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Chapter 1

Introduction

The generalized linear mixed model (GLMM) is an extension of both the generalized

linear model and the linear mixed model; the model incorporates fixed and random

effects as well as a response from an exponential family. GLMMs were first discussed

by Stiratelli et al. (1984) and are now used in a variety of disciplines. Despite their

widespread use, traditional methods of frequentist likelihood-based inference are not

generally available. The challenge lies in the likelihood function for GLMMs: because

the likelihood cannot depend on the random effects, the likelihood is an integral that

is often intractable (details in Section 1.2). Due to this challenge, most methodology

and software for GLMMs perform little more than maximum likelihood (details in

Section 2.3) or do not perform likelihood-based inference at all (details in Section 2.2).

Our goal is to enable all types of frequentist likelihood-based inference. This includes

(but is not limited to) calculating Fisher information, performing hypothesis tests,

and constructing confidence intervals. To perform all types of frequentist likelihood-

based inference, the entire likelihood function is necessary.

With this goal in mind, we have created an R package glmm that approximates the

entire likelihood function for a GLMM with either a Bernoulli or Poisson response.

This package uses the method of Monte Carlo likelihood approximation (MCLA)

(Geyer, 1994; Geyer and Thompson, 1992; Sung and Geyer, 2007). This method

1



1.1. Generalized Linear Mixed Models 2

relies on the choice of an importance sampling distribution, a distribution from which

simulated random effects are drawn. These generated random effects are then used to

approximate the entire likelihood function. Because MCLA approximates the entire

likelihood, this procedure enables every type of likelihood-based inference, not solely

maximum likelihood. For more details on MCLA, see Section 2.4.

Before the release of R package glmm, no publicly-available software implementing

MCLA produced accurate maximum likelihood estimates for models of non-trivial

complexity. For example, the bernor package (Sung and Geyer, 2007) implements

MCLA but cannot accurately perform maximum likelihood for the benchmark data

set from a salamander mating experiment (described in Section 1.3). The absence of

MCLA software highlights a challenge from which the procedure suffers: finding an

importance sampling distribution that works well in practice.

We propose an importance sampling distribution to be used in implementing

MCLA for GLMMs (Equation (4.1)); establish its theoretical validity (Section 4.2);

implement it in R package glmm (Knudson, 2015); and demonstrate how to use the

package to perform maximum likelihood, test hypotheses, and calculate confidence in-

tervals (Chapter 5). Before discussing these new developments, we review background

information on GLMMs, the likelihood of GLMMs, and the benchmark salamander

data set. Additionally, Chapter 2 summarizes a few methods of inference for GLMMs.

1.1 Generalized Linear Mixed Models

Let Y ∈ Rn be a response vector. Let X be a design matrix for observed predic-

tors and let β ∈ Rp be its coefficient vector. Let Z be the model matrix for the

random effects and let U ∈ Rq be a vector of unobservable random effects. Let

ν = (ν1, . . . , νK)T be a vector of variance components such that each component is

nonnegative. Let D be a variance matrix dependent on ν. Although D is a function
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of ν, we suppress the parameter for cleaner notation. The general description of a

GLMM does not restrict the form of variance matrix D, but this thesis focuses on

the case in which D is diagonal; that is, we consider the setting in which the random

effects are independent of one another. We assume the random effects follow a mul-

tivariate normal distribution centered at 0 with variance matrix D, and we denote

this distribution’s density by fν(u). We also assume the distribution of the response

vector given the random effects has density fβ(y|u). If we let θ = (βT , νT )T , we can

express the joint density of the random effects vector and the response vector as

fθ(u, y) = fβ(y|u) fν(u). (1.1)

Define random vectors η and µ such that η = Xβ+Zu and µ = E(Y |U = u). Let

g(·) be a monotone, differentiable function so that g(µ) = η. This function is called

the “link” function. Though η and µ could be linked through many functions, we

focus on the canonical link function and the case in which η is the canonical random

vector. In particular, the canonical random vector for the Bernoulli distribution is the

log odds of succss and the canonical link function is the logit function. The canonical

random vector for the Poisson distribution is the log of the expected response and

the canonical link is the natural logarithm.

