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Abstract—Structural coverage metrics have been widely used
to measure test suite adequacy as well as to generate test cases.
In previous investigations, we have found that the fault-finding
effectiveness of tests satisfying structural coverage criteria is
highly dependent on program syntax – even if the faulty code
is exercised, its effect may not be observable at the output.
To address these problems, observability-based coverage metrics
have been defined. Specifically, Observable MC/DC (OMC/DC)
is a criterion that appears to be both more effective at detecting
faults and more robust to program restructuring than MC/DC.
Traditional counterexample-based test generation for OMC/DC,
however, can be infeasible on large systems. In this study, we
propose an incremental test generation approach that combines
the notion of observability with dynamic symbolic execution. We
evaluated the efficiency and effectiveness of our approach using
seven systems from the avionics and medical device domains.
Our results show that the incremental approach requires much
lower generation time, while achieving even higher fault finding
effectiveness compared with regular OMC/DC generation.

I. INTRODUCTION

Test adequacy criteria defined over the structure of a
program, such as branch coverage and modified condi-
tion/decision coverage (MC/DC) serve as useful benchmarks
for assessing the thoroughness of testing software and for
meeting regulatory requirements. Of particular interest to us
are criteria used to evaluate testing effort for safety-critical
systems, such as MC/DC [1], which is mandated by the U.S.
standard DO-178C [2] for testing the most critical avionics
software. In previous investigations, we have found that the
effectiveness of structural coverage criteria is highly dependent
on the structure of the program under test [3]. Simple syntactic
transformations, such as inlining of variables, have a dramatic
effect on the fault-finding efficacy of test suites designed to
satisfy the MC/DC criterion. This effect is not surprising –
structural criteria, as the name suggests, require that certain
code structures, such as branches or Boolean expressions,
be exercised to a certain level of thoroughness. However,
the degree to which fault-finding was impacted by simple
syntactic changes to the program is bothersome, especially
given that such criteria are used to assess the testing effort
for safety-critical software. These structural criteria specify
that various structural parts of a program must be exercised,
they do not, however, mandate that the effect of exercising
that part must manifest itself at a subsequent observable

This work has been partially supported by NSF grant CNS-1035715.

point in the program; a frequent problem is that the effect
of a corrupted variable gets masked out through its use in
subsequent operations.

To address this problem, observability has been proposed
as a desirable attribute of testing in both hardware [4] and
software domains [5]. Specifically, Whalen et al. proposed
OMC/DC – a combination of traditional MC/DC with the
notion of observability [5]. In practical terms, OMC/DC adds
an additional path constraint to the coverage obligation. This
constraint concretizes the idea that the effect of satisfying the
MC/DC obligation must propagate to an observable output.
The OMC/DC criterion defines propagation (optimistically)
by specifying what constitutes masking and mandating a non-
masking path from the point of exercising the code structure
to some monitored output variable. This greatly increases the
likelihood of faults triggered during testing to be observed
as failures. It was demonstrated that OMC/DC significantly
outperforms MC/DC with respect to fault finding and robust-
ness to syntactic transformations on industrial models from
the avionics and medical device domains [5], [6].

While OMC/DC offers a significant improvement over
MC/DC, it makes generating tests to satisfy the criterion more
difficult; in particular, to give a corrupted state the opportunity
to propagate to an output in a stateful system (common in the
critical systems domain), a test case may need to execute for
a large number of test steps. In our work, we have generated
tests by formulating test obligations – properties that must be
satisfied by the paths that are executed – and using model
checkers to find the concrete tests by asserting that such
obligations cannot be satisfied. The counterexamples generated
are test cases – paths that satisfy those obligations. The path
constraint added by OMC/DC for effect propagation makes
this search harder and often prohibitively expensive even for
relatively small systems.

In this paper, we propose an incremental test generation
strategy that addresses this scalability problem using dynamic
symbolic execution, in which test inputs are generated incre-
mentally by combining concrete and symbolic executions of
the program under test [7], [8]. Starting with some concrete
values for inputs to obtain a concrete execution path, path
constraints are then generated for that execution path by
treating (some of the) variables as symbolic. These constraints
are then systematically modified and solved to force the
program to take different (but feasible) execution paths. There



has been a large volume of research on dynamic symbolic
execution that demonstrates encouraging improvement over
classic symbolic execution [9], [10], [11], [12]. Efficiency
is gained by modifying the path constraints along a known
concrete path, which localizes the search for newer feasible
paths. This reduces the high computational cost associated
with symbolic search and, in practice, leads to better coverage
of the program paths and higher likelihood of revealing faults.

In the test generation approach presented in this paper,
we adopt the dynamic symbolic execution idea in a novel
approach to generate tests that, first, satisfy a condition based
coverage criterion to exercise a particular part of the code
(MC/DC) and, second, satisfy a dataflow criterion propagating
the possibly corrupted state to a point where it is used by
an observable output. To this effect, we employ a tagging
semantics similar to the one defined by Whalen et al. [5] where
a tag is assigned to each condition and the propagation of tags
to outputs approximates observability. Instead of invoking a
model checker to generate a complete OMC/DC test, which
can be prohibitively expensive due to the test case length,
the incremental test generation starts with concrete test inputs
that satisfy an obligation and then invokes the model checker
at each test step repeatedly to solve path conditions in an
attempt to propagate tags through non-masking paths towards
outputs. A test case satisfying an obligation incrementally
grows and eventually tags associated with the condition of
interest (the condition the MC/DC obligation exercised) reach
output variables (to form an OMC/DC test).

