemsFDTD, 437.leslie3d, and

429.mcf. Therefore, we infer that the reuse distance of prefetched cache lines is small,

and it suffices to have a short cache life time for prefetched cache lines. This ensures

that non-reused prefetched cache lines are evicted sooner, allowing other cache lines to

be reused.

Line Hits Since Insertion

Hits since insertion tells us how many times a cache line has been accessed since it was

brought into the cache. To understand its significance, Figure 6.6 shows the percentage

of victim cache lines that are evicted with zero, one, and more than one hits. In all

benchmarks, more than 50% of victims have zero hits, and more than 80% of victims

have at most one hit. The insight from this analysis is that the agent tends to evict

cache lines with fewer hits. When designing a cache replacement policy, we can mimic

this behavior by retaining cache lines that have more hits.
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Figure 6.6: Number of hits when a cache line is evicted.

Recency

Recency refers to the relative access order of a cache line in a set. Recency value ranges

from zero to (Set Associativity − 1); zero indicates the least recently used cache line,

and (Set Associativity − 1) indicates the most recently used cache line. For example,

LRU replacement policy replaces the cache line with recency value 0.

To understand the significance of recency, we plot the percentage of victims evicted

by the agent, segregated by recency of the victims, in Figure 6.7. We observe that

most evictions occur with cache lines with a high recency value, implying that the agent

prefers to evict cache lines that are most recently used. To comprehend this behavior,

note that the agent is rewarded positively for evicting cache lines that are either not

reused or reused later than the other cache lines in the set. When the agent evicts a

cache line with a high recency value, it means that the older cache lines (recency value

close to 0) are reused before the newer cache lines (recency value close to 15). For

example, when two cache lines in the set have the same reuse distance, the older cache

line will be reused before the newer cache line. So, the agent chooses the newer cache

line for eviction. Given the high percentage of victims with high recency values in agent

simulations, we take the insight that evicting more recently accessed cache lines has a

better chance of maximizing demand hits.
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Figure 6.7: Recency for victims in agent simulation.

6.2.3 Benefits Of Deriving Insights Using ML

In this section, we presented one viable way to draw insights from an ML model for cache

replacement policies. First, we identify important features by analyzing the weights of

the agent neural network. Next, we try to understand the behavior of each feature by

looking into its relevant statistics collected from architecture simulations. Through this

ML-based analysis, we benefit from the following:

1) Reducing exploration time: Several cache replacement policies are built on heuristics

identified from common access patterns. New heuristics can be derived through creative

and aggressive design of experiments for the cache replacement problem; however, this

process is time consuming and limited by a designer’s imagination. RL lets the agent

perform the heavy lifting by running simulations using different input features. For

input features that perform well, we analyze the neural network and decipher the agent’s

replacement policy.

3) Rigorously confirming the importance and sufficiency of heuristically-known features:

Though we considered non-obvious features like line address offset, set number, set

accesses after miss, etc., our ML model picked features that heuristically have been

known to be useful, such as reuse distance and hits since insertion. In addition to

identifying features through the heat map analysis, we use hill-climbing analysis to
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select a set of the most critical features, as described in Section 6.2.2. We also perform

the analysis on benchmarks that show significant difference in LLC hit rate between

Belady and LRU replacement policies. This rigorous approach proves the importance

of selected features.

4) New perspective on using features in a replacement policy : By analyzing agent sim-

ulations, we identified a different approach for using some features in our replacement

policy. For example, rather than segregating cache lines into clean and dirty, we use a

cache line’s access type to categorize it as prefetched or not. This allows us to predict

whether the cache line will hit in the future, as described in Section 6.2.2.

5) Automation of feature selection: The entire process of feature selection, from agent

simulation, neural network weight analysis, to hill climbing analysis was automated.

Although in this paper we use heat map analysis for visual convenience, the weight com-

parison and feature count reduction were automated. Through this work, we show that

ML is an effective tool for tackling challenging computer architecture design problems.

An automated ML-based cache replacement policy can match or beat state-of-the-art

hand-crafted designs.

For the cache replacement problem targeted in this work, we have the following

insights.

1. Preuse distance can be used to estimate reuse distance of a cache line, which is

essential for making good replacement decisions. This insight is drawn from the

line preuse feature.

2. Cache lines loaded by prefetch accesses are reused within short time intervals.

This insight is drawn from the line last access type feature. An efficient cache

replacement policy can use this insight to evict non-reused prefetched cache lines.

3. A cache line that has been accessed multiple times is likely to be accessed again.

This insight is drawn from the line hits since insertion feature.