1.2 The Likelihood Function

The likelihood is a function of the parameter given the data. Constants with respect

to the parameter can be dropped from the likelihood. Random effects are part of the

model but cannot be part of the likelihood because they are not data. Therefore, the
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likelihood for a GLMM is

L( θ | y ) =

∫
fβ(y|u) fν(u) du =

∫
fθ(u, y) du (1.2)

and the log likelihood is l(θ|y) = logL(θ|y). To be explicit, the integral is evaluated

over Rq. Often, this integral cannot be expressed in closed form.

We now discuss how the random effect structure relates to the integral. This in-

forms the discussion in Chapter 2 on whether inferential methods are appropriate for

a certain model. We will see that in special cases (described in Section 2.1), numer-

ical integration can produce the likelihood and enable likelihood-based inference. If

numerical integration is not possible, researchers must either resort to methods that

perform specific types of inference (such as Monte Carlo EM, discussed in Section 2.3,

which performs maximum likelihood) or methods that approximate the likelihood

(such as PQL and MCLA, discussed in Section 2.2 and Section 2.4).

We start with the simplest random effects structure: each component of the re-

sponse vector depends on a single random effect. Then the likelihood can be factored

into a product of one-dimensional integrals. As an example of a likelihood that can

be factored into a product of one-dimensional integrals, consider the model created

by McCulloch (1997) with data simulated by Booth and Hobert (1999). Each com-

ponent of the binary response vector depends on a single fixed effect predictor and a

single random effect.

When each component of the response vector depends on more than one random

effect, we need to define “crossed” random effects. First, recall that the model has

K variance components. Construct a graph with a node for every component of the

response vector and a node for every random effect, and connect each component of

the response vector to the random effects it depends on. If each maximal connected

subgraph contains multiple random effects from a variance component, then we say
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the random effects are crossed. An example of a GLMM with crossed random effects is

described in Section 1.3. A graph for this example would have six maximal connected

subgraphs, and each maximal connected subgraph would have 20 random effect nodes.

The structure of the crossed random effects determines how to factor the integral

in Equation (1.2). The likelihood can be factored into a product of integrals with di-

mension determined by the number of random effect nodes in the maximal connected

subgraph. The salamander likelihood in Section 1.3 can be factored in a product of

six 20-dimensional integrals but no further.

1.3 The Salamander Data and Model

Researchers at the University of Chicago conducted an experiment on a single species

of salamanders in 1986. McCullagh and Nelder (1989, Section 14.5) presented the ex-

periment and data, and Karim and Zeger (1992) proposed a model they call “Model

A.” The salamander data and model have become a benchmark in the GLMM uni-

verse; the data have been modeled by many researchers including Booth and Hobert

(1999), Breslow and Clayton (1993), Karim and Zeger (1992), McCullagh and Nelder

(1989), Schall (1991), Sung and Geyer (2007), and Wolfinger and O’Connell (1993), .

1.3.1 The Salamander Data

Before the experiment began, female salamanders and male salamanders of the same

species were collected from two locations. The salamanders were categorized into

populations named “Rough Butt” and “White Side” based on their location of origin.

The scientific goal was to determine whether salamanders were more likely to mate

with those from their own population or whether they were just as likely to mate with

salamanders from either population. More specifically, scientsts sought to compare

the odds of mating for each type of cross: female Rough Butt salamanders and male
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Rough Butt salamanders (denoted RR), female Rough Butt salamanders and male

White Side salamanders (denoted RW), female White Side salamanders and male

Rough Butt salamanders (denoted WR), and female White Side salamanders and

male White Side salamanders (denoted WW).

