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Abstract

We use input-output analysis to predict and understand the aeroacoustics of high-speed

turbulent jets. We consider linear perturbations about Reynolds-averaged Navier-Stokes

(RANS) solutions of ideally expanded, axisymmetric, compressible turbulent jets under

various operating conditions. For jet noise, a key aspect of our method is the abil-

ity to spatially separate near-field input forcing (driven by nonlinear turbulence) from

far-field acoustic output. Precisely the same idea, namely the separation of sources

and outputs, forms the basis of traditional acoustic analogies. Different from the usual

statistical descriptions of the acoustic source terms, input-output analysis provides a dy-

namical description based on modes correlated over significant distances within the flow.

Specifically, we compute optimal and sub-optimal harmonic forcing functions and their

corresponding linear responses governed either by the linearized Euler equations (LEE)

or by the linearized Navier-Stokes (LNS) equations, using singular value decomposition

of the resolvent operator. For supersonic jets, the optimal response closely resembles a

wavepacket in both the near-field and the far-field such as those obtained by the parab-

olized stability equations (PSE), and this mode dominates the response. For subsonic

jets, however, the singular values indicate that the contributions of sub-optimal modes

to noise generation are nearly equal to that of the optimal mode, explaining why the

PSE do not fully capture the far-field sound in this case. Furthermore, we utilize a
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high-fidelity large-eddy simulation (LES) data to assess the prevalence of sub-optimal

modes in the unsteady data. By projecting the LES source term data onto input modes

and the LES acoustic far-field onto output modes, respectively, we demonstrate that

sub-optimal modes of both types are physically relevant.

Far-field acoustics generated from turbulent jets are further modeled, using a Ffowcs

Williams-Hawkings (FW-H) solver implemented directly within linear input-output

analysis framework. Our hybrid input-output/FW-H method efficiently connects in-

put fluctuations embedded in the jet turbulence to pressure outputs in the far-field, and

recovers a significant portion of the LES acoustic energy. By repeating input-output

analysis over a wide range of frequencies, we find that the far-field acoustic spectra

broaden with increasing the radiation angles, as observed in experiments.

To distill acoustically relevant sources, input forcings are further restricted by in-

troducing a new weighting matrix, which selects forcing functions only in the region

that contains high turbulent kinetic energy (TKE). We then find that input modes cor-

respond exactly to wavepackets with asymmetric pseudo-Gaussian envelope functions.

Furthermore, wavepackets obtained by input-output analysis collapse to a single shape

when scaled by St−0.5, where St is the jet Strouhal number. This explains the success

of recent theoretical models based on stochastic similarity wavepackets.
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Chapter 1

Introduction

1.1 Motivation

Noise reduction is now an important design parameter in the research and development

of aircraft. The rapid growth of global aviation industry, from the development of

high-performance military aircraft to the increase of civil aircraft traffic, has drawn

public awareness to noise pollution from aircraft. It is not only a hazard to health of

people working in close proximity but also causes a nuisance to nearby communities. For

these reasons, the Federal Aviation Administration has enforced increasingly strict noise

regulations, expecting continuous expansion of the aviation industry in the foreseeable

future [5].

In addition to the civil and industrial domains, military branches such as the U.S.

Air Force and the U.S. Navy have funded several programs to suppress noise from their

tactical aircraft [6, 7]. Flight-deck crews on aircraft carriers are subject to significant

hearing health risks. High bypass ratio engines are impractical on supersonic aircraft.

Furthermore, tactical aircraft must take-off at full military power to become airborne

from the carrier deck. This creates an extreme acoustic environment, which renders

1
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even the best hearing protection ineffective. Therefore, designing quieter jet engines is

necessary.

Jet noise remains one of the most significant contributors to overall aviation noise.

Even though exhaust jets are terrifyingly loud, the energy associated with acoustic

radiation is small, compared to the aerodynamic energy contained in the turbulence of

engine exhausts [8]. Because of this, predicting noise depends critically upon capturing

the physics of the turbulence that produces it. Simulating turbulence, however, is

challenging because it is a highly nonlinear, multi-scale, chaotic phenomenon.

Understanding the aeroacoustics of high-speed engine exhausts is important because

it guides us to effective noise control/reduction strategies. The knowledge of jet aeroa-

coustics, however, is also valuable because it can provide new and profound understand-

ing of the fluid turbulence that generates the noise. Turbulence is sometimes mistaken

for a random process that can only be described using statistical methods. The study

of jet noise supports an alternative view; specifically, the acoustic field surrounding a

turbulent jet is exceedingly sensitive to both spatial and temporal coherence that is

otherwise hidden in the turbulence. These coherent parts of turbulence are precisely

those for which dynamical mechanisms can be identified and potentially controlled. In

essence, jet noise is order that arises out of chaos. For example, figure 1.1 shows in-

stantaneous pressure (gray) and temperature (color) fields of a Mach 1.5 turbulent jet.

While the near-field aerodynamics appear complex and chaotic, involved with a wide

range of length scales, acoustic radiation in the far-field is relatively directional and

organized.
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Figure 1.1: Instantaneous pressure (gray) and temperature (color) field for a Mach 1.5

isothermal, ideally-expanded, compressible turbulent jet predicted Brès et al. [1].

1.2 Review of literature on jet noise prediction and mod-

eling

1.2.1 Acoustic analogy

Jet noise modeling was pioneered by Lighthill’s acoustic analogy [9], which rearranges

the full Navier-Stokes equations exactly into an inhomogeneous wave equation so that

a wave propagation operator appears on the left hand side and an external fluctuating

stress on the other side as follows:

∂2ρ

∂t2
− c2∞∇2ρ =

∂2Tij
∂xixj

, (1.1)

for the density ρ. The Lighthill stress tensor Tij is

Tij = ρuiuj +
[
(p− p∞)− c2∞(ρ− ρ∞)

]
δij − τij , (1.2)
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where ui is the velocity in the xi direction, p the static pressure, and c∞ the ambient

speed of sound. Similarly, the superscript ∞ denotes the ambient properties. Fur-

thermore, δij represents the Kronecker delta, and any repeated index in a single term

indicates Einstein summation. Lastly, τij is the viscous stress tensor. The acoustic anal-

ogy exactly separates aerodynamic sources of sound from its propagation away from the

jet. Input-output analysis continues such legacy as will be discussed later.

The source terms on the right hand side are expressed in terms of local derivatives.

This suggests that the sources of sound are compact. Non-compact effects, however, can

be recovered by two-point two-time correlations between source terms in convolution

with an adjoint Green’s function of the wave propagation operator [10, 11]. Rear-

rangements of the Navier-Stokes equations, however, are not unique, as pointed out by

Phillips [12]; Lighthill’s theory has been thus improved and generalized by many others

such as Curle [13], Phillips [12], Ffowcs Williams [14], Lilley [15], and Goldstein [16],

by more strictly isolating nonlinear interactions within the right hand side from an

convective or moving-medium wave operator.

1.2.2 Large-scale numerical simulations

The growth of large-scale supercomputers allows direct simulation of the near-field hy-

drodynamics of turbulent jets and the noise they produce in the far-field. Direct numeri-

cal simulation (DNS) is now well-established at low Reynolds numbers [17, 18], enabling

reliable predictions of turbulent jets and associated sound radiation. Reynolds numbers

associated with real engine exhausts are so large that simulations require a huge amount

of computational resources to accurately resolve them. This is because there is a wide

range of scales in high Reynolds number flows. Therefore, DNS is not a feasible option

as a prediction tool for industrial design at current status of computational resources.
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On the other hand, high-fidelity large-eddy simulation (LES) provides accurate pre-

dictions of noise radiation at significantly reduced cost for both subsonic jets [19, 20, 21]

and supersonic jets [1, 22, 23] at moderate to high Reynolds numbers. In an LES only

large-scale turbulent motions are directly computed, while the effect of small-scale mo-

tions on the flow is modeled. Still, it captures the far-field acoustics of turbulent jets

well, suggesting that noise radiation is connected to large-scale flow features in jet tur-

bulence. LES is also capable of predicting flow fields in complex configurations such as

chevroned [24, 25] or military style faceted [26] engines. Changing the geometry of the

engine nozzle can alter both the amplitude and the directivity of jet noise. The current

applications of LES for predictions of turbulent jet noise are reviewed comprehensively

by Bodony and Lele [27].

Noise prediction via high-fidelity simulations, however, is still too expensive and

limited to the regions, close to the jet. Typically, far-field acoustics are measured at

the distance of 100 diameters away from the nozzle exit. LES must be coupled with a

projection method such as the Kirchhoff method [18, 28, 29, 30] or the Ffowcs Williams-

Hawkings (FW-H) method [1, 31, 32, 33, 34, 35] as will be discussed in section 2.4.5. In

addition, simulations offer neither jet noise models nor noise control strategies grounded

on the physical mechanisms of noise generation. To investigate the noise generation

mechanisms of turbulent jets and to ultimately design quieter jet engines in practical

sense, developing new reduced-order models is necessary.

1.2.3 Wavepackets

Mollo-Christensen first reported the existence of highly-organized vortical structures

within a seemingly chaotic turbulent flow and their link to jet noise radiation in the

early 1960s [36, 37]. These wave-like large-scale structures, now known as wavepackets,

have been also confirmed by other researchers [2, 3, 38, 39, 40, 41].
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(a)

(b)

Figure 1.2: Visualizations of large-scale coherent structures in Mach 0.83 turbulent jets

by Moore [2]: (a) the axisymmetric mode and (b) the first helical azimuthal mode.

Crow and Champagne [3] observed the linear growth of the fluctuation amplitudes

up to near or slightly exceeding the end of the jet potential core. Evidence of linear

behavior of large-scale structures encouraged attempts to represent them as linear in-

stability waves, which were highly successful [42, 43, 44, 45, 46, 47, 48]. For example,

Moore [2] provided visualization of coherent structures for the axisymmetric (figure 1.2

(a)) and the first helical (figure 1.2 (b)) azimuthal modes within unforced and forced

turbulent jets at low to high subsonic speeds in conjunction with their noise radiation.

His measurements were also compared with the results of linear stability theory by

Michalke [49], showing good agreement.

Crow and Champagne [3] also observed that coherent puffs form intermittently in

a jet at an average Strouhal number of about 0.3 based on the jet exit diameter and

velocity as shown in figure 1.3. The intermittent nature of large-scale structures are

believed to enhance the acoustic efficiency of turbulent jets, and noise source models

accounting for intermittency, or jitter, show encouraging predictions [4, 39, 50, 51, 52]

particularly in subsonic jets, as will be discussed more in detail in chapter 5.
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Figure 1.3: Flow visualizations of large-scale coherent structures in turbulent jets.

Taken from Crow and Champagne [3].

The coherence of large-scale structures in unforced subsonic jets were quantified by

Fuchs [38, 39], based on the measurements of pressure and velocity correlations. In these

measurements strong coherence was seen over an axial length scale much larger than

the local integral scale of turbulence. Furthermore, Michalke [42] and Michalke and

Fuchs [53] expanded azimuthal Fourier modes of the source term in Lighthill’s acoustic

analogy and measured azimuthal correlations of pressure and axial velocities in subsonic

jets. It was found that the axisymmetric pressure fluctuations contain almost 42% of

the overall energy, and the first three to four azimuthal modes dominates the pressure

field for low Strouhal numbers ranging from 0.2 to 1. Armstrong et al. [41] extended the

measurements of the azimuthal coherence for higher Mach numbers and still observed

dominance of low azimuthal modes.

Because wavepackets carry a significant portion of the total turbulent energy, they

are believed to be closely connected to noise radiation. In fact, their spatio-temporal

modulation is what enables a supersonic phase velocity relative to the ambient speed

of sound, leading to far-field sound radiation [47, 50, 52, 53, 54, 55]. In contrast to

Lighthill’s acoustic analogy [9], which requires additional treatment to describe non-

compact effects, jet noise modeling based on instability wavepackets is inherently asso-

ciated with non-compact sources.

Instability wavepackets captured by the linearized Euler equations (LEE) [56, 57] or
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Figure 1.4: Wavepackets captured by LES and LEE at St = 0.35. The real part of the

pressure eigenfunctions are shown. Taken from Jordan et al. [4].

parabolized stability equations (PSE) [52, 58, 59, 60, 61] match wavepackets measured

in experiments [48, 62, 63] and simulations [4, 18, 51, 64]. For example, figure 1.4 shows

almost perfect agreement between wavepackets captured by LEE and high-fidelity LES.

PSE analysis captures far-field acoustics of supersonic jets successfully, but noise radia-

tion from subsonic or heated supersonic jets is severely underpredicted, particularly in

the sideline direction that is perpendicular to the jet axis. In subsonic jets, wavepackets

are associated with energetically dominant motions, but only their supersonic portions

radiate the far-field sound. The slight mismatch in figure 1.4 may in fact change the

acoustic efficiency significantly because it alters the asymmetry of the wavepacket.

In this dissertation we apply input-output analysis [65, 66, 67, 68] to study the

sensitivity of acoustically relevant dynamics in such jets. The resolvent analysis of

energy amplification was introduced to wall-bounded turbulent shear flows [69, 70, 71,

65, 66, 72] and recently extended to high-speed turbulent jets [67, 68, 73]. Similarly,

our method computes optimal and sub-optimal forcings, which correspond to noise-

producing wavepackets in turbulent jets. We examine whether a set of few input-output

modes can accurately predict the far-field sound of turbulent jets and thus may be used
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as a basis for reduced-order models for turbulent jet noise.

1.3 Overview of contributions

The objective of the present research is to develop a new acoustic source model for

turbulent jet noise that accurately predicts noise radiation from turbulent jets, based

on a new understanding of their physical mechanisms. The major contributions of this

dissertation are summarized as follows.

• As described in chapter 2, mathematical representations of input-output analy-

sis and the numerical approach are established. Input-output analysis separates

acoustic sources contained in the vicinity of jet turbulence from sound they pro-

duce in the far-field. It is in part inspired by the acoustic analogy in the context

of the (spatial) separation of acoustic sources and noise propagation, but different

in that our method provides dynamical description of sources radiating jet noise.

it studies sensitivity of a linear operator corresponding to a given base flow to a

volumetric external forcing.

• Chapter 3 describes input-output modes of subsonic and supersonic isothermal

jets. The contributions of the optimal and sub-optimal modes to the far-field

noise are quantified, and their roles in noise generation are discussed in detail in

the same chapter. Also, it is shown that far-field acoustics of aMj = 1.5 supersonic

jet predicted by a high-fidelity LES is successfully reconstructed by superposing

few input-output modes. The relevance of sub-optimal modes is further assessed

through analysis of unsteady LES database.

• A new hybrid input-output/FW-H method is developed in chapter 4 and verified

in appendix B for several cases where the analytic solutions are available. Using
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this, the directivity of the acoustic far-field for a Mj = 1.5 supersonic jet is

recovered similarly to that predicted by a high-fidelity LES. By repeating input-

output analysis over a range of frequencies, far-field acoustic spectra is obtained,

indicating broadening at high radiation angles for high frequencies.

• In chapter 5, input forcings are further weighted by the TKE to distill acoustically

relevant aerodynamic sources. We find that resulting optimal input modes corre-

spond to wavepackets with asymmetric pseudo-Gaussian functions. They remain

similar in shape over a wide range of frequencies, scaled by St−0.5. Further-

more, we show that sub-optimal modes are associated with jitter or decoherence

of wavepackets.

• The robustness of input-output analysis is demonstrated regardless of the jet

Mach number, applied heating, eddy viscosity, and azimuthal wavenumber modes

through parametric studies in chapter 6.



Chapter 2

Mathematical models and

numerical methods

2.1 Flow configuration

A schematic diagram of high-speed turbulent jets we consider in this study is shown

in figure 2.1 in cylindrical coordinates (x, r, θ), respectively denoting the axial, radial,

and azimuthal directions. In this figure a gray rectangle represents a thick straight

cylindrical nozzle, extending from x/R = −20 to 0 where R is the jet diameter. An

axisymmetric turbulent jet coming out of the nozzle discharges into quiescent ambient

air at x/R = 0 and forms a shear layer, radiating sound into the far-field. As the jet

spreads downstream, the jet exit velocity is maintained uniform for several diameters of

the jet until it finally collapses. Such spatial duration, which is called the potential core

length, may change based on the jet Mach number or jet-to-ambient temperature ratio

as will be seen in later chapters. The computational domain ranges from x/R = −20

to 70 in the axial direction and r/R = 0 to 50 in the radial direction, respectively

11
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Figure 2.1: A schematic diagram of a turbulent jet in cylindrical coordinates. A gray

rectangle represents a straight cylindrical nozzle, which discharges turbulent jets at

x/R = 0 into a quiescent fluid. A dot-dashed line at r/R = 0 denotes the jet centerline,

and dashed lines at x/R = −10, 60, and r/R = 40 are sponge layers employed to avoid

unphysical reflection into the domain.

(unless otherwise stated). To approximate the Sommerfeld radiation condition, numer-

ical sponge layers [74, 75, 76] are employed at the upstream, downstream, and lateral

boundaries, absorbing outgoing waves to avoid unphysical reflection.

In this dissertation we study the dynamic of small disturbances about a mean field (a

base flow), which are governed by the linearized Navier-Stokes (LNS) equations as will

be described in the following sections. As base flows, we use Reynolds-averaged Navier-

Stokes (RANS) solutions of ideally expanded, axisymmetric, compressible, turbulent

jets. More details of each RANS base flow will be given in later chapters, depending on

its operating conditions.
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2.2 Governing equations

2.2.1 The Navier-Stokes equations

In this study the dynamics of the system state for a jet and associated sound radiation

are governed by either the Euler equations or the Naiver-Stokes equations. While the

Euler equations solve the motion of inviscid fluids, the Naiver-Stokes equations exten-

sively describe viscous fluid flow. In other words, the Euler equation are derived easily

by excluding viscous terms in the Navier-Stokes equations. In this section we therefore

discuss the Naiver-Stokes equations only.

For an ideal gas, the conservations of mass, momentum, and energy are written as:

∂ρ

∂t
+∇ · ρu = 0 , (2.1)

∂ρu

∂t
+∇ · ρuu = −∇p+∇ · τ , (2.2)

∂ρE

∂t
+∇ · ρEu = −∇ · pu+ λ∇2T , (2.3)

respectively, where ρ represents the fluid density and u is the fluid velocity. In equa-

tion (2.2) the fluid pressure is denoted by p. Furthermore, τ represents the viscous

stress tensor, which is expressed as:

τ = 2µ
[
∇u+ (∇u)T

]
− 1

3
(∇ · u)I, (2.4)

where µ denotes the dynamic viscosity that remains constant throughout the domain,

and I is the identity matrix. Equation (2.3) describes the conservation of the total

energy per unit mass of a moving fluid E, which is given by the sum of the internal

energy per unit mass e and the kinetic energy per unit mass k = 1
2 |u|

2 such that

E = e+ k. In this equation λ denotes the thermal conductivity, which is assumed to be
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constant throughout the domain, and T represents the fluid temperature. In addition,

the equation of the state is written as p = ρRT , where R is the gas constant.

