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Abstract

Tensor factorization is a technique for analyzing data that features interactions of data

along three or more axes, or modes. Many fields such as retail, health analytics, and

cybersecurity utilize tensor factorization to gain useful insights and make better deci-

sions. The tensors that arise in these domains are increasingly large, sparse, and high

dimensional. Factoring these tensors is computationally expensive, if not infeasible.

The ubiquity of multi-core processors and large-scale clusters motivates the develop-

ment of scalable parallel algorithms to facilitate these computations. However, sparse

tensor factorizations often achieve only a small fraction of potential performance due

to challenges including data-dependent parallelism and memory accesses, high memory

consumption, and frequent fine-grained synchronizations among compute cores.

This thesis presents a collection of algorithms for factoring sparse tensors on modern

parallel architectures. This work is focused on developing algorithms that are scalable

while being memory- and operation-efficient. We address a number of challenges across

various forms of tensor factorizations and emphasize results on large, real-world datasets.

The canonical polyadic decomposition (CPD) is used extensively to analyze large and

sparse tensors. We first propose operation-efficient algorithms for the sequence of tensor-

matrix kernels that consume the majority of execution time. Topics such as parallelism,

cache locality, and memory-efficiency are addressed through several optimizations and

a data structure for sparse tensors. The preceding contributions are evaluated in both

the serial and multi-core settings, and we demonstrate an average speedup over the

state-of-the-art of over 5×.

High-performance computing systems are turning to many-core architectures that

feature a large number of energy-efficient cores backed by high-bandwidth memory.

These features are exemplified in Intel’s Knights Landing many-core processor (KNL),

which typically has 68 cores and 16GB of on-package multi-channel DRAM (MC-

DRAM). We investigate how the architectural features offered by KNL can be used in

the context of computing the CPD. To achieve high performance, we (i) develop prob-

lem decompositions for the computations which are amenable to hundreds of concurrent

threads while maintaining load balance and low synchronization costs; and (ii) explore

iv



the utilization of architectural features such as MCDRAM. Using one KNL processor,

our algorithm achieves up to 1.8× speedup over a dual socket Intel Xeon system with

44 cores.

We next address scalability challenges that arise on large-scale distributed-memory

systems. Most methods have focused on distributing the tensor in a coarse-grained, one-

dimensional fashion that prohibitively requires the factorization to be fully replicated on

each node. Recent work overcomes this limitation by using a fine-grained decomposition

of the tensor data, at the cost of computationally expensive pre-processing techniques

and frequent small communications. To that effect, we introduce a medium-grained de-

composition that avoids total replication and communication of the factorization, while

eliminating the need for expensive pre-processing steps and sending fewer messages. We

theoretically analyze the scalability of the decompositions and experimentally compare

on up to 1024 compute cores. The medium-grained decomposition reduces communica-

tion volume by 36-90% compared to the coarse-grained decomposition and is 1.5-5.0×
faster than the state-of-the-art decomposition with 1024 cores.

Imposing constraints on a factorization, such as non-negativity or sparsity, is a

natural way of encoding prior knowledge of the multi-way data. While constrained

factorizations are useful for practitioners, they can greatly increase factorization time

due to slower convergence and computational overheads. We present a parallelization

strategy and two approaches for accelerating constrained factorizations. By redefining

the convergence criteria of the inner subproblems, we are able to split the data in a way

that not only accelerates the per-iteration convergence, but also speeds up the execution

of the computations due to efficient use of cache resources. Second, we develop a method

of exploiting dynamic sparsity in the factors to speed up tensor-matrix kernels. These

combined advancements achieve up to 8× speedup over the state-of-the-art on a variety

of real-world sparse tensors.

In some applications, a tensor is sparse because of data that is missing instead of

numerically zero. Tensor completion is a powerful tool used to estimate or recover miss-

ing values in multi-way data. We study three optimization algorithms that have been

successfully applied to tensor completion: alternating least squares (ALS), stochastic

gradient descent (SGD), and coordinate descent (CCD++). We explore opportunities

for parallelism on shared- and distributed-memory systems and address challenges such
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as memory- and operation-efficiency, load balance, cache locality, and communication.

Furthermore, we show that introducing randomization during ALS and CCD++ can ac-

celerate convergence. We evaluate our parallel formulations on a variety of real datasets

on a modern supercomputer and demonstrate speedups through 16,384 cores. These

improvements reduce time-to-solution from hours to seconds on real-world datasets.

Lastly, we turn to the Tucker decomposition, which is a higher-order analogue of the

singular value decomposition. Computing the Tucker decomposition is more demand-

ing than the CPD in terms of memory and computational resources. State-of-the-art

algorithms accelerate the underlying computations by trading off memory to store in-

termediate results and reuse them across iterations. We present an algorithm based on

a compressed data structure for sparse tensors and show that many computational re-

dundancies during the computations can be identified and pruned without the memory

overheads of competing approaches. In addition, the presented algorithm can further

reduce the number of operations by exploiting an additional amount of user-specified

memory. We evaluate our algorithm on a collection of real-world and synthetic datasets

and demonstrate up to 20.7× speedup while using 28.5× less memory than the state-

of-the-art parallel algorithm.
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Chapter 1

Introduction

Many domains rely on data with variables interacting in multiple ways. An electronic

health record is an interaction between variables such as a patient, symptoms, diagnoses,

medical procedures, and outcome. Similarly, how much a listener will like a song is an

interaction between the listener, the song, and the setting (e.g., whether the listener is

relaxing, studying, or dancing). These relationships can be modeled as a tensor, which is

the generalization of a matrix to higher order. Tensor factorization is a technique similar

to its matrix analogs that produces a lower-dimensional representation of the data.

This form most often has lower rank than the original data, thus reducing complexity

and noise in the original data while exposing relationships that can lead to insights.

Numerous fields such as recommender systems [1], health analytics [2], cybersecurity [3],

and social network analysis [4] utilize tensor factorization to gain useful insight and make

better decisions.

Common traits among all of these applications are the high dimensionality and

extreme level of sparsity of the data. Exploiting tensor sparsity is essential for devel-

oping efficient factorization algorithms. However, sparsity makes the underlying data

unstructured, which requires a significant rethinking on how to perform the underlying

computations. Unstructured applications often achieve only a small fraction of poten-

tial performance due to challenges including data-dependent parallelism and memory

accesses, high memory consumption, and frequent fine-grained synchronizations among

cores. Existing tools can take days or even weeks to factor large sparse tensors and can

require memory that far exceeds what is available in today’s computers.
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The last decade has seen a shift in computer hardware from releasing faster, more

powerful cores to placing a large number of low-powered cores in a single machine.

Laptops with four or even eight cores are now ubiquitous and the latest generation of

servers have over fifty cores. If we want to process increasingly large datasets, algorithm

developers must embrace modern hardware and exploit highly parallel machines.

Thus, it is imperative to develop algorithms and software that utilize parallel systems

to accelerate and enable the processing of massive sparse tensors. By developing novel

methods and releasing them to the community, domain experts and fellow researchers

can analyze large multi-way data and gain insights that were previously infeasible to

obtain without high-performance computing (HPC).

1.1 Contributions

The contributions of this thesis are efficient and parallel algorithms for several forms

of tensor factorization in the context of large, sparse datasets. Our advancements in-

clude scaling up the popular canonical polyadic decomposition (CPD) on shared- and

distributed-memory systems, efficiently enforcing constraints on the CPD, large-scale

tensor completion, and an asymptotic improvement to the Tucker decomposition. Com-

mon themes among these advancements are compressed data structures, operation- and

memory-efficient algorithms, and increased parallelism.

The research presented in this thesis is culminated in SPLATT, an open source

toolkit for large-scale sparse tensor factorization [5]. SPLATT is now actively used by

researchers in academia, industry, and government.

1.1.1 Accelerating the CPD on Multi-Core Systems

The most expensive step when factoring large, sparse tensors is performing a sequence of

tensor-matrix kernels that comprise each iteration of the optimization procedure. The

kernels have several key challenges: (i) unstructured, data-dependent memory accesses,

(ii) high computational cost, and (iii) intermediate results that can consume orders of

magnitude more memory than the input or output of the kernel. Efficient approaches

must simultaneously minimize the number of performed operations and memory accesses

while constraining the amount of memory consumed.
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In this thesis (Chapter 4), we present several optimizations for performing large-

scale factorizations on multi-core systems. These optimizations include a data structure

for sparse tensors that facilitates performing the key kernels in both a memory- and

operation-efficient manner, methods of increasing the degree of available parallelism,

and a method of cache-friendly reorderings and tilings. These optimizations achieve an

average of almost 5× speedup over the state-of-the-art parallel approach on a 16-core

system.

1.1.2 Accelerating the CPD on Many-Core Systems

The growing demands of data intensive applications have driven the adoption of many-

core processors. These are highly parallel processors that feature several tens of cores

with wide vector instructions. The large processing capabilities of many-core processors

places increased pressure on memory bandwidth that DDR memory is unable to satisfy.

A key recent trend of many-core processors is the inclusion of high-bandwidth memory,

which has several times higher bandwidth than traditional DDR memory. This trend is

exemplified in recent architectures such as NVIDIA Pascal, AMD Fiji, and Intel Knights

Landing (KNL).

In this thesis (Chapter 5), we present an exploration of performance optimizations

for sparse tensor factorization on many-core processors. We study the CPD and use

KNL as a vehicle for exploration. We identify and address challenges that involve both

the algorithms used for the CPD and the utilization of KNL’s architectural features.

Specifically, we address issues associated with extracting concurrency at different levels

of granularity from unstructured and sparse data, load balancing computations in the

presence of highly skewed data distributions, and understanding the different trade-offs

between fine-grained synchronization and storage overheads.

1.1.3 Accelerating the CPD on Distributed-Memory Systems

Some applications require the lowest possible time to solution, or use datasets that

are too large to process on a single machine. In order to solve such problems we turn

to supercomputers, which are distributed systems that support millions of concurrent

threads of execution and communicate over a high-speed network. The tradeoff for
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increased computational and memory resources is a larger need for scalable parallel

algorithms. Scalability can only be achieved if work is balanced among the machines

and network communications do not outweigh the benefits of additional parallelism.

In this thesis (Chapter 6), we present for computing the CPD on distributed-memory

systems. Our contributions include a way of distributing the input and output data that

that co-optimizes bandwidth and latency by trading a small amount of additional com-

munication volume for fewer exchanged messages. This medium-grained decomposition

achieves 1.5× to 5× speedup over the state-of-the-art distributed approach on a 1024-

core system.

1.1.4 Sparse Tensor Factorization with Constraints

Oftentimes, a domain expert wishes to encode some prior knowledge of the data in

order to obtain a more interpretable factorization. Prior knowledge is typically incor-

porated by either forcing the solution to take some form (i.e., imposing a constraint),

or penalizing unwanted solutions (i.e., adding a regularization). For example, imposing

a non-negativity constraint on a factorization allows one to better model data whose

values are additive. Similarly, adding a regularization term which encourages sparsity

can help model data whose interactions are sparse. While valuable to practitioners,

constrained and regularized factorizations change the underlying computations and can

significantly increase the computational cost of factorization.

In this thesis (Chapter 7), we present a parallelization strategy and high performance

implementation for computing the CPD with constraints. Our algorithm features two

optimizations: (i) a blockwise reformulation of underlying optimization algorithm to im-

prove convergence rate, parallelism, and cache efficiency; and (ii) a method of exploiting

the sparsity which dynamically evolves in the factorization.

1.1.5 Large-Scale Tensor Completion

In many cases, a tensor is sparse due to values which are missing or unknown instead

of numerically zero. Tensor completion is the problem of recovering or predicting the

values in a sparse tensor and can be approached with tensor factorization. The resulting

optimization formulation differs from traditional factorization problems and is addressed
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with a variety of algorithms and underlying computations.

In this thesis (Chapter 8), we explore high performance tensor completion with three

popular optimization algorithms. We address issues on shared- and distributed-memory

systems such as memory and operation-efficient algorithms, cache locality, load balance,

and communication. The resulting algorithms are demonstrated to scale to thousands

of cores and outperform the state-of-the-art parallel methods by up to 150×.

1.1.6 Accelerating the Tucker Decomposition

The Tucker decomposition is another form of tensor factorization and can be viewed as

the higher-order analogue of the singular value decomposition. Computing the Tucker

decomposition of a sparse tensor is more demanding than the CPD in terms of both

memory and computational resources. Existing approaches either have long runtimes

or require larger amounts of intermediate memory than the combined problem input

and output.

In this thesis (Chapter 9), we restructure the underlying computations in order to

remove two forms of redundant computations that occur during the factorization pro-

cedure. We present an algorithm for performing the computations with a sparse tensor

that is as computationally efficient as state-of-the-art algorithms, while requiring less

additional intermediate memory. Additionally, this approach enables users to optionally

trade off additional memory for computational savings.

1.2 Outline

The rest of this thesis is organized as follows. Chapter 2 establishes notation and pro-

vides a introduction to tensors and their factorizations. Chapter 3 details related work

in the field of large-scale sparse tensor factorization. Chapter 4 focuses on shared-

memory parallel systems and presents our work on restructuring and accelerating a

kernel that is ubiquitous in many tensor factorizations. Chapter 5 explores performance

optimizations for sparse tensor computations on emerging many-core processors. Chap-

ter 6 presents our work on computing tensor factorizations using distributed-memory

parallel systems. Chapter 7 focuses on efficiently incorporate constraints via a restruc-

turing of the underlying optimization problem and data structures. Chapter 8 details
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HPC formulations of several optimization algorithms for tensor completion. Chapter 9

presents our operation-efficient algorithms for the Tucker decomposition. Finally, we

offer concluding remarks in Chapter 10.

1.3 Related Publications

The work presented in this thesis has been published in several leading conferences and

journals in parallel computing. The related publications are as follows:

• Shaden Smith, Niranjay Ravindran, Nicholas D. Sidiropoulos, and George Karypis.

SPLATT: Efficient and parallel sparse tensor-matrix multiplication. 29th IEEE

International Parallel & Distributed Processing Symposium (IPDPS), 2015.

• Shaden Smith and George Karypis. Tensor-matrix products with a compressed

sparse tensor. Proceedings of the 5th Workshop on Irregular Applications: Archi-

tectures and Algorithms (IA3), 2015.

• Shaden Smith, Jongsoo Park, and George Karypis. Sparse tensor factorization

on many-core processors with high-bandwidth memory. 31st IEEE International

Parallel & Distributed Processing Symposium (IPDPS), 2017.

• Shaden Smith and George Karypis. A medium-grained algorithm for distributed

sparse tensor factorization. 30th IEEE International Parallel & Distributed Pro-

cessing Symposium (IPDPS), 2016.

• Shaden Smith, Alec Beri, and George Karypis. Constrained tensor factorization

with accelerated AO-ADMM. 46th International Conference on Parallel Process-

ing (ICPP), 2017.

• Shaden Smith, Jongsoo Park, and George Karypis. HPC formulations of opti-

mization algorithms for tensor completion. Parallel Computing, (74), 2018.

• Shaden Smith and George Karypis. Accelerating the Tucker decomposition with

compressed sparse tensors. European Conference on Parallel Processing (Euro-

Par), 2017.



Chapter 2

Background & Notation

We first provide a background on tensors, the notations used in this document, and

tensor factorization. For further background on tensors and tensor factorization, we

direct the reader to several essential surveys [6, 7].

2.1 Notation

Tensors are the generalization of matrices to higher dimensions, or modes. We denote

vectors using bold lowercase letters (λ), matrices using bold capital letters (A), and

tensors using bold capital calligraphic letters (X ).

We will limit discussion to three-mode tensors when possible for clarity and nota-

tional convenience. When discussing tensors of general order, we denote the number

of modes as N . A third-order tensor is assumed to have dimensions I×J×K, and an

nth-order tensor has dimensions I1×I2× . . .×IN . We use nnz(X ) to denote the number

of non-zero elements in X . A tensor entry with coordinate (i, j, k) is denoted X (i, j, k),

and matrix entries are similarly denoted A(i, j). A colon in the place of an index repre-

sents all entries of that mode. For example, A(:, f) is the fth column of the matrix A.

Fibers are the generalization of matrix rows and columns and are the result of holding

two indices constant (e.g., X (i, j, :) or X (i, :, k)). A slice of a tensor is the result of

holding one index constant and the result is a matrix (e.g., X (i, :, :)).

A tensor can be unfolded, or matricized, into a matrix along any of its modes. In

the mode-n matricization, the mode-n fibers form the columns of the resulting matrix.

7
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X (:, :, 1) =

[
1 2 3

4 5 6

]
X (:, :, 2) =

[
7 8 9

10 11 12

]

X(1) =

[
1 2 3 7 8 9

4 5 6 10 11 12

]

X(2) =


1 4 7 10

2 5 8 11

3 6 9 12


X(3) =

[
1 4 2 5 3 6

7 10 8 11 9 12

]

Figure 2.1: The matricizations of an (2×3×2) tensor.

The mode-n unfolding of X is denoted as X(n). If X has dimension I×J×K, then X(1)

is I×JK. Figure 2.1 illustrates the unfoldings of a third-order tensor.

2.2 Common Matrix and Tensor Operations

Three essential matrix operations are the Hadamard product, the Kronecker product,

and the Khatri-Rao product. The Hadamard product, denoted A ∗ B, is the element-

wise multiplication of A and B. The element (m,n) of A ∗ B is A(m,n)B(m,n). A

and B must match in dimension for the Hadamard product to exist. The Kronecker

product, denoted A⊗B, is a generalization of the vector outer product to matrices and

is defined as

A⊗B =


A(1, 1)B . . . A(1, F )B

...
. . .

...

A(I, 1)B . . . A(I, F )B

 .
If A is I×F and B is J×F , then A⊗B is IJ×F 2. The Khatri-Rao product, denoted

A � B, is defined in terms of the Kronecker product

A � B = [A(:, 1)⊗B(:, 1), . . . , A(:, F )⊗B(:, F )] .



9

B =

[
b11 b12

b21 b22

]

C =


c11 c12

c21 c22

c31 c32


C � B =



c11b11 c12b12

c11b21 c12b22

c21b11 c22b12

c21b21 c22b22

c31b11 c32b12

c31b21 c32b22



Figure 2.2: The Khatri-Rao product of two matrices.

A and B must have matching column dimension for their Khatri-Rao product to be

defined. If A is I×F and B is J×F , then A � B is IJ×F . Figure 2.2 illustrates the

Khatri-Rao product.

Matricized Tensor Times Khatri-Rao Product A common kernel in tensor fac-

torizations is the matricized tensor times Khatri-Rao Product (MTTKRP), denoted

X(1)(C�B). If B and C each have F columns, then the result of MTTKRP is an I×F
matrix that is typically dense. When X is large and sparse, the Khatri-Rao product

(C�B) cannot be constructed in practice due to it being a dense JK×F matrix, which

can be orders of magnitude larger than X . Numerous approaches have been developed

to avoid this intermediate data explosion and are discussed in Section 3.1.1.

Tensor-Matrix Product. The tensor-matrix product, or n-mode product [6], multi-

plies a tensor by a matrix along the nth mode. Suppose M is an F×In matrix. The

tensor-matrix product for the nth mode, denoted X×nM, emits a tensor with dimen-

sions I1× . . .×In−1×F×In+1× . . .×IN . Elementwise,

(X×nM)(i1, . . . , in−1, f, in+1, . . . , iN ) =

In∑
in=1

X (i1, . . . , iN )M(f, in).

Note that the resulting mode-n fibers are generally dense regardless of the sparsity

pattern of X .
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≈ + . . . +

Figure 2.3: The CPD as the summation of outer products.

2.3 Canonical Polyadic Decomposition

The canonical polyadic decomposition (CPD) is the most widely used tensor factoriza-

tion, especially in the case of large, sparse tensors [6]. The rank-F CPD decomposes a

tensor X ∈ RI×J×K into factors A ∈ RI×F , B ∈ RJ×F , and C ∈ RK×F . In our appli-

cations of interest, we are most often interested in a low-rank factorization, in which F

is a small constant on the order of 10 or 100.

Shown in Figure 2.3, the CPD models a tensor as the summation of F outer products:

X ≈
F∑
f=1

A(i, :) ◦B(j, :) ◦C(k, :).

The CPD can also be formulated elementwise using multi-way inner products:

X (i, j, k) ≈
F∑
f=1

A(i, f)B(j, f)C(k, f). (2.1)

The CPD is formulated as the following optimization problem:

minimize
A,B,C

L(X ; {A,B,C})

where L(·) is some suitable loss function. Two common loss functions are the traditional

sum-of-squares loss:

L(X ; {A,B,C}) =
1

2

∥∥∥∥∥∥X −
F∑
f=1

A(:, f) ◦B(:, f) ◦C(:, f)

∥∥∥∥∥∥
2

F

, (2.2)

and one that treats sparsity as missing instead of numerical zeros:

L(X ; {A,B,C}) =
1

2

∑
(i,j,k)∈Ω

X (i, j, k)−
F∑
f=1

A(i, f)B(j, f)C(k, f)

2

, (2.3)
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where Ω is the set of observed entries in X . Note that Equation (2.3) is only defined over

the observed entries of X and is derived from the element-wise formulation of the CPD

in Equation (2.1). As a result, it can be used to predict or recover the missing values

in the tensor as opposed to modeling numerical zeros, as Equation (2.2) is designed to

do. Optimizing with loss function Equation (2.3) is a task often referred to as tensor

completion.

2.3.1 Computing the CPD with Alternating Least Squares

Computing the least-squares CPD is a non-convex optimization problem most often

approximated with alternating optimization (AO) approaches. AO approaches simplify

the computation by holding all but one factor matrix constant to reach a convex for-

mulation. The factor matrices are cyclicly updated in this manner. The most common

AO approach is alternating least squares (CPD-ALS) [6]. During each iteration, B and

C are fixed and we solve the unconstrained quadratic optimization problem

minimize
A

1

2

∥∥X(1) −A(C � B)ᵀ
∥∥2

F

with solution

Aᵀ = (CᵀC ∗BᵀB)−1
(
X(1)(C � B)

)ᵀ
.

An important consequence of using ALS is that computations are mode-centric,

meaning each of the kernels will update only one mode of the factorization. Therefore,

when discussing algorithmic details we will sometimes only refer to the first mode and

imply that the other modes proceed similarly by appealing to symmetry.

Algorithm 1 details the CPD-ALS algorithm. There are three primary computa-

tions required to update a factor matrix: (i) construction of the F×F normal equa-

tions, (ii) MTTKRP, and (iii) solving for the new factor matrix. Constructing the

normal equations involves forming N−1 Gram matrices of size F×F . While each Gram

computation requires O(IF 2) operations, they can be cached and only require recom-

putation after the factor is updated. MTTKRP can be performed in O(F nnz(X )) time

and is the most computationally expensive step of CPD-ALS. The output of MTTKRP

is a matrix matching the dimensionality of the factor matrix being updated (e.g., I×F ).

Lastly, solving for the new factor matrix is implemented with a Cholesky factorization
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Algorithm 1 CPD-ALS

1: while not converged do

2: Aᵀ ← (CᵀC ∗BᵀB)−1
(
X(1)(C � B)

)ᵀ
3: Bᵀ ← (CᵀC ∗AᵀA)−1

(
X(2)(C � A)

)ᵀ
4: Cᵀ ← (BᵀB ∗AᵀA)−1

(
X(3)(B � A)

)ᵀ
5: end while

in O(F 3) time and forward/backward substitutions taking O(IF 2) time. Steps (i) and

(iii) are inexpensive relative to MTTKRP and also can be efficiently implemented using

well-studied dense linear algebra packages such as LAPACK [8]. Thus, most research

on large-scale sparse tensor factorization focuses on the MTTKRP computation.

CPD-ALS iterates until convergence. The residual of a tensor X and its CPD

approximation Z is √
〈X ,X 〉+ 〈Z,Z〉 − 2〈X ,Z〉,

where 〈·, ·〉 denotes the inner product. The expression 〈X ,X 〉 is equivalent to ||X ||2F ,

and is a direct extension of the matrix Frobenius norm, i.e., the sum-of-squares of all

non-zero elements. X is also a constant input and thus its norm can be pre-computed.

The norm of a factored tensor is

||Z||2F = 1ᵀ (CᵀC ∗BᵀB ∗AᵀA) 1.

Fortunately, each AᵀA product is computed during the CPD-ALS iteration and the

results can be cached and reused in just O(F 2) space. The complexity of computing

the residual is dominated by the inner product 〈X ,Z〉 which is given by

F∑
f=1

 ∑
(i,j,k)∈Ω

X (i, j, k)A(i, f)B(j, f)C(k, f)

 . (2.4)

The cost of Equation (2.4) is 4F nnz(X ) floating-point operations (FLOPs), which is

as expensive than an MTTKRP operation. In Section 6.1.3 we present a method of

reusing MTTKRP operation results to reduce the cost to 2FI.



13

2.3.2 Incorporating Constraints with AO-ADMM

Domain-specific knowledge is often used to guide a tensor factorization in order to

arrive at a more interpretable or insightful result. For example, when working with

physical phenomena (e.g., weather simulations or medical diagnoses), negative values

do not have real-world meanings. Similarly, a doctor may already know that some

procedures and diagnoses are related, and by guiding the tensor factorization to include

that prior knowledge we can discover new relationships that complement those that

were previously known. Domain-specific knowledge is encoded in a tensor factorization

in the form of constraints on the solution. For example, a non-negativity constraint

forces the solution to only include non-negative values.

We can modify Equation (2.2) to encode constraints:

minimize
A,B,C

1

2

∥∥∥∥∥∥X −
F∑
f=1

A(:, f) ◦B(:, f) ◦C(:, f)

∥∥∥∥∥∥
2

F

+ r(A) + r(B) + r(C),
(2.5)

where r(·) is a penalty function. Constraints can be implemented by having r(·) take the

value of infinity when the constraint is violated, and regularizations use finite values to

penalize unwanted (but valid) solutions. For example, a non-negativity constraint uses

the indicator function of R+ and sparsity-inducing regularization uses || · ||1. Due to the

similar nature of constraints and regularizations, we will use the terms interchangeably.

When no constraints are enforced, Equation (2.5) can simply be solved with CPD-

ALS. AO-ADMM [9, 10] combines the AO framework with the alternating direction

method of multipliers (ADMM), which is a popular framework for constrained optimiza-

tion problems [11]. AO-ADMM inherits positive qualities from each: a monotonically

decreasing objective function from AO and the ability to flexibly incorporate constraints

from ADMM.

