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Abstract 

 
Our visual system samples external information, adjusts its sensitivity and constructs 
a stable representation of the world that allows us to perceive and interact with 
objects in our environments. Visual information with different levels of complexity is 

processed through the hierarchically organized visual cortical areas. This 
dissertation presents three studies exploring the neural processing of visual stimuli 
at different cortical levels associated with feedforward and feedback processes. 

Study 1 investigates whether cortical neurons adjust their sensitivity based on 
stimulus-driven feedforward or perception-related feedback signals when they are 
discrepant, using psychophysical and neuroimaging techniques. We found that 

feedback signals associated with perception dominantly contribute to neural 
sensitivity control. Study 2 explores the properties of viewpoint-independent 
spatiotopic reference frame transformation for simple and complex visual stimuli 
using a trans-saccade adaptation paradigm. The results showed that both simple 

(orientation) and complex (face gender) visual features could be transformed into the 
viewpoint-independent spatiotopic reference frame, even in the absence of visual 
awareness of the target objects. Study 3 examines the viewpoint-dependent and 

viewpoint-independent neural representation of a complex stimulus feature (human 
pose information in natural images) in distinct dimensions (2D vs. 3D) using 
representational similarity analysis of 7T-fMRI data. The results revealed a 

distributed neural representation encoding different aspects of human pose features, 
with the 3D viewpoint-independent pose information captured at the posterior 
superior temporal sulcus, and body viewpoint information mainly encoded near the 
extrastriate visual cortex. Together, these studies help us to understand the 

importance of feedback signals in cortical sensitivity control, the awareness-
independent transformation of visual objects from retinotopic to spatiotopic reference 
frame, and the distributed representation of body pose features in the visual cortical 

hierarchy. 
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Chapter 1. Overview 
 
The human visual system obtains rich and dynamic information from our environment 
that enables our perception and supports our actions. The visual cortical areas are 

hierarchically organized both anatomically and functionally, from lower-level cortical 
areas (like primary visual cortex (V1), specialized for simple stimulus features like 
orientation and spatial frequency), to the intermediate-level (such as V4, tuned to 

shape and form) (Nandy, Sharpee, Reynolds, & Mitchell, 2013) and higher-level 
cortical areas (including inferotemporal (IT) cortex that are sensitive to the complex 
stimulus features like face and body). Across hierarchical cortical areas, visual 
information processing involves feedforward (bottom-up) and feedback (top-down) 

connections. The feedforward visual cortical processing begins in the V1, which 
receives subcortical input from the lateral geniculate nucleus (LGN), and ascend 
through a ventral pathway into the temporal lobe (‘what/perception pathway’, 

associated with object recognition) and through a dorsal pathway into the parietal and 
prefrontal cortex (‘where/action pathway’, associated with spatial locations, visually 
guided actions, and attentional control). On the other hand, the reciprocal feedback 

connections carry information about top-down predictions (Kveraga, Ghuman, & Bar, 
2007), influences of attention (Noudoost, Chang, Steinmetz, & Moore, 2010), 
awareness (Ro, Breitmeyer, Burton, Singhal, & Lane, 2003) and behavior context 
(Gilbert & Li, 2013). Although accumulating evidence indicated that feedforward and 

feedback processes play important roles in visual processing, how they interact with 
each other in supporting our visual perception. In addition, how do our brain constructs 
a stable and viewpoint-independent representation of objects in our environment 

remains unclear. The neural representation of different visual features (from simple to 
complex) also requires critical attention.  
 

This dissertation project investigated three (among many) impressive feats achieved 
by the visual system. First, a ubiquitous feature of the sensory nervous system is its 
ability to adapt to the state of the environment. We asked whether the feedforward or 
feedback-driven representation determines the outcome of cortical neuronal 
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adaptation when they are discrepant. Second, we have a stable representation of the 
visual world, despite the constant motion of our eyes and body. We studied whether 

the orientation and face information could be transformed into a viewpoint-
independent reference frame and whether visual awareness is a prerequisite during 
this reference frame transformation. Third, as social animals, humans need to quickly 
estimate poses from others around us. We performed the representational similarity 

analysis using natural scene stimuli to delineate viewpoint-dependent and viewpoint-
independent neural representation of human pose information in two- and three-
dimensional space. 

 
In general, the feedforward signal, which more directly represents the sensory input, 
is consistent with the feedback signal that is more tightly linked with the perceptual 

representation of the stimulus. However, sometimes the feedforward- and feedback-
driven representation of the stimulus could be dissociated with each other. To study 
the relative contributions of feedforward and feedback signals to various aspects of 
cortical neural processing, we need tools and paradigms to probe and measure the 

corresponding neural responses. In this project, reported in Chapter 2, we addressed 
the question of whether cortical neurons adjust their sensitivity based on stimulus-
driven feedforward or perception-related feedback signals. More specifically, we 

adopted the orientation adaptation paradigm to investigate whether adaption would be 
based on the original retinal or perceived stimulus orientation. A visual illusion, flash-
grab effect (FGE), was used to dissociate the perceived and retinal orientation of the 

adapting stimulus. Results showed that the orientation adaptation is exclusively 
dependent on the perceived rather than the retinal orientation of the adaptor. The 
combined fMRI and EEG results also indicated that the perceived orientation of the 
FGE is indeed supported by feedback signals in the visual cortex.    

 
With rich visual inputs, our brain builds representations of the external world which 
allow us to navigate through and interact with our environment. Despite continuous 

and frequent eye movements (up to three times per second), our perceptual 
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representation of the visual world remains stable. Given the retinotopic (coordinates 
centered on the retina) representation in the early visual cortex, the neural 

representation of the visual objects in their environment needs to be transformed into 
a viewpoint-independent spatiotopic (coordinates centered on the outside world) 
reference frame. In chapter 3, we reported a project investigating the properties of 
spatiotopic reference frame transformation for simple (orientation) and complex (face 

gender) visual stimuli using a trans-saccade adaptation paradigm. Results showed 
that both orientation and face gender adaptation occurred at the same spatiotopic 
location (but different retinotopic location). We further asked whether the reference 

frame transformation requires awareness of the target object. Interestingly, when the 
adapting stimuli were rendered invisible by continuous flash suppression (CFS), both 
tilt and face gender aftereffects could still be observed at the spatiotopic location. Thus, 

our results indicated that visual awareness of objects is not a prerequisite for their 
transformation to the spatiotopic reference frame.   
 
Understanding visual processing eventually amounts to understanding the processing 

of daily visual scenes. In the past, the majority of vision research relied on using 
simplified artificial laboratory stimuli, which were based on the assumption that neural 
processing of visual stimuli could be understood based on the responses to simple 

constituent patterns of stimuli (Nelken, 2004). But recent studies showed that the 
responses to natural visual scenes might not simply be described by the combination 
of responses to simplified stimuli (Hasson & Honey, 2012). Using a large set of natural 

scene stimuli also has an advantage in studying the complex and high-level visual 
information (like human pose), compared to using limited simplified stimuli. 
Understanding human pose information is crucial for understanding other people’s 
actions, emotions, and social interactions, but is also challenging because of high 

variations between body parts, and appearance changes due to occlusion, viewpoint, 
and lighting. In chapter 4, we investigate the neural representation of viewpoint-
dependent and viewpoint-independent human pose information in two- and three-

dimensional spaces using representational similarity analysis with 7T-fMRI Natural 



 4 

Scene Dataset (NSD). The results showed that posterior superior temporal sulcus 
(pSTS) and supramarginal gyrus specifically encode the 3D viewpoint-independent 

pose information. We also found explicit encodings of body viewpoint information 
mainly near the extrastriate visual cortex.  
 
To summarize, the experimental projects reported in this thesis addressed questions 
related to neural representations of visual stimuli at different cortical levels and 
associated with feedforward and feedback processes. Three major conclusions 

emerge from this thesis:  
1). When the perceptual representation of a stimulus is dissociated with the retinal 
representation, cortical neurons recalibrate their sensitivity primarily based on the 

feedback signals associated with perception;  
2). Both simple (orientation) and complex (face gender) visual features could be 
transformed from retinotopic to spatiotopic reference frame, even in the absence of 
visual awareness of the target objects; 

3).  Distributed neural representations encode the different aspects of human pose 
information (including 2D/3D viewpoint-dependent and viewpoint-independent). 
 

Collectively, these results shed light on how feedforward and feedback visual 
processing contribute to neural sensitivity control, facilitate the interpretation of visual 
scenes, and enable the construction of a stable object representation in our 

environment.  
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Chapter 2 

 
Adaptation to the feedback representation of illusory orientation 
produced from flash grab effect 
 
Adaptation is a ubiquitous property of sensory systems. It is typically considered that 
neurons adapt to dominant energy in ambient environment to function optimally. 

However, perceptual representation of the stimulus, often modulated by feedback 
signals, sometimes do not correspond to the input state of the stimulus, which tend 
to be more linked with feedforward signals. Here we investigated the relative 

contributions to cortical adaptation from feedforward and feedback signals, taking 
advantage of a visual illusion, the Flash-Grab Effect, to disassociate the feedforward 
and feedback representation of an adaptor. Results reveal that orientation 
adaptation is exclusively dependent on the perceived rather than the retinal 

orientation of the adaptor. Combined fMRI and EEG measurements demonstrate 
that the perceived orientation of the Flash-Grab Effect is indeed supported by 
feedback signals in the cortex. These findings highlight the important contribution of 

feedback signals for cortical neurons to recalibrate their sensitivity. 
 
This chapter is a reproduction of Ge, Y., Zhou, H., Qian, C., Zhang, P., Wang, L., & 
He, S. (2020). Adaptation to feedback representation of illusory orientation produced 

from flash grab effect. Nature communications, 11(1), 1-12. 
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INTRODUCTION 

 
Though adaptation is typically considered to be neurons adjusting their sensitivity to 
accommodate to the state of the “world” (Colin W.G. Clifford & Rhodes, 2005; 

Schwartz, Hsu, & Dayan, 2007), it is necessarily the case that the state of the “world” 
is reflected in neural representations. However, neural processing involves both 
feedforward as well as feedback signals, typically with the feedforward signal more 

directly representing the proximal stimulus (Pizlo, 2001) while the feedback signal, 
influenced by spatiotemporal contextual factors, leading to the perceptual 
representation of the distal stimulus. In sensory information processing, contextual 
modulation and feedforward-feedback interactions are very common (Albright & 

Stoner, 2002; Gilbert & Li, 2013; Lamme & Roelfsema, 2000). An important 
unresolved question is whether the feedforward or feedback driven representation 
determines the outcome of cortical neuronal adaptation, especially when they are 

discrepant.  
 
To address this question, it is necessary to dissociate the input feedforward signals 

from cortical feedback signals in the brain. A recently discovered visual illusion, 
Flash-Grab Effect (FGE) (Cavanagh & Anstis, 2013), provides such an opportunity. 
The FGE occurs when a bar is briefly flashed on the light-dark boundary of a 
sectored background moving back and forth, at the time-point of direction reversal of 

background motion. The “flashed” bar could be perceived as tilted by more than 10 
degrees away from its original orientation, as what would be perceived without the 
moving background inducer (Cavanagh & Anstis, 2013).  

 
Since the FGE can alter perceived orientation, an orientation-specific adaptation was 
adopted to investigate whether adaptation would be based on the original retinal or 

perceived orientation. The tilt-aftereffect (TAE) is a robust visual phenomenon that 
results from orientation selective adaptation of visual neurons (Jin, Dragoi, Sur, & 
Seung, 2005). After prolonged exposure to an adaptor slightly tilted from vertical, a 
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vertical test is perceived as tilted away from the adapting orientation (Gibson & 
Radner, 1937). The underlying mechanism of this aftereffect was thought to be that 

cortical orientation-selective neurons in the visual system adjust or recalibrate their 
sensitivity based on the prevalent orientation and contrast of incoming signals, often 
in a population coding context, and with the goal of achieving more efficient coding 
(Benucci, Saleem, & Carandini, 2013; Blakemore & Tobin, 1972; C. W.G. Clifford, 

Wenderoth, & Spehar, 2000; Colin W.G. Clifford, 2014; Colin W.G. Clifford & 
Rhodes, 2005; Fang, Murray, Kersten, & He, 2005; Forte & Clifford, 2005; Jin et al., 
2005; Liu, Larsson, & Carrasco, 2007; Schwartz et al., 2007; Thompson & Burr, 

2009).  
 
Testing of the tilt aftereffect with the flash grab effect will inform us about the relative 

contribution to orientation adaptation from the input retinal orientation and the 
contextual modulated perceived orientation. However, for our goal, we would also 
need to establish a close link between the perceived orientation of FGE and the 
feedback signals. While previous neuroimaging experiments showed that the 

perceived orientation in the FGE could be decoded in the retinotopic cortex (Kohler, 
Cavanagh, & Tse, 2017), it remains unclear how the neural signals dynamically 
support the perceived orientation of the flashed bar (Hogendoorn, Verstraten, & 

Cavanagh, 2015). Thus, we performed high spatial and temporal resolution human 
brain imaging experiments to delineate the dynamic contribution of feedforward and 
feedback signals to the perceived orientation in FGE. As shown in the results 

section, we obtained strong evidence that the perceived orientation in FGE was 
indeed supported by feedback signals. With this link established, a demonstration of 
tilt-aftereffect from the perceived orientation would indicate that the feedback signals 
dominate cortical adaptation. 

 
In the following sections, we first present behavioral data showing that perceived 
orientation dominates the tilt-aftereffect. Then, we show results from high spatial-

temporal resolution measurements of the cortical representation of the perceived 
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orientation in FGE. The time-resolved EEG data and layer-resolved fMRI data 
provide clear evidence that the perceived tilt in FGE is driven by late onset feedback 

signals, primarily targeting the superficial layers of the retinotopic cortex. These 
results together strongly suggest that perceived orientation in FGE is supported by 
feedback signals in the early visual cortex, which dominate orientation-selective 
adaptation in spite of the available feedforward signal corresponding to the original 

orientation of the flashed bar stimulus on the retina. 

 
RESULTS 

 
TAE depends on the perceived rather than retinal input orientation 

In two psychophysics experiments, we investigated the relative contribution of the 
perceived vs. retinal orientation of FGE to the tilt-aftereffect. In the first experiment, 
the adapting bars vertical at the retinal level were perceived as tilted away from 
vertical orientation; in the second experiment, the adapting bars tilted at the retinal 

level were perceived as vertical. In both experiments, the testing bars were 
presented around the vertical orientation. 
    

Subjects viewed a pair of vertical bars that were repeatedly and briefly flashed on 
top of two patterned disks that oscillated clockwise and counter-clockwise, with the 
flashed bars presented at the moment of the rotation reversals. The adapting bars, 

which would be perceived as vertical if presented without the moving background 
inducer, were perceived as tilted away from vertical due to the FGE (Figure 2.1a, 
and left column of 1b). On each trial of the main experiment condition, subjects were 
presented with 11 flashes (10.6 s) of adaptation, followed by 33.3 ms of blank 

screen, then the test bars for 33.3 ms (Figure 2.1a). Subjects were asked to judge 
whether two test bars converged upward or downward using a two-alternative forced 
choice (2AFC) method. Three control adaptation conditions were also included in the 

experiment: (a) the vertical flashed bars only, without the rotating background disks; 
(b) the rotating background disks only; (c) tilted (5.71 degrees from vertical) flashed 
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bars only, without the rotating background disks. The four conditions were presented 
in separate blocks.  

 

 
 

 
 
Figure 2.1. Psychophysics Stimuli and Results. (a) Stimulus presentation sequence for the 
TAE measurement. (b) The stimuli used in the two orientation adaptation conditions and 
demonstrations of subjects’ illusory perception. Left part: original vertical but perceived tilt 
with flash grab inducer (tilt angle is by 15.55 degrees on average (SD = 7.54)); Right part: 
original tilt but perceived vertical with flash grab inducer. (c) Fitted psychometric functions 
using logistic regression in experiment 1; (d) Averaged TAE sizes across subjects (n=8) for 
conventional tilted bars condition (p<0.001 Holm-corrected) and flash grab condition 
(p=0.010 Holm corrected) in experiment 1 (two-sided paired t-test, p=0.013, d=1.17); (e) 
Fitted psychometric functions using logistic regression in experiment 2; (f) Averaged TAE 
sizes across subjects (n=8) for conventional tilted bars condition (p<0.001 Holm corrected) 
and flash grab condition (p=0.730 Holm corrected) in experiment 2 (two-sided paired t-test, 
p<0.001, d=2.80). Black curve: vertical bars only condition; grey curve: rotating background 
only condition; green curves/bars: flashed tilted bars only condition (conventional tilt 
adaptation); orange curves/bars: flash grab illusion condition. Error bars indicate standard 
errors of the mean (n=8 (individual subject)). Source data are provided as a Source Data file. 
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Results show that a significant TAE was generated by perceptually tilted bars: both 
the tilted bars without moving background and the FGE-induced tilted bars. Figure 

2.1c shows the psychometric functions for adaptation to the FGE and the other three 
control conditions. Not surprisingly, there was no TAE in both the no background, 
vertical bar only condition (p = 0.956) and the background-only condition (p = 0.534). 
The strength of the TAE could be measured as half the difference on the x-axis 

between the two points of subjective equality (PSEs) following adaptation in two 
opposite orientations, i.e., the distance between the two green or two orange fitted 
curves (Equation (1)). Figure 2.1d plots the magnitude of the TAE from the flashed 

tilted bar adaptors (conventional TAE) and the TAE from the FGE condition. As 
expected, the conventional tilt adaptation condition generated strong TAE (M = 3.72 
deg, SD = 0.97, t(7) = 10.80, Holm-corrected p<0.001, d = 3.84). The key result here 

is that a significant TAE was observed in the flash grab condition (M = 1.67 deg, SD 
= 1.34, t(7) = 3.53, p = 0.010 corrected, d = 1.25), though it was weaker than the 
conventional TAE (two-sided paired sample t-test, t(7) = 3.31, p = 0.013, d = 1.17).  