We are now ready to rewrite the conservation equations for the system state in which

we are more interested. First, taking a dot product of equation (2.2) with the velocity

vector u yields the conservation of the kinetic energy k as:

∂ρk

∂t
+∇ · ρku = −u · ∇p− Φ . (2.5)

Here, the viscous dissipation tensor Φ is defined by τ : ∇u, where the operator :

represents the contraction of tensors. The conservation of the internal energy is then

obtained by subtracting this from the total energy equation (equation (2.3)) as follows:

∂ρe

∂t
+∇ · ρeu = −p∇ · u+ Φ . (2.6)

Meanwhile, under the assumption of calorically perfect gas, we express the internal

energy e as e = cvT , where cv is the specific heat of an ideal gas at constant volume.

For the specific heat of an ideal gas at constant pressure cp, the ratio of specific heats is

defined as γ =
cp
cv

. The gas constant R, which appears in the equation of state, is given

by R = cp−cv so cv may be further re-written as cv = R
γ−1 . Therefore, by manipulating

the conservation of internal energy (equation (2.6)) and the equation of state, we form

a conservation equation for the pressure as:

∂p

∂t
+ u ·∇p+ ρc2∇ · u = (γ − 1)

[
λ∇2T + Φ

]
, (2.7)

where c =
√
γp/ρ is the speed of sound.

Next, a conservation equation for entropy of a system may be introduced by recalling

the Gibbs equation, which describes change in internal energy in terms of changes in
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entropy s and specific volume v of a system such that:

T
Ds

Dt
=

De

Dt
+ p

Dv

Dt
. (2.8)

Since v = 1/ρ, it may be further re-written as:

T
Ds

Dt
=

De

Dt
− p

ρ

Dρ

Dt
. (2.9)

Moreover, by rearranging equation (2.1) as:

1

ρ

Dρ

Dt
= −∇ · u , (2.10)

we may express the first term on the right hand side of equation (2.6) as:

− p∇ · u =
p

ρ

Dρ

Dt
. (2.11)

Finally, substituting this and equation (2.9) into the conservation of internal energy

(equation (2.6)) gives the conservation of entropy such that:

ρT

(
∂s

∂t
+ u ·∇s

)
= λ∇2T + Φ . (2.12)

To summarize, for the system state q =
[
p; uT ; s

]T
, the fully compressible Navier-

Stokes equations are given in forms of:

∂p

∂t
+ u ·∇p+ ρc2∇ · u = (γ − 1)

[
λ∇2T + Φ

]
, (2.13)
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∂ρu

∂t
+∇ · ρuu = −∇p+∇ · τ , (2.14)

ρT

(
∂s

∂t
+ u ·∇s

)
= λ∇2T + Φ . (2.15)

2.2.2 Scaling

In the previous section we obtained fully compressible Naiver-Stokes equations that

govern motions of any compressible fluid flows. Nevertheless, since each of those flow

systems has different physical scales, equations (2.13)-(2.15), which are still given in a

dimensional form, may fail to directly tell the relative importance of each term. In this

regards, this section aims to non-dimensionalize the governing equations using proper

scaling factors. Non-dimensionalized equations then may introduce several dimension-

less parameters, which allow us to better understand the relative significances of terms

for systems under various conditions.

The flow configurations of a round jet naturally suggest fundamental scales based

on the nozzle radius R, the jet velocity uj , density ρj , and temperature Tj at the nozzle

exit. In this way, we define dimensionless variables, which are denoted by superscript

∗, such as:

∇∗ = R∇ , (2.16)

u∗ =
u

uj
, (2.17)

t∗ =
t

R/uj
, (2.18)

ρ∗ =
ρ

ρj
, (2.19)
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p∗ =
p

ρju2j
, (2.20)

T ∗ =
T

Tj
, (2.21)

s∗ =
s

u2j/Tj
, (2.22)

c∗ =
c

uj
, (2.23)

τ∗ =
τ

µuj/R
. (2.24)

By substituting these variables into equations (2.13)-(2.15), the non-dimensional

fully compressible Navier-Stokes equations for the system state q =
[
p; uT ; s

]T
are

given in the following equations:

∂p

∂t
+ u · ∇p+ ρc2∇ · u =

1

Re

[
1

M2
j Pr
∇2T + (γ − 1)Φ

]
, (2.25)

∂u

∂t
+

1

ρ
∇p+ u · ∇u =

1

Re

1

ρ
∇ · τ , (2.26)

∂s

∂t
+ u · ∇s =

1

Re

1

ρT

[
1

(γ − 1)M2
j Pr
∇2T + Φ

]
. (2.27)

Note that, for simplicity, we have dropped the superscripts ∗ in the above equations.

Here, the entropy is defined by:

s = ln(T )/((γ − 1)M2
j )− ln(p)/(γM2

j ) (2.28)

so that s = 0 is satisfied when p = 1 and T = 1 [77, 78]. Here, Re represents the

Reynolds number defined as Re = ρjujR/µ. The Prandtl number Pr is defined as

Pr = cpµ/λ and assumed to be constant throughout the computational domain. With
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this non-dimensionalization process, the equation of state for an ideal gas becomes

γM2
j p = ρT. (2.29)

The jet Mach number is defined as Mj = uj/cj in terms of the speed of sound at the

nozzle exit cj =
√
γpj/ρj where the ratio of specific heats γ has constant value 1.4.

2.2.3 Linearization

To examine the behavior of small perturbations about a base flow, the fully compressible

Navier-Stokes equations are linearized. Using the standard Reynolds decomposition, we

decompose the system state q into mean (̄) and fluctuating parts ()′, i.e., q = q̄ + q′.

After keeping the first-order terms only, we form the LNS equations as:

∂p′

∂t
+ ū · ∇p′ + u′ · ∇p̄+ ρ̄c̄2∇ · u′ + γ(∇ · ū)p′ =

1

Re

[
1

Mj
2Pr

λ∇2T ′ + (γ − 1)
(
τ̄ :∇u′ + τ ′ :∇ū

)]
, (2.30)

∂u′

∂t
+

1

ρ̄
∇p′ + ρ′

ρ̄
∇p̄+ ū · ∇u′ + u′ · ∇ū =

1

Re

1

ρ̄

(
∇ · τ ′ − ρ′

ρ̄
∇ · τ̄

)
, (2.31)

∂s′

∂t
+ ū · ∇s′ + u′ · ∇s̄ =

1

Re

1

ρ̄T̄

[
1

(γ − 1)Mj
2Pr

(
λ∇2T ′ − p′

p̄
λ∇2T̄

)
+ τ̄ :∇u′ + τ ′ :∇ū− p′

p̄
τ̄ :∇ū

]
.

(2.32)

Similarly, we linearize the equation of state as:

ρ′

ρ̄
=
p′

p̄
− T ′

T̄
, (2.33)
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where

T ′ = (γ − 1)M2
j

(
T̄ s′ +

p′

ρ̄

)
. (2.34)

In matrix form, the LNS equations for the perturbation system state q are re-written

as:

∂q

∂t
= Aq. (2.35)

Here, the linear operator A corresponds to the governing equations, which is determined

uniquely by a base flow. Again, for simplicity, we have dropped the primes and bold

font.

2.2.4 Adjoint equations

The optimal forcing approach including input-output analysis finds flow fields, which

optimally amplify small disturbances about a base flow under constraints such that

solutions are governed by the LNS equations and given boundary and initial conditions.

Lagrange multipliers are introduced to impose these constraints, yielding a system of

equations called adjoint equations [71, 79, 80].

We begin by defining an inner product between any two state vectors q1 and q2 as:

〈q1, q2〉 ≡
∫
V
q∗1q2dV, (2.36)

where a superscript ∗ indicates the complex-conjugate transpose, and dV is a differential

volume element. From this definition, Lagrange multipliers q† satisfy the Lagrange

identity such that: 〈
q†, Aq

〉
=
〈
A†q†, q

〉
, (2.37)

with respect to the linear operator A corresponding to the direct LNS equations and any

state vector q. Then, manipulation of equations (2.30)-(2.32) using suitable integration
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by parts leads to the adjoint equations, denoted by an operator A† in the above relations.

2.3 Input-output analysis

The high-speed jets we consider in the present study are globally stable; they are,

however, highly unstable to convective perturbations in the form of wavepackets [52].

We therefore treat these jets as amplifiers, which take external disturbances as inputs

and give back the far-field acoustics as outputs. This behavior is much different from

that of globally unstable flows, which support self-sustained oscillations, and thus it is

best studied by investigating the sensitivity to an external forcing.

To understand how an input forcing maps onto output quantities of interests, we

modify the original linear system in equation (2.35) by introducing an external forcing

f as follows:

q̇ = Aq +Bf, (2.38)

y = Cq, (2.39)

where y represents output quantities, and matrices B and C are determined depending

on inputs and outputs of interests, respectively. For example, we specify B to select

forcings applied to the velocity equations near the jet turbulence while C is chosen to

specify noise in the region far away from sources. The choice of specifying matrices B

and C makes our analysis unique compared to other approaches, which consider the

entire system state to evaluate the gain.

In this study we seek wave-like solutions by taking the wavepacket ansatz as:

q(x, r, θ, t) = q̂(x, r)ei(mθ−ωt), (2.40)

where m is an integer azimuthal wavenumber and ω is the temporal frequency.
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Figure 2.2: Schematic of the linear system for turbulent jet noise modeled using the

wavepacket ansatz. External forcings f are mapped onto output y through the transfer

function H, which includes the resolvent operator R = (zI −A)−1.

Moreover, by assuming harmonically forced perturbations such that f = f̂ ezt and

y = ŷezt, substituting the wavepacket ansatz into equations (2.38) and (2.39) yields a

transfer function H from inputs f to outputs y for a given temporal frequency ω as:

H = C(zI −A)−1B, (2.41)

where z = −iω. Note that the transfer function H consists of the resolvent operator

R = (zI −A)−1. Figure 2.2 visualizes a schematic of such linear system with wave-like

external forcings.

By taking the singular value decomposition at a given frequency, the transfer func-

tion H may be further decomposed into:

H = UΣV ∗, (2.42)

where U and V are unitary matrices. Diagonal elements of a matrix Σ consist of singular

values σ in descending order, which represent the gain in amplitude from input to output

defined as:

σ =
‖y‖
‖f‖

, (2.43)

where ‖·‖ means the L2 norm such as ‖·‖2 = 〈·, ·〉 with an inner product defined as
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equation (2.36).

Alternatively, the transfer function may be written as:

HV = UΣ. (2.44)

The above system is thus interpreted such that each column of V , i.e., an input vector is

amplified by the corresponding singular value and mapped to the corresponding column

of U , i.e., an output vector through the transfer function H [71].

As written in equation (2.37) the Lagrange identity gives the following relations for

the adjoint A† of the linear operator as follows:

〈
A†q1, q2

〉
= 〈q1, Aq2〉 , (2.45)

where q1 and q2 are any two state vectors. After discretization, we may represent this

in matrix form as:

(A†q1)
∗Wq2 = q∗1WAq2, (2.46)

where W is a real diagonal matrix of quadrature weights. This implies that the adjoint

of a discretized version of the operator A is:

A† = W−1A∗W. (2.47)

We use these definitions to find the singular values and the right-singular vectors of

H through the eigenvalue decomposition of H†H such that:

H†H = B∗(z∗I −A†)−1C†C(zI −A)−1B. (2.48)

Here, the eigenvalues of H†H are the squares of the corresponding singular values σ of
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H.

One advantage of input-output analysis is that the matrices B and C may be selected

depending on inputs and outputs of interest. For example, in the present study, we

have chosen B to force the velocity equations (2.31) in the immediate vicinity of jet

(r/R < 2.90) and C to select far-field pressure in the region where r/R > 8.70 or along

an arc 200 radii far way from the jet exit. The spatial separation of input and output

domains is motivated in part by the acoustic analogy approach [9, 16] where acoustic

sources are separated from acoustic propagation through an exact rearrangement of the

compressible Navier-Stokes equations. In this view, acoustic sources are associated with

unsteady turbulent flow, and thus are restricted in space to the immediate vicinity of

the jet. The effects, however, occur far away from the jet where acoustic propagation

is important, but acoustic sources are inactive. Recently, statistical models of acoustic

source terms, calibrated by high-fidelity simulation data and laboratory measurements,

have been shown to successfully predict noise from high-speed jets after convolution with

an appropriate adjoint Green’s function [11, 81]. Our analysis is in concert with this

idea, but instead of analyzing two-point two-time fourth order statistical correlations,

we use input-output analysis of the linearized equations to identify dynamic structure

in the acoustic sources.

2.4 Numerical methods

2.4.1 Computational grids

Throughout this dissertation, grid points are distributed with uniform spacing in the

axial direction but are refined and clustered in the radial direction along the nozzle

lipline to resolve the boundary layer and thin shear layer formed near the nozzle lip. To

ensure the independence of our analysis on grids, we test four different grid resolutions
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in appendix A.1. Based on this test, the number of grid points in the axial and radial

directions are determined by Nx = 576 and Nr = 288, respectively, unless otherwise

noted. In chapter 5 we extend the numerical domain to x/R = 80, or x/D = 40 based

on the jet diameter, in the axial direction while keeping the radial extent of the domain

unchanged such that r/D = 25. In this case we increase the number of axial grids to

Nx = 801 so that a uniform spacing ∆x = 0.125 is achieved.

2.4.2 Discretization

The LNS equations are discretized by fourth-order five-point stencil centered finite dif-

ferences, yielding a large sparse matrix. Near the region where the five-point stencil

are not applicable, such as along the nozzle wall, jet centerline, and boundaries of the

numerical domain, we choose one-sided finite difference methods using the three-point

stencil. Since grids are stretched in the radial direction to cluster grid points about the

nozzle lipline while they are uniform in the axial direction, finite difference approxima-

tions of radial derivatives should consider appropriate weights such that:

∂f

∂r
=
∂f

∂η

∂η

∂r
, (2.49)

∂2f

∂r2
=
∂2f

∂η2
∂2η

∂r2
, (2.50)

for a state variable f , where η is a weighting function.

Since the centered finite difference scheme is non-dissipative, a scale-selective fourth-

order numerical filter is added to damp unphysical waves at the highest wavenumbers.

In appendix A we show that this filter does not affect modes we are interested in once

a mesh is well-resolved.



25

2.4.3 ARPACK

The largest eigenvalues of H†H are computed using the implicitly restarted Arnoldi

method (IRAM) as implemented by the software package ARPACK [82]. We compute

the matrix inversion associated with the resolvent operator using the sparse direct solver

PARDISO, which is part of the Intel Math Kernel Library. In cases of higher azimuthal

wavenumber modes where more intensive computational resources are required, we use

the massively parallel SuperLU package [83] to find the LU-decomposition of the sparse

matrix. Because the iterative Arnoldi method requires many evaluations of the resolvent

at a fixed frequency, the resolvent matrix may be factorized only once. After this, the

factors are applied to efficiently perform repeated evaluations of the resolvent. Com-

pared to global mode analysis where non-normality of the system matrix A may impede

convergence of the Arnoldi method, the eigenvectors of H†H form an orthogonal set of

input modes, so the Arnoldi method converges rapidly.

2.4.4 Discrete adjoint vs. continuous adjoint approaches

The adjoint of the transfer function H†, which maps outputs back onto inputs, may

be evaluated in two different ways. For example, the discrete adjoint approach first

discretizes the continuous equations and then derives the adjoint through a matrix

transpose. Alternatively, in the continuous adjoint approach, equations adjoint to the

linearized governing equations are first derived through integration by parts and then

discretized later to find a matrix that approximates A∗. The continuous adjoint ap-

proach, however, allows specification of one-sided differences consistent with continuous

derivatives near to wall boundaries, such as the cylindrical nozzle. The discrete ap-

proach, on the other hand, does not guarantee consistency near boundaries, resulting in

large numerical errors as shown in figure 2.3. For this reason, we adopt the continuous
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(a)

(b)

Figure 2.3: (a) The continuous adjoint approach allows one-sided differences consistent

with continuous derivatives near to wall boundaries, removing large numerical errors

that may appear in (b) the discrete adjoint approach.

adjoint approach in the present investigation [84, 85, 86, 87, 88].

2.4.5 Kirchhoff vs. Ffowcs Williams-Hawkings (FW-H) methods

To directly compute the near-field jet turbulence and its radiated sound in the far-field

(typically, 100 diameters away from the nozzle exit) together would be too expensive.

Instead, the development of projection methods such as the Kirchhoff method [18, 28,

29, 30] and the FW-H method [1, 22, 32, 33, 35, 89] greatly reduces the computational

cost of predicting far-field acoustics by allowing much smaller computational domains.

In these methods we may collect the near-field flow data only, which are extrapolated to

much farther region through surface and/or volume integrals along a projection surface.

It is therefore important to locate a projection surface properly so that it can enclose

acoustic sources as much as possible while not sacrificing the computational efficiency.

The Kirchhoff formula is equivalent to the wave equation. A projection surface
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thus should be placed in the linear flow region for accurate predictions in this case.

Compared to the FW-H method, the Kirchhoff method is easy to implement since it

involves surface source terms only. By taking a cylindrical projection surface at r = R0

whose axis lies along the jet centerline, far-field pressure in the frequency domain is

given by:

pn(k, r, ω) =


pn(k,R0, ω)Hn

(1)
(
r
√
ω2 − k2

)
/Hn

(1)
(
R0

√
ω2 − k2

)
, if ω > 0,

pn(k,R0, ω)Hn
(2)
(
r
√
ω2 − k2

)
/Hn

(2)
(
R0

√
ω2 − k2

)
, if ω < 0,

(2.51)

whereHn
(1) andHn

(2) are Henkel functions of the first and second kind, respectively [18].

The above equation implies that only modes involving supersonic phase speed, i.e., ω > k

radiate sound. Thanks to its simplicity, we have used this formula in the early stages

of the present study, which are given in chapters 3 and 6.

Even though the Kirchhoff method has some advantages, particularly in the context

of ease in implementation, the FW-H method is more preferred in many cases. Because

it is based on the Navier-Stokes equations, a projection surface may be positioned

much closer to jet turbulence than a Kirchhoff projection surface should be. It also

separates source terms into two surface source terms and one volume source term, which

respectively correspond to monopole, dipole, and quadrupole forms [14, 31, 32, 33].

