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Abstract 

 Advancements in semiconductor technology have given the world economical, 

abundant, and reliable computing resources which have enabled countless breakthroughs 

in science, medicine, and agriculture which have improved the lives of many. Due to 

physics, the rate of these advancements is slowing, while the demand for the increasing 

computing horsepower ever grows. Novel computer architectures that leverage the 

foundation of conventional systems must become mainstream to continue providing the 

improved hardware required by engineers, scientists, and governments to innovate. This 

thesis provides a path forward by introducing multiple time-based computing architectures 

for a diverse range of applications. Simply put, time-based computing encodes the output 

of the computation in the time it takes to generate the result. Conventional systems encode 

this information in voltages across multiple signals; the performance of these systems is 

tightly coupled to improvements in semiconductor technology. Time-based computing 

elegantly uses the simplest of components from conventional systems to efficiently 

compute complex results. Two time-based neuromorphic computing platforms, based on a 

ring oscillator and a digital delay line, are described. An analog-to-digital converter is 

designed in the time domain using a beat frequency circuit which is used to record brain 

activity. A novel path planning architecture, with designs for 2D and 3D routes, is 

implemented in the time domain. Finally, a machine learning application using time 

domain inputs enables improved performance of heart rate prediction, biometric 

identification, and introduces a new method for using machine learning to predict temporal 

signal sequences. As these innovative architectures are presented, it will become clear the 

way forward will be increasingly enabled with time-based designs.   
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Chapter 1. Introduction 

The uniting theme for all the work in this thesis is time. In Chapters 2, 3, and 4, time 

is used as the state variable in the computation. Traditional computing uses voltage as the 

state variable; digital recognizes binary states of “on” and “off” or VDD and VSS to encode 

computation. Analog computers use a real-valued representation of the voltage to encode 

a value with infinite resolution. Time based circuits encode the computation value in the 

evaluation time. This idea has recently been gained popularity [1] due to the flattening of 

Moore’s law [2]. However, the idea of encoding data in time delays is nothing new. In a 

seminal review [3] of digital computer memories, delay-line memories are described to be 

used by injecting a pattern into a medium, such as mercury, which delays the propagation 

of the pattern until it reaches the end of the medium and it is read out. The purpose of these 

memories was to store, or delay, the information from the time it was generated until the 

time the next computation could use it. This paradigm is no different than that of some of 

the work presented in this thesis; time-based computing can be used to when digital 

systems fall short. In Chapter 5, temporal signals are used directly for computing, 

compared to conventional methods which derive features from the signals and compute on 

those. To meet the requirements of modern applications in the face of slowing technical 

innovation, time-based computing architectures will be presented on a diverse set of 

applications; neuromorphic and machine learning, analog to digital conversion, graph 

computing, and biosignal processing.  
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1.1 Time-based Neuromorphic Circuits 

1.1.1 A Scalable Time-Based Integrate-&-Fire Digitally Controlled Oscillator 

A fully scalable light-weight integrate-and-fire neuromorphic core with brain-

inspired leak and local lateral inhibition features is implemented in 65nm. The core 

computes the neural net algorithm entirely in the time domain using standard digital 

circuits. A parallel two-layer architecture realized using the proposed core achieves a 91% 

handwritten digit recognition accuracy. The 0.24mm2 neuromorphic core including 64 

digitally controlled oscillator (DCO) circuits consumes 320.4µW per DCO at a maximum 

throughput of 746M pixels/s.   

1.1.2 A One-Shot Neuromorphic Core with Dynamic Threshold Error Correction 

As neural networks continue to infiltrate diverse application domains, computing 

will begin to move out of the cloud and onto edge devices necessitating fast, reliable, and 

low power solutions. To meet these requirements, a time-domain core using one-shot delay 

measurements and a lightweight post processing technique, Dynamic Threshold Error 

Correction (DTEC) will be presented. This design differs from traditional digital 

implementations in that it uses the delay accumulated through a simple inverter chain 

distributed through an SRAM array to intrinsically compute resource intensive multiply-

accumulate (MAC) operations. Implemented in 65nm LP CMOS, the design achieves an 

energy efficiency of 104.8TOp/s/W at 0.7V with 3b resolution for 19.1fJ/MAC. 
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1.2 Time-based Graph Computing  

1.2.1 A 40×40 2D Gradient-enabled A* Path Planning ASIC 

A mixed-signal time-based 65nm application specific integrated circuit is 

developed for solving shortest-path problems. The core follows similar principles from 

wave routing and additionally incorporates a gradient on the periphery of the core to 

implement the A* algorithm. A leading pulse is propagated from start nodes and is 

asynchronously latched in neighboring vertex cells and pushed to its four neighbors.  

Applications include collision avoidance for self-driving cars, shortest path planning, 

scientific computing, and is shown to be scalable across many cores. The chip achieves 

559 million traversed edges per second at 105× improved energy efficiency compared to 

existing platforms such as FPGA and CPU. The processor operates nominally at 1.79ns per 

node with peak power consumption of 26.4mW. 

1.2.2 A 203 cube for 3D Graph Traversal 

Building on the work presented in the prior section, the primary limitation of 

adopting the 2D path finding framework in drones and UAVs is the lack of the vertical 

spatial dimension. This has been addressed in the 203 cube purpose designed for drone 

navigation. A novel 3D-to-2D transformation is developed to create a practical, scalable 

architecture in standard 2D CMOS. A diverse range of applications including path 

planning, routing, 3D Voronoi diagram generation, and k nearest neighbor classification is 

demonstrated on the core. The chip achieves throughput of 1.38 billion traversed edges per 

second at 0.162pJ/node at 1.2V in a 2mm2 die area making it ideal path planner for resource 

constrained platforms such as quadcopters.  
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1.3 Time-based Biosignal Recording System 

A digital-intensive, low-area, time-based ADC optimized for in-situ neural recording 

is fabricated in a 65nm test chip and validated with in-vivo data. The intrinsic inversely 

proportional gain of a beat frequency based quantizer allows recording of sub-millivolt 

neural signals without any sophisticated amplifiers or filters. A low-area analog-front-end 

(AFE) is implemented with a standard digital logic inverter transimpedance amplifier and 

tunable low pass and high pass filters. The test chip achieves 20.9dB SNDR for a 1mVpp 

input at 416Hz with a bandwidth of 4.2 kHz and consumes 52μW at 0.8V. In-vivo evoked 

potentials and spontaneous activity were measured directly from a mouse cerebellum 

without any external components, validating the efficacy of the aggressive tradeoffs. These 

results are achieved in an area of 0.0094mm2/channel, including on-chip AC coupling and 

filter passives, which makes this an attractive architecture for complete integration in ultra-

high channel count neural recording systems. 

1.4 Time-based Photoplethysmography Machine Learning 

Algorithms 

1.4.1 BiometricNET: Deep Learning based Biometric Identification using Wrist-Worn 

PPG 

Rapid advances in semiconductor fabrication technology have enabled the 

proliferation of miniaturized body-worn sensors capable of long term pervasive biomedical 

signal monitoring. In this section, a novel deep learning-based framework (BiometricNET) 

on biometric identification using data collected from wrist-worn Photoplethysmography 
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(PPG) signals in ambulatory environments will be presented. A completely personalized 

data-driven approach is formulated, using a four-layer deep neural network - employing 

two convolution neural network (CNN) layers in conjunction with two long short-term 

memory (LSTM) layers, followed by a dense output layer for modelling the temporal 

sequence inherent within the pulsatile signal representative of cardiac activity. The 

proposed network configuration was evaluated on the TROIKA dataset collected from 12 

subjects involved in physical activity, achieved an average five-fold cross-validation 

accuracy of 96%. 

1.4.2 CorNET: Deep Learning Framework for PPG based Heart Rate Estimation 

The proliferation of miniaturized body-worn sensors capable of long-term 

pervasive biomedical signal monitoring has ignited a data revolution in healthcare. Remote 

cardiovascular monitoring has been one of the beneficiaries of this development, resulting 

in non-invasive, photoplethysmography (PPG) sensors being used in ambulatory settings. 

Wrist-worn PPG, although a popular alternative to electrocardiogram (ECG), inferring 

cardiac information (e.g. heart rate) is challenging owing to artifacts induced by motion 

inherent in daily life. Hence, in this chapter, a novel deep learning framework (CorNET) 

to efficiently estimate heart rate (HR) information and perform biometric identification 

(BId) using only wrist-worn, single-channel PPG signal collected in ambulant environment 

is described. A completely personalized data-driven approach is formulated, using a four-

layer deep neural network - employing two convolution neural network layers in 

conjunction with two long short-term memory layers, followed by a dense output layer for 

modelling the temporal sequence inherent within the pulsatile signal representative of 
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cardiac activity. The final dense layer is customized with respect to the application, 

functioning as: a) regression layer - having a single neuron to predict HR; b) classification 

layer - two neurons which identifies a subject among a group. The proposed network was 

evaluated on the TROIKA dataset having 23 PPG records collected during various physical 

activities, achieved mean absolute error of 0.48±0.19 BPM for HR estimation and an 

average accuracy of 96% for BId on 20 subjects. 

1.4.3 BioTranslator: Deep Learning Framework for Converting Time Series 

Biosignals 

Advancements in wireless sensor networks (WSN) technology and miniaturization 

of wearable sensors have enabled long-term continuous pervasive biomedical signal 

monitoring. Wrist-worn photoplethysmography (PPG) sensors have gained popularity 

given their form factor. However the signal quality suffers due to motion artifacts when 

used in ambulatory settings, making vital parameter estimation a challenging task. In this 

section, a novel deep learning framework, BioTranslator, is presented for computing the 

instantaneous heart rate (IHR), using wrist-worn PPG signals collected during physical 

activity. Using one-dimensional Convolution-Deconvolution Network, it translates a single 

channel PPG signal to an electrocardiogram (ECG)-like time series signal, from which 

relevant R-peak information can be inferred enabling IHR measures. The proposed 

network configuration was evaluated on 12 subjects of the TROIKA dataset, involved in 

physical activity. The proposed network identifies 92.8% of R-peaks, besides achieving a 

mean absolute error of 51ms with respect to reference ECG-derived IHR.  
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Chapter 2. Time-based Neuromorphic Circuits 

2.1 Introduction 

Machine Learning (ML) has become one of the hottest topics in mainstream research 

as well as IC design. The incredible performance on diverse applications has made it a 

silver bullet for problems typically ill-suited for traditional computers [4]. This has led to 

a proliferation of custom silicon solutions targeted at meeting the demand [5]. The 

remainder of this section will introduce time-based neuromorphic computing and compare 

and contrast to alternative neuromorphic architectures proposed in the literature. In Section 

2.2 A Scalable Time-Based Integrate-&-Fire Digitally Controlled Oscillator is described 

[6]. Next, Section 2.3 details An Energy Efficient Time-Based One-Shot Neuromorphic 

Chip [5]. Finally, conclusions will be drawn in Section 2.4. 

2.1.1 Time-based Neuromorphic Foundations 

 

Equation 2.1 shows the characteristic kernel in ML is the dot-product: 

`

x1·w1 +x2·w2 + ··· + xi·wi
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Figure 2.1: Time-based neurons utilize the delay through basic circuit elements 

such as inverters to implement the dot-product. 
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𝒚 = ∑ 𝒙𝒊 ∙ 𝒘𝒊𝒊       2.1 

Here 𝑥𝑖 is the input data and 𝑤𝑖 is the synaptic weight learned during the training phase of 

the application.  Time-based neurons utilize the delay through basic circuit elements such 

as inverters to implement the multiplication. The primary benefit of time-domain circuits 

is that the accumulate portion of the multiply-accumulate (MAC) is intrinsic to the 

architecture; realized by accumulating the delays. The delay can be measured by counting 

oscillation cycles in a ring oscillator (ROSC) [6] or comparing delays with a time-to-digital 

converter (TDC) [5]. Digital neurons use conventional Boolean logic for arithmetic 

operations such as arrays of multipliers and wide accumulation adders [7]. Both 

architectures can be mapped to deep learning applications. It should be noted that 

additional operations such as non-linear transfer functions, pooling (down-sampling), and 

drop-out during training can be implemented readily in digital circuits. Additionally, data 

movement of inputs, weights, and outputs between main memory, on-chip cache, and 

processor needs to be facilitated. These concerns are considered open research [8] and not 

addressed in this thesis. The following section will discuss prior art from different 

neuromorphic architectures.  

2.1.2 Alternative Neuromorphic Architectures 

2.1.2.1 Digital Systems-on-Chip 

Digital Systems-on-Chips (SoCs) have found success through many algorithmic 

techniques. Weight resolution modulation is employed in [7] by leveraging a 

reconfigurable multiplier block capable of 16-bit, 8-bit, or 4-bit operations to enable a 40x 

energy-precision scalability. However, there is a significant overhead as the MAC unit has 
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unused cells at full precision. Another feature is inputs and weights that have a value of 

zero assert a “guard” flag that bypasses that particular computation. Careful design of the 

memory-hierarchy in [9] minimizes data movement between off-chip DRAM memory by 

exploiting data reuse. They also incorporate knowledge of the data statistics to reduce 

energy by gating computations, as in [7], and using data compression to limit the size of 

data transferred off-chip. A 14x12 array of Processing Engines is used to compute the 

MACs in parallel. These cells each have over 4kb of registers and memories which reduces 

area efficiency and greatly increases the footprint of the SoC. Each Processing Engine is 

power gated to further increase energy efficiency.  

2.1.2.2 Analog SRAM Solutions 

SRAM memory-based designs that leverage charge sharing have also been proposed. 

In [10], SRAMs are used to store weights. Interspersed in the array are local analog moving 

average blocks, the control unit that implements the charge sharing across bitlines. This 

design makes use of low power analog techniques to drive down power, but relies on charge 

sharing and utilizes a time-dependent pre-charge scheme to implement the input. These 

two techniques limit the scalability of the design and as such they are limited to 

convolutional operations which have reduced input lengths due to the filter size. As a result 

of using charge-sharing, the SRAMs cannot be directly connected together which is why 

10T bitcells are utilized instead of the conventional, denser 6T bitcells. Reference [11] also 

leverages charge-sharing between SRAMs in order to implement signed multiplication. 

They demonstrate that using in-memory computing can reduce power consumption by as 

much as 4.5x. However, when used as an analog device, process variation from SRAMs 
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necessitates on-chip learning. Models learned on one chip and applied to another can cause 

a 43% drop in accuracy. This requires a massive increase in overhead, reducing the 

efficiency of the core.  

2.1.2.3 Analog Neuromorphic Systems 

Early approaches relied on analog circuits to mimic synapse and neuron functions 

[12]. Analog circuits use the sub-threshold region of MOSFET devices to implement the 

computation. Analog neurons have low area and power consumption thanks to their 

subthreshold operation. However, they are slower and more sensitive to process, voltage, 

and temperature and compensation techniques require a large amount of overhead. 

Neurogrid [13] is an example of an analog neuron system. The system was intended to 

simulation large-scale neural interactions such as in a rat brain. The main drawback of 

using analog circuits to implement brain-inspired computing models is that they are 

sensitive to noise and process variation, so homogeneity and precision cannot be 

guaranteed for large scale designs. Scaling of CMOS technology also poses a challenge for 

analog designs as matching becomes challenging as process spreads increase.  

2.1.2.4 Digital SRAM Crossbar 

Digital SRAM implementation of neural nets has been a more popular approach 

lately. Compared to analog neural nets, they are less vulnerable to noise and process 

variation, and can benefit from technology scaling, enabling massively parallel 

neuromorphic ASIC systems such as IBM’s TrueNorth [14]. Weights are stored in the 

SRAM array and wordlines represent input bits to implement the partial products of the 
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multiplication which is called a crossbar array. Accumulation is implemented with local 

registers on the bitline. The registers can be cleared randomly to implement plasticity.  

2.1.2.5 Non-volatile Crossbar Designs 

One of the key limitations of using SRAMs is the volatile storage. This requires the 

power supply to be connected constantly drawing static leakage power. If it is 

disconnected, an overhead will be incurred to reprogram the array to prepare the array for 

computation. Nonvolatile storage devices such as ReRAM [15] and eFlash [16] present 

opportunities to have persistent weight storage. The arrays work much in the same manner 

as SRAM crossbar arrays where the accessed bitline currents are summated to implement 

the MAC. ReRAM is considered an ideal candidate due to not only the low access latency 

and energy, but the small footprint could enable very dense arrays. ReRAM can be thought 

of as a programmable, analog, nonvolatile resistor. However, due to the non-uniform 

analog resistance states, [15] asserts that it can cause errors in the convolution. They work 

around this by using ReRAM as a digital device which has benefits including: better 

programming accuracy, binary voltages applied to WL is scalable due to lower IR-drop in 

large arrays, and it does not require a large on/off resistance ratio previously required in 

analog ReRAM [15]. The key limitation is the lack of a capable commercially available 

process and even [15] does not have measurement results to support their claims. eFlash 

arrays utilize multi-level storage element and are logic compatible to reduce cost and 

available in all processes [16]. The main drawback is the large cell size due to the I/O 

devices required to limit gate leakage on the storage node, on the order of 4x larger than 

an SRAM even accounting for the eFlash multilevel cell storage. 
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All of these different architectures have benefits and drawbacks. Time-based 

computing will be studied closer in the following sections. A strong case will be made for 

the adoption of these architectures due to their field leading energy efficiency, area density, 

and application performance. Two designs will be described in detail in the following 

sections.  
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2.2 A Scalable Time-Based Integrate-&-Fire Digitally 

Controlled Oscillator 

2.2.1 Integrate-&-Fire Architecture and Concept 

Figure 2.2 shows the time-based integrate-&-fire digital controlled oscillator 

(DCO) neuromorphic core. Each DCO has 128 stages with 3b programmable weight and 

binary input. 

The detailed implementation of programmable unit cell delay and the leafcell layout of two 

delay stages are shown in Figure 2.2. Each input stage of the DCO is composed of an 

inverter and binary-weighted MOSFET capacitors mixing an input pixel with a 3-bit 

weight. The weights for each stages are stored locally in SRAM cells.  
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Figure 2.2: Conceptual circuit diagram of the proposed time-based integrate & 

fire (I&F) DCO neuromorphic core. 
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Input pixels determine whether a stage is enabled, and weights determine how many 

capacitors are enabled to load the driver in that stage. Weight 1002 is defined as weight 

zero. Positive, or exhibitory, weights are defined as less than 1002 (i.e. 001~0112), turning 

on fewer load capacitors. Thus, reducing the delay of that stage. On the contrary, weights 

greater than 1002 (i.e. 101~1112) represent inhibitory synapses, negative weights. Delay of 

all stages accumulates naturally in the DCO loop and the output is fed to an 8-bit counter. 

The counter increments every rising-edge of the DCO cycle. When the counter value 

reaches a target count, a spike is generated and the counter is cleared. The spike count of 

the other blocks will be recorded and used as the output of each DCO unit. The counting 

and threshold blocks can implement the integrate-and-fire using simple hardware. The 

measurement precision of the time based DCO circuit can be easily programmed by 

changing the spiking threshold. With a higher spiking threshold for instance, a smaller 

frequency difference can be detected at the cost of higher energy dissipation and decreased 

throughput.  