 

The first experiment demonstrates that perceived tilted orientation could induce a 
TAE even though the input retinal orientation was vertical. Does the input orientation 
contribute to the TAE separately from the perceived orientation? To address this 

question, we tested subjects who adapted to bars with tilted input orientation but 
were perceptually vertical due to FGE (Figure 2.1b, right panel). At the beginning of 
this experiment, each individual subject adjusted the orientation of the flashed bars 

in FGE condition so that the bars were perceived as vertical. The adjusted retinal 
orientation was then set as the input orientation of adapting condition under FGE. 
Similar to the first experiment, we also included two control conditions: the vertical 
bars only condition and the tilted bars only condition.  

 
Figure 2.1e/f shows the results of this experiment. The two control conditions 
generated results as expected: without the moving background inducer, the vertical 

bars by themselves did not generate the TAE (p = 0.367), and the tilted bars 
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generated very robust TAE (M = 6.02 deg, SD = 1.69, t(7) = 10.08, p < 0.001 
corrected, d = 3.56). However, with the moving background inducer, the key result is 

that the originally tilted but perceptually vertical bars (due to FGE) generated no 
measurable TAE (M = -0.43 deg, SD = 3.36, t(7) = -0.36, p = 0.730 corrected), which 
is significantly weaker than the conventional TAE (two-sided paired sample t-test, 
t(7) = 7.91, p < 0.001, d = 2.80) as shown in Figure 2.1f.  

 
Results from the two psychophysics experiments clearly show that, when the 
adaptor’s perceived orientation is dissociated from its input orientation, the TAE is 

induced by the perceived rather than the input orientation itself. In other words, 
orientation selective adaptation seems to be primarily based on the eventual 
perceptual representation of the stimuli rather than simply on the neural 

representation directly linked to the input signals. To further understand the 
contribution of feedforward and feedback signals to FGE and in turn to orientation-
selective adaptation, we conducted fMRI and ERP studies investigating the spatial 
and temporal neural correlates of the FGE.  

 
Representation of FGE in the retinotopic visual cortex 
We investigated the neural representation of the FGE in retinotopic visual areas in 
two fMRI experiments. The first experiment was conducted on a 3T scanner, with a 

focus on the retinotopic representation of the flashed bar under FGE. The second 
experiment was performed at high spatial resolution on a 7T scanner, which allowed 
us to obtain layer-resolved response signals to FGE in the retinotopic visual cortex. 

With known biases of feedforward and feedback signals in different cortical layers, 
the 7T data could inform us about the relationship between feedback signals and 
perceptual representation.  

 
In the 3T fMRI experiment, we obtained the BOLD signal activated by the flashed 
bar in the FGE with block-designed fMRI scans (Figure 2.2a shows the stimuli and 
procedure of the experiment). Subjects’ retinotopic maps were also obtained using 

the standard rotating wedge and expanding/contracting ring stimuli (Engel, Glover, & 
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Wandell, 1997) in two separate scans. The retinotopic map provides, for each voxel 
in the early visual cortex, the polar angle coordinate of its population receptive field. 

fMRI responses to the flashed bar for voxels with the same polar angle preference 
were averaged and used as the radial coordinate, plotted as a function of polar angle 
across the visual field (figure 2.2b). From V1 to V3, the fMRI response to the 
clockwise FGE was stronger in the upper right and lower left quadrants of the visual 

field in comparison with the counter-clockwise illusion, which showed stronger 
responses in the upper left and lower right quadrants. Therefore, the retinotopic 
representation of FGE in the early visual cortex is qualitatively consistent with the 

perceived tilt of the flashed bar. We further estimated the angular difference between 
the two polar angle representations of fMRI signals in the visual cortex. Note that the 
angular difference represents the summed effect of clockwise and counter-clockwise 

tilts. The estimated angular difference was smaller in V1 (17 and 13 degrees for 
upper and lower visual field, respectively) compared to V2 (41 and 27 degrees) and 
V3 (36 and 37 degrees) (Figure 2.2b). One-way ANOVA showed that the illusory 
effect significantly varied across visual cortical areas (F(2, 16) = 22.24, p < 0.001, 

𝜂"# = 0.735). Post hoc analysis showed that the illusory effect was significantly 

stronger in extra-striate than in striate visual cortex (for V2, t(8) = 5.47, p < 0.002, d = 
1.824; for V3, t(8) = 5.50, p = 0.002, d = 1.834 ), while no significant difference was 

observed between V2 and V3 (t (8) = 2.07, p = 0.072). An important consideration is 
that BOLD responses reflected both the feedforward and feedback influences, and 
the reason for the smaller estimated tilt representation in V1 could be that V1 activity 

had a greater contribution from feedforward input signals (corresponding to the 
retinal orientation). The relative contribution of feedforward vs. feedback signals in 
different areas was investigated further with layer-resolved imaging (De Martino et 

al., 2015; Klein et al., 2018; Kok, Bains, Van Mourik, Norris, & De Lange, 2016; 
Muckli et al., 2015) as described in the following 7T high-resolution fMRI experiment. 
 
In the follow-up 7T fMRI experiment, we obtained high-resolution layer-specific 

representation of the Flash Grab Effect in different layers of V1 to V3. The paradigm 
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was essentially the same as the 3T experiment, with the exception that the flashed 
bar was presented on the horizontal rather than vertical meridian due to the limited 

vertical field of view imposed by the 7T coil (Appendix Figure A1.2). In three 
independent scans, subjects were presented with a rotating bar (centered on the 
fixation point) to map the polar angle retinotopy of early visual areas (Engel et al., 
1997). In the following layer-resolved analysis, the original fMRI data were 

resampled from 0.85 or 0.8 mm to 0.4 mm isotropic voxel size. Voxels were 
separated based on their distances from cortical surfaces into three separate layers: 
from 0% to 40% the superficial layers (S), from 40% to 80% the middle layers (M), 

and from 80% to 100% the deep layers (D) (Kok et al., 2016; Muckli et al., 2015; 
Wagstyl et al., 2018). Responses in each ROI to the clockwise and counter-
clockwise tilted illusory orientations under FGE were plotted for voxels tuned to 

different orientations. For each layer (S, M, or D), there were two response curves, 
one corresponding to the perceived clockwise tilted and the other to the counter-
clockwise tilted bars (Appendix Figure A1.3). To alleviate the bias of BOLD response 
towards superficial layers, the response curves were normalized across conditions 

within each cortical layer. 
 
We calculated indexes that reflect the signal strength corresponding to the input 

meridian orientation and perceived tilted orientation respectively, for different layers 
and separately for V1, V2, and V3 based on the normalized response curves. 
Specifically, the index for the perceived orientation was calculated based on the 

mean BOLD response differences between two experimental conditions (clockwise 
vs. counter-clockwise) over the range of -14 to -6 and 6 to 14 degrees polar angles. 
The index for input meridian orientation signal was calculated based on the mean 
BOLD response between -4 to 4 degrees. As shown in Figure 2.3, the main effects 

are: 1) The representation index for the “illusory orientation” was significantly 
stronger in V2 and V3 than in V1 (F(2, 32) = 9.72, p < 0.001, 𝜂"# = 0.378); in contrast, 

the strength of signal corresponding to the input horizontal orientation was much 

more robust in V1 than in V2 and V3 (F(2, 32) = 27.76, p < 0.001, 𝜂"# = 0.634). 2) 
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More importantly, when signals were analyzed from different layers, the illusory 
representation varied significantly across layers in V1 (F(2, 32) = 3.91, p = 0.030, 

𝜂"# = 0.196).  

 

 

 
 
Figure 2.2. Stimuli and results of the 3T fMRI. (a) Schematic diagram of stimuli and 
procedures for the 3T fMRI experiment. A red bar flashed repeatedly for 12 seconds at the 
reversal point of the background motion, alternating with 12 seconds background only 
stimulation. The bar was presented at the vertical meridian but would be perceived as tilted 
clockwise or counter-clockwise from the vertical, depended on the direction of motion 
reversal. Red solid lines indicate the original position of the bar, while red dotted lines illustrate 
subjects’ perception of the bar. (b) Polar angle representation of the flashed bar in FGE in the 
early visual cortex. Normalized fMRI response to the clockwise and counter-clockwise tilted 
illusions were plotted as a function of polar angle coordinates across the visual field. The 
minimal and maximum polar response for each subject were normalized to 0 and 1 (first 
subtracted the min and then divided by the max). Red and blue curves show the average polar 
response across subjects (low pass filtered by convolving with a 60-degree-width hamming 
window for illustration purposes). Shaded areas indicate standard errors of the mean (n = 9 
(individual subject)). Red and blue bars illustrate the estimated average tilt from the curves, 
whereas the dots indicate the estimated tilt for individual subjects. Source data are provided as 
a Source Data file. 
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Figure 2.3. Representations corresponding to retinal input and illusory percepts across 
different layers of early visual cortices. fMRI response to the clockwise and counter-clockwise 
tilted illusions were calculated as a function of bar angle coordinates across the field of bar 
rotation. The computed response index for input representation at the horizontal meridian was 
based on the mean BOLD responses between -4 to 4 degrees polar angles, while the illusory 
index was based on the mean BOLD response differences between two experimental 
conditions (clockwise vs. counter-clockwise) at both -14 to -6 and 6 to 14 degrees polar angles. 
The representation index for the “illusory orientation” was significantly stronger in V2 and V3 
than in V1 (two-way repeated measure ANOVA, F(2, 32)=9.72, p<0.001; Post-hoc Holm 
corrected, V1 vs. V2: t(16)=-3.23, p=0.010, d=-0.783, V1 vs. V3: t(16)=-4.14, p=0.002, d=-
1.005, V2 vs. V3: t(16)=0.31, p=0.755), consistent with the 3T fMRI results; in contrast, the 
strength of signal corresponding to the input orientation (horizontal) was much stronger in V1 
than in V2 and V3 (two-way repeated measure ANOVA, F(2, 32)=27.76, p<0.001; Holm 
corrected post-hoc, V1 vs. V2: t(16)=4.84, p<0.001, d=1.176, V1 vs. V3: t(16)=-6.94, p<0.001, 
d=1.685, V2 vs. V3: t(16)=2.61, p=0.019, d=0.634). When signals were analyzed from 
different layers, the illusory representation varied significantly across layers in V1 (F(2, 
32)=3.91, p=0.030). Significant illusory representation was observed in V1 superficial layer 
(t(16)=3.16, p=0.018 Bonferroni corrected), but not in V1 middle layer (t(16)=0.88, p=0.392), 
and post hoc comparison showed that the illusory effect was significantly stronger in V1 
superficial layer than in the middle layer (t(16)=2.81, p=0.037 Holm corrected). The statistical 
comparison across layers in V1 (one-way repeated measure ANOVA) was conducted by 
“within-subject” design. All the error bars represent within-subject 95% confidence interval of 
the mean index (n=17 (individual subject)). Source data are provided as a Source Data file. 
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Significant illusory representation was observed in V1 superficial layer (t(16) = 3.16, 
p = 0.018 Bonferroni corrected, Cohen’s d = 0.766), but not in V1 middle layer (t(16) 

= 0.88, p = 0.392), and post hoc comparison showed that the illusory effect was 
significantly stronger in the superficial layer than in the middle layer (t(16) = 2.81, p = 
0.037 Holm corrected, Cohen’s d = 0.682). These layer-specific results indicate that 
the neural representation of FGE is primarily localized in the superficial layer for V1, 

but not the middle layer. This is consistent with previous studies showing that 
responses in the V1 middle layer reflect mainly bottom-up input signals, while 
responses in the V1 superficial layers are more related to feedback signals (Bastos 

et al., 2012; Felleman & Van Essen, 1991; Self, van Kerkoerle, Goebel, & 
Roelfsema, 2019; Self, van Kerkoerle, Supèr, & Roelfsema, 2013; van Kerkoerle, 
Self, & Roelfsema, 2017). In other words, the layer-resolved 7T data of FGE suggest 

that the representation of the perceived tilt was likely driven by feedback signals.  
 
FGE correlates with late visual evoked potential signals 
While the fMRI results suggest that early visual areas are closely involved in FGE 

representation, with the 7T layer-resolved data suggesting a dominant feedback 
contribution to the FGE, the temporal dynamics of feedforward and feedback 
processing in FGE remain unclear. Thus, we adopted EEG measurements to 

address this question. 
 
Considering the limited spatial resolution of EEG, the flashed bar was only presented 

in the lower visual field so that perceptually with the influence of FGE, the flashed 
bar would fall onto either the left or right visual field (Figure 2.4b). This meant that an 
invoked ERP signal corresponding to the perceptual representation would be 
lateralized. In essence, the timing of the lateralized component in the ERP signal 

should indicate the timing of the neural representation of the perceptual effect. Trials 
with only a rotating background were included as a baseline condition, and trials with 
only a retinally tilted flashed bar without the rotating background were also included 

as a control condition. The orientation of the retinally tilted flashed bar were 
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individually adjusted to roughly match the perceived orientation in the FGE condition 
(Figure 2.4a). 

 
Figures 2.4c and 2.4d show the differential ERP from posterior electrodes evoked by 
the contralateral versus ipsilateral bar in all three conditions. As expected, we 
observed a clear lateralized C1 component in retinally-tilted condition (Figure 2.4c), 

in response to the lateralized feedforward input. The cluster-based permutation test 
revealed an early positive peak (46-98ms) within C1 latency and a later negative 
peak (110-217ms). In contrast, after subtracting the background-only condition, no 

corresponding lateralized C1 was found in the illusory condition (Figure 2.4d), but 
only the later negative peak (118-161ms) remained, at which time window the 
rotating background generated a positive deflection. This is consistent with the lack 

of lateralized representation in the early visual cortex during the feedforward sweep. 
 
We then performed multivariate pattern analysis to uncover the dynamic change of 
lateralized representation for the retinally or illusorily tilted stimuli from beyond the 

posterior electrodes. Linear classifiers were trained to predict whether the flashed 
bar was perceived to be tilted left or right at each time point (and for background-
only trials, we were effectively predicting rotation direction). Retinally-tilted trials 

could be decoded significantly above chance about 50 ms after stimulus onset, 
reaching peak performance at C1 latency (Figure 2.4e). Illusory trials could also be 
successfully decoded starting from about 70 ms after stimulus onset. However, it 

outperformed the baseline condition (rotating background alone) only at a later 
stage, about 178 ms after stimulus onset (Figure 2.4f). We further characterized the 
nature of the lateralization information in the illusory condition using cross-decoding 
method. If the early lateralized representation before 100 ms reflected a mislocalized 

bar, similar to a retinally-tilted one, then a classifier trained using data from illusory 
condition in this time period should be able to decode data from retinally-tilted 
condition during C1 latency. The observed results did not support this hypothesis. 

Classifiers trained using illusory trials between 50-100 ms could not predict retinally-
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tilted trials in the same period (Figure 2.5a, the decoding accuracy was actually 
significantly below chance level), but they did predict background-only trials 

significantly above chance level from 0 to around 150 ms (Figure 2.5b). Importantly, 
stimulus side in retinally-tilted trials between 50-100 ms could be predicted by 
classifiers trained using illusory trials between 180-220 ms (Figure 2.5a). This 
suggests that the lateralized representation for the illusory tilt appeared at a 

relatively late stage, and the early information about stimulus side was more closely 
associated with the rotating background. 
 