4. Sometimes it is beneficial to evict the youngest cache line. This insight is drawn

from the line recency feature.



90

6.3 Reinforcement Learned Replacement (RLR)

In this section, we propose a replacement policy (RLR) based on insights learned from

the neural network. At a high level, RLR follows the following rules.

1. For a significant number of cache lines, the reuse distance can be approximated

by preuse distance.

2. The type of previous access of a cache line can be used to predict its chance of

receiving a hit.

3. Cache lines that have been accessed can be predicted to be accessed again in the

future.

4. Recently-inserted cache lines are prioritized for eviction to allow older cache lines

to be reused.

AGE	COUNTER	>	RD

HIT	REGISTER	>	0

Y N

NY

Demand hits-based Priority
Pld - Load Priority 
Prfo - RFO Priority
Ppf - Prefetch Priority
Pwb - Writeback Priority
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Figure 6.8: Flowchart for priority computation in RLR.

6.3.1 Replacement Algorithm

In RLR, reuse distance is predicted based on the preuse distance of the cache lines.

Cache lines with age less than the predicted reuse distance are protected. In addition,

cache lines are prioritized based on the type of their previous access and whether or not

the cache lines have received hits. When a replacement decision is made, the cache lines
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in the set are assigned priority levels. Priority levels are computed based on the cache

line’s age, previous access, and hits. On a cache miss, the cache line with the lowest

priority will be evicted.

Age priority (Page): Each cache line is augmented with an Age Counter that counts

the line’s age in set accesses (i.e., how many times the set has been accessed since the

last access of the line). On a demand hit, the counter’s value represents the preuse

distance of the accessed cache line. Because we use preuse distance to approximate

future reuse distance (Section 6.2.2), we predict that the cache line will be reused after

a number of set accesses equal to the preuse distance. If the cache line is not accessed

after the predicted reuse distance, it is considered for eviction. However, maintaining

registers to store predicted reuse distance for each individual cache line is impractical.

Instead, we accumulate the preuse distances of cache lines on demand hits and use the

accumulated value to approximate future reuse distance (RD). Cache lines are protected

from eviction until their respective ages reach RD. RD must be chosen carefully. On the

one hand, if RD is too high, cache lines with small reuse distance might be retained in

the cache longer than necessary. On the other hand, if RD is too low, cache lines with

large reuse distance might be evicted prematurely before reuse. Also, reuse distance

changes during application execution. Therefore, RD must be updated periodically to

adapt to application phases. In our experiment, RD is updated for every 32 demand

hits, by averaging the aggregated preuse distance and then multiplying by two (i.e.,

RD = 2 × Average Preuse Distance). Recall that for most cache lines, the preuse

distance and reuse distance are not exactly the same. Doubling the average preuse

distance can be beneficial because it allows cache lines to stay in the cache longer.

Overall, age-based priority levels are assigned as follows.

• Priority Level 1: If Age Counter is smaller than RD, the cache line has not yet

reached the reuse distance; this cache line might be reused in the future. Higher

priority is assigned to retain the cache line for future reuse.

• Priority Level 0: If Age Counter is greater than RD, the cache line has already

reached the reuse distance, but has not yet been reused since last access. Lower

priority is assigned because the line might not be reused in the future.

Type priority (Ptype): Each cache line is augmented with a Type Register, indicating
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whether its previous access was a prefetch. Type-based priority levels are assigned as

follows.

• Priority Level 1: If the last access type is not prefetch, then either the cache

line was not inserted by a prefetch access, or it has been reused after insertion.

We want to keep this cache line.

• Priority Level 0: If the last access type is prefetch, it has not been reused.

When replacement is needed, we tend to evict non-reused prefetched cache lines.

Hit priority (Phit): Each cache line is augmented with a Hit Register that is set when

the cache line is hit. The hit-based priority levels are assigned as follows.

• Priority Level 1: If the Hit Register is 1, the cache line has been reused. We

want to keep this cache line because the data can be accessed repeatedly in the

same program.

• Priority Level 0: If the Hit Register is 0, the cache line has not been reused.

When replacement is needed, we tend to evict non-reused cache lines.

The priority level for each cache line is computed as a weighted sum of the priorities

described above, given by the following equation.