The DCO circuit is also very robust against jitter, since the jitter will be averaged 

out over many DCO cycles. This is due to the first-order noise shaping principle of using 
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a DCO for a time-to-digital converter [17]. When the rising edge is traveling around the 

DCO at each stage some random noise will be present and manifest as noise in the channel 

of the MOSFET which affects the current, and subsequently the delay of the stage. This 

error is accumulated in each stage until the input to the counter is reached. The counter will 

sample and the pulse will continue. However, any deviation between measurements is not 

lost, but carried over to the next stage. This averaging in the discrete time domain is 

equivalent to first-order noise shaping in the frequency domain [17]. 

Figure 2.4 shows the overall architecture of the time-based neuromorphic core with 

64 parallel DCO circuits. The array is divided into 8 groups, each consisting of 8 DCO 

circuits, to realize the local lateral inhibition feature discussed in section 0. Each DCO can 

be enabled or disabled independently allowing activation of any number of DCOs 

simultaneously. The neuromorphic core compares the raw spike count of each DCO to 

determine which neuron output is dominant.  
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Due to process variation however, different DCOs have slightly different 

oscillation frequencies for identical inputs. This is due to variations in the channel doping 

of the transistors at manufacturing which manifests as different threshold voltages. If each 

DCO is composed of gates that have different threshold voltages the oscillation frequencies 

will not be matches. It is crucial that the DCO frequencies are uniform to start with to have 

a meaningful measurement for the ML application. Unlike process variation, voltage and 

temperature variation affect all DCOs uniformly, so although the inter-trial count may vary, 

the dominant neuron will stay the same under voltage and temperature deviations. Seven 

of the 128 DCO stages are reserved for frequency trimming while the remaining 121 stages 

are used for the MAC function. For frequency calibration, all DCOs are configured using 

nominal inputs and weights, and then the frequency counts are measured for a fixed time 

period. By tuning the weights of the 7 frequency trimming stages, it is ensured that the DC 

DCO frequencies are matched. 
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 Measurement results in Figure 2.5 (left) confirms that after calibration the 

frequency variation of 10 DCOs reduces from 1.17% to 0.10%. Figure 2.5 (right) shows 

the mean and 3𝜎 error bars of the frequency count when different number of stages are 

activated as the weight of each stage is swept. Measured results show adequate linearity. 
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Figure 2.5: Measured DCO Frequency before and after tuning. 
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2.2.2 Leak and Local Lateral Inhibition Technique 

 

Neuro-inspired leak and local lateral inhibition (LLI) features are also implemented 

in our design, and they can enhance the contrast between neuron outputs. Figure 2.6 

explains the concept of leak and LLI. When the leak feature is enabled, the LSB of the 

counter is reset periodically by a low-frequency LEAK signal. This has the effect of 

periodically reducing the accumulated count, imitating a leaky neuron [18]. Note that the 

period of the LEAK signal should be several times longer than that of the DCO in order to 

allow the count to increment. The main benefit of the leak operation is that it can increase 

the relative difference between DCO counts as shown in Figure 2.7(left). The frequency 

difference between the dominant DCO and the others becomes larger and this can be 

thought of as increasing the contrast. 
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Figure 2.6: Illustration of time-based leaky neuron and local lateral inhibition 

(LLI) operation. 
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Lateral inhibition is a phenomenon in which the dominant neuron strives to 

suppress the activation of its neighbors. In this design, eight DCO cores are grouped 

together to realize LLI. The inhibition amount (count decrease) is determined by which 

bits of the neighbor counter are reset. Once a DCO in the group spikes, an LLI pulse 

generated, which resets predetermined bits of the neighboring counters. The fastest DCO 

in the group resets the other DCOs more often than it is reset by the other DCOs, enhancing 

the contrast between different DCO outputs, which is illustrated in Figure 2.7 (right). 

2.2.3 Application and Measurement Results 

A test chip was fabricated in a standard 1.2V, 65nm LP CMOS process to 

demonstrate the time-based neuromorphic core. Due to die area constraints, a single core 

was implemented. However, a multi-core architecture can be realized to handle deep neural 

network algorithms by tiling additional DCO cores and operating them in parallel. 
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Figure 2.7: Effect of leak and LLI features. 
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Figure 2.8 shows a 2-layer test architecture for handwritten digit recognition used to 

showcase the versatility of the proposed core. Handwritten text images were obtained from 

the MNIST database [19]. The original image size is 28x28 pixels. First, the image is 

reduced to 22x22 pixels by removing three pixels on each side as they contain little 

information. Each image is then divided into four regions so that they can be assigned to 

different cores for increased throughput. The first layer of the neural net can extract 60 

distinct features from each patch. The outputs of the four patches from the first layer are 

summed, encoded, and used as the inputs for the second classifier layer. Weights of both 

layers are trained off-chip using supervised learning and downloaded to the chip. 
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Figure 2.8: Multi-layer digit recognition test architecture and summary for time-

based neuromorphic chip demonstration. 
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Figure 2.9 compares the accuracy between different configurations. The 2-layer 

architecture with 4-patch inputs (=22x22 pixels) achieves a recognition accuracy of 91.4%. 

With the leak feature enabled, the accuracy increases modestly to 91.9%. The measured 

accuracy is comparable to software simulation results. As seen from the measurement 

results in Figure 2.9, the recognition accuracy of a single-layer architecture increases from 

84.1% to 85.0% after enabling the leak feature, while the accuracy doesn’t improve as 

much in the two-layer architecture. This is because in the two-layer architecture, there are 

more weights available to improve the contrast between the neuron outputs at training. This 

makes the leak feature less effective. 
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Figure 2.9: Measured application results. 
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Figure 2.10 shows the output spike count with and without the LLI feature for an image 

containing handwritten digit “2”. The spike count difference between digit “2” and runner-

up digit “0” is improved from 1.7% to 17.7% using LLI. This greatly improves the 

confidence in the prediction. 
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Figure 2.10: Example of measured output from one digit. 

 

 

 

 

 

 

 

 

Table 2.1: Performance Comparison 

This work

Application Hand writing recognition

Technology 65nm

Area 0.24mm
2
 (64 DCOs)

Voltage 1.2V

Frequency 99MHz (nominal DCO freq.)

Function
Multi-layer perceptron 

network

Performance
99M ÷ N spikes/s/DCO

(*N=spiking threshold) 

Power

ISSCC 16 [20] VLSI 16 [21]

Object detection + 

intention prediction
Object recognition

65nm 40nm

16.0mm
2 1.4mm

2

1.2V 0.9V

250MHz 240MHz

Deep neural 

network

Deep neural 

network

502.0GOPS 898.2GOPS

330mW 140.9mW

Power 

Efficiency
309G ÷ N spikes/s/W

(*N=spiking threshold)
862GOPS/W 6.37TOPS/W

320.4 µW/DCO

Circuit Type Time-based Analog + Digital Digital

*N=16 in our measurements

ISSCC 15 [22]

Big data analysis

65nm

10.0mm
2

1.2V

200MHz

Deep neural 

network

411.3GOPS

185mW

1.93TOPS/W

Digital

ISSCC 14 [23]

Pattern recognition

0.13µm

0.36mm
2

3V

8.3kHz

Unsupervised 

online clustering

0.012GOPS

11.4µW

1.04TOPS/W

Analog + Floating 

gate

CICC 11 [14]

Hand writing  

recognition

45nm

4.2mm
2

0.85V

Restricted 

Boltzmann Machine

-

45pJ/spike

-

Digital

-
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Table 2.1 shows the performance comparison with recent neuromorphic chip 

designs [20], [21], [22], [23], [14]. It is worth noting that an apples-to-apples comparison 

between our time-based scheme and traditional ASIC chips can be tricky. Here, metrics 

(e.g. spikes/s/DCO) specific and relevant to our design are presented. The proposed DCO 

array can generate 3.09x1011/16=1.93x1010 spikes per second per watt, for a spiking 

threshold value of 16. 
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Figure 2.11: Measured power consumption and DCO frequency for the I&F core 
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Figure 2.12: Die photo and performance summary 
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Figure 2.11 shows the measured power consumption and DCO frequency under 

different supply voltages. The test chip has a wide operating voltage range of 1.2V to 0.7V. 

The DCO circuit oscillates at 99MHz consuming 320.4µW under a nominal 1.2V supply. 

At 0.7V, the DCO oscillates at 20MHz consuming 17.5µW. Figure 2.12 shows the chip 

micrograph and performance summary. 

2.2.4 Conclusions 

In this section the idea of implementing neuromorphic function purely in time domain 

with programmable delay stages based on a leaky integrate-&-fire mechanism was 

presented. Brain-inspired leak and local lateral inhibition (LLI) are introduced to increase 

the contrast and confidence in the predictions. The time-based neuromorphic core is tested 

with digit recognition application and achieves 91.4% recognition accuracy. The energy-

efficiency and versatility of the presented time-based DCO neuromorphic core makes it a 

promising building block for future large scale deep neural network applications. 
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2.3 An Energy Efficient Time-Based One-Shot Neuromorphic 

Chip 

2.3.1 One-Shot Neuromorphic Architecture 

 
Conventionally, Boolean computations are used to realize arithmetic operations in 

hardware. However, time domain circuits can also be used at an advantage of lower area 

and power per processing unit, and reduced design complexity. The kernel of all ML 

algorithms can be distilled into a dot product shown in Equation 2.1. The high level 

architecture is shown in Figure 2.13. An input pulse is presented on the left side of the core 

and the delay of each stage is modulated based on the application inputs. It is described as 

one-shot because each pulse gets evaluated once.  
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Figure 2.13: Top Schematic of the one-shot time-based neuromorphic core 
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Each stage has 8 delay units (DU) with output taps which the pulse travels through 

as seen in Figure 2.14. The number of DU enabled depends on the one-hot encoded weight, 

stored locally in SRAM cells, and the input pixel, which is applied across the array on the 

bitlines. Each DU has two inverters to retain consistent polarity between stages. This is 

critical in the event that the rising and falling propagation matched, as well as ensuring 

correct polarity at the TDC. The output tap is realized as a complex tristate gate and the 

functionality is described in Figure 2.15. The first column shows the circuit schematic and 
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Figure 2.14: (Top) Schematic of pixel stage. (Bottom) Layout of pixel element. 
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Figure 2.15: (Left) Complex tristate wiring. (Right) Trained weight to DU stages 
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corresponding connections between the different DU. The right four columns show the 

activated paths, shown with black lines, depending on the values of the input, x, and weight, 

w. DU5 is the nominal stage delay, and is activated through the right branch of the circuit 

when the input bit is off, representing “zero delay.” Figure 2.15 (right) shows the mapping 

between the algorithm-trained weights and the delays realized in the chip at each stage. 

When the input, x, is present the left branch is enabled in the DU corresponding the weight 

bit of the stage. Larger positive weights map to shorter delays relative to the reference 

DDL, and conversely negative weights correspond to longer delays. The accumulation in 

the MAC is achieved naturally as the pulse passes sequentially through the DDL, stage by 

stage. The layout of each DU in the stage is pitch matched to a 6T SRAM so the layout is 

regular, compact, and scalable. The bias vector is applied in the same way for the last eight 

units. Additionally, it can be used to tune process variation, so that during evaluation those 

pixels are always activated.  

 
Figure 2.16 shows the relationship between the time domain computation in the 

chip and the expected arithmetic output. The phase detector output maps roughly to the 

rectified linear unit (ReLU) transfer function. When the reference pulse beats the neuron 

rising edge all four thermometer bits are zero, regardless of the magnitude. The transfer 
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Figure 2.16: Timing details of the 2 bit TDC. 
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function between the four bits is linear and then clips, or saturates, once the neuron pulse 

is faster than all the offsets. 

2.3.2 TDC Performance Analysis 

 The delay of time-based circuits can be tuned to cancel out inter-DDL process 

variation. Measured one-time calibration results are shown in Figure 2.17. Calibration was 

performed by evaluating each DDL and measuring the DDL phase detector output. After 

each evaluation, the bias bits (8 Tuning in top DDL shown in Figure 2.13) of the reference 

was increased and the process repeated.  
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Figure 2.17: Measured data from chip calibration across 10 DDLs. 
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At each bias point, 10 additional evaluations were run due to quantify trial-to-trial temporal 

noise, seen as the slope between TDC levels. No other measurements are averaged in the 

following sections. The reference bias point at which the PD of each DDL trips is applied 

to the tuning bits of the respective bias to align all DDLs, thus, compensating process 

variation. The average of the 10 trials is plotted in the Figure 2.17. The inter-DDL spread 

before calibration is approximately 21 reference bias steps, or tuning steps. After 

calibration, the spread was reduced to less than three tuning steps. The curves are mostly 

monotonically decreasing which is expected even though there is meta-stability when the 

phase of the output and reference DDLs are nearly matched. This supports the effectiveness 

of the proposed time-based MAC methodology.  

 
Figure 2.18 shows the simulated average unit delay as a function of the weight in 

each unit. In this simulation, the extracted layout of a four stage DDL was used to measure 

the delay of a single weight change. Each stage has the weight programmed from [-3, 4], 
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Figure 2.18: Post-layout simulation of DU linearity. 
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corresponding to the x-axis, and the number of active stages is swept from none to all four, 

corresponding to the different series. This confirms there are no systematic biases between 

the different weights. 

 Using both measured and simulated tuning curves it is possible to quantify the TDC 

performance [24]. It should be noted that while the TDC performance is important, the 

trade-offs between area, power, and application performance are paramount. For each bit 

of increased TDC resolution the area and power doubles. This incentivizes the designer to 

use a minimalistic design to keep overhead low while still managing to meet the 

requirements of the application, discussed further in section IV. The TDC gain is the slope 

of the output code to input code. The ideal slope is described by Equation 2.2, 

𝑘𝑇𝐷𝐶 =
1

𝑇𝐿𝑆𝐵
     2.2 

where TLSB is the minimum time interval that can be measured, which in this case would 

be 12 tuning bits. The gain error describes the difference in the last output code to the 

expected result based on the gain, quantified by Equation 2.3 [24]. 

𝐸𝑔𝑎𝑖𝑛 =
1

𝑇𝐿𝑆𝐵 
(𝑇1111 − 𝑇0001) − (2𝑁 − 2)   2.3 

In this work, TLSB=12 tuning bits based on the calibrated tuning curve, thus 𝐸𝑔𝑎𝑖𝑛 =  −
1

4
. 

Returning to the TDC gain, one can now use the gain error to accurately estimate the actual 

gain error. 

𝑘𝑇𝐷𝐶 =
1

𝑇𝐿𝑆𝐵
(1 −

𝐸𝑔𝑎𝑖𝑛

𝑁𝑙𝑒𝑣𝑒𝑙𝑠−2
) =

3

32
        2.4 
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This is 12.5% steeper than the ideal gain due to the reduced phase window at output code 

0001. This could be due in part to the reduced load seen after the third reference buffer and 

rectified in future work by adding a dummy load to better match the delays of each branch 

of the TDC. 

 The previous paragraph studied the performance metrics that affect the linear 

performance. Next, the non-linear performance due to process variation and noise will be 

quantified. The total delay can be described as: 

𝑡𝑛 = 𝑛𝑇 + ∑ 𝜀𝑖
𝑛
𝑖=1     2.5 

where εi is the delay error caused by process variation at stage i. In Table 2.2, µ is equivalent 

to the nT term, where n is chain length and T is the DU delay. If all the delay units are 

independent but derived from the same distribution, the standard deviation of the total time 

is 𝜎(𝑡𝑛) = 𝜎(𝜀)√𝑛.  

 

Table 2.2: DDL Delay for increasing chain lengths 

*Estimated via square root law [11]

Chain 

Length
µ σ σ/µ

4 2.25n 34.6p 0.0154

16 9.24n 68.3p 0.0074

128 72.92n 194.6p 0.0027

Chain 

Length
µ σ σ/µ

4 2.25n 37.4p 0.0167

16 9.24n 67.1p 0.0073

128 73.00n 200.5p 0.0027

tfall

trise
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This is supported by Table 2.2, where chains of length 4 and 16 were simulated after 

parasitic extraction for 100 Monte Carlo samples. The distribution of the delays were 

normally distributed and the standard deviation follows the square root law. Chain lengths 

of 128 were estimated by the square root law. This has two consequences; the first being a 

shorter delay chain will have less variation. This is better, however it has lower efficacy 

because there are fewer elements that can be multiplied at once reducing the throughput 

and increasing power. The second consequence is that the rate of increase decreases as 

more stages are added to the delay chain. This means that an increase of 8x stages only 

results in an increase of 2.8x in the standard deviation. From Figure 2.18 it is estimated 

that the tuning step delay is 10.5ps, which makes the standard deviation equal to roughly 

18.5 tuning steps, or 1.53 output codes. This could be reduced by increasing the transistor 

size, W, to reduce the Johnson-Nyquist noise, where in saturation the power spectral 

density of the drain current is shown in Equation 2.6[25]. 

𝑆𝑖 = 4𝑘𝑇
2

3

𝑊

𝐿
𝜇𝐶𝑜𝑥(𝑉𝐺𝑆 − 𝑉𝑇)    2.6 

Reducing noise comes at a cost of higher power consumption. As temperature and voltage 

increases it can be seen the current will increase. These shifts would be seen at the global 

level since all DDLs share the same voltage supply. Additionally, temperature gradient 

across the small, dense array would be unlikely and if there was a global temperature shift, 

it would affect all DDLs together. Another method could utilize a closed-loop ring 

oscillator which integrates the noise over multiple cycles which reduces the total error at a 

cost of lower throughput and higher power per prediction [6]. With these trade-offs 
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identified the proposed circuit strikes a balance between performance and a light-weight 

solution.  

2.3.3 Dynamic Threshold Error Correction (DTEC) 

 
In the prior section the 2 bit TDC was described. It was selected due to the optimal 

tradeoff between small area and low power, and strong architecture performance. In 

networks with “winner-take-all” topologies, such as the last stage of classification 

networks, ambiguous predictions can occur. Unclear outputs in this work can stem from 

limited resolution between phase detector trip-points or activity outside of the range of the 

phase detector. To mitigate this issue, Dynamic Threshold Error Correction (DTEC) 

technique is proposed, which increases the effectiveness of the 2bit TDC. As shown in 

Figure 2.19, when two or more DDLs have the same output, DTEC works by increasing 

the threshold bias delay which moves the trip point of the phase detectors. DTEC is 

dynamic due to the fact that the bias sweep would be terminated after the third evaluation, 

when the dominant DDL was identified from the phase detectors. Additionally, DTEC can 
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Figure 2.19: DTEC operating concept illustrated where reference DDL bias is 

swept to boost TDC resolution. 
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be stopped after a fixed number of steps if no dominant DDL emerges to conserve power. 

In Figure 2.21the top row of colormaps shows ambiguous predictions from the core, while 

successive rows show the output as DTEC is applied. Red rectangles highlight where 

DTEC has successfully identified the target.  

 

Figure 2.21 plots the distributions of outputs from the intermediate layers in a two-

layer dense neural network with 30 hidden units and 10 output units for all 10,000 test 

images in the MNIST benchmark [19]. The left column corresponds to the output with full 

precision weights and the right column corresponds to our rounded three-bit weights. The 

first row shows the network model used for the analysis. The second row displays the 

distribution of the MAC output of all 30 hidden units after the ReLU transfer function. The 

third row shows the winner take all (WTA) output of network, but each curve plots the 

sorted output instead of each unit (i.e. the correct outputs for the ten cases are grouped to 
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Figure 2.20: Measured effectiveness of DTEC, first rows show ambiguous 

prediction and as bias is swept winner is isolated. 
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one unit). The x-axis scales are not normalized to a unit weight. In the 3b precision network, 

the full precision weights have been scaled up to match the DU range (i.e. [-3,4]). 