We further asked whether and when lateralized EEG signals could predict the 
magnitude of the tilt perception in FGE. The inter-subject Pearson correlation 
between instantaneous amplitude of the difference wave (contralateral minus 

ipsilateral) in illusory condition (with background-only condition subtracted) and 
illusion size was calculated at each time point. Significant positive correlation 
emerged about 177 ms after stimulus onset (Figure 2.6a). Figure 2.6b, based on the 
same data as the shaded region in Figure 2.6a, more explicitly shows the clear 

relationship between the size of the perceptual illusion and the mean amplitude of 
the differential wave (r(9) = 0.77, p = 0.004). Notably, the onset of significant 
correlation matched well with the time when decoding performance in illusory 

condition overtook background-only condition, as well as when the scalp topography 
pattern in illusory condition became similar to that of retinally-tilted condition in C1 
latency, convergently supporting that the main relevant component for the illusory 

effect appears rather late, consistent with the typical timing of feedback signals. 
 
In contrast to a robust and clearly lateralized C1 signal from the retinally-tilted 
condition, no such lateralized signal was observed in the typical time window of C1 

from the illusorily tilted bars under FGE. Only at a relatively late stage did the 
lateralized signal become prominent in the illusory condition, with its amplitude 
strongly correlated with the illusory effect size across individual subjects. These 

results support that the perceived tilt in FGE emerged later, likely a result of 
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feedback processing. 

 

 
Figure 2.4. Stimuli and results of the EEG experiment. (a, b) Visual stimulus and perception 
(dashed bar) in tilted bar only (a) and illusory (b) conditions. (c, d) The differential ERPs 
(contralateral minus ipsilateral) averaged over five posterior electrodes and all subjects (n=12 
(individual subject)) in the tilted bar only (green), illusory (orange), and background-only 
(gray) conditions. Insets show corresponding topography snapshots in three diagnostic time 
points, assuming the bar flashed to the left of the vertical meridian. Note the topography in 
(d) corresponds to differential wave between illusory and background-only conditions. (e, f) 
Cross-validation performance of linear classifiers trained at each time point to predict to 
which side the bar was flashed (green), was perceived (orange), or would have been 
perceived if flashed (gray) averaged across subjects. Gray bars indicate the significant time 
period after multiple comparison correction (p threshold = 0.05) Error bands indicate 95% 
confidence interval obtained by bootstrap. Source data are provided as a Source Data file. 
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Figure 2.5. Cross-decoding analysis results. The color in each cell of the matrix indicates 
decoding accuracy if the classifier was trained with data from one time in one condition, and 
tested with data from another time in another condition. (a) Trained with illusory and tested 
with retinally tilted condition. (b) Trained with illusory and tested with background. The 
highlighted cells were significantly different (p threshold = 0.05) from chance level (50%) 
according to cluster-based permutation test, corrected for multiple comparisons. Source data 
are provided as a Source Data file. 

 
 
 

 
Figure 2.6. Inter-subject correlation Analysis. (a) The Pearson correlation between 
instantaneous amplitude of the difference wave (contralateral minus ipsilateral) in illusory 
condition (with background-only condition subtracted) and illusion size was calculated at 
each time point. Dark gray bars indicate period with significant correlation (p < 0.05, cluster-
based permutation test). Light gray bars indicate period when the absolute value of 
correlation was greater than the cluster defining threshold r = 0.5. (b) The size of perceptual 
illusion (6.25 ± 2.35 deg) was well predicted by the mean amplitude, averaged within the 
shaded interval in (a). Source data are provided as a Source Data file. 
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Taken together, the fMRI results show that the distribution of fMRI BOLD signals in 
retinotopic visual cortical areas represented both the perceived and the input 

positions of the flashed bars. The 7T fMRI data further reveal that signals in the 
superficial layers were more influenced by the perceived illusory location of the 
flashed bars, especially in V1. Finally, a robust and behaviorally relevant lateralized 
EEG signature was only observed late in time, at around 170-180 ms after the onset 

of the flashed bars in the illusory condition. The combined spatio-temporal imaging 
results strongly suggest that the perceived tilt of the flashed bars in FGE was 
instigated by feedback signals. 

 

DISCUSSION 

 
The combined psychophysics, fMRI, and EEG results jointly support that cortical 
adaptation can be tuned to feedback-driven representations. In the case of 

orientation-selective adaptation investigated here, the tilt aftereffect was mainly 
dependent on the perceived illusory orientation from the FGE rather than the input 
orientation of the flashed bar. With spatiotemporal imaging results supporting a 

feedback origin of the perceived orientation in FGE, these results suggest that 
feedback signals play an important role in orientation adaptation and provide 
evidence that in the presence of discrepant feedforward and feedback supported 
representation of visual input, the feedback signal determines the adaptation 

outcome. 
 
A recent fMRI decoding study showed that patterns of activation in early visual 

cortex could be used to classify the direction of perceived position shift of FGE 
(Kohler et al., 2017). Our study went beyond decoding and 1) generated direct 
estimates of the angular representations of FGE in early visual cortex (3T fMRI), 2) 

identified the relative contributions from different cortical layers to the perceptual 
illusion (7T fMRI), and 3) revealed that the neural correlates of the perceptual illusion 
arose relatively late (EEG). In addition, a noticeable aspect of the 3T fMRI results is 
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that BOLD signals showed stronger representation of the FGE in dorsal compared to 
ventral visual cortex (see in Appendix Figure A1.1). This might have resulted from 

asymmetric representation across the meridian of the visual field (Liu, Heeger, & 
Carrasco, 2006).  
 
Perception has long been considered an inferential process (Hiebert, 1996; Pizlo, 

2001), that retina inputs are modulated by spatiotemporal context and other priors to 
generate our perceptual experience. A number of neuroimaging studies have 
examined whether the neural signals in early visual cortex reflected the input 

properties or the perceived quality of the stimuli, with mixed results. Some studies 
showed that the BOLD signal in V1 reflected the perceived stimulus rather than the 
retinal input, such as activation reflecting distance scaling of perceived object size 

(Murray, Boyaci, & Kersten, 2006) and activation along apparent motion trajectory 
where there was no direct stimulation (Muckli, Kohler, Kriegeskorte, & Singer, 2005). 
Other studies have shown that local signals in V1 did not necessarily correspond to 
perceived brightness and color changes induced by modulating a surround field 

(Cornelissen, Wade, Vladusich, Dougherty, & Wandell, 2006). To reconcile the 
conflicting findings, an important point to consider is that BOLD responses are driven 
by both feedforward and feedback neural signals. In our study of FGE, the smaller 

estimated tilt angle based on fMRI signals in V1 could be due to a greater 
contribution from feedforward input signals in V1. In this regard, the layer-resolved 
7T fMRI has a particular advantage, as shown in our results, in which the superficial 

layers tend to have more robust representations of the illusory tilt, compared to the 
middle layers that are more dominated by feedforward signals (De Martino et al., 
2015; Kok et al., 2016; Muckli et al., 2015). 
 

Across individuals, EEG signal lateralization about 180 ms after flash onset closely 
correlated with the magnitude of FGE. But while all subjects showed illusory tilt effect 
in consistent directions, the corresponding (contra-ipsi) lateralized ERP was not 

always positive, with subjects experiencing weaker illusion tending to have little or 
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reversed lateralization (Figure 2.6b). This is likely because the observed ERP during 
that interval was also influenced by other sensory and cognitive processes. For 

example, a stronger feedforward representation may induce a larger negative 
component in the P1/N1 range, reducing the potential lateralized ERP signals in the 
time window. Another interesting observation is that the background by itself induced 
a significant lateralized EEG signal at around 120 ms (Figure 2.4d), which was not 

observed when a vertically flashed bar was added to this background in the FGE 
condition. It is possible that the abruptly flashed bar attracted attention and reduced 
the signal from the rotating wedge background. Alternatively, it may have been 

canceled out by an oppositely lateralized signal from the perceived tilted bar, which 
means the illusory representation could have emerged as early as 120 ms after bar 
onset. The fact that the lateralized signal around 120 ms was not correlated with 

illusion size and did not outperform background-only condition in decoding implies 
that this signal was not intrinsically linked to the FGE. In any case, 120 ms is not 
typically considered in the temporal window of feedforward processing in early visual 
cortex. Overall, the temporal data strongly support a feedback interpretation of FGE. 

 
An interesting observation is the below-chance level cross-decoding performance 
(from illusory to retinally-tilted condition) shown in Figure 2.5a. This was observed 

during a very early time window for the training stimulus. The implication is that the 
activity patterns of illusory (centered around 80 ms) and retinally-tilted (centered 
around 100 ms) trials were likely oppositely lateralized. It is possible the two patterns 

represented different features of the stimuli. Indeed, the activity patterns of the 
illusory condition around the same time window cross decoded the background-only 
condition significantly above-chance, suggesting that the former was more related to 
the moving background wedge (note that the wedge would always be at the opposite 

side of the perceived location of the flashed bar, Figure 2.4b). This below-chance 
decoding performance in the early time window of the illusory condition forms a clear 
contrast to the above-chance decoding in a later time window (~200 ms). Together, 
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they point to an early background based and late illusory bar position based cross-
decoding performance. 

 
With the results from spatiotemporal imaging supporting a feedback interpretation of 
the FGE, the behavioral data showing that the perceived tilt in FGE could generate a 
TAE implies that the visual cortical neurons adapted to orientation representation 

driven by the feedback signals. Given that the goal of adaptation is to adjust the 
system’s sensitivity based on the statistics of the environment to process information 
more efficiently, this point becomes more interesting when the input driven 

feedforward representation and the feedback driven perceptual representation are in 
conflict and both are available in cortex. When input signals and perceptual 
representation agree, it is difficult to distinguish between adaptation to feedforward 

or feedback signals. Our previous demonstration that orientation-selective 
adaptation could occur to invisible gratings (S. He, Cavanagh, & Intriligator, 1996; 
Sheng He & MacLeod, 2001) constitutes support for adaptation to feedforward-
dominated cortical representation of orientation. Our current results show that when 

the feedforward input orientation is different from perception, adaptation is primarily 
driven by the feedback-driven neural representation of the perceived property. These 
results also go beyond the demonstration of TAE from mentally generated bars 

(Mohr, Linder, Dennis, & Sireteanu, 2011; Mohr, Linder, Linden, Kaiser, & Sireteanu, 
2009). Since no feedforward inputs were presented in those studies, there was no 
competition between the feedforward and feedback signals. 

 
There were early experiments investigating the potential influence on adaptation 
effect resulting from dissociation between input and perceived properties of stimuli, 
with mixed results. For example, in the so-called flash-drag effect, where the 

perceived position of a flashed stimulus appears to be shifted in the direction of a 
nearby moving object, the perceived location biased the effectiveness of adaptation 
(Kosovicheva et al., 2012). However, other studies showed that those motion-

induced position changes had little contribution to the adaptation aftereffect (Fukiage 
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& Murakami, 2010, 2013). The lack of clear results from these early studies could be 
due to weak adaptation effect (Fukiage & Murakami, 2010) or rather small size of 

perceptual mislocalization (Fukiage & Murakami, 2013). The FGE could induce a 10 
times larger position shift compared with the flash-drag effect (Cavanagh & Anstis, 
2013), by presenting the flashed target on top of the moving background at the time 
it reverses its motion trajectory, rather than adjacent to the moving object. The 

current results, with complete dissociation between retinal input and perceived 
orientation of the adapting stimuli, combined with the clear demonstration of the 
feedback origin of the perceptual effect, provide unequivocal evidence for neural 

adaptation to feedback representations.  
Since information processing networks consist of both hierarchical stages and 
parallel pathways, naturally adaptation could occur at multiple stages of processing. 

Consequences of adaptation observed at later stages of processing could be based 
on inherited signals from other parts of the neural networks, or the adaptation effect 
could be itself inherited (Solomon & Kohn, 2014). For example, contrast adaptation 
effect could be observed in MT neurons or from the inheritance of contrast 

adaptation effect at early stages of processing (Kohn, 2007; Kohn & Movshon, 
2003). Early studies have also demonstrated adaptation effect to biases in 
appearance in color and motion, which allowed the authors to conclude that these 

adaptation effects were cortical in origin (Goddard, Solomon, & Clifford, 2010; 
Krauskopf & Zaidi, 1986; Zaidi & Sachtler, 1991). In addition, attention could 
modulate the representational strength of attended features and in turn enhance its 

adaptation. While it is common that many factors modify the retinal input to generate 
perception, and these results are certainly consistent with adaptation to perception-
linked neural representations, our current study has the advantage of explicitly 
contrasting the feedforward representation and feedback representation in their 

effectiveness for adaptation. Specifically, our study adds to the understanding of 
adaptation that when input signal and feedback representation are clearly different, 
the visual system can adjust its sensitivity based on the feedback-driven neural 

representation despite the discrepant feedforward representation. Although this point 
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is demonstrated with just one perceptual phenomenon here, our study prompts 
future neural adaptation models to take into account the different roles of 

feedforward and feedback signals, especially when they are discrepant. 
 
In summary, our spatiotemporal imaging results reveal that the illusory orientation 
representation was temporally late and spatially biased to the superficial cortical 

layers, thus pointing to a feedback origin of the FGE. Combined with psychophysical 
results, this study provides evidence that when perceived and input stimulus 
orientations of the adapting bars are dissociated with each other, the orientation 

adaptation mainly depends on the feedback supported neural representation linked 
to perception. These results highlight the important contribution of feedback signals 
for cortical neurons to recalibrate their sensitivity.  

  

METHODS 
 
Participants 
Eight healthy subjects (5 female, ages 21-27) participated in the psychophysics 

experiments; eleven (2 female, ages 21-27) participated in the 3T fMRI experiment 
(two subject was excluded due to head movement or failed to obtain clear 
retinotopy); seventeen (9 female, ages 22-35) participated in the 7T fMRI 
experiment; and twelve (4 female, ages 21-27) participated the EEG experiment 

(one subject was excluded due to excessive eye movement/blinks). Subjects were 
unaware of the purpose of the experiments. All observers had normal or corrected-
to-normal vision and gave written consent. The protocol was approved by The 

Institutional Review Panel at the Institute of Biophysics (IBP), Chinese Academy of 
Sciences (CAS). 
 

Psychophysics stimuli and procedures 
Subjects’ head position was stabilized with a chin-rest at a viewing distance of 57cm. 
Stimuli were presented in a dark room on a CRT monitor (NESO FS210A, 
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Nanchang, China), with a resolution of 1024×768 and a refresh rate of 120 Hz. The 
experiment was programed in MATLAB (The Math Works, Inc.) using the 

Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) extensions. 
 
During the experiment, a small black fixation dot was presented at the center of the 
screen and a pair of rotating disks of 3.9 dva (degree of visual angle) radius were 

presented at the two sides of the fixation point, on a uniform gray background. The 
disks were patterned with 6-sectors (spanning 60 degree each sector). The distance 
between the fixation point and the center of each disk was 10.2 dva. The sectors had 

25% Michelson Contrast (Michelson, 1995), which was defined by 
Cm=((Lmax -Lmin))⁄((Lmax+Lmin)) 

Where Lmax  and Lmin represent the luminance of brighter and darker sectors 

respectively. 
The disks rotated 250° (degrees of rotation) every second and reversed direction 
every 240 ms (covering 60°, 1 sector, in that time). On each reversal a light-dark 
edge would be at the vertical orientation, and for every other rotation reversal (480 

ms/cycle) two red vertical bars (0.3 dva width) were flashed on for 33 ms, aligned 
with the light-dark edges. 
 

In the first experiment, we tested the tilt after effect to perceived tilted but retinally 
vertical condition. We first measured the size of the flash-grab effect. Subjects were 
presented with a pair of rotating sectored disks and two vertical bars were flashed 

briefly at the direction reversals. A pair of green pointers (0.3 dva) was presented 
around each of the two disks. Using the keyboard, the subjects adjusted the angles 
between the pointers until the pointers and bars appeared to be aligned. They had 
unlimited time to adjust the angles, and were asked to press the spacebar when they 

were satisfied with the angle alignment to record the setting and to start the next 
trial. The two rotation directions (left clockwise and right counter-clockwise, vice 
versa) were tested 5 times each for each subject. The mean perceived tilt (away 

from vertical) across subjects was 15.55° (n = 8, SD = 7.54) .  
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The adaptation trial sequence is depicted in Figure 2.1a. On each trial, subjects were 

presented with the same patterned disks as in the flash grab measurement part of 
the experiment and adapted to the two flash bars. The bars were perceived to be 
tilted due to the flash grab effect. The adaptation period included 11 flashes (5.3 s) in 
each trial, followed by a 33.3 ms blank period. Then a pair of test bars were 

presented for 33.3ms. The test bars were the same as the pair of red bars presented 
during the adaptation period except that the angle between two bars was varied 
ranging from -6.9° to +6.9° (7 variations, -6.9°, -2.3°, -1.1°, 0°, +1.1°, +2.3°, +6.9°, 

positive degree represents the two bars converging upward). Subjects were asked to 
judge whether the two test bars were converging upward or downward using a 2AFC 
method. The 7 different angular conditions of bars were tested 20 times each 

(selected in random order across trials). 
 