The volume integrations (quadrupoles) require severe computational work, but when

quadrupoles are omitted, the FW-H formulation may be calculated as efficiently as

the Kirchhoff method. Errors due to neglecting quadrupole terms may not be very

substantial, provided that an FW-H surface is chosen carefully. Furthermore, using a

closed outflow surface disk or even averaging over outflow disks (end-cap averaging) [1,

22, 35, 89] may alleviate the errors. The FW-H method and its linearized version are

discussed in chapters 4 and 5. Detailed validations are further provided in appendix B.



Chapter 3

Input-output modes of

high-speed turbulent jets

In this chapter we apply input-output analysis to high-speed supersonic and subsonic

turbulent jets. We present resulting pairs of input-output modes and acoustic gains,

and discuss their characteristics. The physical relevance of sub-optimal input-output

modes are assessed by projecting a high-fidelity LES database onto them. This chapter

is reproduced from [68], with the permission of AIP Publishing.

3.1 Base flows

Throughout this study, we consider the dynamic of small disturbances about RANS

base flows of ideally expanded, axisymmetric, compressible, turbulent jets. We use

RANS solutions as base flows, which are computed using a modified k − ε turbulence

model with coefficients suggested by Thies and Tam [90] for high-speed jets. While the

base flows are solutions to the RANS equations, we treat small perturbations about

these base flows as governed by the LEE. Even though the RANS solutions are not

28
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equilibrium solutions to the Euler equations, the wave-like perturbations that we obtain

below and that are connected to acoustic radiation, are correlated over length scales

much larger than the integral length scales of the turbulence. These modes then do

not contribute significantly to the modification of the turbulent mean profile which is

instead supported by Reynolds stresses involving much shorter length scales. Because

of this scale separation, previous studies have found that linear analysis about turbulent

mean base flows is able to predict experimental observations of coherent structures in

jets rather closely [45, 52].

Figure 3.1 shows contours of axial velocity from a RANS calculation of Mj = 1.5

supersonic jet. A white line from x/R = −20 to x/R = 0 in this figure corresponds to

a straight cylindrical nozzle with radius R = 1 and wall thickness t = 0.3R. A RANS

solution for a Mj = 1.5 jet corresponds to the operating conditions of an LES performed

previously [1], including a weak co-flow surrounding the main jet. The magnitude of

the co-flow in this case is set to 6.7% of nozzle exit velocity, and this co-flow is enforced

at the upstream boundary outside of the nozzle. In addition to the RANS solution for

the Mj = 1.5 jet, we also produce RANS solutions for a Mj = 0.9 subsonic jet. In each

case, unless otherwise specified, we consider ideally expanded and isothermal jets such

that Tj/T∞ = 1, pj/p∞ = 1, and the Reynolds number Re = ρjujR/µ = 106 where µ is

the dynamic viscosity, which we assume to be constant throughout the domain. Here,

the subscripts j and ∞ represent properties at the nozzle exit and in the ambient fluid,

respectively. While figure 3.1 shows only part of it, the actual computational domain

extended from x/R = −20 to x/R = 70 in the axial direction and from r/R = 0 to

r/R = 50 in the radial direction.
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Figure 3.1: Contours of axial velocity from a RANS solution of a round Mj = 1.5

supersonic jet. The velocity contours are normalized by the velocity at the nozzle exit

at x/R = 0. The cylindrical nozzle is represented by the white line extending from

x/R = −20 to x/R = 0 at r/R = 1.

3.2 Optimal and sub-optimal modes

3.2.1 Mj = 1.5 supersonic jet

At every temporal frequency ω, we obtain orthonormal sets of input and output modes,

ordered by the corresponding gains. In what follows, we denote this ordering by the

mode number n. Figure 3.2 shows the first 50 gains for the Mj = 1.5 supersonic

jet at frequency St = f(2R)/uj = 0.33 where f = ω/(2π). Mode number n = 1 is

associated with the maximum gain, which was found to be σ1 = 1.35×102. Figure 3.3(a)

shows the corresponding optimal forcing mode and figure 3.4(a) shows the resulting

output mode. As indicated by the rectangle in figure 3.3, we have restricted the input

forcing to be inside the region −10 < x/R < 60 and 0.29 < r/R < 2.90. The output,

however, is restricted to be pressure perturbations inside the region −10 < x/R < 60

and 8.70 < r/R < 39.2, as indicated by the rectangle in figure 3.4(a). This choice is

motivated by the goal of understanding how forcing the velocity equations inside the

jet produces sound in the far-field. We use these input and output domains throughout

this chapter and in chapter 6. To avoid numerical errors due to sharp transitions at

the boundaries of the input and output domains, input modes are gradually reduced to

zero over several grid points.
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Figure 3.2: Singular values vs. mode number for the Mj = 1.5 supersonic jet with

forcing frequency St = 0.33.

The input modes are visualized by contours of the real part of the input axial velocity

forcing restricted in the near-field, and the output modes are visualized by contours of

the real part of the output pressure in the far-field. For this supersonic jet, the output

pressure agrees well with the acoustic far-field of a wavepacket computed using PSE or

global mode analysis. It consists of a single acoustic beam radiating at an angle of 30◦

in the direction of peak jet noise. We also observe that the input is mostly concentrated

near the nozzle lip. For supersonic jets, instability waves are linked to the acoustic

far-field through the Mach wave mechanism [91]. According to this mechanism, a small

disturbance upstream can trigger a supersonic instability wave downstream which then

generates noise. This instability process is captured well by the PSE [60].

In addition to the optimal mode, input-output analysis of jet noise yields several

sub-optimal modes. These sub-optimal modes follow a pattern as shown in figure 3.4.

Whereas the optimal output mode (n = 1) consists of a single acoustic beam, the first

sub-optimal output mode (n = 2) is comprised of two acoustic beams radiating away
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(a) n = 1

(b) n = 2

(c) n = 3

(d) n = 4

Figure 3.3: The first four input modes of the Mj = 1.5 supersonic jet for forcing

frequency St = 0.33. Contours of the real part of the normalized axial velocity forcing

are shown.
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

Figure 3.4: The first four output modes of the Mj = 1.5 supersonic jet for forcing fre-

quency St = 0.33. Contours of the real part of normalized output pressure fluctuations

are shown.
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from the jet. Note that in the first sub-optimal mode, one beam radiates at a slightly

larger angle with respect to the centerline than does the single beam in the optimal

mode. The other acoustic beam in the first sub-optimal mode propagates at a slightly

smaller angle with respect to the centerline than the single beam in the optimal mode.

Similarly, the third output mode (n = 3) contains three acoustic beams: one at a

yet larger radiation angle, one at a smaller radiation angle, and one at an intermediate

angle. These three acoustic beams follow the edges of the two acoustic beams associated

with the first sub-optimal mode. The higher modes continue to follow this tendency

of incorporating additional beams that radiate at larger angles with respect to the

downstream jet axis.

While the optimal input mode is concentrated inside the nozzle and at the jet exit,

the sub-optimal input mode shapes shown in figure 3.3 extend increasingly far down-

stream as the mode number increases. For n = 4, the peak input forcing is located at

x/R ≈ 20 downstream inside the jet.

3.2.2 Mj = 0.9 subsonic jet

We repeat the input-output analysis for a Mj = 0.9 isothermal jet with forcing frequency

St = 0.56. As discussed below, this jet Strouhal number yields the same acoustic

Strouhal number Sta = StMa = 0.50, where Ma = uj/c∞ is the acoustic Mach number

defined in terms of the ambient speed of sound c∞. For isothermal jets, c∞ = cj , so

Ma = Mj . Figures 3.5 and 3.6 show the first two input and output modes, respectively.

In contrast to the supersonic jet, the optimal input for the subsonic jet extends further

downstream from the nozzle exit. The output modes, however, follow a similar pattern

to the supersonic case. The optimal mode has a single acoustic beam radiating away

from the jet, while the second mode (first sub-optimal) has an additional beam. The

radiation angles for the subsonic jet output modes are greater than for the supersonic



35

(a) n = 1

(b) n = 2

Figure 3.5: The first two input modes of the Mj = 0.9 subsonic jet for forcing frequency

St = 0.56. Contours show the real part of axial velocity forcing as in figure 3.3.

(a) n = 1 (b) n = 2

Figure 3.6: The first two output modes of the Mj = 0.9 subsonic jet for forcing frequency

St = 0.56. Contours show the real part of pressure fluctuations as in figure 3.4.

case.

Figure 3.7 shows singular values for the Mj = 0.9 subsonic jet. For the supersonic

jet, the largest singular value, representing the maximum gain by the optimal mode,

was two orders of magnitude greater than the gain obtained for the first sub-optimal

mode. In the subsonic jet, however, the second singular value is comparable to the most

significant singular value. This suggests that while the optimal mode dominates the

acoustics in the supersonic jet, the contribution of sub-optimal modes should not be

neglected in predicting the subsonic jet noise.

To quantify the importance of the sub-optimal modes, note that the sum of the
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Figure 3.7: Singular values vs. mode number for the Mj = 0.9 subsonic jet with forcing

frequency St = 0.56.

squares of the singular values is proportional to the total acoustic intensity of output

modes in response to white noise forcing. The acoustic intensity of the optimal output

mode is proportional to the square of the first singular value, alone. Therefore, the

decibel increase in sound pressure level (∆SPL) obtained by including the sub-optimal

modes vs. retaining only the optimal mode is:

∆SPL = 10 log10

(∑
σ2i
σ21

)
. (3.1)

For the supersonic jet at Sta = 0.50, we find a marginal increase of 0.33dB, owing

to the dominance of the optimal mode. For the subsonic case, however, including the

sub-optimal modes results in a 10.6dB increase in SPL.
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3.3 Role of sub-optimal modes

3.3.1 Large-eddy simulations (LES) of a Mj = 1.5 supersonic jet

Since input-output analysis is linear, the amplitudes of the input and output modes are

arbitrary, and are in fact normalized with respect to the inner product (equation (2.36)).

The increase in noise ∆SPL computed using equation (3.1) assumes that all modes are

forced equally with unit energy. In other words, this assumes the forcing supplied by

the jet turbulence to the input modes is equivalent to white noise. It is well-known,

however, that the statistics of turbulent fluctuations are not equivalent to white noise.

In this section, we therefore investigate whether the sub-optimal modes remain relevant

when realistic forcing from an LES is projected onto their input singular directions.

For this purpose, an LES database for an isothermal jet with jet Mach number

Mj = 1.5 and 6.7% axial co-flow was obtained using an unstructured finite-volume

compressible flow solver. For further details about this LES, we refer the reader to Brès

et al. [1]. The LES base flow was computed as the time average of 10, 000 snapshots taken

from the LES spaced at time intervals of 0.02D/c∞. Since we consider an axisymmetric

jet in the present study, the base flow is also averaged in the azimuthal direction.

Figure 3.8 shows contours of axial velocity for the base flow taken from the LES.

Compared to the RANS calculations, the LES was conducted for a smaller numerical

domain, ranging from x/R = 0 to 40 and r/R = 0 to 10, in the axial and lateral direc-

tions, respectively. The LES base flow was extrapolated to the RANS domain so that

input-output analysis using both base flows could be appropriately compared. Consid-

ering the spatial restriction of the original LES domain, we also restricted the input

and output domains to x/R = 40 in the streamwise direction, but other parameters

remained unchanged. Due to slightly mismatched conditions between two base flows,

an exact comparison is not possible. Nevertheless, the singular values for both cases
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Figure 3.8: Contours of time-averaged axial velocity from a LES of a Mj = 1.5 super-

sonic jet. The white dashed lines indicate the extent of the computational domain of

the LES. As discussed in the text, the resulting base flow was then extended to the

larger domain used for calculations based on RANS solutions.

agree remarkably well, as shown in figure 3.9. The only discrepancy is observed for the

first singular value, which is 1.77 times larger for the LES base flow than for the RANS

base flow. We note, however, that the singular directions (not shown) for these two

cases are nearly identical.

The discrepancy in optimal gain is in part related to the convergence levels of the

RANS and LES base flows. Since RANS calculations are not computationally expensive,

they are converged to machine precision. On the other hand, even though the LES base

flow is formed from an average of 10,000 snapshots, small residual errors remain that are

larger than those associated with RANS. Therefore, the LES base flow is less smooth

than the RANS base flow, with enhanced spatial gradients leading to enhanced gain.

Confirming this, we also find that averaging fewer snapshots leads to a slightly greater

optimal gain. The input and output modes, however, remain essentially unchanged.

The robustness of the input and output modes highlights the fact that input-output
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Figure 3.9: Spectra of singular values using the RANS and LES base flows for Mj = 1.5

at St = 0.33.

analysis does not rely upon an assumption of a smoothly-varying base flow. In other

words, a useful feature of input-output analysis is that it can be applied directly to

“noisy” base flows and still yield reasonable results—results that become increasingly

accurate as the convergence of the base flow improves.

Another source of the discrepancy in optimal gain between RANS and LES may be

the fact that the shear layers in the LES emerge from the nozzle in an initially laminar

state. As documented by Brès et al. [1], this leads to an overshoot in fluctuation

levels close to the nozzle lip compared to experimental measurements. Large gradients

associated with thin initial shear layers increase the growth of instability waves, and

thus increase the optimal gain in the present analysis. The RANS calculations, on the

other hand, use a modified k−ε model that is known to produce base flows that validate

well against experiment. Nevertheless, so as not to overstate our results, we choose to

use the LES base flow specifically because it represents the worst case. The difference

in gains between optimal and sub-optimal modes is greater for the LES base flow, so
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the importance of sub-optimal modes appears diminished. The results obtained below,

however, should be seen as lower bounds.

3.3.2 Amplitude of input modes

The input forcing f we consider in this thesis appears as a source term added to the

right hand side of the linearized velocity equations (2.31). This source term can also be

derived through an exact rearrangement of equation (2.26). Substituting u = ū + u′

and ρ = ρ̄ + ρ′ into equation (2.26), subtracting out base flow terms, and collecting

terms associated with the linearized operator A on the left hand side yields:

∂u′

∂t
+

1

ρ̄
∇p′ + ū · ∇u′ + u′ · ∇ū =

[
1

ρ̄
− 1

ρ̄+ ρ′

]
∇p′ − u′ · ∇u′. (3.2)

Note that this is exactly the same procedure used to derive an acoustic analogy. After

taking Fourier transforms in time and in the azimuthal direction, the nonlinear source

term simplifies to:

q̂LES = FFT

(
ρ′∇p′

ρ̄(ρ̄+ ρ′)
− u′ · ∇u′

)
. (3.3)

To evaluate the physical relevance of the optimal and sub-optimal input modes resulting

from our analysis, we compute this source term directly from high-fidelity LES data.

The input modes are physically relevant if they capture at least a portion of the spatio-

temporal behavior of the LES forcing. This is quantified by projecting the LES forcing

onto the basis of input modes:

an = 〈q̂LES , qin,n〉 . (3.4)

Here, an denotes the amplitude of input mode qin,n in the LES forcing. Figure 3.10

shows amplitudes |an| resulting from this process at forcing frequency St = 0.33 and
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Figure 3.10: Amplitudes |an| determined by projecting the LES forcing onto the basis

of input modes for Mj = 1.5 at St = 0.33.

azimuthal wavenumber m = 0. Here, the amplitudes are normalized by the average

amplitude of the LES source. Overall, less than 0.3% of the energy contained in the

LES source is projected onto the input modes. This agrees with the observation that

only a small fraction of the overall aerodynamic energy in a turbulent jet is ever radiated

as sound [8]. We also note that the amplitudes of many sub-optimal modes are larger

than the amplitude of the optimal mode. This indicates that sub-optimal input modes

are physically relevant, and should not be neglected.

To quantify the effect of sub-optimal input modes, we use effective gains by modu-

lating the white-noise gains by the amplitudes resulting from the LES projection:

σeff,n = σnan. (3.5)

The total energy in the output is computed as the sum of squares of the effective gains,

resulting in a total increase in the output SPL of 0.53dB by including the sub-optimal

modes. Because the decibel scale is logarithmic, this represents a significant increase
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compared to ∆SPL = 0.16dB, obtained with white noise forcing. In summary, we find

sub-optimal modes to be even more relevant in the presence of realistic forcing than

they are in the case of white noise forcing.

3.3.3 Reconstruction of an acoustic field by output modes

To assess the physical relevance of output modes, we compare them to the acoustic far-

field predicted by the LES [92]. For this purpose, we employ the Kirchhoff method to

project near-field pressure fluctuations from the LES outwards, away from the jet [18].

This is necessary because the LES domain is smaller than the domain considered for the

output modes. After computing the acoustic field associated with the LES over the en-

tire output domain, this field is then projected onto the orthogonal set of output modes.

Similar to equation (3.4), amplitudes associated with output modes are determined by:

bn = 〈pLES , pout,n〉 . (3.6)

Figure 3.11 shows the amplitudes |bn| vs. output mode number. For this supersonic

jet, we find that optimal output mode is most prevalent in the LES acoustic data. As

shown in figure 3.4, the optimal mode consists of a single acoustic beam at the Mach

wave angle. From equation (3.6), we find that this mode accounts for 57% of the acoustic

energy in the output domain.

By including more output modes, we recover even more of the acoustic output energy.

Figure 3.12 shows the dependence of the recovered acoustic energy on the number of

retained output modes. A superposition of 24 output modes recovers almost 70% of

the acoustic energy of the LES. Therefore, even though the input modes capture only

a small portion of the nonlinear source term, the acoustic field of the corresponding

output modes reliably captures the results of a nonlinear simulation. This implies that
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Figure 3.11: Amplitudes |bn| determined by projecting LES acoustic field onto the

orthonormal basis of output modes.

the input modes must indeed capture the small, but radiating portion of the nonlinear

source term.

While the output modes successfully recover a large portion of the acoustic energy,

the agreement is not perfect. Because input-output analysis is linear, possible nonlinear

interactions between input modes leading to far-field sound are neglected. Also, by

restricting the input forcing to the velocity equations (2.31), we neglect forcing applied

to the pressure equation (2.30) which also may lead to far-field sound. In other words,

a part of the LES acoustic field may arise from sources that are not present in our

current formulation. Nevertheless, it is striking that 70% of the acoustic energy can be

recovered by introducing forcing only to the linearized velocity equations.

Figure 3.12 shows that including more than 24 output modes in the superposition

has little effect on how well the LES acoustic field is approximated. Mode number 24

also coincides with the drop off in gains shown in figure 3.9. This implies that an input-

output system comprised of just 24 modes is sufficient to represent the noise generation

mechanisms in an Mj = 1.5 jet at frequency St = 0.33 and azimuthal wave number

m = 0. This offers a substantial reduction compared to the spatial discretization of
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Figure 3.12: Recovered acoustic energy as a function of number of retained output

modes.

the original system of equations having almost a half million degrees of freedom. This

information can be used to obtain reduced-order models of noise generation.