Scientists ran an experiment three times. Each experiment consisted of trials

conducted on two closed groups of 20 salamanders. That is, each experiment was

conducted on 40 salamanders that were split into two closed groups. Each group

contained 5 female Rough Butts, 5 female White Sides, 5 male Rough Butts, and

5 male White Sides. Each trial consisted of placing a female salamander and a

male salamander in an isolated space together, then observing the binary response of

interest: whether the salamanders mated. Each female salamander participated in six

trials with male salamanders from her closed group: three trials with male White Side

salamanders and three trials with male Rough Butt salamanders. Scientists paired

salamanders from the same group; inter-group trials were not conducted. Thus, 60

trials were conducted on each closed group, each experiment consisted of 120 trials,

and the overall dataset contains binary responses from 360 trials.

1.3.2 The Salamander Model

To model these data with a GLMM, Karim and Zeger’s (1992) “Model A” proposes a

random effect for each female salamander; a random effect for each male salamander;

a fixed effect predictor for each of the four types of cross; and a Bernoulli response of

whether the pair of salamanders mated, dependent on the type of cross, the female

random effect, and the male random effect. Each salamander’s random effect is

assumed to be independent of the others. The male salamanders’ random effects

share one variance component while the female salamanders’ random effects share

another variance component. These two variance components are later referred to

as νM and νF . The males’ random effects are crossed with the females’ random
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effects, where “crossed” is defined in Section 2.1. Though the same salamanders were

used in the first two experiments, the data are traditionally modeled assuming that

new salamanders were used in each experiment (Booth and Hobert, 1999; Karim and

Zeger, 1992; McCullagh and Nelder, 1989).

1.3.3 The Salamander Model’s Likelihood

Because the data set consists of 360 trials with four crosses, the model matrix for

the fixed effects X is 360× 4. Because the experiment involved 120 salamanders, the

model matrix for the random effects Z is 360× 120. Let xi· denote the ith row of X

and let zi· denote the ith row of Z. Let β = (βRR, βRW , βWR, βWW )T denote the fixed

effects vector, where βRW denotes the log odds of a female Rough Butt salamander

mating with a male White Side salamander. Because the elements of the response

vector are conditionally Bernoulli given the random effects,

fβ(y|u) = exp

(
yT (Xβ + Zu)−

n∑
i=1

log (1 + exp (xi·β + zi·u))

)
.

The females’ random effects are assumed to be independent, identically distributed

draws from a normal distribution with mean 0 and unknown variance νF . Similarly,

the males’ random effects are assumed to be independent, identically distributed

draws from a normal distribution with mean 0 and unknown variance νM . Let uF

and uM denote the vectors of females’ random effects and males’ random effects,

respectively. Each vector is of length 60. Then

fν(u) = exp

(
−60 log(2π)− 30 log νF − 30 log νM −

(uF )TuF

2νF
− (uM)TuM

2νM

)
.
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Then the likelihood is

∫
exp

(
yT (Xβ + Zu)−

n∑
i=1

log (1 + exp (xi·β + zi·u))− 60 log(2π)+

−30 log νF − 30 log νM −
(uF )TuF

2νF
− (uM)TuM

2νM

)
du.

This integral is of dimension 120, the number of salamanders in the experiment.

However, there were six closed groups with 20 salamanders per group, so the likeli-

hood factors into a product of six 20-dimensional integrals. Since the random effects

from within a closed group of 20 salamanders are crossed, we cannot factor the 20-

dimensional integrals into integrals of any smaller dimension. These integrals are too

high-dimensional for numerical integration, a method described in Section 2.1.

Because numerical integration cannot produce the likelihood, this has become

a benchmark data set; researchers have analyzed this data using a variety of ap-

proaches. Karim and Zeger (1992) analyzed the data with a Bayesian approach

relying on Markov chain Monte Carlo. Wolfinger and O’Connell (1993) performed in-

ference based on a pseudo-likelihood. Booth and Hobert (1999) were able to perform

maximum likelihood using Monte Carlo EM (a method described in Section 2.3) and

calculate standard errors for the maximum likelihood estimates using an additional

method (Louis, 1982). More recently, Sung (2003) and Sung and Geyer (2007) im-

plemented MCLA with an importance sampling distribution chosen independently of

the observed data, but they were not able to find MLEs for this model. Penalized

quasi-likelihood (a method discussed in Section 2.2) can approximate the likelihood,

but the approximation does not converge to the likelihood. Before the advent of the

R package glmm, no researcher or software has constructed an asymptotically-valid

approximation to the entire likelihood function for this benchmark data set. The

glmm analysis of this model is found in Section 5.2.