AO-ADMM proceeds with a sequence of outer and inner iterations. Each step of

an outer iteration optimizes one of the matrix factors by means of ADMM. Internally,

ADMM executes a sequence of inner iterations to enforce constraints. Since the ADMM

algorithm is the same across all of the tensor modes, we will simplify the discussion and

only consider the computations associated with the first mode.
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Algorithm 2 ADMM to solve Equation (2.6)

1: Input: H, U, K, G

2: Output: H, U

3: ρ← trace(G)/F

4: L← Cholesky(G + ρI)

5: repeat . Inner iterations

6: H̃← L−TL−1 (K + ρ(H + U))T

7: H0 ← H

8: H← argminH r(H) + ρ
2 ||H− H̃

T
+ U||2F

9: U← U + H− H̃
T

10: r ← ||H− H̃
T
||2F /||H||2F

11: s← ||H−H0||2F /||U||2F
12: until r < ε and s < ε

When discussing ADMM, we refer to the primal and dual variables as H ∈ RI×F

and U ∈ RI×F , respectively. An auxiliary variable H̃ ∈ RF×I is introduced to arrive at

a constrained optimization problem in the form of ADMM:

minimize
H,H̃

1

2

∥∥∥X(1) − H̃
T

(C � B)T
∥∥∥2

F
+ r(H)

subject to H = H̃
T
.

(2.6)

Algorithm 2 details the resulting ADMM algorithm. It accepts as input the primal and

dual variables and two additional matrices: (i) K ∈ RI×F , the output of the MTTKRP

operation; and (ii) G ∈ RF×F , the Gram matrix which is formed via G = (BTB∗CTC).

Line 6 executes forward- and backward-substitution on an F×I matrix in O(F 2I) time.

Line 8 is the proximity operator and varies based on r(·). For example, non-negativity

constraints project to the non-negative orthant (i.e., re-assign negative entries to be

zero). Line 9 updates the dual variable and lastly, lines 10 and 11 compute the relative

primal and dual residuals.

Finally, the complete AO-ADMM framework is detailed in Algorithm 3. The fac-

tors are cyclically updated using Algorithm 2. Each MTTKRP operation requires

O(F nnz(X )) operations and is often the most expensive step of the AO-ADMM frame-

work.
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Algorithm 3 AO-ADMM

1: Initialize primal variables A, B, and C randomly.

2: Initialize dual variables Â, B̂, and Ĉ with 0.

3: while not converged do . Outer iterations

4: G← BTB ∗CTC

5: K← X(1) (C � B) . MTTKRP

6: A, Â← ADMM(A, Â,K,G) . Algorithm 2

7:

8: G← ATA ∗CTC

9: K← X(2) (C � A) . MTTKRP

10: B, B̂← ADMM(B, B̂,K,G) . Algorithm 2

11:

12: G← ATA ∗BTB

13: K← X(3) (B � A) . MTTKRP

14: C, Ĉ← ADMM(C, Ĉ,K,G) . Algorithm 2

15: end while

2.3.3 Optimization Algorithms for Tensor Completion

In the case of tensor completion, Equation (2.3) is most commonly augmented with a

regularization on the factor matrices to prevent overfitting. We arrive at the following

objective function:

minimize
A,B,C

1

2

∑
(i,j,k)∈Ω

X (i, j, k)−
F∑
f=1

A(i, f)B(j, f)C(k, f)

2

+
λ

2

(
||A||2F + ||B||2F + ||C||2F

)
,

(2.7)

where λ is a parameter to scale regularization. The non-convexity of Equation (2.7) has

inspired a substantial amount of research on optimization algorithms that effectively

minimize the objective while being operation- and memory-efficient enough to be used

in practice. While the traditional CPD is overwhelmingly computed using CPD-ALS,

many optimization algorithms are actively used for tensor completion. Three optimiza-

tion algorithms have seen particular success due to their efficiency, opportunities for
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Table 2.1: Summary of optimization algorithms for tensor completion.

Algorithm Complexity Storage Traversals Ref.

ALS O(N(F 2 nnz(X ) + IF 3)) O(F 2) N [12, 13]

SGD O(NF nnz(X )) O(F ) 1 [12, 14]

CCD++ O(NF nnz(X )) O(I) NF [14, 13]

Complexity is the number of floating-point operations performed in one epoch. Storage is the

amount of memory required to perform the factorization, excluding matrix and tensor storage.

Traversals is the number of times the sparsity structure must be traversed in one epoch, excluding

checks for convergence. Ref. provides references for the tensor variant of the algorithm. F is the

rank of the factorization. N is the number of modes in the tensor. I is the length of the longest mode.

parallelism, and fast convergence. These methods are summarized in Table 2.1 and

described below.

We follow the convention of the matrix completion community and refer to an epoch

as the work performed to update A, B, and C one time using the training data. We

avoid the term iteration in order to emphasize the varying amounts of work performed

and progress made.

For convenience, we define the loss function L′(i, j, k) to be the loss local to a given

entry:

L′(i, j, k) = X (i, j, k)−
F∑
f=1

A(i, f)B(j, f)C(k, f).

Alternating Least Squares. Like the least-squares CPD, ALS can also used in the

tensor completion setting. However, instead of each factor matrix having an update,

each row is updated independently in the tensor completion setting. Illustrated in

Figure 2.4, computing A(i, :) accesses all entries in X (i, :, :) and also the rows B(j, :

) and C(k, :) for each entry X (i, j, k). The rows of B and C are used to compute

Hi, a |X (i, :, :)|×F matrix. If the lth entry in X (i, :, :) has coordinate (i, j, k), then

Hi(l, :) = [B(j, :) ∗C(k, :)]. Given Hi, we can compute A(i, :) via

A(i, :)←
(
HT
i Hi + λI

)−1
HT
i vec(X (i, :, :)), (2.8)
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A =

B

C

Figure 2.4: Memory accesses during ALS for tensor completion. Computing A(i, :) (in

orange) requires X (i, :, :) and the corresponding rows of B and C.

where vec(·) rearranges the entries of its argument into a dense vector. The matrix(
HT
i Hi + λI

)
is symmetric positive-definite and so the inversion is accomplished via a

Cholesky factorization and forward/backward substitutions. ALS requiresO(F 2 nnz(X ))

operations to form all of the Hi, and O(F 3) operations per row for the matrix inver-

sions. In total, O(F 2 nnz(X )+IF 3) operations are performed to update a factor. After

computing all rows of A, the other factors are computed in the same manner.

Stochastic Gradient Descent. The strategy of stochastic gradient descent (SGD) is

to take many small steps per epoch, each based on the gradient at a single observation.

At each step, SGD selects one entry at random and updates the factorization based on

the gradient at X (i, j, k). Updates are of the form

A(i, :)← A(i, :) + η
[
L′(i, j, k) (B(j, :) ∗C(k, :))− λA(i, :)

]
,

B(j, :)← B(j, :) + η
[
L′(i, j, k) (A(i, :) ∗C(k, :))− λB(j, :)

]
,

C(k, :)← C(k, :) + η
[
L′(i, j, k) (A(i, :) ∗B(j, :))− λC(k, :)

]
,

where η is a step size parameter. Each update requires O(F ) operations, resulting in a

complexity of O(F nnz(X )) per epoch.

Coordinate Descent. In contrast to ALS and SGD which update entire factor rows

at a time, coordinate descent methods optimize only one variable at a time. CCD++ is

a coordinate descent method originally developed for matrix factorization [15] and later
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extended to tensors [14, 13]. CCD++ updates columns of A, B, and C in sequence, in

effect optimizing the rank-one components of the factorization. Updates take the form:

A(i, f)← αi
λ+ βi

, (2.9)

where

αi =
∑

X (i,:,:)

L′(i, j, k)B(j, f)C(k, f),

and

βi =
∑

X (i,:,:)

(B(j, f)C(k, f))2 .

After updating A(:, f), the columns B(:, f) and C(:, f) are updated similarly. An

important optimization for CCD++ is to compute L(·) only once each epoch and reuse

it for each of the F columns [15]. This can be accomplished without additional storage by

directly updating X each iteration with the current residual. The resulting complexity

is O(F (nnz(X )+I+J+K)), which for most datasets is O(F nnz(X )), matching SGD.

2.4 Tucker Decomposition

The Tucker decomposition is another form of tensor factorization used in applica-

tions such as anomaly detection [3], healthcare [2], recommender systems [1], and web

search [16]. Illustrated in Figure 2.5, the objective of the Tucker decomposition is to

model a tensor X with a set of factor orthonormal matrices A, B, and C that respec-

tively have F1, F2, and F3 columns, and a core tensor, G, of size F1×F2×F3.

2.4.1 Higher-Order Orthogonal Iterations

Like the CPD, computing the Tucker decomposition is a non-convex optimization prob-

lem:

minimize
A,B,C,G

1

2

∥∥X(1) −AG(1) (C⊗B)ᵀ
∥∥2

F
,

subject to AᵀA = I, BᵀB = I, CᵀC = I.

Several optimization algorithms have been developed to compute the Tucker decom-

position, including the higher-order SVD (HOSVD) [17] and higher-order orthogonal

iterations (HOOI) [18]. HOSVD is popular for decomposing dense tensors and efficient
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≈
×1

×2

×3

Figure 2.5: A rank-{F1, F2, F3} Tucker factorization of an I×J×K tensor.

Algorithm 4 Tucker Decomposition with HOOI

1: while G not converged do

2: Y ← X ×2 Bᵀ ×3 Cᵀ

3: A← F1 leading left singular vectors of Y(1)

4: Y ← X ×1 Aᵀ ×3 Cᵀ

5: B← F2 leading left singular vectors of Y(2)

6: Y ← X ×1 Aᵀ ×2 Bᵀ

7: C← F3 leading left singular vectors of Y(3)

8:

9: G ← X ×1 Aᵀ ×2 Bᵀ ×3 Cᵀ

10: end while

parallel algorithms have been developed [19, 20]. However, the computation becomes

progressively more dense during HOSVD and it is not often applied to sparse compu-

tations. Thus, HOOI is the most popular algorithm for sparse tensors.

HOOI follows an alternating approach and cyclically updates each factor matrix

until convergence. Algorithm 4 details the steps in computing the factor matrices and

core tensor using HOOI. At its core is a tensor-times-matrix chain (TTMc), which

performs a sequence of tensor-matrix products along all but one of the tensor modes

(see Section 2.2). The result is flattened to a matrix and the leading left singular vectors

are used to form the next factor matrix.



Chapter 3

Related Work

In this chapter, we overview work in the area of computing sparse tensor factorizations.

We focus on parallel algorithms for the various kernels that arise while computing the

CPD and Tucker models.

3.1 Computing the CPD

The key kernel to accelerate when computing the CPD is the MTTKRP operation,

which can consume over 95% of the total execution time. The remaining computations

consist of dense linear algebra, which can be efficiently handled using libraries such as

BLAS.

3.1.1 CPD on Shared-Memory Systems

Over the years, a number of approaches have been developed for performing the MT-

TKRP. The most efficient of these methods operate in O(nnz(X )) time, but differ in

memory consumption, cache utilization, and opportunities for parallelism.

Elementwise Formulation

The MTTKRP can be computed in place by observing the tensor in its non-matricized

form. When updating the first factor matrix, each non-zero contributes:

K(i, :)← K(i, :) +X (i, j, k) [B(j, :) ∗C(k, :)] , (3.1)

20
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Figure 3.1: A sparse tensor represented in coordinate format. The tensor has four modes

and eight non-zeros.

for a total of 3F nnz(X ) operations.

Elementwise approaches are natural when X is represented in coordinate format,

the most popular storage format for sparse tensors. Shown in Figure 3.1, the coordinate

format for sparse tensors represents the tensor as an nnz(X )×N matrix of indices and

a vector of values of length nnz(X ).

Sparse Tensor-Vector Products

Each column of K is a linear combination of the fibers of X with columns of B and

C. MTTKRP can be viewed as a series of F tensor-vector products [21]. Using tensor-

vector products is the chosen method for several major MATLAB implementations such

as Tensor Toolbox [22] and Tensorlab [23].

A three-mode tensor requires two tensor-vector products per column of K. A tem-

porary array t of size nnz(X ) is used to “stretch” the vectors B(:, f) and C(:, f) to map

to non-zeros of X . For each column f , the two tensor-vector products are performed at

once and stored within t. Once t is filled, we need to “shrink” it to a vector of length

I. This effectively sums all of the entries of t that correspond to non-zeros X (i, :, :) and

stores the result as K(i, f). Algorithm 5 presents pseudocode for computing tensor-

vector products.

Using sparse tensor-vector products uses 3F nnz(X ) FLOPs (i.e., 2F nnz(X ) for the

initial products and F nnz(X ) for the accumulation steps) and nnz(X ) intermediate
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Algorithm 5 MTTKRP via Sparse Tensor-Vector products.

Input: X stored in coordinate format

Output: K← X (C � B)

for f ← 0 to F do

for z ← 0 to nnz(X ) do . Vector products

t[z]← vals[z]B(indJ [z], f)C(indK[z], f)

end for

for z ← 0 to nnz(X ) do . Accumulate K(:, f)

K(indI[z], f)← K(indI[z], f) + t[z]

end for

end for

memory words for t. Each non-zero can be processed in parallel during the “stretch”

stage because a non-zero will only modify a single element of t. The accumulation step

does not have this guarantee, however, and must be executed serially. An advantage of

this method is that X can be simply stored in coordinate format and the algorithm can

be implemented in just a few lines of code in MATLAB.

3.1.2 CPD on Distributed-Memory Systems

Distributed-memory algorithm design brings new challenges over shared-memory al-

gorithm design. In addition to concerns towards memory- and operation-efficiency,

distributed-memory algorithms must be careful to load balance computations among

the multiple machines and to also minimize network communication, which is often the

primary overhead in parallel execution.

GigaTensor

GigaTensor [24] is a parallel CPD-ALS algorithm developed for the MapReduce [25]

paradigm. GigaTensor utilizes the parallelism of MapReduce by reformulating MT-

TKRP as a series of Hadamard products. There are no dependencies during a Hadamard

product and each element of the output can be computed in parallel.

GigaTensor avoids the construction of C � B by separately computing the contri-

butions of B(:, f) and C(:, f) with X(1) via two Hadamard products. After computing
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the separate contributions, the results are combined via a third Hadamard product.

The resulting matrix N has the same sparsity pattern as X(1) and each non-zero entry

N(i, y) is equal to

N(i, y) = X(1)(i, y)B(y%J, f)C(y/J, f). (3.2)

After computing the entries of N, the rows of the resulting matrix are summed to form

a column of K. The total process requires 5F nnz(X ) FLOPs and nnz(X ) + max(J,K)

intermediate memory.

DFacTo

DFacTo [26] is a CPD-ALS algorithm designed for distributed tensor factorization.

DFacTo uses an efficient MTTKRP algorithm that is posed as a series of sparse matrix-

vector multiplications (SpMVs). K is computed one column at a time and each column

is formed by two SpMVs. DFacTo first forms Xᵀ
(2), an IK×J sparse matrix whose

rows consist of the mode-2 fibers of X . When forming column K(:, f) we first compute

Xᵀ
(2)B(:, f) and store the result as the values of Kr, an I×K sparse matrix. Finally, we

compute KrC(:, f) and store the result in K(:, f). The process is repeated for each of

the F columns.

DFacTo requires (2 nnz(X )+P+1) memory words to storeX , where P is the number

of non-empty mode-2 fibers. An additional (2P+I+1) words are required to store Kr for

a total memory footprint of (2 nnz(X )+I+3P+2) words. DFacTo executes MTTKRP

in 2F (nnz(X )+P ) FLOPs. DFacTo consists entirely of SpMV operations and therefore

can take advantage of a wealth of existing research that can be applied to an efficient

parallel implementation.

HyperTensor

Kaya and Uçar presented HyperTensor, a parallel algorithm and software package for

distributed CPD-ALS [27]. HyperTensor uses a fine-grained decomposition over X in

which non-zeros are individually assigned to processes. Several methods of computing

such a decomposition are presented, with the most successful relying on hypergraph

partitioning. HyperTensor maps X to a hypergraph with nnz(X ) vertices and I+J+K

hyperedges. The vertex representing non-zero X (i, j, k) is connected to hyperedges
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i, j, and k. Their experimental evaluation show that a balanced partitioning of the

hypergraph leads to a load-balanced computation with low communication volume.

3.1.3 Constrained CPD

There is a large body of research dedicated to optimization algorithms for constrained

tensor factorization, especially in the context of non-negativity constraints. Zhang et al. [28]

presented a parallel algorithm for dense non-negative tensor factorization using pro-

jected gradient descent. Non-negative tensor factorization was formulated for the ADMM

framework by Liavas and Sidiropoulos [29]. Kannan et al. [30] developed a parallel al-

gorithm for dense and sparse non-negative matrix factorization using non-negative least

squares. For additional background on non-negative factorizations, we direct the reader

to the survey by Zhou et al. [31] and the book by Cichocki et al. [32].

3.2 Tensor Completion in the CPD Model

3.2.1 Alternating Least Squares

Parallel ALS algorithms exploit the independence of the I least squares problems and

solve them in parallel. ALS was one of the first optimization algorithms applied to

large-scale matrix completion [33]. Gates et al. [34] developed a high performance ALS

algorithm for matrix completion on CPUs and GPUs was The algorithm exploits level-3

BLAS opportunities during the construction of HT
i Hi.

ALS was first extended to tensor completion on shared-memory systems [12]. Shin

and Kang presented a distributed-memory implementation based on the MapReduce

paradigm [14]. They use a coarse-grained tensor decomposition which partitions each

mode separately, assigning to each process a set of complete X (i, :, :), X (:, j, :), and

X (:, :, k) slices. After a process updates A(i, :), the new values are broadcasted to

all other processes. Karlsson et al. developed a distributed-memory algorithm for

MPI [13]. The distributed-memory algorithm assigns tensor entries to processes without

restriction, allowing for nnz(X ) parallelism. The added parallelism comes with the cost

of communicating partial computations of HT
i Hi and HT

i vec(X (i, :, :)) with an all-

reduce, requiring O(IF 2) words communicated per process.
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Figure 3.2: Stratified SGD. Colored blocks of observations can be processed in parallel

without conflict.

3.2.2 Stochastic Gradient Descent (SGD)

SGD is parallelized by exploiting the independence of entries whose coordinates are

disjoint. The popular stratification-based SGD method [35] partitions an N -mode tensor

into a PN grids for P processes. For example, Figure 3.2 shows a case with N=3 and

P=3. The grid has PN−1 strata, each corresponding to P blocks in a diagonal line (i.e.,

{(1, t2, ..., tN ), (2, (t2 +1) mod P, ..., (tN +1) mod P ), ..., (P, (t2 +P−1) mod P, ..., (tN +

P − 1) mod P )} for all 1 ≤ t2, ..., tN ≤ P ). Each epoch comprises processing PN−1

strata, which covers all of the entries of the tensor. Since no two entries in different

blocks of a given stratum share the same index in any mode, P processes can work on

P blocks of a stratum in parallel.

Instead of stratification, some parallel SGD methods allow entries with overlapping

coordinates to be processed in parallel. Hogwild [36], a parallel algorithm for shared-

memory systems, exploits the stochastic nature of SGD to have lock-free parallelism.

The concept is simple: process the shuffled entries in parallel without stratification

or synchronization constructs. Due to the sparse nature of the input, race conditions

are expected to be rare. When they do occur, the stochastic nature of the algorithm

will naturally fix any errors and continue to converge. A similar idea for distributed-

memory systems is asynchronous SGD (ASGD). All entries are processed in parallel,

and a few times per epoch processes combine local updates to overlapped rows via

weighted averages. The communication and averaging of local updates are performed

asynchronously [37].
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3.2.3 Coordinate Descent (CCD++)

CCD++ is parallelized in the same manner as ALS in the tensor completion setting.

All of the αi’s and βi’s for a mode are computed independently, again leading to a

coarse-grained decomposition of X [15, 14]. After updating a factor column in parallel,

the new column factors are broadcasted to all processes. Karlsson et al. use a non-

restrictive decomposition of the tensor entries as in ALS [13]. Partial products are again

aggregated with an all-reduce and new columns are broadcasted. Only the components

of the current column must be communicated, and so in one epoch there are 2F messages

per factor matrix, each of size O(I).

3.3 Tucker Decomposition

TTMc is the key kernel when computing the Tucker Decomposition for sparse tensors.

Like MTTKRP, considerations for scalability include memory consumption, degree of

parallelism, and the number of required operations. Several approaches for TTMc have

been proposed. They fall into two broad categories: those which use additional compu-

tation in order to avoid intermediate memory blowup, and those which use memoization

to accelerate computation.

Memory-Efficient Tucker [38] avoids memory blowup by selectively computing columns

or elements of Y(n) at a time. Intermediate memory costs are minimized at the expense

of additional FLOPs and passes over the tensor structure.

Baskaran et al. [39] observed that partial computations can be reused across TTMc

kernels. Consider updating the first two factors of a four-mode tensor. Each TTMc

kernel constructs the partial computation X ×3 A(3)T ×4 A(4)T , despite its value not

changing between kernels. Baskaran et al. introduced memoization to TTMc by par-

titioning the tensor modes into two halves, and reusing the computations from one

half to accelerate the computations in the other half. Kaya and Uçar extended this

memoization strategy by using binary dimension trees to accelerate both the Tucker

decomposition [40] and CPD [41]. They store intermediate computations in the nodes

of the tree and can effectively limit the number of individual n-mode products to log(N)

per TTMc operation.

Kaya and Uçar also showed that one can avoid intermediate blowup by processing
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individual non-zeros [40]. For example, the following is used for mode-1:

Y(1)(i1, :)← Y(1)(i1, :) +X (i1, . . . , iN )
[
A(2)(i2, :)⊗ · · · ⊗A(N)(iN , :)

]
. (3.3)

A row of Y(1) is the only memory required to process a non-zero. The computational

complexity of using (3.3) to perform one TTMc kernel via streaming through each non-

zero is the cost of construction the Kronecker Products (KP) and accumulating them

into the result:

nnz(X )

N∑
i=2

i∏
j=2

Fj︸ ︷︷ ︸
KP construction

+ nnz(X ) 2

N∏
j=2

Fj︸ ︷︷ ︸
accumulation

= O

nnz(X )

N∏
j=2

Fj

 . (3.4)



Chapter 4

Accelerating the CPD on

Multi-Core Systems

In order to decompose large and sparse tensors, we must address issues including

operation- and memory-efficiency, parallelism, and cache locality. This chapter de-

rives a new way of computing MTTKRP by exploiting redundancies resulting from the

tensor structure. We detail methods of reordering the tensor indices and tiling over the

tensor to improve cache locality. We then present a compressed data structure that

exposes the redundancies inherent in the computations to enable the operation-efficient

algorithm. This data structure is also shown to expose parallelism that is inherent in

the algorithm. Lastly, we present methods of reducing the memory overhead of multiple

tensor representations and evaluate the inherent trade-offs.

4.1 An Operation-Efficient Algorithm for MTTKRP

Recall the contribution of each non-zero in the elementwise MTTKRP formulation dis-

cussed in Section 3.1.1:

K(i, :)← K(i, :) +X (i, j, k) [B(j, :) ∗C(k, :)] .

28
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If we consider subsequent contributions from two non-zeros that reside in the same

X (i, j, :) fiber

K(i, :)← K(i, :) +X (i, j, k1) [B(j, :) ∗C(k1, :)] ,

K(i, :)← K(i, :) +X (i, j, k2) [B(j, :) ∗C(k2, :)] ,

we note that the same rows of B and K are accessed. Since multiplication is a distribu-

tive operation, we can rearrange the computations into a single expression in order to

reduce the number of FLOPs and memory accesses:

K(i, :)← K(i, :) + B(j, :) ∗ [X (i, j, k1)C(k1, :) +X (i, j, k2)C(kn, :)] .

This strategy can more generally be applied to complete fibers of X :

K(i, :)← K(i, :) + B(j, :) ∗
∑

X (i,j,:)

X (i, j, kn)C(kn, :). (4.1)

Intuitively, Equation (4.1) simultaneously accumulates the F inner products between

the tensor non-zeros in X (i, j, :) and the columns of C, and then performs a single

Hadamard product with B(j, :) before updating the resulting row K(i, :) once. If X is

sparse and fiber X (i, j, :) has K̂ non-zeros, then F (K̂−1) FLOPs are saved, resulting

in a total 2F (nnz(X )+P ) FLOPs when there are P fibers in the tensor.

It is important to note that the choice to factor out accesses to B as opposed to C

is arbitrary. Equation (4.1) can equivalently be expressed

K(i, :)← K(i, :) + C(k, :) ∗
∑

X (i,:,k)

X (i, jn, k)B(jn, :).

Deciding which term to factor out impacts storage and computational performance. The

decision is most relevant when the mode lengths of X are not equal. By storing fibers

along the longer mode, we are able to minimize the number of stored fibers and increase

the average fiber length. The benefit of this scheme is twofold: we reduce the amount

of memory required to store the tensor and reduce the number of memory accesses and

FLOPs due to a larger number of factored multiplications. Section 4.5.2 demonstrates

the benefits of selecting the best mode to factor.

Figure 4.1 illustrates the fiber-centric algorithm. The algorithm that follows from

Equation (4.1) is detailed in Algorithm 6.
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Algorithm 6 A fiber-centric MTTKRP algorithm.

Input: Sparse tensor X
Output: K← X (C � B)

for all unique i ∈ X (:, :, :) do . Each X (i, :, :) slice

K(i, :)← 0

for all unique j ∈ X (i, :, :) do . Each X (i, j, :) fiber

z← 0 . F×1 vector for accumulation

for all k ∈ X (i, j, :) do

z← z +X (i, j, k)C(k, :)

end for

K(i, :)← K(i, :) + B(j, :) ∗ z

end for

end for

4.1.1 Parallelization

Algorithm 6 can be parallelized by using a task decomposition on the rows of K. Since

the computation of K(i, :) requires only the non-zeros in slice X (i, :, :), the mode-1 slices

of X can be distributed among threads. All threads write to distinct rows of K and

thus parallel execution requires no locks or synchronization. Each thread requires only

F words of additional storage to accumulate inner products. This method is memory

scalable because F � nnz(X ).

The unstructured sparsity pattern of X poses the issue of potential load imbalance.

The non-zeros of X are rarely distributed in a uniform fashion. For example, the

number of non-zeros across the slices of real-world datasets can vary by several orders

of magnitude and often exhibit a power law distribution. A static decomposition of

rows can assign disproportionate amounts of work to the processes, resulting in severe

load imbalance and reduced scalability. Therefore our implementation in SPLATT uses

dynamic load balancing when distributing slices to threads.
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Figure 4.1: The fiber-centric MTTKRP algorithm. The dashed blue line shows the fiber

of X and its inner product with a column of B. The inner product is then scaled by

the circled value of C. All columns are computed at once.