 
These curves support the assumption that a 2-bit TDC can cover the entire output range 

because according to Figure 2.17 the width of the PD is 40 units on the x-axis. The hidden 

layer output would be contained inside that range. In the hidden layer, the results are 

approximately zero-centered prior to the ReLU activation, but have a large range. Units in 

neural networks must have zero-centered activations otherwise the predictions would be 

biased resulting in reduced learning capacity. If the TDC had a unit step of 1 tuning bit 

(equal to 1 step of the x-axis) this would require at least a 6-bit TDC for each DDL. The 

area overhead would render this solution infeasible. Additionally, due to the effectiveness 
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Figure 2.21: Distribution of activation outputs in a 2 layer neural network. 
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of the training, the correct prediction output histogram has very little overlap with the 

remaining predictions. This outcome can be leveraged because in the majority of the cases 

a high precision TDC will not provide additional information when the only relevant 

outcome is which unit has the highest activation. Another observation is that full precision 

and fixed point traces match closely. There is a modest amount of spread between the fixed 

and full precision hidden layer outputs. Nearly all hardware implementations utilize fixed 

point weights and this is an acceptable transform as the curves match.  

Analysis of results from the 3b single layer application (section 2.3.4) show that by 

applying just two DTEC steps 81.64% of the correctible errors are recovered. This comes 

at a cost of just 41% additional evaluations per image. After the one-shot evaluation, 73% 

of all images have a dominant output. The remaining 2,668 images begin DTEC. After the 

first step 46% are resolved and 37% after the second step leaving less than 1,000 images 

ambiguous. Thus, 4,108 DTEC evaluations improves the total accuracy from 69.16% to 

82.14%. If three DTEC steps are applied 88.8% of errors can be recovered at an overhead 

of 51%, demonstrating the dynamic scalability of the technique. Hardware results show 

that DTEC is an economical and scalable approach to significantly improve application 

performance.   

2.3.4 Application and Measurement Results 

The core was evaluated on the MNIST benchmark [19]. Figure 2.22 shows the 

comparison of classification accuracy on an 11x11 image for single and two layer networks 

between expected simulated software results, one-shot evaluation, and DTEC. To reduce 

the 28x28 grayscale images to 11x11 binary images, 3 pixels are sliced from all four sides 
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of the image. Then, a fixed resizing command is applied, and finally the pixels are binary 

thresholded.  

 

 
Figure 2.23 shows how the core can be used in a multi-layer deep neural net 

application. Each bit of the thermometer code is expanded as the input in the next layer. 

The input is divided into four segments, and the weight matrix is copied four times (L20-

L23), which gives each bit equal weighting. In the example shown in Fig. 12, 30 neurons 

in layer 1 yield a 120 bit input to layer 2. By applying DTEC, the ambiguous results are 
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Figure 2.23: Dataflow for multilayer neural network with binary inputs. 
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almost completely recovered and the slight loss in accuracy is due to output differences 

smaller than a single tuning bit. Figure 2.24 shows the tradeoff between power 

consumption and nominal stage delay for various supply voltages. Power is kept 

exceptionally low because rarely are more than two stages switching at a time in a DDL. 

A wide operating voltage range is enabled, due to the all-digital time-based design choices.  

 
If the design incorporated pipelining, it could achieve even greater throughput. That is, 

multiple pulses could be pushed into the DDL and the input could shift as well. This is 

ideally suited for convolutional nets where a weight filter slides across an image. In this 

case, the image could slide across the weights while input pulses are applied to the DDL. 

Die photo and design specs are highlighted in Figure 2.25.  
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Table 2.3 shows competitive performance compared with state of the art [26] [6] 

[7] [27] [28] [9] [4]. All comparisons are made at the highest reported energy efficiency 

operating point. It should be noted in this chip, 1 SOP is defined as a 1b input × 3b weight 

MAC without DTEC. Compared to [26] the energy efficiency would be 3x higher than 

reported. Additionally, [7] reports peak energy efficiency at 4b with 30-60% sparsity which 

they claim is present in convolutional neural networks. If the power supply can be tuned, 

very economical energy efficiency can be achieved at 8.7% improvement over [26], and 

modest gate equivalent count for each processing unit coming in at half the size of [26]. 

The gate efficiency compared is similar compared to [6]. This is interesting because the 
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Figure 2.25: Chip micrograph and chip summary (metrics reported at nominal 

supply). 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2.3: Performance Comparison Table 

A-SSCC'16 [26] CICC'17 [6] ISSCC'17 [7] ISSCC'17 [27] ISSCC'16[28] ISSCC'16[9] Science'14[4]

Chip Architecture Time-Based Time-Based Digital Digital Digital Sw. Cap Digital

Algorithm Target FCDNN & CNN FCDNN & CNN FCDNN & CNN FCDNN & FFT CNN CNN & SGD FCDNN & CNN

Technology [nm] 65 65 28 FDSOI 40 65 40 28

Chip Area [mm
2
] 3.61 0.24 1.87 7.1 12.25 0.012 430

Precision* [b] B 3 [4-16] [6-32] 16 3 [B,T]

On-Chip SRAM [kB] 20 3 144 270 181.5 [-] 256MB

VDD [V] 1.2 (Nom.) 0.7 (EMAx) 1 1.2 0.6 0.65 0.82 1 0.85

Frequency [MHz] 1700 285 23041 792 200 19.3 250 1000 0.001

Energy Efficiency** [TSop/s/W] 36.2 52.4 48.2 2.47 5.0 0.19 .18 3.86 0.04

Hardware Efficiency [GE/PE][1] 76.5 33.2 7456 18269 50637 288 6.5

*B=Binary, T=Ternary **Synaptic Op=MAC

8.06

38.4

This Work 

Time-Based

FCDNN & CNN

65

0.644

[B,T,2,3]
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capacitive weights and binary encoded weights stored in local SRAMs are only slightly 

smaller than one hot encoded SRAMs, linearly unrolled inverters, and tristate output gates. 

One-hot is less compact, but does not required decoding which causes overhead to control 

the capacitive connections in [6].  This chip is scalable in voltage, weight resolution, and 

is versatile in that it is able to tackle fully connected deep networks as well as convolutional 

nets. 

2.3.5 Conclusions 

This section described a time-based neuromorphic core based on one-shot DDLs in 

65nm LP CMOS and proposed an error recovery technique, DTEC. It uses inverter delays 

to compute the dot product kernel, making it ideally suited for ML applications. The 

proposed core is validated on the MNIST dataset and achieves near simulated prediction 

accuracy on single and multi-layer networks after applying our error correction technique, 

DTEC. Maximum energy efficiency of 54.2TSOPs/s/W with 3b resolution at 0.7V makes 

the proposed architecture attractive for edge devices. 
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2.4 Summary 

In this chapter two time-based designs for machine learning have been described. 

Section 2.1 began by introducing time-based computing for neuromorphic computing and 

studied the prior art by looking at different architectures that have been proposed in the 

literature; digital SoCs, analog SRAM solutions, analog computing, and crossbar arrays in 

SRAM and non-volatile memories. Next, a ring oscillator time-based machine learning 

chip was presented which achieved 91.4% accuracy on the target application and consumed 

320.4µW at 1.2V. The main drawback of the ring oscillator was the many cycles required 

to get an output, which the next chip presented solved. The DDL one-shot chip achieved 

54.2TSOPs/s/W making it one of the most energy efficient processors reported in the 

literature. DTEC was proposed which enables a scalable approach to limit design 

complexity and trade-offs increased accuracy for additional evaluations which reduces the 

energy efficiency. These two chips make a very strong case for time-based neuromorphic 

systems in the future. Both designs are able to achieve such low power consumption due 

to the unique multiplication structure that only toggles a single gate at a time, as well as 

the intrinsic addition through time accumulation. This architectural approach is not only 

simple and elegant, but has the potential to unleash the utility of machine learning out of 

the cloud and into every device.  
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Chapter 3. Time-based Graph Computing 

3.1 A 40×40 Four-Neighbor Time-Based In-Memory 

Computing Graph ASIC Chip Featuring Wavefront 

Expansion and 2D Gradient Control 

3.1.1 Introduction 

 
A graph can be thought of as a set of objects, vertices, and their connections, edges. 

Edges can be directed meaning a one-way connection, or undirected. Additionally, edges 

can have weights which incentivizes certain paths. The left graph has undirected 

connections with weights. The right graph has directed edges and this can be seen by the 

arrows on ends of the edges. Graphs as an algorithmic construct are not very interesting. 

Their utility is derived from their ability to solve real world problems. If problems that 

manifest in the real world can be mapped onto specific structures, then known algorithms 

can be applied to solve them. Single-Source Shortest Path (SSP) problems have a rich 

history of algorithm development [29] [30] [31]. One of the most widely used frameworks 

for SSP is Dijkstra’s Algorithm [30]. Dijkstra’s is considered a greedy algorithm; it always 
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Figure 3.1: Examples of an integer weighted undirected graph (left) and 

unweighted directed graph (right). 
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searches the best available option. It does this by using a priority queue. Nodes are added 

to the queue with priority based on how far they are from the source node. Smaller distances 

signify a possibility to find a shorter path to the target and are popped from the queue before 

others. One advantage of Dijkstra’s is that it is guaranteed to find the shortest route because 

at each node the shortest path to it is recorded as the algorithm progresses. 

 
In most applications there is no reason that all directions of search should be treated 

equally. This intuition is shown in Figure 3.2. Arrows pointing towards T clearly should be 

searched before those cells in the direction of the arrows pointing away from T. This is 

precisely the modification that the A* algorithm [31] makes to Dijkstra’s.   

𝐶𝑜𝑠𝑡(𝑛) = 𝐹(𝑛) + 𝐻(𝑛)    3.1 

The cost assigned to a node, n, in the priority queue is shown in 3.1. F(n) is the actual 

distance of the current node from the source; the cost assigned in Dijkstra’s algorithm. H(n) 

is a heuristic that predicts the distance of the current node to the target.  

T

S

Intuitively 

search 

towards 

target first 

blockage

 
Figure 3.2: Illustration of the intuition of the A* heuristic 
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Figure 3.3 details a common heuristic used commonly referred to as the Manhattan distance 

in reference to the dense, orthogonal streets in Manhattan. Outside the grid are the 

coordinates in both directions, and the predicted cost of the distance at any given point to 

the target is the sum of the differences of their horizontal and vertical coordinates. Another 

distance heuristic that is more familiar is the Euclidean distance, or straight-line path. SSP 

has many applications including AI decision making, robot navigation, VLSI signal 

routing, and for autonomous vehicles as will be seen in the following sections.  

Conventional algorithms rely on sequentially traversing the search space, described 

above as the priority queue, which is inherently limited by von Neumann systems in 

traditional computer architecture. As graphs become very large, this slow processing time 

can become a bottleneck in real world applications. In this section a first-of-its-kind time-

based ASIC is presented to address this issue. The design leverages a dedicated hardware 

implementation to solve these problems in linear time complexity and at unparalleled 

energy efficiencies. A 40x40 four-neighbor grid implements a wavefront (WF) expansion 
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Figure 3.3: Manhattan Distance as the heuristic in A* SSP 
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with a first-in lockout mechanism to enable traceback. Outside the array, a programmable 

resistive ladder provides bias voltages to the edge cells which enables pulse shaping 

reminiscent of the A* algorithm [31]. Section 3.1.2 described the operating principle of the 

ASIC as well presents the core circuits that enable the unique functionality. Next, section 

3.1.3 briefly describes quantitative measurement results. The heart of the work is described 

in section 3.1.4, applications. Finally, the subchapter is concluded in section 3.1.5. 

3.1.2 Principle of Operation 

 
Figure 3.4 provides a high-level schematic of the chip. The chip is structured to 

model a graph with a regular Manhattan grid structure. Each of the 1600 vertices have four 

connections to its neighbors in the cardinal directions (N, S, E, and W). The chip functions 
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Figure 3.4: 40x40 graph ASIC chip for solving single-source shortest path 

problems based on 2-dimensional wavefront expansion.   
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by propagating a pulse between the vertices through the edges. The time it takes for a pulse 

to travel from each cell is proportional to the distance, or cost, to travel through that edge. 

Each vertex operates autonomously; it senses and stores the direction of the input, prevents 

other pulses from overwriting it, and propagates it to neighboring stages. The first pulse 

latched, or set of simultaneous pulses, represents the fastest way to reach that cell. Since 

the first pulse is the only pulse latched in each cell, tracing the pulse chain back to the start 

will reveal the shortest path. Connections are predetermined based on the description of 

the graph at runtime. Although the core was initially designed for SSP, each evaluation 

contains all shortest paths to the start node. In the following subsections each of the core 

circuit blocks will be described. 

3.1.2.1 Vertex Circuit Functionality 

 
Figure 3.5 shows the block diagram of the key units that comprise the vertex cell. 

The vertex consists of four input/output ports, a lockout mechanism, and direction decoder 

cells that connect with local storage. Each of the directional storage is allocated to: output 
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Figure 3.5: Block diagram of the vertex. 
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edge enabled, input arrived from that edge, and one spare bit to align the layout. One of the 

spare bits is utilized to store if the vertex is a start cell. The key lockout operation is 

described in Figure 3.6. In the pre-input state, the SR latch output is low signifying no input 

has occurred. An input is presented to the vertex from the north. This input latches the 

vertex and pulses are passed to the edges. Additionally, inputs are prevented from 

overwriting the cell. 

 

 
Figure 3.7 shows the schematic of the vertex cell. The lockout consists of a merging 

network to determine if a pulse has arrived. The decoder is responsible for determining 

which direction carried the pulse to the vertex. Once the pulse has been decoded it is 
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Figure 3.6: Operation of the lockout mechanism. 
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Figure 3.7: Vertex circuit schematic. 
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propagated to the output by the pulse repeater. Additionally, the local SRAMs are 

programmed with a direct memory access circuit in-situ.  

 
A timing diagram that demonstrates the functionality of the lockout mechanism in 

Figure 3.8. The functionality of the cell will be described with an example of two pulses 

arriving; North and then South. First, a global enable signal, EN, is asserted enabling the 

core. Additionally, not shown in this figure, a pulse is started from somewhere in the array. 

The four inputs are merged together in a detection circuit to determine if a pulse has arrived 

in the cell. In the example IN<N> will flow through and latch PIN, or Pulse Input. PIN is 

compared with the input from each of the four directions. If PIN is asserted and the input is 

not from the direction that asserted PIN, Pulse Latch, in this example PL<{S, E, W}>, will 

assert. PLb is connected to the SRAM DMA which will flip the IP<{S, E, W}> SRAM that 

will be read out after evaluation during the path traceback. IP<3:0> shows how the vertex 

stores the input pulse. Initially all four bits are cleared. The bits that do not correspond to 

the first input are flipped with the DMA circuit. This notation corresponds to the Readout 

Colormap Key in Figure 3.9. In this example the input arrived from North, or “2”, giving 

the stored cell value 10112, or 1110 encoded orange. Finally, the pulse is propagated to the 
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Figure 3.8: Vertex timing diagram of lockout functionality 
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neighbors that were not responsible for latching the cell and have a connection stored in 

their respective local SRAMs. This is where the “in-memory computing” portion of the 

title is derived from; all circuits, connections, and pulse propagation occurs inside the 

memory array. The layout of the chip is constructed on an SRAM architecture which is 

what enables this concept.  

 

3.1.2.2 Edge Unit  

 
The edge unit is responsible for passing the pulse between vertices via a modulated 

delay. Figure 3.10 shows the edge schematic. Each edge consists of one current starved 
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Figure 3.9: Local SRAM storage encoding enabling traceback 
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Figure 3.10: Edge Unit schematic 
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inverter, one standard inverter, and four binary weighted bits of capacitor loading. The 

delay is modulated by the 4-bit weight stored locally in the SRAM and the voltage bias 

applied to each branch of the first inverter. The bias voltage values are assigned by the 

edge’s position in the array determined by the gradient, described in section 3.1.2.3. The 

circuit of the current starved inverter could be reduced by two gates to reduce area, but 

were opted to stay as overhead. The first gate that could have been removed is the PMOS 

connected to VSS. The circuit would still function as digital logic without an always on 

path, but it was included in order to have similar pull-up and pull-down strength of the 

branches. The second gate that could have been removed is one the NMOS gates connected 

to IN. This would require shorting the drains of the two bias controlled NMOS footers. 

However, these were retained in order to ensure the linearity of the summated currents in 

the two paths. Shorting the drains could have resulted in voltages as VDS that would have 

resulted in a non-linear contributions of the currents. As the gate voltages of the NMOS 

increases, this would have reduced VDS which would have had an outsized effect on the 

gate with the lower VG. 

3.1.2.3 Gradient A* Mapping 

The gradient cell is used to implement the predicted distance to the target. On each 

axis there is a resistive ladder that has voltage taps at each row/column that connect across 

the entire core array. Since this is a 40×40 array, there are 41 resistors on each side. 

Additionally, switches controlled by a register chain are placed at each node which is used 

to fix the voltage to V3. On the ends of the resistive ladder are two additional bias voltages. 

The difference between V3 and the other two voltages is linearly dropped across each 
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resistor shown on the opposite side of the ladder. This is a valid assumption because there 

should be very little current lost in the array since the taps connect to MOSFET gates. 

 
The point at which V3 connects is programmable through a scan chain. Only one tap 

of the resistive ladder is connected to V3. The position of that connection corresponds to 

the location of the target, determined by the application requirements. In the SSP problem, 

the location of the target is the destination cell, whose coordinates would be programmed 

into the resistive ladder register connections. In Figure 3.11, the delay of each cell based 

on the bias voltages seen by the X-direction and Y-direction gradient is encoded in the 

color of the cells in the array map. The dark blue color corresponds to the fastest cells 

because the bias voltage is maximum at V3. As the distance increases from the target cell, 

the bias voltage decreases causing the delay to increase. This essentially accelerates the 
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Figure 3.11: Functional example of the gradient ladder 

 

 

 

 

 

 

 

 

 

 



52 

 

pulse towards the destination in the same manner that the A* algorithm reduces the 

predicted cost as the search gets closer to the target node. Figure 3.12 shows an improved 

gradient circuit. For an additional scan bit and bias voltage (VY4), an additional bend can 

be incorporated in the slope curve. Additionally, non-linear resistive elements could be 

incorporated to provide second-order functions. 

 

3.1.3 Measurement Results 

Figure 3.13 contains the measurement results from the edge cell delay. On the left 

is a plot of average edge cell delay versus digital edge code for three different bias voltages. 

Due to the lack high precision measurement circuits on chip and no ability to probe internal 

points during pulse propagation, a unique strategy was required to generate the delay curve 

on the left. The graph was programed to have only a single route across the chip. The path 
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Figure 3.12: Possible Wavefront shaping with increased gradient complexity 
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started in the top left and traversed across the array to the right until the edge was reached. 

The path moved down one unit and then proceeded back across the core. 