While this approach introduces some incompleteness – a
tag associated with a condition may not be able to propagate
to outputs on the particular concrete path being extended –
this approach worked remarkably well in our experiments.
Our results indicate that the incremental approach consumes
significantly less time than regular test generation, while
achieving universally better fault finding effectiveness.

II. BACKGROUND

Coverage metrics can often be used to measure test suite
adequacy as well as to generate test cases. Modified condi-
tion/decision coverage (MC/DC) is a structural coverage met-
ric used in some safety-critical systems domains. In order to
satisfy MC/DC, (1) each condition in a decision has to take on
every possible outcome, and (2) each condition in a decision
has to be shown to independently affect the outcome of the
decision [1]. For example, in order for a to independently
affect the outcome of (a and b), b has to be true, otherwise,
(a and b) would evaluate to false no matter what value a
has. In this paper, we use the masking form of MC/DC [13].

It has been shown that structural coverage metrics are
sensitive to program structures [3]. Simple syntactic transfor-
mations can have a dramatic effect on the generated test suite
as well as its fault finding effectiveness. Furthermore, even
if the faulty code is exercised, the corrupted program state
may not be propagated to observable outputs. Observability-
based coverage metrics have been proposed to address these
problems [14], [5]. Observable modified condition/decision

TABLE I
ENHANCED TAGGING SEMANTICS

E ::= Val | Id | E op E | not E |
E ? E : E | tag(E, T ) | (Val, TS) | addTags(E, TS)

Context ::= � | Context op E | E op Context | not Context |
Context ? E : E | addTags(Context, TS) |
〈K : Context, E : Env, . . .〉

lit n⇒ (n, ∅)
var 〈E : σ〉[x]⇒ 〈E : σ〉[(σ x)] if x ∈ dom(σ)

op (n0, l0)⊕ (n1, l1)⇒ (n0 ⊕ n1, l0 ∪ l1)
and1 (tt, l0) and (tt, l1)⇒ (tt, l0 ∪ l1)
and2 (tt, l0) and (ff, l1)⇒ (ff, l1)

and3 (ff, l0) and ⇒ (ff, l0)

ite1 (tt, l0) ? et : ee ⇒ addTags(et, (et =v ee) ? ∅ : l0)

ite2 (ff, l0) ? et : ee ⇒ addTags(ee, (et =v ee) ? ∅ : l0)

tag tag(t, (v, l))⇒ (v, l ∪ {(t, v)})
addt addTags((v, l0), l1)⇒ (v, l0 ∪ l1)

coverage (OMC/DC) is an improved criterion over MC/DC,
in which a tag is associated with each condition and the
propagation of tags is used to approximate observability.

Although OMC/DC outperforms MC/DC in terms of fault
finding effectiveness and sensitivity to program structure, it
suffers from scalability issues. This is not surprising – with the
notion of observability, the generated test case is much longer
than the ones generated to satisfy MC/DC, and the time cost of
generation increases exponentially. Furthermore, the original
tagging semantics has optimistic inaccuracy. In the following
code fragment, the condition c is reported to be observable,
but c cannot affect the outcome of this code fragment.

if (c) then out := 0 else out := 0 ;

In this paper, we extended the tagging semantics defined by
Whalen et al. by removing the optimistic inaccuracy in if-then-
else expressions. The extended tagging semantics is shown in
Table I. The rules with gray backgrounds are enhancements
of the original definitions, where =v represents value equality
of two expressions.

A. The Dataflow Language Lustre

Dataflow languages, which assign values to a set of equa-
tions in response to periodic inputs, are popular in model-
based development using tools such as Simulink and SCADE.
The dataflow language we are using – Lustre – is a syn-
chronous dataflow language for programming reactive sys-
tems [15]. It is typically used as an intermediate representation
between behavioral models and source code. Lustre programs
can be automatically translated from models in notations such
as Simulink, and can be automatically translated further to
implementations in languages such as C/C++ and also as input
models to verification tools such as model checkers.

A Lustre program consists of assignments to combinatorial
and delay variables, and evaluates in cycles (i.e., computational
steps). Combinatorial variables are used to update program
state within one computational step. Delay variables are used
to store program state ( 1z blocks in Simulink), such that an
expression can refer to a variable’s value from the previous
step (i.e., values of delay variables).



During a cycle, variables are assigned values based on their
defining equations – a combinatorial computation involving
values at the current step for combinatorial variables and
values from the previous step for delay variables. Within a
computational step, Lustre does not impose a sequential order
on evaluation of equations, but a partial order based on data
dependencies. An equation can be evaluated as long as values
of all variables it uses have been computed.

Suppose we have the following code fragment, in which
in1, in2, and in3 are input variables, v1, v2, v3, and v4
are internal state variables, and out is an output variable. All
variables are of type Boolean. Variable v1 at the initial step
will have the value false followed by (shown as an arrow),
at each subsequent step, in1’s value from the previous step.

v1 = (false -> (pre in1));
v2 = (in2 and v1);
v3 = (false -> (pre v2));
v4 = (if in3 then v2 else v3);
out = (false -> (pre v4));

When testing such reactive systems, a test case typically
contains multiple steps, each of which specifies values for in-
put variables. Internal and output variables are then computed
by the program as described above. Values stored in delay
variables (i.e., in1, v2, and v4) will be used by other variables
(i.e., v1, v3, and out, respectively) in the next computational
step. Table II shows an example of a test case of 4 steps
together with values of internal and output variables.