4.1.2 Extensions to Higher-Order Tensors

Algorithm 6 can be extended to higher-order tensors by considering the block structure

of the Khatri-Rao product. If X is an N -mode tensor, then MTTKRP in the first mode

becomes

K = X(1)(A
(N) � A(n−1) � · · ·� A(2)).

The block structure in the Khatri-Rao product becomes more pronounced as N in-

creases. The fiber-centric algorithm is able to exploit this block structure by factoring

out a new set of multiplications per mode:

K(i1, :) =
∑

A(2)(i2, :)∗
(∑

A(3)(i3, :)∗
(
. . .
(∑

X (i1, i2, . . . , iN )A(N)(iN , :)
)))

.

The Khatri-Rao product operates on N−1 modes, requiring F (N−2) words of inter-

mediate memory. The last mode does not need intermediate memory because it writes

to K directly. Like before, fibers of X are used for inner products with A(N), which are

then scaled by the corresponding row of A(N−1) and so on.

When forming each of the N representations of X , we must choose an ordering of the

remaining N−1 modes. As discussed in Section 4.1, arranging the modes to minimize

the number of fibers (and maximize the average fiber length) can have a significant

impact on the storage and computation required. This is achieved by sorting modes

by their length such that the shortest modes correspond to outer loops and the longest

mode corresponds to the direction that X stores its fibers.
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4.2 Optimizing for Cache Performance

We now present a method of achieving further speedup of Algorithm 6 by efficiently

utilizing the CPU memory hierarchy through means of reordering and cache blocking.

4.2.1 Tensor Reordering

Permuting the indices within one or more modes, or reordering, can lead to significant

performance gains as it can potentially improve cache utilization by exploiting spatial

and temporal locality. Figure 4.2 illustrates a tensor before and after reordering.

The goal of reordering a sparse tensor is to group non-zeros into semi-dense regions.

non-zeros form a sequence of semi-dense cuboids along the super-diagonal after an ideal

reordering. Dense regions are attractive because they offer increased cache performance

while accessing B and C. Consider the execution of Algorithm 6 along the first mode.

The mode-2 indices in a fiber determine which rows of B are accessed and the constant

mode-3 index determines the accessed row of C. Consecutive mode-2 indices result in

an unstrided access pattern that offers spatial locality in memory and can effectively

utilize hardware prefetching mechanisms. If the accessed portion of B is sufficiently

small and there are shared mode-2 indices in nearby fibers, the required portions of B

will still reside in cache. Additionally, as other slices are processed we can also see the

same reuse in C due to repeated mode-3 indices.

In this work we identify two methods of reordering sparse tensors. The first is

based on the partitioning of a graph that models the interactions between slices of

each mode of X . This method is mode-independent because a single reordering is used

for each mode of computation. The second method is based on the partitioning of a

hypergraph that models the memory accesses to K, B, and C. Unlike the tripartite

graph model, the hypergraphs are specific to a given mode (mode-dependent) and thus

multiple reorderings are needed.

Mode-Independent Reorderings

The objective of a mode-independent reordering is to find a single tensor permutation

that results in improved execution time regardless of which mode MTTKRP is being

performed on. We achieve this goal by permuting modes of the tensor such that indices
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0 3 0 3 0 0 0 0 2 0 0 2

0 0 0 0 1 0 1 0 0 0 0 0

0 0 0 0 1 0 1 0 2 0 0 2

0 3 0 3 0 0 0 0 0 0 0 0


(a) An unordered 4×4×3 tensor.


3 3 0 0 0 0 0 0 0 0 0 0

3 3 0 0 0 2 2 0 0 0 0 0

0 0 0 0 0 2 2 0 0 0 1 1

0 0 0 0 0 0 0 0 0 0 1 1


(b) The same tensor, reordered to improve memory locality.

Figure 4.2: A sparse tensor before and after reordering.

with high levels of similarity are adjacent.

We draw from the bipartite graph model for reordering sparse matrices [42]. Suppose

X is an N -mode tensor with dimensions I1×I2× . . .×IN . We construct an N -partite

graph whose vertex sets are of cardinalities I1×I2× . . .×IN . Non-zero X (i1, i2, . . . , iN )

generates a clique that connects nodes i1, i2, . . . , iN . Using this scheme, edge (ia, ib) will

be created every time a non-zero is processed with indices ia and ib appearing together.

To account for this, we weight edges based on the number of times they are generated.

For example, when X has three modes the resulting graph is tripartite and edge (i, k)

has weight equal to the number of non-zeros in the X (i, :, k) fiber. Figure 4.3 shows a

small tensor and its corresponding graph.

After generating a tensor’s graph, a graph partitioner is used to create a partitioning.

The graph is next relabeled such that vertices in the same partition are given consecutive

labels. Finally, we generate a reordered tensor from the relabeled graph.
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Figure 4.3: (a) X , a 2×2×2 tensor. (b) X mapped to a mode-1 hypergraph whose nodes

are the X (i, :, k) fibers. Filled nodes are hyperedges. (c) X mapped to a tripartite graph

with unlisted weights assumed to be unit.

Mode-Dependent Reorderings

Mode-dependent reorderings offer further opportunities for optimization at the cost of

additional work during the reordering stage. When operating within a certain mode we

know precisely which memory accesses will result from the tensor’s sparsity pattern.

Our hypergraph model is an extension of the column-net model originally used for

parallel sparse matrix-vector multiplication [43]. Fibers are our unit of work and are

analogous to rows in a sparse matrix. Fibers are mapped to vertices in the hypergraph.

Each mode emits as many hyperedges as its own dimension. A three-mode tensor will

have I+J+K hyperedges. Each hyperedge connects all fibers that its corresponding

index can be found within. For example, if fiber X (i, :, k) has three non-zeros, then

that vertex will be connected by five hyperedges. Two connections will come from the

i and k indices and the final three will come from each non-zero mode-2 index found in

the fiber.

Our goal is to model memory accesses as hyperedges. The number of partitions in

which a hyperedge is found (or, its connectivity) exactly models the number of times

that its corresponding row in K, B, or C must be fetched from memory. Thus, by

minimizing the connectivity of all hyperedges (known as the sum of external degrees),

we minimize the number of total memory accesses.

We partition the hypergraph to induce a reordering of the tensor. Fibers (vertices)

are relabeled such that fibers in the same partition are given consecutive labels. Re-

labeling a fiber means to relabel all indices found in its non-zero entries. Indices are

not unique to fibers and so we ensure that we only label an index the first time it is
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encountered. Consider fibers stored along the second mode. Mode-1 and mode-3 in-

dices determine the order in which fibers are processed. This affects temporal locality

because it allows fibers with similar sparsity pattern to be processed nearby in time.

Relabeled mode-2 indices affect spatial locality and allow a fiber and its neighbors to

access consecutive rows of B.

A clear drawback of a mode-dependent reordering is the need to construct and

partition a hypergraph for each mode. Fortunately, much of this cost is mitigated

due to the ordering of modes. Recall that we store fibers along the mode with the

largest dimension. Consider a tensor of dimensions I×J×K and I<J<K. SPLATT

will store fibers along the third mode for the first two modes of computation. During the

third mode, fibers will be stored along the second mode because it has the next largest

dimension. The only difference in execution between the first and second modes is the

order in which fibers are processed. Thus, the hypergraphs of the first and second modes

will be identical except for the labels of mode-1 and mode-2 hyperedges. A consequence

is that a partitioning of one hypergraph will be equally suited for the other. Therefore,

only partitionings of the mode-1 and mode-3 hypergraphs are needed for a complete

reordering.

4.2.2 Cache Blocking over Sparse Tensors

The long modes that sparse tensors often exhibit are prohibitive to memory performance,

even with a good reordering. Assume that fibers run along the second mode and are

defined by a unique (i, k) pair. Long fibers will fetch enough of the rows of B to evict

cache lines that would otherwise be reused in other nearby fibers. In order to maximize

data reuse, we use cache blocking.

Our method of blocking over a sparse tensor during MTTKRP is a generalization of

the blocking used for matrix-vector multiplication. We seek to define three-dimensional

tiles over the sparsity pattern of X . If a tile has dimension I ′×J ′×K ′ then accesses to

K, B, and C are limited to a maximum of I ′, J ′, and K ′ rows, respectively. Thus, by

carefully selecting tile dimensions such that the entire working set fits in CPU cache we

can increase reuse of K, B, and C.

Tiling over a sparse tensor is not a trivial task. An implementation that statically

assigns non-zeros to tiles based on their coordinates and the tile dimensions will result in
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mostly empty or near-empty tiles due to the high levels of sparsity present. Additionally,

most datasets feature unstructured sparsity patterns that can result in tiles of wildly

varying density. We propose a method of growing tiles to adapt to the sparsity pattern

of a given tensor.

First, we divide the mode-1 slices into sets of size I ′. We call a set of slices a layer.

Since empty slices can be trivially removed from the dataset, we assume that they are

either not present or are rare enough such that we may statically assign slice i to layer

i/I ′. The sparsity pattern of each layer may differ dramatically and thus each layer is

given an independent tiling.

We proceed one layer at a time. Within each layer we first construct the set of mode-

3 indices present. We divide the indices into sets of size K ′ and arrange the X (i, :, k)

fibers into tubes, each with a maximum of I ′ mode-1 indices and K ′ mode-3 indices.

Each tube must be tiled independently due to their varying sparsity patterns.

Finally, within each tube we construct the set of mode-2 indices that are present.

This set is used to divide the tube into tiles with I ′ + J ′ +K ′ unique indices. If we

choose dimensions so that F (I ′ + J ′ +K ′) floating-point numbers can comfortably fit

in cache, and the ordering of X provides regions which are relatively dense, then we

have effectively increased reuse in K, B, and C.

All of the fibers within a slice are no longer adjacent in memory after tiling. Con-

sequently, parallel execution within a layer is difficult because writes to the same row

of K can occur at any time. We identify two methods of modifying Algorithm 6 to

execute over a tiled tensor. The first method is to distribute the tiled layers among

threads and prevent race conditions while avoiding synchronization or atomics. The

drawback of distributing entire layers is that the working set of each tile is now local to

individual threads. The data reused between threads will be limited to similarities in

sparsity pattern between layers. The second method of tiling is a cooperative scheme.

Each thread uses its own I ′×F matrix of scratch space to accumulate writes to K. All

threads execute concurrently within a tile but must synchronize at the end of each layer.

After the synchronization, threads cooperate to do a summation of the scratch matrices.

Since we operate in a shared address space we are able to evenly distribute the I ′ rows

of scratch space among threads and do a reduction with only a synchronization at the

end of the algorithm.
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(a) Coordinate. (b) CSF: conceptual. (c) CSF: implementation.

Figure 4.4: A four-mode tensor represented in (a) coordinate format and (b) compressed

sparse fiber. Each path from root to leaf in (b) encodes a non-zero found in (a).

4.3 A Compressed Data Structure for Sparse Tensors

Algorithm 6 necessitates a storage scheme for X that provides efficient traversals of the

fiber structure of the tensor. We propose to represent sparse tensors in a hierarchical,

fiber-centric fashion in order to extract the opportunities for computational savings via

the data representation itself.

Our proposed storage format is called compressed sparse fiber (CSF). Suppose we

have a sparse tensor with N modes. We form a tree with N levels from each of the

X (i, :, . . . , :) subtensors. Nodes in level l contain indices found in the lth mode. Paths

from root to leaf encode a non-zero coordinate and their values are also stored in the

leaves. Figure 4.4 is an example of a four-mode tensor in this format.

CSF can be viewed as a generalization of the compressed sparse row (CSR) data

structure that is popular for sparse matrices. CSF is implemented with three multidi-

mensional arrays: (i) fptr, which encodes the sparsity structure; (ii) fids, which stores

the label of each node; and (iii) vals, which stores the non-zero values. Conceptually,

the fptr structure is a sequence of N rowptr arrays used in CSR. Each array is used

to index into the next in the sequence, with the final array indexing directly into the

non-zeros. Figure 4.4c illustrates this implementation.

Compression in a CSF tensor is visualized by the branching factor. Nodes with more

than one child are the result of joining two or more repeated indices. Storage savings

compound as we move deeper into a node’s subtrees. For example, in Figure 4.4b, the

tree uses only two nodes to store the mode-1 coordinates for all eight non-zeros.
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We note that storage requirements for CSF and DFacTo are similar. Both are

ultimately focused on a representation of the sparse fibers in X . However, CSF only

needs to store F additional floating-point numbers during computation and does not

need the 2P memory words used to store Kr that DFacTo requires. Additionally,

Algorithm 6 exhibits memory access patterns that have better spatial locality because

the sparse structure of X is traversed only once and each non-zero value is used in F

multiplications after being fetched from memory. This is a result of the row-oriented

approach taken by Algorithm 6, which to our knowledge is the first of its kind in the

sparse tensor community.

4.3.1 Implementing MTTKRP with a CSF Tensor

We now formalize Algorithm 6 to a general number of modes using the CSF data

structure. We assume that CSF is constructed with the mode-of-interest at the top

level of the CSF data structure, and thus the keys of the root nodes determine which

row of K to update. For simplicity of notation, in the following discussion we assume

that the modes of X have been permuted such that the root level is the first mode, the

second level of the CSF data structure corresponds to the second mode, and so on. We

call this adaptation CSF-ROOT.

Non-zero X (i1, i2, . . . , iN ) scales the row vector A(2)(i2, :) ∗ · · · ∗A(N)(iN , :). A sib-

ling non-zero, X (i1, i2, . . . , i
′
N ), will likewise require A(2)(i2, :) ∗ · · · ∗A(N)(i′N , :). Note

that the multiplications only differ in the A(N) terms which correspond to leaf nodes

in the tree. CSF-ROOT saves operations by factoring out the repeated multiplications

and instead accumulates sibling non-zeros into a buffer. Once completed, the buffer is

scaled by the factored multiplication and the result is propagated up the tree. The op-

timization is not unique to the leaf level; we can save operations by factoring redundant

multiplications at each level of the tree as discussed in Section 4.1.2.

Algorithm 7 shows a recursive implementation of CSF-ROOT. CSF-ROOT performs

a depth-first traversal on the CSF tensor in which row K(i, :) is completed at the end

of the traversal of the ith tree. Hadamard products are accumulated in a buffer Z,

an N×F matrix which in general is a small constant in size. A node in the dth level

accumulates the contributions from all children into Z(d, :) before propagating its own

contributions up the tree.
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Algorithm 7 MTTKRP for the root nodes of a CSF tensor.

1: function PROPAGATE-UP(node)

2: d← DEPTH(node)

3: id← IDX(node) . Extract the dth coordinate

4: if d = m then

5: return VAL(node) ·A(d)(id, :) . Scale by the non-zero value in the leaf

6: end if

7: Z(d, :)← 0 . Accumulate all children into Z

8: for c ∈ children(node) do

9: Z(d, :)← Z(d, :) + PROPAGATE-UP(c)

10: end for

11: if d = 1 then

12: return Z(d, :)

13: else

14: return Z(d, :) ∗A(d)(id, :)

15: end if

16: end function

17:

18: function CSF-ROOT(X )

19: for i ∈ I1 do

20: K(i, :)← PROPAGATE-UP(X (i, :, . . . , :))

21: end for

22: end function
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4.4 Memory-Efficient MTTKRP Algorithms

The alternating nature of CPD-ALS means that MTTKRP must be computed once for

each mode of the tensor, per iteration. These computations are mode-centric, meaning

that we are computing for a specific mode each time. Thus, to use Algorithm 7 one

requires N representations of X (i.e., each of the N modes must be placed at the top

level of the tree). Storing N different compressed tensors makes it easy to extract coarse-

grained parallelism in Algorithm 7, but is not memory-efficient and does not scale to

tensors with more than a few modes. We will now detail how it is possible to perform

MTTKRP on any mode of a CSF tensor while reducing floating-point operations in a

manner similar to CSF-ROOT.

Computing for the Leaf Level

MTTKRP on the lowest level of the tree uses the keys of the leaves to determine the

output rows of K. We use the same principle from CSF-ROOT to factor redundant

Hadamard products and save floating-point operations. In this case, instead of accumu-

lating non-zeros in a buffer to propagate up the tree, we recursively propagate Hadamard

products down the tree and allow siblings to reuse previous multiplications. We call

this algorithm CSF-LEAF and present a recursive implementation in Algorithm 8.

Computing for Internal Levels

Processing internal nodes relies on a combination of the CSF-ROOT and CSF-LEAF

algorithms. Whereas CSF-ROOT determines write locations by the root nodes and

CSF-LEAF uses the leaves, we now use one of the middle modes. We must process both

parent and children subtrees before results can be stored. A recursive implementation

of this algorithm, called CSF-INTL, is detailed in Algorithm 9.

Assume we are computing for the wth level of the tree. We first propagate Hadamard

products down the tree using CSF-LEAF until the we are (w − 1) levels deep. Next,

we use CSF-ROOT to propagate the contributions of the entire node’s subtree up to

Z(w, :). The final result is the Hadamard product of Z(w − 1, :) and Z(w, :).
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Algorithm 8 MTTKRP for the leaf nodes of a CSF tensor.

1: function PROPAGATE-DOWN(node)

2: d← DEPTH(node)

3: id← IDX(node) . Extract the dth coordinate

4: if d = m then . Last level uses non-zeros and writes to K

5: K(id, :)← K(id, :) + VAL(node)Z(d, :)

6: return

7: end if

8:

9: if d = 1 then . Initialize Z

10: Z(1, :)← A(1)(id, :)

11: else

12: Z(d, :)← Z(d− 1, :) ∗A(d)(id, :) . Propagate down the tree

13: end if

14: for c ∈ children(node) do

15: CSF-LEAF(c)

16: end for

17: end function

18:

19: function CSF-LEAF(X )

20: for i ∈ I1 do

21: PROPAGATE-DOWN(X (i, :, . . . , :))

22: end for

23: end function
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Algorithm 9 MTTKRP on mode w, an internal level

1: function PROPAGATE-INTL(node)

2: d← DEPTH(node)

3: id← IDX(node) . Extract the dth coordinate

4: if d = 1 then . Initialize the first level

5: Z(1, :)← Ad(id, :)

6: else if d < w then . Move down to level w − 1

7: Z(d, :)← Z(d− 1, :) ∗A(d)(id, :)

8: for c ∈ children(node) do

9: PROPAGATE-INTL(c)

10: end for

11: else . Use CSF-ROOT to complete computation

12: Z(d, :)← PROPAGATE-UP(node)

13: K(id, :)← K(id, :) + (Z(d− 1, :) ∗ Z(d, :))

14: end if

15: end function

16:

17: function CSF-INTL(X )

18: for i ∈ I1 do

19: PROPAGATE-INTR(X (i, :, . . . , :))

20: end for

21: end function
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A(1)

A(2)

A(3)

Figure 4.5: An N -dimensional tiling over X for three processors. The tiles in whichever

mode we are computing on form a 1D decomposition of the tensor. The tiling induces a

partitioning of the matrix factors, which are distributed among threads to remove race

conditions.

4.4.1 Parallel Formulation and Tiling

CSF-ROOT can be parallelized in the same way as Algorithm 6. Since each tree stores

the non-zeros found in a unique X (i, :, . . . , :) slice, they can be computed in parallel

without fine-grained synchronization.

When parallelizing CSF-INTL and CSF-LEAF, an important observation is that

it is no longer safe to simply parallelize over trees and avoid race conditions. There

is no guarantee that non-root keys are unique to the any tree, and thus we must now

synchronize updates to the output matrix. One way of doing this is to reduce contention

by storing a large number of mutexes, M , and using mutex i (mod M) when writing

to row i. This, however, is not an adequate solution. Even if we completely eliminate

contention, at the leaf level we pay the price of locking and unlocking a mutex for every

non-zero.

Instead, we use a method that eliminates the need for locks by imposing an N -

dimensional tiling over X . Suppose we are computing on the second mode of a tensor.

We use the tiling along the second mode to induce a 1D partitioning of the tensor

non-zeros and A(2). If the 1D blocks of non-zeros are distributed to threads, due to the

nature of the tiling they will write to non-overlapping rows of A(2). Figure 4.5 illustrates

our tiling procedure for three threads on a three-mode tensor.

Lock-free parallelism comes with a price. Fibers that cross tile boundaries are treated
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as separate fibers, which increases storage overhead and decreases the number of factored

multiplications. It is tempting to use a large number of small tiles in order to improve

cache locality, but in practice this results in more storage than the uncompressed tensor

and little to no performance benefit. Thus, we only use as many tiles per mode as there

are available threads.

4.5 Evaluating Fiber-Centric MTTKRP

4.5.1 Experimental Methodology

Experimental Setup

SPLATT is implemented in C with double precision floating-point numbers and 64-bit

integers. SPLATT uses OpenMP for shared memory parallelism. All source code is

available for download1 . Load balance is achieved by OpenMP’s dynamic scheduling

with a chunksize of 16. Experiments were carried out on an HP ProLiant BL280c G6

blade server with dual 8-core E5-2670 Xeon processors running at 2.6 GHz. Source code

was compiled with GCC 4.8.0 using optimization level O2. For all experiments we used

F=10.

Datasets

We evaluated our method across several datasets of varying properties. Table 4.1 is a

summary of the mentioned datasets.

The Netflix dataset is taken from the Netflix Prize competition [44]. The dataset

forms a user-item-time ratings tensor. Two datasets come from the Never Ending

Language-Learning (NELL) project [45] which is freely available. Both tensors represent

noun-verb-noun triplets. NELL-1 is the complete, extremely sparse dataset and NELL-

2 is a smaller, more dense version in which the infrequent items have been pruned.

BrainQ [46] is derived from fMRI measurements of brain activity. Its three modes are

noun-voxel-human subject. BrainQ is an interesting dataset because its dimensions are

relatively small, resulting in a tensor several orders of magnitudes more dense than

1 http://cs.umn.edu/˜splatt/
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Table 4.1: Summary of datasets.

Dataset I J K nnz density

Netflix 480K 18K 2K 100M 5.4e-06

NELL-1 4M 4M 25M 144M 3.1e-13

NELL-2 15K 15K 30K 77M 1.3e-05

BrainQ 60 70K 9 11M 2.9e-01

Delicious 532K 17M 2.5M 140M 6.1e-12

nnz is the number of nonzero entries in the dataset.

density is defined by nnz/(I×J×K).

the other tensors studied in this work. Delicious is a user-item-tag dataset originally

crawled by Görlitz et al. [47] and is also available for download.

4.5.2 Results

Effects of Fiber Direction Selection

SPLATT chooses at runtime which direction to store fibers in each of its modes. For

example, the slices of the first mode can either have fibers that run along the second or

third mode and the slices of the second mode will follow either the first or third mode.

This is analogous to determining whether the sparse matrix representing each slice is

stored in a row or column major format. Each fiber comes with some storage overhead

and the number of saved FLOPs is dependent on the number of non-zeros per fiber.

When there is a large disparity between the dimensions of X , choosing to have fewer,

longer fibers is beneficial.

We evaluated this optimization on each of our datasets and present results in Ta-

ble 4.2. SPLATT requires less memory when storing fibers along the longer dimensions

for all tested datasets. Additionally, faster runtimes are exhibited on all datasets ex-

cept BrainQ, in which shorter fibers had a 1.10× speedup. Speedup peaks at 1.45× on

Netflix.
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Table 4.2: Difference in storage requirements and runtime for the mode-1 slices of each

dataset.

Storage (Improvement) Time (Speedup)

Dataset Short Long Short Long

Netflix 7.75 5.02 (1.54×) 8.77 6.02 (1.45×)

NELL-1 11.91 8.88 (1.34×) 25.74 19.83 (1.29×)

NELL-2 4.32 3.69 (1.17×) 3.18 2.78 (1.14×)

BrainQ 0.54 0.50 (1.08×) 0.28 0.31 (0.90×)

Delicious 9.28 8.23 (1.12×) 17.66 15.61 (1.13×)

Short and Long refer to storing three copies of the tensor using

fibers along the shortest or the longest modes, respectively. Storage

is measured in gigabytes. Runtime is the average time in seconds

to perform an execution of MTTKRP in all three modes. Stor-

age and runtime for Short is measured relative to Long. No cache

tiling is used. × denotes improvement over Short.
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Effects of Tensor Reordering and Cache Tiling

To evaluate our methods of improving cache performance we measured runtime of

SPLATT across orderings and tile sizes. The baseline is a randomly permuted ten-

sor without tiling. Since reordering will only offer speedup on the most sparse tensors,

we omitted BrainQ from the reordering experiments. Times reported are the aver-

age time of executing SPLATT with one thread across all three modes. Results are

shown in Table 4.3. Delicious saw the largest benefit and reached 1.24× speedup after

a mode-dependent reordering.

We found that reordering alone is not sufficient for maximizing performance. On

all datasets, the best parallel speedups were found using a combination of reordering

and cache tiling. The best results that we achieved using 16 threads are shown in

Table 4.4. Note that these configurations are the most scalable configurations and not

necessarily the fastest at small numbers of threads. This is because tiling increases

arithmetic operations and the memory footprint of the tensor due to fibers being split

across boundaries. After tiling we found the runtimes of mode independent and mode

dependent reorderings to be similar, with mode-independent reorderings slightly faster.

Datasets with modes of relatively small dimension (BrainQ, Netflix, and NELL-2)

saw benefit from cooperative tiling with up to a 1.22× speedup on BrainQ compared to

traditional tiling. The number of synchronizations and reductions scale with the mode

dimensions and thus large datasets such as NELL-1 and Delicious saw impaired scala-

bility when using cooperative tiling. We experimentally found that tiles of dimension

2048×2048×4096 gave the best performance when executing cooperatively and tiles of

dimension 32×1024×1024 gave the best performance when distributing entire layers to

threads.

4.6 Evaluating Memory-efficient MTTKRP

We now evaluate the trade-offs present when using a single CSF representation instead

of N , as was presented in Section 4.5.
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Table 4.3: Effects of Tensor Reordering.

Time (Speedup)

Dataset Random Mode-Independent Mode-Dependent

Netflix 6.02 5.26 (1.14×) 5.43 (1.10×)

NELL-1 19.83 17.83 (1.11×) 17.55 (1.12×)

NELL-2 2.78 2.61 (1.06×) 2.60 (1.06×)

Delicious 15.61 13.10 (1.19×) 12.51 (1.24×)

Runtime is the average time to perform a serial execution of MTTKRP

across all three modes. When reordering, the number of partitions was

scaled from 32 to 1024 and the best result used. Time is measured in

seconds. × denotes speedup over a random ordering.