 
 This was repeated over each row in the array to yield the longest single path 

possible in the chip. During measurement, the enable signal was precisely controlled by 

off-chip test equipment. The total time enable was divided by the number of cells that the 

pulse traversed. This process was repeated for different edge codes and bias voltages. To 

apply the same bias voltage to all cells, {V1,V2,V3} were all set to the same voltage and 

no connection was made on the gradient ladder. Over the three bias voltages shown in the 

figure, it is possible to see how the delay can be modulated across the array by the gradient 

resistive ladder framework introduced in section 3.1.2.3. On the right the differential 

nonlinearity and integrated nonlinearity are shown. The deviations in the DNL and INL 

appear to toggle between positive and negative. This could be due to the least significant 

bit in the capacitor bank not having a significant contribution to the delay. This is apparent 

in the VB=0.75V trace in the left plot. Every other point has a minimal increase in the delay; 
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Figure 3.13: Measured delay of the edge cell 
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edge code two and three have nearly identical delays. In future designs this could be 

rectified by increasing the size of the access switch to increase the effect of the connected 

capacitive load.  

 
Table 3.1 is mainly included for general comparisons since to our knowledge this 

is the first ASIC for graph traversal. References [32] [33] are comparable in the sense they 

attempt to map hardware platforms onto optimal A* implementations. Our peak power is 

quoted when all 156 perimeter vertices are evaluating corresponding to the pulse 

originating from the center, equating to 183.1µW/vertex. 55% of the power is due to SRAM 

access storing the pulse information in-situ. During the program there is short circuit 

current in the two cross coupled inverters of the SRAM. This fact highlights how low the 

actual compute energy is; each vertex is evaluated by toggling a few gates and two inverters 

on the edges. Compared to state of the art FPGA [32], µProcessor, CPU, and GPU [33] 

implementations our core has roughly five orders of magnitude superior energy efficiency. 

Figure 3.14 shows the die photo of the test chip and the chip summary. The chip is 

fabricated in 65nmLP CMOS process and is based on a novel time-based architecture. The 

40×40 array contains 1,600 vertices and 6,400 edges since each vertex have four neighbors. 

Table 3.1: Comparison Table  

Architecture This Work FPGA [32] µProcessor CPU [33] GPU [33]

Product ASIC Xilinx Virtex ARM Cortex-M0 Intel Xeon E5630 NVIDIA Tesla K20c

Technology 65nm 20nm 40nm 32nm 28nm

Voltage 1.2V - 1.1V 0.7-1.35V -

Peak Power 26.4mW 24.22W 127µW 20W/core 225W

Throughput [MTEPS] 559 731 5.34*10
-4 0.83 9.0

Energy per Node 0.328pJ* 33nJ 89.1nJ 24.1µJ 25µJ

Normalized Energy

*55% from SRAM Program (does not include cache access energy)

Energy/Node=Unit Delay*Unit Power

MTEPS = Million Traversed Edges Per Second

10
5 

2.7x10
5 1.19x10

6
2.3x10

7
1x
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The perimeter vertex cells have dummy edges to provide equal loading. The delay 

resolution on each edge is a 4b binary weighted capacitor bank in conjunction with the 

analog bias gradient which implements the A* heuristic. At 1.2V supply the peak power is 

26.4mW, which corresponds to every cell on the edge evaluating when a pulse is started 

from the center of the chip. The delay per node is 1.79ns at an edge bias of 0.9V consuming 

an incredibly low 183.1µW. 

 

3.1.4 Applications 

3.1.4.1 Collision Avoidance through Voronoi Diagrams 

The principle of the Voronoi algorithm is that it segments a plane such that the 

partitions represent the closest position to a start seed. Visually, at the beginning of the 

algorithm there are only the start points available. Upon completion, the plane is segmented 

into regions around the start points. Voronoi diagrams are able to be computed by this 

ASIC when no bias gradient is applied. In the absence of a bias gradient the velocity of the 

pulse is constant across the core. This is precisely what k-nearest neighbor classification in 

WL Scan

B
L
 S

c
a
n

S
c
a
n
 O

u
t

40x40 Graph Array

5
8
0

µ
m

680µm

Technology 65nm LP CMOS

Architecture Time-based

# of Vert ices 1600

# of Edges 6400

Edge Resolution 4b + Analog Gradient

Voltage 1.2V

Peak Power 26.4mW

Delay per Node
1.79ns @ 

[VB=.9V, VDD=1.2V]

Power per Node 183.1µW

Energy per Node 0.238pJ

Applications

A* shortest path, 

obstacle avoidance, 

scientific computation 

(opt ics)

 
Figure 3.14: Die Photo and Chip Summary 
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machine learning computes. Voronoi diagrams also describe the bone structure and the 

way certain groups of cells orient themselves. Computational fluid dynamics meshes are 

also generated using these principles. Autonomous vehicles can also use these for collision 

avoidance, which will be described in the next paragraph.  

Figure 3.15 highlights an example collision avoidance (CA). CA is useful if there 

is an incentive to avoid obstacles, such as self-driving cars or drone navigation. In this 

application the pulse is started simultaneously from the sides of the obstacles. Where the 

WFs meet, shown in white, signifies the path that maximized the distance between the 

obstacles. In the bottom left of Figure 3.15 the boundary between obstacles “1” and “2” is 

highlighted. The white line is added as a visual aid, but it is clear that the WFs have met 

between the two blockages. The other callout shows how three WFs can meet and be 

identified. Along the top and side of the main array, the bias voltages for V1 and V2 are 

equal at 0.9V. The strength of this ASIC is highlighted in this application as each leading 

cell on the WF can operate autonomous vastly reducing the evaluation time compared to a 

standard von Neumann machine which services each vertex serially. 
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3.1.4.2 Shortest Path Planning 

 
The motivating application for this ASIC was SSP. Figure 3.16 solves SSP from the 

top left (start, S) to the bottom right (target, T). Finding a shortest path in a grid without 

any blockages is trivial as shown in Figure 3.16(a). Every path the moves in the down-right 

step will have the shortest path as shown in a selection of the shortest paths shown in red. 

This is also seen by looking at the distance from S stored in each node, and following an 

increasing path. However, when blockages are present it becomes a more interesting 

problem. In the case of Figure 3.16(b), all paths above the blockage in red dominate the 

paths in green that go below. This is because the lower path is required to move left one 

unit, instead of the down and right path in the previous slide. In blue is where the paths 

meet. Additionally, Figure 3.16(c) solves the problem with a gradient in the A* framework. 

The cost to move between the nodes is no longer a uniform step, but the sum of the grey 

“voltage” in the row and column. The gradient improves the dominant paths because the 

equal point has moved one unit to the left. This means the search is more efficient. 
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In SSP, Figure 3.17 shows two outputs generated from the same map under different 

conditions. In this application a map is shown with blockages shown as black blocks. The 

WF is initiated in the upper left and it propagates down and across the core. Figure 

3.17(left) does not have a voltage gradient applied and each edge has the same weight. This 

gives the WF a very regular pattern as it traverses the map. The bottom figure has a voltage 

gradient applied that is weakest in the top-left corner and strongest in the bottom-right 

corner. The key difference between the two outputs is shown in lower callouts. Without 

the gradient, paths above and to the right of the blockage supersede any paths under as 

shown by the orange strip and no arrows crossing into those paths. With the gradient (right), 

the orange path is still present, but the “above WF” is so much faster than the “under WF” 
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Figure 3.17: Measured results from path planning application without (left) and 

with (right) the gradient. 
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that it begins to wrap underneath the blockage shown by the yellow cells. This is precisely 

the same observation seen in the analytical example in Figure 3.16.  

3.1.4.3 Multi-core Scalability 

 
This ASIC is not constrained to solving problems that conform to a 40x40 grid. Figure 

3.18 highlights the scalability of this core via a four-core example with a single blockage 

spanning three cores. First, core 0 is evaluated and the WF reaches cores 3 and 1 both at 

two points, which will be used to start the pulse in subsequent evaluations. A simple rule 

to pick the vertex cells that have a single input pulse whose direction is opposite the 

boundary is used to determine the next start points in the following core. Next, core 3 is 

evaluated but the pulse does not uncover much of the map due to the complete blockage. 

After this, core 1 is evaluated and it contacts core 2 in two locations, the bottom right corner 

and directly above the blockage. These two cells are used to start the evaluation for core 2. 

Finally, it is revealed that core 2 and core 3 share an unexplored boundary, and core 3 is 
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Figure 3.18: Four-core example with time-multiplexed outputs interleaved to 

shown full map. 
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re-evaluated to fully uncover the obstacle. It is important to note that multi-core still solves 

the SSP problem in linear time as the grid size expands. It can be safely assumed that any 

inter-chip communication will incur a large overhead relative to the WF propagation in the 

single core. One option to mitigate this could be to time-multiplex the core. The difference 

in the time to load a new map into the array and evaluate it could be compared to the energy 

and overhead from communicating with another die. This is a study well suited for future 

exploration including, simple processor to determine candidate start nodes, router 

framework for communicating between cores, and system design to ensure intelligent 

allocation of board-level resources.  

3.1.4.4 Optics Experiment 

 
Motivated by [29], this ASIC can also model optics experiments in straight-line 

geometries to illustrate the utility of our hardware architecture. The goal of this 

“experiment” is to model the propagation of waves under Manhattan geometry. In the 

physical world of course distances are measured in Euclidean geometries. Shown in Figure 

3.19 is a sampling of the core readout at different time points during a single evaluation of 

Optics Wavefront Experiment (Measured)

Wavefront 
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phenomenon
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Figure 3.19: Measured optics Wavefront experiment. 
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a two-slit experiment. The colors are encoded as the remainder of division between the 

distance from the start and eight (eight was selected to provide color contrast). The pulse 

starts to the left and above of the first slit. The WF traverses the first partition and then 

passes into the second corridor. Next, the WF reaches the middle of the second boundary 

and then spreads out until it reaches the two-slits and generates two leading WF. In this 

ASIC, interference is not easily modeled due to the lack of phase in the wave. However, 

the vertex can latch two inputs that occur at the same time, which could be interpreted as 

the point at which the waves would interfere. This behavior mimics what is reported in [29] 

and has interesting consequences for future physical explorations of novel applications 

with low-power CMOS.  

3.1.5 Conclusion 

In this section an in-memory computing ASIC graph processor was described. The 

core consisted of a 40×40 four-neighbor grid with each unit consisting of a vertex and its 

edges which enabled pulse propagation. Each vertex operates asynchronously which 

enables this chip to break the von Neumann bottleneck and solve the SSP in linear time as 

grid size increases. The design details and tradeoffs were discussed for the vertex, edge, 

and gradient blocks. Measured edge delay was presented as well as a compelling 

comparison table with conventional platforms used to solve the SSP. Versatile applications 

were highlighted along with the potential scalability of the ASIC. The time-based, in-

memory computing ASIC applies a known algorithm to a well-studied class of problems 

in a new approach. The very competitive energy efficiency should drive this architecture 

to be considered for many other types of algorithms. 
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3.2 3D Graph Traversal ASIC 

3.2.1 Introduction 

In the previous subchapter a 2D path planning chip was presented. A 2D framework 

is ideal for navigating in planar applications such as finding the fastest route in streets 

which are in reality flat. There are inherent limitations in the previous design when it comes 

to implementing path planning in real world environments; namely the vertical direction. 

Applications that require having a third dimension include: drone navigation [34], 

underwater vehicle navigation [35], and unmanned ground vehicles [36]. 3D navigation is 

so challenging and computationally expensive that [34] didn’t even bother to consider the 

third dimension even though the drone has the ability to fly. The authors referred to the 

ability to fly as a “hop” which severely limits the utility of the proposed system and could 

be mitigated by a low-power, fast, simple solution to find shortest paths in 3D 

environments. In this subchapter a 3D path planning ASIC will be introduced. In section 

3.2.2 the architecture details including the array floorplan and vertex operation will be 

described. Section 3.2.3 will recount the measurement details of the chip. Three 

applications including: path planning, Voronoi diagrams, and k nearest neighbor 

classification will be demonstrated in section 3.2.4. Finally, conclusions will be drawn in 

section 3.2.5. 

3.2.2 Architecture Details 

3.2.2.1 Array Structure 

One of the primary challenges associated with developing this concept was 

projecting a three dimensional volume onto a two dimensional plane. Some of the design 
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constraints were that it had to be scalable so that the size of the array could grow, compact 

so that the RC delay between vertex cells was not prohibitively larger, regular so that the 

routing complexity was manageable. Scaling a design in two dimensions is trivial; the x-

axis and y-axis each have a degree of freedom in the layout plane which causes no 

contention in increasing the size. When a third dimension, z-axis, is desired to be 

incorporated the problem is much more difficult as there is no free dimension in the silicon 

to scale in. 

 
This limitation is highlighted in Figure 3.20 [37], where a very unique idea is presented to 

use CMOS devices to model “spin” in a quantum computer. An Ising model is used to 

define the interactions between spin units, and they claim it can be used for combinatorial 

optimization, a very expensive problem when the size of the array becomes large. The 

design appears to map three dimensions into the two dimension plane. Upon careful 

observation, this is in fact slightly true. They get around the missing dimension problem 

by nesting, or interleaving the z-axis scaling with x-axis scaling. However, they are 

significantly restricted by depth of Z. This arises from the fact that the length of the route 

across x-axis is linearly proportional to the z depth. For example, the length of the 
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Figure 3.20: Limited Z-axis scalability in prior art. 
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connection from N000→N001 (axis ordering ZYX) in the x-axis is two units, compared to 

N000→N100 in the z-axis of one unit. As the size of the units in the z-axis increase, the 

routing length will become a bottleneck. Larger RC will increase power consumption and 

delay reducing the operating frequency, consume metal routing tracks increasing the size 

of the cell unsustainably, and most importantly limits the geometry of the spin-mesh they 

can solve to just two layers. 

 
Figure 3.21 illustrates the solution leveraged by this ASIC. On the right is the 3D 

volume representation of the cube. Instead of simply interleaving the z-axis in one 

direction, it is distributed in the y-axis as well. This reduces the routing overhead by √𝑧 

compared to z. This is seen in the <X,Y>=0,Z-slice rectangle on the lower part of the figure. 
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Figure 3.21: Mapping between 3D cube and 2D planar layout. 
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This rectangle fits into the global grid in the top left flattened array. Each of the Z-slice 

locations corresponds to the x,y location in the array. The top face of the cube is the 

<X,Y,19> slice and is highlighted in the upper left corner of the Z-slices in the flattened 

array. The points A, B, and C are identified on the three representations in their appropriate 

locations to aid in understanding the translation between the different structures. 

 
The routing methodology shown in Figure 3.22 had to be developed to connect cells in this 

compact layout. Each wire connection is bi-directional, but shown as a single route for 

brevity. The z-axis routing is done locally shown in the bottom right z-slice in blue. The x-

axis routes are staggered four wide and the y-axis is staggered five wide. This difference 

 
Figure 3.22: Global routing across the three dimensions. 
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is due to the unit cell aspect ratio being wider than tall. This stems from the long, narrow 

layout of a 6T SRAM cell. Each of the X,Y, and Z routes occur in each cell, although in 

this figure they are split for ease of seeing the pattern. This makes a dense, regular, and 

automation-friendly routing structure. It can be thought of as automation-friendly because 

the coordinate location of the cell dictates the location of the tapping vias to the global 

routes. 

3.2.2.2 Vertex Operation 

 
 Figure 3.23 shows the details of the circuit schematic of the vertex cell. Compared 

to section 3.1, there is no edge cell to reduce design complexity. The key functionality of 

the vertex is largely similar to the 2D design presented earlier; detect if a pulse arrives, 
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Figure 3.23: Circuit schematic of vertex cell 
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decode the direction of the first pulse, latch this information in-situ, and propagate the pulse 

to the connected neighbors. The vertex lockout block consists of three NOR-NAND 

merging network to determine if a pulse occurred. An improvement over [1] is that the 

local START signal is mixed with the pulse inputs. In the previous work START was mixed 

in the decoder stage (c.f. Figure 3.7), which not only added another logic stage into the 

critical path but also had to be routed to each direction which increased congestion in the 

already dense vertex. The global enable, GLBEN, was also mixed in the lockout to also 

reduce overhead and supervise the logic at an earlier level. The output of the lockout feds 

the decoders, as well as a new addition in this 3D work, the Blockage Delay circuit though 

a mux. The idea behind the blockage delay circuit is that during 3D navigation (section 

3.2.4) the goal is to find the shortest path from source to target in the presence of blockages. 

This delay path is enabled within some range of the boundary of the obstacle such that the 

optimal path will avoid traveling too close to the potentially dangerous blockage while still 

traveling on the fastest route. This single bit is stored locally in each vertex and is 

programmed by the user at runtime. The delay from the inverter (denoted L in Figure 3.23) 

is realized by stacking devices to get a long channel length. In this design the width:length 

ratio is 1:5 which provides a significant portion of the total vertex time in delay. The 

polarity of the latch signal will remain the same on both branches of the blockage delay 

circuit because the pass through branch is connected to the positive output of the SR latch, 

and the blockage delay branch in fed by the opposite polarity output available from the SR 

latch. The output of the blockage delay circuit is fed to the pulse propagating circuits 

described later in this section. 
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 The decoder network is tasked with determining which direction carried the first 

pulse. Each of the six directions (North, East, South, West, Up, and Down) has a copy of 

this circuit with the input connected to the corresponding direction. The input pulse and 

the complement of the lockout latch are passed into a NOR gate which asserts on each 

direction that does not have an asserted direction. Before the cell is locked, all the inputs 

are low (active high output of the NOR gate), but the lockout output is low and its 

complement is then high (dominant active low output of the NOR gate). However, when 

an input occurs the decoder corresponding to the direction of the input has the values toggle 

and no change is recorded in the decoder latch, but the directions that did not carry the 

pulse in the cell are sensitized and latch the decoder cell. The output of the decoder latch 

drives the in-situ storage which records the one-hot encoded direction which caused the 

cell to latch. Additionally, the decoder output is fed into the pulse propagation block. Each 

direction again has its own copy of the decoder output. A three-input NOR gate controls 

the pulse propagation of each direction. The inputs are: complement of locally stored 

connection on that direction, blockage delay circuit output, and complement of the decoder 

latch output. The mux output is mixed at the pulse propagation block and not in the decoder 

block so that both can work in parallel to reduce the intrinsic vertex delay. Another unique 

feature of pulse propagation circuit is that the z-axis (Up and Down) NOR gate VDDZ is 

separate for the core VDD. Recall from section 3.2.2.1 the distance of the z-axis routing 

was a single unit, whereas the x-axis and y-axis were four and five units respectively. 

Having the ability to reduce the z-axis VDDZ compared to the core VDD gives the ability 

to match the short RC delay to the longer RC. The circuit innovations in the 3D version 
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include: reducing vertex critical path delay, incorporating path heuristics to model 

blockages, as well as increasing the number of paths from four to six, all which make the 

3D version a more refined vertex compared to the previous 2D work. 

3.2.3 Measurement Details 

 
 Figure 3.24 reports the measured average delay per vertex as supply voltage is 

changed. This curve was measured by programming a single line path through the core in 

a zigzag pattern across each z-slice and passed up a level after the pulse travels through a 

complete path. The chip is enabled for a short period of time and the number of cells that 

were evaluated in this period is recorded. Dividing the evaluation time by the total number 

of evaluated cells gives the average delay per cell.  This function is essentially creating a 

single line time-to-digital converter. It was found to be accurate with post-layout 

simulations within 7.5% difference across supply voltages.  
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Figure 3.24: Measured average delay of each vertex 
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Figure 3.25 shows the power consumption dependency on supply voltage. Power 

is quoted as the average power over a single vertex evaluation time. This is because in the 

asynchronous chip, any number of vertices can be switching simultaneously which 

increases the power proportional to the number of cells switching. This power was 

measured in a post-layout simulation because it is not possible to measure the transient 

switching power of this chip and there is no way to program it to oscillate such that an AC 

power measurement would be taken over an average time period. Future designs could 

incorporate such a test structure to enable active power measurements. The highest energy 

efficiency is achieved at 0.6V for 40.8fJ/node. 