Pline = 8 · Page + Ptype + Phit

The weights are designed based on hill climbing analysis, described in insights. Agent

performance was analyzed by enabling one feature and disabling the rest. Among all the

features, preuse distance achieved the highest performance. Therefore, we assign it the

highest weight. The features last access type and age contributed equally. Figure 6.8

shows the flowchart for priority computation in RLR. The age priority of a cache line

is computed by comparing its Age Counter with RD. If the cache line’s age is greater

than RD, age priority (Page) is set to 0, otherwise it is set to 8. The value 8 (for Page)

is chosen for two reasons. First, we give higher weights to cache lines whose age is

less than RD, with the hope that they can be retained in the cache for a longer period

and reused in the near future. Second, multiply by 8 can be implemented in hardware

efficiently by left shifting three times. The hit priority Phit of the cache line is computed
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from the Hit Register. Phit is 1 if the Hit Register is set; otherwise it is 0. The type

priority Ptype of the cache line is computed from the Type Register. Ptype is 0 if the

Type Register indicates a prefetch access; otherwise it is 1.

To select a replacement candidate, the cache management policy selects the way

with the lowest priority level. It is possible that multiple ways have the same priority

level. To break ties, we use the recency information.

Recency: Each cache line has a log(Set Associativity)-bit value indicating the relative

order of access among the lines in a set. When multiple lines have the same priority,

the most recently accessed cache line (high recency value) is evicted. The most recently

accessed cache line takes the longest time to reach the RD value. Evicting it allows

the other cache lines to reach the RD value. If cache bypass is supported, the cache

management policy bypasses a request if no cache line has reached an age greater than

the RD value. In RLR, recency plays an important role in victim selection. However,

tracking recency accurately for every cache line can be costly. In Section 6.3.3, we

describe an optimization technique to represent recency using fewer bits.

6.3.2 Hardware Implementation

Each cache line is equipped with an Age Counter, a Hit Regsiter, and a Type Register.

The Age Counter is an n-bit saturating counter, tracking 2n number of set accesses.

When a demand hit occurs, the cache line’s Age Counter is sent to the Accumulator.

After the number of demand hits reaches a threshold (32 in this case), we average the

accumulated value and then double the value. The averaging circuit can be as simple as

a right shifting logic, as long as the demand hit threshold is a power of 2. For example,

to average over 25 = 32 cache hits, the accumulator value is right shift by 5. Also,

the averaged preuse distance can be doubled by left shifting 1 bit. We combine the

averaging and doubling circuit by right shifting the accumulated value by (5 − 1) = 4

bits.

The hardware implementation for computing RD is shown in Figure 6.9. The Hit

Register of a cache line is set when it receives a hit. A Type Register is used to

indicate if the cache line’s previous access type was prefetch or not. To estimate the

hardware cost of RLR, we synthesize the design in 32 nm technology using Synopsys

Design Compiler [27]. The area, power, and latency for RLR are 84µm2, 4.6µW, and
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Figure 6.9: Hardware implementation for computing RD. On a demand hit, the cache
line’s age value is sent to the RD computation circuit.

0.68ns, respectively. The cache line priority computation in RLR can be done in parallel

to the tag comparison (to determine hit/miss) and does not contribute to the critical

path latency. RD computation in RLR is done when LLC is idle or fetching data

from memory, so that it is not part of the critical path. The area overhead is negligible

compared to total processor area. For example, the area of Intel Sandy Bridge processor

with similar configuration is 216 mm2 [82].

6.3.3 Optimizations

To determine the Age Counter’s optimal size, we ran simulations by varying the number

of Age Counter bits from 2 to 8 bits per cache line. To achieve good performance while

keeping the overhead low, we chose 5 bits to represent Age Counter. We verified that

5 bits are sufficient to cover the average preuse distance in agent simulations for most

benchmarks. In addition, we used a 1-bit Hit Register, a 1-bit Type Register, and

log(Set Associativity) bits for recency of a cache line. In a 16-way set associative

cache, this amounts to 11 bits of overhead per cache line. To further reduce overhead,

we devised two optimizations.

Age Counter Optimization: There are two ways to minimize the overhead of the

Age Counter – counting fewer events and approximating counter value. To count fewer

events, we use Age Counter to count the number of set misses instead of set accesses.

After a hit, cache lines in a set remain unchanged. By counting set misses, Age Counter
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represents the relative age of a cache line (since its last access) rather than the absolute

age. To approximate counter value, we increment Age Counter for every 8 set misses.

This allows us to reduce the overhead per line by 3 bits. We use a 3-bit counter per set

to count every set miss. After 8 set misses, the counter rolls over and the line counters

are incremented.