Table 4.4: Effects of Cache Tiling.

Time (Speedup)

Threads Baseline tiled MI+tiled MD+tiled

1 8.14 (1.0×) 8.90 (0.9×) 8.70 (1.0×) 9.18 (0.9×)

2 4.73 (1.7×) 4.88 (1.7×) 4.37 (1.9×) 4.52 (1.8×)

4 2.54 (3.2×) 2.58 (3.2×) 2.29 (3.6×) 2.35 (3.5×)

8 1.42 (5.7×) 1.41 (5.8×) 1.26 (6.5×) 1.26 (6.4×)

16 0.90 (9.0×) 0.85 (9.5×) 0.74 (11.0×) 0.75 (10.8×)

Time is measured in seconds and is the geometric mean across all

datasets. MI and MD are mode-independent and mode-dependent

reorderings, respectively. When reordering, the number of partitions

was scaled from 32 to 1024 and the best result used. × denotes speedup

over a random ordering without tiling.
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4.6.1 Experimental Methodology

Experimental Setup

The memory-efficient algorithms were implemented in SPLATT and evaluated with

double-precision floating-point numbers and 64-bit integers. We used F = 16 for all

experiments. Experiments were performed on an HP ProLiant BL280c G6 blade server

with two oct-core E5-2670 Xeon processors running at 2.6 GHz.

During our discussion, we will refer to experiments on a single untiled tensor as

CSF-M (i.e., CSF with mutexes) and a single tiled tensor as CSF-T (i.e, CSF with

tiling). We compare CSF-M and CSF-T against two competing approaches. COORD is

a direct implementation of Equation (3.1), which streams through the tensor non-zeros

stored in coordinate format and performs MTTKRP in an elementwise fashion. We use

the original fiber-centric kernel as a benchmark for compressed tensors, which stores N

representations of the tensor. The fiber-centric algorithm with N CSF representations

is denoted as SPLATT.

Datasets

The tensors evaluated in this section are detailed in Table 4.5. The evaluation features

largely the same datasets as Section 4.5, but with two additions. Beer [48] and Ama-

zon [49] are user-item-word tensors parsed from Beer Advocate and Amazon product

reviews, respectively. We used Porter stemming [50] on review text during parsing.

4.6.2 Comparison of Storage Requirements

Figure 4.6 shows the storage required for the uncompressed (COORD) tensor and the

compressed tensor storage formats. CSF-M consistently has the smallest memory foot-

print and averages 68% less memory than SPLATT and 42% less memory than COORD.

CSF-M achieves its best compression on NELL-1, with CSF using 73% less memory than

SPLATT. After adding storage overhead from tiling for 16 threads, CSF-T still uses 58%

less memory than SPLATT and 24% less than COORD. Overall, CSF-M and CSF-T

always use less memory than COORD and SPLATT.
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Table 4.5: Summary of datasets.

Dataset I J K nnz density

NELL-2 12K 9K 28K 77M 1.3e-05

Beer 33K 66K 960K 94M 4.4e-08

Netflix 480K 18K 2K 100M 5.4e-06

Delicious 532K 17M 3M 140M 6.1e-12

NELL-1 3M 2M 25M 143M 3.1e-13

Amazon 5M 18M 2M 1.7B 1.1e-10

nnz is the number of nonzero entries in the dataset. density is de-

fined by nnz/(I×J×K). K, M, and B stand for thousand, million,

and billion, respectively.

4.6.3 Performance Benchmarks

We evaluate the performance of the memory-efficient CSF-based algorithms against

SPLATT and COORD. We first examine performance on individual modes using the

three parallel algorithms and compare against SPLATT and COORD timings on the

same modes. We then examine total MTTKRP runtime.

Table 4.6 compares the runtimes of performing MTTKRP on the smallest tensor

modes (the root nodes). Since CSF-ROOT is the SPLATT algorithm adapted to the

CSF data structure, performance between the two methods is nearly identical. With

the exception of the Netflix dataset, CSF-ROOT sees little benefit from tiling. Since

tiles must be large, they offer little cache benefit and do not mitigate any locks. Netflix

is an exception because its root and internal dimensions are small compared to the leaf

dimension. Most of the computation is done during non-zero accumulation instead of

propagating results back up the tree.

Table 4.7 shows the runtimes of CSF-INTL, which computes MTTKRP on the mid-

dle tensor modes (interior nodes). CSF-M outperforms SPLATT on half of the datasets.

CSF-M and CSF-T both outperform SPLATT on the Amazon tensor with 1.7 billion

non-zeros, with CSF-T reaching 2.3× speedup over parallel SPLATT. We attribute this

to the single-CSF algorithms sometimes performing fewer FLOPs than SPLATT on
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Figure 4.6: Required storage in gigabytes for each dataset, logarithmic scale.

non-root modes. This is possible because different views of the same tensor can result

in differences in computation. For example, a user-item-time ratings tensor will have

more non-zeros in the (item, time) fibers than (user, item) because users are unlikely

to rate items more than once.

Tiling improves performance of CSF-INTL on three tensors. We only have to lock

when writing to an internal node, and thus if there is a large amount of computation in

the leaves of the tree it may be more beneficial to skip tiling.

CSF-LEAF runtimes are shown in Table 4.8. SPLATT is faster than CSF-M on

all but the smallest tensor, NELL-2. Leaf computation operates on the longest mode

of the tensor and is the most taxing MTTKRP step on the CPU memory hierarchy

because each non-zero can result in a write to distant memory outside of the CPU

cache. As expected, parallel scalability is poor without tiling because a mutex is locked

and unlocked on every non-zero.
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Table 4.6: CSF-ROOT with 16 threads.

Dataset COORD SPLATT CSF-M CSF-T

NELL-2 4.30 0.10 0.10 0.11

Beer 5.20 0.12 0.12 0.17

Netflix 15.46 0.23 0.24 0.18

Delicious 11.25 0.55 0.56 1.22

NELL-1 18.95 1.11 1.00 1.29

Amazon 96.04 3.61 3.71 6.18

Values are the best time in seconds to execute MTTKRP on the smallest

mode of the tensor. COORD is serial while SPLATT, CSF-M, and CSF-T

all use 16 threads.

Finally, we examine the total MTTKRP runtime in Table 4.9. CSF-M averages

40% as fast as SPLATT without tiling and 81% as fast with tiling enabled. CSF-T is

comparable in performance to SPLATT even on our largest tensor, while using over 50

gigabytes less memory.
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Table 4.7: CSF-INTL with 16 threads.

Dataset COORD SPLATT CSF-M CSF-T

NELL-2 4.35 0.08 0.15 0.11

Beer 5.24 0.12 0.17 0.19

Netflix 15.55 0.50 0.33 0.23

Delicious 15.66 1.15 0.96 1.27

NELL-1 24.22 1.10 1.18 1.73

Amazon 97.12 15.91 12.28 6.96

Values are the best time in seconds to execute MTTKRP on the interior

mode of the tensor. COORD is serial while SPLATT, CSF-M, and CSF-T

all use 16 threads.

Table 4.8: CSF-LEAF with 16 threads.

Dataset COORD SPLATT CSF-M CSF-T

NELL-2 4.49 0.10 1.21 0.10

Beer 5.23 0.17 1.71 0.21

Netflix 15.65 0.15 1.51 0.40

Delicious 15.06 1.07 2.43 2.30

NELL-1 18.44 1.58 3.16 3.01

Amazon 96.47 3.79 121.05 11.07

Values are the best time in seconds to execute MTTKRP on the longest

mode of the tensor. COORD is serial while SPLATT, CSF-M, and CSF-T

all use 16 threads.
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Table 4.9: Total MTTKRP iteration time with 16 threads.

Dataset COORD SPLATT CSF-M CSF-T

NELL-2 13.14 0.28 1.46 0.31

Beer 15.67 0.41 2.00 0.57

Netflix 46.66 0.89 2.08 0.81

Delicious 41.97 2.77 3.95 4.79

NELL-1 61.60 3.79 5.34 6.03

Amazon 289.64 23.31 137.03 24.21

Values are the best time in seconds to execute MTTKRP across all three

modes. COORD is serial while SPLATT, CSF-M, and CSF-T all use 16

threads.



Chapter 5

Accelerating the CPD on

Many-Core Systems

In order to harness the power of many-core processors, applications must expose a high

degree of parallelism, load balance tens to hundreds of parallel threads, and effectively

utilize the high-bandwidth memory. Algorithm developers must embrace these chal-

lenges and, in many cases, re-evaluate existing parallel algorithms.

This chapter details our method of obtaining high performance on many-core proces-

sors, with Intel Knights Landing (KNL) as a motivating architecture. This is a challenge

that spans both high-level design and low-level implementation. The problem decompo-

sition must expose a sufficient amount of parallelism, load balance hundreds of threads,

and minimize fine-grained synchronization. Additionally, the implementation must uti-

lize advanced hardware features such as vector instructions, efficient synchronization

primitives, and MCDRAM.

5.1 Problem Decomposition for Many-Core Processors

5.1.1 Partial Tensor Tiling

The existing CSF-based algorithms presented in Chapter 4 use coarse-grained paral-

lelism via distributing individual trees to threads. Computing with respect to the root

mode has no race conditions to consider, as each root node ID is unique. There are no

55
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uniqueness guarantees for levels below the root, and thus we must consider the case of

threads overlapping additions to K(in, :), where n is a level below the root. Two solu-

tions were proposed Chapter 4: a mutex pool can be indexed by node IDs to protect

rows during updates; or X can be tiled using a grid of dimension PN , where P is the

number of threads. Note that root nodes are no longer unique if tiling is used, and

thus it must be performed on all N modes. Expensive synchronization is avoided by

distributing the mode-n layers of tiles to threads.

This approach of decomposing the computations is limited in two major ways. First,

coarse-grained parallelism is only effective when the tensor modes are sufficiently long.

Many real-world tensors exhibit a combination of long, sparse modes and short, sub-

stantially more dense ones. For example, tensors used in context-aware recommendation

will have many users but only a few contexts (e.g., time or location of purchase). Indeed,

the performance evaluation by Rolinger et al. [51] showed that CSF-based computation

is severely impacted by tensors with short modes. Second, tiling each tensor mode to

avoid synchronization faces serious scalability issues when there are many threads or

many tensor modes. For example, a six-mode tensor on a 68-core KNL system would

require 686 ≈ 99 billion tiles. The alternative of relying solely on a mutex pool performs

poorly even at small thread counts.

To address these problems, we propose a method that tiles a subset of the tensor

modes and uses atomics for the remaining ones. In determining which modes to tile,

priority is given to the longest modes for two reasons. First, they provide more oppor-

tunities for parallelism by permitting us to decompose the long tensor modes. As long

as the tensor has at least one mode which is sufficiently long to distribute among P

threads, then this decomposition is not hindered by the presence of short modes. Sec-

ond, the longer modes contain more nodes in the CSF structure than shorter ones, and

thus require more frequent synchronization. This intuition is supported in a previous

evaluation which showed that the last modes (i.e., the lower levels of the CSF structure)

experienced more overhead from fine-grained synchronization than the first modes (see

Section 4.6.3).

Tiling long modes fits easily into the CSF framework because the modes are sorted

by length. Our partial tiling is parameterized by h, referred to as the tiling height. The

tiling height which defines a level in the CSF data structure and also how many modes
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will be tiled. When we compute for a mode which resides above level h, atomics are used

to prevent race conditions. At or below level h, tile layers are distributed to threads to

avoid using atomics. The resulting tensor will have P h tiles, where P is the number of

threads being used. For example, h=0 results in an untiled tensor, h=1 results in a 1D

decomposition on the longest mode, and h=N tiles each mode.

5.1.2 Multiple Tensor Representations

A single CSF representation is attractive because of its low memory overhead compared

to N specialized representations. However, beyond the previously discussed synchro-

nization challenges, an additional disadvantage of using a single CSF representation is

less favorable writes to memory. Consider the difference between computing with re-

spect to the first and Nth mode. During the first mode, K is written to once at the

conclusion of each tree and A(N) is read for each non-zero (see Section 4.3). In con-

trast, updating the Nth mode involves reading from A(1) once at the start of each tree

and updating K for each non-zero. Writing for each non-zero places significantly more

pressure on memory bandwidth and cache coherency mechanisms. Furthermore, the

updates to K follow the sparsity pattern and are generally scattered, which challenges

the hardware prefetcher. Additionally, when K has few columns, only a few bytes out

of a cache line may be utilized.

We propose to use two CSF representations when memory allows. The first CSF

is as before, with the modes sorted and the shortest mode at the root level. The

second CSF places the longest mode at the root level and sorts the remaining modes

by non-decreasing length. When computing for the longest mode, we use the second

CSF in order to improve access patterns. Since the longest mode is placed at the root

level, we forego tiling on the second CSF in order to avoid any additional storage or

computational overheads.

Note that this concept is not limited to one, two, or N representations. However,

the combinations of CSF representations and orderings grows exponentially. Due to

the combinatorial nature of the problem, we restrict our focus to either one, two, or N

representations; each with modes sorted by length except for the specialized root.
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5.1.3 Load Balancing the Computations

Many tensors have a non-uniform distribution of non-zeros. Algorithms which rely on

distributing whole slices or tiles to many threads (i.e., a coarse-grained decomposition)

can exhibit severe load imbalance. On the other hand, a fine-grained decomposition

which distributes individual non-zeros can load balance a computation at the cost of

frequent synchronizations.

We refer to a slice with a disproportionately large number of non-zeros as a hub

slice. We call slice i a hub slice if

nnz(X (i, :, . . . , :)) ≥ δ
(

nnz(X )

P

)
,

where δ is a user-supplied threshold. We empirically found δ=0.5 to be an effective

value.

When a hub slice is identified during the construction of the CSF, it is not assigned

to a thread. Instead, we evenly distribute all of its non-zeros among threads as a form of

fine-grained parallelism. During the MTTKRP operation, all threads first process the

set of non-hub slices in parallel using any synchronization construct as before. Second,

each thread processes its assigned portion of the hub slices. By definition, there cannot

be many hub slices relative to the total number of slices, and thus synchronization

overheads are negligible.

5.2 Leveraging Architectural Features

KNL is the second generation Xeon Phi many-core processor from Intel [52]. KNL has

up to 72 cores, each with two 512-bit vector processing units and 4-way simultaneous

multi-threading. Cores have 32KB of L1 cache and are arranged in pairs which share

1MB of L2 cache.

KNL includes two types of memory: DDR4 and multi-channel DRAM (MCDRAM).

MCDRAM offers up to 480GB/s achievable memory bandwidth measured by the STREAM

benchmark [53], or approximately 4× the bandwidth of the latest 2-socket Xeon sys-

tems with DDR4. MCDRAM can be configured to either be explicitly managed by the

software (flat mode), used as a last-level cache (cache mode), or a combination of the

two (hybrid mode).
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5.2.1 Vectorization

KNL (and other modern architectures) heavily rely on vectorization to achieve peak

performance. KNL uses the new AVX-512 instruction set and has two 512-bit vector

units per core. The MTTKRP formulation that we use accesses the tall, skinny factor

matrices in a row-major fashion. Processing a node in the CSF structure requires O(F )

operations. The micro-kernels are either in the form of (i) scaling a row by a non-zero

value (i.e., a BLAS-1 axpy), or (ii) an element-wise multiplication of two rows (i.e., a

Hadamard product). In practice, useful values of F will saturate at least one vector

width. Therefore, we vectorize each of the micro-kernels.

5.2.2 Synchronization

Partial tiling of the tensor requires synchronization of some form to be used on the

untiled tensor modes. The choice of synchronization primitive is heavily dependent on

both hardware support and the characteristics of the data (e.g., whether conflicts are

expected to be common). We will now discuss several options and evaluate them in

Section 5.4.2.

Mutexes

The most simple synchronization strategy is to surround updates with a mutex. Most

writes will be to unique data when the tensor mode is sufficiently large. We can maintain

a pool of mutexes in order to reduce lock contention, but performance is still limited

when mutexes have a high overhead in hardware. A challenge of mutexes is that we

must tune the size of the pool to find the best trade-offs between storage overhead and

contention.

Compare-and-Swap

CAS instructions are often optimized in hardware and bring no storage overhead unlike

a mutex pool. Their limitation comes from the granularity of the protected memory.

CAS is currently limited to 16 bytes on KNL and other popular architectures. Thus,

four CAS instructions must be issued to utilize a full cache line (or full vector register)

on a KNL system.
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Transactional Memory

Modern architectures such as Intel’s Haswell and Broadwell include hardware support

for restricted transactional memory (RTM). While KNL does not include RTM, it is an

efficient option for other parallel architectures.

Privatization

Hardware atomics may introduce a large overhead when the tensor mode is small and

contention is probable. In that event, we instead allocate a thread-local matrix which

is the same size as K. Each thread accumulates into its own buffer without need for

atomics. Finally, all buffers are combined with a parallel reduction. The memory

overhead of privatization makes it only practical for short modes. We privatize mode n

if

InP ≤ γ nnz(X ), (5.1)

where P is the number of threads and γ is a user-supplied threshold. We empirically

found γ=0.2 to be effective.

5.2.3 Managing High-Bandwidth Memory

The 16GB capacity of MCDRAM on KNL is sufficient to factor some, but not all

tensors. When the working set entirely fits in memory, explicitly managing MCDRAM

and running in cache mode should offer similar performance.

When the working set exceeds the MCDRAM capacity, we prioritize placement of

the factor matrices in MCDRAM. Each node in the CSF structure consumes O(1)

memory but spawns O(F ) accesses to the factors. In total, the CSF structure consumes

O(nnz(X )) bandwidth. When the tensor and factors exceed the size of MCDRAM, it is

likely that the the factors do not fit in the on-chip caches and thus consumeO(F nnz(X ))

bandwidth.
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5.3 Experimental Methodology

5.3.1 Experimental Setup

We use two hardware configurations for experimentation. One machine has two sockets

of 22-core Intel Xeon E5-2699v4 Broadwell processors, each with 55MB of last-level

cache, and 128GB of DDR4 memory. The second machine has an Intel Xeon Phi Knights

Landing 7250 processor with 68 cores, 16GB of MCDRAM, and 94GB of DDR4 memory.

Throughout our discussion, we will refer to the dual-socket Broadwell machine as BDW

and the Knights Landing machine as KNL. Importantly, KNL is a socketed processor

and all application code runs directly on the hardware. Thus, there are no PCIe transfer

overheads to consider. Unless otherwise specified, KNL is configured in flat mode with

quadrant configuration.

Source code is written in C++ and modified from SPLATT v1.1.1, a library for

sparse tensor factorization. We use double-precision floating point numbers, 64-bit

integers for indexing non-zeros, and 32-bit integers for node IDs. The MTTKRP kernel

is optimized with both AVX2 intrinsics for BDW and AVX-512 intrinsics for KNL. We

use the Intel compiler version 17.0.0 with -xCORE-AVX2 on BDW and -xMIC-AVX512 on

KNL, and Intel MKL for LAPACK routines. All source code is publicly available1 .

We set the environment variable KMP LOCK KIND=tas to use test-and-set locks [54].

Reported runtimes are the arithmetic mean of thirty iterations and error bars mark

the standard deviation. Unless otherwise noted, we use F=16 for experiments.

5.3.2 Datasets

Table 5.1 details the tensors used in our evaluation. We selected tensors from a variety of

real-world applications which extensively use the CPD. Outpatient is a six-mode patient-

institution-physician-diagnosis-procedure-date tensor formed from synthetic electronic

medical records [55]. Netflix [44] and Yahoo [56] are both user-movie-date tensors

formed from movie ratings. Delicious is a user-item-tag tensor formed from user-

supplied tags of websites [47]. NELL is a noun-verb-noun tensor from the Never Ending

1 https://github.com/ShadenSmith/splatt-ipdps17

https://github.com/ShadenSmith/splatt-ipdps17
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Table 5.1: Summary of datasets.

Dataset NNZ Dimensions Size (GB)

Outpatient [55] 87M 1.6M, 6K, 13K, 6K, 1K, 192K 4.1

Netflix [44] 100M 480K, 18K, 2K 1.6

Delicious [47] 140M 532K, 17M, 3M 2.7

NELL [45] 143M 3M, 2M, 25M 2.4

Yahoo [56] 262M 1M, 624K, 133 4.3

Reddit [57] 924M 1.2M, 23K, 1.3M 15.0

Amazon [49] 1.7B 5M, 18M, 2M 36.4

NNZ is the number of nonzero entries in the dataset. K, M, and B stand for thousand, mil-

lion, and billion, respectively. Size is the amount of memory in gigabytes required to represent

the tensor in a single CSF.

Language Learning project [45]. Reddit [57] is a user-community-word tensor repre-

senting a subset of user comments from Reddit2 from 2007 to 2012. Amazon is a

user-item-word tensor representing product reviews [49]. The Delicious, NELL, Reddit,

and Amazon datasets are publicly available in the FROSTT collection [58].

5.4 Results

5.4.1 Exploring Decompositions on Many-Core Processors

We first explore the performance implications of problem decomposition on a many-core

processor. In order to separate the effects of decomposition and KNL-specific hardware

features, we explicitly place all allocations in DDR4 memory and use one thread per

core. We use a pool of 1024 OpenMP mutexes for synchronization.

Partial Tiling

Figure 5.1 shows the effects of tiling one, two, and three modes with a single CSF rep-

resentation according to the strategy described in Section 5.1. No strategy consistently

2 https://reddit.com/

https://reddit.com/
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Figure 5.1: Speedup over untiled MTTKRP while tiling the longest (Tile-1), two longest

(Tile-2), and three longest modes (Tile-3).

outperforms the others. Amazon sees the most benefit from tiling two and three modes,

achieving a 4.5× speedup over the untiled implementation. The large disparity between

tiling one and multiple modes of Amazon is not due to synchronization costs, but due

to load imbalance. We further explore this challenge in Section 5.4.1.

Privatization

The Netflix, Outpatient, Reddit, and Yahoo tensors have a combination of long and

short modes. The short modes result in lock contention. Figure 5.2 shows the effects of

privatization (Section 5.2) as we change the number of tiled modes with a single CSF

representation. The two- and three-mode tiling schemes see small performance gains

from privatization, but tiling a single mode achieves significant speedups compared

to untiled and also mutex-only synchronization (Figure 5.1). The slowdowns beyond a

single tiled mode are attributed to the overheads of storing and operating with additional

tiles. We use privatization with single-mode tiling for Netflix, Outpatient, Reddit, and

Yahoo in the remaining experiments.
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Figure 5.2: Speedup over untiled MTTKRP using one, two, and three tiled modes with

privatization for synchronization. Privatized modes were selected per Equation (5.1)

with γ=0.2.

Number of CSF Representations

Figure 5.3 shows MTTKRP’s performance as we increase the number of CSF represen-

tations. We follow the scheme presented in Section 5.1 and use one, two, and N CSF

representations. The tensors fall into two categories. Delicious and NELL benefit from a

second and a third CSF representation, with diminishing returns after the second. The

remaining tensors achieve the best performance with either one or two representations.

We note that these are the four tensors that have highly skewed mode lengths. When

a short mode is moved from the top CSF level, the resulting tree structure is changed

and often achieves less compression than before. Since we have already improved per-

formance on the skewed tensors through partial tiling and privatization, there is little

to be gained from additional representations.

Load Imbalance

Table 5.2 shows load imbalance and runtime on the Amazon dataset with one tiled

mode. We measure load imbalance as the relative difference between the maximum and



65

O
utpatient

N
etflix

D
elicious

N
ELL

Yahoo

Reddit

0

1

2

3

4

5

6

7

T
im

e
 p

e
r 

M
T
T
K

R
P

 o
p

e
ra

ti
o
n

 (
s
) CSF-1

CSF-2

CSF-ALL

Figure 5.3: Effects of the number of CSF representations on MTTKRP runtime, using

1, 2, and N representations. Amazon is omitted due to memory constraints.

average time spent by all threads:

imbalance =
tmax − tavg

tmax
.

The first mode of Amazon has a highly skewed distribution, with 6.5% of all non-zeros

residing in a single slice. This overloaded slice prevents load balance for any coarse-

grained (i.e., slice-based) parallelism.

BDW and KNL suffer from 72% and 84% load imbalance, respectively. When we

switch to a fine-grained parallelism for the hub slices, load imbalance reduces to 4% and

5% on BDW and KNL, leading to 3.3× and 6.1× speedups, respectively. This resulting

performance exceeds that of tiling with two and three modes.

5.4.2 Harnessing the KNL Architecture

We now explore performance optimizations specific to the KNL architecture. Unless

otherwise noted, we work from the best decompositions learned in the previous experi-

ments, which are summarized in Table 5.3. We note that every dataset in the evaluation

benefits from at least one algorithmic contribution (i.e., partial tiling, privatization,

multiple CSF representations, or hub slices).
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Table 5.2: Load imbalance on the Amazon dataset.

Load Imbalance Time (s)

BDW KNL BDW KNL

Mode slice hub slice hub slice hub slice hub

1 0.72 0.04 0.84 0.05 2.37 0.71 3.22 0.53

2 0.13 0.04 0.05 0.03 1.31 0.79 0.73 0.72

3 0.07 0.03 0.24 0.18 2.67 2.61 1.96 1.82

Load imbalance is defined as the relative difference between the maximum and average

time spent by all threads. slice denotes coarse-grained parallelism in which full slices

are distributed to threads. hub denotes using fine-grained parallelism on “hub” slices

and coarse-grained parallelism on all others.

MCDRAM

Figure 5.4 illustrates the benefits of MCDRAM over only DDR4 memory. We com-

puted memory bandwidth by measuring the amount of data transferred from DDR4

or MCDRAM via hardware counters and divided this number by the time to compute

MTTKRP [52].

Reddit and Amazon do not fit entirely inside of MCDRAM, and so we place only

the factors inside of MCDRAM and measure the bandwidth from both memories. Inter-

estingly, placing additional structures in MCDRAM (e.g., the tensor values or indices)

does not improve performance due to KNL’s ability to access DDR4 and MCDRAM

concurrently. Any additional MCDRAM allocations simply increase the observed MC-

DRAM bandwidth while equally decreasing the observed DDR4 bandwidth, resulting

in no net performance increase.

Outpatient is not memory-bound and sees little benefit from MCDRAM. We at-

tribute this to its short mode lengths, which encourage temporal reuse. Additionally,

Outpatient has a large number of modes, forcing it to incur high synchronization costs

relative to the lower order tensors. We therefore omit it from the remaining MCDRAM

evaluation.