Die photo (left) and chip summary table (right) are presented in Figure 3.26. 

Applications, demonstrated in section 3.2.4, include 3D path planning, Voronoi diagrams, 

and machine learning. However, this is not an exhaustive list as applications from the 2D 

chip can be mapped onto the 3D architecture, in addition to new applications due in part to 

the flexibility of the architecture. The speedup between the 2D and 3D version of this chip 

is 2.47x at 1.2V. This can be attributed to removing the edge cells and reducing logic levels 
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on the critical path to increase throughput. Power per node is higher by 23% due to the 

larger number of connections in the 3D chip. 

 
The total energy per node is reduced by 46% which is a benefit since there are five times 

more nodes on this chip. The total die area is 2mm2, with an active area of 1.33mm2, and a 

vertex area of 163µm2 for an area efficiency of 98.1%. 

3.2.4 Applications 

3.2.4.1 3D Navigation 

Figure 3.27 shows an example of the 3D navigation application for autonomous 

drones. The goal of the application is to find the shortest path from (0,0,0) to (19,19,19). 

Blockages are programmed based on the map determined by the application. In this 

example, there is a blockage that spans the entire horizontal axis near y=10. Along the 

diagonal, or shortest path from start to finish, the highest point in the obstacle range which 

forces the shortest path off the diagonal. One of the possible shortest paths has been 

enumerated in green over the surface plot. 
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Figure 3.26: Die Photo and Chip Summary 
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This path was achieved by simply tracing back the shortest path from the target node to the 

start node. This trace back can be visualized in Figure 3.28 where z-axis slices are shown. 

Each point represents a vertex, and the arrows represent the directions responsible for 

locking out the cell; the fastest way to reach the cell. In the bottom left of each figure is 

(X,Y)=(0,0) and the top right is (X,Y)=(19,19). The left figure corresponds to the cells in 

the Z=0 slice. One can see there is no path from (0,0,0) to (19,19,0) which necessitates the 

path take a route that follows a higher vertical dimension. In the Z=2 slice one can see that 

there are two paths across the blockage and the green route in Figure 3.27 takes the right 

most path. 

 
Figure 3.27: Example of the 3D Navigation application. 
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3.2.4.2 Voronoi Diagrams 

As described in section 3.1.4.1, the Voronoi algorithm segments a volume into 

regions that are closest to the various seed nodes. Visually, at the beginning of the 

algorithm there are only the start points available, seen as the main black points in the 3D 

plot in Figure 3.29. The core is enabled and wavefronts propagate from all start nodes in 

the six directions. Upon completion, the plane is segmented into regions around the start 

points. This is visualized by the simulated Voronoi diagram that looks like two stacked 

emeralds. This diagram is not generated from the core, but is analytically calculated in 

software. Three planes slice the figure at A:(X,Y,15), B:(10,Y,Z), and C:(X,Y,0). Each of 

the corresponding planes has been shown from the readout of the core. One can see the 

projection of the simulated Voronoi diagram is projected onto the different planar slices, 

and is visible in each of the three readout planes. Software could be developed to search 

plane slices from the core to determine the precise full 3D reconstruction from the core. 

For this exploration one can visually confirm this is possible and the correct functionality 

 
Figure 3.28: Readout of the chip of the Z=0 (left) and Z=2 (right) plane 



75 

 

of the core is confirmed. This can be used for collision avoidance as seen in section 3.1.4.1, 

or k-Nearest Neighbor classification as will be detailed in the following section. 

 
3.2.4.3 k-Nearest Neighbor Classification 

An application of Voronoi diagrams is k-nearest neighbor (kNN) classification 

when k=1. This is because the output of the Voronoi algorithm is a segment or partition 

that contains all the points closest to the start seed. In kNN the goal of the algorithm is 

determine the class of a new observation given a population of examples that are members 

of certain classes [38]. Conceptually the new point is compared to all the existing points 

and the distance between all the features is computed. The majority class of the k nearest 

neighbors is assigned to the new observation. However, the 3D core is not limited to k=1.  

 
Figure 3.29: 3D Voronoi diagram via 2D reconstruction 
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Instead of evaluating the seed points, the new point is evaluated. The distances to each of 

the points in the population is computed by tracing back the shortest path to the new point 

and then post-processing can be used to determine the size of k.  

 
To demonstrate this functionality the canonical Fisher’s Iris [39] dataset is used. 

Originally there are four data attributes, sepal length, sepal width, petal length, and petal 

width for the 150 iris specimens. There are three target classes, or species of iris flowers; 

setosa, versicolor, and virginica. Due to the fact that the chip only has three dimensions, 

Principle Component Analysis [40], or PCA, was used to find the three dominant 

components of the data, reducing the dimensionality from four to three. Next, the three 

principle components were scaled onto the range of [0,19] and quantized such that each 

observation could be given an exact location in the grid, seen in Figure 3.30. The core was 

loaded with the first start point, evaluated, read out, and offline shortest paths were 

reconstructed by directly tracing back the shortest route to the start node, and the 10 nearest 

neighbors were used to determine the accuracy of the core on the algorithm. A software 

model of the kNN algorithm was used to determine the correct answers. The software 

 

Figure 3.30: Fisher’s Iris dataset prepared for the chip 
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model correctly classified 142/150 examples. The core also classified 142/150 correctly, 

matching the software result exactly. Figure 3.31 shows the average distance of the 10 

neighbors from the start point from the core (top) and software (bottom) colored by flower 

index. The mean path over all 150 specimens was 3.675 in the core and 2.64 in software. 

The disparity comes from the fact that the core used Manhattan distance to compute the 

distance and the software uses the Euclidean distance. The ideal ratio between these two 

distance metrics is 1.41, or √2, from the Pythagorean theorem: √𝑎2 + 𝑏2 = 𝑐, where in an 

idealized case a=b=1.  

 
It should be noted that this is not a primary application of the core, nor is it suggested this 

is an efficient implementation of the algorithm. One of the main limitations is the number 

of features allowed is restricted to three, each axis of the chip. As shown from the Fisher 

Iris dataset there were four dimensions given and it would have been ideal to include all 

for generating a better model. Additionally, computing the Euclidean distance is 

moderately challenging as the equation requires a square root to be computed. However, 

 
Figure 3.31: Measured kNN distance for k=10 
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the Manhattan distance, used in the chip, only requires simple subtraction of each 

dimension, and addition to compute the distance which is significantly less 

computationally intensive in a conventional von Neumann digital system. The purpose is 

to motivate the exploration of future algorithms that could be served by this 3D graph 

traversal chip and highlight the flexibility. 

3.2.5 Conclusion 

A 3D time-based path planning application specific processor was presented in 

65nmLP CMOS. A significant innovation was transforming the 3D cubic architecture to a 

2D planar layout that is scalable and efficient to implement. Previous work interleaved the 

z-axis in a single dimension, whereas in this work the z-axis was interleaved in both 

dimensions, which reduces the interconnect length by a factor of a square root. The 

operation of the vertex cell was described. Measurement results were presented along with 

the chip summary table. 3D path planning, Voronoi diagrams, and k-nearest neighbor 

applications were demonstrated in the chip. An increased core size to study more 

interesting maps, addition of the z-dimension, new applications presented, and improved 

energy efficiency compared to the 2D version of this chip make this a more versatile 

solution for flying drones.  
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Chapter 4. Time-based Biosignal Recording System 

4.1 Introduction 

In-vivo recordings from microelectronic electrode arrays are becoming clinically 

useful due to their promise of providing the capability to record from hundreds of neurons 

simultaneously [41] [42] [43]. This capability can provide neuroscientists and clinicians 

with the essential tools to study neurodegenerative disorders such as Alzheimer’s disease. 

Since neural signal voltages are inherently small compared to full swing-inputs required 

by conventional ADCs, this poses challenging design constraints from the circuit 

designer’s perspective. These challenges include; low input referred noise, ability to block 

DC offsets from the electrode-tissue interface, large dynamic range, tunable filters to 

identify clinically relevant signals, consume minimal power, and occupy as little area as 

possible [41]. All of these constraints incur trade-offs between area, power, and recording 

quality. In the leading edge neural recording systems, silicon shank electrodes are outfitted 

with a capable 1356 channels [43]. Shown in Figure 4.1 (above), each channel requires a 

custom pixel amplifier which proves a small gain to the neural signals, and multiplexers 

which send the analog voltages through the shank to a series of high gain amplifiers in the 

base before it is digitized. While this is an impressive effort, it fundamentally suffers from 

transmitting analog voltages through the shank. Even though they reduce the aliasing due 

to the lack of low pass filters at the pixel by using an integrator, the in-band noise is still 

increased. Crosstalk between channels also degrades the performance. In addition, longer 

shanks require larger driving strength which reduces the available area in the shank for 

recording sites [44]. Moreover, high performance ADCs are designed to be optimal for a 
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given sampling frequency in time multiplexed applications and incorporating additional 

channels requires a redesign [44]. If the signals could be digitized at the source in Figure 

4.1 (below), this would solve the issues caused by analog voltage transmission, enable full 

use of the electrodes in the shank, and dedicate the shank base to perform more complicated 

digital filtering.  

 

 
Figure 4.1: (Above) Conventional shank-based neural recording system [3]. 

(Below) Envisioned BFADC system. 
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The Beat Frequency Analog-to-Digital Converter (BFADC) is optimized explicitly 

for ultra-high density neural recording and can sense changes in signals down to 0.01% 

[45]. The basic principle of BFADC is to measure the frequency difference, or beat 

frequency, between two identical oscillator circuits, driven by a differential signal pair. By 

making the two oscillating frequencies similar to each other using trimming circuits, it is 

possible to obtain an extremely high built-in amplification gain that is inversely 

proportional to the beat frequency. Furthermore, this digital-intensive approach is 

amenable to technology scaling and low voltage operation, unlike conventional approaches 

based on sophisticated analog amplifiers containing large passive devices and requiring 

matched components to minimize offset. The 65nm test chip presented in this chapter 

requires a petite 0.0094mm2/channel for AC coupling, low-gain analog amplification, 

filtering, and digitization. By focusing on low-area, low-power, digital-intensive circuits, 

the BFADC could digitize neural signals directly at the electrode source without increasing 

the footprint of the electrode shank [42] [46].  

This chapter begins with the BFADC concept in section 4.2. Section 4.3 details the 

test chip implementation with benchtop results following in section 4.4. In-vivo 

physiological recordings from a mouse cerebellum highlighting the utility of the BFADC 

are presented in section 4.5. Conclusions are drawn in section 4.6. 

4.2 Beat Frequency ADC  

Figure 4.2 compares the schematic and gain characteristics of the conventional linear 

VCO based quantizer and the proposed BF based quantizer. The voltage input from 
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external and reference electrodes drive two identical VCOs which generate clock 

frequencies fSIG and fREF that are linearly proportional to the electrode voltages.  

𝑓𝑆𝐼𝐺 = 𝐾𝑉𝐶𝑂𝑉𝑆𝐼𝐺      4.1 

𝑓𝑅𝐸𝐹 = 𝐾𝑉𝐶𝑂𝑉𝑅𝐸𝐹      4.2 

In linear VCO based ADC, the number of cycles N in a fixed sampling period N0/fREF 

is counted. Here, N0 is the nominal count which is chosen based on the target sampling 

frequency of the ADC. This gain corresponds to the slope of the straight line in Figure 4.2 

(left, middle). Since the slope is proportional to the nominal count N0, the only way to 

increase the sensitivity to fSIG is by counting for a longer sampling period which degrades 

ADC performance.  
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Figure 4.2: Comparison between linear VCO-based quantizer and BF-quantizer. 
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Detection of sub-mV neural signals in this scheme necessitates a sophisticated high-

gain low-noise AFE [45]. In contrast, the BF quantizer compares fSIG to a reference that 

has a similar fREF frequency. A standard D-flip-flop circuit is used to generate a beat 

frequency clock with a frequency of Δf=|fREF-fSIG| [7]. The beat frequency is then converted 

to a digital count N by measuring the number of fREF cycles that fits in a single beat 

frequency period. The BF count N can be expressed as: 

𝑁 = ⌊
𝑓𝑅𝐸𝐹

𝑓𝑅𝐸𝐹−𝑓𝑆𝐼𝐺
⌋       4.3 

To illustrate the BF quantizer operation further, let us consider the case where fSIG 

is lower than fREF by 1%. That is, fSIG=0.99fREF. This can be easily achieved in a real chip 

using trimming capacitors. The BF count N in this case will be 100 since it takes 100 cycles 

for the faster fREF clock to overtake the fSIG clock. If the count drops to 99, then this 

corresponds to a frequency difference of 1.010101...% between fREF and fSIG (i.e. 

fSIG=0.98989…fREF) which translates into an fSIG change of only ~0.01%. The same change 

in the output count (i.e. 10099) would have required a 1% frequency change for the 

linear VCO scheme. This analysis indicates that the sensitivity of the BF quantizer is about 

100 times higher than that of a linear VCO quantizer for a nominal count of 100. In other 

words, the beat frequency operation effectively amplifies small voltage differences by the 

built-in non-linear relationship in (4.3). It’s worth noting that the quantization error and 

sampling time of BFADC depend on the beat frequency. For instance, a smaller frequency 

difference between fREF and fSIG increases the quantizer gain and thereby reduces the 

quantization error, at the expense of a longer sampling period. The irregular sampling 

period can be circumvented by enabling the oscillators with a fixed frequency clock. This 
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ensures that BF counts are generated at a fixed interval. The lower quantization error is the 

reason why BFADC achieves an extremely high gain for the dynamic range of interest.  

Conventional designs rely on sophisticated amplifiers combined with a large-

dynamic-range ADC to prevent the output signal from being saturated due to common-

mode noise in the signal and reference voltages. This approach incurs a large area overhead 

and requires significant design effort. Interestingly, the non-linear relationship of BF 

quantizer inherently suppresses common-mode noise effects. This is because the neural 

signal component in fREF-fSIG is amplified by the inverse relationship in (4.3) while 

common-mode noise contained in fSIG or fREF is not amplified. This unique property allows 

the BFADC to extract neural signals as small as 100µV from a noisy environment.  

4.3 Test Chip Organization 

The simplified schematic of the proposed neural recording IC consisting of a simple 

AFE (TIA gain of 5), passive filters, oscillator, and BFADC is shown in Figure 4.3. 
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Figure 4.3: Schematic representation of the implemented neural recording 

BFADC test chip. 
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The test chip was implemented in 65nm LP CMOS to validate the proposed low-area, all-

digital neural recording system. Each subsystem in the recording chain will be detailed in 

the following subsections. 

4.3.1 Analog Front End Circuit 

The first stage of the AFE is an AC-coupled digital-inverter based Trans-impedance 

amplifier (TIA). By applying resistive junction feedback to the inverter, the operating point 

is fixed at the trip point and any perturbation on the input will be amplified at the output 

due to the steep slope. The feedback resistor is implemented as a pseudo-resistor by 

shorting the drains and connecting the body and gate to VDD which puts the devices in cut-

off to give the channel a large (MΩ) resistance. The primary drawback of using this 

configuration is the static current. However, this can be reduced to an acceptably low level 

by decreasing the supply voltage. In addition, simulation results have shown that very 

aggressive gate widths near minimum size still give good amplification performance. The 

trade off with using a smaller device is that the device noise is proportional to the gm of the 

device which favors using larger devices. Since the BFADC has such high intrinsic gain, 

the extremely low area, and fully-digital implementation makes the junction feedback 

amplifier a pragmatic choice. The output of the amplifier is AC coupled by the first stage 

of the band pass filter (BPF) which inhibits the DC offset of the TIA from setting the bias 

of the VCO. The pseudo-resistors are controlled by an off-chip gate bias, which enables 

tuning the pass band to physiologically relevant signals [41]. In this implementation, the 

bias voltages are shared to further reduce the implementation overhead.   
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4.3.2 Current Controlled Oscillator 

 

A major improvement in this design over previous works [47] [45] is that the VCO 

is implemented as a current controlled oscillator (CCO) shown in Figure 4.4(left) [48]. This 

work leverages a digital-intensive voltage to current conversion circuit which helps reduce 

the entire channel area making this configuration attractive for high channel count neural 

recordings. This replaces the need for a large unity gain buffer to drive the VCO. The 

frequency tuning is controlled through 3bits of course tuning by enabling parallel driver 

inverters. This is used to set the operating point, or nominal count, for the BFADC. Fine 

tuning via 4bits of capacitive loading compensates for process variations between different 

CCOs. The HPF (section 4.3.1) also sets the operating point for the CCO which is DC 

coupled through another area-efficient pseudo-resistor and connected to Vctr in Figure 4.3 

(left). The frequency-voltage transfer characteristic for three different course tuning points 

is seen in Figure 4.4. 
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Figure 4.4: (Left) Schematic of current controlled oscillator and (Right) 

parasitic-extracted simulated range [48]. 
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4.4 Measurement Results 

Test chip measurements were performed in three scenarios: bench testing, in-vitro 

saline tank simulation, and in-vivo mouse electrophysiology described in section 4.5. 

Power was supplied from a 9V battery and regulated with discrete voltage regulator ICs. 

In the controlled bench test, input signals were supplied from an Agilent 33520A function 

generator. An input of 1mVpp at 416.6Hz was applied in which the full ADC chain provided 

a SNDR of 20.9dB at supply voltage of 0.8V. This is slightly less than previously reported 

BFADC designs [47][45] due to the new buffer-less CCO having lower KVCO. 

Additionally, previous works required two references to reconstruct the input signal where 

this work employs a single reference. In this design the goal was to aggressively cut area 

while retaining enough performance to remain functional. Figure 4.5 (upper) shows the 

measured SNDR as a function of the input voltage. All measurements were recorded at a 

given operating point with no tuning between inputs to simulate an actual use case. Figure 

4.5 (lower) shows the analytical relationship between the BF quantizer gain and the default 

count. 
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Figure 4.5: (Above) Measured SNDR vs. input amplitude. (Below) BF quantizer 

gain plot. 

Table 4.1: Performance Comparison 

Parameters This Work [54]JSSC'17 [51]JSSC'16 [53]CICC'15 [45]CICC'15 [52]TCAS-I'15

ADC Type Beat Freq. VCO CT-  VCO-   1-Step BF Incr.-  

Process/Supply 65nm/0.8V 40nm/1.2V 130nm/1.2V 130nm/1.2v 65nm/1.2V 180nm/1.2V

Bandwidth 4.5kHz 200Hz 15MHz 1.7MHz 1.2KHz 4kHz

Sampling Rate 50kHz 3kHz 500MHz 250MHz 50kHz 8kHz

In0db [dBFS]* -84 -75 -80 -75 -86 -85

SNDR1mVpp [dB]** 20.9 35 20 14 22 22

ENOB1mVpp [b]** 3.17 5.52 3.03 2.03 3.36 3.36

Power 52uW 7uW 20mW 910uW 34uW 34.8uW

FoM @ Fin [pJ/Conv]*** 683 @ 900Hz 380 @ 3Hz 81.4 @ 4.15MHz 66.6 @ 500kHz 1252 @ 300Hz 424 @ 175Hz

Chip Area [mm
2
] 0.046 2.16 1.3 0.04 0.096 0.0564

Area/Ch [mm
2
] (Relative) 0.0094 (1x) 0.135 (14.5x) 1.3 (138x) 0.04 (4.3x) 0.078 (8.3x) 0.0564 (5.9x)

Experiment In-vivo In-vitro - - - -

*Input Amplitude at SNDR=0dB, 0dBFS=1.2V ***FoM =Power/(2*BW*2
ENOB

)**Reported at Vin=1mVpp  
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The power consumption of the total system (excluding scan and pad I/O power) at 

0.8V is 52µW. The input referred noise of our entire recording chain is calculated to be 

5.3µVrms by the histogram method given in [49]. The area required for a single channel 

to be digitized includes the AC coupling capacitor, AFE, BPF, CCO, and BFADC is 

0.0094mm2 as seen in Figure 4.6.  