To further understand the effect of including sub-optimal modes on the acoustic far-

field, we use the Kirchhoff method to project both the LES data and the superposition

of 24 output modes yet further into the far-field. Figures 3.13(a) and 3.13(c) show the

decibel levels as a function of axial and radial position for the LES and output-mode-

reconstructed acoustic field, respectively. The black circular arc indicates a distance of

100 jet radii away from the nozzle exit. Figure 3.13(b) shows an acoustic field recon-

structed from only the first output mode. An acoustic beam at the Mach wave angle

is visible in all three figures. Sideline and upstream acoustic radiation are markedly

absent, however, from figure 3.13(b). Clearly, inclusion of the sub-optimal modes recov-

ers this missing sideline and upstream sound, in good agreement with the LES acoustic

field.

We quantify this contribution of the sub-optimal modes in figure 3.14 by plotting

the SPL difference between the fields shown in figures 3.13(b) and 3.13(c) as a function

of polar angle φ from the downstream jet axis along the black circular arc. We find
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(a)

(b)

(c)

Figure 3.13: Contours of decibel levels of (a) the LES acoustic field, (b) the acoustic

field of the first output mode alone, and (c) an acoustic field reconstructed from a

superposition of 24 output modes. The black arc indicates a distance of 100 jet radii

away from the center of the jet nozzle.
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Figure 3.14: Increase in far-field sound pressure levels owing to sub-optimal modes as a

function of polar angle φ from the downstream jet axis.

that for φ > 40◦, sub-optimal modes account for a 10 to 20dB increase over levels of

the optimal mode alone. We therefore conclude that sub-optimal modes are associated

with sideline noise. Unlike stochastic models [93], however, the sideline noise created by

sub-optimal modes arises from coherent motions. Furthermore, owing to the similarities

between figure 3.13(a) and figure 3.13(c) we suggest that a large part of sideline noise

can be explained by such coherent motions embedded in the jet.

3.3.4 Summary

In summary, by projecting the LES source term data onto input modes (in section 3.3.2)

and the LES acoustic far-field onto output modes (in section 3.3.3), we demonstrated

that both types of modes are physically relevant. We also found that input-output anal-

ysis reveals the minimum dimensionality required of reduced-order models to accurately

represent the mechanisms of acoustic generation. Finally, in comparison to the optimal

output mode we have found that sound recovered by sub-optimal modes is directed

mostly in the sideline and upstream directions. As such, sub-optimal modes provide a

new interpretation of sideline noise in terms of coherent motions.



Chapter 4

Wavepacket modeling of far-field

acoustics

4.1 Introduction

In the previous chapter we projected the high-fidelity LES data onto the orthonormal set

of output modes to investigate the physical relevance of them under realistic forcings.

We showed that only few coherent output modes recovered almost 70% of the LES

acoustic energy, which was very striking. While the results in the previous chapter are

insightful, in this chapter we further develop our method to directly handle the far-field

observers within input-output analysis framework.

We therefore specify the matrix C to directly sample far-field pressure by incor-

porating a projection method within itself. In the previous chapter we employed the

Kirchhoff method, which is equivalent to the wave equation. It was thus unable to

locate a projection surface in the region close enough to the near-field; with combining

stretched meshes in the radial direction, this might cause difficulties in fully captur-

ing high frequency waves. Alternatively, in this chapter we use the FW-H method to

47
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manage a projection surface close to the acoustic source region.

The rest of this chapter is organized as follows. A new hybrid input-output/FW-H

method is introduced in section 4.2.1. The resulting singular values and correspond-

ing input and unrestricted output modes are shown subsequently in section 4.2.2 for

supersonic isothermal and heated jets. Next, we reconstruct the far-field acoustics by

retaining few output modes and compare them to those predicted by the LES in sec-

tion 4.2.3. Finally, in section 4.2.4 we obtain acoustic spectra by repeating input-output

analysis over a wide range of frequencies to examine whether our analysis recovers the

traditional similarity spectra of turbulent jets. The results presented in this chapter

has been published in [94] and reproduced by permission of the American Institute of

Aeronautics and Astronautics, Inc.

4.2 Far-field pressure projection

4.2.1 Hybrid input-output/FW-H method

For a stationary source in a medium at rest, the permeable surface FW-H equation [1,

33, 95] is given by:

(
∂2

∂t2
− c2∞

∂2

∂xi∂xj

)
[(ρ− ρ∞)H (S)] =

∂

∂t
[Qnδ (S)]− ∂

∂xi
[Fiδ (S)]− ∂2

∂xi∂xj
[TijH (S)] ,

(4.1)

where Qn, Fi, and Tij are defined as

Qn = ρuin̂i, (4.2)
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Fi = (Pij + ρuiuj) n̂j , (4.3)

Tij = ρuiuj + Pij − c2∞ (ρ− ρ∞) δij . (4.4)

Here, the function S defines the surface so that a solution to equation (4.1) is sought

outside of the surface S = 0, and in this regard the Heaviside function becomes unity

for S > 0 and zero for S < 0. Furthermore, n̂i represents a unit outward normal vector

to the surface S = 0, and ui is the local fluid velocities on the surface S = 0. The

total density is given by ρ while the ambient properties are denoted by the subscript ∞

in the above equations. The perturbation properties may be then represented by the

superscript ′ such that the density perturbation is written as ρ′ = ρ−ρ∞. Equation (4.4)

is the Lighthill stress tensor, which was already introduced in chapter 1, but it should

be noted that the compressive stress tensor Pij here is defined as Pij = (p− p∞) δij

after neglecting the viscous term.

To perform the Fourier analysis, equation (4.1) may be rewritten in a convenient

form as:

(
∂2

∂xj∂xj
+ k2

)[(
c2∞ρ̃

′
)
H (S)

]
= −iωQ̃nδ (S) +

∂

∂xi

[
F̃iδ (S)

]
− ∂2

∂xi∂xj

[
T̃ijH (S)

]
,

(4.5)

where the wavenumber k is given by k = ω/c∞ with the ambient speed of sound c∞.

In fact, we may replace the term c2∞ρ̃
′ by the pressure perturbation p′ and write equa-

tion (4.5) in a pressure-based form since the density perturbations are small outside of

the source region [35]. The integral solution is then, given by:

p̃′ (x, ω) = −
∫
S
F̃i (y, ω)

∂G (x,y)

∂yi
dS −

∫
S

iωQ̃n (y, ω)G (x,y) dS, (4.6)
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assuming that the volume-distributed source terms are negligibly small. Here, the three-

dimensional free-space Green’s function G is given by:

G (x,y) =
−e−ikr

4πr
(4.7)

where r represents the distance between the source y and the observer x such that

r = |x−y|. Using the chain rule, the derivative of the Green’s function with respect to

the source y may be then evaluated as

∂G

∂yi
=
∂G

∂r

∂r

∂yi
, (4.8)

and in cylindrical coordinates we use here, ∂r
∂yi

is simply:

∂r

∂yi
= −r̂i =

xi − yi
|xi − yi|

. (4.9)

Now we linearize the integral solution in equation (4.6) to implement an FW-H solver

within input-output analysis framework. Since outside of the hydrodynamic region, local

properties are mostly perturbation properties, we may neglect the second-order terms

in the dipole source term Fi and rewrite it as:

Fi = Pijn̂j . (4.10)

The linear monopole source term Qn remains unchanged.

Since we consider a linearized system, the source terms to the FW-H equations

are also linear. We therefore treat them explicitly so that we can write the FW-H

formulation as a linear operator inside the matrix C. In this way the adjoint of the

matrix C takes far-field pressure fluctuations and maps these back onto state vectors
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on the FW-H surface.

Since the FW-H solver is linearized, a projection surface should be placed in purely

acoustic region that is sufficiently far from the jet turbulence. In this sense, while

linear input-output analysis may place it closely to the source region, the location of

a projection surface needs to be carefully determined when we project near-field LES

data to the far-field. To ensure that we are in the linear regime in LES, we choose a

straight cylindrical FW-H surface at 6 jet radii away from the jet exit whose axis lies

along the jet centerline. The projection surface is thus located much closer to the jet

than the Kirchhoff surface in section 3.3.1 was and yet it is far enough to enclose all

noise sources. The FW-H surface extends from x/R = −10 to x/R = 60 and has an

open outflow disk. We assume that the projection surface is sufficiently long and lean

that spurious modes will not contaminate the acoustic response even without closing a

disk.

We examine the far-field pressure along an arc positioned at a distance of 200 jet

radii from the nozzle exit. The observers are distributed with uniform spacing along an

arc, ranging from φ = 10◦ to φ = 150◦ where the polar angle φ is measured from the

downstream jet axis. These angles are determined by the extent of the FW-H surface

with respect to the center of the nozzle exit. It should be noted that upstream and

downstream sponge layers are employed at x/R = −10 and x/R = 60, respectively, to

prevent outgoing waves from reflecting back. For this reason, the choice of arc is also

made to exclude regions outside of the sponge layers to avoid spurious modes. Figure 4.1

shows a schematic representation of this hybrid input-output/FW-H method.

4.2.2 Input and unrestricted output modes

In this chapter, the dynamics of small perturbations around RANS base flows are gov-

erned by the LNS equations. To account for the effects of eddy viscosity, we consider
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Figure 4.1: A schematic representation of the hybrid FW-H/input-output analysis

method. A straight cylindrical FW-H projection surface is located at x/R = 6, de-

noted by a blue straight line. Red dots indicate observers distributed uniformly along

an arc in far-field from φ = 10◦ to φ = 150◦.

the effective viscosity solutions of RANS base flow, which are incorporated within the

LNS equations. We therefore recover tilted vortex structures near the nozzle walls in

input modes. Further details about the effects of eddy viscosity are provided later in

section 6.3. While the output domains are now restricted to an arc at a distance of

200 jet radii from the nozzle exit, the input domains still remain unchanged such that

−10 < x/R < 60 and r/R < 2.90.

Figure 4.2 shows the first four input modes for the Mj = 1.5 isothermal jet. In

the figure the gray rectangle represents the finite nozzle and the black lines indicate

the extent of the input domain. Singular values and few unrestricted output modes are

also shown in figure 4.3 and figure 4.4, respectively. While the output domains are now

restricted to an arc at a distance of 200 jet radii away from the nozzle exit, we still obtain

unrestricted output modes, i.e., the entire system state before the output matrix C is

applied. These modes extend to the entire numerical domain, and are later projected to
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(a) n = 1

(b) n = 2

(c) n = 3

Figure 4.2: The first three input modes of the Mj = 1.5 isothermal jet for forcing

frequency St = 0.33. Contours of the real part of the normalized axial velocity forcing

are shown.

an arc in the far-field. As shown in these figures, input-output modes and gains follow

similar patterns observed in analysis of the LEE in the previous section. In figure 4.2

input modes extend farther downstream as the mode number increases. Figure 4.3 shows

the optimal mode still dominates the acoustic response, and a plateau over several mode

numbers is reported before a sudden drop in singular values. In figure 4.4, as the mode

number increases we find an increasing number of acoustic beams, which rotate towards

the sideline direction and the jet centerline. New beams form between such diverging

beams. Here, black dotted lines in figures represent the location of sponge layers.

We repeat input-output analysis for the Mj = 1.5 supersonic heated jet with the

jet-to-ambient temperature ratio Tj/T∞ = 1.74. Figures 4.5 and 4.6 visualizes the first

three input and output modes, respectively, which correspond to three largest singular

values in figure 4.7. Overall, they follow the same pattern observed in the case of

isothermal jet. Note that at the same forcing frequency examined for the isothermal
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Figure 4.3: Singular values vs. mode number n for the Mj = 1.5 supersonic isothermal

jet at forcing frequency St = 0.33 with the azimuthal mode number m = 0.

jet, the relative gain of optimal mode increases for the heated jet since the Mach wave

radiation becomes more active with jet heating. Moreover, the dropoff location of the

singular values for the heated jet is delayed to n = 38 compared to n = 30 for the

isothermal jet. The shift is expected from the fact that the acoustic Mach number

increases with applied heating so the wavelength of waves which may reside in the input

domain decreases. This may allow a greater number of modes with significant gains

within the domain of the same size.

4.2.3 Reconstructed far-field acoustics

To assess how well output-modes-reconstructed far-field acoustics captures acoustic en-

ergy of an LES, a high-fidelity LES database is projected onto the orthonormal set of

output modes. The LES database is processed in the same way as described in sec-

tion 3.3.1. Since the original LES was performed for a smaller computational domain,
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(a) n = 1 (b) n = 2

(c) n = 3

Figure 4.4: Output modes corresponding to the first three largest singular values for the

Mj = 1.5 supersonic isothermal jet at forcing frequency St = 0.33 with the azimuthal

mode number m = 0. Contours visualize the real part of normalized output pressure

fluctuations. Black lines indicate the extent of sponge layers.
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(a) n = 1

(b) n = 2

(c) n = 3

Figure 4.5: The first three input modes of the Mj = 1.5 supersonic heated jet with

Tj/T∞ = 1.74 for forcing frequency St = 0.33. Contours of the real part of the normal-

ized axial velocity forcing are shown.

the LES database is also projected to an arc at 200 radii from the jet exit. In this chap-

ter we do this using the FW-H method instead of the Kirchhoff method. We examine

the acoustic response at forcing frequency St = 0.33 or equivalently, Sta = 0.5.

Figure 4.8 shows the recovered acoustic energy as a function of the number of re-

tained output modes. Strikingly, a superposition of only 30 output modes captures

more than 90% of the LES acoustic energy. Compared to the results obtained using

the rectangular output domain, this is a significant improvement. One may also notice

that we include sub-optimal modes up to n = 30 where the singular values fall off after

a long plateau as shown in figure 4.3.

The new hybrid input-output/FW-H method successfully captures almost all LES

acoustic energy and we now reconstruct the far-field acoustics as described in figure 4.9.

In this figure the acoustic fields reconstructed by the LES (black line with squares), by

the optimal mode alone (blue line with circles), and by retaining the first 30 modes (red
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(a) n = 1 (b) n = 2

(c) n = 3

Figure 4.6: Output modes corresponding to the first three largest singular values for

the Mj = 1.5 supersonic heated jet with Tj/T∞ = 1.74 at forcing frequency St = 0.33

with the azimuthal mode number m = 0. Contours visualize the real part of normalized

output pressure fluctuations. Black lines indicate the extent of sponge layers.
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Figure 4.7: Singular values vs. mode number n for the Mj = 1.5 supersonic heated jet

with Tj/T∞ = 1.74 at forcing frequency St = 0.33 with the azimuthal mode number

m = 0.

Figure 4.8: Recovered acoustic energy as a function of the number of retained output

modes for the Mj = 1.5 isothermal jet at forcing frequency St = 0.33.
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Figure 4.9: Directivity pattern of the LES acoustic field (black), reconstructed acoustic

field by the optimal output mode alone (blue), and acoustic field reconstructed from a

superposition of 30 output modes (red) measured at a distance of 200 jet radii away

from the jet exit for the Mj = 1.5 isothermal jet.

line with triangles) are placed in one plane. With the optimal mode alone, only about

30% of the LES acoustic energy can be recovered. Also, the optimal mode entirely

misses sideline and upstream propagating noise. Inclusion of 30 sub-optimal modes,

however, correctly captures the directivity of the LES acoustic energy. In other words,

input-output analysis may model the turbulent jet noise, and this supports one coherent

source mechanism for turbulent jets. Sideline noise may also be explained in terms of

non-compact but coherent sources, which is given by input modes as shown in figure 4.2.

In addition to isothermal jets, we also test effects of heating on input-output analysis

of turbulent jets later in section 6.2. As will be discussed in detail in that section, we

find that input modes are indeed active in the presence of realistic forcing. We observe

that, even though applied heating seems to magnify the significance of the optimal

mode under the assumption of uniform forcing such as white noise, sub-optimal modes
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become even more relevant in the presence of realistic forcing extracted from a high-

fidelity LES database. In this sense, we investigate whether output modes recover a

significant portion of an actual LES acoustic field even for heated jets.

We examine small perturbations about the base flow for heated jet at forcing fre-

quency St = 0.33, i.e., Sta = 0.66. By projecting an LES database for the Mj = 1.5

supersonic heated jet with Tj/T∞ = 1.74 onto a set of ooutput modes, we obtain the

recovered acoustic energy as a function of the number of retained output modes in fig-

ure 4.10. Also, the directivity pattern is presented in figure 4.11. In this case we need

more output modes (38 modes) than in the case of isothermal jet since the dropoff in

gains is delayed as a result of applied heating. Compared to the isothermal case, the

optimal mode alone recovers less than 10% of the LES acoustic energy. By including 38

modes, however, almost 95% of the LES acoustic energy is captured. Furthermore, as

shown in figure 4.11 the directivity is predicted more accurately for the heated jet than

for the isothermal jet above. This confirms again that sub-optimal modes are physically

relevant under the realistic forcing and therefore, input-output analysis can be used to

model heated turbulent jets.

4.2.4 Modeling similarity spectra

In this section we repeat input-output analysis over a range of frequencies to investigate

the resulting acoustic spectra for the Mj = 1.5 isothermal jet. We consider axisymmetric

and higher azimuthal wavenumber modes (up to m = 2) at each frequency. For low

frequencies St < 1 and at low polar angles, it is known that sound generated from

turbulent jets are successfully captured by the first three azimuthal components only [51,

52, 63, 96]. At larger polar angles, however, higher azimuthal modes become more

important. The effects of higher azimuthal wavenumber modes are discussed more

thoroughly later in section 6.4.
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Figure 4.10: Recovered acoustic energy as a function of the number of retained output

modes for the Mj = 1.5 heated jet with the jet-to-ambient temperature ratio Tj/T∞ =

1.74 at forcing frequency St = 0.33.

Figure 4.11: Directivity pattern of the LES acoustic field (black), reconstructed acoustic

field by the optimal output mode alone (blue), and acoustic field reconstructed from a

superposition of 30 output modes (red) measured at a distance of 200 jet radii away

from the jet exit for the Mj = 1.5 heated jet with the jet-to-ambient temperature ratio

Tj/T∞ = 1.74.
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For each azimuthal wavenumber and at each frequency, the acoustic field at a dis-

tance of 200 jet radii away from the nozzle exit is obtained using the FW-H solver

implemented within the input-output analysis framework. Assuming all input modes

are uniformly forced (white noise forcing), we superpose the most significant output

modes, starting with the optimal mode and continuing to the dropoff of the singular

values. Since azimuthal wavenumber modes are orthogonal, the resulting acoustic fields

are easily superposed to complete the total spectra. We repeat this process for two

different radiation angles of φ = 30◦ and φ = 90◦. Although we include only the first

three azimuthal modes, our analysis recovers a broadening of the far-field acoustic spec-

tra as the radiation angle increases as shown in figure 4.12. The downstream spectrum

is peaky, reminiscent of the large-scale similarity spectrum (F) that fits a range of ex-

perimental measurements [93]. At high frequencies, the spectrum at φ = 90◦ drops

off less quickly, similar to the behavior of the fine-scale similarity spectrum (G). For

low frequencies, however, acoustic spectrum at φ = 90◦ differs from the G spectrum

and, in fact, drops off almost as sharply as the F spectrum. Similar results have also

been reported in other wavepacket modeling approaches [97]. These results suggest

that sideline also may be explained in terms of large-scale noise using relatively few co-

herent modes [52, 97]. Moreover, our model provides a first principles-based approach

to construct far-field acoustic spectra over a broad range of directivity angles and to

understand them in terms of non-compact sources resembling wavepackets.
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Figure 4.12: Far-field acoustic spectra measured at a distance of 200 jet radii away from

the nozzle exit obtained for m = 0, 1, and 2 for the Mj = 1.5 isothermal jet. As the

radiation angle φ increases, input-output analysis recovers a broadening of the acoustic

spectra.