When constrained to DDR4 memory, the remaining datasets are bounded by the

maximum achievable bandwidth. MCDRAM increases the achieved bandwidth from
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Table 5.3: Summary of the best known decompositions.

Dataset Tiled Modes CSF Reps. Hub Prv.

Outpatient 1 2 X

Netflix 1 1 X

Delicious 0 3 X

NELL 0 3 X

Yahoo 1 2 X

Reddit 1 1 X

Amazon 1 1 X

Tiled Modes is the number of tiled modes. CSF is the number of CSF rep-

resentations. Hub indicates if there are any hub slices. Prv. indicates if we

used privatization for at least one mode.

2.7× on Delicious to 3.7× on Netflix. The three datasets with the longest mode lengths

(i.e., Delicious, NELL, and Amazon) are heavily dominated by read-bandwidth. NELL

and Amazon achieve approximately 80% of the maximum 380 GB/s of read-bandwidth.

The observed bandwidths do not fully saturate the MCDRAM’s capabilities. We note

that the MTTKRP time also includes computation which may not be overlapped with

data movement, leading to an observed bandwidth which is lower than actually achieved.

Thus, the presented bandwidth is a lower bound for the achieved bandwidth. A more

detailed profiling or a formal performance analysis would be beneficial in determining

the precise achieved bandwidth and whether MTTKRP is still bandwidth-bound in the

presence of MCDRAM. We leave these tasks to future work.

The two-level memory hierarchy provided by KNL facilitates large scale computa-

tions which could not be performed in the presence of only MCDRAM. Reddit and

Amazon demonstrate that a problem does not need to entirely fit in MCDRAM to

obtain significant speedup, and instead we can focus on the bandwidth-intensive data

structures for MCDRAM allocation.
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Figure 5.4: Observed memory bandwidth (BW) on KNL in flat mode with DDR4 and

MCDRAM. Values indicate the maximum BW achieved for an MTTKRP kernel during

CPD. Stacked bars encode read-BW (bottom) and write-BW (top). DDR4-STREAM

and MCDRAM-STREAM indicate the maximum attainable read+write-BW per the

STREAM benchmark [53]. KNL’s maximum read-BW out of MCDRAM is 380 GB/s.

Synchronization Primitives

Figure 5.5 illustrates the overheads associated with various synchronization primitives

during MTTKRP execution on KNL, compared to BDW. We report runtimes on Out-

patient, which has the highest number of modes and also the shortest modes in our eval-

uation, and therefore the highest synchronization overheads. We do not use any tiling

or privatization constructs in order to better evaluate the synchronization primitives

provided by hardware. NOSYNC uses no synchronization and serves as a performance

baseline. OMP uses a pool of 1024 OpenMP mutexes. 16B CAS uses 16B compare-

and-swap (CAS) and 64B CAS simulates 64B CAS by issuing one 16B CAS for every

64B of data. RTM uses restricted transactional memory, which is available on BDW.

OMP and 16B CAS introduce over 100% overhead on KNL. The large vector in-

structions that AVX-512 offers are not well utilized with 16B CAS, as four CAS must
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Figure 5.5: Comparison of synchronization primitives on the Outpatient dataset. All

data is placed in MCDRAM on KNL.

be issued per fused multiply-add (FMA) instruction. The simulated 64B CAS reduces

overhead to 30% due to KNL utilizing an entire AVX-512 FMA per CAS. Future many-

core architectures could benefit significantly if CAS instructions are made wide enough

to support the large vector registers.

RTM introduces the least overhead on BDW, including the simulated 64B CAS

instructions. There is still a 42% overhead associated with RTM, however, suggesting

that relying solely upon hardware-provided synchronization is insufficient for the best

performance.

Simultaneous Multi-threading

KNL supports 4-way simultaneous multi-threading (SMT) as a method of hiding mem-

ory access latency. We examine the benefits of SMT in Figure 5.6. We execute in

MCDRAM cache mode and run with 1, 2, and 4 threads per core for a total of 68, 136,

and 272 threads. If a tensor is tiled, we fix the tile dimensions to be 272 and distribute

additional tile layers to threads. Thus, each configuration performs the same amount

of work and has the same sparsity structure. This allows us to eliminate the effects of

varying decomposition while observing the effects of hiding latency.

Using two threads per core universally improves performance by masking access
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Figure 5.6: Evaluation of simultaneous multi-threading on KNL in cache mode. Amazon

is omitted due to memory limitations when using four threads (due to the changed

sparsity structure induced by tiling).

latencies. Performance is mixed beyond two threads due to increased synchronization

costs resulting from lock contention or larger data reductions when using privatization.

In the worst case, Outpatient spends 3.5× more time on synchronization. We note that

load imbalance is not affected due to the same decomposition being used across thread

configurations. We recommend using two threads per core due to its consistent benefit.

5.4.3 Comparing BDW and KNL

Figure 5.7 shows the performance of best-performing decompositions on KNL and BDW.

We include KNL in both cache and flat mode configurations.

Observe that flat mode is up to 30% faster than cache mode when the dataset

does not fit in MCDRAM. The tensor is accessed in a streaming fashion and exhibits

no temporal locality, but still may be placed in the MCDRAM cache. By fixing the

matrix factors in MCDRAM, which do exhibit temporal locality, we can ensure better

utilization of the valuable MCDRAM resource.

KNL ranges from 0.84× slowdown on Reddit to 1.24× speedup on Amazon over
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Figure 5.7: Comparison of MTTKRP performance on KNL and BDW. KNL-flat and

KNL-cache denote KNL in flat and cache mode, respectively. Datasets which fit

entirely in MCDRAM have identical running times in cache and flat mode and are thus

omitted.

BDW. Unsurprisingly, we can see that KNL is most advantageous on the large, sparse

tensors which are bandwidth-bound and benefit the most from MCDRAM. The last-

level cache (LLC) of BDW allows it to outperform KNL on tensors with short modes.

Netflix, for example, only requires 64MB to store all three factors. We explore larger

CPD ranks with Netflix and Yahoo in Figure 5.8. In both cases, BDW is either faster

or competitive to KNL for the smaller ranks due to the small factors mostly fitting

in BDW’s large LLC. BDW sees a sharp slowdown between ranks 64 and 128 as the

factors no longer fit in LLC. KNL then proceeds to outperform BDW up to 1.8× due

to MCDRAM’s larger capacity.
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Figure 5.8: Effects of increasing CPD rank on MTTKRP.



Chapter 6

Accelerating the CPD on

Distributed-Memory Systems

State-of-the-art distributed CPD algorithms such as DFacTo [26] use coarse-grained

decompositions in which independent one-dimensional (1D) decompositions are used

for each tensor mode. Processes own a set of contiguous slices for each mode and

are responsible for the corresponding factor rows. Figure 6.1 is an illustration of this

decomposition scheme. An advantage of this scheme is the simplicity of performing

MTTKRP operations. Each process owns all of the non-zeros that contribute to its

owned output and thus the only communication required is exchanging updated factor

rows after each iteration. Independent 1D decompositions can be interpreted as a task

decomposition on the problem output, often called the owner-computes rule.

A limitation of these coarse-grained methods is that by owning slices in each mode

of the tensor, processes own non-zeros that can span the complete modes of X . As a

result, from the MTTKRP formulation (i.e., Equation (3.1)) we can see that processes

will require access to the factors in their entirety over the course of the MTTKRP

operations during an ALS iteration. The memory footprint of all factors can rival that

of the entire tensor when the input is sparse. Thus, memory consumption is not scalable

and since updated factors must be communicated, communication is also not scalable.

73
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Figure 6.1: A coarse-grained decomposition of a sparse tensor. Slices owned by a single

process are shaded.

6.1 Medium-Grained CPD-ALS

In order to address the high memory and communication requirements of the coarse-

grained decomposition while at the same time eliminate the need to perform the ex-

pensive pre-processing step associated with hypergraph partitioning, we developed an

approach that uses a medium-grained decomposition. Like coarse- and fine-grained

methods, medium-grained have roots in the sparse matrix community [59, 60, 61]. The

medium-grained decomposition uses an N -mode decomposition over the tensor and

related 1D decompositions on the factor matrices. The medium-grained CPD-ALS al-

gorithm is parallelized at the process-level using a message passing model and exploits

multi-core architectures as well with thread-level parallelism on each node.

In order to simplify the presentation, this section considers only three mode ten-

sors and the generalization of the algorithms to higher-order tensors is discussed in

Section 6.1.4.

6.1.1 Data Distribution Scheme

Assume that there are p = q×r×s processing elements available. We form a 3D decom-

position of X by partitioning its three modes into q, r, and s chunks, respectively. The

intersections of these partitions form a total of p partitions arranged in a q×r×s grid.

We denote X (x,y,z) as the partition of X with coordinate (x, y, z), and p(x,y,z) as the

process that owns X (x,y,z). We refer to a group processes which share a coordinate as

a layer. For example, p(i,:,:) is a layer of r×s processes along the first mode and p(:,j,:)

is layer of q×s processes along the second mode.

In our implementation, each process stores its subtensor in the CSF data structure.
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Figure 6.2: A medium-grained decomposition for twelve processes. (a) X is distributed

over a 2×3×2 grid. (b) Process layer p(2,:,:) collectively owns A2. (c) Process p7 owns

X 2,3,1 and the shaded factor rows.

This allows us to use the operation-efficient MTTKRP algorithm included in SPLATT

to extract parallelism on shared-memory architectures.

We use the 3D decomposition of X to induce partitionings of the rows of A, B, and

C. The rows of A are divided into chunks A1, . . . ,Aq which have boundaries aligned

with the q partitions of the first mode of X . The rows in Ai are collectively owned by

all processes in layer p(i,:,:). The rows of B and C are similarly divided into B1, . . . ,Br

and C1, . . . ,Cs, respectively. This decomposition is illustrated in Figure 6.2a.

We further partition the rows of each chunk of A into r×s groups such that each

process in layer p(i,:,:) owns a subset of the rows of Ai. We note that the partitioning

need not assign a contiguous set of rows to a process and a process is not required

to be assigned any rows. The output of the MTTKRP operation, K, has the same

distribution as A. Process pi owns the same rows of Ki as it does Ai. The process is

repeated for B and C similarly. We relabel the slices of X in order to make the rows

owned by each process contiguous. This is illustrated in Figure 6.2c.

In subsequent discussions we will refer to process-level partitions of A in two ways:

Api refers to the chunk of A owned by process pi, and A(x,y,z) refers to the chunk of A

owned by process with coordinate (x, y, z). The coordinate form will simplify discussion

during the MTTKRP operation that relies on the 3D decomposition.
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6.1.2 Distributed CPD-ALS

We will now detail each step of a CPD-ALS iteration using our 3D decomposition. For

brevity we only discuss the computations used for the first mode. The other tensor

modes are computed identically.

6.1.3 Distributed MTTKRP Operations

Process p(x,y,z) performs an MTTKRP operation withX (x,y,z). Any non-zeros inX (x,y,z)

whose mode-1 indices are non-local will produce partial products that must be sent to

other processes in the layer p(x,:,:). Likewise, p(x,y,z) will receive partial products from

any processes in layer p(x,:,:) which output to rows in K(x,y,z). The received partial

products are then aggregated, resulting in the completed K(x,y,z).

Cholesky Factorization

BᵀB and CᵀC are F×F matrices that comfortably fit in the memory of each process.

Assume BᵀB and CᵀC are already resident in each process’ memory. All processes

redundantly compute the Cholesky factorization of M = (CᵀC ∗BᵀB) in O(F 3) time,

which is a negligible overhead for the low-rank problems that we are interested in. We

perform the forward and backward substitutions in block form to exploit our row-wise

distribution of K:

Aᵀ = M−1Kᵀ =
[

M−1Kᵀ
p1 M−1Kᵀ

p2 . . . M−1Kᵀ
pp

]
Forming the New Gram Matrix

Each process needs the updated AᵀA factor in order to form M during the proceeding

modes. We view the block matrix form of the computation to derive a distributed

algorithm:

AᵀA =
[

Aᵀ
p1 Aᵀ

p2 . . . Aᵀ
pp

]


Ap1

Ap2

. . .

App

 =

p∑
i=1

Aᵀ
piApi .
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Each process first computes its local Aᵀ
piApi . The 1D decomposition on the rows of

Api is used again to extract thread-level parallelism. We then perform an All-to-All

reduction to find the final matrix and distribute it among all processes.

Updating Non-Local Rows

Processes with non-local rows of A must receive updated values before the next MT-

TKRP operation. This communication is a dual of exchanging partial products during

the distributed MTTKRP operation. Any processes that sent partial MTTKRP prod-

ucts to process pi now receive the updated rows of Api .

Residual Computation

Convergence is tested at the end of every iteration. In Section 2.3.1 we showed that

residual computation cost is bounded by 〈X ,Z〉, which uses 4F · nnz(X ) FLOPs. We

observe that contributions from B and C with X are already computed during the

MTTKRP operation. Thus, we can cache K and rewrite Equation (2.4) as

1ᵀ


Ap1 ∗Kp1

Ap2 ∗Kp2

. . .

App ∗Kpp

1 =

p∑
i=1

1ᵀ
(
Âpi ∗Api

)
1, (6.1)

where 1 is the vector of all ones. This reduces the computation to 2IF FLOPs.

Each process computes its own local 1ᵀ
(
Âpi ∗Api

)
1. Thread-level parallelism is

achieved via 1D row decompositions on Âpi and Api . Finally, we use a parallel reduction

on each node’s local result and form 〈X ,Z〉.

6.1.4 Extensions to Higher-Order Tensors

Extending our distributed CPD-ALS algorithm to tensors with an arbitrary number of

modes is straightforward. Suppose X is a tensor with N modes and we wish to compute

factors A(1), . . . ,A(N).

Operation-efficient MTTKRP algorithms for a general number of modes are found

in Chapter 4. Adding partial products from neighbor processes remains the same, with
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the only consideration being that a layer is no longer a 2D group of processes, but a

group of dimension N−1.

Residual computation again is easily extended. Generalized MTTKRP computes

K(i1, f) =
∑
X (i1, . . . , iN )

N∏
n=2

A(n)(in, f),

and so we can directly use Equation (6.1) to complete the residual calculation. Assuming

K can be cached, our algorithm does not increase in cost as more modes are added.

6.1.5 Complexity Analysis

The cost of CPD-ALS is bounded by MTTKRP and its associated communication.

Coarse-, medium-, and fine-grained distributed algorithms distribute work such that

each process does O(F · nnz(X )/p) work. They differ, however, in the overheads associ-

ated with communication. In this section, we discuss the communication costs present

in coarse- and medium-grained decompositions for a single mode. We define the com-

munication cost as the number of words of A and K that must be communicated.

The flexibility of fine-grained decompositions makes analysis difficult; both coarse- and

medium-grained communication patterns are possible if the non-zeros are distributed

appropriately. In our discussion we will use the personalized all-to-all collective com-

munication. Derivation of its complexity can be found in [62].

Assume that X has N modes, is of dimension I× . . .×I, p processes are arranged

in a N
√
p× . . .× N

√
p grid, and that messages require O(1) time to transfer per word. A

medium-grained decomposition has two communication steps to consider: aggregating

non-local rows during an MTTKRP operation and sending updated rows of Api after

an iteration.

In the worst case, every process has non-zeros in all (I/ N
√
p) slices of the layer. A

process must send (I/p) unique rows of K to each of its neighbors in the layer. Using

a personalized all-to-all collective, this communication is accomplished in time

IF

p

(
p

N−1
N − 1

)
=

(
IF
N
√
p
− IF

p

)
= O

(
IF
N
√
p

)
. (6.2)

The worst case of the update stage is sending (I/p) rows to each of the p
N−1
N neigh-

bors in the layer. This operation is the dual of Equation (6.2) and has the same cost.
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In comparison, a coarse-grained decomposition will send up to (I/p) rows to all p

processes. The communication overhead is thus

IF

p
(p− 1) = O (IF ) . (6.3)

No partial results from an MTTKRP operation need to be communicated, however,

so Equation (6.3) is the only communication associated with a coarse-grained decom-

position. Comparing Equation (6.2) and Equation (6.3) shows that only the medium-

grained decomposition can reduce communication costs by increasing parallelism. We

experimentally evaluate this observation in Section 6.3.2.

6.1.6 Computing the Data Decomposition

Our discussion so far has provided an overview of our medium-grained data decompo-

sition and a distributed algorithm for CPD-ALS. There are two forms of overhead that

an ideal data decomposition will minimize: load imbalance and communication volume.

Graph and hypergraph partitioners co-optimize these objectives, but can require signif-

icant pre-processing. We chose to optimize the objectives separately. We load balance

the computation during the tensor decomposition because computational load is mostly

a function of the number of non-zeros assigned to a process. Communication volume

is optimized during the decomposition of the factor matrices because the assignment of

rows directly impacts communication.

Finding a Balanced Tensor Decomposition

Our objective is to derive a load balanced q×r×s decomposition of the modes of X . We

begin by randomly permuting the each mode of the tensor. The purpose of the random

permutation is to remove any ordering present from the data collection process that

could result in load imbalance. Each mode is then partitioned independently.

The decomposition of the first mode into q parts is determined as follows: We

greedily assign partition boundaries by adding consecutive slices until a partition has

at least nnz(X )/q non-zeros. We call nnz(X )/q the target size of a partition because it

will result in a load balanced partitioning of the mode. Slices can vary in density and

adding a slice with many non-zeros can push a partition significantly over the target
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size. Thus, after identifying the slice which pushes a partition over the target size we

compare it to the slice immediately before and choose whichever leads to better balance.

Each of the independent mode decompositions is an instance of the chains-on-chains

partitioning problem, for which there are fast exact algorithms [63]. We found that in

practice, using optimal partitionings led to higher load imbalance than greedily choosing

sub-optimal partitionings. Since we ultimately work with the intersection of the 1D

partitionings, having optimality in each dimension does not guarantee optimality in the

final partitioning.

Partitioning the Factor Matrices

A process may have non-zeros whose indices correspond to factor rows which are not

owned by the process itself. These non-local rows must be communicated. Thus, the

partitioning of rows during the sub-division of Ai directly affects the number of partial

results which are exchanged during the MTTKRP operation. Our objective is to mini-

mize the total number of communicated rows, or the communication volume. We adapt

a greedy method of assigning rows developed for two-dimensional sparse matrix-vector

multiplication [61]. We again partition each mode independently.

The sub-division of A is determined as follows: The q chunks of of A are partitioned

independently. For each row ir in chunk Ai, processes count the number of tensor

partitions (and thus, processes) that contain a non-zero value in slice X (ir, :, :). Any

row that is found in only a single partition is trivially assigned to the owner because it

will not increase communication volume. Next, the master process in the layer p(i,:,:)

coordinates the assignment of all remaining rows. At each step it selects the processes

with the two smallest communication volumes, pj and pk, with pj having the smaller

volume. The master process sends a message to pj instructing it to claim rows until its

volume matches pk. Processes first claim indices which are found in their local tensor

and only claim non-local ones when options are exhausted. The assignment procedure

sometimes reaches a situation in which all processes have equal volumes but not all rows

have been assigned. To overcome this obstacle we instruct the next process to claim a

1/(r×s) fraction of the remaining rows.

These steps are then performed on the second and third tensor modes to complete

the decomposition.
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Algorithm 10 Deriving the decomposition shape

Input: dims, the dimensions of X ; m, the number of modes in X ; p, the number of

processes.

Output: P , a vector storing the decomposition dimensions

1: F ← the prime factors of p in non-increasing order

2: P ← 1, an m-dimensional vector of ones

3: . Find the optimal number of slices per process.

4: target ← (
∑m

i=1 dims[i]) /p

5: for all f ∈ F do . Assign a factor of p at a time

6: distances ← 0, an m-dimensional vector of zeros

7: . Find the mode with the most work per process

8: for i← 1 to m do

9: distances[i]← (dims[i]/P [i])− target

10: end for

11: furthest← argmaxi distances[i]

12: P [furthest]← P [furthest]× f . Give f processes

13: end for

Choosing the Shape of the Decomposition

Our decomposition does not require an equal number of processes along each mode. We

select at runtime the number of processes that should be assigned to each mode. Most

tensors will feature one or more modes that are significantly longer than the others. For

example, the Netflix tensor described in Section 6.2 has over 20× more users than it

does films. When choosing the dimensions for the decomposition, it is advantageous to

assign more processes to the long modes than the short ones. The reasoning behind this

decision is that short modes are likely to require storage and communication regardless

of the decomposition and we should instead use more processes to further the decompose

the modes which can benefit.

A constraint we impose when computing the decomposition is that the product of

the dimensions must equal the number of processes, i.e., q×r×s = p. To achieve this,

we break p into its prime factors and greedily assign them to modes. This process is

detailed in Algorithm 10.
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6.2 Experimental Methodology

6.2.1 Experimental Setup

We used SPLATT to implement three versions of distributed CPD-ALS. We refer to

the collection of our implementations as DMS (distributed-memory SPLATT). The first

version, DMS-CG, uses a coarse-grained decomposition and is a direct implementation

of the algorithm used in SPLATT and adapted to distributed-memory systems. The

second method uses a medium-grained decomposition described in Section 6.1 and is

denoted DMS-MG. Our final implementation is DMS-FG, which follows the fine-grained

tensor decomposition used in the evaluation of HyperTensor [27]. All three algorithms

use the same computational kernels and only differ in decomposition and the resulting

communications. DMS-CG and DMS-MG are implemented with personalized all-to-all

collective operations, while DMS-FG uses point-to-point communications.

Zoltan [64] with PHG was used for hypergraph partitioning with LB APPROACH

set to “PARTITION”. All hypergraphs were partitioned offline using 512 cores. Parti-

tioning required between 1400 seconds on Netflix and 6400 seconds on Delicious.

DMS is implemented in C with double-precision floating-point numbers and 64-bit

integers. DMS uses MPI for distributed memory parallelism and OpenMP for shared-

memory parallelism. All source code is available for download1 . Source code was

compiled with GCC 4.9.2 using optimization level three.

We compare against DFacTo, which to our knowledge is the fastest publicly avail-

able tensor factorization software. DFacTo is implemented in C++ and uses MPI for

distributed memory parallelism.

We used F = 16 for all experiments. Experiments were carried out on HP ProLiant

BL280c G6 blade servers on a 40-gigabit InfiniBand interconnect. Each server had dual-

socket, quad-core Xeon X5560 processors running at 2.8 GHz with 8MB last-level cache

and 22 gigabytes of available memory.

6.2.2 Datasets

Table 6.1 is a summary of the datasets we used for evaluation. The Netflix dataset is

taken from the Netflix Prize competition [44] and forms a user-item-time ratings tensor.

1 http://cs.umn.edu/~splatt/

http://cs.umn.edu/~splatt/
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Table 6.1: Summary of datasets.

Dataset I J K nnz storage (GiB)

Netflix 480K 18K 2K 100M 3.0

Delicious 532K 17M 3M 140M 4.2

NELL 3M 2M 25M 143M 4.3

Amazon 5M 18M 2M 1.7B 51.9

Random1 20M 20M 20M 1.0B 29.8

Random2 50M 5M 5M 1.0B 29.8

nnz is the number of nonzero entries in the dataset. K, M, and B stand for

thousand, million, and billion, respectively. storage is the amount of mem-

ory required to represent the tensor as (i, j, k) = v tuples using 64-bit integers

and 64-bit floating-point values.

NELL [45] is comprised of noun-verb-noun triplets. Amazon [49] is a user-item-word

tensor parsed from product reviews. We used Porter stemming [50] on review text and

removed all users, items, and words that appeared less than five times. Delicious is

a user-item-tag dataset originally crawled by Görlitz et al. [47] and is also available

for download. Random1 and Random2 are both synthetic datasets with non-zeros

uniformly distributed. They have the same number of non-zeros and total mode length

(i.e., output size), but differ in the length of individual modes.

6.3 Results

6.3.1 Effects of Distribution on Load Balance

Table 6.2 shows the load imbalance with 64 and 128 nodes. Load imbalance is defined

as the ratio of the maximum amount of work (tensor non-zeros) assigned to a process to

the average amount of work over all processes. DMS-CG suffers severe load imbalance

on the Amazon tensor, with the imbalance growing from 2.17 with 64 nodes to 3.86 with

128 nodes. In contrast, DMS-MG has lower imbalance, with its largest ratios being only

1.08 with 64 nodes on Amazon. DMS-FG is the most balanced, with Zoltan reaching

1.05 on Delicious with 128 nodes and 1.00 on all other that datasets we could partition.
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Table 6.2: Load imbalance with 64 and 128 nodes.

DMS-CG DMS-MG DMS-FG

Dataset 64 128 64 128 64 128

Netflix 1.03 1.18 1.00 1.00 1.00 1.00

Delicious 1.21 1.41 1.01 1.06 1.00 1.05

NELL 1.12 1.29 1.01 1.01 1.00 1.00

Amazon 2.17 3.86 1.08 1.08 part part

Load imbalance is the ratio of the largest number of nonzeros as-

signed to a process to the average number of nonzeros per process.

part indicates that we were unable to compute a hypergraph parti-

tioning in the memory available on 64 nodes. Hypergraph partition-

ing was performed with the load imbalance parameter set to 1.10.

6.3.2 Effects of Distribution on Communication Volume

Table 6.3 presents results for communication volume with 128 nodes. We only count

communication that is a consequence of the tensor decomposition, i.e., the aggregation

of partial products during MTTKRP operations and exchanging updated rows. We

report the average volume per MPI process as well as the maximum over all processes.

We define the communication volume as the total number of rows sent and received per

iteration, per MPI process. By measuring the total number of rows communicated, and

not the number of words, our discussion is independent of the rank of the decomposition.

When F = 1, the number of communicated rows is equal to the communicated words.

When the each process owns (I/p) rows of a factor, the worst case communication

volume results from sending (I/p) rows to p processes and receiving I − (I/p) rows for

a total volume of 2I − (I/p). The maximum volume over all modes is

Vmax = 2I + 2J + 2K − I + J +K

p
.

DFacTo uses a pessimistic approach to communication and always has a communication

volume of Vmax. DMS-CG uses the same decomposition as DFacTo but instead utilizes

an optimistic approach in which only the necessary factor rows are stored and commu-

nicated. Resultingly, DMS-CG has a smaller communication volume than Vmax on all
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Table 6.3: Communication volume with 128 MPI processes.