Chapter 2

Methods of Likelihood-Based
Inference

In this section, we explore different methods of performing frequentist likelihood-based

inference for GLMMs. Some methods – such as PQL and MCLA – approximate the

likelihood function; other methods – such as Monte Carlo EM – have the specific goal

of maximum likelihood. Some methods – such as numerical integration, Monte Carlo

EM, and MCLA – are able to perform maximum likelihood while other methods –

such as penalized quasi-likelihood – produce point estimates that are not MLEs.

2.1 Numerical Integration

Numerical integration produces an approximation to the likelihood. The approxima-

tion contains deterministic (rather than Monte Carlo) error. As a result, maximizing

the likelihood approximation produces estimates of MLEs. Because numerical inte-

gration produces an approximation to the entire likelihood, it enables all types of

frequentist likelihood-based inference.

The limitation of numerical integration is that it is viable for low-dimensional inte-

grals only. For example, numerical integration can be used either if each component of

the response depends on a single random effect or if the random effects are not crossed

9
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(since then the multi-dimensional integral in Equation (1.2) can be split into a prod-

uct of one-dimensional integrals). Numerical integration can run into difficulties with

crossed random effects because the likelihood often cannot be factored into integrals

of low enough dimension. For example, in the salamander model (Section 1.3), the

likelihood is a product of six 20-dimensional integrals. Using numerical integration for

a 20-dimensional integral is much more complicated and computationally-expensive

than using numerical integration for a one-dimensional integral.

From a user’s point of view, the salamander model does not seem complicated or

contrived; after all, there are only two random effects per mating. We can imagine

many real-world GLMM experiments with crossed random effects, and many of these

would be too complicated for numerical integration. Because numerical integration

is limited in this way, we do not consider it a competitor to MCLA.

2.2 Penalized Quasi-Likelihood

PQL is a method of approximating the likelihood for GLMMs and is usually associ-

ated with parameter estimation and random effect prediction (Breslow and Clayton,

1993). Notably, PQL does not produce MLEs; instead of maximizing the likelihood,

it maximizes a function known as a penalized quasi-likelihood. Many variations of

PQL exist, but most begin by first approximating the log likelihood with a second-

order Taylor polynomial. Additional approximations further simplify the expression

and yield the penalized quasi-likelihood.

PQL software includes the GLIMMIX procedure in SAS and the glmmPQL command

in the MASS R library (Venables and Ripley, 2002). The glmer command in the

lme4 R library (Bates et al., 2014) performs PQL for models with multiple variance

components (it performs numerical integration for problems with a single variance

component).
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PQL’s popularity stems from its computational speed. However, the assumptions

and approximations that provide its speed come at a price. PQL’s assumptions and

approximations lack theoretical grounding and have an “air of ad hocery,” according

to McCulloch and Searle (2001). Moreover, most PQL-based software is a black box

that is difficult for users to understand. For example, fully understanding the glmer

function in lme4 would require reading the source code itself because the package doc-

umentation does not provide details on the approximations and assumptions. Finally,

PQL estimates are biased when the elements of the response vector are binary (Bres-

low and Lin, 1995 and Lin and Breslow, 1996, McCulloch and Searle, 2001). Breslow

(1993) defends PQL by emphasizing that it is meant for “approximate inference” and

subsequently claims that PQL has been subject to “abuse and misinterpretation.”

However, McCulloch and Searle (2001) sees PQL’s problems as so severe that they

discourage the use of PQL.