Recency Approximation: We can use the age of a cache line to determine its re-

cency. The most recently accessed cache line is either hit or inserted in the cache. In

both cases, the age of the line is zero. For a hit, the age counter value is sent to the

accumulator for computing RD, then reset. On a miss, a new line replaces a victim,

and the corresponding age counter is reset. Therefore, the most recently accessed line

can be identified by age counter value zero. In a 16-way set associative cache, using age

counter to determine recency reduces the overhead by 4 bits per cache line. In RLR, re-

cency is used to break ties when multiple cache lines have the same priority level. When

multiple cache lines have the same age counter value and the lowest priority level, we

chose to evict the cache line with the lowest way index.

In summary, after optimization, each cache line has a 2-bit Age Counter, a 1-bit

Hit Register, and a 1-bit Type Register, totaling 4 bits of overhead per cache line. In

addition, we use a 3-bit counter per set. For a 2MB 16-way LLC with 64B cache line,

the total storage overhead of RLR is 16.75KB.

6.3.4 Multicore Extension

In a multicore system that executes different benchmarks on separate cores, cache lines

in the LLC can be segregated based on the ids of the cores that issue the accessed

requests. Although each core (benchmark) has a different reuse characteristic, it is

challenging to predict their behavior when accesses from all cores are mixed. This is

because two consecutive accesses from the same core can be interleaved by multiple

accesses from other cores. However, we observe that the access frequency of a core

and its average reuse distance have an inverse correlation. That is, a core that has

the most number of LLC accesses within a time interval also has the smallest average

reuse distance. This is because a cache line from a core having high access frequency

tends to be reused earlier than a cache line from a core with low access frequency. This

information can be used in the replacement policy to select a victim with large reuse
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Table 6.4: Parameters for the evaluated system

Core 6-stage pipeline, 3-issue O3, 256-entry ROB
L1 I-Cache 32 KB, 8-way, 4-cycle latency, LRU
L1 D-Cache 32 KB, 8-way, 4-cycle latency, LRU
L2 Cache 256 KB, 8-way, 12-cycle latency, LRU
LLC (per core) 2 MB, 16-way,26-cycle latency
Prefetcher next-line (L1), IP-stride (L2), None (LLC)

distance by selecting a cache line from a core with low access frequency.

In RLR, we assign priorities for each core. When a replacement decision is made,

each cache line in the set is assigned a priority based on its age, hit, type and core. The

cache line with the lowest priority is chosen for eviction. Based on our experiments,

assigning core priorities based on demand hit frequency instead of access frequency

yields better performance. For this, we maintain demand hit counters for each core

at the LLC. On every demand hit (Load or RFO hit), the LLC demand hit counter

corresponding to the core of the cache line is incremented. Based on the number of

demand hits, each core is assigned a Priority Level (0, 1, 2, or 3). A core with more

demand hits is assigned a higher priority level. The core priorities (Pcore) are updated

for every 2000 LLC accesses. In terms of overhead, the demand hit counters contribute

12 bits per core to the overall storage overhead. The priority level for each cache line

(Pline) in a set is computed by the following formula.

Pline = 8 · Page + Ptype + Phit + Pcore

6.4 Evaluation

In this section, we evaluate the effectiveness of RLR against other contemporary cache

replacement policies. We implement RLR in ChampSim simulator from the 2nd Cache

Replacement Championship (CRC2). We estimate the performance on 1-core and 4-core

configurations with a 6-stage pipeline and a 256-entry reorder buffer. The memory sys-

tem has a 3-level cache hierarchy with private L1, L2 and a shared LLC. The complete

configuration is shown in Table 6.4. We use SPEC CPU® 2006 [83] and CloudSuite [84]

benchmarks for evaluation. To train the RL agent, we only used the first 100M instruc-

tions of eight SPEC CPU benchmarks. In evaluation, however, we also show results for
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Figure 6.10: Performance comparison for different LLC replacement policies
(SPEC2006).
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26 new benchmarks that have not been used in training.

For SPEC CPU 2006 evaluation, we use all 1 billion instruction traces from Sim-

Point [85] provided by CRC2. For Cloudsuite benchmarks, we use all traces files pro-

vided by CRC2. We warm the cache for 200 million instructions and evaluate the

performance for the next one billion instructions. In 4-core simulations, we evaluate

performance when four different benchmarks are run simultaneously on separate cores.

We generate 100 random sets of four benchmarks from the 29 applications in SPEC

CPU 2006. We use the same trace files as in single-core simulations. However, we run

the simulation until each benchmark completes one billion instructions. If any bench-

mark reaches the end of its trace, the corresponding core continues simulating from the

beginning of the trace file. In 4-core simulations for Cloudsuite benchmarks, we run

each trace in its respective core. For the results of single-core simulations, we use IPC

speedup over LRU. The IPC speedup of each benchmark i is measured as IPCi
IPCi,LRU

.