DMS-CG DMS-MG DMS-FG

Dataset max avg max avg max avg

Netflix 674.8K 616.9K 99.3K 56.8K 2.6M 210.5K

Delicious 2.8M 2.3M 2.5M 1.6M 4.2M 719.2K

NELL 3.8M 3.4M 2.5M 1.7M 6.0M 1.2M

Amazon 8.3M 7.3M 4.0M 2.5M part part

Random1 72.1M 72.1M 39.5M 39.3M part part

Random2 55.2M 55.2M 39.6M 23.5M part part

Table values are the communication volumes with 128 MPI processes. max is the

maximum volume of any MPI process and avg is the average volume. part indicates

that we were unable to compute a hypergraph partitioning in the memory available

on 64 nodes.

datasets that we were able to collect results for. Despite the added communication step

of aggregating partial results during the MTTKRP operations, DMS-MG and DMS-FG

exhibit lower average communication volumes than DMS-CG on all datasets.

DMS-FG has the lowest average volume on all datasets except Netflix. The discrep-

ancy between mode lengths is largest on Netflix, resulting in DMS-MG using a 64×2×1

decomposition of the tensor. By using most of processes to partition only the longest

mode, the majority of the possible communication volume is constrained to the p(i,:,:)

layers which have only two processes each. DMS-MG avoids partitioning the other

tensor modes in exchange for greatly reducing the communication along the longest

mode.

While the average communication volumes are lowest with DMS-FG, this method

also sees the largest maximum volumes. Hypergraph partitioners optimize the total

communication volume, not necessarily the maximum over any process. Additionally,

with fine-grained decompositions a process may have to exchange rows with all other

processes instead of being bounded by the size of a layer. Thus, some processes can

exhibit large communication volumes in exchange for a lower average.
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6.3.3 Strong Scaling

Table 6.4 shows the runtimes of our methods and DFacTo. We scale from 2 to 128

computing nodes and measure the time to perform one iteration of CPD-ALS averaged

over 50 runs. Each node has eight processors available which we utilize. DMS is a

hybrid MPI+OpenMP code and so we use one MPI process and eight OpenMP threads

per node. DFacTo is a pure MPI code and so we use eight MPI processes per node.

The DMS methods are faster than DFacTo on all datasets. DMS-MG is 41× faster

on Amazon and 76× faster on Delicious when both methods use 128 nodes (1024 cores).

Our success is due to several key optimizations. The three DMS methods begin faster

on small node counts due to an MTTKRP algorithm which on average is 5× faster

(Chapter 4). As we increase the number of nodes, DMS methods out-scale DFacTo

due to their ability to exploit parallelism in the dense matrix operations that take

place after the MTTKRP operation. DMS methods also use significantly less memory

than DFacTo, which is unable to factor some of our large datasets. This is due to

a combination of our optimistic factor storage and our MPI+OpenMP hybrid code.

DFacTo must replicate factors on every core to exploit multi-core architectures. Even

in the worst case, the DMS methods only need one copy of each matrix factor (and in

practice, almost always less than one copy).

DMS-FG was unable to partition the tensors with billions of non-zeros due to the

overhead of hypergraph partitioning. It is important to note that fine-grained decom-

positions are not limited to only the hypergraph model, and non-zeros could instead be

randomly assigned to processes. However, experimental results in [27] show that ran-

dom assignment results in runtime performance that is comparable to a coarse-grained

decomposition. On the tensors we were able to factor, its performance is comparable to

DMS-CG on Netflix and Delicious, but DMS-CG is 1.7× faster on NELL.

DMS-MG is the fastest method among the DMS implementations. It ranges from

1.3× to 8.0× faster than DMS-CG and 1.5× to 5.0× faster than DMS-FG In many

cases, DMS-MG is able to factor tensors when other methods cannot due to memory

limitations or the hypergraph partitioning overhead. Figure 6.3 graphs the strong scal-

ing results for the Netflix dataset. DMS-MG maintains near-perfect speedup through

512 cores. Between 16 and 128 cores, DMS-MG achieves speedups which are super-

linear. We attribute this behavior to the decomposition shape that DMS-MG chooses.
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Figure 6.3: Average time per iteration in seconds on the Netflix dataset. ideal-MG

indicates perfect scalability relative to DMS-MG.

As discussed in Section 6.3.2, almost all processes are assigned to the first mode of the

tensor. In addition to decreasing the communication volume, this has the added effect

of decreasing the amount of A that is stored and accessed on each node. As a result,

the memory hierarchy is better utilized during the computational kernels. Interestingly,

both DMS-MG and DMS-FG slow down between 512 and 1024 cores. This is a result of

communication imbalance. While the average communication volume per node contin-

ues to decrease as we scale, we find that the maximum communication increases after

64 nodes (512 cores). DMS-CG is able to decrease both the average and maximum

communication volume due to it having a larger amount of communication.
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Table 6.4: Strong scaling results.

Netflix Delicious

Nodes DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG

1 11.34 1.82 1.82 1.82 mem 7.90 7.90 7.90

2 6.07 1.16 0.84 1.03 mem 4.82 4.11 6.98

4 3.24 0.64 0.37 0.56 mem 3.08 2.23 4.43

8 1.90 0.39 0.18 0.31 28.01 1.88 1.25 2.16

16 1.34 0.23 0.09 0.22 25.54 1.26 1.04 1.35

32 0.95 0.20 0.06 0.20 24.93 0.86 0.59 0.96

64 0.82 0.19 0.04 0.19 25.15 0.81 0.37 0.66

128 1.33 0.14 0.05 0.24 24.34 0.42 0.32 0.48

NELL Amazon

Nodes DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG

1 mem 10.82 10.82 10.82 mem mem mem part

2 mem 6.66 6.01 9.14 mem mem mem part

4 mem 4.06 3.32 5.24 mem mem mem part

8 mem 2.55 2.02 3.46 mem mem 8.34 part

16 mem 1.64 1.16 2.33 64.12 13.07 4.30 part

32 mem 1.09 0.82 1.74 50.92 10.06 2.19 part

64 mem 0.76 0.55 1.16 45.29 10.82 1.80 part

128 mem 0.53 0.35 0.92 40.20 7.82 0.97 part

Random1 Random2

Nodes DFacTo DMS-CG DMS-MG DMS-FG DFacTo DMS-CG DMS-MG DMS-FG

8 mem mem 18.25 part mem mem 16.27 part

16 mem 12.80 11.42 part mem mem 9.61 part

32 mem 9.98 8.12 part mem 10.61 6.25 part

64 mem 8.02 5.51 part mem 7.86 4.06 part

128 mem 6.85 3.96 part mem 5.53 2.81 part

Table values are seconds per iteration of CPD-ALS, averaged over 50 iterations. mem indicates the configuration re-

quired more memory than available. part indicates that we were unable to compute a data partitioning. Each node has

eight cores which are fully utilized.



Chapter 7

Sparse Tensor Factorization with

Constraints

We now present techniques for parallelizing and accelerating AO-ADMM (Algorithm 3).

We begin with a parallelization strategy for ADMM (Algorithm 2) and then discuss

a reformulation which improves convergence and computational efficiency. Next, we

introduce a strategy for accelerating MTTKRP by exploiting the sparsity that naturally

occurs in the factor matrices.

7.1 Accelerating ADMM

7.1.1 Parallelized ADMM

There is a wealth of research that focuses on accelerating the individual dense matrix

kernels that constitute ADMM. These include matrix multiplication, Cholesky factor-

ization, and forward/backward substitution [65]. Since the matrices of interest are

tall and skinny, the kernels will ultimately be parallelized over the matrix rows while

carefully optimizing for cache and other hardware features. Additionally, many pop-

ular constraints have proximity operators which are row separable. These include l1

regularization for sparsity, non-negativity, and row simplex constraints.

A consequence of row separable computations is that Lines 6 through 9 in Algo-

rithm 2, which comprise the bulk of the ADMM computation, can all be parallelized by

89
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distributing rows of the tall and skinny matrices to threads. Lastly, convergence can be

computed in parallel using any decomposition of the primal and dual variables. Each

thread computes thread-local primal and dual norms (Lines 10 and 11) which are then

aggregated.

7.1.2 Blocked ADMM

While the previous parallelization strategy offers a large amount of parallelism by fo-

cusing on the individual kernels, it does not take into account the iterative nature of the

ADMM as a whole. We consider two challenges that emerge when viewing the ADMM

algorithm beyond just a sequence of optimized kernels:

1. Non-uniform convergence. Real-world datasets often exhibit non-zeros which

follow a power-law distribution. For example, a product rating tensor used by

a recommender system will have some popular items and prolific users, while on

average each item and user only have a few submitted ratings. It is natural to

expect the rows corresponding to prolific users and items to carry much of the

factorization’s information. A consequence is that these “high-signal” rows may

require many more iterations to converge than the average row. Since convergence

criteria is an aggregation of all rows, this disparity not only decreases factorization

quality by performing too few iterations on the high-signal rows, but also increases

factorization time by performing additional iterations on the low-signal rows.

2. Memory-bound computations. Each step in Algorithm 2 involves a linear pass

over the primal and dual matrices. Note that even the computationally intensive

step, the forward/backward substitutions requiring O(F 2I) operations, is linear

in the large row dimension. If the size of the matrices exceed the size of the CPU

cache, then we will access the matrices entirely from main memory instead of

cache. Thus, the performance of Algorithm 2 will be determined by a machine’s

memory bandwidth instead of its compute capabilities.

We address both limitations by developing a blockwise reformulation of Equation 2.6.
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If the proximity operator is row separable, we split the problem into B blocks of rows:

minimize
{(H1,H̃1),...,(HB ,H̃B)}

B∑
b=1

1

2

∥∥∥(X(1))b − H̃
T

b (C � B)T
∥∥∥2

F
+ r(Hb)

subject to H1 = H̃1, . . . ,HB = H̃B.

Each of the blocks can then be optimized independently using Algorithm 2.

The blockwise reformulation accelerates convergence by allowing each block of rows

to converge using different numbers of iterations. At one extreme, if B = I then we

separately optimize the solution for each row. In effect, the amount of work performed

on each row is independent of all others. Therefore, the rows which take many iterations

to converge will not be affected by those which converge early. Similarly, computation

will not be wasted on rows which have already converged.

Likewise, the blockwise reformulation improves computational performance by cre-

ating temporal locality in the matrices. Since a block is processed until it has converged,

a sufficiently small block size will allow of the necessary matrix data to be cache res-

ident throughout the optimization procedure. Hence, we can expect to achieve better

performance than the previously memory-bound formulation.

From a parallelization standpoint, this blockwise reformulation naturally provides

an alternative decomposition of the computations. Instead of parallelizing the individ-

ual steps within Algorithm 2, we can simply distribute blocks to threads. This has the

benefit of eliminating all synchronization overheads, as each block can be optimized

totally in parallel. Even though blocks are equal in size, they may require different

numbers of iterations. Thus, we cannot statically distribute blocks and instead dynam-

ically load balance the optimization at block-level granularity. The work distribution is

a simple loop over the B blocks and can be managed by the dynamic looping mechanism

provided by many parallel frameworks such as OpenMP.

Selecting the number of blocks affects both convergence rate and execution perfor-

mance. A natural first choice is to use B=I and optimize over each row individually.

In effect, the convergence benefits and temporal locality are maximized. Unfortunately,

other overheads such as function calls and instruction cache misses are exaggerated

when such a small amount of work is performed in each step. We empirically found

that blocks of 50 rows offered a good trade-off between convergence and execution.
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While we focus on shared-memory parallelism in this work, we note that the block-

wise formulation also affords opportunities for distributed-memory parallelism. Since

each block is processed independently, no communication needs to occur beyond the

MTTKRP operation, which has efficient distributed-memory algorithms such as the

fine-grained decomposition [27] and medium-grained decomposition (Chapter 6).

7.2 MTTKRP with Sparse Factors

Sparsity in the CPD factors is an attractive characteristic to practitioners. Intuitively,

a sparse solution is a more simple one, and is thus easier to interpret and to gain insight

from. Factor sparsity is also attractive from a performance perspective, as it affords

opportunities for computational savings by avoiding operations with zero elements.

We focus our sparsity optimizations on the MTTKRP operation. Each tensor non-

zero results in an access to the matrix factors, and thus MTTKRP can benefit greatly

from sparsity. MTTKRP is primarily bound by memory bandwidth due to accesses to

the factor matrices, and thus optimizations should reduce the volume of data fetched

from the factors in order to achieve speedups. This is especially challenging when

computing with a small rank, as each row has relatively few elements regardless, and

thus memory savings are limited to a fraction of a cache line.

A first solution is to store a copy of the sparse factors in CSR format. CSR allows

the factors to be randomly accessed by rows, which is required during MTTKRP. Since

only the non-zero values and their indices are represented, the amount of data fetched

from main memory scales with the matrix sparsity. Fortunately, the switch from a dense

to compressed matrix format only requires minor changes to the MTTKRP algorithm.

Whole rows of the factor are accessed at a time, and thus we only need to account for

the difference between a dense and sparse row representation. In practice, the cost of

accessing C dominates accesses to the other factor matrices due to it being accessed by

every non-zero instead of fiber or slice. Therefore, we only represent C in CSR form

and need only minor modifications to the MTTKRP implementation.

While a CSR representation decreases the effects of limited memory bandwidth,

it increases the effects of memory latency. Consider the difference in implementation

of dense and CSR matrices. A dense matrix will incur one latency cost when initially
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accessing a row of C, but the remaining entries exhibit spatial locality and will be fetched

from main memory within the same cache line. Adjacent cache lines should be fetched

by the hardware prefetching mechanisms. A CSR matrix, however, is implemented with

three structures which encode the row length, the non-zero indices, and the non-zero

values. The row length is required to index into the indices and values, and thus multiple

latency costs will be incurred.

We address the challenge of memory latency costs by considering a hybrid combi-

nation of the dense and sparse matrix structures. Much like the distribution of tensor

non-zeros, the sparsity patterns of the matrix factors are non-uniform. Importantly, C

may have a few mostly-dense columns, with the remaining ones containing only a few

non-zeros. We call a column “dense” when it contains more non-zeros than the average

column density. When constructing the hybrid structure, we first sort the columns based

on the number of non-zeros and place the dense columns first. The dense columns are

represented with a simple dense matrix, and the remaining sparse columns are stored in

CSR format. When a row of C is accessed during MTTKRP, we use software prefetch-

ing to begin fetching the CSR structure. During the data movement, we compute with

the dense entries of the row. Finally, the row of the CSR structure is processed after

the dense component.

Unlike the tensor which has a static sparsity pattern throughout the factorization,

the sparsity patterns of the factors are dynamic. Therefore, techniques to exploit spar-

sity must be carefully vetted for efficiency, because their overheads are not amortized

over multiple iterations. The potential gains that can be achieved by using a CSR rep-

resentation to accelerate MTTKRP need to be balanced with the cost of constructing

this CSR representation. Constructing the CSR matrix is an O(IF ) operation due to it

requiring a pass over the dense matrix to determine the sparsity pattern. Fortunately,

this overhead is negligible when multiple ADMM iterations are performed, each taking

O(F 2I) time.
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Table 7.1: Summary of datasets.

Dataset NNZ I J K

Reddit [57] 95M 310K 6K 510K

NELL [45] 143M 3M 2M 25M

Amazon [49] 1.7B 5M 18M 2M

Patents [58] 3.5B 46 240K 240K

NNZ is the number of nonzero entries in the dataset. I,

J, and K are the dimensions of the datasets. K, M, and B

stand for thousand, million, and billion, respectively.

7.3 Experimental Methodology

7.3.1 Experimental Setup

Experiments were performed on a workstation with 396GB of main memory and two

ten-core Intel Xeon E5-2650v3 processors with 25MB of last-level cache. Our source

code is modified from SPLATT version 1.1.1, a C library for high performance sparse

tensor factorization [5]. Our source code is to be made part of the next SPLATT release.

We use the Intel compiler version 17.0.1 and Intel MKL used for Cholesky factorization

and forward/backward substitution. OpenMP is used for parallelism. Unless otherwise

specified, we run with twenty OpenMP threads.

7.3.2 Datasets

Table 7.1 summarizes the tensors used in our evaluation. We selected four real-world

tensors from various domains which are publicly available as part of the FROSTT

collection [58]. NELL is a noun-verb-noun tensor from the Never Ending Language

Learning project [45]. Reddit is a user-community-word tensor encoding a subset of

comments on Reddit from 2007 to 2010 [57]. Amazon is a user-item-word tensor of

product reviews [49]. Patents is a year-word-word tensor of pairwise co-occurrence

probabilities from United States utilities patents.
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7.3.3 Convergence Criteria

We follow the factorization community and use a normalized value of LS(·) to measure

the quality of a factorization. Specifically, we measure the relative error between X and

its factored form:

relative error =

∥∥∥X −∑F
f=1 A(:, f) ◦B(:, f) ◦C(:, f)

∥∥∥2

F

‖X‖2F
.

Convergence is detected when the relative error improves less than 10−6 or if we exceed

200 outer iterations.

7.4 Results

7.4.1 Relative Factorization Costs

We first investigate the performance characteristics of a parallel implementation of AO-

ADMM without blocking or sparsity optimizations. Figure 7.1 shows the fraction of

factorization time spent in the main computational kernels of Algorithm 3 (i.e., MT-

TKRP and ADMM) during a rank-50 non-negative factorization.

Neither of the kernels consistently dominate the computation. NELL has both the

longest modes of the datasets and is also the most sparse, and therefore spends most of

the runtime in ADMM updating the factors. Amazon and Patents, on the other hand,

are dominated by MTTKRP. These tensors have more non-zeros and are both more

dense than NELL, which emphasizes the cost of MTTKRP. These results indicate that

in order to achieve high performance, both the computations performed during ADMM

and MTTKRP need to be optimized and parallelized effectively.

7.4.2 Parallel Scalability

We examine the parallel scalability of the baseline AO-ADMM algorithm in Figure 7.2.

The baselines achieve speedups ranging from 5.4× on NELL to 12.7× on Patents. Note

that the amount of achieved speedup is related to the amount of time spent on MT-

TKRP in Figure 7.1. The datasets which are dominated by the cost of MTTKRP exhibit

the best scalability due to the already-optimized kernels provided by SPLATT. Using
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negative factorization.
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Figure 7.2: Parallel speedup on rank-50 non-negative CPD.

the blocked formulation, speedups range from 12.7× on Patents to 14.6× on NELL.

The trend observed on the baseline scalability is reversed: datasets which are domi-

nated by ADMM runtime now achieve the best scalability. This is expected, as blocked

ADMM features high temporal locality and minimal synchronization costs compared to

its baseline counterpart.

7.4.3 Convergence Rate

We now evaluate the benefits of the blockwise formulation on the convergence of AO-

ADMM. It is important to separate the speedups achieved by accelerated convergence

and by faster execution rate. Figure 7.3 and Figure 7.4 show convergence on all datasets

as both a function of time and the number of outer iterations. Including convergence as

a function of outer iteration allows us to observe the effects of blocked ADMM without

considering machine effects such as cache locality. When a solution of higher quality

(i.e., lower error) is reached, or fewer outer iterations are performed, then we know that

convergence has been improved.

Blocking improves the per-iteration convergence on every evaluated dataset. The

positive benefits of blocking are observed in two forms: (i) reaching a higher-quality
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Table 7.2: Effects of sparse matrix data structures on CPD runtime.

Reddit Amazon

F = 50 F = 100 F = 200 F = 50 F = 100 F = 200

3% dense 1% dense 2% dense 3% dense 3% dense 5% dense

DENSE 227.8 430.7 1774.9 305.9 715.3 18120.0

CSR 212.7 231.6 1000.5 272.6 539.2 12535.6

CSR-H 199.4 186.3 903.5 320.6 588.5 13476.5

Values are the total time in seconds to compute the CPD. We impose a 10−1|| · ||1 regularization on

all factors to promote sparsity. The density of each rank indicates the density of the longest factor ma-

trix (i.e., the matrix that is stored in a sparse representation during MTTKRP). Density is computed via

nnz(C)/KF . DENSE uses a baseline MTTKRP implementation with a dense matrix. CSR uses the com-

pressed sparse row (CSR) format during MTTKRP. CSR-H uses the hybrid dense and CSR format.

solution in the same or less time, or (ii) converging to a comparable solution in fewer

iterations. For example, NELL and Amazon both converge to lower errors than the base-

lines. This is most exemplified with NELL, which converges 3.7× faster and reaches a 3%

lower error. The success of NELL is a result of the combination of both faster ADMM

iterations and additional ADMM iterations being performed on the “high-signal” blocks.

Reddit and Patents, on the other hand, converge in fewer iterations due to blocking and

reach errors that are less than 1% higher than the baseline.

7.4.4 Accelerating MTTKRP with Factor Sparsity

We now evaluate the benefits of exploiting factor sparsity during MTTKRP. We compute

l1-regularized factorizations in order find to sparse solutions. For each factor, we set

r(·) = 10−1|| · ||1. We omit NELL and Patents from this evaluation because they did

not tend to exhibit sparsity and instead converged to either mostly dense or totally zero

solutions as the regularization parameter was introduced.

Table 7.2 shows the time-to-solution for Reddit and Amazon on a variety of ranks.

For each configuration, we include times for the baseline dense computation, CSR, and

the hybrid dense and CSR computation. Notably, the complete factorization time is

presented despite the evaluated algorithms only benefiting the MTTKRP portion of the
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Figure 7.3: Effects of blockwise ADMM on rank-50 non-negative factorization on Reddit

and NELL. base and blocked are the unblocked and blocked algorithms, respectively.

factorization. The time-to-solution more accurately portrays the benefits of sparsity as

it accounts for conversion overheads and the early iterations in which the factors are not

yet sparse. For our evaluation, we empirically determined that a factor can be gainfully

treated as sparse when its density falls below 20%.

Exploiting sparsity outperforms the baseline dense computation in all cases. Speedups

from sparse MTTKRP range from 1.1× to 2.3×. Interestingly, the hybrid CSR data

structure is beneficial for Reddit but not Amazon. While the two datasets feature sim-

ilar levels of sparsity in their largest factor matrix, the longest mode of Amazon is over

thirty times longer than Reddit.
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Figure 7.4: Effects of blockwise ADMM on rank-50 non-negative factorization on Ama-

zon and Patents. base and blocked are the unblocked and blocked algorithms, respec-

tively.



Chapter 8

Large-Scale Tensor Completion

In this chapter, we develop scalable, high-performance algorithms for the three most

popular algorithms for tensor completion: alternating least squares (ALS), coordinate

descent (CCD++), and stochastic gradient descent (SGD). We detail optimizations

for both shared-memory and distributed-memory systems and demonstrate scalability

for each of the algorithms on a variety of datasets. Lastly, we introduce a source of

randomization to ALS and CCD++ and experimentally demonstrate an improvement

in solution time and quality.

8.1 Algorithms for High Performance Tensor Completion

8.1.1 Efficient Loss Computation with a Compressed Sparse Tensor

The choice of data structure for representing a sparse tensor affects performance in

ways such as memory bandwidth, number of FLOPs performed, and opportunities for

parallelism. The HPC formulations of the various optimization algorithms that we

developed use the compressed sparse fiber (CSF) data structure (Chapter 4), illustrated

in Figure 4.4. CSF can be thought of as a generalization of the compressed sparse row

data data structure for matrices. The CSF data structure represents a tensor as a forest

of I trees, with each mode recursively compressed one after the other and stored in the

next level of the tree.

The evaluation of L(·) in Equation (2.3) benefits from exploiting the CSF tensor

101
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representation. Consider the computation of L(·) associated with two successive non-

zeros:

L(i, j, k) = X (i, j, k)−
F∑
f=1

A(i, f)B(j, f)C(k, f),

L(i, j, k′) = X (i, j, k′)−
F∑
f=1

A(i, f)B(j, f)C(k′, f).

We reuse partial results by storing the Hadamard (element-wise) product of A(i, :) and

B(j, :) in a row vector v:

v← A(i, :) ∗B(j, :)

L(i, j, k) = X (i, j, k)−
F∑
f=1

v(f)C(k, f),

L(i, j, k′) = X (i, j, k′)−
F∑
f=1

v(f)C(k′, f).

This reduces the computation from 2F nnz(X ) multiplications to F nnz(X )+FP , where

P is the number of unique X (i, j, :) fibers. The matricized tensor times Khatri-Rao

product (MTTKRP) operation present in ALS uses the same technique for operation

reduction (Chapter 4).

8.1.2 Parallel ALS

We follow the strategy of parallelizing over the rows of A for shared-memory paral-

lel systems. Recall from Equation (2.8) that Hi has |X (i, :, :)| rows and F columns.

A major challenge when designing ALS algorithms is that if multiple rows of A are

computed at once, the various Hi matrices must somehow be represented in memory.

However, the collective storage for all Hi prohibitively requires F nnz(X ) storage. An-

other option, and the one used by existing work [13], is to aggregate rank-1 updates.

For each non-zero X (i, j, k), a rank-1 update with the row vector (B(j, :) ∗C(k, :)) is

accumulated into HT
i Hi. A naive implementation must aggregate the rank-1 updates

for all possible i, requiring IF 2 storage. It was observed that this storage overhead can

be reduced by sorting the tensor non-zeros before processing long modes [13].

We instead store N CSF representations of X , in which the nth CSF places the nth

mode at the top level of the tree and sorts the remaining ones by length. Since the
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mode ordering forces all non-zeros in X (i, :, :) to be grouped into the same tree, we can

process all of the non-zeros in X (i, :, :) sequentially and thus only the O(F 2) memory

associated with a single row is allocated. For multicore systems, we parallelize over

the rows of A with a memory overhead of only O(F 2) per thread. The total storage

overhead with P threads is (N−1) nnz(X ) + PF 2 = O(N nnz(X )), which is smaller

than F nnz(X ) and IF 2 for most problems.

The construction of HT
i Hi and HT

i vec(X (i, :, :)) are performed together during a

single pass over the sparsity structure of X using similar strategies as presented in Sec-

tion 4.3. Interestingly, the expression HT
i vec(X (i, :, :)) is equivalent to computing one

transposed row of the MTTKRP operation, for which operation-efficient CSF algorithms

exist.

Accumulating rank-1 updates into HT
i Hi causes O(F 2) data to be accessed for

each non-zero and leads to memory-bound computation. We collect the intermediate

Hadamard products formed during MTTKRP into a thread-local matrix of fixed size.

When that matrix fills, or all non-zeros in X (i, :, :) are processed, the thread performs

one rank-k update, where k is the number of rows in the thread-local matrix. We

empirically found that a matrix of size 2048×F is sufficient to see significant benefits

from the BLAS-3 performance. For typical values of F , this equates to storage overheads

of up to a few megabytes per thread.