Three control adaptation conditions were included in the experiment: (a) the vertical 
flashed bars only without the rotating background disks; (b) the rotating background 

disks only; (c) tilted flashed bars as in conventional TAE experiment (The bars were 
tilted 5.7 degrees away from vertical). The tilted flash bars conditions and the flash 
grab conditions are counterbalanced between blocks among the subjects.  

 
In the second experiment, we tested the tilt after effect to perceived vertical but 
retinally tilted condition. The conditions were similar to that described above, except 

that subjects needed to adjust the reversal angle of disks until the two flashed bars 
appeared vertical using keyboard. Subjects had unlimited time to make the 
adjustment. When they were satisfied with the adjustment, they pressed spacebar to 
start another trial. Two rotation directions were tested 20 times each for each 

subject. The mean orientation away from vertical across subjects was 16.02° (n = 8, 
SD = 7.34) . The adaptation stimulus used in this experiment is demonstrated in 
Figure 2.1b (right column). 
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The tilt aftereffect was measured with similar procedure as described above, except 
that the adapting stimuli were retinally tilted but perceived vertical for each subject. 

Two control conditions were included as well, one is the vertical flashed bars without 
the background, and the other is the retinally tilted bars without the background as in 
conventional TAE experiments. 
 

3T fMRI procedures and data acquisition 
Stimuli were presented with an MRI safe projector (1024x768@60Hz) on a 
translucent screen behind the head coil. For the FGE experiment, the rotating 

pinwheel background (Figure 2.2a) was presented at 3.12% contrast, 36.87 degrees 
of visual angle in diameter, rotating at 180 degrees per second and changed motion 
direction every 0.67 seconds (120 degrees per rotation). A red vertical bar (36.87 

and 0.96 degrees in length and width, respectively) was briefly presented for 67 ms 
at the boundary of two disc sectors, at the moment of background motion reversal. 
Subjects were instructed to keep fixation while passively viewed the stimuli. Four 
runs of functional data were collected for the FGE experiment, each consisted of 144 

image volumes. Retinotopic localizer were rotating wedge and expanding ring 
checkerboard stimuli reversing contrast at 5 Hz. The wedge stimulus has a center 
angle of 22.5 degrees, rotating clockwise across the full visual field in 32 seconds. 

The ring stimulus expanded from fixation to the edge of the viewing aperture (47.93 
degrees in diameter) in 32 seconds. Two runs of functional images were collected 
for the retinotopic localizer, 128 image volumes for each run.  

 
MRI data were acquired with a 3T MRI scanner (Siemens Trio) using a 12-channel 
receive head coil at Beijing MRI Center for Brain Research (BMCBR), IBP, CAS. 
Functional images were acquired with a gradient echo planar imaging sequence (3 

mm isotropic voxels, 30 axial slices of 3 mm thickness, 64×64 matrix with 3 mm in-
plane resolution, TR/TE = 2000/28 ms, flip angle = 90°). High-resolution anatomical 
volume was obtained with a T1-MPRAGE sequence (1 mm isotropic voxels, 192 
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sagittal slices of 1mm thickness, 256×256 matrix with 1 mm in-plane resolution, 
TR/TE = 2600/3.02 ms, flip angle = 8°). 

 
7T fMRI procedures and data acquisition 
Viewing aperture of the 7T screen was 26.27 degrees horizontally and 19.85 
degrees vertically. Fullfield rotating pinwheel background (Appendix Figure A1.2) 

was presented at 2.91% contrast, rotating at 240 degrees per second and changed 
motion direction every 0.5 seconds (120 degrees per rotation). A red horizontal bar 
(26.27° and 0.52° visual angle in length and width, respectively) was briefly 

presented for 67 ms at the boundary of two disc sectors, at the moment of reversal 
of background motion. Subjects were instructed to keep fixation while passively 
viewed the stimuli. Nine runs of functional images were collected for the FGE 

experiment, 144 volumes of images for each run. Retinotopic localizer was a rotating 
bar stimulus with checkerboard patterns reversing contrast at 5 Hz (26.27° and 0.52° 
visual angle in length and width, respectively). Centered on the fixation, the bar 
rotated counter-clockwise from -16 to +15 degrees in 32 seconds. Three runs of 

functional images were collected for the retinotopic localizer, each consisted of 128 
volumes of images.  
 

MRI data were acquired with a 7T whole body MRI scanner (Siemens Healthineers 
GmbH, Erlangen, Germany) using a 32 channels head coil (Nova Medical, 
Wilmington, USA) at BMCBR, IBP, CAS. For the first seven subjects, a reduced-

FOV Gradient-echo EPI sequence was used to acquire functional images (0.85 mm 
isotropic voxels, 21 coronal slices of 0.85 mm thickness, 126 × 96 matrix with 0.85 
mm in-plane resolution, TR/TE = 2000/21 ms, flip angle = 80°, 6/8 phase partial 
Fourier (GRAPPA acceleration factor 3). High-resolution anatomical volume was 

obtained with a T1-weighted MPRAGE sequence (0.7 mm isotropic voxels, 256 
sagittal slices at 0.7 mm thickness, 320 × 320 matrix with 0.7 mm in-plane resolution, 
TR/TE = 3100/3.56 ms, TI = 1200ms, flip angle =5°) and a proton density or PD-

weighted MPRAGE sequence (0.7 mm isotropic voxels, 256 sagittal slices at 0.7 mm 
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thickness, 320 × 320 matrix with 0.7 mm in-plane resolution, TR/TE = 2340/3.56 ms, 
flip angle = 5°). For the rest ten subjects, functional images were collected with a 

GE-EPI sequence with larger FOV (TR = 2000 ms, TE = 23 ms, 80° flip angle, voxel 
size 0.8 × 0.8 × 0.8 mm, FOV 128 × 128 mm, 31 oblique-coronal slices, 6/8 phase 
partial Fourier, GRAPPA acceleration factor 3). High-resolution anatomic volume 
was obtained with a T1-weighted MP2RAGE sequence (TR = 4000 ms, TE = 3.05 

ms, voxel size 0.7 × 0.7 × 0.7 mm, field of view 224 × 224 mm, 256 sagittal slices, 
receiver bandwidth 240 Hz/pix, 7/8 phase partial Fourier, 7/8 slice partial Fourier, TI1 
= 750 ms, 4° flip angle, TI2 = 2500 ms, 5° flip angle). 

 
EEG procedures and data acquisition 
Observers were tested individually in a dark testing room. Head position was 

stabilized with a chin rest at a viewing distance of 57 cm. Stimuli were presented on 
a CRT monitor (NESO FS210A, Nanchang, China) with a resolution of 800*600 and 
a refresh rate of 100 Hz. The experiment script was written in MATLAB (The Math 
Works, Inc.) using the Psychophysics Toolbox (Brainard, 1997; Pelli, 1997) 

extensions. 
 
As shown in Figure 2.4a and 2.4b, the screen was filled with a uniform gray 

background. A small, black fixation dot was 5.9 dva (degrees of visual angle) above 
the screen center and a 60-degree sector (6.3% contrast with background) of 15.6 
dva radius rotated back and forth below the fixation point. The sector rotated 80° 

(degrees of rotation) every second and reversed direction every 1500 ms (covering 
120°, from -60° to 60° around vertical meridian). When the reversal occurred, a 
green vertical bar (0.3 dva in width) might flash for 30 ms (3 frames) at the vertical 
meridian, aligning with one of the two edges of the sector.  

 
In order to match the illusorily and retinally-tilted conditions, we first did a 
psychophysical experiment to measure the size of flash-grab effect. Within each trial, 

the flashed bar was always illusorily titled toward one direction. The oscillating sector 
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described above could be rotated clockwise or counter-clockwise using keyboard by 
the subjects, who were instructed to adjust the display so that the flashed bar 

appeared to be subjectively vertical. They had unlimited time to make this “subjective 
vertical” adjustment. When they were satisfied with the adjustment, they pressed 
spacebar to move on to the next trial. The two reversal directions were tested 20 
times each for each subject. 

 
In the EEG experiment, subjects were presented with the same rotating sector as in 
the psychophysics session, except that the bar always flashed at the vertical 

meridian (See Figure 2.4). The green vertical bar had 50% chance to flash on for 30 
ms at the reversal. The flash grab effect biased the perceived location of the flash 
bar in the direction of the sector’s motion after the reversal. There were four 

situations after a reversal: (1) sector rotated to the left without bar flash; (2) sector 
rotated to the right without bar flash; (3) sector rotated to the left with the flashed bar 
perceived to be tilted to the left; (4) sector rotated to the right with the flashed bar 
perceived to be tilted to the right. (1) and (2) were termed “background-only” 

condition, whereas (3) and (4) were termed “illusory” condition. Stimuli were 
presented in runs that lasted ~120s. Data from 5 runs were collected, yielding 200 
repetitions in each situation. In the control experiment, only the retinally-tilted flash 

bar was presented (adopting the angle obtained in the psychophysics session, 50% 
chance to flash), without the rotating background sector, termed “retinally-tilted” 
condition.  

 
EEG data were acquired from 64 scalp electrodes (Neuroscan), digitized at 1000 Hz. 
Vertical electro-oculogram (VEO) was recorded by electrodes placed above and 
below the left eye. Horizontal electro-oculogram (HEO) was recorded by electrodes 

placed at the left and right outer canthi. The reference electrode was placed on the 
top of the midline between electrodes CZ and CPZ. 
 

Psychophysics data analysis 
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Psychophysical data were analyzed using custom MATLAB scripts (MathWorks 
Inc.). The average behavioral performance was plotted separately for each condition 

as the percentage of upward  responses against intersection angles of test bars 
(Figure 2.1c/e). Data points were fitted with the following logistic function to estimate 
the PSE (point of subject equality) where the test bars appeared parallel (both 
vertical).  

 (1) 𝑝(𝑥) = 	𝛾 +	 67879
6:;<=∗(?<@)

 
x is the intersection angle and p(x) is the percentage of upward response. a, b, l 

and g are free parameters that were fitted using least squares estimation.  
The magnitude of TAE was measured as half the distance of PSEs following 

adaptation in two opposite orientations. 
 
fMRI data analysis 
3T MRI data were analyzed with Brain Voyager QX software package (Goebel, 

Esposito, & Formisano, 2006) and Matlab (MathWorks Inc.). Functional images were 
motion corrected, low and high pass temporal filtered, and slice timing corrected. 
The high-resolution T1 volume was co-registered to the first volume of functional 

images, and transformed to Talairach space. General linear model was used to 
estimate fMRI responses to the flashed bars with clockwise and counter-clockwise 
illusions. The retinotopic mapping data was analyzed using a cross-correlation 

method embedded in BrainVoyager QX software package. 16 phase lags (every 2 
seconds) was used to find the best fit of polar angle or eccentricity representation for 
each voxel. ROIs of early visual cortices (V1, V2, V3d/VP) were defined according to 
the retinotopic maps on inflated cortical surface. For each ROI, voxels were sorted 

and resampled into 360 bins according to their polar angle representations. Then the 
BOLD response of the flashed bar was plotted as a function of polar angle. From this 
response curve, the angular representation of a flashed bar was estimated 

separately for the upper and lower visual fields, defined as the polar angle that splits 
the area under the curve into two equal halves. 
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7T MRI data were analyzed with AFNI (Cox, 1996), Freesurfer (Fischl, 2012), and 
custom Matlab/Python codes. Functional images were motion corrected and EPI 

distortion. The high-resolution T1 volume was co-registered to the mean volume of 
functional images. General linear model was used to estimate fMRI responses to the 
red bars with clockwise and counter-clockwise illusions. A cross-correlation method 
with 32 phase lags (every one second) was used to generate the polar angle 

retinotopic map of early visual areas V1/V2/V3. Pial and White Matter surfaces were 
reconstructed based on PD corrected T1 volume (Van de Moortele et al., 2009). An 
equi-distance method was used to estimate the relative cortical depth of a voxel. The 

voxels in a ROI were sorted and resampled into three depth bins: superficial depth 
(0-0.4), middle depth (0.4-0.8), and deep cortical depth (0.8-1.0). The partition ratio 
was selected based on the thickness of cortical layers of human visual cortex (De 

Sousa et al., 2010). Similar as the 3T data analysis, BOLD response to the flashed 
bar was plotted as a function of polar angel representation. To alleviate the draining 
veins effect of BOLD signal cross cortical layers, the min and max values of polar 
angle response curve was normalized to 0 and 1. The FGE illusory effect was 

calculated as the difference of normalized response between two illusory conditions 
(clockwise vs. counterclockwise), averaged across two polar angle windows (voxels 
identified through independent localizer scan with preferred orientation tuning to -14 

to -6 degrees and 6 to 14 degrees). The input representation index was calculated 
as the mean of normalized responses centered on the horizontal meridian (where 
voxels had preferred orientation tuning ranging from -4 to 4 degrees). The polar 

angle windows were chosen to maximize the sensitivity of the index, because when 
pooling across all subjects/areas/layers, the difference between CW/CCW illusory 
conditions were most prominent around ±10 degrees (i.e., for voxels with preferred 
orientation tuning around 10 or -10 degrees). A small gap was left between these 

orientation windows to mitigate potential cross talk, and a slightly different gap did 
not qualitatively change the final results. The data with error bars are displayed as 
mean±SEM. The p values < 0.05 were considered statistically significant. Within-
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subject confidence intervals were estimated according to the method described by 
Cousineau (Cousineau, 2005). 

 
EEG data analysis 
Data were analyzed using EEGLAB v13.3.2 (http://www.sccn.ucsd.edu/eeglab) and 
MNE v0.16.2 (https://martinos.org/mne/) (Gramfort et al., 2013). Raw data were first 

filtered off-line with a 1-35 Hz bandpass filter. Data excursions exceeding 75 μV at 
electrode VEO (-100 to +300 ms) were excluded from analysis. Remaining epochs 
were separately averaged according to the stimulus conditions. To select electrodes 

for the C1 amplitude and latency analysis, grand averaged ERPs were made for 
each electrode and each condition but pooling all subjects. Five electrodes showing 
the largest C1 amplitudes were chosen for further analysis (posterior electrodes 

including P3, P5, PO5, PO7, O1). To quantify the C1 amplitude and latency for each 
stimulus and each subject, the waveforms at these five electrodes were first 
averaged to obtain a mean waveform.  
 

Multivariate pattern analysis (Grootswagers, Wardle, & Carlson, 2017) was 
conducted using scikit-learn 0.16.0 (http://scikit-learn.org/) (Pedregosa et al., 2015). 
Linear support vector machine classifiers were trained at each time point for each 

subject to predict to which side the flashed bar was retinally or perceived to be tilted, 
using preprocessed EEG data from all electrodes as features. For the background-
only condition, we were predicting to which side a bar would be illusorily tilted if it 

was flashed as in the illusory condition, although the imaginary bar was not actually 
displayed. The decoding accuracy was estimated using a stratified 10-fold cross-
validation procedure, and the regularization parameter C was set to 1.0. Each 
feature (electrode) was normalized to have zero mean and unitary standard 

deviation. To reduce the impact of random noise in single trials, we employed a mini-
ERP approach. From all trials sharing the same label in the training set, k trials were 
randomly selected and averaged into a mini-ERP, which served as one training 

sample. The sampling process repeated until 1000 samples were generated and 
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used to train the classifier. Similar procedure was used at test time except that the 
mini-ERP samples were derived from test set. We chose k = 9 in current analysis, 

leading to a 3-fold boost in SNR and hence more accurate and robust decoding. 
 
Cross decoding was performed across different conditions and different time points. 
A separate SVM was trained using all trials in condition A at time tA, and tested using 

all trials in condition B at time tB. The average prediction accuracy of all subjects was 
recorded in a matrix at row tA and column tB. To reduce computational burden, the 
EEG time series were decimated in time, and raw trial data instead of mini-ERP 

were used (i.e., k = 1) in this analysis. 
 
The inter-subject correlation between either instantaneous or time-averaged ERP 

amplitude and TAE effect size was quantified with Pearson's linear correlation 
coefficient. The lateralization potential evoked by the vertical bar was calculated by 
first subtracting ERP signals in ipsilateral electrodes from corresponding 
contralateral electrodes, and then contrasting illusory condition with background-only 

condition. The same set of posterior electrodes were selected as with the ERP 
analysis. The illusion size for each subject was obtained by pooling all 
measurements for both directions from the adjustment experiment for both 

directions. The mean ERP amplitude was averaged within the interval between 177 
ms and 400 ms after bar onset for visualization purpose. The time interval was 
chosen according to the onset of significant instantaneous correlation and the 

interval of significant higher decoding accuracy in illusory condition compared with 
background-only condition. 
 