TABLE II
LUSTRE PROGRAM EVALUATION

Step Input Vars. Internal Vars. Output Vars.
(in1, in2, in3) (v1, v2, v3, v4) (out)

1 (T, F, F) (F, F, F, F) (F)
2 (F, T, F) (T, T, F, F) (F)
3 (F, F, F) (F, F, T, T) (F)
4 (F, F, F) (F, F, F, F) (T)

B. Dynamic Symbolic Execution

In the regular counterexample-based test generation, test
obligations are first formulated and instrumented in the orig-
inal program. Test obligations represent path constraints for
the program to take certain paths (e.g., satisfying a coverage
criterion). Trap properties are simply negations of test obli-
gations that must be fulfilled. Asserting these properties on
the program to a model checker leads to the generation of
counterexamples, which can be seen as test cases satisfying
the obligations. For the purpose of generating OMC/DC tests,
the path constraints describe non-masking paths starting from
the initial program state to a state exercising the condition of
interest in a specific way and then to a program state where
the effect is observable at some output variable. This kind of
generation can be expensive because the model checker has
to search through a complete non-masking path which may
involve many computational steps.

Dynamic symbolic execution provides improved scalability
over classic symbolic execution by combining concrete and
symbolic executions. By using concrete values, dynamic sym-
bolic execution is able to simplify constraints, which helps it

generate test inputs for execution paths that classic symbolic
execution is infeasible to analyze.

The notion of observability can be captured naturally using
dynamic symbolic execution. That is, in order to propagate a
tag tagc from a condition c to an output out, which traverses a
sequence of variables (c, v1, v2, ..., vn, out), we can propagate
tagc to any intermediate variable vi and from vi further
propagate tagc along the path. This process terminates when
tagc reaches out or there are no feasible paths.

Therefore, our incremental approach invokes the model
checker at each computational step, and forms and solves path
conditions locally based on the existing program state resulting
from executing a concrete input. Specifically, at the initial
step, our approach is similar to traditional counterexample-
based test generation. Once we have a concrete input, it is
immediately executed on the current program state and then
concatenated with the existing test. If tags – which are asso-
ciated with conditions and used to approximate observability
– are propagated to outputs, then we have a complete test;
otherwise, we record the set of variables that these tags can
propagate to. In the next step, we start generating tests based
on the program state and recorded set of variables. To enable
test generation from a specific program state, the original trap
property is combined with additional constraints that imply a
desired initial state, which is essentially the program state at
the end of the execution of the test case constructed thus far.

III. INCREMENTAL TEST GENERATION

We define observation points as the set of variables where
(internal) program state can be observed, i.e., an effect prop-
agated to any of the observation points is observable. In an
observability-based coverage criterion, observation points are
usually the set of output variables. We use O to represent
output observation points. In our incremental test generation
approach, we also define delayed observation points (repre-
sented by D) as the set of delay variables, i.e., an effect
propagated to delay variables is stored and may be further
propagated. Therefore, when a tag is propagated to some out-
put observation point, we have a complete test. Alternatively,
when a tag is propagated to some delayed observation point,
it will be further propagated in the next step.

A. Non-Masking Path Conditions

A condition/variable is observable if it is not masked along
some path as described in the tagging semantics in Table I.
We call the path a non-masking path and the constraints for
the program to take the path as non-masking path conditions.
An immediate non-masking path is a dataflow path from a
variable to an observation point that is entirely within one
computational step (i.e., no delays) where the value of the
variable is not masked. Immediate non-masking paths can
be defined inductively by examining define-use relationships
among variables. In our incremental test generation approach,
all non-masking paths are immediate. Therefore, we use the
term non-masking paths in the remaining of the paper.



Suppose y is one of the variables that uses x, then tags
associated with x can be propagated if x is not masked in
the definition of y (i.e., x affects y) and y is observable.
We track these relationships by instrumenting the original
program with additional path condition variables. Specifically,
we use x AFFECT y to indicate the path condition that x
is not masked in the definition of y (i.e., tags with x can
be propagated to y). We use var observed to represent the
constraint of a non-masking path that the variable var can
be propagated to (one or more) observation points. We also
create additional input variables var observable for all delay
variables to represent whether a delay variable var is one of
the observation points. Output variables are always observable.

Suppose we have the same code fragment from Section
II, we can then generate the following non-masking path
conditions.
in2_AFFECT_v2 = v1;
v1_AFFECT_v2 = in2;

in3_AFFECT_v4 = (v2 <> v3);
v2_AFFECT_v4 = in3;
v3_AFFECT_v4 = (not in3);

in1_observed = in1_observable;
in2_observed = (in2_AFFECT_v2 and v2_observed);
in3_observed = (in3_AFFECT_v4 and v4_observed);
v1_observed = (v1_AFFECT_v2 and v2_observed);
v2_observed = ((v2_AFFECT_v4 and v4_observed)

or v2_observable);
v3_observed = (v3_AFFECT_v4 and v4_observed);
v4_observed = v4_observable;
out_observed = true;

In Whalen et al.’s work, tags associated with the condition
in3 can always be propagated to the variable v4, which creates
optimistic inaccuracy: when v2 = v3, in3 does not play any
role in determining the value of v4. In the present work we
remove this inaccuracy by strengthening the path condition
for tag propagation in such cases. In the above example, in
order to propagate tags from in3 to v4, we also require the
inequality of v2 and v3. More precisely, we require the value
inequality of expressions from two branches.

The variable v2 is used in two equations and therefore has
two non-masking paths to observability: one through v4 and
the other through itself. Each of the other variables is used
once and thus has one non-masking path.

B. Test Generation

We then define propagation as a structure that contains the
following fields:
1) tag labels a condition and its Boolean value.
2) state represents the current program state.
3) locations represents the set of variables that tag has

propagated to. Initially, for example, tagc is at the location
of condition c.