We follow existing work and use a coarse-grained decomposition in the distributed-

memory setting [14]. Coarse-grained decompositions impose separate 1D decomposi-

tions on each tensor mode, eliminating the need to communicate and aggregate par-

tial computations. As a result, the worst-case communication volume is reduced from

O(IF 2) to O(IF ) per process, which is the cost of exchanging updated rows of A.

Our coarse-grained decomposition uses chains-on-chains partitioning to optimally load-

balance the slices of each mode [63]. After partitioning and distributing non-zeros, we

use our shared-memory ALS kernels without modification. After a factor matrix is

updated, we use an all-to-all collective communication to exchange the new rows.

8.1.3 Parallel SGD

Processing non-zeros in a totally random fashion requires O(nnz(X )) work per epoch

to shuffle the non-zeros and results in random access patterns to the matrix factors. We
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(a) (b)

Figure 8.1: Asynchronous SGD strategies for P=4 processes. (a) S=1 stratum layers.

The longest mode is partitioned and other modes are updated asynchronously. (b) S=2

stratum layers. The longest mode is partitioned and S teams of P/S asynchronously

update at the end of each stratum.

instead use a more coarse-grained approach and randomize only one mode of the tensor,

i.e., we randomize the processing order of the trees in the CSF structure (Figure 4.4)

but sequentially access non-zeros within each tree. This approach reduces the cost of

shuffling to O(I) and retains the cache-friendly access pattern to the matrix factors

that is provided by the sorted indices in CSF. Our shared-memory SGD algorithm uses

a Hogwild approach and processes the trees in parallel without synchronization con-

structs [36]. Choosing which mode to randomize requires careful consideration, because

SGD may not converge if updates are not sufficiently stochastic. This is demonstrated

in Section 8.4.1.

In a distributed-memory setting, we refer to a group of blocks in the PN stratification

grid (Figure 3.2) that share a coordinate as a stratum layer. For example, blocks of

coordinate (i, :, :) are in the ith stratum layer along the first mode. We partition the

grid by first selecting the longest mode and decomposing it in a 1D fashion. Each

process is assigned to a unique stratum layer in the longest mode. This privatizes the

largest matrix factor, meaning no processes can produce updates which overlap with the

another process’ local portion. Thus, there will not be any communication associated

with the largest mode during the factorization.
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The number of strata increases exponentially with the number of modes. Assum-

ing the number of non-zeros is constant, and therefore the work per epoch is constant,

the average work per stratum that can be processed in parallel decreases exponentially.

Many real-world tensors have modes with skewed dimensions. For example, a tensor of

health records will have significantly more unique patients than unique medical proce-

dures or doctors. The lengths of the dense modes can be much smaller than the number

of available cores. In this case, the amount of parallelism is limited by the shortest

mode (the number of blocks in a stratum equals min(I1, ..., IN ), where In is the length

of nth mode).

In order to address these parallelism challenges, we extend ASGD to tensors, which

allows multiple processes to update the same row of a factor matrix with their local

copies. ASGD can trade-off the staleness of factor matrices for increased parallelism by

adjusting the number of copies and the frequency of synchronizing the copies. Our im-

plementation is parameterized with the number of stratum layers, S, which determines

the number of strata as SN−1. We can set S = P (which reduces ASGD to the usual

stratified SGD) for tensors with a few modes or set S < P for tensors with more modes.

When S < P , since each stratum has only S independent blocks, P/S processes need to

update the same range of factor matrices simultaneously, resulting in up to P/S copies

of a factor matrix row. Specifically, we partition an N -mode tensor into a P × SN−1

grid and assign P mode-1 layers to each process. Then, we group every P/S processes

as a team with total S teams. This process is shown in Figure 8.1.

We partition each factor matrix among P processes, aligning with the grid used for

the tensor partitioning. At the beginning of a stratum, each process sends the rows

of the factor matrices that it owns to the other processors that need them. By our

construction, a factor matrix row will be sent to one team, thus limiting the number of

copies to P/S. Then, each process goes through the non-zeros of the current stratum it

owns, updating the corresponding rows of factor matrices. After the update, processes

send the updated rows back to their owners. Finally, processes compute weighted sums

of the received updated rows, where the weights are the number of non-zeros which

updated the particular row. For example, for a 3-mode tensor X and a given stratum,

suppose process p1 processes 2 non-zeros in a mode-2 slice X (:, i, :) and p2 processes 1

non-zeros in the same slice. At the end of the stratum, the owner of ith row computes
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Figure 8.2: The PN -way tiling scheme used in CCD++ for P=3 threads.

a weighted sum of the local copies of ith row of mode-2 factor matrix from p1 and

p2, using 2/3 and 1/3 as their weights, respectively. Since we synchronize the factor

matrices every stratum, the number of synchronizations per epoch is SN−1.

ASGD allows us to alleviate the limited amount of parallelism and frequent com-

munication, the primary challenges of SGD, especially for high-mode tensors. Still,

compared to ALS and CCD++, SGD has higher communication volume, which can be

analyzed as follows. For each stratum, a process receives the rows of factor matrices

that correspond to the non-zeros it needs to process, which equals the sum of number

of non-empty slices of each mode except for the first mode (which is completely pri-

vatized). In a worst case (and not an uncommon case for highly sparse tensors), we

have only a few non-zeros per slice, leading to receiving O(F nnz(X p,s)) floating-point

numbers for each mode for the sub-tensor X p,s processed by process p at stratum s.

Summing over all processes and strata results in O(NF nnz(X )) total communication

volume. It is important to receive only the required factor matrix rows corresponding

to non-empty slices to be processed. Otherwise, the total communication volume will

be O
(
SN−2F

∑N
n=2 In

)
as analyzed by Shin and Kang [14].

8.1.4 Parallel CCD++

As discussed in Section 3.2.3, CCD++ implementations follow a similar parallelization

strategy as ALS on shared-memory systems. Following Equation (2.9), all αi’s and βi’s

are independent subproblems and can be computed in parallel. However, unlike ALS,

it is not advantageous to use separate CSF representations for each mode in order to
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extract coarse-grained parallelism. This is due to the added (N−1) nnz(X ) operations

that would be required for updating multiple residual tensors. Therefore, we restrict

ourselves to a single tensor and turn to other decomposition strategies.

We leverage the PN -way tiling strategy developed for parallelizing MTTKRP with

a single CSF (Chapter 4). Shown in Figure 8.2, an N -dimensional grid is imposed on

X , with each dimension having P chunks. This allows P threads to partition any mode

of X into P independent chunks, each consisting of PN−1 tiles. Each mode of X can

thus be updated without parallel overheads such as reductions or synchronization.

Conveniently, because threads access whole layers of tiles at a time, we do not need

each of the PN tiles to have a balanced number of non-zeros. Instead, only the layers

themselves need to be balanced. We use chains-on-chains partitioning to determine the

layer boundaries in each mode, resulting in load-balanced parallel execution.

In a distributed-memory setting, the communication requirements of CCD++ closely

follow those of MTTKRP. A minor variation comes from CCD++ being a column-major

method, and thus we must exchange partial results and updated columns F times per

mode instead of exchanging full rows of size F once per mode. Unlike ALS, exchanging

partial results does not cause a prohibitive amount of communication. We can therefore

choose from the recently proposed fine-grained [27] and medium-grained (Chapter 6)

decompositions for MTTKRP. We opt for the medium-grained decomposition, which

imposes an N dimensional grid over X . The medium-grained decomposition varies

from our tiling strategy in that there are only as many cells in the grid as processes.

After distributing X over a grid, our shared-memory parallelization strategy is applied

by each process independently.

8.1.5 Dense Mode Replication

ALS and CCD++ parallelize over the dimensions of X . As discussed in Section 8.1.3,

real-world tensors have skewed mode lengths. Simply parallelizing over the short, dense

modes is insufficient because the number of threads can easily outnumber the slices.

Additionally, the dense modes often have non-zeros that are not uniformly distributed,

leading to further load imbalance.

The issue of dense modes was first addressed by Shao [12] for shared-memory ALS

when I < P . Non-zeros are instead divided among threads and each thread computes a
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local set of HT
i Hi and HT

i vec(X (i, :, :)). A parallel reduction is then used to combine

all partial results before the Cholesky factorization. We adopt this solution in our own

ALS implementation and parallelize directly over non-zeros when the mode is dense. We

use the tiling mechanism employed by CCD++ to load balance non-zeros. The tensor

is still stored using CSF, and thus the optimizations to achieve BLAS-3 performance

can still be employed.

CCD++ uses a similar mechanism for handling dense modes. CCD++ only con-

structs one representation of X which is already tiled for parallelism. There is no

advantage to tiling the dense modes because they will not be partitioned, and so we use

a PN−d-way tiling on a tensor with d dense modes. Each thread then computes local

αi and βi and we aggregate them with a parallel reduction when the mode is dense.

The same decomposition strategies apply to distributed-memory computation. The

factors representing dense modes are replicated on all processes. Instead of doing a

coarse- or medium-grained decomposition to establish communication patterns, a simple

all-to-all reduction is used to aggregate partial computations.

8.2 Improving Convergence of ALS and CCD++ via Ran-

domization

Non-convex optimization problems such as Section 2.3 are susceptible to converging to

local minima. Algorithms such as SGD and randomized block coordinate descent [66, 67]

have been used with great success because they have the ability to escape local minima

when a deterministic descent algorithm would instead converge. While randomized

algorithms typically provide no guarantees on converging to a globally optimal solution,

in practice they often converge faster and arrive at higher quality local minima than

their deterministic counterparts.

The success of these randomized methods motivates the addition of randomization

to ALS and CCD++. Careful attention must be paid in order to avoid introducing

additional computation or communication and to maintain the degree of available par-

allelism. In the following discussion we refer to the factor matrices as A(1), . . . ,A(N)

for notational convenience.
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8.2.1 Randomized ALS

An epoch of ALS traditionally updates A(1), . . . ,A(N) in a cyclic fashion. A cyclic

scheme means that A(n) will always be updated using the latest A(n−1), which in turn

was updated using the latest A(n−2), and so on. Thus, after the factor matrices are

initialized, the optimization process is entirely deterministic. Instead, we propose to in-

troduce mode-level randomization and apply a random permutation to the tensor modes

each epoch π : {1, . . . , N} → {1, . . . , N}. This randomization scheme allows A(π(n)) to

be updated using the latest state of a different mode each epoch. Pseudocode is pre-

sented in Algorithm 11.

Mode-level randomization can be implemented with negligible overhead. If each

process uses the same reproducible pseudo-random number generator, then π can be

constructed locally by each process and does not need to be communicated. Thus, the

only cost of randomization is the construction of π, which is negligible.

8.2.2 Randomized CCD++

CCD++ presents two opportunities for low-overhead randomization: rank-level and

mode-level. Rank-level randomization updates the F rank-one tensors in a random

order instead of cyclically. Within each rank-one optimization, CCD++ can leverage

mode-level randomization by altering the order of the updates to the N columns being

updated. Pseudocode is presented in Algorithm 12. Like ALS, the only overheads

associated with randomization are the construction of two permutations of size F and

N , both of which are negligible.

Additional randomized behavior could conceivably be incorporated into ALS and

CCD++ by making multiple passes over the factors and updating random subsets of

the rows each time. However, we do not explore this option because it reduces the

degree of available parallelism from the length of the mode to the number of rows in

the current block. Moreover, the already-unstructured communication pattern becomes

dynamic due to different sets of rows being updated and communicated each pass.



110

Algorithm 11 Mode-randomized ALS

1: while not converged do

2: Form random permutation πN : {1, . . . , N} → {1, . . . , N}.
3: for n ∈ πN do

4: for i ∈ In in parallel do

5: Update A(n)(i, :) using Equation (2.8).

6: end for

7: end for

8: end while

Algorithm 12 Rank- and mode-randomized CCD++

1: while not converged do

2: Form random permutation πF : {1, . . . , F} → {1, . . . , F}.
3: for f ∈ πF do

4: Form random permutation πN : {1, . . . , N} → {1, . . . , N}.
5: for n ∈ πN do

6: for i ∈ In in parallel do

7: Update A(n)(i, f) using Equation (2.9).

8: end for

9: end for

10: end for

11: end while

8.3 Experimental Methodology

8.3.1 Experimental Setup

We use the Cori supercomputer at NERSC. Each compute node has 128 GB of memory

and is equipped with two sockets of 16-core Intel Xeon E5-2698 v3 that has 40 MB

last-level cache. The compute nodes are interconnected via Cray Aries with Drag-

onfly topology. Our ALS, SGD, and CCD++ implementations are made part of the

open source tensor factorization library, SPLATT [5]. We use double-precision floating-

point numbers and 64-bit integers. We use the Intel compiler version 16.0.0 with the
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-xCORE-AVX2 option for instructions available in the Haswell generation of Xeon proces-

sors, Cray MPI version 7.3.1, and Intel MKL version 11.3.0 for LAPACK routines used

in ALS. Compute jobs are scheduled with Slurm version 16.05.03. We run one MPI

rank per socket (two ranks per node) and one OpenMP thread per core for SGD and

CCD++, and one MPI rank per node for ALS. We use the bold driver heuristic [68] for

a dynamic step size parameter in SGD with an initial value of 10−3.

We follow the recommender systems community and use root-mean-square error

(RMSE) as a measure of factorization quality. RMSE was the metric used by the

Netflix Prize [44], where the first algorithm to improve the baseline RMSE by 10% was

awarded one million dollars. RMSE is defined as

RMSE =

√∑
X (:,:,:) L(i, j, k)2

nnz(X )
.

Datasets are split into 80% training, 10% validation, and 10% test sets. The training set

is used to compute the factorization. RMSE is computed each epoch using the validation

set, and convergence is detected when the RMSE does not improve for twenty epochs.

The final factorization quality is determined by the test set. All algorithms are given

the same random initialization for fairness.

8.3.2 Datasets

Table 8.1 summarizes the tensors used for evaluation. The reported non-zeros and

memory requirements reflect only that of the training data, because that is the portion

of the computation that we focus on in this work. We work with real-world datasets

coming from a variety of domains. Movielens, Netflix and Yahoo! are (user, item,

month) product rating tuples. Values in Movielens and Netflix range from 1-5 and

Yahoo! values range from 1-100. Amazon is formed from (user, item, word) tuples

taken from product reviews. Patents is formed from (year, word, word) pairwise co-

occurrences taken from United States utility patents from years 1969 through 2014.

Non-zero X (i, j, k) is equal to log(fjk), where fjk is the number of times terms j and

k appeared in a seven-word window during year i. Outpatient is a six-mode tensor of

(patient, institution, physician, diagnoses, procedure, day) tuples formed from synthetic

outpatient Medicare claims. We selected non-zeros from the original data in order to
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Table 8.1: Summary of training datasets for tensor completion.

Dataset NNZ Dimensions Mem. (GB)

Movielens [69] 20M 138K, 27K, 234 0.5

Netflix [44] 80M 480K, 17K, 73 2.4

Outpatient [55] 87M 1.6M, 6K, 13K, 6K, 1K, 192K 4.5

Yahoo! [56] 210M 1M, 625K, 133 6.3

Amazon [49] 1.4B 4.8M, 1.7M, 1.8M 41.5

Patents [58] 2.9B 46, 240K, 240K 85.7

K, M, and B stand for thousand, million, and billion, respectively. NNZ is the number of non-

zeros in the training dataset. Mem. is the memory required to store the tensor as a list of

(coordinate, value) tuples, measured in gigabytes.

have three-, four-, five-, and six-mode versions of this dataset with the same number of

non-zeros. The Amazon, Patents, and Outpatient datasets are publicly available in the

FROSTT tensor collection [58].

Throughout the remaining discussion, we will use appropriate subsets of our datasets

based on the subject of the experiment. For example, when discussing convergence prop-

erties of the various optimization algorithms, we will focus on the ratings tensors (i.e.,

Movielens, Netflix, and Yahoo!) due to them requiring many iterations to converge and

their prevalence in the matrix and tensor completion community. As another example,

the synthetic Outpatient tensor converges too quickly for a convergence study, but has

a large number of modes and allows for an evaluation on the scalability for higher order

tensors.

8.4 Results

8.4.1 Intra-Method Evaluation

ALS

Figure 8.3 shows the effects of BLAS-3 routines and dense mode replication while fac-

toring the Yahoo! tensor with F=10. With neither optimization, each ALS epoch takes
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Figure 8.3: Effects of ALS optimizations during a rank-10 factorization of the Yahoo!

tensor. noopt is a baseline ALS implementation with a CSF data structure. tile delays

rank-1 updates to use the BLAS-3 dsyrk routine. tile+dense includes tile and also

dense mode replication.

359 seconds on average and we achieve a 22.3× speedup on 32 cores. BLAS-3 routines

improve the runtime by 9×, but speedup is reduced to 20.5×. Finally, by replicating the

dense mode across cores and using a parallel reduction on partial products, we achieve

24.2× speedup with 32 cores and a resulting 219× improvement over the original serial

implementation.

CCD++

Figure 8.4 shows the effects of dense mode replication on CCD++. Dense mode repli-

cation will not affect serial runtime, and so we show speedup as we scale the number of

threads. Speedup is improved from 4.6× to 16.2× due to improved load balance from

mode-replication and also from temporal locality. Note that super-linear speedup is

observed, reaching 2.3× with two cores. The p×p tiling of X for p threads results in a

smaller portion of the factor matrices accessed at a time, improving temporal locality.

Interestingly, super-linear speedup was also observed in the original CCD++ evaluation

for matrices [15].

Despite the improved speedup, CCD++ sees little improvement after 16 cores (one
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Figure 8.4: Effects of CCD++ optimizations during a rank-10 factorization of the Ya-

hoo! tensor. noopt is a baseline CCD++ implementation with the CSF data structure.

dense uses dense mode replication.

full socket) due to NUMA effects and the memory-bound nature of the algorithm. Com-

pared to ALS, CCD++ performs a factor of F fewer FLOPs on every non-zero that is

accessed. Additionally, CCD++ being a column-oriented method requires NF passes

per epoch over the sparsity structure of X , compared to N times for ALS and one time

for SGD. We show in Section 8.4.6 that this limitation can be solved by simply using

one MPI process per socket.

SGD

Figure 8.5 shows the effects of coarse-grained randomization on SGD convergence. We

use a full random traversal of the tensor as a baseline and compare against two CSF

configurations. The first configuration, CSF-S, sorts the modes in non-decreasing order

with the smallest mode placed at the top of the data structure. CSF-S is the default

mode ordering used by SPLATT due to it typically resulting in the highest level of

compression. CSF-L sorts the modes in non-increasing order, with the longest mode
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Figure 8.5: Effects of randomization strategy on SGD convergence during a serial rank-

40 factorization of the Yahoo! tensor. COORD uses complete randomization on a

coordinate form tensor. CSF-S randomizes over the shortest mode. CSF-L randomizes

over the longest mode.

placed at the top of the CSF structure. CSF-L effectively trades additional storage

for increased randomization and higher degrees of parallelism. CSF-S has the fastest

per-epoch runtime but fails to converge. CSF-L exhibits similar per-epoch convergence

compared to the baseline, but the computational savings afforded by the CSF data

structure results in a faster time-to-solution. We therefore use CSF-L as the default in

the remaining experiments.

Figure 8.6 shows the effects of stratification on convergence. We evaluate three al-

gorithms across two factorizations: fully asynchronous, fully stratified, and a hybrid

algorithm with 16 stratum layers, totaling 256 strata. The hybrid configuration out-

performs both baselines for the rank-10 factorization and converges to a higher quality

solution in less time. All three algorithms are competitive for rank-40, but the hybrid

ultimately reaches a lower RMSE.
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Figure 8.6: Convergence rates for SGD parallelization strategies using 32 compute nodes

on the Yahoo! dataset. F denotes the rank of the factorization. S denotes the number

of stratum layers, scaling from fully asynchronous (S1) to fully stratified (S64).

8.4.2 Communication Volume

Figure 8.7 shows the average communication volume per epoch. CCD++ consistently

has a lower communication volume than SGD and ALS due to its medium-grained

decomposition. The communication volume for SGD increases until four nodes (eight

ranks) are used, and then sharply decreases. The communication volume of SGD scales

with the number of strata used, which we limit to 64. Recall that SGD uses SN−1 strata

for an N -mode tensor. Therefore, we see volume increase until we reach the maximum

number of strata. From that point communication is limited to within strata, and we

see communication volume decrease. The communication volume of ALS increases until

eight nodes and then stays near constant. ALS uses a coarse-grained decomposition

which in the worst case requires each communication of entire factors per epoch.

8.4.3 Strong Scaling

Figure 8.8 shows strong scaling results. For SGD, we again limit the number of strata

to 64 which provides a good trade-off between convergence rate and parallelism. As
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Figure 8.7: Average communication volume per node on the Yahoo! dataset. CCD++

and SGD use two MPI ranks per node and ALS uses one.

discussed in the evaluation of communication volume, SGD primarily introduces over-

head until the maximum number of strata is reached, and after that point we begin to

overcome the communication overheads. SGD only scales to eight nodes on the Amazon

tensor. This is because Amazon is significantly more sparse than Netflix and Yahoo!

and as a result SGD performs less work per stratum, resulting in high communication

costs.

ALS is unable to process the Amazon and Patents tensors on as few nodes as SGD

and CCD++ due to it requiring three copies of X during factorization. Neither ALS

nor CCD++ are consistently faster per epoch at 32 nodes. CCD++ begins slower

on all datasets but out-scales ALS on all but Yahoo!, which does not have enough

non-zeros to effectively parallelize over 64 nodes (2048 cores). The disparity between

CCD++ and other algorithms on Amazon is due to its large size being more taxing

on memory bandwidth. CCD++ is able to scale through 512 nodes (16384 cores) on

Patents due to its high density, resulting in a small amount of communication and

memory bandwidth relative to the computational load. ALS is unable to scale past 32
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Figure 8.8: Strong scaling the optimized ALS, SGD, and CCD++ algorithms. Each

node has 32 cores.
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nodes on Patents due to its short mode lengths, which result in a load-imbalanced coarse-

grained decomposition. The second and third modes are too long to treat as dense (i.e.,

the storage costs of normal equations are prohibitive). In contrast, the medium-grained

decomposition used by CCD++ is able to find a load balanced distribution on Patents.

8.4.4 Rank Scaling

Figure 8.9 shows the effects varying the rank of the factorization. We scale from rank

10 to 80 on the Yahoo! dataset. CCD++ and SGD both have O(F nnz(X )) complexity,

so we expect the runtime to increase by 8× as we scale F . ALS, on the other hand, has

complexity O(F 2 nnz(X ) + IF 3). The F 2 nnz(X ) term will dominate in most scenarios

because users are interested in low rank factorizations and because I � nnz(X ) for most

tensors. Under this assumption, we expect the runtime of ALS to increase by a factor

of 802/102 = 64.

CCD++ sees the expected linear increase in runtime on both 32 and 1024 cores:

7.9× and 7.6×, respectively. SGD scales sub-linearly and only sees 2.4× and 4.2×
increases on 32 and 1024 cores, respectively. The sub-linear effects are due to the way

SGD accesses the matrix factors. SGD only ever accesses entire rows of the factors,

leading to spatial locality and vectorized inner loops. We do not see the same effects

for CCD++ because it accesses the factors in a strided manner that is dependent on

the sparsity pattern. Additionally, CCD++ must traverse the sparsity pattern of the

tensor F times for each mode, compared to once for SGD. Surprisingly, ALS only sees

9.8× and 10.1× increase in runtime at 32 and 1024 cores, respectively. While the work

does increase quadratically, all of the quadratic functions are performed by BLAS-3

routines on small, dense matrices. The work that depends on the sparsity pattern of X
is an MTTKRP operation, which has the same spatial locality as SGD and a cheaper

complexity of O(F nnz(X )). The BLAS-3 routines will eventually out-scale the cost of

the MTTKRP operation, but factorizations of such a high rank are unlikely to be useful

to a domain expert.
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Figure 8.9: Effects of increasing factorization rank on the Yahoo! dataset.
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using the Outpatient dataset.

8.4.5 Mode Scaling

Figure 8.10 shows the scalability of our algorithms on the Outpatient dataset as we

increase the number of tensor modes while keeping the number of non-zeros constant.

ALS sees a roughly linear increase in runtime, matching the computational complex-

ity in Table 2.1. The runtime of the sixth mode increases super-linearly, which we

attribute to the sixth mode being longer than most others and ALS having a O(IF 3)

complexity component. CCD++ exhibits severe slowdown as the number of modes is

increased. This is due to CCD++ doing NF passes over X per epoch and performing

only O(nnz(X )) work per pass. The memory-bound nature of CCD++ is exagger-

ated as the number of modes increases. SGD has a nearly constant runtime due to it

only performing one pass over X per epoch, regardless of the number of modes. Addi-

tionally, higher-order tensors such as Outpatient have several dense modes which will

exhibit high temporal locality, leaving the system’s memory bandwidth free for stream-

ing through the single representation of X . SGD appears to be an attractive choice

for higher-order tensors. We cautiously recommend it, however, because situations may

arise in which many stratum layers are required to maintain convergence, negatively

impacting performance.
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8.4.6 Comparison Against the State-of-the-Art

In Figure 8.11 we compare our ALS and CCD++ algorithms against the state-of-the-

art MPI implementations [13]. We scale from 1 to 1024 cores on the Yahoo! tensor

with F=10. We use one MPI rank per node for opt-ALS due to the high speedup it

achieves on 32 cores and also due to the high communication volume that comes with

a coarse-grained decomposition. Throughout the comparison we refer to the existing

implementations as “base-ALS” and “base-CCD++” and our own as “opt-ALS” and

“opt-CCD++”.

On one core, opt-ALS is 7× faster than base-ALS due to the BLAS-3 performance.

opt-ALS then scales to achieve 353× speedup at 1024 cores, compared to the 13.5×
speedup of base-ALS. The improvements in speedup are due to the coarse-grained de-

composition used by opt-ALS which reduces the communication volume from O(IF 2)

to O(IF ) words. The difference in communication requirements is observed in the ratio

of communication to computation: base-ALS spends 95% of the total runtime com-

municating, compared to opt-ALS which spends 39% of its runtime communicating.

opt-ALS is 185× faster than base-ALS when both use 1024 cores.

Serial opt-CCD++ is 2.2× faster than base-CCD++ due to the operation reduction

and improved cache locality resulting from the CSF data structure. The locality im-

provements are also present in the ALS results, but due to ALS being a compute-bound

algorithm they are not observed except for very small values of F . On 1024 cores,

opt-CCD++ and base-CCD++ achieve 685× and 74.2× speedup, respectively. The

disparity in speedups is attributed to the large amount of communication performed by

base-CCD++, in which 69% of the total runtime is spent in communication routines.