The difference in time series were tested for statistical significance at population 

level using cluster-based permutation test (Maris & Oostenveld, 2007; Nichols & 
Holmes, 2003) which corrected for multiple comparisons. Values at individual time 
points were first subjected to mass univariate t-test with cluster-defining threshold 

set to p < 0.05 (or |r| > 0.5 for correlation analysis). The resulted contiguous 
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suprathreshold intervals, in which statistics were of the same sign, were defined as 
clusters. For cross-decoding matrix, 2D clusters were defined on regular lattice. 

These clusters had to further pass a critical value in “cluster mass” before reported 
as significant. Cluster mass is the sum of t values in the cluster. The critical values 
were obtained with the following procedure: 1) randomly permute left or right labels 
for each subject, apply mass univariate t-test, calculate cluster mass for each 

cluster, and record the max and min cluster mass values; 2) repeat the above for 
10000 times or all possible permutations, and construct the empirical distribution for 
max and min values; 3) take the 97.5 and 2.5 percentiles of the max and min 

distributions, respectively, as the critical values for a two-tailed test. The confidence 
interval of population mean time courses as well as instantaneous intersubject 
correlation was estimated using bootstrap technique by resampling the subjects with 

replacement for 1000 times. 
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Chapter 3 

 
Spatiotopic updating across the saccades in the absence of 
awareness 
 
Despite the continuously changing visual inputs due to eye movements, our 
perceptual representation of the visual world remains remarkably stable. Visual 

stability has been a major area of interest within the field of visual neuroscience. The 
early visual cortical areas are retinotopic-organized and presumably there is a 
retinotopic to spatiotopic transformation process that supports the stable 

representation of the visual world. In this study, we used a cross-saccadic adaptation 
paradigm to show that both the orientation adaptation and face gender adaptation 
could still be observed at the same spatiotopic (but different retinotopic) locations 
even when the adapting stimuli were rendered invisible. These results suggest that 

awareness of a visual object is not required for its transformation from the retinotopic 
to the spatiotopic reference frame.  
 

This chapter is a reproduction of Ge, Y., Sun, Z., Qian, C., & He, S. (2021). 
Spatiotopic updating across saccades in the absence of awareness. Journal of 
Vision, 21(5), 7-7. 
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INTRODUCTION 
 
Despite the continuous movements of the eyes and body, our visual world remains 

stable. In other words, an object could be imaged at very different positions on our 
retina (when eyes move), but our perceptual representation of that object remains 
stable in the visual world. Key to this visual stability is the transformation of visual 

object representation from the retinotopic (coordinates centered on the retina) to 
spatiotopic (coordinates centered on the outside world) reference frame across 
saccades (Cicchini, Binda, Burr, & Morrone, 2013; Crapse & Sommer, 2012; Fabius, 
Fracasso, Nijboer, & Van Der Stigchel, 2019). Previous studies showed that neurons 

in the extrastriate visual cortex (such as V4) and the lateral intraparietal cortex (LIP) 
could temporarily remap their receptive fields to compensate for an impending 
saccadic eye movement (Duhamel, Colby, & Goldberg, 1992; Tolias et al., 2001; 

Wurtz, Joiner, & Berman, 2011). Meanwhile, other studies also indicated explicit 
spatiotopic neural representation in middle temporal area (MT) and parietal areas 
(D’Avossa et al., 2007; Duhamel, Bremmer, BenHamed, & Graf, 1997), although this 

has remained a topic of debate (Gardner, Merriam, Movshon, & Heeger, 2008; 
Merriam, Gardner, Movshon, & Heeger, 2013). In any case, either by continuously 
updating or remapping the retinotopic maps, or by transforming the retinotopic 
representation to explicit spatiotopic representation, our brain would be able to keep 

track of the salient objects in the scene and achieve visual stability. 
 
While the input visual information during saccades is suppressed, our conscious 

representation of the visual scene across saccades seems to be smooth and 
continuous, yet we typically do not keep track of the whole visual scene. Selective 
attention is one of the potential mechanisms to help to maintain visual stability 

(Crespi et al., 2011; Melcher, 2008, 2011; Szinte, Jonikaitis, Rangelov, & Deubel, 
2018). Attentional selection contributes to visual stability by restricting information 
processing to salient or task-relevant objects. Thus the trans-saccadic spatiotopic 
updating of salient objects would allow the brain to track important features or items 
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in the scene. With multiple objects, the allocation of the selective attention would 
influence the spatiotopic updating and previous results showed that unattended 

stimuli could induce decreased but still measurable adaptation aftereffect in the 
spatiotopic location (Melcher, 2009; Melcher & Colby, 2008). However, while 
attention plays an important role in gating information to awareness, attention and 
awareness are not the same. Here we ask if the visual stimulus is invisible, could the 

spatiotopic updating process still happen? In other words, is spatiotopic updating so 
critical to our visual function that this process occurs even when we are not aware of 
the objects in the visual scene? Previous studies have shown that attention can be 

drawn to unconscious stimuli (Cohen, Cavanagh, Chun, & Nakayama, 2012; Jiang, 
Costello, Fang, Huang, & He, 2006) and the unconscious stimuli can still be 
processed to a certain level in the neural pathway (Axelrod, Bar, & Rees, 2015; Fang 

& He, 2005; Z. Lin & He, 2009; Sterzer, Stein, Ludwig, Rothkirch, & Hesselmann, 
2014). Thus the key question addressed in this study is: is awareness of a visual 
object necessary for its reference frame transformation from retinotopic to 
spatiotopic across saccades? 

Retinotopic vs. spatiotopic representations are dissociated by object locations pre- 
and post-saccadic eye movements. To investigate the question raised above, in 
addition to using eye movement that dissociates the object’s retinotopic and 

spatiotopic locations, we also need a tool to probe the neural representation in the 
corresponding locations before and after the saccade. Adaptation paradigms are 
effective in studying neural representations in different reference frames for they 

allow a relatively long temporal delay in measuring the adaptation effect, so that if an 
object has achieved representation at the spatiotopic reference frame we would 
expect to see adaptation effect when the test probe is presented at the same 
spatiotopic location (even if its retinotopic location is different from that of the 

adapting stimulus). Adaptation paradigms also have the advantage of being able to 
target specific levels of neural representation in the visual pathway by selectively 
adapting to properties with different levels of complexity  (Boynton & Finney, 2003; 

Colin W.G. Clifford & Rhodes, 2005; Georgeson, 2004; Kohn, 2007; Rushton, 1965). 
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In our study, we took advantage of two forms of visual aftereffects that were 
previously shown capable of generating spatiotopic aftereffects, namely the tilt 

aftereffect (TAE) and the face gender aftereffect (FGAE) (Cha & Chong, 2014; D. 
He, Mo, & Fang, 2017; T. He, Fritsche, & Lange de, 2018; Melcher, 2005, 2009; 
Nakashima & Sugita, 2017; Wolfe & Whitney, 2015; Zimmermann, Morrone, Fink, & 
Burr, 2013; Zirnsak, Gerhards, Kiani, Lappe, & Hamker, 2011). We first verified that 

both TAE and FGAE could be observed at the spatiotopic location, which implied 
that the adapting stimulus had undergone retinotopic to spatiotopic transformation. 

Next, to render the adapting stimulus invisible so that we could investigate whether 

the aftereffects could still be observed at the spatiotopic location from the invisible 
adaptor, we adopted the continuous flash suppression (CFS) approach. CFS is an 
effective way to render adapting stimuli in one eye invisible by presenting a stream 

of rapidly changing noise to the other eye. CFS has the advantage of achieving 
prolonged suppression duration and being less influenced by visual properties of the 
to be suppressed stimulus (Fang & He, 2005; Kim & Blake, 2005; Tsuchiya & Koch, 
2005). There is evidence showing that different types of adaptation aftereffects are 

differentially influenced by interocular suppression. Not surprisingly, more complex 
stimulus properties like face gender and identity information are more vulnerable to 
suppression, compared with simple stimulus features such as flicker, motion, or 

orientation (Alais & Melcher, 2007; Kaunitz, Fracasso, & Melcher, 2011; Tsuchiya & 
Koch, 2005; Yang, Hong, & Blake, 2010). In this study, we investigated the role of 
awareness in the retinotopic to spatiotopic reference frame transformation, by using 

CFS to suppress the awareness of the target visual objects. Our results show that 
for visual targets not consciously perceived, both local orientation information and 
face gender information could be transformed from retinotopic to spatiotopic 
reference frame. 

METHODS 
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Participants 
Twelve participants (7 females, mean age=23.2) took part in the main experiment. 

Half of the participants (n=6) also took part in the eye movement recording 
experiment. All participants had normal or corrected-to-normal vision. All participants 
provided written informed consent and were paid to take part in the study, which was 
approved by the Institutional Review Panel at the Institute of Biophysics (IBP), 

Chinese Academy of Sciences (CAS). 
 
Stimuli  

Stimuli were displayed on two synchronized 23.8-inch LCD displays (Dell U2414H, 
1920*1080 at 60 Hz refresh rate) and viewed from a distance of 80 cm through 
stereo mirrors. All visual stimuli were generated using MATLAB Psychophysics 

Toolbox (Brainard, 1997). The presentation of a frame (18 * 12 dva) with dashed 
lines facilitated stable convergence of images in two eyes and also provided 
background coordination information for the saccade task. A cross (0.56 * 0.56 dva) 
presented in the left or right part of the frame served as the fixation point. 

 
The adaptor for tilt aftereffect was a tilted (±15°) Gaussian-windowed sinusoidal 
luminance Gabor that subtended 5 dva (Figure 3.1b). The frequency of the Gabor 

was 0.8 c/deg. The test stimuli were similar to the adaptor, tilted from -4.5 to 4.5 
degrees. For the face adaptation, male and female faces were used as adaptors 
subtending 5 dva. The morphs were generated using Morph 3.0 (Gryphon Software, 

San Diego, CA) with 100 intervening morphs. Morph number 50 was regarded as a 
neutral center point within the morphing space.  
 
Procedure 

There were two conditions, visible and invisible, for each adaptation stimulus type in 
separate sessions to avoid task complexity. A total of 2688 trials were obtained for 
each participant across all conditions. In the visible condition, after the initial 

adaptation period (25s), the participants first fixated at the left cross for 0.8 s. Then 
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the top-up adaptor was presented to the participant’s non-dominant eye for 2 s at the 
upper-middle location of the monitor. Following a 0.8 s (𝑆𝐷 = 0.1	𝑠) preview of the 

next fixation cross on the right side, while still maintaining fixation on the left cross, 
the participants made a saccade to the right fixation cross (6 dva from the left cross) 
prompted by the extinction of the current fixation cross on the left. Then a test probe 
was presented for 100 ms at one of four possible locations (retinotopic, spatiotopic, 

retinotopic-control, or spatiotopic-control) pseudo-randomly selected with equal 
probability (Figure 3.1). Participants needed to report the direction of tilt of the Gabor 
or the gender of the face.  

 
The invisible condition was the same as the visible condition, except that dynamic 
Mondrian patterns (10 Hz, subtending 5 dva) were simultaneously presented to 

participants’ dominant eye in both initial and top-up adaptation periods. To ensure 
that the dynamic Mondrian patterns could effectively suppress the adapting stimuli 
(Stein & Sterzer, 2014; Yang, Brascamp, Kang, & Blake, 2014), we first presented 
the adaptor at 80% contrast to test whether it could be suppressed in both initial 

adaptation (25s) and 20 trials of top-up adaptation (2s each trial) for each participant. 
Participants were asked to press a button if they detected the adaptor in the initial 
adapting period or in any trial. If the adaptor broke the suppression in more than 5% 

of trials, we then reduced the contrast of the adaptor by 5% and tested again. This 
process resulted in the adaptor been seen under CFS suppression in no more than 
5% of the trials. The contrast of adaptor was recorded and used in the formal 

experiment (average contrast for Gabor patch: 79.7% ± 0.8%; average contrast for 

face: 78.3% ± 2.3%). During the adaptation period, if participants could see the 

Gabor or tell the gender of the face, they pressed a button (spacebar) to indicate the 
Mondrian patterns did not fully suppress awareness of the adaptor. These trials were 
excluded from further analysis.  

 
In addition, we included a full adaptation condition in which participants maintained 
the fixation on the left without making a saccade during the whole period with the 
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test stimulus presented in the same location as the adaptor. The logic of the 
experiment is that if an aftereffect could be observed at the spatiotopic location, then 

it would imply that the adapting stimulus had achieved spatiotopic representation, in 
other words, had undergone retinotopic to spatiotopic transformation. 
 
Eye movement measurements 

To verify that the participants were generally able to follow the instructions, half of 
the participants (n=6) took part in an eye movement experiment, which was the 
same as the main experiment, but half in the number of trials (1344 trials). Eye 

movements of the participants were monitored by the Eyelink 1000 Plus system (SR 
Research), which sampled gaze positions with a frequency of 1000 Hz. Only the left 
eye was recorded. The system detected a start and an end of a saccade when eye 

velocity exceeded or fell below 22°/s and acceleration was above or below 3800°/s2. 
At the beginning of each session during the experiment, a 9-point calibration and 
validation procedure was conducted. If the calibration did not meet the defined 

requirements, calibration was repeated until successful. The averaged horizontal eye 
positions over the time course of the trial for each participant were showed in 
Appendix Figure A2.1. The eye position traces were aligned with the midpoint of the 

saccade.  
 
Analysis 

MATLAB was used to analyze the data. The psychometric response curve was fitted 
with a Bayesian-based cumulative Gaussian function (psignifit toolbox in MATLAB) 
(Schütt, Harmeling, Macke, & Wichmann, 2016) to measure the aftereffects. The 
magnitude of the TAE was defined as half the difference of tilt to annul the effects of 

adapting clockwise, compared with counter-clockwise gratings. The FGAE was 
calculated with a similar method. Example fitting results for one participant were 
shown in Figure 3.2. It showed the tilt aftereffect in four different locations when the 

adaptor was visible. One-half of the distance between two fitted curves was the 
measured magnitude of the aftereffect. 
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RESULTS 
 
Participants were well able to maintain their fixation and execute the required eye 
movements (Appendix Figure A2.1). The mean distances between eye position and 
fixation center were 0.11° (SD=0.09°) and 0.36° (SD=0.28°) before and after 
saccades. Saccades, which need to be executed within 500ms after the extinction of 

the left fixation cross, were on average accurate and prompt, with 143.6 ms 
(SD=117.3) mean saccade latency. In only 1.15% of all trials, the saccades were not 
executed before the test stimulus presentation. Due to the very small proportion of 

these delayed saccades, our results were not affected by whether we exclude these 
trials or not in the following statistical analysis.  
 

For participants who finished separate sessions with and without eye movement 
recording, no significant differences were found between the two sessions 
(dependent sample t-tests for all conditions, p>0.05, Appendix Figure A2.2). There 
were also no significant differences between participants with and without eye 

movement recording (independent sample t-tests for all conditions, p>0.05, 
Appendix Figure A2.3). Thus we combined these data in the further statistical 
analysis.   

 
The strength of TAE and FGAE for each participant was calculated as half of the 
difference on the x-axis between the two points of subjective equality (PSEs) based 

on the psychometric functions following adaptation in two opposite orientation (TAE) 
or gender (FGAE) (see Figure 3.2 for an example). Statistics were then performed 
on the group data.  

We performed two-way ANOVA analyses to examine the effects of two factors (two 

levels of adaptor awareness and five different adapt-test relationships) on the 
magnitude of TAE and FGAE. For the TAE, both the main effects of adaptor 
awareness and adapt-test relationship are significant (adaptor awareness: 

F(1,11)=61.48, p<0.001, 𝜂"# = 0.848; adapt-test relationship: F(4,44)=61.61, p<0.001, 
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𝜂"# = 0.849). The interaction between adaptor awareness and the adapt-test 

relationship was also significant (F(4,44)=11.71, p<0.001, 𝜂"# = 0.516), indicating that 

the impact of adaptor awareness depended on the relationship between adapt-test 
locations. Post hoc analysis showed that the TAE in spatiotopic location is 
significantly larger than the control-spatiotopic location in both visible (t=5.91, 

p<0.001) and invisible condition (t=3.26, p<0.01), suggesting the existence of a 
spatially specific adaptation effect at the spatiotopic location, regardless of 
awareness state of the adapting stimulus.  