4) visited represents the set of visited observation points.
5) test represents an incrementally generated test case.

Algorithm 1 shows the main algorithm of our incremental
test generation approach. The MAIN procedure takes a con-
dition c and returns a test case that can propagate the effect

of c to some output observation points, or UNSAT. During
each iteration of the while loop, the algorithm first attempts
to generate a test that can propagate tagc to O (line 7 – 10).
If SAT, the newly generated test is concatenated with existing
ones and we have a complete test. Otherwise, the algorithm
attempts to generate a test that can propagate tagc to D (line
11 – 14). If UNSAT, there is no feasible path that can propagate
tagc further and thus UNSAT is returned. Otherwise, tagc is
propagated to delayed observation points and will be further
propagated in the next iteration.

Algorithm 1 Incremental Test Generation
1: O ← output observation points
2: D ← delayed observation points
3:
4: procedure MAIN(c)
5: p ← (tagc, ∅, {c}, ∅, ∅)
6: while true do
7: test ← GENERATE(p, O)
8: if test = SAT then
9: p.test ← p.test ++ test . Concatenate

10: return p.test

11: test← GENERATE(p, D)
12: if test = UNSAT then
13: return UNSAT
14: p ← PROPAGATE(p, test)

Algorithm 2 shows the sub-procedure GENERATE. The
GENERATE procedure takes a propagation structure p and a
given set of variables as observation points op, and returns
a test that can propagate p.tag to any variable(s) in op,
or UNSAT. The path constraint is first constructed by a
disjunction of path conditions from the set of variables in
p.locations (line 2 – 5). The disjunction ensures that the
tag can be propagated when any of the variables can be
observable. Then the constraint on observation points is added
(line 6 – 10). For each delay variable, if it is in the given set
of observation points and not visited, it will be a candidate
observation point that p.tag can propagate to. Finally, the
program state p.state is added such that the generation starts
from a concrete state (line 11).

Algorithm 2 Test Generation
1: procedure GENERATE(p, op)
2: pc ← false . Path constraint
3: for each var in p.locations do
4: pc← pc ∨ var observed

5: pc ← (pc)
6: for each var in D do
7: if var ∈ (op \ p.visited) then
8: pc ← pc ∧ (var observable)
9: else

10: pc ← pc ∧ (not var observable)
11: pc ← pc ∧ p.state
12: return SOLVE(pc)

Essentially, in an observability-based coverage for dataflow
languages, tags are always located at delay variables, unless
they are propagated to output variables. In the incremental
test generation approach, however, it is possible that a tag
is repeatedly propagated to the same set of delay variables,
forming a cyclic propagation. Cyclic propagation is a result



of concretizing program state and generating new tests locally.
From a concrete program state, test generation (and thus tag
propagation) is deterministic. The locally optimal path found
by the model checker may be in a subspace that will repeatedly
propagate the tag inside the subspace – the particular path cho-
sen need not necessarily be the best candidate for eventually
reaching an output – making test generation not terminate.

In our present approach, we favor incrementality. To account
for the problem of cyclic propagation, we include a simple
heuristic (i.e., recording all visited variables in p.visited
and not propagating p.tag to them) that avoids repeatedly
visiting the same delayed observation point. This heuristic
forces the test case to take a different path – which intuitively
would increase fault finding effectiveness – and guarantees
that the generation process will terminate. Otherwise, as in the
traditional generation, a model checker typically generates the
shortest possible path that satisfies an obligation. This may
not be desirable from a testing perspective: for it may lead
to fewer program states being visited which can negatively
impact fault finding [6]. Given all the benefits, however, the
heuristic may potentially miss some feasible test cases that
necessarily require passing through cyclic propagation to reach
some observable output. These test cases could have been
found (if feasible) by attempting to generate a complete test
case to satisfy the OMC/DC obligation.

Algorithm 3 shows the sub-procedure PROPAGATE. The
PROPAGATE procedure takes a propagation structure p and
a newly generated test, and returns the updated p.

Algorithm 3 Tag Propagation
1: procedure PROPAGATE(p, test)
2: p.state ← EXECUTE(p.state, test)
3: locations ← ∅
4: while p.locations 6= ∅ do
5: Select and remove var from p.locations
6: useSet ← DFG retrieval variables that use var
7: for each use in useSet do
8: if var AFFECT use then
9: if use ∈ (D \ p.visited) then

10: Add use to locations
11: else
12: Add use to p.locations

13: p.locations ← locations
14: p.visited ← p.visited ∪ p.locations
15: p.test ← p.test ++ test . Concatenate
16: return p

The newly generated test is first executed from the current
program state to obtain an updated program state (line 2).
Then p.tag is propagated from current p.locations to new
locations (line 3 – 13). Specifically, we first select and
remove a location var from p.locations and retrieve the set
of variables useSet that use var from the dataflow graph (line
5 – 6). For each variable use in useSet, the path condition
var AFFECT use is checked (line 8). If var affects use, p.tag
is propagated from var to use. Then if use is an unvisited
observation point, it is added to new locations; otherwise, it
is added to p.locations for further propagation. Eventually,
new locations are recorded as visited (line 14) and the new
test is concatenated with existing ones (line 15).

C. Test Generation Example

Suppose our goal is to cover the MC/DC obligation of in2
with true value (as MC/DC requires, the condition in2 has
to evaluate to both true and false values, and be shown
to independently affect the outcome of the decision) and
propagate its effect not only to v2 (as MC/DC requires),
but also to out (as OMC/DC requires). In the following
illustration, the program state is not expanded in order to
simplify the representation. We will only show feasible path
constraints and generated tests, as well as the propagation
structure before and after each iteration.