 

The reference electrode AFE area can be amortized over many channels and does not 

require its own quantizer. In-vitro recordings were performed in a saline solution with a 

shielded beaker to reduce external noise [50]. The saline environment simulates the charge 

transfer mechanism that occurs in the brain. Measured SNDR for a 1mVpp sine wave at 

800Hz was 4.5dB in-vitro. Table 4.1 compares this work to state of the art time-domain 

ADCs. The Walden FOM is the same used in [45] [51] [52]. Our reported FOM is higher 

than [51] [53] due to their larger bandwidth, but otherwise in line with or outperforms state 

of the art. The work in [54] reported higher SNDR but it has 22.5x lower bandwidth which 
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Figure 4.6: Die photo of the test chip in 65nm LP CMOS. Box highlighted in 

orange represents the area of a single channel. 
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could be due to the long required sample period since the architecture is a linear multi-

phase VCO. This restricts the efficacy to only local field potentials (LFPs), whereas with 

the BFADC can record LFPs and spikes.  

4.5 Results of In-vivo Experiment 

 
All animal handling procedures were approved by the Institutional Animal Care and 

Use Committee of the University of Minnesota. Electrophysiology was performed using 

the neural recording BFADC in an anesthetized (WT)/FVB mouse for recording from the 

Purkinje fibers (PF) in the cerebellum shown in Figure 4.7a. Figure 4.7b shows the 

microscope image placement of the stimulating Tungsten microelectrode and glass 

micropipette recording electrode. Activity-dependent optical imaging was used to 

determine the location of the PF, indicated by the arrow, using flavoprotein 

autofluorescence in Figure 4.7c [55]. PF can have two sets of pre-synaptic and post-
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Figure 4.7: Results from the in-vivo recording experiment. 
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synaptic activations from stimulation, manifested here as positive (depolarization) and 

negative (hyperpolarization) signal swings. Figure 4.7d (top) shows one section of the 

experiment recorded with the BFADC. Stimulation was applied at 1Hz and evoked 

potentials were observed and overlaid in the middle plot. PF have two sets of activations 

corresponding to the notch and the main peak seen in the traces. No digital filtering or off-

line processing was applied to the data other than (4.3) in Figure 4.7d (bottom). The 

BFADC gives a relative measurement, so extracellular potentials were estimated by 

applying a 1mVpp input, applying (4.3), and then linearly scaling to match a 1mVpp 

digitized output. A benefit of the non-linear quantization is the BFADC does not saturate 

during stimulation artifacts manifested as the large hyperpolarization. The difference in the 

relative magnitudes of the peaks in the middle and bottom plots highlights the non-linear 

quantization in the BF counts. The plots confirm the ability of the BFADC to record both 

sets of PF activations.  

4.6 Conclusion 

In this chapter the implementation of a fully-digital, low area neural recording system 

based on the BFADC was presented. It was able to achieve 20.9dB SNDR for a 1mVpp 

signal while occupying a meager 0.0094mm2. The high sensitivity to small signal changes 

obviates the need for sophisticated high gain amplifiers and massive filter circuits which 

makes the BFADC architecture well suited for neural recording as evidenced by the in-

vivo experiment. 
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Chapter 5. Time-based Photoplethysmography 

Machine Learning Algorithms 

5.1 BiometricNet: Deep Learning based Biometric 

Identification using Wrist-Worn PPG  

5.1.1 Introduction 

Biometrics as defined by the International Organization for Standardization (ISO) 

as the “automated recognition of individuals based on their behavioral and biological 

characteristics” where common characteristics include fingerprints, iris, DNA, voice and 

gait analysis [56]. State-of-the-art work related to biometrics have also focused on one-

dimensional physiological signals, i.e. electrocardiograms (ECG) [57], 

electroencephalograms (EEG) [58], phonocardiogram (PCG) and lastly 

photoplethysmography (PPG) [59]. If physiological signals can correlate to the clinical 

condition of a subject, this can pave the way for personalization and identification of 

individuals. Such signals also have the distinct advantage of enabling continuous 

authentication systems since the measurements modalities are pervasive and automatic. 

ECG is more established and robust for identification than PPG. The primary drawback is 

that it requires multiple electrodes placed on the chest making it inefficient in terms of 

wearability for daily life usage. PPG signals are obtained in a less intrusive manner from 

smartwatches that users voluntarily wear. PPG signals are obtained from pulse oximeters 

which emit light on the skin and measure the change of light intensity, which is either 

transmitted or reflected through the skin. The periodicity of the reflected/transmitted light 



93 

 

corresponds to the cardiac rhythm, often used for heart rate estimation as will be seen in 

section 5.2. PPG signals can be acquired from various positions such as earlobes, fingertips 

or wrist, with the latter considered as a convenient position for unobtrusive daily use. The 

primary limitation to PPG based biometric identification is the acquisition is vulnerable to 

motion artifacts (MA) in normal daily living conditions. This correspondingly distorts the 

signal fidelity and inhibits identification quality.  

PPG-based biometric identification has been a studied, but prior art has used signals 

collected in clinical settings which are less prone to MA. This renders these approaches 

unsuitable for usage in daily life, given the fact that motion artifacts are ever present during 

daily activity of the user [58]. Earlier efforts on PPG-based identification utilized data 

collected from the finger and analyzed using frequency domain analysis (Fourier analysis), 

correlation, peak detection, feature extraction and classification, employing fuzzy-logic 

[58] [59] and Linear Discriminant Analysis [60]. These studies yielded high accuracies, 

approximately between 90-95%. Additional approaches employed predictive learning 

methods, but relied on hand crafted features, sometimes as many as up to 40 features, used 

in conjunction with a kNN classifier [61]. On this backdrop, a recent work has focused on 

a two-stage procedure involving clustering (using 11 hand-crafted features) and deep 

learning techniques (Restricted Boltzmann Machines and Deep Belief Networks) [62]. 

Contrary to prior work, it was evaluated on PPG signals collected from the wrist using 

green light under ambulant conditions. Results have been promising which paves the way 

for future research involving no feature extraction and entirely relying on the neural 

network for subject identification. This paradigm shift poses research challenges on the 
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use-case of such a system involving deployment, model update based on the changing 

cardiac and physical conditions of the subjects and hardware security and privacy which 

are yet to be explored on a system level. 

In this section, the key contribution lies in the fact that a completely data-driven 

approach based on convolution neural network (CNN) in conjunction with long and short 

term memory (LSTM) is used for modelling the underlying temporal sequence in the 

biological data of each subject.  This relieves the limitations of data processing and 

heuristics involved in popularly used classification schemes. The proposed framework, 

BiometricNET, has been motivated by the fundamentals of Deep Neural Networks (DNN). 

It eliminates hand-engineered features because the first layer acts as an automated feature 

extractor. The section is further structured as follows: section 5.1.2 introduces the dataset 

used in this chapter, as well as 5.2 and 5.3 because it has become the benchmark of the 

community for comparing PPG algorithms. Section 5.1.3 describes the problem 

formulation using our learning-based approach. The proposed methodology highlighting 

the DNN fundamentals and the developed network architecture, BiometricNET have been 

detailed in section 5.1.4. The results have been presented in section 5.1.5 and the 

conclusions have been drawn in section 5.1.6. 

5.1.2 IEEE 2015 Signal Processing Cup Dataset 

In this work, a completely personalized approach using DNN for robust biometric 

identification is adopted. For this exploration, as well as the applications presented in 

section 5.2 and section 5.3, the algorithm is evaluated on the IEEE SPC 2015 database 

comprising of PPG signals of 5-minute duration, from 20 healthy subjects, age ranging 18 
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to 58 [63]. Each subject’s data contains two channels of PPG, recorded from the wrist 

(dorsal) using a pulse oximeter with green LED (wavelength: 515 nm); tri-axial 

accelerometer signals also recorded from the wrist, and a channel of ECG recorded from 

the chest using wet ECG electrodes, all recorded simultaneously. The ECG is not required 

for biometric identification because the class labels are the subject index, not related to the 

ECG. All signals were sampled at 125 Hz and transmitted to a computer through Bluetooth. 

PPG window (frame) lengths considered for this exploration was 8s (sliding by 2s), like 

ECG-HR computation. The subjects performed three types of activities. First, Type1 (T1), 

performed by subjects 1-12, involving walking or running on a treadmill with the following 

speeds in order: 1–2 km/h for 0.5 min, 6–8 km/h for 1 min, 12–15 km/h for 1 min, 6–8 

km/h for 1 min, 12–15 km/h for 1 min, and 1–2 km/h for 0.5 min. The subjects used their 

hand (with wristband) to pull clothes, wipe sweat on forehead, and push buttons on the 

treadmill. Second, Type2 (T2), performed by subjects 13, 14, 15, 18 and 20, involved in 

forearm/upper arm exercises (e.g. shake hands, stretch, push, running, jump, and push-

ups). Last, Type3 (T3), performed by subjects 13, 15, 16, 17, 18 and 19, involving intense 

arm movements (e.g. boxing). Hence, a total of 20 subjects and 23 records in aggregate, 

since subjects 13, 15 and 18 were involved in both T2 and T3. For BiometricNET only T1 

subjects have been considered. This is due to the limited recordings from all subjects which 

makes it challenging to train learning models. It is feasible to compare small datasets as 

long as the motion types are consistent between subjects. 
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5.1.3 Problem Formulation 

The problem is formulated as a binary classification task (one vs all) wherein a 

given subject is identified against a group of subjects based on the individual’s PPG. For 

training the network, there are significantly unbalanced class distributions, given that there 

are 12 subjects, the imbalance is 11:1.  During training, the errors of the target class are 

weighted accordingly to allow the network to learn the underlying data distribution instead 

of resorting to predict the dominant zero-class. The benefit to this approach is that the 

network can learn subject-specific features from the PPG. However, the main drawback is 

that the network will need to be trained for each new user.  In a commercial setting this 

would be very costly, since data would have to be collected during an initial enrollment 

period, networks would have to be trained, and weights downloaded back to the device.  

The training cost could be minimized by fine-tuning [64]. However, this formulation is 

natural, because it would not be feasible to implement this problem as multi-class 

classification since training examples of every possible customer would not be available 

during the initial training period.  Furthermore, it is not practical to have a class for each 

subject since that would lead to an unbounded number of classes.   

To provide the reader some background on prior work a brief description on [62] 

will be presented, since it is one of the most recent investigations using wrist-worn, ‘green’ 

PPG under motion, which proposes a two-step process. The first phase groups the subjects 

based on 11 extracted features. These clusters are formed based on attributes such as gender 

or physical condition, but the authors also mention different forms of motion would fall 

under different clusters. This means that a single person could end up in more than one 
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cluster depending if the given PPG was taken at rest, walking, biking, or any other 

ambulatory motion. The second stage utilizes a deep fully connected neural network to 

classify the subject within the cluster. Using user-defined features is susceptible to human 

bias and limits the ability of the network to learn fully from the data.  Additionally in this 

approach, a model is required for each group which still proposes significant overhead.  

During this two-step approach, if the subject is not correctly filtered into the correct 

segment initially, there is no possibility to get the correct identification.  To overcome these 

shortcomings, BiometricNet is an entirely data-driven personalized deep learning 

approach. 

5.1.4 BiometricNet Framework 

An overview of the data processing pipeline is presented in Figure 5.1. The PPG 

data samples are pre-processed with a band-pass 4th order Butterworth filter having the 

cut-off frequencies 0.1 – 18 Hz, which primarily restricts the high frequency noise 

component and drifts from the signal of interest. The signal is further normalized to zero 

mean and unit variance. 

 

 
Figure 5.1: Overview of the proposed methodology for biometric identification 
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5.1.4.1 Deep Neural Network: CNN + LSTM 

DNN enables feature extraction directly from data, thus enabling the learning of 

task-adapted feature representations [65]. The taxonomy of deep neural models mainly 

includes Convolutional Neural Networks (CNN), Recurrent Neural Networks (RNN) and 

Stacked Auto-encoders (SAE). CNNs are characterized by an initial layer of convolutional 

filter layers that consists of a set of weights which are passed over the input. This is 

followed by non-linearity activation functions, such as rectified linear units. The 

activations are sub-sampled (also known as pooling). After the CNN layers, a fully 

connected layer is employed to perform the classification. LeNet [19] was one of the very 

first CNNs which helped propel the field of Deep Learning to prominence. The structure 

of the CNN enables it to integrate the information from the different filters at various levels 

of abstraction. The stacking of multiple convolutional layers helps to achieve automatic 

feature extraction, where denser layers capture more complex or differentiating features.  

Analyzing time series data often necessitates inferring the sequential/time-

dependent information.  This is where RNNs prove to be an effective choice since they are 

able to incorporate contextual information from past inputs, having the advantage of being 

robust to localized distortions in the input sequence along the time. One key limitation of 

deep RNN structures is the long chain problem (vanishing gradient) wherein information 

from previous computations rapidly attenuates as it progresses through the data flow [66]. 

This arises from the chain rule as the gradients are backpropagated through multiple layers. 

As the number of layers increases, the number of multiplicative terms grows. Large 

gradients, greater than one, will explode rapidly to infinity, and small gradients, less than 
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one, will quickly approach zero. This is where a variant of RNN, LSTM comes in handy, 

in which the scalar valued hidden neuron is replaced with the LSTM memory block [66]. 

The LSTM memory block is inspired by a computer memory cell where context-dependent 

input, output, and forget gates control what is written to, read from, and kept in the cell in 

each time-step. It also breaks the multiplication chain as the gradients are added instead of 

multiplied. In this way, it is easier for the network to store a given input over many time 

steps, in effect helping LSTM layers to capture temporal properties. 

5.1.4.2 BiometricNet Architecture 

In order to realize the data driven approach the network is allowed to learn the 

discriminatory features, accomplished by using a two layer unidimensional CNN. The 

output from the 1-D CNN is then fed into two LSTM layers and finally, the LSTM output 

is passed through a dense layer with SoftMax activation function for classification, 

constituting BiometricNET.  The 1-D CNN serves the purpose of a feature extractor.  The 

input is convolved with the filters to generate points in the temporal-feature domain. 

Corresponding layers use these features to convolve with additional filters to generate the 

final features from the time-series PPG input.  A drawback of using the CNN is that the 

generated features are not completely phase invariant.  Depending on the time of 

occurrence of the heart beat relative to the beginning of the sample, the relevant features 

will be slightly shifted.  The use of LSTM, which is primarily instrumental in capturing the 

temporal dependency in the sequence of historical local trends of the underlying cardiac 

activity inherent in the PPG signals, further helps to recover from the phase offset.  
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5.1.4.3 Implementation Details 

 
The PPG identification network was trained on an Nvidia Tesla K80 GPU and is 

modeled in Keras 2.0.4 version [67] configured to use theano [68] version 0.0.9 as the 

backend.  Each CNN layer consists of a 1-D CNN operation with Scaled Exponential 

Linear Unit (SELU) activation [69], whereas each LSTM layer used hyperbolic tangent 

(tanh) function. The max-pooling layers used a pool size of 4, and a dropout layer with rate 

0.1.  Root Mean Square Propagation (RMSProp) is used as the optimizer with the default 

hyperparameters which is recommended for training recurrent networks [70]. As described 

earlier, the class loss is weighted to offset the class imbalance.  Training batch size is set 

to 25 which minimizes training time while keeping sensitivity to individual inputs. 

Hyperparameters such as filter length and number of filters, layers, and LSTM units were 

optimized using a heuristic grid search method, details of which are presented in the 

following section. Figure 5.2, illustrates the proposed BiometricNET topology for this 

exploration. 
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Figure 5.2: BiometricNet topology  
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5.1.5 Results 

 
The details of the hyperparameter grid search are presented in Table 5.1 with the 

final model annotated in Figure 5.3. The performance of the model, in conjunction with a 

given set of hyperparameters, has been evaluated by standard classification metrics, 

described briefly below. The results in Table 5.1 represent the average outcomes of the 

various metrics as calculated over the 12 subjects, wherein C1 and C2 represents each CNN 

layer; sF and nF represents the filter size and number of filters respectively. 

a) Accuracy (A) - ratio of correctly classified observation to the total observations.  

b) F1- Score (F1 )- weighted average of precision and recall. 

c) Recall (R) - ratio of correctly predicted positive observations to the all 

observations in actual class. 

d) Precision (P) - ratio of correctly predicted positive observations to the total 

predicted positive observations. 

 
Figure 5.3: Details of the filter sizes used in BiometricNet found from the grid 

search 

 



102 

 

 
It can be observed from Table 5.1 that in all three network types, configuration with 

filter size (sF) 50 in second layer (C2) performs comparatively better (highlighted in bold). 

Furthermore, among the selected best configuration in three network types, the network 

with a filter length (nF) of 32 and sF of 30 and 50 (marked in bold), achieved the best 

performance demonstrating an improvement of approximately 2% and 4% in F1 score and 

recall value respectively compared to the other two networks highlighted. Hence, one can 

conclude that the configuration 30-50-32-32 provides the best performance for our 

investigated problem, demonstrating an average accuracy, F1 score, recall, and precision 

of 0.96, 0.86, 0.84 and 0.89 respectively. Increasing the sF and nF values, beyond this did 

not improve the overall performance and are not shown here for brevity. It is worth 

mentioning that a similar exhaustive exploration was also done with the LSTM size and 

the selected 128 units for both layers provided the best performance (details have not been 

shown again for sake of brevity) in conjunction with the demonstrated CNN architecture. 

Table 5.1: Parameter Grid Search Results  

Network      

Type 

Network Configuration 

A F1 R P sF nF 

C1 C2 C1 C2 

1 15 20 15 15 0.95 0.77 0.75 0.82 

15 30 15 15 0.95 0.80 0.77 0.85 

15 40 15 15 0.95 0.80 0.77 0.85 

15 50 15 15 0.96 0.82 0.81 0.85 

2 30 20 15 15 0.95 0.81 0.78 0.86 

30 30 15 15 0.95 0.82 0.79 0.86 

30 40 15 15 0.96 0.82 0.80 0.89 

30 50 15 15 0.96 0.83 0.80 0.89 

3 30 20 32 15 0.95 0.81 0.78 0.86 

30 30 32 32 0.96 0.84 0.81 0.88 

30 40 32 32 0.96 0.84 0.81 0.89 

30 50 32 32 0.96 0.86 0.84 0.89 
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The dense layer used at the end has a softmax activation function and has 2 neurons. One 

can visually see the difference in the weights pertaining to the dense layer for classification 

of two example subjects (1 and 5) have been shown in Figure 5.4. This can be interpreted 

as the brighter units are feature locations that more likely describe that individual. This 

combined with a high feature level at that location will encourage the classification to favor 

that individual. 