If a benchmark has more than one trace file, we present the geometric mean of all

IPC speedup numbers. For multicore results, the overall performance of each workload

mix is measured as the geometric mean of IPC speedups of all benchmarks in the mix

(
∏4

i=1
IPCi

IPCi,LRU
)
1
4 .

We compare the performance of RLR against KPC-R, DRRIP, and SHiP, as well as

policies from CRC2, including SHiP++ and Hawkeye. We obtained the source code for

these policies from the CRC2 website. We also compare against some prior works such

as EVA [86] and PDP [87].2 Compared to LRU, we observed IPC degradation in both

EVA and PDP. For SPEC CPU 2006, EVA degrades single-core system performance

by 0.11%, and PDP degrades performance by 3.72%, on average. The original works

on EVA [86] and PDP [87] show performance improvements with respect to LRU and

DRRIP. Considering that the margin of difference in performance between any two LLC

replacement policies is small, the selection of instruction traces used for evaluation can

have significant impact on overall results. Using a rigorous evaluation methodology is

important. Performance discrepancies for EVA and PDP may be attributed to use of

single instruction traces, not based on SimPoints [85], that do not fully characterize

an entire application. We observed that overall ranking of policies can change between

2We procured EVA source code from http://people.csail.mit.edu/sanchez. We implemented PDP as
described in [87].
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individual SimPoints. As such, we compute results from all SimPoints to ensure accurate

representation of benchmark behavior.

In addition to results for overhead-optimized policies, we also present the results of

RLR without overhead reduction optimizations (Section 6.3.3), denoted by RLR(unopt).

In the unoptimized policy, we use a 2-bit Hit Counter, as opposed to a 1-bit Hit Register.

Each cache line has a 5-bit Age Counter, a 2-bit Hit Counter, and a 1-bit Type Register,

amounting to 10-bit overhead per cache line. For a 2MB 16-way LLC, the total storage

overhead is 40KB for the unoptimized policy.

Figures 6.10 and 6.11 show performance comparisons for SPEC CPU 2006 and

Cloudsuite benchmarks, respectively. RLR outperforms KPC-R and DRRIP for all

benchmarks. For our evaluations, we used the IP-stride prefetching policy at L2. Since

the performance of KPC-R is improved by information from KPC-P prefetching, we also

compared KPC-R and RLR with KPC-P as the L2 prefetching policy. In such a system,

KPC-R and RLR improve performance by 3.9% and 5.5%, respectively, for SPEC CPU

2006. For Cloudsuite, KPC-R and RLR improve performance by 2.46% and 3.5%, re-

spectively. RLR performs better than KPC-R by evicting non-reused prefetched cache

lines in LLC sooner. KPC-P avoids cache pollution in two ways. First, low-confidence

prefetches are not inserted in L2. Second, when a prefetch access hits in LLC, the corre-

sponding cache line is promoted in the replacement stack only when the prefetch confi-

dence is higher than a threshold. While the first method prevents cache pollution in L2,

the second method does not evict non-reused prefetched cache lines in LLC sooner than

cache lines from other access types. RLR also outperforms SHiP for most benchmarks.

For example, in 470.lbm, prefetching does not improve IPC significantly. RLR evicts

prefetched cache lines sooner than other cache lines, resulting in better performance

compared to SHiP. In memory-intensive benchmarks such as 429.mcf, SHiP maximizes

hit rate by ranking PCs in the order of hit contribution and retaining cache lines fetched

by highly ranked PCs. For a few benchmarks, like 437.leslie3d and streaming (Cloud-

suite), RLR has a larger number of LLC demand hits (Load and RFO) compared to

SHiP. However, the trend does not reflect in IPC. This is because SHiP is more likely to

retain cache lines from PCs contributing to IPC improvement, while RLR retains cache

lines contributing to demand hits.
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Figure 6.12: Demand MPKI comparison for different policies.

Table 6.5: Overall speedup for different replacement policies.