In comparison, opt-CCD++ spends 25% of the total runtime communicating. The

medium-grained decomposition used by opt-CCD++ results in a smaller communica-

tion volume than the arbitrary decomposition used by base-CCD++. Communication

volume is further reduced by utilizing sparse communication and only sends an updated

value to the processes that require it.

We also note that with the configuration using one MPI rank per socket, opt-CCD++

achieves a 30× speedup on 32 cores compared to 16.2× with a pure OpenMP configu-

ration.
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Figure 8.11: Comparison of the presented ALS and CCD++ algorithms (prefixed opt)

against the state-of-the-art MPI implementations (prefixed base) on a rank-10 factor-

ization of the Yahoo! tensor.

8.4.7 Convergence

We now evaluate the time-to-solution of ALS, CCD++, and SGD. Figure 8.12 shows

convergence of our optimized algorithms using 1, 32, and 1024 cores. SGD is the most

successful algorithm in a serial setting. For F=10, SGD converges within 1500 seconds

and achieves a quality that takes ALS over twice as long to reach. SGD sees a similar

advantage when F=40, but ALS ultimately reaches a higher quality solution shortly

after SGD converges.

On a single node, ALS outperforms SGD and CCD++ for both F=10 and F=40.

Since ALS has the fastest per-epoch times in addition to making the most progress per

epoch, it is the recommended algorithm for small-to-moderate node counts. CCD++ is

also competitive in the multi-core environment and has the added benefit of having a

smaller memory footprint due to only storing a single copy of X . Trends continue as we

move to a large-scale distributed system and ALS narrowly bests CCD++ for F=40.

While ALS still converges faster than SGD and CCD++, CCD++ is more scalable in

distribute-memory environments due to its lower communication volume.
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Figure 8.12: Convergence rates for parallel methods on the Yahoo! dataset with factor-

ization ranks 10 (F10) and 40 (F40). Ticks are placed every five epochs.



125

8.4.8 Effects of Randomization on ALS and CCD++

We now explore the convergence benefits offered by randomization during ALS and

CCD++. Figure 8.13 shows the convergence per epoch when applying mode-level

randomization to ALS and combinations of mode- and rank-level randomization to

CCD++. In each case, we show both the value of the objective function and the val-

idation RMSE. Observing the objective function offers insights into the effects on the

actual optimization algorithm, whereas observing the validation RMSE measures the

predictive abilities of the resulting model (i.e., its usefulness to a domain specialist).

Both algorithms benefit from randomization on the Movielens dataset. Randomized

ALS requires 66% fewer epochs to arrive at a validation RMSE which is 0.3% lower

than cyclic. Likewise, all variations of randomization improve the validation RMSE of

CCD++. The best performance is achieved by rank-level randomization, which con-

verges 16% faster than cyclic and improves the solution again by 0.3%. The objective

function is improved in all cases, and therefore the gains are attributed to an optimiza-

tion algorithm which converges more quickly to a better local minimum.

Netflix likewise benefits from randomization in terms of both convergence rate and

validation RMSE. Interestingly, mode-level randomization achieves the best validation

RMSE for both ALS and CCD++, but at the same time arrives at the worst objective

value. Randomization allows the optimization algorithm to learn a more general, albeit

less optimized solution.

We find that algorithms which use mode-level randomization tend to learn models

with empty columns, reducing the rank of the factorization. We explore this phe-

nomenon in Figure 8.14. We plot the number of non-zero rank-one components, which

refer to as the effective rank of the factorization. ALS and CCD++ learn models with

ranks 32 and 25, respectively. The lower-rank models do not fit the training data as

well, and thus have a higher objective value. However, due to their lower complexity

and sufficiently good model of the data, they are able to better predict unknown entries

in the validation set.

Lastly, Yahoo! does not benefit from randomization and the algorithms which use

mode-level randomization achieve notably worse objective values and validation RMSEs.

The lower-rank factorizations learned via randomization are not able to capture the

training data sufficiently well to result in a predictive model.
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Figure 8.13: Effects of randomization on ALS and CCD++ convergence during rank-40

factorizations of three datasets. cyclic uses no randomization, mode uses mode-level,

rank uses rank-level, and rank+mode uses both rank- and mode-level randomization.
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Figure 8.14: The number of non-zero rank-one components (effective rank) during a

rank-40 factorization of the Netflix dataset.



Chapter 9

Accelerating the Tucker

Decomposition

The TTMc operation introduced in Section 2.4 is the key computation to consider when

computing the Tucker decomposition. Existing strategies for performing TTMc either

rely on memoizing intermediate results to save computation [39, 40] or operating in a

memory-efficient manner at the expense of additional FLOPs [38]. The memory over-

head of memoization is closely tied to the dimensionality and the sparsity pattern of the

tensor, and can result in significant memory overhead. Meanwhile, the memory-efficient

strategies require orders of magnitude more computation and are often impractical for

large and sparse tensors.

This chapter details our operation- and memory-efficient parallel algorithm for TTMc.

We first perform a reformulation of the underlying computations in order to remove re-

dundancies and then describe a parallel algorithm which uses CSF to exploit these

redundancies. We then analyze the computational complexity of our algorithm.

128
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9.1 TTMc with a Compressed Sparse Tensor

9.1.1 Operation-Efficient Formulation

We work from Equation (3.3) which processes individual non-zeros. Each non-zero

contributes

Y(1)(i1, :)← Y(1)(i1, :) +X (i1, . . . , iN )
[
A(2)(i2, :)⊗ · · · ⊗A(N)(iN , :)

]
.

There are two forms of arithmetic redundancies that we eliminate during TTMc:

Distributive Kronecker Products. Consider two adjacent non-zeros in a three-

mode tensor. Performing a TTMc operation for the first mode results in the following

computations:

Y(1)(i, :)← Y(1)(i, :) +X (i, j, k1)
[
A(2)(j, :)⊗A(3)(k1, :)

]
, (9.1a)

Y(1)(i, :)← Y(1)(i, :) +X (i, j, k2)
[
A(2)(j, :)⊗A(3)(k2, :)

]
. (9.1b)

The Kronecker product (KP) is a distributive operation, and so we combine Equa-

tion (9.1a) and Equation (9.1b) to eliminate a KP and reach a more efficient update:

Y(1)(i, :)← Y(1)(i, :) + A(2)(j, :)⊗
[
X (i, j, k1)A(3)(k1, :) +X (i, j, k2)A(3)(k2, :)

]
.

This can be exploited for any set of non-zeros that reside in the same fiber. For each

fiber, we accumulate all of the linear combinations of rows of A(3) into a row vector,

followed by a single KP:

Y(1)(i, :)←
∑

X (i,:,:)

A(2)(j, :)⊗

 ∑
X (i,j,:)

X (i, j, k)A(3)(k, :)

 .

This eliminates the construction and accumulation of nnz(X (i, j, :))−1 KPs, resulting

in a reduction of 2F2F3 (nnz(X (i, j, :))−1) FLOPs. This strategy generalizes to any

number of modes:

Y(1) ←
∑

X (i1,:,...,:)

A(2)(i2, :)⊗

∑
X (i1,i2,:,...,:)

A(3)(i3, :)⊗ . . .

∑
X (i1,...,iN−1,:)

X (i1, . . . , iN )A(N)(iN , :)

 .
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Redundant Kronecker Products. Consider the case of performing mode-3 TTMc:

Y(3)(k1, :)← Y(3)(k1, :) +X (i, j, k1)
[
A(1)(i, :)⊗A(2)(j, :)

]
,

Y(3)(k2, :)← Y(3)(k2, :) +X (i, j, k2)
[
A(1)(i, :)⊗A(2)(j, :)

]
.

Note that [A(1)(i, :)⊗A(2)(j, :)] appears in the processing of both non-zeros. We elimi-

nate operations by reusing the KP for both non-zeros:

s← A(1)(i, :)⊗A(2)(j, :),

Y(3)(k1, :)← Y(3)(k1, :) +X (i, j, k1)s,

Y(3)(k2, :)← Y(3)(k2, :) +X (i, j, k2)s.

Reusing the shared KP for an entire fiber saves F1F2(nnz(X (i, j, :))−1) FLOPs. As

before, this process can be generalized to any number of tensor modes.

Operation-Efficient Algorithm.

Using the two previous optimizations, we can devise an algorithm which uses the CSF

data structure to eliminate redundant operations. A branch in the tree structure at

the ith level represents a set of non-zeros which overlap in the previous i−1 indices,

which is precisely the scenario that the previous optimizations target. Our TTMc

algorithm is described in Algorithm 13 and illustrated in Figure 9.1. Intuitively, partial

computations begin at the root and leaf levels of the tree and grow inward towards the

level representing the mode of computation. Algorithm 13 avoids intermediate memory

blowup by processing the tree depth-first, which limits the intermediate memory to a

single row of Y(n).

Parallelism.

Algorithm 13 is parallelized by distributing the I1 trees to threads. Each thread performs

a depth-first traversal, and thus the thread-local storage overhead is asymptotically

limited to a single row of Y(n). A consequence of this distribution is the potential for

write conflicts when updating any modes other than the first. This can be observed in

Figure 4.4, in which node IDs are only unique within the root-level nodes. The same

synchronization challenges are present when performing MTTKRP (see Chapter 4). We
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(a) CSF (mode-1) (b) CSF (mode-3) (c) Coordinate (mode-4)

Figure 9.1: TTMc with CSF and coordinate data structures. The number of FLOPs

performed on a node is equal to its volume. Circled nodes produce updates to the

output.

present synchronization using mutexes for simplicity, but note that the algorithm can

benefit from other mechanisms such as tiling or transactional memory (see Section 5.2).

9.1.2 Complexity Analysis

We now analyze the computational complexity of Algorithm 13. Let nodes(i) be the

number of nodes present in the ith level of a CSF structure (by convention, the 1st level

is the root level). The number of FLOPs required to perform TTMc for the nth mode

is
∑N

i=1 nodes(i)× cost(i, n), where “cost” is defined as

cost(i, n) =



i−1∏
j=1

Fj if i < n,

2
N∏
j=i

Fj if i > n,

2
N∏
j=1
j 6=i

Fj if i = n.

(9.2)

Intuitively, the cost of a node above level-n is the cost of constructing a KP, and the

cost at or below level-n is the cost of constructing and accumulating a KP.

When computing for the leaf mode of the tensor, Algorithm 13 assembles KPs and

pushes them down the tree from root to leaves. The complexity grows with each level of

the tree, with the final level having the same asymptotic complexity as Equation (3.4),
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the baseline coordinate approach. At the other extreme, when n = 1, the computation

moves upwards from leaves to root. Interestingly, the dimensionality of the KPs is non-

decreasing, and at the same time the number of nodes in each level is non-increasing.

In the worst case, non-zeros have no overlapping indices and the algorithm is equivalent

to operating with a tensor stored in coordinate format. However, lower complexities are

possible under some assumptions on the CSF structure and the ranks of the factoriza-

tion. To see, compare the costs of levels i and i−1:

nodes(i)× 2
∏N
j=i Fj

nodes(i−1)× 2
∏N
j=i−1 Fj

=
nodes(i)

nodes(i−1)Fi−1
.

Suppose that the cost of the ith mode always exceeds mode i−1:

nodes(i) > nodes(i−1)Fi−1, i = 2, . . . , N

then the Nth mode dominates the computation, arriving at a reduced complexity of

O(nodes(N)FN ) = O(nnz(X )FN ).

9.2 Utilizing Additional CSF Representations

Section 9.1.2 showed that Algorithm 13 has the potential for an asymptotic speedup

over the competing memory-efficient approaches. This depends on the costs of the lower

levels of the tree dominating those at the top, which is possible if: (i) the branching

factor at each level is larger than the corresponding rank; and (ii) the mode on which

we are operating is found at or near the top of the tree. Fortunately, CSF places no

restriction on the ordering of modes. Indeed, constructing a unique CSF representation

for each mode of the tensor was used in other kernels to expose parallelism and to reduce

communication costs (see Chapter 4 and Chapter 8).

9.2.1 Allocating Multiple CSF Representations

We can construct multiple CSF representations in order to minimize the required num-

ber of operations. Utilizing multiple CSF representations allows computations to occur

near the roots of the tree structures while also favoring mode orderings which result in

large branching factors.
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There are N ! possible orderings of the tensor modes. To evaluate the cost of a

representation, we must sort the non-zeros in order to inspect the tree structure and

count the number of nodes. Thus, an exhaustive search is impractical for even small

values of N . We begin from an existing heuristic: sort the modes by their lengths, with

the shortest mode placed at the top level (see Chapter 4). The intuition behind this

heuristic is that ordering shorter modes prior to longer ones discovers indices with high

levels of overlap, resulting in a large branching factor.

Suppose there is memory available for up to K representations of the tensor data,

denoted X 1, . . . ,XK . We select X 1 by sorting the modes as previously discussed.

The remaining K−1 representations are selected in a greedy fashion: at step k, use

Equation (9.2) to examine the costs associated with TTMc for each mode when provided

with X 1, . . . ,X k−1. The mode with the highest cost is placed at the top level of X k,

and the remaining modes are sorted by increasing length. At the end of this procedure,

each mode has the choice of K representations to use for TTMc computation. We assign

each mode to the representation with the lowest cost, and use that representation for

TTMc. Importantly, if ties are broken in a consistent manner, then it happens in

practice that several modes can be assigned to the same X k, meaning that fewer than

K representations need be kept in memory for computation.

9.2.2 Reconstructing CSF Representations

It may not be feasible to store multiple representations of the input data in a memory-

constrained environment. When the savings from a dedicated CSF representation are

greater than the cost of reconstructing the CSF, then speedups can still be achieved.

Instead of pre-allocating K CSF representations of the data, we can simply reconstruct

a dedicated CSF before each TTMc operation. We denote this reconstruction strategy

as CSF-R.

The total memory needed for CSF-R is the maximum size of the N CSF repre-

sentations and the size of the original uncompressed data. This closely matches the

cost of only using one compressed representation, which requires the memory for the

uncompressed representation and the smallest CSF variant.
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Algorithm 13 TTMc with a CSF Tensor.

1: function TTMc(X ,mode)
2: for i1 = 1, . . . , IN in parallel do

3: construct(X (i1, :, . . . , :),mode,1)

4: end for

5: end function

6: . Construct Kronecker products and push them down to level mode−1.

7: function construct(node,mode, above)

8: d← level(node) . The level in the tree (i.e., distance from the root).

9: id ← node id(node) . The partial coordinate of a non-zero.

10:

11: if d < mode then

12: above← above⊗A(d)(id, :)

13: for c ∈ children(node) do

14: construct(c,mode, above)

15: end for

16:

17: else if d = mode then

18: below ←
∑

c∈children(node) accumulate(c)

19: Lock mutex id.

20: Y(d)(id, :)← Y(d)(id, :) + (above⊗ below) . Update Y(d).

21: Unlock mutex id.

22: end if

23: end function

24: . Pull Kronecker products up from the leaf nodes.

25: function accumulate(node)

26: id ← node id(node)

27: if level(node) = N then

28: return X (i1, . . . , id) ·A(N)(id, :)

29: else

30: return A(d)(id, :)⊗
∑

c∈children(node) accumulate(c)

31: end if

32: end function
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9.3 Experimental Methodology

9.3.1 Experimental Setup

Experiments are conducted on the Mesabi supercomputer at the Minnesota Super-

computing Institute. Compute nodes have two twelve-core Intel Haswell E5-2680v3

processors and 256GB of RAM. Our source code is written in C and parallelized with

OpenMP. All source code is configured to use double-precision floating-point numbers

and 32-bit integers. We compile with the Intel compiler version 16.0.3 and Intel MKL

for BLAS/LAPACK routines. We bind threads to cores via the Intel OpenMP configu-

ration KMP AFFINITY=granularity=fine,compact,1.

Reported runtimes are the arithmetic mean of twenty iterations. Unless otherwise

noted, we measure only the time spent on TTMc, as that is the focus of this study and

the remaining computational steps do not differ between the implementations. Reported

times and speedups are based on performing all of the required computations for TTMc

over a full HOOI iteration. Measuring a full HOOI iteration instead of individual kernels

allows us to compare memoized and non-memoized algorithms.

We compare against two algorithms implemented in the C++ library HyperTen-

sor [40], the state-of-the-art parallel software for the Tucker decomposition. Hyper-

Tensor uses MPI for distributed-memory parallelism and OpenMP for shared-memory

parallelism. The efficient distributed-memory algorithm used by HyperTensor combines

the communication steps associated with the TTMc and the following truncated SVD,

preventing us from measuring the runtime corresponding to only TTMc. Thus, we run

HyperTensor with one MPI rank and twenty-four OpenMP threads. We denote the two

algorithms as HT-FLAT, which is a direct implementation of the elementwise formula-

tion in Equation (3.3), and HT-BTREE, which uses memoization via binary dimension

trees.

9.3.2 Datasets

Table 9.1 provides an overview of the datasets used in our evaluation. NELL-2 is

from the Never Ending Language Learning project [45] and its modes represent entities,

relations, and entities. Netflix [44] is constructed from movie ratings and has modes rep-

resenting users, movies, and dates. Enron [70] is parsed from an email corpus spanning
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Table 9.1: Summary of datasets.

Dataset Modes Non-zeros Dimensions

NELL-2 [45] 3 77M 12K, 9K, 29K

Netflix [44] 3 100M 480K, 18K, 2K

Enron [70] 4 54M 6K, 6K, 244K, 1K

Alzheimer [71] 5 6.27M 5, 1K, 156, 1K, 396

Poisson3D, Poisson4D [72] 3,4 100M 3K, . . . , 3K

K and M stand for thousand and million, respectively.

three years. Its non-zero values are word frequency and its modes represent senders,

receivers, words, and dates. Alzheimer is constructed from public gene expression data

related to Alzheimer’s disease, provided by MSigDB [71]. Its values are binary and

its five modes represent cell type, drug, binned dosage, gene, and binned amplitudes.

Poisson is a set of synthetically-generated tensors whose values follow a Poisson distri-

bution. We generated tensors following the method of Chi and Kolda [72] with three

and four modes of length 3000 and 100-million non-zeros. All tensors except Netflix and

Alzheimer are freely available as part of the FROSTT collection [58].

9.4 Results

9.4.1 Operation Efficiency

Figure 9.2 shows the number of FLOPs required to perform TTMc. HT-FLAT (coor-

dinate format) is used as a baseline because a CSF tensor will match its complexity if

it achieves no compression.

A single CSF representation (CSF-1) reduces computational costs by 59%−83% com-

pared to the baseline. Interestingly, CSF-1 is nearly identical in cost to the memoized

HT-BTREE algorithm on the three-mode datasets. This is due to the limited amount of

memoization possible for a three-mode tensor: one TTMc is computed at full cost and

is used to optimize the remaining two operations. This matches the limitation of CSF-1,

in which the leaf-level mode must still be computed at full cost. Optimizing for the leaf

mode by using CSF-2 is sufficient to achieve the best-possible FLOP performance on
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Figure 9.2: The number of required FLOPs for rank-20 TTMc on all modes, relative to

HT-FLAT (i.e., coordinate form). CSF-K is the solution found using K CSF represen-

tations. No dataset utilized more than four CSF representations. CSF-BEST is the

optimal configuration using multiple CSF representations, found by exhaustive search.

all three-mode tensors.

Both HT-BTREE and the CSF variants improve over HT-FLAT as the number of

modes increase, because additional tensor modes bring additional TTMc operations

which can be optimized. The benefits of CSF are most apparent on the five-mode

Alzheimer tensor, in which the greedily-selected CSF-A requires 555× fewer FLOPs

than HT-FLAT and 61× fewer FLOPs than HT-BTREE.

Observe that HT-BTREE is more operation-efficient than CSF-based methods on

the synthetic Poisson4D tensor. The number of X (i1, i2, :, . . . , :) sub-tensors is 88% of

the total number of non-zeros, meaning that the redundancies that CSF exploits do not

exist in the lower levels of the tree.
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9.4.2 Parallel Scalability

Figure 9.3 shows speedup as we scale from 1 to 24 cores. We include results for CSF-

A which dedicates a CSF representation for each mode of the tensor, despite fewer

representations being sufficient in terms of FLOP efficiency. CSF-A allows us to measure

performance without fine-grained synchronization overheads because there are no race

conditions to consider when the output mode is located at the root level of the tree.

Synchronization overheads prevent CSF-1 from scaling beyond one CPU socket,

whereas additional CSF representations achieve near-linear scaling. The cost of syn-

chronization dominates when computing for the bottom levels of the CSF structure:

there are more nodes present in the tree (i.e., more synchronizations) and also the

amount of work performed during synchronizations exponentially increases.

All methods exhibit poor scalability on the Alzheimer tensor. This is attributed to its

unusually short dimensions; the presented methods parallelize over the outer dimensions

of the tensor and thus have idle threads when the outer dimension is small. This

limitation has also been observed in other tensor kernels [51], and has been remedied

via alternative parallel decompositions [39].

9.4.3 Runtime and Memory Trade-Offs

Figure 9.4 shows the memory costs and average runtime for TTMc. We measure memory

consumption via instrumented source code which tracks the storage used for the tensor

structure, thread-local storage, and memoization. We omit the storage dedicated to the

factor matrices and output because they are the same between methods.

Despite CSF-A not providing additional computational savings, we can see that it

always achieves the best runtime across all datasets and algorithms. This is expected

due to its lack of synchronization overheads and structured writes to memory. CSF-A

ranges from 1.5×−20.7× faster than HT-BTREE, and also uses less memory for four of

the six datasets. We note that while Poisson4D is the only tensor for which memoization

achieves a better operation reduction than the CSF variants, but CSF-A is 1.5× faster

in runtime.

We can see the benefit of supporting a flexible number of CSF representations. CSF-

1 is always the most space-efficient, while CSF-A is always the fastest algorithm. CSF-2
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Figure 9.3: Parallel speedup for rank-20 TTMc. CSF-A denotes dedicating one CSF

representation for each mode of the tensor.

provides a reasonable trade-off when time and space are both limited by dedicating

a special CSF representation to the most expensive mode which will also exhibit the

highest synchronization costs.

9.4.4 Reconstructing CSF Representations

Figure 9.5 evaluates reconstructing a CSF representation prior to each TTMc kernel

instead of precomputing K representations. Runtimes for CSF-R include both TTMc

computation and CSF reconstruction. We omit the CSF construction time for the

variants that store multiple CSF representations, as the cost is amortized over multiple

iterations.

We first note that CSF-R improves the total runtime over CSF-1 for all datasets

while having a similar memory footprint. However, the CSF construction overhead
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Figure 9.4: Time and space trade-offs for rank-20 TTMc on 24 cores. Time is the mean

number of seconds spent on TTMc during a full iteration of HOOI. Memory is the

storage required for the tensor memoization, and structures for parallelism.

consumes more time than TTMc, and thus the total runtime is generally not improved

over schemes that use at least two CSF representations. CSF-R is more competitive as

the number of tensor modes is increased and serves as a good default selection for users

that wish to have moderate performance and memory consumption.
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Conclusion

Multi-dimensional arrays, or tensors, are increasingly found in fields such as cyberse-

curity, social network analysis, and recommender systems. Real-world tensors can be

enormous in size and often sparse. There is a need for efficient, high-performance tools

capable of processing the massive sparse tensors of today and the future. In this thesis,

we presented various algorithms for enabling and accelerating sparse tensor computa-

tions on modern parallel machines.

In Chapter 4, we presented an algorithm that reduces the number of operations and

memory accesses required to perform MTTKRP by exploiting the tensor structure of

the data. We then introduced further optimizations including a method of reordering

sparse tensors and cache tiling to improve data locality. We developed a data structure

for representing sparse tensors that exposes the opportunities for reducing the number of

required operations. The data structure enables the operation-efficient algorithms and

also has memory-efficient variants that eliminate the need for multiple representations

of the tensor.

In Chapter 5, we presented an exploration of sparse tensor factorization on a many-

core processor, using the Xeon Phi Knights Landing processor as a case study. We

addressed challenges such as exploiting multiple levels of parallelism, managing high-

bandwidth memory, load balancing hundreds of threads, and reducing fine-grain syn-

chronization. We showed that no parallelization or synchronization strategy works con-

sistently across datasets and provided guidelines for deciding which strategies to employ

that take into account various tensor properties. Our evaluation highlighted the need
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for improved hardware atomics on many-core architectures.

In Chapter 6, we introduced a medium-grained decomposition for sparse tensor fac-

torization on distributed-memory systems. We presented a method of distributing the

sparse tensor and the factor matrices and developed efficient algorithms for factoring

tensors distributed in this fashion. The medium-grained decomposition addresses the

limitations of coarse-grained methods by avoiding complete replication and communi-

cation of the factor matrices, while also improving load balance. The medium-grained

decomposition addresses the limitations of fine-grained methods by trading off addi-

tional communication volume for fewer exchanged messages, which in practice can be

the performance limiter on modern interconnects. Lastly, the medium-grained decom-

position does not require computationally expensive pre-processing such as hypergraph

partitioning to have a low communication volume.

In Chapter 7, we studied the acceleration and high performance implementation of

AO-ADMM, a recent framework for constrained tensor factorization. We presented a

form of parallelization and two optimizations which together accelerate the complete

factorization process. First, a blockwise reformulation improves performance by creat-

ing temporal cache locality, eliminating parallel synchronization costs, and accelerating

convergence. Second, we exploit the sparsity that dynamically emerges in the factoriza-

tion output to reduce operations and memory bandwidth in the primary tensor kernel,

achieving additional speedup.

In Chapter 8, we explored the design and implementation of three optimization

algorithms for tensor completion: ALS, SGD, and CCD++. We focused on modern

architectures with shared- and distributed-memory parallelism. We solved issues such

as memory- and operation-efficiency, cache locality, load balance, and communication.

We further improved the convergence rates of ALS and CCD++ by introducing ran-

domization during the optimization procedure. When comparing algorithms for tensor

completion, time-to-solution is the most important detail for end users. We compared

convergence rates in three configurations: serial, a multi-core system, and a large-scale

distributed system and showed that no algorithm performs best in all three environ-

ments. SGD is most competitive in a serial environment, ALS is recommended for

shared-memory systems, and both ALS and CCD++ are competitive on distributed

systems.
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In Chapter 9, we presented an operation- and memory-efficient algorithm for com-

puting the Tucker decomposition. The algorithm uses the compressed data structure

that was presented in Chapter 4 to eliminate redundant computations while improving

parallelism and memory access patterns. Furthermore, we presented a method of tuning

the trade-off between the time and memory footprint of the computation. Thus, users

can have either the fastest execution, the smallest memory footprint, or in-between the

two extremes.
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