While both MCLA and PQL approximate the likelihood, MCLA’s approximation

converges to the likelihood as the Monte Carlo sample size increases while PQL’s

approximation does not. Because our goal is to find a likelihood approximation that

converges to the likelihood, we do not consider PQL a competitor to MCLA.

2.3 Monte Carlo EM

The EM algorithm was named by Dempster et al. (1977) but invented independently

by several researchers. The EM algorithm performs maximum likelihood for models

with missing data. Since random effects are missing data, GLMMs fit into the EM

framework. Starting with an initial parameter value, EM iterates between two steps:

the “E” step and the “M” step. The tth “E” step calculates

Qt(θ) = Eθt [log fθ(U, Y )|Y = y]
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and the “M” step finds the parameter value that maximizes Qt(θ).

Monte Carlo EM (MCEM), the Monte Carlo extension of the EM algorithm, was

invented to calculate the expectation in Qt(θ) using Monte Carlo (Wei and Tanner,

1990). Using the last iteration’s parameter value, Monte Carlo generates random ef-

fects. These are used to approximate the expectation in the “E” step of ordinary EM.

The “M” step remains unchanged from ordinary EM: Qt(θ) is maximized. Since many

Monte Carlo and Markov chain Monte Carlo methods exist, many implementations

of MCEM have been proposed.

MCEM is limited to maximum likelihood; since MCEM only evaluates the likeli-

hood at certain points but does not find the entire likelihood function, MCEM can-

not be used for other likelihood-based inference. Moreover, MCEM does not produce

Fisher information; it must be calculated separately using the Monte Carlo version

of the method published by Louis (1982). Because our goal is to approximate the

entire likelihood function in order to perform any type of frequentist likelihood-based

inference, we do not consider Monte Carlo EM a competitor to MCLA.

2.4 Monte Carlo Likelihood Approximation

MCLA is a Monte Carlo method for approximating the entire likelihood function;

it was first proposed by Geyer (1990) for models with unnormalized densities, then

extended to models with normalized densities and random effects (Thompson and

Guo, 1991), and then extended again to models with unnormalized densities and

random effects (Gelfand and Carlin, 1993). We focus on MCLA for GLMMs with

random effects.

MCLA is powerful because it enables any type of likelihood-based inference. Max-

imum likelihood is of special interest; the maximizer of the Monte Carlo likelihood

approximation is called the Monte Carlo maximum likelihood estimate (MCMLE).
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Because MCLA is a Monte Carlo method, the accuracy of the likelihood approxi-

mation and inferences based on the likelihood approximation can be improved by

increasing the size of the Monte Carlo sample used to calculate the likelihood approx-

imation.

The asymptotic properties of the likelihood approximation as the Monte Carlo

sample size increases have been studied in generality (Geyer, 1994; Geyer and Thomp-

son, 1992) and for the special case of an importance sampling distribution chosen

independently of the data (Sung and Geyer, 2007). Geyer (1994) presents conditions

under which the Monte Carlo likelihood approximation converges almost surely to the

exact likelihood for any single parameter value. In addition to studying the point-

wise convergence, we can also consider the convergence of the entire likelihood func-

tion. Geyer (1994) shows the Monte Carlo likelihood approximation converges almost

surely to the likelihood function for GLMMs specified with unnormalized densities

as long as a Wald-like integrability condition is met. Additionally, if the parameter

space can be compactified, the MCMLE converges to the MLE almost surely (Geyer,

1994). Geyer (1994) also shows that the Monte Carlo profile likelihoods converge to

the exact profile likelihoods almost surely, and no additional regularity conditions are

required.

More recently, MCLA for GLMMs has been studied by Sung and Geyer (2007),

who focus on an MCLA implementation with an importance sampling distribution

constructed independently of the observed data. Under this framework, Sung and

Geyer (2007) provide conditions under which the MCMLE is asymptotically normal

and calculate MCMLE variance, taking into account both the usual sampling error

(related to the observed sample size) and the Monte Carlo error (related to the Monte

Carlo sample size). Sung and Geyer (2007) also produce an approximate distribution

for the MLE, which can be used for the MCMLE when the Monte Carlo sample size

is large. Additionally, Sung and Geyer (2007) discuss the role of the importance
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sampling distribution in calculating the MCMLE variance. Since these theorems and

calculations are only appropriate when the importance sampling distribution is chosen

independently of the observed sample size, these topics would need to be revisited and

updated for importance sampling distributions that depend on the observed data.