1) Iteration 1: Propagate tagin2 true from {in2}.
At the first iteration, the path constraint is a conjunction of

an MC/DC obligation over a single atomic condition plus a
path condition representing the variable’s observability at one
of the observation points. Propagating tagin2 true to output
observation points is infeasible, so it will be propagated to v2
as shown in the following.

Before: p = (tagin2 true, state, {in2}, ∅, ∅)
pc = (in2 and in2 AFFECT v2 and v2 observed)

and
(v2 observable and v4 observable)

After: p = (tagin2 true, state, {v2}, {v2},
{(T, F, F), (F, T, F)})

2) Iteration 2: Propagate tagin2 true from {v3}.
At the second iteration, tagin2 true automatically propa-

gates from v2 to v3, since v3 uses the delay variable v2.
Propagating tagin2 true to output observation points is still
infeasible, so it will be propagated to v4 as shown in the
following. Note that since v2 has been visited, it is shown as
not observable in the path constraint.

Before: p = (tagin2 true, state, {v3}, {v2},
{(T, F, F), (F, T, F)})

pc = (v3 observed)
and
(not v2 observable and v4 observable)
and
(p.state)

After: p = (tagin2 true, state, {v4}, {v2, v4},
{(T, F, F), (F, T, F), (F, F, F)})

3) Iteration 3: Propagate tagin2 true from {out}.
At the third iteration, tagin2 true automatically propagates

from v4 to out, since out uses the delay variable v4. Propa-
gating tagin2 true to output observation points is feasible, so a
complete test is generated and the incremental test generation
algorithm terminates. Note that since both v2 and v4 have
been visited, they are shown as not observable in the path
constraint.

Before: p = (tagin2 true, state, {out}, {v2, v4},
{(T, F, F), (F, T, F), (F, F, F)})

pc = (out observed)
and
(not v2 observable and not v4 observable)
and
(p.state)

After: p = (tagin2 true, state, {out}, {v2, v4, out},
{(T, F, F), (F, T, F), (F, F, F), (F, F, F)})



Table III shows a summary of the generated test case as
well as the locations of tagin2 true at each step.

TABLE III
TEST CASE EXAMPLE

Locations of tagin2 true in1 in2 in3
Step 1 in2 True False False
Step 2 v2 False True False
Step 3 v4 False False False
Step 4 out False False False

IV. EVALUATION

The quality in terms of fault finding of the test suites
generated to satisfy OMC/DC and MC/DC has been evaluated
[5]. In this paper, we are interested in comparing the two
approaches – incremental and regular test generation satisfying
OMC/DC – in terms of efficiency and effectiveness. Therefore,
we have the following research questions:
1) Is incremental test generation more efficient than regular

test generation? What is the percentage of time needed to
generate a test suite in the incremental approach compared
with regular test generation?

2) What is the generated test suite size (i.e., the number
of satisfied obligations) and how does it affect test suite
effectiveness in the two approaches?

3) How well does the test suite generated by the incremental
approach perform in terms of fault finding effectiveness
compared with regular test generation?

A. Case Example Systems

In this study, we used four industrial systems (i.e., DWM1,
DWM2, Vertmax, and Latctl) developed by Rockwell Collins
Inc., two subsystems (i.e., Alarm and Infusion Manager) of a
Generic Patient Controlled Analgesia (GPCA) infusion system
[16], and a last system (i.e., Docking Approach) created as a
case example at NASA.

The Rockwell Collins systems were modeled using
Simulink [17]. Two of the systems, DWM1 and DWM2,
represent distinct portions of a Display Window Manager for
a commercial display system. The other two systems, Vertmax
and Latctl, represent the vertical and lateral mode logic for a
Flight Guidance System.

The remaining three systems are modeled using Stateflow
[18]. Two of the systems, Alarm and Infusion Manager,
represent the alarm-induced behavior and the prescription
management of an infusion pump device. The NASA system,
Docking Approach, describes the behavior of a space shuttle
as it docks with the International Space Station.

All the systems were translated to the Lustre programming
language [15] to take advantages of existing automation.
Lustre code generation from Simulink/Stateflow models is
analogous to the automated code generation offered by Math-
works Simulink Coder [19]. In practice, Lustre programs will
be automatically translated to C code. Therefore, results of this
study would be identical, if applied to their C implementations.

Table IV shows basic information of the systems measured
on the original Simulink and Stateflow models.

TABLE IV
SIMULINK AND STATEFLOW CASE EXAMPLE INFORMATION

(a) Simulink models
Subsystems Blocks

DWM1 3109 11,439
DWM2 128 429

Vertmax 396 1,453
Latctl 120 718

(b) Stateflow models
States Transitions Variables

Alarm 78 107 60
Infusion 27 50 36
Docking 64 104 51

B. Test Suite Generation

We used the counterexample-based approach to generate
test cases satisfying obligations/path conditions [20], [21],
specifically, we used the JKind model checker [22] in our
experiments. This approach is guaranteed to generate a test
suite that achieves the maximum possible coverage of the
system under test. Note that, however, in regular test genera-
tion, this is guaranteed as long as the model checker is given
enough computing resource to terminate; in incremental test
generation, the maximum propagation is only guaranteed at
each step, which can have both advantages and disadvantages
and will be discussed in detail in Section V.

To account for variance in the generation time, we gen-
erated 10 test suites for each of the two approaches (i.e.,
incremental and regular test generation) for each of the seven
systems under test. We measured time using Linux time utility.
Specifically, we measured user time in order to account for the
variance of parallel computing inside the model checker in a
multi-core environment.