 
The evaluation results over 12 subjects have been presented in Table 5.2. It can be 

observed that subject 4 and subject 9 have the best performance in terms of average 

accuracy (98%) and precision (98%). Five-fold cross-validation is utilized to increase the 

robustness of the model and to prevent overfitting. For real-time execution on an embedded 

device, driven by application requirements, a complexity analysis of the proposed 

architecture was performed. A single evaluation of the four layer network requires 

approximately 452K MACs (multiply-and-accumulate dot products). Current trends in 

architecture development hold promise and make this number achievable [71]. 

 

Figure 5.4: Difference in dense layer weights between subject 1 and 5 
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5.1.6 Conclusion 

This section presents a paradigm shift away from hand crafted features for biometric 

identification and reports the efficacy of a personalized, data-driven, approach using deep 

learning on wearable PPG signals collected in an environment affected by motion artifacts. 

The BiometricNET topology, using two layers each of CNN and LSTM yields best 

accuracy of 98% and an average accuracy of 96% on all 12 subjects. In view of the present 

work, future explorations would focus on evaluating the network on other databases having 

wrist PPG signals acquired amidst motion. Other avenues of this work will focus on 

energy-efficient execution of the algorithm on wearable devices in real-time on a 

microcontroller or android for mobile platform or hardware solutions (ASIC, SoC) using 

the schemes proposed in [71] [72]. 

Table 5.2: Performance of BiometricNet on SPC Dataset 

Subject 

Average 

(5-CV) 

Accuracy 

F1 

Score 
Recall Precision 

S1 0.95 0.75 0.68 0.86 

S2 0.96 0.83 0.82 0.83 

S3 0.94 0.73 0.76 0.70 

S4 0.98 0.92 0.87 0.98 

S5 0.96 0.83 0.90 0.79 

S6 0.96 0.88 0.83 0.93 

S7 0.94 0.73 0.67 0.82 

S8 0.98 0.94 0.94 0.94 

S9 0.98 0.94 0.91 0.98 

S10 0.98 0.95 0.95 0.97 

S11 0.97 0.90 0.88 0.93 

S12 0.98 0.94 0.91 0.97 

Mean 0.96 0.86 0.84 0.89 
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5.2 CorNET: Deep Learning framework for PPG based Heart 

Rate Estimation and Biometric Identification in Ambulant 

Environment 

5.2.1 Introduction 

Cardiovascular monitoring using wearable sensors has primarily focused on 

processing electrocardiography (ECG) for key applications – heart rate (HR) monitoring, 

disease detection/prognosis, sports, biometric identification (BId), etc. [73] [74]. ECG is 

limited in terms of its placement (requires ground and reference sensors proximal to chest) 

for signal fidelity, making it inefficient in terms of wearability in ambulant daily living 

conditions as mentioned in section 5.1.1. The primary limitation is the low signal-to-noise 

ratio due to motion artifacts (MA) during ambulatory conditions. MA are caused by several 

factors – physical activity, ambient light leaking through the widening gap between sensor 

and the skin surface during motion and change in blood flow due to movements. This 

causes the spectral component of the MA to overpower the heart-beat related PPG 

component [63] as seen in Figure 5.5. 
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A host of signal processing techniques have been proposed to remove/attenuate MA 

using adaptive filtering [75] [76], Kalman filtering [77], wiener filtering [78], independent 

component analysis [79], empirical mode decomposition (EMD) [80], spectral subtraction 

[81] [82] and feature-engineering based learning algorithms [83] [84]. Such methods have 

often used a motion reference signal from an external sensor (e.g. accelerometer), for 

detecting and removing MA resulting from motion. The majority of this research was 

propelled by the IEEE Signal Processing Cup (SPC) 2015, focusing on HR estimation from 

wrist-worn, two green light illuminated PPG channels, collected during vigorous physical 

activities [63]. Although successful, the reported improvements in performance are usually 

accompanied by heuristic thresholds or a large number of expertly-tuned free parameters 

which could prevent generalization of the developed methodologies. 

 
Figure 5.5: Raw ECG, PPG signal and spectrum while walking (left) and during 

transition from walking to running (right) respectively. The highest PPG 

spectral peak does not coincide with true HR (encircled) during intense motion. 
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In this section, the BiometricNet architecture, presented in section 5.1, has been 

leveraged for heart rate estimation. This is accomplished by using a single unit in the dense 

layer with linear activation function which predicts a real-valued output, instead of 

generating a binary classification with two units in BiometricNet. This framework is called 

herein, CorNET. The framework was evaluated on the widely used SPC database and 

achieves a mean absolute error of 0.48±0.19 beats per minute (BPM) for HR estimation on 

23 PPG records collected during various physical activities 

This section is structured as follows: section 5.2.2 introduces the prior art and 

section 5.2.3 lays out the problem formulation using a learning-based approach. The 

proposed methodology, highlighting the DNN fundamentals and the developed network 

architecture, CorNET, have been detailed in section 5.2.4. The results, comparison with 

state-of-the-art approaches and complexity analysis for CorNET have been presented in 

section 5.2.5. Finally, the section is concluded and future research avenues have been 

discussed in section 5.2.6.  

5.2.2 Prior Art 

State-of-the-art research using wrist-PPG has primarily focused on using green 

light [63], having a shorter wavelength (in comparison to red/infra-red), as the illuminating 

source, since they provide the distinct advantage of producing large intensity variations to 

cardiac modulation and yields a better signal-to-noise ratio (SNR) [85]. Moreover, 

reflective system, with LED and photodetector (PD) on the same side is the preferred mode 

(in comparison to transmitive) due to user comfort [86]. An illustration of the effect of MA 

on HR estimation has been shown in Figure 5.5, with an example PPG segment collected 
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during walking and transition from walking to running. The spectral information, reflected 

in the peak due to MA is higher compared to the HR peak (encircled in bottom plot). It is 

evident from Figure 5.5, that the widely used spectral information has high variance and 

suffers from saturation effects from the MA. The TROIKA framework [63], based on 

signal decomposition, sparsity-based spectral estimation and peak tracking, was successful 

in estimating HR every 2 seconds (s) from 8s of MA-affected PPG windows and introduced 

the SPC database, reporting 2.34 BPM error on 12 subjects. It was followed up by an 

improvement, formulating a multiple measurement vector model which computed the 

spectra of PPG and acceleration jointly, reporting 1.28 BPM on the same dataset [87]. 

Recently, an approach based on Wiener filtering and phase vocoder (WFPV) has produced 

comparative results with 1.02 and 1.97 BPM on 12 and all 23 PPG recordings respectively 

[78]. 

Further developments based on short-time Fourier transform [88], adaptive 

normalized least mean square (NLMS) filters [89], singular value decomposition [76], and 

wavelet decomposition [90] using both PPG channels and/or accelerometer data (as motion 

reference) have been successfully used. Random Forest, in conjunction with features, were 

used to detect beat vs inter-beat samples, allowing HR estimation with 2.86% classification 

error [83]. Another recent approach has used probabilistic methods, feature extraction and 

a 3-layer multi-layer perceptron with 22 neurons, reporting 2.81 BPM on the 23 PPG 

recordings of the complete SPC [84]. One of the most recent works uses Wiener Filtered 

PPG subtracted from the accelerometer spectrum to remove MA [91]. A crest factor, or the 

ratio of the peak value to the RMS of the sample window, is used to signal transitions 
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between a Finite State Machine which uses different thresholds based on the motion 

category the user is in. The algorithm has a strong bias towards SPC because the 

distribution of the time the algorithm spends in each state across the different activities is 

unbalanced. The algorithms based on spectral processing, inevitably require heuristic 

thresholds and custom post-processing steps, whereas the learning algorithms have relied 

on data-driven feature engineering.  

5.2.3 Problem Formulation 

In this chapter, the HR prediction is made from an ECG-assisted supervised 

framework for HR estimation from PPG data. During the training phase, the relationship 

between each PPG window (frame) and the HR computed from corresponding ECG frame 

(considered as ground truth) are learned by the network. Once trained, the model predicts 

the HR for new, unseen, examples of PPG data. The predictions are verified against the 

ground truth HR and the error magnitude is averaged over the number of observations and 

reported in beats per minute (BPM). A personalized use-case scenario is formulated in the 

next section, for our proposed framework. The basic premise of this use-case rests on the 

fact that biological signals are influenced by various physiological factors – age, sex, 

height, weight/body-mass-index, etc. and most importantly the cardiac condition of a given 

subject. Therefore, CorNET is developed to build a model which learns the underlying 

subject-specific data distribution. CorNET needs to learn all possible variations inherent 

within the data. For this, cross-validation over the training set is employed. Cross-

validation breaks the data into training and testing groups. The training data is used to learn 

the weights of the model, and the test data is only shown to the model after training in the 
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evaluation phase. After this, a new partition of the data is sampled and the process repeats. 

This is a standard way to ensure the model is robust and generalizes as it has the opportunity 

to learn and be evaluated on each sample in the dataset. The reader is referred to section 

5.1.2, IEEE 2015 Signal Processing Cup Dataset for a description of the dataset used. In 

this study activities T1, T2, and T3 are evaluated. With the problem formulated the next 

section will describe the CorNET approach to generating accurate HR estimation.  

5.2.4 CorNET Framework 

 
An overview of the framework for HR estimation is shown in Figure 5.6, illustrating 

the ECG-HR assisted training and validation. It should be noted that this concept is similar 

to Figure 5.1. The main difference is that HR estimation is formulated as a regression 

problem, whereas biometric identification is developed as a classification problem. Figure 

5.7 clearly shows the similarity between the HR estimation network and the BId network. 

The same feature extraction engine, two CNN and two LSTM layers, can be used to 

generate relevant features from PPG for two different tasks. One could speculate that the 

structure could have an intrinsic relationship to the PPG signal. At a deeper level, the CNN 
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Figure 5.6: HR Estimation methodology and dataflow 
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can be thought of as looking for 1-D sequences that correspond to unique patterns in the 

PPG. The LSTM can then integrate and store these activations over time windows, making 

the network robust to phase shifts in the incoming signal. The combination of these two 

techniques yields satisfactory results in both applications and time will tell if this 

architecture gains traction in the field. 

 

5.2.5 Results and Analysis 

The performance of CorNET has been evaluated with respect to standard metrics 

[63], which have been briefly described here. The metric considered is absolute error (AE), 

computed as the absolute difference between true HRE (from ECG) and estimated HRP 

(from PPG), i being the window, as in (5.1).  

𝐴𝐸𝑖 = 𝑎𝑏𝑠(𝐻𝑅𝐸𝑖
− 𝐻𝑅𝑃𝑖

)     5.1 

Conv1D
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Dense-1 (HR) Dense-2 (BId)  
Figure 5.7: CorNET (HR) and BiometricNET (BId) share the same feature 

extraction engine 
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Correspondingly, the mean absolute error (MAE) and the standard deviation of the 

absolute error (SDAE) over all processed windows, are computed and compared with state-

of-the-art work, as summarized in Table 5.3. The group metrics have been computed for 

the first 12 subjects, performing T1, records 14-23, involved in T2 and T3 and finally the 

results for all 23 records, enabling a comparative evaluation with [63], [87], [80] and [78]. 

CorNET achieves a MAE±SDAE of 0.52±0.19, 0.44±0.18 and 0.48±0.19 for records 1-12, 

14-23 and 1-23 respectively, reflecting the improvement compared to state-of-the-art 

methodologies.  

The correlation between HRE and HRP over all records is shown in Figure 5.8(a), 

having a correlation coefficient of 0.998. Furthermore, a comparison of HRE and HRP for 

subject 9 and subject 1 have been shown in Figure 5.8(b) and Figure 5.8(c) respectively. 

This shows the best and the worst performance of CorNET over the first 12 subjects of the 

experimental cohort. Shown in Table 5.3, it is interesting to note that MAE for records 14-

23 is less compared to 1-12, although the former involves random and intense arm 

movements, as described in section 5.1.2. On closer observation, it is evident that higher 

MAE (in records 1-12) is particularly dominated by record 1 (1.37), with the first sets of 6-

8 and 12-15 km/h, incurring maximal error (cf. Figure 5.8(c)). An activity-wise (T1) 

analysis of MAE, shown in Table 5.4, highlights the high MAE (> 1 BPM) for these two 

phases, where the trained model potentially overfits on the test data samples.  
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Figure 5.8: Results from the HR estimation problem 
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The weight matrix at the output of each layer for records 1 and 9 have been shown 

in Figure 5.9, highlighting the differing subject-dependent patterns as the input PPG time 

series propagates through the network layers. The differences in the distribution and 

uncorrelated (viz. 0.06) behavior of the last layer leads up to different HRP’s for the two 

example subjects. The low correlation opens further exploration of a general model. 

 
Figure 5.9: Weights of CorNET for subject 1 and 9 
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Table 5.3: Performance Comparison for HR estimation 

Metric Record Troika [63] Joss [87] EEMD [80] WFPV [78] CorNET 

 1 2.29±2.18 1.33±1.19 1.70 1.25±1.15 1.37±0.87 

2 2.19±2.37 1.75±1.66 0.84 1.41±1.30 0.60±0.30 

3 2.00±1.50 1.47±1.27 0.56 0.71±0.59 0.39±0.18 

4 2.15±2.00 1.48±1.41 1.15 0.97±0.88 0.57±0.29 

5 2.01±1.22 0.69±0.51 0.77 0.75±0.57 0.39±0.02 

6 2.76±2.51 1.32±1.09 1.06 0.92±0.75 0.33±0.09 

7 1.67±1.27 0.71±0.54 0.63 0.65±0.50 0.35±0.07 

8 1.93±1.47 0.56±0.47 0.53 0.97±0.83 0.34±0.19 

9 1.86±1.28 0.49±0.41 0.52 0.55±0.48 0.27±0.03 

10 4.70±2.49 3.81±2.43 2.56 2.06±1.29 0.67±0.14 

11 1.72±1.29 0.78±0.51 1.05 1.03±0.68 0.51±0.09 

12 2.84±2.30 1.04±0.81 0.91 0.99±0.70 0.41±0.06 

13 - - - 3.54±4.08 - 

14 6.63±8.76 8.07±10.9 - 9.59±12.2 0.31±0.08 

15 1.94±2.56 1.61±2.01 - 2.57±3.16 0.06±0.03 

16 1.35±1.04 3.10±2.69 - 2.25±1.87 0.94±0.50 

17 7.82±4.88 7.01±4.49 - 3.01±1.99 0.91±0.39 

18 2.46±2.00 2.99±2.52 - 2.73±2.29 0.65±0.36 

19 1.73±1.28 1.67±1.23 - 1.57±1.15 0.36±0.04 

20 3.33±3.90 2.80±3.46 - 2.10±2.41 0.17±0.12 

21 3.41±2.43 1.88±1.32 - 3.44±2.45 0.57±0.19 

22 2.69±2.12 0.92±0.74 - 1.61±1.26 0.42±0.04 

23 0.51±0.59 0.49±0.57 - 0.75±0.88 0.05±0.01 

Record 1-12 (T1) 

MAE± SDAE 2.34±2.47 1.28±2.61 1.02±1.79 1.02±1.25 0.52±0.19 

Record 14-23 (T2 and T3) 

MAE± SDAE 3.19±3.61 3.05±3.35 - 2.95±3.71 0.44±0.18 

Record 1-23 (T1, T2, T3) 

MAE± SDAE - - - 1.97±2.48 0.48±0.19 

 

Table 5.4: Activity Dependent Performance for Subject 1  

Subject1: Activity (T1)  

Activity (km/h) MAE±SDAE 

1 - 2 0.92±0.38 

6 - 8 4.14±3.35 

12 - 15 0.76±0.22 

6 - 8 0.62±0.37 

12 - 15 1.08±0.55 

1 - 2 0.72±0.36 

Mean 1.37±0.87 
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5.2.6 Conclusion 

In this section, a paradigm shift for performing HR estimation via a personalized 

data-driven approach using DNN on wearable PPG signals was described. CorNET moves 

away from using heuristics/thresholds, post-processing steps, auxiliary sensor data and 

extraction of hand crafted features in exchange for a fully automated method. The proposed 

CorNET topology, using two layers of CNN and LSTM is customized in conjunction with 

a dense layer for HR estimation through regression. It yields an average error of 0.48±0.19 

BPM for HR on all 23 PPG recordings. The results could be considered favorable since to 

the best of knowledge, these represent the best accuracy in comparison to state-of-the-art 

methods on the given application area. The present exploration focusses on estimating 

average HR, predicting a new value every 2s using an 8s PPG frame, thereby missing out 

on instantaneous information. In section 5.3, the BioTranslator model will be introduced 

for investigation towards heart rate variability measures, which could provide insights into 

functioning of the sympathetic nervous system and help in disease prognosis (e.g. 

myocardial infarction).  

 

  



117 

 

5.3 BioTranslator: Inferring R-Peaks from Ambulatory Wrist-

Worn PPG Signal 

5.3.1 Introduction 

Heart Rate Variability (HRV) serves as a biomarker of autonomic activity and is of 

significant clinical interest. Given a fixed average heart rate (HR), the time between 

individual heart beats may not be constant since it is actively modulated by the Autonomic 

Nervous system, which gives rise to HRV [92]. Instantaneous heart rate (IHR) is commonly 

derived from electrocardiography (ECG) traces by measuring the time between two 

consecutive R-peaks. The key enabler of this can be traces to the commercial development 

of wrist-worn sensing modalities – smart watches and fitness bands/trackers. 

Photoplethysmography (PPG) sensors have also gained prominence [93]. PPG is a low-

cost, non-invasive, optical technique used to detect blood volume changes in the 

microvascular tissue bed, measured from skin surface. PPG signals are obtained from pulse 

oximeters, which emit light (using a light emitting diode) on the skin and measure (using 

a photodiode) the miniature variations in reflected or transmitted light intensity. The 

periodicity of the reflected/transmitted light corresponds to the cardiac rhythm, often used 

for HR estimation [94]. PPG presents a popular alternative to ECG, since it can be placed 

in various locations such as earlobes, fingertips or wrist making them convenient for 

ambulant usage. The wrist is considered a favorable position for unobtrusive daily usage; 

however the PPG data is vulnerable to motion artifacts (MA), which distorts signal fidelity, 

inhibiting robust estimation of vital parameters [95]. MA is generally caused due to a gap 

that develops between sensor and skin surface as well as change in blood flow due to 
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movements. This causes the heart-beat frequency spectrum to be suppressed by the MA 

spectrum, which has been mitigated by a number of research initiatives, mainly propagated 

by the 2015 IEEE Signal Processing Cup (SPC) [63]. Time-frequency domain signal 

processing and machine learning techniques have been used to attenuate MA and estimate 

HR from wrist-PPG data acquired during physical activity. Such techniques have often 

relied on motion reference signal, e.g. accelerometers for determining the MA spectral 

component and use it with adaptive filtering [76], Kalman filtering [77], wiener filtering 

[78], independent component analysis [79], empirical mode decomposition [80], spectral 

subtraction [87] and learning algorithms [96] to determine HR. However, majority of these 

techniques have successfully, computed average HR every two seconds (s) using an 8s 

sliding window of PPG data, which causes a loss in the instantaneous information. MA 

pose a challenge in extracting IHR measures during motion. 