 

 
Figure 3.1. Experiment paradigms for different conditions. (a) The locations of adaptation 
and test stimuli before and after the saccade. The cross presents the fixation point. The black 
arrow represents the saccade direction (from left to right); The letters in the squares: A-
adaptation location (also the full adapt test location); S-spatiotopic location; R-retinotopic 
location; Cs- control spatiotopic location; Cr- control retinotopic location; (b) Adaptor and 
test stimuli for tilt aftereffect and face gender aftereffect; (c) Time sequences in the 
experiment. The adapter was presented for 2 s (top-up adaptation) after 0.8 s fixation in the 
left cross. After a 0.8 s preview of the right cross, participants need to saccade to the right 
cross after the extinction of the left cross. Then a test stimulus was present for 0.1s in 1 out of 
4 locations randomly. 
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For the FGAE, again both the main effects of adaptor awareness and adapt-test 
relationship are significant (adaptor awareness: F(1,11)=14.49, p=0.003, 𝜂"# = 0.568; 

adapt-test relationship: F(4,44)=12.15, p<0.001, 𝜂"# = 0.525). However, the 

interaction effect between adaptor awareness and adapt-test relationship is not 
significant (F(4,44)=1.83, p=0.141, 𝜂"# = 0.142), suggesting that the impact of 

adaptor awareness was not dependent on the relationship between adapt-test 
locations. Post hoc analysis showed that the FGAE in spatiotopic location is not 
significantly larger than that in the control-spatiotopic location in both visible and 

invisible conditions (p>0.05).  

 

 
 
Figure 3.2. Fitted curves of Tilt Aftereffect results for one participant in four test locations 
without CFS stimuli (spatiotopic (a), retinotopic (b), control-spatiotopic (c), and control-
retinotopic location (d)). Similar results were found for the other 11 participants. Red and blue 
curves represent clockwise and counterclockwise adaptors respectively. The vertical bars 
represent the estimated 50% threshold. 
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For the visible condition (without CFS), the one-sample t-tests with Holm correction 
(N=10, 5 locations* 2 state awareness (with(out) CFS) for TAE and FGAE 

respectively) indicate that both TAE and FGAE could be induced at the spatiotopic 
location (TAE: M=0.93°, p<0.001; FGAE: M=7.56%, p<0.001), and not surprisingly, 
at the retinotopic location (TAE: M=2.26°, p<0.001; FGAE: M=16.67%, p<0.001). 
Results show that the TAE and FGAE partially transfer to control-retinotopic location 

(TAE: M=0.48°, p<0.01; FGAE: M=5.46%, p<0.05) and control-spatiotopic location 
(TAE: M=0.27°, p<0.05; FGAE: M=7.85%, p<0.01). The full adaptation condition (no 
saccade) reveals the strength of the TAE (M=2.38°, p<0.001) and FGAE (M=10.31%, 

p<0.001) in the classic condition (Figure 3.3, left panels) (also see normalized results 
in Appendix Figure A2.4).  

For the invisible condition (with CFS), interestingly, results show that both stimuli 

could still generate robust aftereffects at the retinotopic (TAE: M=0.85°, p<0.02; 
FGAE: M=6.62%, p<0.02) and spatiotopic locations (TAE: M=0.25°, p<0.02; FGAE: 
M=3.88%, p<0.03), whereas no aftereffect was observed at the control-spatiotopic 
location (TAE: M=0.02°, p=0.97; FGAE: M=1.09%, p=0.88) nor at the control-

retinotopic location (TAE: M=0.02°, p=0.97; FGAE: M=0.19%, p=0.88). For the full 
adaptation condition without saccade, significant TAE and FGAE were observed 
(TAE: M=0.69°, p<0.01; FGAE: M=6.83%, p<0.05) (Figure 3.3, right panels). 

Comparing with results in the visible adaptation condition, the spread of aftereffects 
to control locations did not occur when participants had no awareness of the 
adaptation stimulus, however, the adaptation effect remained robust at the 

spatiotopic location.  

 
DISCUSSION 
 
We used the adaptation paradigm to investigate whether visual objects could be 

transformed from retinotopic to spatiotopic reference frame while observers were not 
aware of their presence. We first established that both the orientation and the face 
gender adaptation were capable of generating tilt and face gender aftereffects, 
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respectively, when tested at different retinotopic but the same spatiotopic location. 
The critical observation is that when the adapting stimulus was rendered invisible, 

both aftereffects could still be observed at the spatiotopic location. 

 

In contrast to awareness being not necessary for the spatiotopic updating, the 

buildup of spatiotopic neural representation requires spatial attention (Crespi et al., 
2011; Melcher, 2008, 2009, 2011; Melcher & Colby, 2008; Szinte et al., 2018). 
Crespi et al. (2011) found that when participants were conducting a demanding 

attention task on the foveal stimuli, BOLD responses evoked by moving stimuli 
unrelated to the fovea task were mainly tuned in retinotopic coordinates. But the 
BOLD responses were tuned in spatiotopic coordinates when subjects could easily 

attend to the motion stimuli. In our study, when the adaptors were visible, the spatial 
attention to the adaptor location might help the buildup of the adaptation effect in the 
spatiotopic location. Previous studies showed that the stimuli under CFS could still 

 
 
Figure 3.3. Adaptation aftereffects (a, TAE; b, FGAE) for the No-CFS and CFS conditions 
in different locations. Average results from 12 participants show significant TAE and FGAE 
effects in spatiotopic locations when the adaptors were visible. The effect partially 
transferred to the two control locations. For invisible adaptor, robust adaptation effects were 
observed in spatiotopic locations, but not in two control locations.  Error bars show ±1 SE of 
the mean. Multiple comparisons were Holm corrected. (* adjusted p<0.05; ** adjusted 
p<0.01; *** adjusted p<0.001). 
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influence spatial attention (Jiang et al., 2006), which may enable our observation that 
both TAE and FGAE could occur at the spatiotopic location without visual 

awareness. 

Attentional facilitation to the saccade destination may also influence the adaptation 
effects. In our study, the saccade target did not overlap with test locations and 
eccentricity-matched control locations were included for both spatiotopic and 

retinotopic conditions. Thus, the possible effects of attention facilitation to the 
saccade target were avoided due to the equal probability of test presence among 
four different locations (Afraz & Cavanagh, 2009). Besides, since the adaptation and 

test stimuli were always presented in the periphery, there was no switch between 
foveal and peripheral locations in testing the aftereffects, presumably generating 
more stable aftereffect measurements.  

It has been debated whether visual feature information or just the spatial information 
is transferred in the trans-saccadic remapping. Recent studies demonstrated that 
feature information like orientation (Ganmor, Landy, & Simoncelli, 2015; Wutz, 
Drewes, & Melcher, 2016; Zimmermann, Weidner, & Fink, 2017), shape (Demeyer, 

De Graef, Wagemans, & Verfaillie, 2009), motion (Fabius, Fracasso, & Van Der 
Stigchel, 2016; Fracasso, Caramazza, & Melcher, 2010; Melcher & Fracasso, 2012; 
Turi & Burr, 2012), and facial expressions (Wolfe & Whitney, 2015), could be 

remapped across saccades. Our results provide further support that trans-saccadic 
remapping takes place at the feature level. The process of feature remapping would 
enabling the construction of spatiotopic representations of visual features. 

The time course of spatiotopic updating might also influence the adaptation effects 
among different locations across saccades (Burr, Tozzi, & Morrone, 2007; Melcher & 
Morrone, 2003). There is evidence showing that the preview duration is a necessary 
requirement for the spatiotopic representation to fully build up (Golomb, Marino, 

Chun, & Mazer, 2011; Golomb, Nguyen-Phuc, Mazer, McCarthy, & Chun, 2010; 
Golomb, Pulido, Albrecht, Chun, & Mazer, 2010; Mathôt & Theeuwes, 2010; 
Morrone, Cicchini, & Burr, 2010; Zimmermann, Morrone, & Burr, 2015, 2014; 
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Zimmermann et al., 2013). Thus, the relatively long target-preview duration (0.8 s) 
used in our study likely contributed to a stronger object representation at the 

spatiotopic location. It is also possible that spatiotopic updating may have different 
temporal dynamics for different stimulus types and states of awareness. For 
example, a recent study using rotating motion illusion suggested that spatiotopic 
updating could occur rapidly (e.g., within 150 ms) (Fabius et al., 2019). 

Recent fMRI adaptation studies showed reduced BOLD response in the extrastriate 
visual cortex when two repeated gratings were presented at the same spatiotopic 
location before and after a saccade (Dunkley, Baltaretu, & Crawford, 2016; Fairhall, 

Schwarzbach, Lingnau, Van Koningsbruggen, & Melcher, 2017; Zimmermann, 
Weidner, Abdollahi, & Fink, 2016). These repetition suppression effects indicate a 
transfer of representation (and consequently adaptation effect) from retinotopic to 

spatiotopic reference frame, which is in accord with our finding of spatiotopic 
adaptation effect with visible grating adaptors. 

Our results show that when the adaptor was visible, a robust tilt aftereffect could be 
observed in the spatiotopic location (with the largest effect in the retinotopic location 

and smaller effects in the control locations). For the face gender adaptation, the 
magnitude of aftereffects was similar among the spatiotopic and other two control 
locations (smaller than the retinotopic location), which is consistent with a previous 

study that showed no significant difference between spatiotopic and control locations 
(Afraz & Cavanagh, 2009). Such results indicate that, in addition to the 
transformation from retinotopic to spatiotopic reference frame, when the adapting 

face was visible, there was a spatially non-local adaptation effect. In other words, 
there was a more spatially invariant representation when an object was consciously 
perceived, in contrast to a more spatially local object representation in the absence 
of awareness. The role of awareness in spatially invariant representation was also 

revealed for object viewpoint in a recent study using Necker cubes as stimuli (Cho & 
He, 2019). With awareness, the spatially non-specific effect was also observed for 
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TAE, but quite a bit weaker, presumably due to the intrinsic local nature of 
orientation processing in the visual cortex. 

More interestingly, when the adaptor was rendered invisible, our results show that 
there was still a significant representation of the adaptor at its spatiotopic location for 
both orientation and face gender information, but not in the two eccentricity-matched 
control locations. In other words, both local orientation and face gender information 

could be transformed from the retinotopic to spatiotopic reference frame without 
awareness. The spatiotopic updating of an object from its retinotopic reference 
frame, a process that is critical for achieving a stable perceptual representation of 

the visual world, can occur even when the object is not explicitly perceived.  
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Chapter 4 

Neural representation of human pose information in natural images 
 
The human body is a stimulus that occurs frequently in real life, and the pose, 
defined as the spatial relationships between body parts, carries a great deal of 
information about the underlying motion and action of a person. While there has 

been literature on the neural representation of some human pose variations, the 
enormous pose space experienced in natural images is largely unexplored. Here we 
examined the cortical sensitivity to a broad range of natural poses with a high degree 
of appearance variations from complex natural images of people. With recent 

advances in 3D human pose recovery from natural images, we developed several 
pose models to parameterize natural pose images and characterize the structure of 
the natural pose space from different aspects (viewpoint-dependent vs. viewpoint-

independent) in distinct dimensions (2D vs. 3D). Using representational similarity 
analysis of fMRI data, we found several cortical regions, including areas of lateral 
occipital-temporal cortex (LOTC), fusiform gyrus, and superior parietal cortex that 

captured the structures of the pose space from both viewpoint-independent and 
viewpoint-dependent parameterizations. We also found that the right superior 
temporal sulcus captures only the intrinsic, viewpoint-independent 3D pose 
dissimilarity structure. Together, our results revealed distributed representations of 

different aspects of human pose information from a broad range of natural poses 
and appearances. 
 
* This study was done in collaboration with Hongru Zhu and Alexander Bratch.  
Hongru Zhu developed the various model parameterizations, including the application of 
computer vision to extend the annotations to 3D. He also drafted the Introduction and 
Discussion sections. Alex Bratch provided advice on the localization of EBA/FBA ROIs and 
other cortical areas. In particular, Alex worked with Kendrick Kay of the CMRR to identify 
and standardize these ROIs for the NSD project. My primary role was in the analysis of the 
NSD fMRI data reported in the results, figures, and tables, including the searchlight analysis 
and comparisons of voxel RDMs with model RDMs. The development of the hypotheses and 
the interpretation of the data was the synergistic result of the collaboration between all three 
of us and our advisor. 
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INTRODUCTION 
 
As highly social creatures, our visual world is filled with a prevalent and complex 
stimulus—the human body in the natural world. The perception of the human body 
provides crucial support for the understanding of other people’s emotions, actions, 

and social interactions. More specifically, pose, defined as the spatial relationships 
between body parts, carries a great deal of information about the underlying motion 
and action of a person. Further, human vision can draw inferences about both 

motion and action from even a single glance. However, computing human pose from 
a single natural image is computationally challenging (Wang, Wang, Lin, & Yuille, 
2019). For one thing, human bodies have non-rigid forms with various joint 
articulations, making them prone to self-occlusion. For another, there is inherently a 

high degree of appearance variations in natural body stimuli from changes due to 
occlusion, clothing, lighting, and viewpoint. Given the complexity and importance of 
body pose information, we investigated the cortical representation of static, natural 

human poses defined by the local body parts and their spatial configurations in two 
dimensions and three dimensions. 
 

An important line of research work has revealed specialized neural mechanisms for 
processing human body stimuli. Early fMRI studies found distinct cortical regions that 
are preferentially activated for human bodies, including the extrastriate body area 
(EBA) (Downing & Kanwisher, 2001) as well as the fusiform body area (FBA) 

(Peelen & Downing, 2005). Subsequent studies identified body part maps in the 
occipitotemporal cortex (OTC) with dissociable responses to individual body parts, 
and suggested that their organization was related to the action-related properties of 

body parts (Bracci, Caramazza, & Peelen, 2015; Orlov, Makin, & Zohary, 2010). 
Following from these previous findings which connect representations of individual 
body parts with action-related information, we focused on the cortical representation 

of human poses defined as the spatial configurations of body parts. Such 
intermediate pose representations have been relatively little studied but are effective 
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for motion and action understanding from a computational perspective (Campbell & 
Bobick, 1995; Wang, Wang, & Yuille, 2013; Yacoob & Black, 1999). 

 
Along the line of human pose representations, previous work has investigated 
several human brain regions and their roles in pose discrimination using static 
images of a few pre-selected poses. Studies found that repetitive transcranial 

magnetic stimulation (rTMS) of EBA disrupts the perception of bodily form while 
rTMS of the premotor cortex disrupts the perception of bodily action (Urgesi, 
Candidi, Ionta, & Aglioti, 2007). Another fMRI study suggested viewpoint-

independent encoding of contorted and ordinary postures in the fusiform gyrus, 
posterior superior temporal sulcus (pSTS), inferior frontal gyrus (IFG) and, inferior 
parietal lobule (IPL), including regions classically associated with action observation 

(Cross, MacKie, Wolford, & Antonia, 2010). Together, these studies measured 
viewpoint-independent cortical responses to pose variations in static images. 
However, given the vast range of legitimate, natural pose variations, prior work has 
not addressed how the enormous pose space experienced in natural images is 

represented. Further, findings from the use of simplified stimuli may not generalize to 
complex, real visual scenes (Hasson & Honey, 2012). Considering the high degree 
of appearance variations for human poses in real life and the highly simplified pose 

stimuli used in the prior work, it raises the question of cortical sensitivity to the broad 
range of human poses from complex natural images of people. 
 

In light of this, we have developed several pose models that capture the structure of 
the pose space over a large range of natural poses. From a computational point of 
view, different pose parameterizations are arguably utilized to extract different 
aspects of pose information as needed. For example, viewpoint-dependent 3D pose 

representations make explicit body part depth and body orientation information with 
respect to the viewer, and thus are useful in the computation of relationships 
between a person and other objects/people. Whereas viewpoint-independent 3D 

pose representations are likely to be computationally more efficient for action 
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categorization by making explicit configurations of body parts of a person 
independent of viewpoint. Other possible pose parameterizations include viewpoint-

dependent 2D pose representations, which, though requiring less computation, 
ignore relative depth information. These different pose parameterizations present 
trade-offs between computations and representations required for different tasks. In 
this work, we investigated cortical representations of pose information given three 

different parameterizations using (1) viewpoint-independent 3D pose 
representations, (2) viewpoint-dependent 3D pose representations as well as (3) 
viewpoint-dependent 2D pose representations. As a direct comparison, we also 

investigated another (4) viewpoint representations that were purely and explicitly 
based on body orientation with respect to the viewer. 
 