Chapter 5

Modeling near-field wavepackets

as acoustic sources

5.1 Introduction

In this chapter we focus on an ideally expanded, isothermal, axisymmetric Mj = 0.9

subsonic turbulent jet, matching the conditions of the experiment used as a basis for

the stochatic similarity wavepacket model [97, 98] and those of the high-fidelity LES

performed by Brès et al. [21]. Like supersonic jets, Mj = 0.9 subsonic jets support

instability waves and wavepackets can be predicted by stability analysis based on ei-

ther the PSE or the LEE [4]. Wavepackets, however, seem to underpredict the sound

generated by subsonic jets, particularly in the sideline direction [4, 61]. This underpre-

diction is partially rectified by introducing either jitter or a decoherence scale into the

model [4, 51, 56, 99]. The stochastic similarity wavepacket model incorporates these

effects through a randomized superposition of coherent wavepackets, which, by fitting,

can closely reproduce experimentally measured far-field acoustic spectra [97]. Applying

64



65

input-output analysis, we found acoustic source terms may be linked to several sub-

optimal modes in addition to the wavepacket in chapters 3 and 4. The sub-optimal

modes were especially important for subsonic jets. For this reason, we focus upon

Mj = 0.9 jet in this chapter. We will provide an interpretation of the physics behind

optimal and sub-optimal acoustic sources predicted by input-output analysis and use

this to explain the sound generation mechanisms of subsonic jets. Part of the results

presented in this chapter is to appear in [100] and is also in preparation for future

publication [101].

5.2 Base flow

Figure 5.1 shows contours of axial velocity from a RANS solution of the jet, com-

puted using a modified k− ε turbulence model with coefficients suggested by Thies and

Tam [90]. Flow configurations follow those described in chapter 2, but the geometry

is now normalized by the jet diameter D = 1, instead of the radius R. In this figure,

the flow exhausts from a straight cylindrical nozzle with inner diameter D and finite

thickness t = 0.1D, which is denoted by a white line. Along the wall, no-slip boundary

conditions are employed, allowing boundary layers to grow as the flow travels down-

stream. The upstream boundary conditions are chosen to produce the desired jet exit

velocity, pressure, and temperature at x/D = 0. In terms of the jet diameter D, the

jet Reynolds number is given by Re = ρjujD/µ = 2× 105, where µ is the constant dy-

namic viscosity across the full numerical domain. Here, ρj and uj are respectively the

density and the velocity at the nozzle exit as in the previous chapters. While figure 5.1

visualizes only part of it, the actual computational domain spans from x/D = −10 to

x/D = 40 in the axial direction and from r/D = 0 to r/D = 25 in the radial direction.

Sponge layers are employed at x/D = −5, x/D = 35, and r/D = 20.
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Figure 5.1: Contours of axial velocity from a RANS solution of a round Mj = 0.9

subsonic jet. The velocity contours are normalized by the velocity at the nozzle exit at

x/D = 0.

Figure 5.2: Contours of the TKE for the Mj = 0.9 subsonic jet in logarithmic scale

normalized by the square of the jet exit velocity.

5.3 Turbulent kinetic energy (TKE)-weighted input modes

Physically, in high-speed jets forcings radiating far-field sound come from turbulent

motion in jet flows. To ensure this is the case, we weight input forcings by the TKE as

shown in figure 5.2, which is evaluated by the same RANS model as used in computing

the base flow. In this way only acoustically relevant aerodynamic sources are distilled

to investigate input forcings and acoustic response produced by them.

A schematic description of the modified system with TKE-weighted input forcings

is given in figure 5.3. By applying the TKE weighting matrix denoted by WTKE , the

modified input forcings f̃ are written as:

f̃ = WTKEf. (5.1)
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Here, the matrix A is associated with the LNS equations. The resolvent R remains

unchanged since it uniquely depends on the base flow. The matrix C also remains

the same as in the previous chapter. In this way the original unweighted system in

equations (2.38) and (2.39) becomes:

q̇ = Aq +Bf = Aq + B̃f̃ , (5.2)

y = Cq, (5.3)

where

B̃ = BW−1TKE . (5.4)

Because we are interested in output produced by the weighted inputs f̃ , we consider a

new transfer function H̃ corresponding to the red box in figure 5.3. This new transfer

function H̃ is related to the transfer function H in the original, unweighted system such

that:

H̃ = C(zI −A)−1B̃ = HW−1TKE . (5.5)

Consequently, by substituting equations (5.1) and (5.5) into the Arnoldi iteration of

H†H:

fnew = H†Hf = WTKEH̃
†H̃Wtkef = WTKEH̃

†H̃f̃ , (5.6)

we obtain that:

f̃new = W 2
TKEH̃

†H̃f̃ . (5.7)

Note that without weighting by the TKE, i.e., when WTKE = I, the system returns to

the original, unweighted system described in section 2.3.
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Figure 5.3: A schematic representation of the modified system with the TKE weighting

matrix indicated by WTKE .

5.4 Modeling similarity wavepackets

5.4.1 Input and unrestricted output modes

Applying the hybrid input-output/FW-H method, we obtain a spectrum of singular

values that represent gains between inputs and outputs. In figure 5.4 we show the

first 50 singular values, ordered by amplification factor, for the Mj = 0.9 jet at a

forcing frequency of St = 0.59. For the purposes of this section, which focuses upon

the physical meaning of the results of input-output analysis, it is sufficient to consider

axisymmetric disturbances (m = 0) only. Our input-output formulation can handle

higher azimuthal wavenumbers, however, which become important especially to describe

noise radiation in the sideline direction. The first 29 singular values show a relatively

slow decrease in amplification factor, which means that the first 29 input-output modes

produce approximately the same amount of far-field noise per unit energy of forcing.

This is consistent with previous results for subsonic jets, where sub-optimal modes

were found to produce nearly the same amplification as the optimal mode. This is in

contrast, however, to supersonic jets where the optimal mode becomes dominant as

shown in section 3.2.
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Figure 5.4: Singular values as a function of the mode number for the Mach 0.9 subsonic

jet at forcing frequency St = 0.59.

Along with the gains, the singular value decomposition also produces orthogonal sets

of corresponding input and output modes. Figure 5.5 shows the first four input modes

corresponding to the four largest singular values shown in figure 5.4. In figure 5.5, the

gray rectangle represents the finite nozzle, which ends at x/D = 0. Contours showing

the real part of the axial velocity forcing reveal that the input modes to have significant

structure. The optimal input mode (n = 1), in particular, is clearly a wavepacket.

At this frequency, the wavepacket is centered close to the end of the potential core of

the jet, and extends several diameters upstream along the jet shear layers as well as

downstream along the jet centerline.

While the leading input mode represents the optimal way to force a jet to make

noise, figures 5.5(b)-(d) show sub-optimal input modes (n = 2, 3, 4), which produce

nearly the same amount noise as the optimal mode. They are active along upstream and

downstream edges of the wavepacket associated with the optimal mode. As the mode

number increases, the sub-optimal input modes progressively reach further upstream

and downstream, as observed in previous chapters. To understand the pattern that

they follow, it is helpful to to examine the sound fields they produce.
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(a) n = 1

(b) n = 2

(c) n = 3

(d) n = 4

Figure 5.5: The first four input modes of the Mj = 0.9 isothermal jet for forcing

frequency St = 0.59. Contours visualizes the real part of the normalized axial velocity

forcing.
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While the output domain is restricted to an arc at a distance of 100 jet diameters

away from the nozzle exit, we can still obtain near-field sound associated with input

modes by examining the system state after application of the resolvent operator, but

before application of the output matrix C. We call these states “unrestricted” output

modes. These modes extend over −5 < x/D < 35 in the axial direction and over

0 < r/D < 20 in the radial direction, respectively. The output matrix C later projects

them to an arc in the far-field. As shown in figure 5.6, unrestricted outputs resulting

from these inputs follows a similar pattern. Black dashed lines in this figure represent

the upstream, downstream, and lateral sponge layers. The pattern is now clear: the

optimal mode radiates a beam of acoustic radiation directed toward the peak jet noise

angle for this frequency. Each sub-optimal output mode is active along the edges of the

preceding mode. This creates two beams of acoustic radiation in the first sub-optimal

mode, three in the second, and so on.

5.4.2 Asymmetric pseudo-Gaussian envelope functions

Input modes correspond precisely to a decomposition of the acoustic source terms in

an acoustic analogy. Our results indicate that these source terms can be understood in

terms of wavepackets, which maintain correlation over significant distances. To char-

acterize the physics of this wavepacket source, we consider the (complex) amplitude of

the optimal input mode (as shown in figure 5.5(a)) along the nozzle lipline (r/D = 0.5).

The blue solid line in figure 5.7 represents the absolute magnitude of the x-component

of the input forcing for the optimal mode. Along this slice, we find a wavepacket

that peaks around the end of the potential core (at x/D = 6). Although the effect

is subtle, this wavepacket grows slightly faster along its upstream edge than it de-

cays downstream. Such asymmetric wavepackets have been observed in experiments
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

Figure 5.6: The first four unrestricted output modes of the Mach 0.9 subsonic jet at

forcing frequency St = 0.59. Contours of the real part of normalized output pressure

fluctuations are shown.

and simulations and have been modeled theoretically by a variety of different func-

tions [56, 62, 63, 102, 103, 104]. One of the most popular functional forms is the

following asymmetric pseudo-Gaussian:

ux(x) =


exp

[
−
(
x−b1
c1

)p1]
, if x ≤ b1,

exp
[
−
(
x−b1
c2

)p2]
, if x ≥ b1,

(5.8)

where b1 locates the peak of the wavepacket envelop, c1 and c2 respectively determine

widths of the amplifying and decaying parts, and p1 and p2 represent the exponents,

respectively. Applying a nonlinear least squares fitting algorithm, we find that b1 =

5.9375D, c1 = 4.0599D, p1 = 2.2545, c2 = 4.5584D, and p2 = 2.2517 produce a pseudo-

Gaussian curve that almost exactly matches our wavepacket. The fact that p1 > p2
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Figure 5.7: The lipline wavepacket measured at r/D = 0.5 (blue solid line) modeled by

an asymmetric pseudo Gaussian wavepacket (red dashed line) for the optimal mode of

the Mj = 0.9 subsonic jet at forcing frequency St = 0.59.

means that the wavepacket amplifies along its upstream edge slightly faster than it

decays. This asymmetry is also indicated by c1 < c2. Also, because both p1 and p2

are approximately equal to two, the shape of our wavepacket is nearly (but not quite)

Gaussian. The shape of the wavepacket, and in particular its asymmetry, are important

factors determining its efficiency at generating acoustic radiation [104].

5.4.3 Similarity wavepackets

Optimal Mode

Although the lipline wavepacket associated with optimal input mode is well-described

by a simple asymmetric function at one frequency, we repeat the modeling procedure

over a range of frequencies. Motivated by the self-similarity of turbulent jets, we inves-

tigate whether similar asymmetric pseudo-Gaussian wavepacket functions can describe

our input modes over different frequencies. Other wavepacket modeling approaches also

have yielded self-similar asymmetric bell-shaped wavepackets over a range of frequen-

cies [97, 105]. Naturally, the next task would be to construct a universal wavepacket
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model, which can be widely used for a range of frequencies, using minimum degrees of

parameters; such as the first moment (mean or centroid of a wavepacket in the axial

direction) µ1 and the standard deviation SD, which are respectively defined as:

µ1 =

∫
xux(x)dx∫
ux(x)dx

(5.9)

and

SD =

√∫
(x− µ1)2 ux(x)dx∫

ux(x)dx
, (5.10)

where E represents the expected value.

Figure 5.8 shows these quantities as a function of frequency. For sufficiently high

frequencies, both the mean and standard deviation show a power-law dependence. As

presented in figure 5.8(a) the mean location of the lipline wavepacket µ1 shifts upstream

as forcing frequency increases. Excluding few low frequency cases, µ1 varies as St−0.4858.

Similarly, the standard deviation given in figure 5.8(b) follows the power-law form,

though it decays slightly less rapidly than the mean as St−0.4094. We observe such

similarities for cases over St > 0.5, and this agrees the result of theoretical approach

by Papamoschou [97] who reported the similarity wavepackets for turbulent jets for

St > 0.55.

If we further take into account the virtual origin of a jet based on the momentum

thickness, the decay of the mean and standard deviation becomes slightly more rapid.

By considering an axial co-flow, the momentum thickness of a jet [58] is defined as:

δθ(x) =

∫
0

∞
ρ̄(x, r)

ū(x, r)− uco
ū(x, 0)− uco

(
1− ū(x, r)− uco

ū(x, 0)− uco

)
rdr, (5.11)

and it is valid until the end of the potential core (x/D ≈ 5). Here, ρ̄ and ū represent
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(a) (b)

Figure 5.8: Model parameters as a function of frequencies for the lipline wavepacket:

(a) the mean decays and (b) the standard deviation.

the density and the axial velocity of a base flow, and uco means a uniform axial co-

flow. Using this definition, the momentum thickness of the subsonic jet is shown in

figure 5.9 for 0 ≤ x/D ≤ 5, yielding a positive virtual origin x0 = 0.5213D. The mean

of the lipline wavepacket with respect to the virtual origin is then measured as shown in

figure 5.10, decaying as St−0.5380. Even after considering the virtual origin, the variation

of the standard deviation in frequency remain almost the same as before.

Furthermore, we compute the skewness of wavepackets for each frequency defined

by:

SK = E

[
(x− µ1)3

SD3

]
(5.12)

where E means the expected value, SD denotes the standard deviation, and µ1 repre-

sents the centroid of a wavepacket in the axial direction, respectively. Using this, fig-

ure 5.11 indicates positively skewed wavepackets for almost all frequencies as expected

from long decaying tails. For frequencies St > 0.5 wavepackets becomes more skewed



76

Figure 5.9: Momentum thickness of the Mj = 0.9 subsonic jet. Intercept of the momen-

tum thickness profile with the abscissa computes the virtual origin x0 = 0.5213D.

Figure 5.10: The mean of the lipline wavepacket as a function of frequency, measured

from the virtual origin based on the momentum thickness.
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Figure 5.11: Skewness of the lipline wavepacket as a function of forcing frequency.

as frequency increases, but overall, the variations of skewness remain small, suggesting

similarity wavepackets in frequency.

Finally, we construct wavepacket models, which are functions of a new variable η

transformed by the mean source location µ1 and scaled by the standard deviation SD

such as:

η =
x− µ1
SD

. (5.13)

Here, instead of using two parameters c1 and c2 that control the widths of two parts of

wavepackets separately, the standard deviation is chosen as a single unified parameter

to describe the shape of wavepacket envelopes. Figure 5.12 shows the overall collapse of

wavepacket envelopes taken over a range of frequencies between St = 0.5 and St = 1.2.
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Figure 5.12: Collapse of scaled lipline wavepackets obtained for frequencies 0.5 < St <

1.2, suggesting simple similarity wavepacket models based on the similarity variable η.

Sub-optimal modes

Sub-optimal modes appear to be composed of multiple wavepackets (see figure 5.5).

The envelopes of these component wavepackets are similar in shape to that associated

with the optimal mode. Because each sub-optimal mode contains multiple wavepackets,

modeling them is more complicated. Moreover, as the frequency changes, a group of

wavepackets moves upstream and sometimes merges into the wavepacket in a boundary

layer developed along the nozzle wall. It thus requires a great care to track the same

type of wavepackets and model them as similarity wavepackets in frequency.

In figure 5.13 we model wavepackets taken along the jet lipline (r/D = 0.5) for the

first sub-optimal mode (n = 2) by asymmetric pseudo-Gaussian functions. In contrast

to the optimal mode, the first sub-optimal mode captures two wavepackets downstream

of the nozzle exit (x/D = 0). They, however, bear a similar shape to that captured by

the optimal mode, and are approximated using the same type of asymmetric pseudo-

Gaussian function given in equation (5.8). Here, the blue solid line represents the

input-mode-captured wavepacket, while the red dashed line and the green dashed line
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Figure 5.13: Wavepackets taken along the lipline for the first sub-optimal mode (n = 2)

at St = 0.59 modeled using asymmetric pseudo-Gaussian functions.

denote modeled wavepackets.

Figure 5.14 shows wavepackets taken along the inner lipline for mode number n = 3

(the next sub-optimal mode). We observe three wavepackets, denoted by W1, W2,

and W3, measured from the upstream. Each wavepacket is positively skewed and bell-

shaped as in other cases. We therefore expect that a similarity wavepacket model could

be constructed, even for this case.

The pattern shown in figures 5.12 through 5.14 is approximately the same that

obtained by taking a sequence (of magnitudes) of axial derivatives of the optimal

wavepacket envelope. Of course, the input modes are two-dimensional, so their inter-

relationship may be more complicated than this. Still, the sub-optimal modes appear to

be associated with dynamics in the regions where the amplitude of the preceding mode

in the sequence is undergoing the most change (i.e., where its gradient is greatest). In

the next section, we discuss physical mechanisms that could lead to sources that can

align with such a pattern, thereby creating noise.
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Figure 5.14: Wavepackets taken along the lipline for the second sub-optimal mode (blue

solid line) at St = 0.59 modeled using asymmetric pseudo-Gaussian functions. W1:

red dashed line, W2: green dashed line, and W3: black dashed line, counted from the

upstream.

5.4.4 Physical origin of sub-optimal input modes

In previous sections, we found that the optimal input mode clearly reveals a wavepacket

whose envelope corresponds to an asymmetric pseudo-Gaussian function. Moreover, we

observed that the sub-optimal input mode captures structures that follow upstream

and downstream edges of the optimal wavepacket. As shown in figures 5.13 and 5.14,

the sub-optimal mode shows increasingly many humps as the mode number increases.