5.3.2 Prior Work in HRV Prediction 

Studies performed in stationary conditions using time-invariant analysis showed 

that pulse rate variability (PRV) is a proxy of HRV. The difference between the two signals 

is the time taken by pumped blood (pulse) to travel from heart through arteries and 

capillaries to the measurement site. This is referred to as pulse transit time (PTT), varying 

with posture and blood pressure [97]. Two recent studies have successfully reported IHR 

estimation from wrist PPG, collected during motion. Operating on single channel PPG data, 

deppG employs an adaptive non-harmonic model with short-time Fourier transform 

(STFT) to obtain the spectrogram [98]. Using short-time cepstrum transform (STCT), a 

nonlinear data adaptive mask is designed, which is multiplied with the spectrogram to 



119 

 

obtain the required spectral information. Further, the IHR information is sharpened by 

applying a synchrosqueezing transform using the phase information of STFT. On the other 

hand, the study in [99] operates on two PPG channels and tri-axial accelerometer data to 

generate an initial estimate of average HR using a bank of six adaptive filters in conjunction 

with STFT. This is followed by a spectral masking technique to determine IHR using 

Empirical Mode Decomposition (EMD) on the PPG signals and estimates the 

instantaneous frequency and amplitude using the Hilbert transform. The average HR acts 

as the center point for time and spectral masking of instantaneous frequencies from the 

Hilbert spectrum. Both studies highlight the challenges involved in capturing the 

instantaneous spectral information due to the time-varying frequency/amplitude and non-

sinusoidal oscillatory characteristics of PPG morphology. These promising results, pave 

the way for further exploration. 

In the following sections, a supervised Deep Neural Network (DNN) framework, 

BioTranslator will be described. A model is trained to learn the underlying relationship 

between ECG signal and its corresponding PPG signal. When tested on new PPG test input, 

the trained model predicts a time series signal which is referred to as predicted ECG 

(PredECG). The corresponding R-peaks from PredECG are extracted, using state-of-the-art 

Pan Tompkin’s algorithm [100] and verified against ground-truth ECG (TrueECG). The 

framework was evaluated on 12 SPC subjects and identifies 92.8% of R-peaks, besides 

producing 51ms of mean absolute error when compared to ECG-derived IHR. Section 5.3.3 

describes the problem formulation. The BioTranslator architecture has been detailed in 
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section 0. The results and analysis have been presented in section 0 and the conclusions 

have been drawn in section 0. 

5.3.3 Problem Formulation 

The idea of signal translation has been motivated by Google’s Neural Machine 

Translation (GNMT) systems for automated language translation [101]. GNMT comprises 

deep long short-term memory (LSTM) networks with eight encoder and decoder layers for 

a sequence-to-sequence learning framework. Deriving inspiration from GNMT, an 

encoder-decoder framework is used for translating time series data. In this particular work 

emphasis is focused on PPG to ECG, but as noted in section 0 the framework can be applied 

to other time series signals. The translation makes it easier to capture the instantaneous 

information from the ECG signal with distinct R-peaks rather than MA corrupted PPG 

signal. It is realized using a convolution-deconvolution neural network (CNN-DCNN) 

topology, interleaved with pooling and unpooling layers respectively. Contrary to 

convolutional layers, which connect multiple input activations within a filter window to a 

single activation, deconvolutional layers associate a single input activation with multiple 

outputs. The output of a deconvolutional layer is an enlarged and dense activation map, 

allowing the extraction of richer information (PredECG with distinct R-peaks). The 

modelling of the inherent relationship between ECG and corresponding PPG signal rests 

on the fact that both are corollaries of cardiac activity. An overview of the supervised 

methodology enabling signal translation is shown in Figure 5.10. 



121 

 

  

It is worth noting that there is no intention to verify the clinical fidelity of PredECG with 

respect to TrueECG. The primary focus at this time is to develop a mechanism which allows 

R-peak extraction from the PredECG morphology, enabling IHR estimation. 

The framework is evaluated on 12 healthy subjects, age ranging 18 to 35 from the 

SPC database [63]. Each subject’s data contains simultaneous recordings of - two channels 

of PPG from the wrist (dorsal) using a pulse oximeter with green LED (wavelength: 515 

nm); tri-axial accelerometer signals from the wrist, and a channel of ECG from the chest 

using wet ECG electrodes. The ECG signal acts as the ground-truth for PPG-based IHR 

estimation. All signals were sampled at 125 Hz and transmitted to a computer using 

Bluetooth. The subjects were involved in walking/running on a treadmill with speeds in 

order: 1–2 km/h for 0.5 min, 6–8 km/h for 1 min, 12–15 km/h for 1 min, 6–8 km/h for 1 

min, 12–15 km/h for 1 min, and 1–2 km/h for 0.5 min. The hierarchical structure of CNN-

DCNN layers, capturing different levels of shape details is described in section 5.3.4.2. 

  

 
Figure 5.10: Overview of the novel signal transformation methodology for 

estimating R-peaks. 
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5.3.4 BioTranslation Framework 

5.3.4.1 Deep Neural Network Essentials 

DNNs in general enable learning of task-adapted feature representations from the 

data [65] and have been successfully employed in a wide range of applications. 

Conventionally, CNNs are characterized by an initial layer of convolutional filters (set of 

weights which slides over the input), followed by a non-linearity (activation functions) and 

sub-sampling (pooling). These layers are stacked to achieve automatic feature extraction. 

Downstream layers capture more complex or differentiating features. Depth in the network 

integrates information from different filters to obtain various levels of abstraction, thereby 

reducing the size of activations. DCNN’s consists of deconvolution operations combined 

with unpooling, which enlarges the activation maps. Pooling is designed to filter noisy 

activations by abstracting activations in a receptive field with a single representative value. 

Unpooling layers perform the reverse operation and reconstructs the original size of the 

activations. The output of an unpooling layer is an enlarged, yet sparse activation map. The 

deconvolution layers rectify sparse activations through convolution-like operations with 

multiple learned filters. Hence, a hierarchical structure of DCNN layers are used to capture 

different levels of shape details [102]. Deconvolution networks have been often used for 

semantic segmentation algorithms, where an input image is transformed through 

convolution into a lower-dimensional feature representation. Correspondingly, the 

deconvolution reconstructs the image from the features for class-specific object 

segmentation [103]. 
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5.3.4.2 Experimental Setup Details 

The PPG data samples are pre-processed with band-pass 4th order Butterworth 

filter having cut-off frequencies 0.1-16 Hz. This separates the high frequency noise 

component and DC drifts from the signal of interest. The filtered signal is further 

normalized to zero mean and unit variance and passed through the network. The 

BioTranslator topology is illustrated in Figure 5.11, comprising – (1) encoder-stage: two 

stacked CNN layers, interleaved with pooling layers; (2) decoder-stage: two DCNN layers 

interleaved with two unpooling layers. Each convolution operation in both stages 

comprises of a 1D CNN operation with Scaled Exponential Linear Unit (SELU) activation 

[69]. It uses 32 filters each of size 20 with the last layer having a single filter of size 30 to 

construct the ECG-like trace and match the target 125 sample length. Max-pooling and 

upsampling by 2 implements dimensionality scaling. Dropout is employed at a rate of 0.1, 

which ensures generalization, thereby preventing the model from overfitting to a given set 

of trained data samples. The input at the encoder has 250 samples, whereas the output of 

the decoder produces a time-series of 125 samples.  The shorter output of the decoder 

incorporates the effect of PTT associated with PPG described in section 5.3.3. If the input 

and output were of the same length, some of the synthetic ECG signal would not have 

physical representation in the input PPG signal. 
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A data driven personalized approach has been adopted for the proposed framework, 

since biological signals are influenced by physiological factors – age, sex, height, 

weight/body-mass-index, etc. and importantly the cardiac condition of an individual. The 

BioTranslator framework is trained for each subject, and a five-fold cross-validation, with 

shuffling disabled, is performed to evaluate the trained model. Disabling shuffling ensures 

that any data leakage during training is limited only to the edges of the folds. The network 

was trained on an Nvidia Tesla K80 GPU and is modeled in Keras 2.0.4 version [67] 

configured to use theano [68] version 0.0.9 as backend. A batch size of 50 was set to 

balance training time and sensitivity to individual inputs. Hyperparameters such as filter 

length, number of filters, and number of layers were optimized using a heuristic grid search 

method. 
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Figure 5.11: BioTranslator network topology 
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5.3.5 Results and Analysis 

Our approach towards IHR prediction goes against conventional methods, which 

typically return a real valued output over a shortened window. In this work, our goal was 

to translate the PPG to an equivalent ECG-like time series with distinct R-peaks. Since a 

rich time series is predicted, it is possible to use standard R peak detection algorithms such 

as Pan-Tompkins, enabling IHR computation. R-R intervals are minimally post-processed 

by comparing adjacent samples and any windows that differ by more than 150ms 

(heuristically determined) are replaced by the previous value. The method for generating 

the evaluation metrics is based on comparing the distance between the correctly predicted 

R peaks (obtained from PredECG) and actual peaks (TrueECG). Dynamic time warping 

(DTW) is employed to align the two time-series of R indices, even with different lengths 

by replicating values to make the smallest Euclidean distance between each set of points 

[104]. These replicated values are useful for determining the false positives (FP) and false 

negatives (FN) related to prediction. FP occurs if the predicted R peak does not correspond 

to an actual peak. This manifests when the DTW algorithm inserts a duplicate TRUE index 

to align the false prediction. Similarly, FN occurs if there is no predicted R peak, 

corresponding to an actual R peak, which results in a duplicate predicted peak. Finally, true 

positive (TP) occurs when absolute distance between the two peaks is less than a threshold; 

set to be less than the minimum RR interval. For the SPC dataset the minimum RR is 42 

samples (180 BPM at 125 Hz sampling frequency), hence a threshold of 30 samples is 

selected to restrict the likelihood of comparing two differing sets of R peaks. 
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The quality of the R-index predictions are quantified by the following metrics, 

which are summarized in Table 5.5: (i) accuracy – ratio of TP and total actual R peaks; (ii) 

sensitivity – accounts for the miss rate, computed as the ratio of TP to the sum of TP and 

FN; (iii) precision – false prediction rate, computed as the ratio of TP to the sum of TP and 

FP and (iv) mean absolute error (MAE) – mean of the absolute differences between true 

positive predicted R indices and actual R indices, in samples (n) and time (s), as in (5.2) 

and (5.3). 

𝑀𝐴𝐸[𝑛] =
1

𝑇𝑃
∑ |𝑅𝑇𝑃(𝑖) − 𝑅𝐸𝐶𝐺(𝑖)|𝑇𝑃

𝑖=1         5.2 

𝑀𝐴𝐸[𝑠] =
𝑀𝐴𝐸[𝑛]

𝐹𝑠  
     5.3 

The performance of BioTranslator is in line with state-of-the-art methodology, 

achieving an average MAE of 51 ± 6.34ms on correctly predicted peaks. The algorithm 

deppG [98], achieves 50ms MAE when compared to reference IHR on the SPC dataset, 

but has a standard deviation of 16.2ms. This shows that our framework has a more 

consistent performance. The study [99] reports a strong performance of 28ms of IHR error, 

however they utilize 2s of PPG data to generate each prediction and employ a complex 

post-processing particle filter to ensure compliance to physiological limits such as spurious 

R peak removal. BioTranslator performance is evaluated in terms of standard time domain 

HRV metrics [105] – (i) SDNN: standard deviation of the normal-to-normal (NN) R-peak 

interval; (ii) meanNN: mean time duration of R-peak intervals and (iii) RMSSD: root mean 

square of successive RR intervals. Table 5.6: Time Domain Metrics illustrates these 

metrics with respect to the R-peak indices extracted from PredECG, TrueECG and manual 
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annotations (ManualECG) on TrueECG (obtained from [99]). There is a close agreement 

between PredECG, TrueECG and ManualECG for the measures SDNN and meanNN in 

comparison to RMSSD. The higher difference in RMSSD could be attributed to the 

limitations of Pan Tomkins based R-peak extraction on the backdrop of ambulant noise 

and artifacts. An illustration of the raw PPG, TrueECG and PredECG traces is shown in Figure 

5.12. 

 

Table 5.5: R Peak Prediction Results on SPC Dataset 

Subject 1 2 3 4 5 6 7 8 9 10 11 12 Mean 

True R 669 655 676 650 653 630 641 637 645 692 689 677 659.5 

TP 613 590 633 621 602 602 610 598 627 653 656 619 618.7 

FP 48 64 11 29 25 45 32 13 29 14 20 38 30.7 

FN 56 65 44 29 52 28 31 39 18 39 33 58 41 

Accuracy(%) 91.6 90.1 93.6 95.5 92.2 95.6 95.2 93.9 97.2 94.4 95.2 91.4 93.8 

Sensitivity(%) 91.6 90.1 93.5 95.5 92.1 95.6 95.2 95.2 97.2 94.4 95.2 91.4 93.8 

Precision (%) 91.7 89 97.7 94.5 94.6 92.3 94.7 97.6 93.8 96.4 96.3 93.2 94.3 

Avg. R error [n] 7.05 7.85 5.25 6.63 7.23 5.97 5.68 5.43 6.99 7.82 6.89 7.74 6.71 

Avg. R error [ms] 53 59 40 51 54 45 45 43 51 59 53 60 53 

 

 

Table 5.6: Time Domain Metrics 

Sub. 
SDNN MeanNN 

PredECG TrueECG ManECG PredECG TrueECG ManECG 

1 159.78 126.51 122.22 593.44 440.79 449.62 

2 93.64 125.15 102.46 419.37 453.13 495.61 

3 86.28 53.22 81.37 422.95 434.56 455.79 

4 83.53 96.42 91.44 425.38 454.87 451.35 

5 78.13 112.05 61.72 417.23 445.17 422.55 

6 179.30 121.74 106.89 604.79 460.03 458.22 

7 124.74 92.19 74.09 463.42 453.40 445.37 

8 85.55 71.57 85.77 455.45 456.67 480.48 

9 66 60.18 97.15 438.55 452.65 475.92 

10 107.32 39.35 37.59 469.07 419.33 373.94 

11 102.33 85.44 - 417.61 419.06 - 

12 128.09 108.01 72.88 517.64 434.454 423.77 

Median 97.98 94.30 85.77 446.99 448.91 451.35 
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Low-complexity processing on the sensor node is key to obtain energy efficient, 

long-term operability of battery-operated sensors [106]. This enables continuous/real-time 

monitoring for remote CVD applications. A complexity analysis of BioTranslator, shown 

in Table 5.7: BioTranslator Complexity Analysis, illustrates the number of multiply-and-

accumulate (MAC) operations and trainable parameters for each convolution layer. Recent 

developments in CNN architecture [72] [5], make it achievable for an accelerator ASIC to 

perform online inference on real-time sensor data. 

  

 
Figure 5.12: An illustration of PPG, predicted and true ECG, with the R-peaks 

(obtained through Pan Tompkins) marked over them. 

 

Table 5.7: BioTranslator Complexity Analysis 

Layer Metadata MACs 
Trainable 

Parameters 

CNN-1 sF=20, nF=32 147.2 k 672 

CNN-2 sF=20, nF=32 1.95 M 20512 

dCNN-1 sF=20, nF=32 156 M 20512 

dCNN-2 sF=30, nF=1 119 k 961 
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5.3.6 Conclusion 

A first of its kind exploration is presented where a high-dimensional (information rich) 

signal is predicted from a low-dimensional signal. In this case, PPG signal represents an 

optically derived signal, affected by MA, collected in pervasive settings in comparison to 

ECG, which on the contrary represents a galvanic signal and has a higher SNR. In view of 

this work, future explorations would focus on evaluating the framework on additional 

signal pairs incorporating varying levels of MA and other applications. An energy efficient 

implementation of the network on an embedded platform (android for mobile platform or 

ASIC) would enable real-time information extraction. The BioTranslator framework could 

potentially be applied to other physiological pairs such as Electrocorticograph & 

Electroencephalogram [107]. 
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Chapter 6. Conclusion 

In Chapter 2, circuits for machine learning have were proposed. The kernel of the 

application, the dot product, is implemented in the time domain by modulating the delay 

of each unit as the multiplication, and the addition is realized intrinsically by connecting 

delay units serially. The first design presented used a digitally controlled oscillator, where 

the delay of each stage was realized by connecting different capacitor loads, proportional 

to the output of the multiplication, to the output of an inverter. The DCO is connected to a 

counter which is sampled and compared to other counters to determine the dominant 

neuron. Additionally, brain-inspired leakage is realized by resetting the least significant 

bits of the counter periodically. Local lateral inhibition, the phenomenon that makes 

boundaries of colors significant in our brains, is implemented by resetting neighboring 

counters after a threshold is reached. The second design foregoes the counter to increase 

energy efficiency by only requiring a single-shot evolution with a 2 bit time-to-digital 

converter. The multiplication is realized by modulating the number of inverter delays are 

enabled in each stage. An accuracy-efficiency scalable technique called Dynamic 

Threshold Error Correction is presented to combat ambiguity in the output by increasing 

the phase detector resolution. Both of these circuits demonstrate impressive energy 

efficiency and present novel solutions to address one of the most challenging applications 

gaining rapid adoption. 

A new class of processors is described in Chapter 3; time-based graph computing 

application specific integrated circuits. Pulses are propagated through a graph network in 

the chip and distances between nodes are proportional to the delay of the pulse. In the 2D 
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chip, a voltage gradient is applied across the chip to shape the pulse which implements a 

variant of the popular A* algorithm. This enabled a more efficient search trajectory for the 

pulse. Additional applications including, collision avoidance for self-driving cars, multi-

core synthesis, and scientific computing, were demonstrated which hopefully only 

scratches the surface of this new architecture. A 3D chip is also presented. The key 

innovation of this core is the 3D to 2D mapping which enables a scalable efficient design. 

The vertical axis is interleaved in both horizontal directions which causes the size to grow 

by the square root of the size, compared to previous works which increase linearly. This 

architecture solves 3D Voronoi diagrams, shortest path planning for autonomous flying 

drone, and machine learning classification. Solving such complex problems with simple 

circuits drives these to be some of the lowest power options available for solving the 

shortest path problem. 

Next, a work that builds on the strong pedigree of the Beat Frequency circuit is 

presented for digitizing neural signals. The BFADC works by comparing the frequency 

derived from the extracellular potential of the neurons, to a frequency generated by a 

reference voltage which is tied to the recording subject to cancel out global noise. The 

BFADC provides a non-linear quantization which enables superior resolution with ultra-

fast measurement periods. This chip was demonstrated on an anesthetized mouse to 

validate the changes to the front end circuits that were explicitly designed for neural 

recording. 

Finally in Chapter 5, algorithm development using deep learning on biomedical signals 

was described. Using deep learning as the feature extraction engine, complex feature 
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extractors, heuristically set thresholds, and advanced signal processing techniques were 

obviated. This new philosophy of using a data-driven approach was new for the field. Three 

applications using photoplethysmography signals for biometric identification, average 

heart rate prediction, and heart rate variability estimation were presented. State of the art 

results were achieved in all three using deep learning architectures that will surely upend 

the conventional approach to signal processing. 

Time-based computing is poised to make up gains lost by the slowing rate of process 

technology improvements. Time-based circuits use the delay it takes to return a result as 

the answer of the computation. Variable delay circuits can be constructed of simple digital 

building blocks and connected to counters or phase detectors to implement time-based 

architectures. These designs trade off being a general purpose processor for higher 

performance in tasks they are custom designed to solve; traditionally problems that are 

poorly served by conventional processors. The designs put forth in this thesis pave the way 

for future adoption of this exciting, efficient, and simple approach. 
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