To parameterize poses, we need to solve the problem of extracting pose information 
from natural scene images. Such information usually takes the form of joint locations 
in three dimensions. Traditionally, it is often complicated to obtain three-dimensional 
pose information from natural images because human subjects have to wear 

markers for motion capture (mo-cap) systems when the images are taken. Even with 
existing natural image datasets with three-dimensional pose annotations, it is still 
hard to extract the viewpoint of human body images – a necessity to produce 

viewpoint-independent pose parameters. Benefitting from the recent advances in 
computer vision, we made use of an off-the-shelf human 3D mesh reconstruction 
model (Kanazawa, Black, Jacobs, & Malik, 2018) to extract a corresponding 3D 

human mesh for each human body in natural images. The 3D human mesh comes 
with 3D body joint rotation and 3D body global rotation parameters, namely the 
viewpoint parameters, and can be transformed into 3D joint locations. With 3D joint 
locations and global rotation parameters, we produced the desired, different 

parameterizations for each pose. We subsequently built separate pose models to 
parameterize the broad range of human poses and characterized the pose space 
structures with different parameterizations. 
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Our adopted pose parameterization approach enabled us to extract 2D and 3D pose 
information from a large set of natural human images, allowing for our analysis of 

cortical activations obtained from the Natural Scene Dataset (NSD) (Allen et al., 
2021). This is a massive high-resolution dataset containing 7T fMRI responses to 
natural scene images. For the scope of our analysis, we selected a subset of 4,450 
natural scene images containing only single persons engaged in different activities 

including sports, household activities, eating and drinking, etc. Despite the additional 
complexity, variations, and nuisance factors inherent to natural images, the use of 
this large set of NSD images complements previous studies which have used highly 

simplified body images with much smaller variations in pose articulations and 
appearances.  
 

To compare model predictions with the patterns of cortical activity, we used 
representational similarity analysis (RSA) and search-light mapping (Kriegeskorte, 
Goebel, & Bandettini, 2006; Kriegeskorte, Mur, & Bandettini, 2008). RSA enabled us 
to identify cortical regions whose responses correlate with the pose dissimilarity 

structure characterized by different pose parameterizations. This allows for a flexible 
form of pattern analysis and the plug-in use of different representational dissimilarity 
matrices (RDMs) from different models. Furthermore, RSA can also benefit from a 

data-driven perspective as we used search-light mapping to discover spatial clusters 
of voxels that may be distributed across the whole brain. We tested four different 
RDMs – three built on the dissimilarity measurements from three different pose 

parameterizations, and a fourth one built on the dissimilarities of the associated 
viewpoint from pairs of natural pose images. If any part of the cortical regions is 
sensitive to the auxiliary, relative depth information, we would expect distinct results 
from 2D and 3D viewpoint-dependent pose parameterizations. If viewpoint-

independent pose information is automatically computed for NSD subjects in the 
continuous recognition task, which was to indicate whether they have seen each 
presented image at any point in the past, we expect some cortical regions to show 

greater sensitivity from 3D viewpoint-independent pose parameterizations.  
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RESULTS 
 

Pose parameterization and RDM construction 
With the off-the-shelf human 3D mesh reconstruction model, we extracted human 3D 
mesh to further parameterize poses. Figure 4.1 shows examples of natural pose 

images sampled from the Natural Scene Dataset together with reconstructed 
meshes. These reconstructed meshes were reasonable and captured the major 
characteristics of different poses. It is thus feasible to make use of such mesh 
reconstruction results to parameterize complex natural poses. 

 
With reconstructed meshes, we built different pose models to capture the structure 
of the pose space. We first obtained 3D joint locations and global rotation 

parameters, which were subsequently converted into (1) viewpoint-independent 
aligned 3D joint locations by reversing the global rotation in three-dimensions, (2) 
viewpoint-dependent 3D joint locations,  (3) viewpoint-dependent 2D joint locations 

by discarding depth coordinates, and (4) explicit viewpoint information from global 
rotations. Four different models were built with these different aspects of pose 
information, and different RDMs were subsequently constructed in accordance with 

 
 
Figure 4.1. Example natural single human pose images from Natural Scene Dataset that 
were used in our analysis (first row), together with reconstructed 3D meshes (second row). 
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dissimilarity measurements on different parameterizations (Figure 4.2). These RDMs 
showed that our pose models can capture dissociable pose and viewpoint 

information.  
 

 
 
RSA Searchlight 
To investigate the spatial organization of cortical regions encoding different type of 

pose information, we performed searchlight-based representational similarity 
analyses using four different RDMs: (1) viewpoint-independent pose RDM, (2) 
viewpoint-dependent 3D pose RDM,  (3) viewpoint-dependent 2D pose RDM, and 
(4) viewpoint RDM. Results were compared with cortical parcellation atlas (Desikan 

et al., 2006) as well as several regions of interest (ROIs) from functional localizers in 
NSD. 
 

RSA results from different RDMs were shown in Figure 4.3 and Figure 4.4. Using the 
viewpoint RDM, we identified significant clusters that correlate with body viewpoint 
dissimilarity structures in the lateral occipital cortex, right fusiform gyrus, inferior 

parietal cortex, and superior parietal cortex. For the 3D viewpoint-independent pose 
RDM, we found distributed clusters across lateral occipital-temporal cortex (LOTC), 
fusiform gyrus, and temporal-parietal junction (including posterior superior temporal 
sulcus (pSTS), supramarginal gyrus).  

 
 

Figure 4.2. RDMs from (1) the view-independent 3D pose model, (2) the view-dependent 
3D pose model, (3) the view-dependent 2D pose model, and (4) the viewpoint model. RDMs 
were calculated using 4450 natural pose images from NSD with the same image ordering.  

(3) Viewpoint-dependent 
2D pose RDM

(4) Viewpoint RDM(2) Viewpoint-dependent 
3D pose RDM

(1) Viewpoint-independent 
3D pose RDM



 60 

 
For the 3D viewpoint-dependent pose RDM, we find little or no significant clusters 

around the pSTS and supramarginal gyrus. But we found a more distributed pattern 
in LOTC, fusiform gyrus, posterior frontal cortex, and cingulate cortex. Particularly, 
the activated areas contain the pericalcarine cortex, lateral occipital cortex, lingual 
gyrus, fusiform gyrus, parahippocampal gyrus, inferior and middle temporal gyrus, 

anterior supramarginal gyrus, inferior and superior parietal cortex, precuneus cortex, 
left precentral and paracentral gyrus, left caudal middle frontal gyrus, and posterior 
cingulate cortex. The 2D viewpoint-dependent pose model showed similar activation 

with the 3D viewpoint-dependent pose model, with overlapped clusters in LOTC, 
fusiform gyrus, and inferior parietal cortex (Figure 4.5). 
 

For the viewpoint RDM, significant clusters were found mainly near the extrastriate 
visual cortex and posterior parietal cortex. 
 
As a result, 2D and 3D pose RDMs produced overlapping clusters mainly in areas 

near LOTC, fusiform gyrus, and the superior parietal cortex. Appendix Tables A3.1- 
A3.4 provide further details about cluster size, location, and other information from 
the use of different RDMs in cortical parcellation atlas (Desikan et al., 2006). We 

further compared the RSA searchlight results with NSD functional localizer results as 
shown separately in Appendix Figure A3.1. Results show that our distributed pose 
clusters also overlap with several ROIs that are associated with body or face 

processing, including OFA, FFA, FBA, and EBA. 
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Figure 4.3. The group results of the searchlight-based RSA for the (a) 3D viewpoint-
independent pose, (b) 3D viewpoint-dependent pose, (c) 2D viewpoint-dependent pose, and 
(d) viewpoint models. Color maps show the t values of significant clusters survived a cluster-
based nonparametric Monte Carlo permutation test (cluster stat: max sum; initial threshold 
p<0.001, n=10000). The correlation maps for each participant were first Fisher transformed 
to the normal distribution and then the t scores were measured. After the correction for 
multiple comparisons, the results were converted into z scores (z-value > 1.65 were defined 
as significant). 
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Figure 4.4. Conjunction plots for the significant clusters (z value > 1.65) in view-
independent 3D pose (red), view-dependent 3D pose (blue) and viewpoint (green) models. 
The results showed significant clusters in pSTS for the 3D view-independent pose model 
only. For the viewpoint model, the significant clusters were mainly near the extrastriate 
visual cortex and posterior parietal cortex. The results for 3D viewpoint-independent and 3D 
viewpoint-dependent pose models also revealed significant clusters that overlapped in LOTC, 
fusiform gyrus, and superior parietal cortex. 
 



 63 

 
 
DISCUSSION 
 
The representation of the human pose is a central aspect in the computation and 

interpretation of body actions. While existing research has examined cortical 
responses to a limited range of human poses from simplified stimuli, here we 
focused on the spatial organization of cortical sensitivity to a broad range of human 
poses from complex natural scenes. By introducing an off-the-shelf human 3D mesh 

reconstruction model, we parameterized natural human poses in a large set of 
complex natural scene images and built 2D/3D viewpoint-independent and 
viewpoint-dependent pose models as well as a viewpoint model. RDM analysis 

 
Figure 4.5. Conjunction plots for the significant clusters (z value > 1.65) in view-dependent 
3D pose (blue) and view-dependent 2D pose (orange) models. The 3D and 2D view-
dependent pose models are highly overlapped in LOTC, fusiform gyrus, and inferior parietal 
cortex. 
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showed that our pose models captured dissociable pose and viewpoint information. 
Using RSA searchlight, we showed that the dissimilarity structure of a broad range of 

natural poses was best captured in a set of distributed clusters across the brain, 
primarily including areas of lateral occipital-temporal cortex (LOTC), fusiform gyrus, 
and pSTS as well as supramarginal gyrus. 
 

Distributed representation of pose information 
The distributed clusters encoding natural pose dissimilarity structure found in our 
analysis converges with previously reported cortical network encoding viewpoint-

independent postures from a limited range of poses (Cross et al., 2010; Urgesi et al., 
2007). For example, the 3D viewpoint-independent pose model produced significant 
clusters in LOTC, covering what is traditionally thought to be specialized for body 

parts and bodies (Bracci et al., 2015; Orlov et al., 2010; Peelen & Downing, 2005). 
We observed right-lateralized pose clusters in the fusiform gyrus, consistent with 
prior work that reported right-lateralized FBA responses to bodies (Hodzic, Kaas, 
Muckli, Stirn, & Singer, 2009). 

 
However, our results diverge from previous work regarding the type of pose 
information encoded in the cortical network. As both 2D and 3D viewpoint-dependent 

pose models produced overlapped clusters with the 3D viewpoint-independent pose 
model in LOTC, fusiform gyrus, and superior parietal cortex, the pose information 
encoded in these cortical regions is not necessarily viewpoint independent. Whereas 

pSTS may indeed encode viewpoint-independent 3D pose information as they 
captured only the dissimilarity structure from 3D viewpoint-independent pose 
models. This is in contrast to the previous work that suggested viewpoint-
independent encoding of postures across multiple regions including fusiform gyrus, 

posterior superior temporal sulcus, inferior frontal gyrus, and inferior parietal lobule. 
For one thing, our results suggested several candidate cortical regions that are likely 
to encode structured information about human poses. These regions include areas 

that are traditionally associated with the processing of bodies and body parts as well 
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as the processing of motion and actions (Grèzes & Decety, 2000; Isik, Koldewyn, 
Beeler, & Kanwisher, 2017; Peelen & Downing, 2005; Pelphrey et al., 2003; Saxe, 

Xiao, Kovacs, Perrett, & Kanwisher, 2004). For another, our results also suggested 
that within this likely distributed cortical network encoding pose structures, 3D 
viewpoint-independent pose information is likely to be automatically computed and 
that different aspects of pose information (viewpoint-dependent vs. viewpoint-

independent) were encoded in different regions. 
 
Representation of viewpoint information 

Besides the distributed representation of pose information, our RSA searchlight 
using viewpoint RDM identified cortical encoding of viewpoint for bodies mainly near 
the extrastriate visual cortex with a few extending into the posterior parietal cortex. 

These clusters bearing explicit viewpoint information are rather localized compared 
to the distributed pose clusters. Although we found clusters encoding 2D and 3D 
viewpoint-dependent pose information in some distributed pose clusters, they do not 
seem to explicitly encode body viewpoint information. Further, both 2D and 3D 

viewpoint-dependent pose clusters did not emerge near pSTS, where only the 3D 
viewpoint-independent pose clusters were situated. In the line with these findings, 
several behavioral studies have shown that human pose representations have more 

viewpoint invariance when crossing different poses and viewpoints (Sekunova, 
Black, Parkinson, & Barton, 2013). Our results added evidence suggesting a 
possible increase in view-tolerant representations along with human pose 

processing. Given the degree of articulation and wide range of potential viewpoints, 
it seems plausible to maintain sensitivity to features irrespective of changes in 
viewpoint and orientation.  

We noted that we used the body trunk as the reference frame to determine 

viewpoint. Hence two poses will be deemed from the same viewpoint as long as their 
trunks are facing the same direction. Future experiments will be needed to study 

different reference frames for assessing body orientation and viewpoints, and to 



 66 

determine the sensitivity to viewpoints across different cortical regions encoding 
pose structures.  

Computational role of pose representation 
One strength of our approach is that we structured the pose space with a vast range 

of parameterized poses covering different ways of parameterization. One future 
direction is to pin down the specific use of the different aspects of pose information 
regarding different perception tasks. As the computation of pose information serves 
as an essential step in the computation of motion and action of a person, the 

distributed nature of pose representation may be attributed to the various perception 
tasks (motion, emotion, action, etc.) that pose information supports. It will be an 
important direction to investigate the role of each local pose cluster in the 

computation of pose information, and the relationship between the type of pose 
information encoded and subsequent computation it supports. 
 

CONCLUSION 
 
In conclusion, we present an approach to parameterize three-dimensional human 
poses from single static images, making explicit different aspects of pose information 
(e.g. viewpoint-dependent vs. viewpoint independent). With different pose 

parameterizations, we built several pose models to capture pose dissimilarity 
structures from a broad range of natural poses. We applied our pose models to a 
large set of complex natural body images from the Natural Scene Dataset and used 

searchlight RSA to find cortical regions encoding pose dissimilarity structures. As a 
result, we found distributed pose clusters encoding pose information in LOTC, pSTS, 
and superior parietal cortex. In particular, our results suggested that viewpoint-

independent pose information is likely to be computed automatically and that pSTS 
specifically encodes such 3D viewpoint-independent aspects of pose information. 
Furthermore, we found explicit encodings of body viewpoint information mainly near 
the extrastriate visual cortex, suggesting the possibly increasing view-tolerant 

representations along with the human pose processing. Future experiments are 
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needed to determine the differential contribution of each pose cluster in the 
computation of different aspects of pose information. 

 

METHODS 
 
Stimulus selection 
Natural Scene Dataset (Allen et al., 2021) contains 73,000 cropped color natural 

scene images from the MS COCO dataset (T. Y. Lin et al., 2014). We aimed to 
select a subset of images that contain only single persons and cover a broad range 
of legitimate human body poses. To this aim, we used the ground truth person 
keypoint annotations provided by the MS COCO dataset. For each person in each 

image, the annotations consist of an enclosing person bounding box together with 
two-dimensional image coordinates and visibility flags for 17 defined body keypoints, 
including 5 face keypoints (L/R eyes, nose, and L/R ears) as well as 12 limb 

keypoints (L/R shoulders, L/R elbows, L/R wrists, L/R hips, L/R knees, L/R ankles). 
We selected images with keypoint annotations for one and only one person inside 
the cropped image regions. As a next step, we further excluded single-person 

images under partial body presence, namely, where the persons were partially 
truncated by the image boundary. Specifically, we selected single-person images 
with 12 limb keypoints fully annotated. Face keypoints (eyes, nose, and ears) were 
not considered because these annotations were sometimes missing for persons with 

smaller areas in the images. Finally, we selected a subset of 4450 images of full 
single persons under different poses. 
 

Pose parameterization 
To parameterize natural poses, we first extracted 3D pose information from complex 
natural scene images. MS COCO dataset does not provide ground truth person 

keypoint annotations or viewpoint parameters in three dimensions. Therefore, we 
adopted an approach to use an off-the-shelf human 3D mesh reconstruction model 
(Kanazawa et al., 2018) to extract 3D pose information. Given a single RGB image 
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in the wild, this model can reconstruct a full 3D human body mesh. The model was 
quantitatively evaluated on standard 3D joint estimation benchmarks and 

outperformed previous approaches that output 3D meshes (Kanazawa et al., 2018). 
The viewpoint parameter for the 3D human body mesh is an axis-angle 
representation for the 3D body global rotation in SMPL format (Loper, Mahmood, 
Romero, Pons-Moll, & Black, 2015). The 3D rotation was transformed into a rotation 

matrix 𝑅 ∈ ℝH×H for further processing. For body pose parameters, we transformed 
the 3D body mesh into a list of 3D joint locations with a trained joint location 
regressor (Kanazawa et al., 2018). This joint list includes 19 joints (L/R ankles, L/R 

knees, L/R hips, L/R wrists, L/R elbows, L/R shoulders, neck, head, nose, L/R eyes, 
L/R ears). Thus, for each pose, we obtained a rotation matrix 𝑅 for the body global 
rotation and a list of 𝐾 = 19 joint locations 𝑝 = [	𝐽6, 𝐽#, … , 𝐽O	] where 𝐽Q ∈ ℝH. We did 

not perform additional normalization on these 3D joint coordinates because they 
were already in the same 3D body mesh reference frame. 
 