The humps in each sub-optimal mode appear at locations where the largest differences

would occur, if the wavepackets in the preceding mode were perturbed slightly in their

axial position. This type of uncertainty in a wavepacket’s axial position is known as

“jitter” [4, 51, 52]. Jitter arises from the fact that high-speed jets are susceptible

to variations at very low frequency, much lower than the frequencies associated with

wavepackets. On the timescales of the wavepacket, this very low frequency variation

appears to correspond to changes in the base flow. The wavepacket responds to slow

variations in the base flow by changing its position (and perhaps, shape). While axial
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jitter of the optimal wavepacket leads to a double-humped shape corresponding to the

first sub-optimal mode, axial jitter of the first sub-optimal mode produces a shape with

four humps. As shown in figure 5.14, the second sub-optimal mode has three humps.

Alternatively, we consider axial decoherence [56, 106] as another possible mechanism

by which acoustic sources embedded in the jet turbulence may align with the pattern

of sub-optimal modes that we find. Entire wavepackets are almost never visible in

instantaneous snapshots of the near-field turbulent jets. Instead, one observes “pieces”

of wavepackets that persist over a maybe only a few diameters before losing coherence.

Inside these windows of coherence, fluctuations grow or decay in accordance to the

overall wavepacket envelope. While the growth and decay of disturbances are governed

by dynamics, wavepackets have a statistical nature as turbulence drives instability waves

into and out of coherence. An entire wavepacket, therefore, should be thought of as

the tendency of the base flow to make disturbances grow or decay in accordance with

instability physics. Because these physics do not change in time for a given base flow,

a wavepacket is also constant and is determined by dynamics.

To model decoherence, we perturb the optimal wavepacket by small random forcing,

and extract short, stochastic windows of it, positioned between −5 ≤ x/D ≤ 15. The

constant window width w is chosen to be as large as the coherence length-scales of the

axial velocities such that w = 2D. Outside of a given window, we zero all other fluctua-

tions. We repeat this process to build a stack of different realizations, visiting a different

part of the wavepacket each time and reproducing the effect of its axial decoherence.

Singular value decomposition applied to this collection yields its dominant dynamical

features. As expected, the first singular vector recovers the original wavepacket (not

shown). The right-hand column of figure 5.15 shows the second and third singular vec-

tors obtained from the decomposition. While there are differences, they reproduce the

corresponding sub-optimal modes fairly well. In particular, the third singular vector
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(a) n = 2 (b) n = 2

(c) n = 3 (d) n = 3

Figure 5.15: By taking singular value decomposition of the matrix whose columns con-

sists of a series of axial snapshots of the optimal wavepacket, the left singular vectors

(b,d) qualitatively reproduce the actual input modes (a,c) for St = 1.18.

contains three humps just like the second sub-optimal mode. This therefore conclude

that axial decoherence is a physical mechanism by which acoustic sources in the jet

align well with input modes predicted by input-output analysis.

We should note that unlike the connection between input and output modes, there is

not necessarily a causal relationship between axial decoherence modes and input modes.

If it occurs, jitter may also project a significant portion of the sources onto the input

modes. From our analysis, it seems that axial decoherence aligns even better with the

input modes, and thus is an efficient mechanism of noise production.
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5.5 Input-output analysis of jet noise radiating to specific

angles

Previously, we have described how the optimal and sub-optimal modes cooperate to

complete the overall acoustic field spanning a wide range of polar angles. Strong direc-

tional radiation at relatively low angles is mostly formed by the optimal mode. Sideline

noise, on the other hand, is associated with sub-optimal modes, which form a sequence

where each mode follows the edges of its predecessor. Physically, sub-optimal modes

can be interpreted as the results of jitter and/or decoherence of the optimal wavepacket

as discussed in the previous section. Therefore, sub-optimal modes, and by extension

sideline noise, may be seen as consequences of large-scale acoustic sources. This pro-

vides an alternative view to the two-source theory of jet noise [91, 93, 107], although it

agrees well with stochastic similarity wavepacket models of jet noise [97, 105].

To further test the hypothesis that sideline noise is connected to large-scale flow

features, we consider input modes that radiate optimally to a single angle. An advantage

of our analysis is that the operators B and C can be adjusted to investigate different

physical questions. In this section we modify the output operator C to measure far-field

sound at only a single observer angle. At the peak jet noise direction for a specific

frequency, we expect to recover (and do recover) the same optimal input mode as in

the previous sections, where noise radiation to all angles was considered. At the same

frequency, however, we investigate whether the sub-optimal modes remain the optimal

way to produce sound at angles not corresponding to the peak.

If the operator C is restricted to a single observer angle, then the operator H̃†H̃ is

of rank 1 so that only one singular value of H̃ may be computed. To obtain additional

information, instead of an observer located at a single point, we consider acoustic radi-

ation to a small arc spanning 1◦, centered around the angle of interest. We have found
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that resolving this small arc with five observer locations is sufficient (finer resolution

does not change the following results significantly).

In figure 5.16(a) and (b), we consider axisymmetric disturbances only since they

alone recover nearly all of the total sound for small radiation angles. Figure 5.16(a)

shows the optimal input mode for φ = 40◦, which corresponds to the peak noise direction

at this frequency, and this mode resembles the optimal input mode for radiation to the

full arc, which is given in figure 5.5(a). Additionally, the input mode for observer

angle φ = 20◦ as shown in figure 5.16(b) recovers the first sub-optimal input modes

given in figure 5.5(b). Furthermore, by following a theoretical directivity obtained by

Papamoschou [97], which predicts that noise emission at 60◦ and 90◦ for St ≈ 0.5

strongly depends on higher azimuthal modes—for example, m = 4 and higher—, we

decide to consider small disturbances with m = 4 for observers at these two angles in

Figure 5.16(c) and (d). In each sub-figure visualizes the real part of the normalized

axial velocity forcing.

In this figure, while input mode for higher angles do not correspond to sub-optimal

modes, they still are wavepackets. A rank-1 approximation does not necessarily have

to form wavepackets; incoherent fine-scale structures may optimally produce noise at

a single location close to the sideline, although a superposition of large-scale coherent

structures obtained in a set of input modes generate sound in far more extended re-

gion. Nevertheless, this figure confirms the existence of well-organized structures that

create far-field sound in the sideline direction, underpinning a unified noise generation

mechanism in a form of wavepackets regardless of radiation angles. While each opti-

mal input mode obtained from a rank-1 approximation radiate sound, exclusively at

a specified angle, we may apply the FW-H projection method to unrestricted output

modes. Using a cylindrical projection surface at r/D = 6, figure 5.17 shows that the

optimal input wavepackets resulted from a rank-1 approximation propagate sound wave
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(a) φ = 20◦ and m = 0

(b) φ = 40◦ and m = 0

(c) φ = 60◦ and m = 4

(d) φ = 90◦ and m = 4

Figure 5.16: Rank-1 approximations of input modes for single observers at various angles

at forcing frequency St = 0.59.
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in the designated direction. Accordingly, we view these input wavepackets as a sort of

generalization or union of the optimal and sub-optimal input wavepackets, educed to

radiate sound in a desired angle.

Another way to validate forcings captured by rank-1 approximations and associated

acoustic response may be modeling a directivity pattern using 141 single probes and

testing whether the resulting directivity recovers that predicted by a full arc spanning

φ = 10◦ to 150◦ as an output domain. Here, sound radiated to the full arc from

axisymmetric disturbances at forcing frequency St = 0.59 is obtained by superposing 29

output modes under the assumption of white noise forcing, which means that each mode

is excited equally with unit energy. As shown in figure 5.18 we find that the acoustic

field predicted by rank-1 approximations (red dotted line) agrees well with the field

obtained for the full-arc output domain (blue solid line) at low polar angles. The two

curves, however, deviate from each other at angles larger than φ = 70◦. Nevertheless,

it should be noted that the directivity for the full-arc is yielded by assuming uniform

forcings. Figure 5.16 shows that the wavenumber of input wavepackets decreases while

the radiation angle increases so that a given wavepacket envelope appears more compact

at a given forcing frequency. This enhances radiative efficiency of wavepackets and

also the rotates radiation angle into the sideline direction [104, 108]. In sum, rank-

1 approximation of input wavepackets for a single observer may be educed from the

optimal and sub-optimal wavepackets captured by a full-arc output domain, having

physical meanings. Based on the fact that it recovers large-scale coherent structures

for a observer in any direction, one coherent source mechanism may be justified for

turbulent jet noise again.
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(a) φ = 40◦ and m = 0

(b) φ = 60◦ and m = 4

(c) φ = 90◦ and m = 4

Figure 5.17: Acoustic far-field at 100 diameters away from the nozzle exit for forcing

frequency St = 0.59, predicted by applying the FW-H projection method to acoustic

response obtained from a rank-1 approximation.
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Figure 5.18: Comparison of the directivity patterns for axisymmetric disturbances at

St = 0.59.

Far-field spectra

Figure 5.19 shows contours of far-field SPL over radiation angles from φ = 20◦ to 120◦

and frequencies for 0.05 < St < 1. At each frequency we superpose the optimal and

several sub-optimal acoustic responses until we meet the dropoff of the corresponding

singular values. In this way figure 5.19 visualize contour maps of far-field spectra on

the Strouhal number-radiation angle plane. We consider axisymmetric (m = 0), helical

(m = 1), and double-helical (m = 2) azimuthal modes in figures 5.19(a), (b), and (c),

respectively, to reconstruct the SPL level at a given frequency and a radiation angle.

For m = 0, the far-field spectrum has a peak at φ = 40◦ and St = 0.32. At higher

angle the spectrum does not broaden with respect to frequency. As the azimuthal

wavenumber modes increases, however, the spectrum shifts to higher frequencies as

shown in figures 5.19(b) and (c). Adding the spectra from m = 0, 1, and 2 results in

figure 5.19(d). The spectra are significantly broader than figure 5.19(a). In other words,

at high frequencies and radiation angles where higher azimuthal modes required to

capture full far-field acoustics, our analysis would recover broadened spectra, compared
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(a) m = 0 (b) m = 1

(c) m = 2 (d) m = 0, 1, and 2

Figure 5.19: Far-field acoustic spectra for the Mj = 0.9 subsonic jet on the Strouhal

number-radiation angle plane.

to the spectra at low radiation angles where the axisymmetric mode is significant.

This may be viewed more clearly by examining far-field pressure of a single observer

at φ = 90◦, which represents the sideline noise direction, over a range of frequencies.

As shown in figure 5.20 the axisymmetric mode generates the loudest sound for low

frequencies St < 0.4. Higher azimuthal modes predict much weaker sound at these

frequencies. As we further increase forcing frequencies, however, these modes dominate

the acoustic response over the axisymmetric mode, yielding more flattened spectra.

Finally, figure 5.21 compares spectra at φ = 40◦ to those at 90◦ by considering the first

5 azimuthal modes at high radiation angle. For low frequencies, we predict acoustic
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Figure 5.20: Far-field acoustic spectra of the Mach 0.9 subsonic jet for a single observer

at φ = 90◦. We examine acoustic responses of various azimuthal modes from m = 0 to

4.

spectra as steep as large-scale similarity spectrum (denoted by F spectrum) even at the

high radiation angle; nevertheless, as frequency increases, they become broaden as the

radiation angle increases.

To further understand the wavepackets producing sound at high angles, we consider

sub-optimal forcings from the small arc calculation. We distribute five observers along

a small arc whose extent is given by 1◦, centered at either 40◦ or 90◦ to represent

the low and high radiation angles. In other words, we take rank-5 approximations

of acoustic response of the Mach 0.9 subsonic jet. While we consider axisymmetric

disturbances for the low angle, higher azimuthal mode (m = 4) is examined for the high
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Figure 5.21: Far-field acoustic spectra of the Mach 0.9 subsonic jet for single observers

at φ = 40◦ and 90◦, indicating broadening as the radiation angle increases for high

frequencies.
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(a) n = 1 (b) n = 2

Figure 5.22: The first two unrestricted output modes of the Mach 0.9 subsonic jet at

forcing frequency St = 0.59 for a small arc centered at φ = 40◦. Contours of the real

part of normalized output pressure fluctuations for m = 0 are shown.

(a) n = 1 (b) n = 2

Figure 5.23: The first two unrestricted output modes of the Mach 0.9 subsonic jet at

forcing frequency St = 0.59 for a small arc centered at φ = 90◦. Contours of the real

part of normalized output pressure fluctuations m = 4 are shown.

angle. At φ = 90◦ the ratio of the optimal to sub-optimal gains σ1/σ2 is computed as

8.366, while it is 13.67 in the low radiation angle case. The ratios of the optimal to

higher-rank sub-optimal gains also follow this trend. Moreover, figures 5.22 and 5.23 are

unrestricted output modes for respectively φ = 40◦ and 90◦, showing that sub-optimal

output modes follow the edges of acoustic beams obtained in the optimal mode. In the

sideline direction, more degrees of freedom are needed as azimuthal mode number and

frequency increases, leading to broadening of acoustic spectra [109].



Chapter 6

Parametric studies

In this chapter we discuss dependence of input-output analysis on parameters such as

the Mach number, applied heating, eddy viscosity, and azimuthal wavenumbers. Part

of the materials presented in this chapter is based on the publications [68, 110].

6.1 Effects of Mach numbers

In addition to the Mj = 0.9 and Mj = 1.5 jets discussed so far, we computed 11 other

RANS base flows corresponding to high-speed isothermal jets. The entire database

covers jet Mach numbers ranging from Mj = 0.6 to 1.8 in increments of 0.1. Figure 6.1

compares centerline axial velocity for these base flows. Note that the potential core

length increases slightly with increasing jet Mach number.

In this section the dynamics of small perturbations are governed by the LEE. Fig-

ure 6.2 shows resulting singular values for several subsonic and supersonic jets at the

same jet Strouhal number St = 0.33. The singular values suddenly drop after a certain

mode number, and this sudden decrease is delayed with increasing jet Mach number.

For example, the singular values drop after n ≈ 15 for the Mj = 0.9 subsonic jet and

93



94

Figure 6.1: Streamwise distribution of axial velocity on the jet centerline.

n ≈ 30 for the Mj = 1.5 supersonic jet, respectively.

We find, however, that many of the sub-optimal singular values collapse to a single

curve if we fix the acoustic Strouhal number Sta instead of the jet Strouhal number

St. The acoustic Strouhal number controls the wavelength of acoustic waves outside of

the jet. Figure 6.3 shows singular values for a number of different jet Mach numbers

for fixed acoustic Strouhal number Sta = 0.50. This result implies that the acoustic

Strouhal number may be used as a new scale to anticipate the sudden drop of gains in

the input-output behavior of jet noise.

While many of the singular values collapse for fixed Sta, the optimal mode and first

few sub-optimal modes remain sensitive to jet Mach number. Here, we again observe

that the first singular value dominates the response of supersonic jets, whereas sub-

optimal modes play a more significant role for subsonic jets. Using equation (3.1),

figure 6.4 shows the increase in SPL owing to sub-optimal modes as a function of jet

Mach number. We interpret the drop in ∆SPL at Mj ≈ 1.3 to be a consequence of

the onset of Mach wave radiation. Assuming that the optimal mode corresponds to an
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Figure 6.2: Optimal gain vs. mode number for different jet Mach numbers keeping the

jet Strouhal number fixed St = 0.33.

Figure 6.3: Optimal gain vs. mode number for different jet Mach numbers keeping the

acoustic Strouhal number fixed Sta = 0.50.
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Figure 6.4: Noise increase including sub-optimal modes with respect to the jet Mach

number.

instability wavepacket with convection velocity uc between 0.65uj < uc < 0.8uj [91, 107],

then we can expect the onset of Mach wave radiation to occur between 1.3 < Ma < 1.6.

Mach wave radiation occurs when disturbances propagate along the jet supersonically

with respect to the ambient speed of sound, coupling near-field pressure disturbances

to far-field acoustic radiation in a linear fashion [91].

6.2 Effects of heating

6.2.1 Base flows

To study effects of applied heating on small perturbations in high-speed turbulent jets,

which are governed by the LEE, we produce RANS solutions over a range of jet Mach

numbers with different amounts of applied heating. As the core of the jet heats above

ambient, the speed of sound cj inside the jet increases, which means that the jet Mach

number decreases for constant jet velocity uj . In this case, it is useful to use Mach
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Figure 6.5: Contours of axial velocity from a RANS solution of a round Mj = 1.5

supersonic heated jet with Tj/T∞ = 1.44. The velocity contours are normalized by the

velocity at the nozzle exit at x/R = 0.

number based on the constant speed of sound c∞ in the ambient fluid, acoustic Mach

number Sta. In this section, we vary both the jet and acoustic Mach numbers such that

0.6 < Mj < 1.5 and 0.6 < Ma < 2.0. In each case, we consider only heated jets such that

Mj < Ma, that is, Tj > T∞. Except for this, other properties and flow configurations are

remained the same as described in chapter 3. Figure 6.5 shows contours of axial velocity

from a RANS solution of a Mj = 1.5 heated jet with the jet-to-ambient temperature

ratio Tj/T∞ = 1.44.

6.2.2 Optimal and sub-optiml modes

Figure 6.6 shows the first 50 singular values for the Mj = 1.5 jet with Tj/T∞ = 1.44, or

equivalently Ma = 1.8, for the forcing frequency St = 0.28. The optimal gain for this

heated jet is found to be σ1 = 3.26 × 102, which is larger than that for the isothermal

jet with the same jet Mach number.

Figure 6.7 and figure 6.8 respectively visualize the first four output and input modes

for the heated jet. The output modes, which are restricted to be pressure perturbations

in the region far away from the jet, follow the same pattern as obtained for isothermal

jets in section 3.2.1 in terms of the increasing number of beams and progressively rotating

radiation angles with respect to the mode number. The optimal mode shows a single

strong acoustic beam radiating at an angle of 32◦ in the direction of peak jet noise
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Figure 6.6: Singular values vs. mode number for the Mj = 1.5 jet with Tj/T∞ = 1.44

at forcing frequency St = 0.28.

measured from the downstream jet axis, which is slightly larger than the isothermal

case. As the mode number increases, additional beams appear at both larger and

smaller radiation angles.

The input modes are restricted to the region near to the jet turbulence, as repre-

sented by the rectangle in figure 6.8. The choice of the input domain is also consistent

with the study of input-output analysis for isothermal jets in chapter 3. Compared to

that obtained for the isothermal jet, the optimal input mode in this case is more highly

concentrated upstream of the nozzle exit. Similar to the isothermal sub-optimal input

modes, sub-optimal inputs for this heated jet extend downstream farther than the op-

timal mode. It is found that the sub-optimal inputs for the heated jet, however, align

better with the shear layer in comparison with those obtained for the isothermal case.