In this study, we used the full generated test suite to perform
fault finding analysis, even if there can be redundancy in the
generated test cases [5], [3]. There are two reasons for this
setting: (1) when we compare the generation time of a test
suite, the comparison is based on the full test suite rather
than a reduced test suite; (2) it is debatable whether test
suite reduction will decrease fault finding effectiveness [23],
[24], and the choice of reduction algorithms may also have an
effect on fault finding and reduced test suite size. Performing
coverage measurement and test suite reduction have a cost
(e.g., at least we need to execute all tests to measure how
they satisfy obligations) and the cost of measuring coverage
of the full test suite would be much more than just executing
the test suite on the original program. Because of the above
reasons, we decided to use the full generated test suite in this
study for the purpose of fault finding analysis.

C. Mutant Generation

Mutation testing has been shown to be an adequate proxy
for real faults for the purpose of investigating fault finding
effectiveness [25]. In our experiment, mutant generation is
done by automatically introducing a single fault into the
correct implementation. The mutation operators used in this
study are typical and were discussed in detail in our previous
paper [26]. The generated set of mutants has roughly the



same distribution of fault types across the system occurring
naturally.

For each of our systems, we created 750 mutants1 and
randomly grouped them into 10 sets, each of which contains
75 mutants. We removed mutants that cause compile-time
or run-time errors (e.g., divide-by-zero), but we left possibly
equivalent mutants. Although checking and removing equiva-
lent mutants can be feasible on small systems [5], the cost of
checking equivalent mutants for our last three systems is pro-
hibitive. Therefore, we did not attempt to remove equivalent
mutants in our experiments in order to keep our experimental
configuration consistent across different case example systems.

D. Test Oracles

For the purpose of this study, we used output-only expected
value oracles – the ones people would most likely use in
practice [27]. When using an output-only expected value test
oracle, for each test input, concrete values are specified that
the system is expected to produce for output variables.

For each case example, we ran the generated test suites
against each mutant and the original version of the system
(i.e., the correct version). For each test suite, we recorded the
value of all output variables at every test step of the execution
of every test case using an in-house Lustre simulator.

To determine the fault finding effectiveness of the generated
test suites, we simply compared output values produced by a
faulty version against expected output values produced by the
original version. The fault finding effectiveness of a test suite
is computed as the percentage of mutants killed.

Although we generated 10 test suites for each test generation
approach to account for the variance in generation time, for the
purpose of evaluating fault finding effectiveness, we used one
of them, since both the incremental and regular test generation
approaches are deterministic in producing test cases.

Due to proprietary reasons, experiments on the first four
systems were performed on an encrypted laptop with an Intel
quad-core processor @ 2.4 GHz, 4 GB memory, and Ubuntu
Linux. Experiments on the last three systems were performed
on a server with four AMD eight-core processors @ 3.0 GHz,
192 GB memory, and Ubuntu Linux.

V. RESULTS & DISCUSSION

Recall that in Section IV we outlined three research ques-
tions related to the possible performance gains with the incre-
mental test generation approach, the nature of the generated
test suites (i.e., the number of tests generated), and the fault
finding effectiveness of tests generated incrementally. Below
we will present our experimental results and discuss the three
questions in order.

A. RQ1: Test Generation Time

We would first like to determine whether the incremental
approach performs better than regular test generation in terms
of test generation time.

1750 is slightly smaller than the maximum number of possible mutants in
our smallest case example system Latctl.

TABLE V
TEST GENERATION TIME (IN SECONDS) FOR EACH SYSTEM, AVERAGE

OVER 10 TEST SUITES

Incremental Regular Time
System Generation Generation Ratio p-value
DWM1 141.2 107.4 131.5% < 0.01
DWM2 30.4 39.8 76.4% < 0.01

Vertmax 119.8 279.8 42.8% < 0.01
Latctl 19.1 28.4 67.3% < 0.01
Alarm 363.3 2958.9 12.3% < 0.01

Infusion 278.5 3623.6 7.7% < 0.01
Docking 40413.2 176226.3* 22.9% < 0.01

Table V shows the average test generation time for each
case example system and each test generation approach. The
Time Ratio column is the percentage of time needed to
incrementally generate a test suite as opposed to the regular
generation of the suite. p-value is computed using a two-sided
permutation test using mean as the test statistic, under the
null hypothesis that test generation time from incremental and
regular approaches are drawn from the same distribution. Note
that regular test generation is infeasible on Docking. We set
a timeout of 48 hours for the model checker to terminate
and measured user time (as starred in Table V). It is both
time and memory prohibitive to obtain the actual time from
regular test generation on Docking. Figure 1 further illustrates
the distribution of test generation time for each system.

The incremental approach is significantly more efficient
than regular test generation for all systems except DWM1.
We investigated this outlier and found that DWM1 is purely
combinatorial, i.e., there is no state maintained in the system
and thus no delay operations. Therefore, all computation is
within one step and finding an immediate non-masking path
is generally cheap since the tag propagation is trivial, while
the incremental approach adds more overhead to produce path
constraints and track tag propagations. On all other systems,
the incremental approach requires much less time as opposed
to regular test generation with a trend that the larger/more
complex the system is, the more is the improvement achieved.
For smaller systems, the overhead associated with the incre-
mental approach dominates the generation time. Additionally,
our approach calls the model checker multiple times and JVM
overhead can be significant on small systems with an execution
time of tens of seconds.

The observed improvement matches our expectation. As we
generate new test inputs at each step, we concretize the inputs
we have already computed and solve a much simpler path
condition to further propagate tags based on the execution
results of existing test inputs.