To parameterize pose using 3D view-dependent joint locations 𝑝HR_T =

[𝐽6
HR_T, 𝐽#

HR_T	, … , 𝐽Q
HR_T], we simply used these 3D joint coordinates 𝐽Q

HR_T = 𝐽Q ∈ ℝH.  

 

To parameterize pose using 2D view-dependent joint locations 𝑝#R =

[𝐽6
(#R), 𝐽#

(#R), … , 𝐽O
(#R)], we simply discarded the depth coordinate to make 𝐽Q

(#R) ∈ ℝ#.  

 
To parameterize pose using 3D view-independent aligned joint locations 𝑝HR_TU =

[𝐽6
(HR_TU), 𝐽#

(HR_TU), … , 𝐽O
(HR_TU)], we reversed the global rotation to align poses to the 

same, original orientation 

𝐽Q
(HR_TU) = 𝑅76𝐽Q 

 
where 𝑅76 is the inverse of the rotation matrix for the 3D global body rotation. 
 

Construction of representational dissimilarity matrices (RDMs) 
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Once we parameterized each natural pose and obtained 2D view-dependent joint 
locations and 3D view-independent joint locations as well as 3D global rotations, we 

construct representational dissimilarity matrices by measuring dissimilarity under 
different metrics. To construct 3D view-independent aligned pose RDMs, we 
measured the dissimilarity between two aligned poses using Mean Per Joint Position 
Error which is used in much of the literature on 3D joint estimation. It measures the 

Euclidean distance averaged on all joints after aligning two poses. Specifically, the 

dissimilarity between two poses 𝑝U
(HR_TU) and 𝑝V

(HR_TU) is measured as 

𝑑(HR_TU)X𝑝U
(HR_TU), 𝑝V

(HR_TU)Y =
1
𝐾Z[𝐽UQ

(HR_TU) − 𝐽VQ
(HR_TU)[

#

O

Q]6

 

Similarly, we can construct the 2D and 3D view-dependent pose RDM by measuring 
dissimilarity as	

𝑑(#R)X𝑝U
(#R), 𝑝V

(#R)Y =
1
𝐾Z[𝐽UQ

(#R) − 𝐽VQ
(#R)[

#

O

Q]6

 

 

𝑑(HR_T)X𝑝U
(HR_T), 𝑝V

(HR_T)Y =
1
𝐾Z[𝐽UQ

(HR_T) − 𝐽VQ
(HR_T)[

#

O

Q]6

 

To construct the viewpoint RDM, we measured the viewpoint dissimilarity between 
pairs of bodies as the distance between the body global rotations in three 

dimensions. We first transformed the associated 3D rotation matrix 𝑅 ∈ ℝH×H into a 
unit quaternion 𝑞. Following (Huynh, 2009), we used the distance metric below to 
assess the dissimilarity of two 3D body global rotations 

𝑑(T)X𝑞U, 𝑞VY = cos76b𝑞U ∙ 𝑞Vb 

 

Representational Similarity Analysis 
We carried out the representational similarity analyses (RSA) using a searchlight 
approach in the individual volume space to investigate the relationship between the 

computed features and the brain activity. A spherical neighborhood of 100 voxels 
(approximately 10mm in radius) were used for each searchlight. The multivariate 
analyses were performed using CosMoMVPA (Oosterhof, Connolly, & Haxby, 2016) 
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and custom-written MATLAB functions (ver2017b, The MathWorks Inc.). The beta 
maps with the same images were first averaged, and then the beta maps were 

normalized across features. The neural RDM was derived using 1-correlation as the 
distance metric. We selected 3D viewpoint-independent pose RDM, 2D viewpoint-
dependent pose RDM, and viewpoint RDM as three target RDMs in our analysis. 
The neural RDM was correlated with the normalized target RDM for each 

searchlight. Then, the beta values were assigned to the central voxel of each 
searchlight in each participant, which resulting in beta maps for each model. The 
beta maps in individual volume space were then resampled to the standard MNI 

space and used in a group level analysis to compare the individual beta maps 
against zero using a one-tailed t-test at each voxel. The t maps were then corrected 
with a nonparametric cluster-based Monte Carlo permutation test (initial threshold 

p<0.001; 10000 iterations).  
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Appendix 1: Supplemental Information for Chapter 2 

 

 
Figure A1.1. Hemi-visual field fMRI response to the flash grab illusion. Upper row shows data 
from the upper visual field (ventral part of visual cortex); lower row shows data from the lower 
visual field (dorsal part of visual cortex). Compared to the counter-clockwise illusion, fMRI 
response to the clockwise tilted illusion was stronger in the left ventral and right dorsal visual 
cortex, but weaker in the left dorsal and right ventral visual cortex. The left column shows 
predictions for the illusory representation in the visual retinotopic cortex. The right three columns 
show the fMRI responses to the clockwise and counter-clockwise tilted illusion from different 
quadrants of the visual field in early visual cortices from V1 to V3. Three-way repeated measures 
ANOVA revealed a significant three-way interaction in V1 across dorsal/ventral, left/right 
hemisphere, and clockwise/counter-clockwise illusion (F (1, 8) = 38.11, p < 0.001). In the ventral 
part of V1 (corresponding to the upper visual field), compared to the counter-clockwise 
condition, clockwise illusion produced stronger fMRI signals in the left hemisphere 
(corresponding to the right visual field), and weaker response in the right hemisphere, resulting in 
a significant interaction between left/right hemisphere and clockwise/counter-clockwise illusion 
(F (1, 8) = 5.55, p = 0.046) in a two-way repeated measures ANOVA. The opposite was true for 
the dorsal part of V1: BOLD response to the clockwise condition was weaker in the left 
hemisphere and stronger in the right hemisphere (F (1, 8) = 14.16, p = 0.006). Similar results 
were found for V2 (V2_v/upper: F (1, 8) = 39.36, p < 0.001; V2_d/lower: F (1, 8) = 11.60, p = 
0.009; three-way interaction: F (1, 8) = 39.83, p < 0.001), and V3 (V3_v/upper: F (1, 8) = 12.50, 
p = 0.077; V3_v/lower: F (1, 8) = 23.09, p = 0.001; three-way interaction: F (1, 8) = 28.56, p < 
0.001). Simple effects of CW vs CCW conditions (stars in the figure, two-sided paired t-test) 
were not further corrected beyond the protection of a significant ANOVA. The error bars indicate 
standard error of mean (n=9 individuals). Source data are provided as a Source Data file. 
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Figure A1.2. Schematic diagram of stimuli and procedures for the 7T fMRI experiment. In each 
block, a red bar repeatedly presented(flashed) at the reversal point of the pinwheel disc which is 
rotating back and forth for 12 seconds as a constant background , alternating with 12 seconds 
rotating background-only stimulus section. The bar would be percieved as tilted clockwise or 
counter-clockwise from the horizontal meridian, depended on the direction of motion reversal. 
Red solid lines indicate the presented position of the bar, while red dotted lines illustrate the 
perceived position. The bar rotation covered a section of both left and right visual fields between 
16 degrees clockwise and 15 degrees counter-clockwise from the horizontal meridian. 
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Figure A1.3. Layer-specific bar angle representation of the flash grab illusion in each retinotopic 
visual area. In layers of V1, V2, V3, fMRI responses to the clockwise and counter-clockwise 
tilted illusions were plotted as a function of bar angle coordinates across the field of bar rotation. 
The red and blue curves represent mean retinotopic responses for clockwise and counter-
clockwise conditions across seventeen subjects. The shading color indicate between-subject 
standard error. Source data are provided as a Source Data file. 
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Appendix 2: Supplemental Information for Chapter 3 

 

 
 

Figure A2.1. Averaged horizontal eye position over the time course of the trials (time relative to 
the test probe onset (ms)) for six subjects, aligned with the midpoint of the saccade. (a) TAE 
without CFS condition; (c) TAE with CFS condition; (b) FGAE without CFS condition and (d) 
FGAE with CFS condition. Different colored curves represent horizontal eye positions for each 
individual (N=6). Dark gray horizontal bars represent the positions of the fixation point (at 0 
degree) and the saccade target (at 6 degree). Light gray vertical bar represents the time course of 
the test presentation (0-100 ms).  
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Figure A2.2. Scatter plots for two sessions results with and without eye movement recording for 
six participants (a, TAE; b, FGAE). The dependent sample t-tests showed that there were no 
significant differences between two sessions in each condition for both TAE and FGAE (p>0.05, 
Holm corrected).  
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Figure A2.3. Scatter plots for the two groups of participants (n=12) with and without eye 
movement recording (a, TAE; b, FGAE). The independent sample t-tests showed that there were 
no significant differences between two groups in each condition for both TAE and FGAE 
(p>0.05, Holm corrected).  
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Figure A2.4. Normalized adaptation aftereffects (a, TAE; b, FGAE) for different conditions. The 
data were normalized against the NoCFS retinotopic condition in TAE and FGAE for each 
participant (dividing the aftereffect value by that in the NoCFS retinotopic condition). Following 
the normalization, the pattern of results is similar to that of the main results (Figure 3). Error bars 
show ±1 SE of the mean. Multiple comparisons were Holm corrected. (* adjusted p<0.05; ** 
adjusted p<0.01; *** adjusted p<0.001). 
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Appendix 3: Supplemental Information for Chapter 4 

 
 

 
 
Table A3.1. List of ROI activation for viewpoint RDM  
 
 
 

 
 
Table A3.2. List of ROI activation for 3D viewpoint-independent pose RDM  
 
 
  

Abbreviation Full roi name Num of voxels Total Num of voxels Voxel percent in the roi (%)

L lateraloccipital Left lateral occipital cortex 644 6379 10.09562627
R lateraloccipital Right lateral occipital cortex 436 5963 7.311755828

L lingual Right lingual gyrus 61 4205 1.450653983
R fusiform Right fusiform gyrus 119 4661 2.553100193

R parahippocampal Right parahippocampal gyrus 134 1742 7.692307692
L inferiorparietal Left inferior parietal  cortex 81 7871 1.029094143
R inferiorparietal Right inferior parietal  cortex 176 9676 1.818933444
L superiorparietal Left superior parietal cortex 123 10456 1.176358072
R superiorparietal Right superior parietal cortex 84 10222 0.821756995

Abbreviation Full roi name Num of voxels Total Num of voxels Voxel percent in the roi (%)

L lateraloccipital Left lateral occipital cortex 1863 6379 29.20520458
R lateraloccipital Right lateral occipital cortex 1794 5963 30.08552742

L lingual Left lingual gyrus 419 4205 9.964328181
R lingual Right lingual gyrus 304 3894 7.806882383

L parahippocampal Left parahippocampal gyrus 324 1838 17.62785637
R parahippocampal Right parahippocampal gyrus 395 1742 22.67508611

L fusiform Left fusiform gyrus 1114 4714 23.63173526
R fusiform Right fusiform gyrus 1838 4661 39.43359794

L inferiortemporal Left inferior temporal gyrus 330 4415 7.474518686
R inferiortemporal Right inferior temporal gyrus 792 4198 18.86612673
L middletemporal Left middle temporal gyrus 160 4452 3.593890386
R middletemporal Right middle temporal gyrus 432 5057 8.542614198
L superiortemporal Left superior temporal gyrus 81 7271 1.114014578

R bankssts Right banks of the superior temporal sulcus 148 2196 6.739526412
L supramarginal Left supramarginal gyrus 361 8600 4.197674419
R supramarginal Right supramarginal gyrus 227 8150 2.785276074
L inferiorparietal Left inferior parietal cortex 1223 7871 15.53805107
R inferiorparietal Right inferior parietal cortex 912 9676 9.425382389
L superiorparietal Left superior parietal cortex 698 10456 6.675592961
R superiorparietal Right superior parietal cortex 748 10222 7.317550382

R precuneus Right precuneus cortex 64 7975 0.802507837
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Table A3.3. List of ROI activation for 3D viewpoint-dependent pose RDM  
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Abbreviation Full roi name Num of voxels Total Num of voxels Voxel percent in the roi (%)

L pericalcarine Left pericalcarine cortex 101 1912 5.282426778
L lateraloccipital Left lateral occipital cortex 2095 6379 32.84213827
R lateraloccipital Right lateral occipital cortex 1425 5963 23.8973671

L lingual Left lingual gyrus 836 4205 19.88109394
R lingual Right lingual gyrus 574 3894 14.74062661

L parahippocampal Left parahippocampal gyrus 293 1838 15.94124048
R parahippocampal Right parahippocampal gyrus 620 1742 35.5912744

L fusiform Left fusiform gyrus 437 4714 9.270258804
R fusiform Right fusiform gyrus 1028 4661 22.05535293

L inferiortemporal Left inferior temporal gyrus 82 4415 1.857304643
R inferiortemporal Right inferior temporal gyrus 746 4198 17.77036684
R middletemporal Right middle temporal gyrus 505 5057 9.986157801
L supramarginal Left supramarginal gyrus 271 8600 3.151162791
R supramarginal Right supramarginal gyrus 101 8150 1.239263804
L inferiorparietal Left inferior parietal cortex 1128 7871 14.33108881
R inferiorparietal Right inferior parietal cortex 1376 9676 14.22075238
L superiorparietal Left superiorparietal 800 10456 7.651109411
R superiorparietal Right superior parietal cortex 1586 10222 15.51555469

L precuneus Left precuneus cortex 206 7308 2.818828681
R precuneus Right precuneus cortex 515 7975 6.457680251
L postcentral Left postcentral gyrus 54 9519 0.56728648
L paracentral Left paracentral gyrus 132 3294 4.007285974
L precentral Left precentral gyrus 159 10740 1.480446927

L caudalmiddlefrontal Left caudal middle frontal  gyrus 69 3736 1.846895075
L superiorfrontal Left superior frontal gyrus 85 12179 0.697922654

L isthmuscingulate Left isthmus cingulate cortex 60 2531 2.370604504
R isthmuscingulate Right isthmus cingulate cortex 199 2388 8.333333333
L posteriorcingulate Left posterior cingulate cortex 145 3266 4.439681568
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Table A3.4. List of ROI activation for 2D viewpoint-dependent pose RDM  

  

Abbreviation Full roi name Num of voxels Total Num of voxels Voxel percent in the roi (%)

L pericalcarine Left pericalcarine cortex 91 1912 4.759414226
L lateraloccipital Left lateral occipital cortex 2093 6379 32.81078539
R lateraloccipital Right lateral occipital cortex 1505 5963 25.23897367

L lingual Left lingual gyrus 485 4205 11.53388823
R lingual Right lingual gyrus 468 3894 12.01848998

L parahippocampal Left parahippocampal gyrus 204 1838 11.09902067
R parahippocampal Right parahippocampal gyrus 392 1742 22.50287026

L fusiform Left fusiform gyrus 545 4714 11.56130675
R fusiform Right fusiform gyrus 1138 4661 24.41536151

L inferiortemporal Left inferior temporal gyrus 123 4415 2.785956965
R inferiortemporal Right inferior temporal gyrus 857 4198 20.41448309
L middletemporal Left middle temporal gyrus 61 4452 1.37017071
R middletemporal Right middle temporal gyrus 571 5057 11.29127941
L supramarginal Left supramarginal gyrus 318 8600 3.697674419
R supramarginal Right supramarginal gyrus 102 8150 1.251533742
L inferiorparietal Left inferior parietal cortex 995 7871 12.64134163
R inferiorparietal Right inferior parietal cortex 1363 9676 14.08639934
L superiorparietal Left superior parietal cortex 931 10456 8.903978577
R superiorparietal Right superior parietal cortex 1590 10222 15.55468597

L precuneus Left precuneus cortex 232 7308 3.174603175
R precuneus Right precuneus cortex 642 7975 8.05015674
L postcentral Left postcentral gyrus 60 9519 0.630318311
L precentral Left precentral gyrus 104 10740 0.968342644
R precentral Right precentral gyrus 64 10705 0.597851471
L paracentral Left paracentral lobule 139 3294 4.219793564
R paracentral Right paracentral lobule 128 3831 3.341164187

L superiorfrontal Left superior frontal gyrus 130 12179 1.067411117
L caudalmiddlefrontal Left caudal middle frontal gyrus 90 3736 2.408993576

R isthmuscingulate Right isthmus cingulate cortex 184 2388 7.70519263
L posteriorcingulate Left posterior cingulate cortex 195 3266 5.970606246
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Figure A3.1. Group-level functional localizer results for body-, face-, and place- selective areas 
across all the subjects (color map threshold is 62.5% (five out of eight subjects)).  The body-
selective areas include EBA and FBA. The face-selective areas include FFA and OFA. The place 
selective areas include PPA, OPA, and RSC. 
 