We repeat input-output analysis for a Mj = 0.9 subsonic heated jet with Tj/T∞ =

1.78, or equivalently Ma = 1.2, for the forcing frequency St = 0.42. This jet Strouhal

number yields the same acoustic Strouhal number Sta = StMa = 0.50 as in the case
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(a) n = 1 (b) n = 2

(c) n = 3 (d) n = 4

Figure 6.7: The first four input modes of the Mj = 1.5 supersonic heated jet with

Tj/T∞ = 1.44. Contours visualize the real part of the normalized output pressure

perturbations for forcing frequency St = 0.28.
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(a) n = 1

(b) n = 2

(c) n = 3

(d) n = 4

Figure 6.8: The first four input modes of the Mj = 1.5 supersonic heated jet with

Tj/T∞ = 1.44. Contours visualize the real part of the normalized axial velocity forcings

for forcing frequency St = 0.28.
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(a) n = 1 (b) n = 2

Figure 6.9: The first two input modes of the Mj = 0.9 subsonic heated jet with Tj/T∞ =

1.78. Contours visualize the real part of the normalized output pressure perturbations

for forcing frequency St = 0.42.

of the heated supersonic jet examined earlier. This is important because the acoustic

Strouhal number was found to be a new dimensionless variable to predict the input-

output behavior of jet noise in the previous section.

Figure 6.9 visualizes the first two output modes for the subsonic heated jets. While

output modes show the same pattern as obtained for the supersonic heated jet, the

direction of peak jet noise in this case is aligned at smaller angle of 20◦ as shown in

figure 6.9(a).

In the study of input-output analysis for isothermal jets we showed that the optimal

and the first sub-optimal (n = 2) input modes extended farther downstream of the

nozzle exit. Unlike the subsonic isothermal jet case in section 3.3.2, figure 6.10(a) shows

that the optimal inputs of this heated jet are extremely confined to the vicinity of the

nozzle exit. While the first sub-optimal mode shown in figure 6.10(b) extends farther

downstream, it is still shifted upstream, compared to the isothermal subsonic jet with

the same jet Mach number. This indicates that applied heating makes a subsonic jet

behave more like a supersonic jet; in other words, in the heated subsonic jet the largest

singular value may be much greater than the second singular value. Figure 6.11 shows
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(a) n = 1

(b) n = 2

Figure 6.10: The first four input modes of the Mj = 0.9 supersonic heated jet with

Tj/T∞ = 1.78. Contours visualize the real part of the normalized axial velocity forcings

for forcing frequency St = 0.42.

singular values vs. mode number for this subsonic heated jet and confirms that optimal

gain increases with applied heating. Note that the first few sub-optimal gains were

comparable to the optimal gain in isothermal subsonic jets.

6.2.3 Sound pressure level increase with applied heating

In section 3.3, it was shown that including sub-optimal modes recovers a fraction of

the missing sound. To investigate the effect of heating on the sound recovery by sub-

optimal modes, we consider 28 RANS base flows whose jet Mach number and acoustic

Mach number vary such that 0.6 < Mj < 1.5 and 0.6 < Ma < 1.8. Similarly to

this, we compute the amount of recovery in SPL by including sub-optimal modes using

equation (3.1). Figure 6.12 shows SPL increase with respect to different acoustic Mach

number for a fixed jet Mach number. Heated jets represented by open markers follow

remarkably well the SPL increase fashion of the isothermal case (black closed squares),

and this thus implies that applied heating triggers the onset of Mach wave radiation.

This result also agrees with the change of patterns of input and output modes we

observed for the subsonic heated jet with Mj = 0.9 and Tj/T∞ = 1.78.
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Figure 6.11: Singular values vs. mode number for the Mj = 0.9 jet with Tj/T∞ = 1.78

at forcing frequency St = 0.42.

Figure 6.12: SPL increase vs. acoustic Mach number for a fixed acoustic Strouhal

number Sta = 0.50. Black closed squares represent the result of isothermal jets and

open markers show results corresponding to each jet Mach number.
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Figure 6.13: Singular values vs. mode number for heated jets with different jet-to-

ambient temperature ratios keeping the acoustic Strouhal number fixed Sta = 0.50.

Among 28 different heated jets tested, results of few selected base flows are shown.

6.2.4 Role of the acoustic Strouhal number

As introduced in section 3.2, the singular values computed using input-output analysis

follow a particular pattern; after the first few modes sub-optimal gains reach a plateau

that is maintained across many mode numbers. Gains then suddenly start decreasing

again. Moreover, in section 6.1 it was found that the acoustic Strouhal number Sta

controls the number of sub-optimal modes with significant gains. By examining heated

jets with various jet Mach numbers and jet-to-ambient temperature ratios, we see that

the acoustic Strouhal number can predict the sudden drop of gains, regardless of the

amount of applied heating as shown in Figure 6.13.

While the acoustic Strouhal number retain the ability to predict the sudden drop

of gains for heated jets as in the case of isothermal jets, in figure 6.13 sub-optimal
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singular values for different base flows do not collapse to a single curve. As the amount

of applied heating increases, the optimal and sub-optimal singular values shift upward.

In contrast to sub-optimal singular values which strictly increase with more heating, the

corresponding optimal gains start to converge as the jet-to-ambient ratio goes beyond a

certain value. For some cases, this may result in the rise in ∆SPL including sub-optimal

modes over some jet-to-ambient ratio (∆SPL increases again after Ma > 1.6 for the

Mj = 0.9 jet).

6.2.5 Effects of heating on sub-optimal modes

One motivation for this section was the fact that PSE analysis underpredicts the far-field

acoustics, especially in the sideline direction [61]. We considered many RANS solutions

of turbulent jets with different jet Mach numbers and amounts of applied heating as

base flows to examine whether input-output analysis is able to recover the missing sound

in such cases. The results shown in previous sections, however, seem to support that

applied heating is in fact beneficial to PSE analysis. This contradiction may result from

the assumption that the jet turbulence excites all modes with equal amounts of forcing.

To quantify the relevance of sub-optimal modes of heated jets in the presence of realistic

forcing, we therefore project high-fidelity LES data onto input modes.

We obtain an LES database for Mj = 1.5 supersonic jet heated with Tj/T∞ = 1.74

and 5.1% axial co-flow using an unstructured finite-volume compressible flow solver.

The similar procedure described in section 3.3.3 is then carried out; we take the time

average of 5, 000 snapshots taken from the LES with time intervals of 0.02D/c∞. We

also take an average of the database in the azimuthal direction. The numerical domain

of the LES extends from x/R = 0 to 40 and r/R = 0 to 10, in the axial and radial

directions, respectively. As explained earlier, the RANS solutions was obtained for

a larger numerical domain than the LES domain. To account for the difference in
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Figure 6.14: Singular values vs. mode number for the Mj = 1.5 jet with Tj/T∞ = 1.74

for forcing frequency St = 0.33.

numerical domains between two base flows, the LES base flow was extrapolated to the

RANS domain, and the input and output domains were restricted to x/R = 40 in the

axial direction.

Despite differences between the two base flows, Figure 6.14 shows that the resulting

singular values of two base flows agree very well. The largest differences occur for the

optimal gain as well as for the sub-optimal gains near the dropoff location. Whereas the

optimal singular value of the LES base flow is observed to be 1.51 times greater than that

of the RANS base flow, sub-optimal singular values of the LES base flow after n ≈ 20

are slightly smaller than those obtained from the RANS base flow. Considering the

definition of SPL increase by including sub-optimal modes given by equation (3.1), this

implies that the contribution of sub-optimal modes in this case becomes less significant.

Again, we therefore think of the results of the LES base flow as lower bounds for this

jet.

By projecting the LES forcing as derived in equation (3.3) onto the orthonormal
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Figure 6.15: Amplitudes |an| are determined by projecting the LES forcing onto the

orthonormal set of input modes for the Mj = 1.5 jet with Tj/T∞ = 1.74 and the

azimuthal wavenumber m = 0 for forcing frequency St = 0.33.

set of input modes, the relevance of input modes in the presence of realistic forcing is

quantified in the form of amplitude using equation (3.4). The amplitudes normalized

by the average amplitude of the LES source are shown in figure 6.15 for the Mj = 1.5

jet with Tj/T∞ = 1.74 for forcing frequency St = 0.33. Note that the amplitudes of

sub-optimal modes are much larger than the amplitude of the optimal mode, and thus

sub-optimal input modes are physically relevant to the realistic forcing.

Finally, we modulate the singular values obtained with the assumption of white

noise forcing σn by the input amplitudes an computed from the LES projection. From

equation (3.5), the contribution of sub-optimal modes with realistic forcing are measured

in terms of the effective gain as shown in Figure 6.16. Without the LES forcing, SPL

increase by including sub-optimal modes was computed as 0.14dB. In the presence

of realistic forcing, however, ∆SPL jumps to 7.92dB which represents a remarkable

increase when considering the logarithmic decibel scale.



108

Figure 6.16: Effective gains determined by projecting the LES forcing onto the orthonor-

mal set of input modes for the Mj = 1.5 jet with Tj/T∞ = 1.74 and the azimuthal

wavenumber m = 0 for forcing frequency St = 0.33. Singular values obtained with the

white noise forcing are modulated by the input amplitudes an computed from the LES

projection.
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At the beginning of this section, we pointed out that the results obtained from the

white noise forcing may imply that applied heating is advantageous to PSE analysis;

this contradicts the underprediction of PSE analysis for supersonic heated jets. Using

the LES projection, we demonstrate that sub-optimal modes are very significant with

realistic forcing for the Mj = 1.5 jet with applied heating, and this may explain why

PSE analysis cannot successfully capture the far-field sound of supersonic heated jets.

6.2.6 Summary

In this section, by examining various RANS solutions with jet and acoustic Mach num-

bers in a range of 0.6 < Mj < 1.8 and 0.6 < Ma < 2.0, we find that applied heating

triggers disturbances to propagate through Mach wave radiation because the convection

velocity of instability waves with respect to the ambient speed of sound lies in the super-

sonic regime in such cases. As the amount of applied heating increases, the optimal gain

becomes much larger than sub-optimal gains. In this sense, one may think that applied

heating in fact benefits PSE analysis. It should be noted that, however, this argument

results from the assumption of white noise forcing. By projecting the LES database

onto a basis of input modes, we observe that sub-optimal modes are even more relevant

in the presence of realistic forcing. For the Mj = 1.5 heated jet with Tj/T∞ = 1.74

for forcing frequency St = 0.33, ∆SPL owing to sub-optimal modes is found to be

7.92dB. This is indeed a huge increase, compared to 0.14dB that is obtained assuming

all singular directions being forced equally. We also find that acoustic Strouhal number

still controls the dropoff location of sub-optimal singular values after the plateau as in

the case of isothermal jets.
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Figure 6.17: Contours of the effective viscosity for the Mj = 1.5 isothermal jet normal-

ized by the constant dynamic viscosity.

6.3 Effects of eddy viscosity

Owing to the high Reynolds number of the flow, we have so far neglected the direct effect

of turbulent viscosity on the perturbations. Instead, the turbulent viscosity affected

the perturbations only indirectly through the base flow. To prove the validity of this

assumption, the eddy viscosity solutions of base flows as obtained in figure 6.17 are

incorporated in the LNS equations. The dynamics of small perturbations are now

governed by the LNS equations as derived in section 2.2.

In figures 6.18 and 6.19, we present the first few pairs of output and input modes

for the Mj = 1.5 supersonic jet. Similarly, figures 6.20 and 6.21 visualize the first

two input-output modes for the Mj = 0.9 subsonic jet. Overall, we find that the

qualitative features of input and output modes obtained using the LEE in chapter 3

are still remained unchanged. The optimal input forcing, however, now reveals the Orr-

type tilted structure against the shear near the nozzle boundary and also shows some

centerline mode, which develops into the jet column mode as it proceeds downstream.

Figure 6.22 zooms in the optimal input mode around the nozzle for the Mj = 0.9 jet

and more clearly shows active Orr-like mechanism. These are not obtained from input-

output analysis of the LEE, but they agree well with the Orr mechanism observed from

resolvent analysis of boundary layers [111].

The curves of singular values and input-output modes obtained in the present section
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(a) n = 1 (b) n = 2

Figure 6.18: The first two output modes of the Mj = 1.5 supersonic jet for forcing

frequency St = 0.32. Contours visualize the real part of normalized output pressure

fluctuations governed by the LNS equations.

(a) n = 1

(b) n = 2

Figure 6.19: The first two input modes of the Mj = 1.5 supersonic jet for forcing

frequency St = 0.32. Contours of the real part of the normalized axial velocity forcing

governed by the LNS equations are shown.
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(a) n = 1 (b) n = 2

Figure 6.20: The first two output modes of the Mj = 0.9 subsonic jet for forcing

frequency St = 0.32. Contours visualize the real part of normalized output pressure

fluctuations governed by the LNS equations.

(a) n = 1

(b) n = 2

Figure 6.21: The first two input modes of the Mj = 0.9 subsonic jet for forcing frequency

St = 0.32. Contours of the real part of the normalized axial velocity forcing governed

by the LNS equations are shown.

Figure 6.22: The optimal input mode of theMj = 0.9 isothermal jet for forcing frequency

St = 0.32 zoomed in near the nozzle wall. Contours visualizes the real part of the

normalized axial velocity forcing.
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Figure 6.23: Singular values vs. mode number for the Mj = 1.5 supersonic jet with

forcing frequency St = 0.32. The viscous (marked by LNS) and inviscid (marked by

LEE) results are shown together for comparison.

using the LNS equations preserve the same qualitative behavior of small perturbations

governed by the LEE. Moreover, the first 50 singular values in both cases are plotted

together in one plane and matches very well before a dropoff location as shown in fig-

ure 6.23. This implies that the eddy viscosity has little effects to the relative importance

of the sub-optimal modes at this high Reynolds numbers (Re = 106). After that point,

singular values computed from the perturbations governed by the LNS equations damps

much quickly, and this may well be probably due to the eddy viscosity added in this

case.

6.4 Higher azimuthal wavenumber modes

So far, we have studied axisymmetric disturbances m = 0 about RANS base flows.

While axisymmetric disturbances dominate the acoustic response of turbulent jets, first
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few higher azimuthal wavenumber modes are, in fact, also known to be important par-

ticularly in the sideline direction [51, 52, 63, 96]. In this sense, in addition to an

axisymmetric disturbances, we consider helical (m = 1) and double helical (m = 2)

disturbances. Furthermore, to account for the effects of eddy viscosity, we consider the

dynamics of small perturbations, which are governed by the LNS equations incorporated

with the effective viscosity. The resulting optimal output modes for the helical and dou-

ble helical perturbations for the Mj = 1.5 supersonic jet are respectively presented in

figures 6.24(a) and (b).

Figure 6.25 compares the first 50 singular values of all three azimuthal wavenumber

modes for the Mj = 1.5 supersonic jet. As expected, the optimal gain for the axisym-

metric mode (m = 0) dominates the response. One may find that sub-optimal modes,

however, become increasingly important as the azimuthal wavenumber increases.

Figure 6.26 represents the directivity of pressure perturbations at r/R = 10 for each

azimuthal wavenumber mode as a function of polar angle φ, which is measured from

the downstream jet axis. The axisymmetric mode dominates acoustic radiations in the

direction of peak jet noise. On the contrary, sideline noise is better explained by higher

azimuthal wavenumber modes.
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(a) m = ±1 (b) m = ±2

Figure 6.24: The optimal output modes for the (a) helical and (b) double helical modes

for the Mj = 1.5 supersonic jet with forcing frequency St = 0.32.

Figure 6.25: The first 50 singular values for the axisymmetric (m = 0), helical (m = 1),

and double helical (m = 2) disturbances for the Mj = 1.5 supersonic jet with forcing

frequency St = 0.32.
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(a) Mj = 1.5

(b) Mj = 0.9

Figure 6.26: Far-field pressure perturbations as a function of polar angle φ measured

from the downstream jet axis. Axisymmetric (m = 0), helical (m = 1), and double

helical disturbances (m = 2) are shown together for the (a) Mj = 1.5 supersonic jet and

(b) Mj = 0.9 subsonic jet with forcing frequency St = 0.32.



Chapter 7

Concluding remarks

7.1 Summary and conclusions

The present study considers input-output analysis of small perturbations about RANS

and LES base flows for subsonic and supersonic jets. By specifying an input domain

to be forcings to velocity equations in the vicinity of jet turbulence and an output

domain to be pressure perturbations in the region far away from jets, our analysis

studies how input forcings map onto output quantities of interests. The dynamics of

small perturbations about the base flows are governed either by the LEE or by the LNS

equations to account for the effects of eddy viscosity. Compared to the analysis of LEE,

input-output analysis of small perturbations governed by the LNS equations preserves

the same qualitative behavior except for that in this case the input modes incorporate

the Orr mechanism (vortex tilting).

Input-output analysis yields orthonormal sets of input and output modes by taking

the singular value decomposition of the resolvent operator, corresponding to the lin-

earized governing equations. We first focus on the axisymmetric disturbances only. For

a given frequency, the leading output mode, concerned with the largest singular value,
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recovers a convectively unstable wavepacket similar to that obtained by the PSE. While

the leading output mode represents the optimal linear response to forcing, input-output

analysis also predicts a range of sub-optimal modes, associated with lesser singular val-

ues. These sub-optimal modes correspond to additional coherent forcings and responses.

Moreover, the sub-optimal output modes follow a regular pattern, where acoustic radia-

tion is organized into an increasing number of acoustic beams leaving the jet at different

angles. As the mode number increases, output modes tend to include additional acous-

tic beams oriented both towards the sideline direction and low angles with respect to

the jet axis.

We further assess the relevance of sub-optimal modes by projecting data obtained

from the LES of Mj = 1.5 supersonic jet onto the orthonormal sets of singular direc-

tions resulting from input-output analysis. Projection onto input modes determines

the relative amplitude of each mode, as forced by the jet turbulence. We find that

sub-optimal modes are indeed active, even in this case which is otherwise dominated

by the optimal mode. In fact, taking into account sub-optimal modes with projected

amplitudes increases the output sound pressure level by 0.37 dB in this case. The LES

data projection onto the output modes confirms their physical relevance and further

demonstrates the potential of input-output analysis as reduced-order modeling of jet

noise. With only 24 modes, input-output analysis recovers a substantial amount of the

acoustic energy predicted by the LES.

To handle the far-field sound projection directly within input-output analysis frame-

work, an FW-H formulation is implemented as a linear operator inside the matrix C.

Using the hybrid input-output/FW-H method, a significant portion of the LES acoustic

energy of both the isothermal and the heated supersonic jets is recovered for observers

along a full-arc at a distance of 200 jet radii away from the nozzle exit. Output-mode-

reconstructed acoustic fields predict the correct directivity of the LES database, using
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30 and 38 modes, respectively for the isothermal and heated jets. Furthermore, we

perform input-output analysis over a range of frequencies at two different polar angles.