Policy
1-core (2MB LLC) 4-core (8MB LLC)
SPEC Cloud- SPEC Cloud-
2006 Suite 2006 Suite

DRRIP 1.50 % 1.80 % 2.63 % 1.07 %
KPC-R 2.30 % 3.07 % 5.50 % 3.80 %
RLR 3.25 % 3.48 % 4.86 % 2.39 %

RLR(unopt) 3.60 % 4.02 % 5.87 % 2.5 %
SHiP 2.24 % 2.64 % 6.33 % 3.09 %

Hawkeye 3.03 % 2.09 % 7.69 % 2.45 %
SHiP++ 3.76 % 4.60 % 7.37 % 3.89 %

Table 6.5 summarizes performance improvement over LRU for evaluated replace-

ment policies for single-core and multicore workloads. For single-core and multicore

evaluation, overall performance improvement is computed as the geometric mean of

IPC speedup for all evaluated workloads. In single-core evaluations, RLR outperforms

DRRIP, KPC-R, SHiP (PC-based), and Hawkeye (PC-based) by 1.74%, 0.95%, 1.01%,

and 0.22%, respectively, for SPEC CPU 2006. In Cloudsuite, RLR outperforms DR-

RIP, KPC-R, SHiP (PC-based), and Hawkeye (PC-based) by 1.65%, 0.41%, 0.84%, and

1.39%, respectively. Figure 6.12 shows Misses Per Kilo-Instructions (MPKI) for bench-

marks with MPKI greater than 3. Compared to DRRIP, RLR achieves a maximum of

52% reduction in 471.omnetpp and a minimum of 2.5% in 429.mcf.

We simulated policy variants by eliminating hit and type priorities to evaluate their

contributions to RLR’s performance. In SPEC CPU 2006, IPC speedup over LRU

reduces by 12% when the hit register is disabled. This shows that protecting cache lines

that received at least one hit over the cache lines that were never hit has a significant
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Figure 6.13: Performance comparison of different policies in the 4-core setup.

impact on performance. When the type register is disabled, speedup reduces by 30%,

demonstrating that significant performance gains are achieved by protecting cache lines

from one access type over another.

In multicore evaluation (Figure 6.13), RLR outperforms DRRIP by 2.3% and 1.32%

in SPEC2006 and Cloudsuite, respectively. Contrary to the single-core results, KPC-

R outperforms RLR by 0.64% and 1.41% in SPEC2006 and Cloudsuite, respectively.

This is because interference from other core accesses delays the reuse of prefetched

cache lines. However, RLR allows prefetched cache lines to be reused within short

time intervals. RLR performance can be improved by considering each core’s access

frequency for the eviction of prefetched cache lines. SHiP also performs better than

RLR by 1.32% and 0.7% in SPEC2006 and Cloudsuite, respectively. Analyzing the

workloads in which SHiP outperforms RLR reveals that in some workloads, a small

percentage of PCs account for nearly all demand hits. This application characteristic

allows any PC-based policy to protect cache lines frequently accessed by those small

percentage of PCs while evicting cache lines brought in by other PCs. Given the large

number of LLC accesses in a multicore system, the information brought by PCs from
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different cores is useful. Though we lose some information by avoiding PC usage, RLR

captures the benchmarks characteristics through features that can be computed readily

at the LLC and achieves a performance similar to the PC-based policies. Using KPC-P

instead of IP-stride prefetching policy, RLR outperforms KPC-R by 0.5%, indicating

that without using PC in the memory system, RLR performs better than other non-PC

based replacement policies. Also, with RLR, we avoid the complexity of designing and

verifying a multicore system that incorporates hardware infrastructure for accessing PC

at LLC. We have the luxury of building a standalone cache design that can be integrated

with already designed and verified single/multi-core systems.

6.5 Related Work

There has been considerable work on designing efficient cache replacement algorithms

[17–22]. In this section, we discuss some of the related prior work.

Glider: Glider [68] uses a Support Vector Machine (SVM)-based hardware predictor

for cache replacement. Initially, an offline attention-based long short-term memory

(LSTM) model is used to improve prediction accuracy. Then, the authors interpret

the offline model to gain insights and hand craft a feature that represents a program’s

control-flow history. Then, a simple linear learning model is used to match the LSTM’s

prediction accuracy. The hardware implementation of the policy requires a Program

Counter History Register and an Integer SVM table.

Hawkeye: Hawkeye [67] uses a PC-based predictor to determine whether a cache line is

cache-friendly or cache-averse. On a miss, the policy first chooses to evict cache-averse

lines. If no cache-averse cache lines are found in the set, the oldest accessed cache line

is chosen for eviction.

SHiP: Signature Based Hit Prediction (SHiP) [65] replacement policy predicts re-

reference characteristics of cache lines from a PC-based signature. SHiP has a Signature

History Counter Table (SHCT) that maintains a counter (SHCTR) for each PC signa-

ture. Cache lines inserted by PCs with non-zero SHCTR are assigned a Re-Reference

Prediction Value (RRPV) of 2, while other cache lines are inserted with a RRPV of 3.