B. RQ2: Test Suite Size

Since we used the full test suite generated from each
approach, the test suite size indicates the number of satisfied
obligations. Table VI shows the total number of obligations
and generated test suite sizes for each approach for each case
example system.

Given the enhanced tagging semantics used in our incre-
mental approach, the test suites generated incrementally will
be of equal or smaller size than test suites generated regularly,
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Fig. 1. Test generation time

TABLE VI
TEST SUITE SIZE FOR EACH SYSTEM

System Total Incremental Regular
Obligations Generation Generation

DWM1 2038 1833 2036
DWM2 530 511 511

Vertmax 1732 1705 1728
Latctl 380 371 371
Alarm 1406 991 1098

Infusion 1666 719 934
Docking 4900 961 1954

since more obligations would become unsatisfiable and tests
that in fact cannot propagate tags (i.e., optimistic inaccuracy
in the original OMC/DC) would be eliminated. In addition,
since the incremental approach concretizes all input values at
each step, it may fail to propagate tags in later steps, because
future paths may have been rendered infeasible based on the
previous concretization. As a result, incrementally generated
test suites are expected to have fewer tests than test suites
generated regularly.

Previous investigations on test suite size and fault finding
effectiveness have shown that there is a moderate to high
correlation between them [28], [29]. In this study, the in-
crementally generated test suite is, however, smaller than the
test suite generated regularly. This could be a concern since
we do not wish to achieve better efficiency by losing fault
finding effectiveness. This leads to our third research question
on comparing fault finding effectiveness between incremental
and regular test generation approaches.

C. RQ3: Fault Finding Effectiveness

In the work presented in this paper we have a stronger
tagging semantics than the one defined by Whalen et al.
[5]. Given this more restrictive propagation requirement, it
is harder (or impossible) to satisfy propagation obligations

TABLE VII
PERCENTAGE OF MUTANTS KILLED FOR EACH SYSTEM, AVERAGE OVER

10 SETS OF MUTANTS

Incremental Regular
System Generation Generation % Change p-value
DWM1 93.1% 86.1% 7.0% < 0.01
DWM2 97.5% 96.6% 0.9% 0.26

Vertmax 94.3% 89.3% 5.0% < 0.01
Latctl 94.4% 89.9% 4.5% 0.02
Alarm 58.0% 56.5% 1.5% 0.56

Infusion 41.3% 33.7% 7.6% < 0.01
Docking 29.8% 25.7% 4.1% 0.14

that would have been satisfiable. Consequently, we run the
risk of generating fewer test cases and potentially having
worse fault finding effectiveness. On the other hand, stronger
path conditions can lead to better tests – with guaranteed
propagation – that may increase fault finding.

Table VII shows the average percentage of mutants killed
for each case example system and each test generation ap-
proach. The % Change column indicates the improvement in
fault finding effectiveness from generating test suites incre-
mentally compared with generating test suites regularly. p-
value is computed using a two-sided permutation test using
mean as the test statistic, under the null hypothesis that fault
finding effectiveness from incremental and regular approaches
are drawn from the same distribution. Figure 2 further illus-
trates the distribution of the percentage of mutants killed for
each system.

Fault finding effectiveness of incrementally generated tests
is for our case example systems universally better than (or
equal to) regularly generated tests. Several reasons contribute
to this result. Given the stronger tag propagation requirement,
the optimistic inaccuracy presented in the original definition
of OMC/DC is eliminated. Furthermore, JKind is an SMT-
based model checker and will always generate the shortest
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Fig. 2. Fault finding effectiveness

test cases possible to satisfy an obligation or a path con-
dition. In our experience, such tests technically satisfy the
coverage criterion, but they are (1) susceptible to the masking
effect discussed earlier and (2) likely to only vary the few
input variables needed to cover the obligation and leave all
other input variables at the model checker’s default values
(typically zero and false) [6]. Both issues are mitigated in
our incremental approach. First, the incremental search for
a propagation path allows the possibility to pursue a path
longer than the shortest propagation path. Second, since we
are restarting the search for a path in each incremental step,
there is an opportunity for more variables to change values
(i.e., we are no longer searching for the shortest path with the
fewest variable changes). From our experimental results, we
see that a combination of these two aspects of the incremental
approach leads to longer and more diverse tests with better
fault finding effectiveness.

On a related note, as introduced in Section IV, we did
not remove equivalent mutants in this study in order to keep
our experimental configuration consistent across different case
example systems. As a result, fault finding effectiveness for the
first four systems would be in general slightly lower than our
previous results [5].

VI. THREATS TO VALIDITY

External Validity: We have used seven synchronous crit-
ical systems of different sizes from different domains (i.e.,
industrial avionics systems and medical device systems). We
believe that these system are representative of avionics and
medical device domains. Thus, our results are generalizable
to other systems in these domains.

We have used the dataflow language Lustre [15] as the
implementation language. Although Lustre is a less common
language than C/C++ or Java, these Lustre programs are

similar in structure to systems written in C/C++ in these
domains. In practice, Lustre programs will be automatically
translated to C code. Therefore, we believe that our results
are applicable to systems written in more traditional imperative
languages.

We have generated approximately 750 mutants for each case
example system. These mutants were further divided into 10
sets. The total number of mutants and the number of mutants in
each set were chosen to provide enough data points and yield
a reasonable cost for evaluating fault finding effectiveness.
Based on past experience, results using these numbers of
mutants are representative [27]. The mutants were generated
using the same tool and configuration as in previous work [5],
in which OMC/DC was shown to achieve much better fault
finding effectiveness than MC/DC.