Here, we consider small disturbances with first few dominant azimuthal wavenumber

modes (up to m = 2). As the polar angle increases, our method predicts that the

far-field spectra broaden. Similar effects are observed in experiments [93, 112] and are

predicted by LES. Our spectra also closely resemble theoretical predictions, which are

based on models constructed entirely from similarity wavepackets [105].

In the literature, it has been suggested that turbulent mixing noise is best repre-

sented by a two source model [93, 112]. In particular, experimental measurements seem

to fit two independent mechanisms of jet noise generation. In this view, one mechanism

is associated with large-scale coherent structures and is responsible for downstream

acoustic radiation known as the large-scale spectrum (LSS). The other mechanism is

thought to be more incoherent and omnidirectional in nature and creates the fine-scale

spectrum (FSS). As recently argued, however, it may be possible to model jet noise with

a single source model which does not separate between LSS and FSS [52, 105]. Our re-

sults further suggest that sideline radiation can be explained by coherent mechanisms

associated with sub-optimal modes, in addition to the downstream radiation associated

with the optimal mode. Based on the LES data projection onto the set of output modes,

we find that including sub-optimal modes results in a 10-20 dB increase in far-field SPL

for polar angles φ > 40◦ for the Mj = 1.5 supersonic jet.

The physics of coherent structures captured by input modes are investigated thor-

oughly for the Mj = 0.9 subsonic jet. The Mj = 0.9 subsonic jets have been the subject

of several other experimental and numerical investigations. They support wavepackets

as acoustic sources, but noise radiation is severely underpredicted in many wavepacket

modeling approaches in this case. To consider acoustically relevant sources only, input

forcings are weighted by the TKE. Input-output analysis indicates that the optimal
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input mode resemble wavepackets, which are spatially and temporally modulated while

traveling downstream. More specifically, they are found to be positively skewed bell-

shaped structures as observed in other wavepacket modeling approaches [56, 62, 63,

103, 104, 105]. After examining several wavepacket models, we find that optimal input

modes correspond to wavepackets represented by asymmetric pseudo-Gaussian envelope

functions at a given forcing frequency. These wavepackets remain similar in shape over

a range of frequencies for St > 0.5, and scale as St−0.5. While the optimal mode is a

wavepacket, sub-optimal modes represent decoherence of the optimal input mode.

By investigating input wavepackets and associated acoustic radiation to specific an-

gles, we find that input modes do indeed serve as realistic, non-compact coherent sources

relevant to far-field sound generated by turbulent jets at any angles. These wavepackets

are those who cooperate to complete the overall acoustic field spanning a wide range

of polar angles. More specifically, at lower radiation angle than the peak noise angle,

the input mode represents jitter or decoherence of the optimal input forcing for full-arc

outputs. Wavepackets radiating sound at large angles, on the other hand, become more

compact as radiation angle increases and thus more efficient. Furthermore, by repeat-

ing our analysis over a range of frequencies, we show that more degrees of freedom are

needed in terms of the azimuthal wavenumber as radiation angle rotates towards the

sideline direction, revealing broadening of spectra as radiation angle increases at high

frequencies.

Lastly, we construct parametric studies; we investigate the effect of jet Mach number

on the importance of sub-optimal modes in the prediction of jet noise. To do this, we

generate 13 different base flows with various jet Mach numbers, spanning Mj = 0.6 to

1.8. For supersonic jets, the largest singular value is much greater in magnitude than

any of the others, and thus, the acoustic response is dominated by the leading output

mode. Additionally, the leading input mode in this case is confined inside the nozzle
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and in the immediate vicinity of its exit. Physically, this agrees with an instability

wave mechanism triggered by a small upstream disturbance, and analysis of the PSE

successfully predicts the acoustic response in this case. For subsonic jets, however,

the gains corresponding to sub-optimal modes are comparable to the amplification of

the leading mode and therefore cannot be neglected. This study also suggests the

importance of a new dimensionless parameter, the acoustic Strouhal number Sta defined

in terms of the free-stream speed of sound. We show that the acoustic Strouhal number

determines the number of significant sub-optimal modes regardless of the jet Mach

number. By retaining only the optimal mode and the significant sub-optimal modes,

we may construct an accurate but minimal reduced-order model of noise generation at

a given frequency.

In addition, we examine small disturbances about RANS and LES base flows for

heated jets. For various RANS solutions with jet and acoustic Mach numbers ranging

0.6 < Mj < 1.8 and 0.6 < Ma < 2.0, we find that applied heating triggers disturbances

to propagate through Mach wave radiation because the convection velocity of instability

waves with respect to the ambient speed of sound lies in the supersonic regime in such

cases. As the amount of applied heating increases, the optimal gain becomes much

larger than sub-optimal gains. Based on this, one may think that applied heating in

fact benefits PSE analysis, which contradicts the previous observation that PSE analysis

breakdowns for supersonic heated jets. It should be noted that, however, this argument

results from the assumption of white noise forcing. By projecting the LES database

onto a basis of input modes, we observe that sub-optimal modes are even more relevant

in the presence of realistic forcing.

The effects of eddy viscosity are also investigated. To do so, they are incorporated in

the LNS equations. In this way, input forcings reveal tilted structures along the nozzle

wall; at this high Reynolds number, however, the eddy viscosity has little effects to
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the relative importance of the sub-optimal modes. The higher azimuthal wavenumber

modes, on the other hand, increase the significance of sub-optimal modes. In particular,

sideline noise is better explained by them than by the axisymmetric mode alone.

7.2 Future work

We have analyzed small perturbations about RANS and LES base flows to predict and

understand the aeroacoustics of high-speed turbulent jets. We utilize the LES database

for both supersonic and subsonic jets to assess the physical relevance of input-output

modes under the realistic volumetric forcing. In order for our method itself to be a more

predictive model for turbulent jet noise, without the use of high-fidelity simulations, we

may want a low-rank modeling of realistic forcings from known properties as suggested

in [113, 114, 115, 116].

The sensitivity analysis of turbulent jet noise can also be used as an industrial design

tool for a quieter jet engine. High-fidelity simulations such as DNS or LES require a

number of iterations to find optimal design parameters by examining various possible

scenarios, but even a single iteration costs a lot. Our analysis, on the other hand, may

be utilized to provide a noise control strategy in less computationally expensive way

through a base flow modification, in conjunction with modeling techniques to reproduce

flow statistics that are mentioned above.

Finally, though we limit our interest to turbulent jets exhausted from a straight

cylindrical nozzle, our approach is universal and may be applied to nozzles with more

complex geometries such as the chevroned [24, 25] or faceted [26] engines. Particularly, it

is known that chevrons can reduce the overall noise substantially. Input-output analysis

may be extended to study the sensitivity of small perturbations for such geometries and

to understand their noise reduction mechanisms.
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Appendix A

Convergence test

A.1 Grid independence

Four different grid resolutions are tested to study the convergence of input-output analy-

sis. For each resolution, grid points are distributed uniformly in the streamwise direction

but are refined and stretched in the lateral direction to cluster grid points along the

nozzle lipline. Figure A.1 shows singular values for the Mj = 1.5 supersonic jet for the

four different grid resolutions. For sufficiently high grid resolutions, the singular values

do not change significantly. We quantify this convergence in table A.1, which lists the

magnitude of the largest singular value along with the percentage of sub-optimal en-

ergy (assuming white noise forcing). The number of grid points in the axial and radial

directions are given by Nx and Nr, respectively, and these increase by a factor of 1.5

for each row. The final column lists the convergence factor defined as the ratio of the

maximum gain to the maximum gain obtained on the previous, coarser mesh. For the

higher mesh resolutions, we conclude that the results converge with respect to the mesh

resolution. Throughout this dissertation we have used the grid with high resolution,

unless otherwise stated.
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Figure A.1: Singular values using four different grid resolutions for the Mj = 1.5 super-

sonic jet at St = 0.33.

Table A.1: Optimal singular values, sub-optimal energy percentages, and convergence

factors for four different grid resolutions for the Mj = 1.5 supersonic jet for forcing

frequency St = 0.33.

Label Nx Nr σ1

∑
σ2
sub−optimal∑
σ2
total

Convergence factor

low 256 128 6.56× 101 0.0800 -
medium 384 192 1.21× 102 0.0642 1.84

high 576 288 1.35× 102 0.0732 1.12
highest 864 432 1.44× 102 0.0711 1.06
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Table A.2: Input and output domains and corresponding optimal singular values and

sub-optimal energy percentages for the Mj = 1.5 supersonic jet for forcing frequency

St = 0.33.

Label xmin xmax rmin rmax σ1

∑
σ2
sub−optimal∑
σ2
total

I1 −10.0 60.0 0.29 2.90 1.35× 102 0.0732
I2 −10.0 50.6 0.29 2.90 1.35× 102 0.0669
I3 −10.0 30.2 0.29 2.90 1.35× 102 0.0497
R1 −10.0 60.0 8.70 39.2 1.35× 102 0.0732
R2 −10.0 50.6 8.70 39.2 1.15× 102 0.0874
R3 −10.0 60.0 8.70 14.9 8.34× 101 0.0544
R4 −10.0 50.6 8.70 14.9 8.09× 101 0.0524
R5 −10.0 30.2 8.70 39.2 5.26× 101 0.2181

A.2 Domain independence

To investigate the dependence of gains on the input and output domain sizes, we consider

five different output domains and three different input domains. These domains are

summarized in table A.2 and displayed graphically in figure A.2. The input domains

(I1-I3) are restricted to the region close to the jet shear layer, whereas the output

domains (R1-R5) are restricted to the far-field region. As mentioned in chapter 2, the

input forcing is selected to choose velocity through the matrix B, while the matrix

C selects pressure from the state vector. Specifically, the input and output domains

defined in chapter 2 and used in chapter 3 correspond here to I1 and R1, respectively.

Physically, this choice was made to capture the influence of velocity fluctuations inside

the full jet on the far-field pressure fluctuations. By systematically varying the input and

output domain sizes, however, we assess the robustness of our results to this particular

choice.

The three different input domains were tested using the same output domain R1. For

the optimal mode, figure A.3 shows that input-output analysis produces almost the same
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Figure A.2: Graphical representation of various input and output domains.

results regardless of the input domain sizes. Since the input mode shown in figure 3.3(a)

fully resides inside all three input domains, this is not surprising. Because the sub-

optimal modes extend farther downstream as mode number increases, the dropoff in

singular values is affected by the length of the input domain.

The effect of the output domain size was examined in terms of the gains for the

Mj = 1.5 jet. Each case used I1 as the input domain. As expected, output domains

that extend farther in the lateral or the axial directions result in larger amplification

than smaller domains. In figure A.4, however, the gains for output domain having

the same axial extent follow the same curve, shifted vertically by a relatively constant

offset. Again, the dropoff in singular values at high mode numbers is determined by

the axial length of the output domain. Furthermore, as figure A.5 shows, the shape of

the output modes remains unchanged in the areas where the output domains overlap.

This means that the mode selected is not sensitive to the details of the chosen output

domain. Rather, we observe the same physical mode through different windows.
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Figure A.3: Gains for various input domains for the Mj = 1.5 supersonic jet for forcing

frequency St = 0.33.

Figure A.4: Gains for various output domains for the Mj = 1.5 supersonic jet for forcing

frequency St = 0.33.
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(a) n = 1 (b) n = 2

(c) n = 1 (d) n = 2

(e) n = 1 (f) n = 2

Figure A.5: The optimal and the first sub-optimal output modes of the Mj = 1.5 super-

sonic jet for forcing frequency St = 0.33 with the output domains (top) R1, (middle)

R3, and (bottom) R5. (a,c,e) n = 1. (b,d,f) n = 2.



Appendix B

Verification of the linearized

FW-H solver

B.1 Case 1: Monopole

In this appendix we verify the FW-H formulation that are directly implemented within

input-output analysis framework as a linear operator inside the matrix C, by testing

simple cases for which an analytic solution exists. We first consider a point monopole

source located at the origin. The far-field pressure at r radiated from the source is

exactly written as:

pexact(r, ω)

pref
=
e−ikr

4πr
, (B.1)

using the free-space Green’s function given in equation (4.7). Being consistent with

notations used in section 4.2.1, the distance between the source y and the observer x is

given by r = |x− y|. The reference pressure is set to be pref = 10−6. Furthermore, ω

represents the frequency and k denotes the wavenumber such that k = 2π/λ. The wave-

length λ is given as 1D and the speed of sound c = 1/1.5 = 0.6667. Note that sound
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radiated from a monopole is omnidirectional so the exact solution above is independent

of an azimuthal angle θ. The velocity field of a monopole source is obtained by sub-

stituting this into the conservation of momentum, and it is then used in the linearized

FW-H formulation given in equation (4.6).

We place a straight cylindrical FW-H projection surface so that its axis lies along the

x-axis as shown in figure B.1. We choose the projection surface with radius Rs = 3D,

which extends from x = −15D to 15D so that its length Ls = 30D. The number

of grid points in the axial, radial, and azimuthal directions are given by Nx = 481,

Nr = 125, and Nθ = 64, respectively. The grid are uniform in the streamwise and

azimuthal directions but stretched in the radial direction. In fact, the projection surface

is discretized so that the grids exactly match to those we used in input-output analysis

and an LES for the Mj = 0.9 subsonic jet described in chapter 5. Meanwhile, to assess

the effects of open outflow disk, we test FW-H surfaces equipped with and without

end-caps [89], when computing the far-field pressure fields. The results are summarized

in figure B.2.

In figure B.2 the blue solid lines correspond to the exact far-field sound pressure,

whereas red symbols represent solutions computed using the FW-H solver implemented

as a linear operator. If they are left open, the numerical solutions at small radiation

angles (−20◦ < φ < 20◦ and 160◦ < φ < 220◦) deviate from the exact solution but

agree fairly well elsewhere as shown in figure B.2(a). In contrast, by closing the outflow

disks the projection surface, figure B.2(b) reproduces the exact solution at almost all

observer angles.

Now, a monopole source is still placed at the origin, but the FW-H projection is

centered at x/D = 10D to mimic the flow configuration of turbulent jets we consider

in this dissertation. Considering that in input-output analysis the numerical domain

extends from x/R = −20 to 70, while turbulent jets enter to a quiescent fluid at x/R =
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(a) (b)

Figure B.1: (a) A straight cylindrical FW-H surface (a red-outlined rectangle) placed

in a monopole field on xy-plane cross-section at z = 0. The length of the projection

surface is 30D, and the diameter of its cross-section is 3D. (b) A cross-sectional view

of the projection surface on yz-plane is zoomed-in. The azimuthal angle θ is measured

in a counter-clockwise direction.

(a) Open outflow disks (b) Closed outflow disks

Figure B.2: Acoustic far-field measured at 100 diameters away from a monopole centered

at the origin using the projection surfaces whose outflow disks are (a) left open and (b)

closed with end-caps, respectively. In each figure blue solid line represents the exact

solution, and red markers are computed using an FW-H formulation implemented inside

input-output analysis framework.
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Figure B.3: A straight cylindrical FW-H surface (a red-outlined rectangle) is now asym-

metric about a point monopole centered at the origin. The length and diameter of the

projection surface remain unchanged as in the previous case.

0, new projection surface is not symmetric any longer about an acoustic source in

streamwise direction. The schematic view of a point monopole source located at the

origin and an asymmetric projection surface is given in figure B.3. Under this condition,

the linearized FW-H solver recovers the far-field pressure very closely to the analytic

solution at radiation angles of our interests as shown in figure B.4 regardless of the

types of outflow disks. We lose the symmetry of the pressure field and compromise some

accuracy at small observer angles, but the results are still within acceptable accuracy

at angles of our interest.

B.2 Case 2: Dipole

As seen in equation 4.6 the far-field sound is represented by surface integrals of monopole

and dipole sources. In this sense we also test the linearized FW-H solver with sound

radiation from a dipole source. We consider a dipole source located along the y-axis

as shown in figure B.5. The analytic solution for the pressure field is then derived by
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(a) Open outflow disks (b) Closed outflow disks

Figure B.4: Acoustic far-field measured at 100 diameters away from a monopole placed

at 5 diameters away from the left-end of the FW-H projection surface. Pressures (red

markers) are predicted using (a) open and (b) closed outflow disks, respectively, and

compared to the analytic solution represented by blue solid lines.
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Figure B.5: A straight cylindrical FW-H surface for sound radiation of a dipole centered

at the origin.

differentiating the free-space Green’s function (4.7) in y such as:

pexact(r, ω)

pref
=
∂G

∂y
=
∂G

∂r

∂r

∂y
=
e−ikr

4πr

(
−ik − 1

r

)
∂r

∂y
. (B.2)

In cylindrical coordinates we use here, ∂r
∂y is conveniently computed as y

r . The reference

pressure remain unchanged as pref = 10−6. The wavelength λ is still given as 1D, but

at this time we change the speed of sound to c = 1/0.9 = 1.111.

We use the same FW-H projection surface, which was used in the previous section to

test sound radiation from a monopole acoustic source. Again, a cylindrical projection

surface may be either open or closed at x/D = 30. The resulting dipole fields are

compared with the exact solution (denoted by blue solid lines) in figure B.6. The far-

field acoustic predictions in all cases show reasonably good agreements with the exact

solution except for the observers very close to the x-axis.

Similarly in the case of a point monopole, we investigate the effect of asymmet-

ric projection surface about a point dipole centered at the origin. In figure B.7, the

predictions by the linearized FW-H solver are in good agreement with the analytic so-

lution. Errors around upstream jet centerline are decreased significantly with end-caps
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(a) Open outflow disks (b) Closed outflow disks

Figure B.6: Dipole field is measured in terms of pressure at 100 diameters away from the

origin. The outflow disks of the projection surfaces are (a) left open and (b) closed with

end-caps. In each figure blue solid line represents the exact solution, and red markers

are computed using the FW-H formulation implemented within input-output analysis

framework.
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(a) Open outflow disks (b) Closed outflow disks

Figure B.7: Acoustic far-field measured at 100 diameters away from a dipole placed at 5

diameters away from the left-end of the FW-H projection surface along y-axis. Pressures

(red markers) are predicted using (a) open and (b) closed outflow disks, respectively, and

compared to the analytic solution represented by blue solid lines. Equipped with end-

caps at both ends of the projection surface, the predictions are significantly enhanced.

at x/D = −5 and x/D = 25 even with the asymmetric projection surface.

In sum, for turbulent jets, regions of low radiation angles correspond to regions that

are close to the jet centerline, and we do not expect much output sound there. Based

on the tests given in the previous and the present sections, we thus conclude that for a

long and lean enough cylindrical projection surface, the FW-H formulation implemented

inside the input matrix C would work even without end-cap treatments. From this, a

linearized FW-H solver employs an open FW-H projection surface, for simplicity. The

LES database projections in chapters 3–5 are also performed with the same type of

projection surface.
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