SHiP++: The SHiP++ replacement policy [66] enhances SHiP by inserting cache lines

accessed by PCs with maximum SHCTR value with a RRPV of 0, training the SHCT
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table only on the first re-reference of a cache line, inserting cache lines from writeback

accesses with a RRPV of 3, assigning a separate PC signature for prefetch accesses, and

making prefetch-aware RRPV updates on a cache line re-reference.

Counter based replacement policy: Kharbutli et al. [88] propose a counter-based

approach, where each cache line is equipped with counters to track events such as

the number of accesses to the set between two consecutive cache line accesses or the

number of cache line accesses. When the counter reaches a threshold, the line is eligible

for replacement. The policy also uses a PC-based prediction table to retain counters for

evicted cache lines.

All of the above policies correlate the reuse behavior of cache lines to the PCs. How-

ever, accessing PC at the LLC adds significant hardware overhead to the architecture.

The width of the data path must be increased to propagate PC through all levels of

the cache hierarchy. In addition, the miss status holding registers (MSHR) also need to

track the PC information. These modifications exacerbate energy and communication

overheads. Furthermore, pipeline design must be modified to propagate PC through

all stages, as well as adding extra storage at Load/Store Queue before accessing the

memory system. While many of the prior works lack the justification of the hardware

and processor design/verification overhead associated with incorporating PC in cache

replacement, it is questionable whether the benefits will outweigh the overhead and

complexity. As a result, we avoid using PC in our replacement policy.

KPC: Kill the Program Counter [69] proposes an integrated data prefetching and

replacement policy that avoids using the PC. While our work aims to design an effective

replacement policy given an existing prefetcher, KPC designs a custom prefetcher (i.e.,

KPC-P) to complement their replacement policy. KPC-P uses prediction confidence

to estimate reuse distance for prefetched cache lines and determine the cache level in

which to insert them. The KPC cache replacement policy (i.e., KPC-R) uses two global

counters to adapt to the dynamic program phase and decide whether to insert a cache

line in LRU (RRPV=3) or near LRU (RRPV=2) positions in the replacement stack.

KPC avoids L2 cache pollution by not inserting prefetched lines with low prediction

confidence in L2; however, all prefetched lines are inserted in LLC. As described in

Section 6.2.2, we avoid cache pollution from prefetched cache lines in LLC by evicting

non-reused prefetched cache lines sooner than cache lines from other access types.
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The following replacement policies use past accesses of a cache line to predict its

future access behavior. Each policy predicts a cache line’s reuse characteristic using a

certain metric. On a miss, all cache lines in the accessed set are compared using the

metric, and the cache line with the farthest reuse characteristic is chosen for eviction.

PDP: Protecting Distance based Policy (PDP) [87] protects all lines in LLC until the

number of accesses to the set (after the line insertion or access) reaches a threshold,

known as Protecting Distance (PD). On a miss, an unprotected cache line is evicted. If

no unprotected cache lines are found, either the cache line with the minimum number of

set accesses is evicted or the access is bypassed. A dedicated special-purpose processor

executes a search algorithm periodically to compute the optimal threshold. Hit rates are

estimated for threshold values less than 256, and the threshold value with the best hit

rate is chosen. In our work, we derive a much simpler method to predict reuse distance

(like PD in [87]) based on insights gained from the ML model.

EVA: The Economic Value Added (EVA) metric [86] characterizes the difference be-

tween expected and average hits. A cache line’s EVA depends on its age, and the cache

line with the lowest EVA is evicted. However, the policy does not account for non-

demand accesses, such as prefetch accesses. These additional accesses may skew the

correlation between a cache line’s age and its EVA.

RWP: Read-Write Partitioning (RWP) [22] is a replacement policy that dynamically

partitions the cache into clean and dirty partitions to reduce the number of read misses.

On a miss, a victim is selected from one of the partitions, based on predicted partition

size and the actual partition size in the corresponding set.

Inter-reference Gap Distribution Replacement [89] uses time difference between suc-

cessive references of a cache line to attach a weight to it. On a miss, the cache line with

the smallest weight is evicted. Das et al. [90] propose using a cache line’s age (since

last access) to estimate its hit probability under an optimal replacement policy. On a

miss, the line with the lowest hit probability is evicted. Keramidas et al. [91] combine

the usage of reuse distance and PC. The policy uses a sampler to compute reuse dis-

tances for selected cache lines. The computed reuse distances and the PCs of load/store

instructions that accessed the selected cache lines are used to predict reuse distances

for other cache lines. On a miss, the cache line with largest predicted reuse distance is

evicted.
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6.6 Summary

Machine learning is useful in architecture design exploration. However, human exper-

tise is still essential in deciphering the ML model, making design trade-offs, and finding

practical solutions. In this work, with the goal of designing a cost-effective cache re-

placement policy, we used reinforcement learning to guide and expedite our design.