Internal Validity: We have used the model checker JKind
[22] to generate test cases. The counterexample-based ap-
proach provides the shortest test cases possible to satisfy an
obligation or a path condition. These automatically generated
test cases may behave differently from test cases obtained by
other means [6], and thus, it is possible that test cases derived
by hand or random generation, may provide different results.

Construct Validity: The fault finding effectiveness is mea-
sured over mutants, i.e., seeded faults, rather than real faults
encountered during development. It is possible that using real
faults would lead to different results. However, Andrews et al.
showed that the use of mutants leads to conclusions similar to
those obtained using real faults [25].

VII. RELATED WORK

A. Observability-based Coverage Criteria
The study of observability is not new in testing of hardware

logic circuits [4]. Observability-based code coverage metric
(OCCOM) is a criterion in which tags are attached to internal



program states and the propagation of tags is used to predict
the actual propagation of errors [14]. A variable is tagged when
there is a change in the value of the variable due to an error.
The observability-based coverage can be used to determine
whether erroneous effects that are triggered by the inputs can
be observed at the outputs.

Observable modified condition/decision coverage was re-
cently defined as an improvement over MC/DC [5]. OMC/DC
also uses a counterexample-based test generation approach
and is complete in theory. That is, it is guaranteed to find
non-masking paths if they exist, as long as enough time and
memory are given to the model checker. In practice, however,
such test generation can be infeasible on large systems and
thus lose completeness. On the other hand, OMC/DC has
optimistic inaccuracy in certain program structures (i.e., if-
then-else statements). As a result, it may generate tests to
propagate a condition to outputs, but the condition is actually
not observable, leading to wasted testing effort.

Both OCCOM and OMC/DC are observability-based cov-
erage metrics, as well as using tag propagation to approximate
observability. But both approaches can be infeasible on large
systems when generating tests.

In this study, we extended the tagging semantics defined by
Whalen et al. [5] to generate path conditions. The differences
between our work and the original OMC/DC are: (1) Our ap-
proach is a test generation approach rather than a test adequacy
measurement approach defining new coverage metrics. (2) We
removed optimistic inaccuracy in the original definition of
OMC/DC by requiring value inequality of expressions from
two branches when propagating if conditions. This added
constraint is feasible due to our improvement over efficiency.
(3) Our approach will explicitly terminate when there is no
feasible paths, while for the regular test generation, a timeout
is usually estimated and manually set in order to terminate the
generation process.

A similar tagging approach, dynamic taint analysis [30],
has been used in security as well as software testing and
debugging. However, taint analysis is usually defined over
define-use relations and masking is generally not considered.
Thus, taint analysis is far more optimistically inaccurate than
an observability-based approach.

B. Dynamic Symbolic Execution

The notion of dynamic symbolic execution has been used in
many applications such as CUTE and jCUTE [8], [31], DART
[7], KLEE [9], and Pathcrawler [10], as well as combined with
fuzz testing to detect exploitable security issues [12].

Concolic testing [8] is an approach that incrementally
generates test inputs by combining concrete and symbolic
executions. Specifically, it starts with a random input, symbolic
constraints are generated in the execution of a concrete input.
These constraints are then modified and solved to force
the program to take different (but feasible) execution paths.
Feedback-directed random test generation [32] is another
approach that also builds test inputs incrementally. That is,
as soon as a new test input is created, it is executed. The

execution results are used to guide further generation. New
test inputs would extend previous ones, such that it can avoid
redundant or illegal test inputs and towards the execution of
new program states.

We refer the reader to recent surveys [33], [34] for more
details on symbolic execution systems.

Most of these approaches, however, are applied for a
program to take more and different paths, as well as to
cover simple coverage metrics such as branch coverage. Our
incremental test generation approach, together with the ex-
tended tagging semantics for observability, explicitly propa-
gates faulty program state to observable outputs, and thus,
fault finding effectiveness can be improved dramatically.

C. Test Concatenation

Concatenating test cases have been investigated in dataflow
languages [35], [36]. In a common approach to generating tests
satisfying a coverage metric, each obligation is solved at the
initial program state. In Hamon et al.’s approach [35], after
creating a test case for an obligation, the final state of the test
case serves as the initial state for the next test case. That is, the
next test case can be interpreted as an extension of the previous
test case. Fraser et al. [36] further investigated how test case
length affects fault finding effectiveness by concatenating test
cases to create test suites with different test case length, while
achieving similar coverage.

VIII. CONCLUSIONS

In this paper, we described an incremental test genera-
tion approach that combines the notion of observability and
dynamic symbolic execution. This approach is proposed to
address optimistic inaccuracy and feasibility issues in regular
counterexample-based test generation satisfying observability-
based coverage criteria. Our empirical study on seven case
example systems from avionics and medical device domains
indicates that compared with traditional test generation ap-
proach: (1) the incremental approach is far more efficient and
feasible on large systems; (2) the generated test suite size is
generally smaller; (3) fault finding effectiveness of test suites
generated by the incremental approach is generally better.

While our results are encouraging, there are the following
areas open for exploration in future research.

(1) Reducing pessimistic inaccuracy. An obligation that is
satisfiable may not have a feasible path to outputs by extending
certain concrete test inputs. To address this issue, we may
leave certain variables in previous tests symbolic and have
a backtracking mechanism, which also have to be carefully
tuned, since having symbolic values will increase overhead
and frequent backtracking may also slow down incremental
test generation.

(2) Comparison to other coverage metrics. We have specif-
ically compared incremental and regular test generation satis-
fying OMC/DC. It would be interesting to see how OMC/DC
tests perform against tests generated from other means, such
as test suites satisfying requirements-based coverage, which
may also address the propagation from inputs to outputs.
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