We trained an RL agent using features that are relatively easy to obtain at the LLC.

Considering the complexity in propagating PC information to the LLC, we intentionally

excluded PC from the feature set. After training the agent neural network, we identified

important features from a large feature set by analyzing neural network weights. Based

on insights drawn from the neural network, we successfully derived a new replacement

policy. We then optimized the proposed policy to further reduce hardware overhead.

Overall, the proposed replacement policy outperforms DRRIP (non-PC-based policy)

and achieves comparable performance to existing PC-based replacement policies.



Chapter 7

Conclusion And Discussion

Emerging applications like wearables, implantables, and IoT applications are character-

ized by ultra-low area and power requirements, and they run the same software over and

over, as defined by their application. Recent works have shown that symbolic simulation-

based hardware-software co-analysis enables application-specific hardware optimizations

that can result in significant area, power, and energy savings. The co-analysis technique

uses symbolic simulation to mark gates that are exercisable by the application for some

application input. However, the technique treats the application as a black box, and

hence, suffers from the pessimism of marking too many gates as exercisable, potentially

leaving significant benefits on the table. In this work, we showed that incorporating

program semantics in the form of application constraints into the co-analysis technique

defines application behavior more accurately and better optimizes the hardware for

area, power, and energy efficiency. We described the means to statically analyze an

application binary, form constraints for commonly occurring code patterns, and enforce

the constraints in the gate-level simulation.

Further, we built a design-agnostic simulation tool that enables application-specific

hardware optimizations on any design, technology, or architecture. Prior works built

a custom simulator that tailors one specific processor design for a given application.

To allow application analysis on an arbitrary design, we modified iverilog – a verilog

synthesis and simulation tool – to perform symbolic simulation-based hardware-software

co-analysis. We demonstrated the generality of our tool by performing symbolic co-

analysis for three microprocessors with different ISAs.
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With the generality of our hardware-software co-analysis tool, we opened up the

scope to modify the architecture of a processor and allow application-specific analysis

of the new design, whereas prior works considered processor architecture to be fixed.

Considering the enormous architecture parameter space and the significant synthesis

and simulation time required to analyze all possible designs, we built an ML-based

tool that takes into account the impacts of application-specific optimizations on differ-

ent architectural features and predicts a near-optimal architecture for an application

with respect to a metric of choice. This tool allows us to limit the detailed synthesis

and simulation of designs to a select few near-optimal options and thus expedites the

architectural exploration process.

We further exploited the efficiency of ML in solving another complex computer ar-

chitecture problem. Using the ability of ML to expedite tedious processes and augment

human intelligence, we automated the process of generating architectural insights and

developing a high-performance cache replacement policy. In our work, we used rein-

forcement learning as an offline tool and allowed the RL agent to learn a near-optimal

replacement policy using memory-intensive benchmarks. We then analyzed the RL

agent to gain new insights and developed a cost-effective replacement policy that has a

similar performance to the RL-learned policy. The proposed replacement policy beats

the performance of current state-of-art policies. While our methodology used a cache

replacement policy as an example, a similar approach can be used to solve other ar-

chitecture problems in which heuristic-based solutions are limited by designer time and

creativity. A few examples where a similar approach can prove useful are prefetching,

warp- or block-level scheduling in GPUs, instruction issuing, and many more.

With the generic symbolic simulation-based hardware-software co-analysis tool that

we built, the main target architecture is ultra-low-power embedded systems that pre-

dominantly employ in-order processors. With further research, we can extend the co-

analysis technique to out-of-order processors. For this, we must devise innovative tech-

niques to handle symbol propagation to branch targets, prefetch addresses, etc. Other

difficult scenarios include handling dependencies through symbols, speculative execu-

tion, and more. By extending the co-analysis technique to out-of-order cores, we can

analyze an application’s accurate impact on the processor without having to rely on
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traces that are input-based, which is the current norm. Since most of the new inno-

vations in computer systems are evaluated upon trace-based simulations before being

implemented in hardware, replacing the input-based traces with symbolic simulation-

based traces that more accurately and comprehensively representation application be-

havior can yield better and more impactful innovations.

To conclude, this dissertation extends symbolic simulation-based hardware-software

co-analysis by introducing a more accurate generic tool that performs application-

specific analysis and optimization on any design, technology, or architecture. This

dissertation also advances architecture optimizations by exploiting the capabilities of

machine learning techniques.
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