In addition to their theoretical work, Sung and Geyer (2007) prepared the R pack-

age bernor that fits maximum likelihood estimates for a GLMM with a Bernoulli re-

sponse; their package uses an importance sampling distribution that does not depend

on the observed data. Though their package can perform maximum likelihood for

simpler models, it cannot find MLEs for a model as complicated as the salamander

model (Section 1.3).

This highlights the challenge of finding an importance sampling distribution that

performs well in practice. Though MCLA theory indicates any importance sampling

distribution should suffice as long as its support contains the support of the target dis-

tribution, many importance sampling distributions require so much computing power

that modern computers cannot perform maximum likelihood in practice. This prac-

tical problem is illustrated by the absence of MCLA software that can produce MLEs

for nontrivial problems. In response, we present an importance sampling distribution

(Equation (4.1)) and the R package glmm.



Chapter 3

GLMM and MCLA Calculations

In Section 3.1, we express the Monte Carlo log likelihood approximation and its first

two derivatives for GLMMs. The second derivative (the Hessian matrix) is used for es-

timating Fisher information, as shown in Section 3.2.1. In addition to sampling error,

Section 3.2 discusses Monte Carlo error for GLMM inference performed using MCLA.

This chapter also details the distribution of the random effects (Section 3.3) and the

distribution of the response vector conditional on the random effects (Section 3.4).

3.1 MCLA Calculations and Derivatives

The MCLA calculation requires the density for the joint distribution of the observed

data and random effects, fθ(u, y). Because this joint density can be expressed as

the product shown in Equation (1.1), we require expressions for log fν(u) and its

derivatives (found in Section 3.3) and expressions for log fβ(y|u) and its derivatives

(found in Section 3.4).

Let uk, k = 1, . . . , m, be vectors of length q drawn from a distribution with den-

sity f̃(uk) where f̃(uk) does not depend on θ. The specific importance sampling

distribution used in R package glmm is described in Equation (4.1).

15
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Then the Monte Carlo log likelihood approximation is

lm(θ|y) = log

(
1

m

m∑
k=1

fθ(uk, y)

f̃(uk)

)
.

(3.1)

Again, this function can be used for any likelihood-based inference and its maximizer

is the MCMLE.

Let ∇ represent differentiating with respect to θ and ∇2 represent differentiating

a second time. The chain rule provides a start to the gradient calculation:

∇lm(θ|y) = ∇

[
log

(
1

m

m∑
k=1

fθ(uk, y)

f̃(uk)

)]

=

∇
[

1

m

∑m
k=1

fθ(uk, y)

f̃(uk)

]
1

m

∑m
k=1

fθ(uk, y)

f̃(uk) .

Because our choice of f̃ does not depend on θ,

∇lm(θ|y) =

1

m

∑m
k=1

∇fθ(uk, y)

f̃(uk)

1

m

∑m
k=1

fθ(uk, y)

f̃(uk)

=

∑m
k=1 [∇ log fθ(uk, y)]

fθ(uk, y)

f̃(uk)∑m
k=1

fθ(uk, y)

f̃(uk) .

(3.2)

The Hessian of the MCLA is the derivative of the MCLA gradient:

∇2lm(θ|y) = ∇


∑m

k=1 [∇ log fθ(uk, y)]
fθ(uk, y)

f̃(uk)∑m
k=1

fθ(uk, y)

f̃(uk)


.
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Because the MCLA gradient is a product of three functions of θ, the product rule

yields three terms:

∇2lm(θ|y) =

∑m
k=1 [∇2 log fθ(uk, y)]

fθ(uk, y)

f̃(uk)∑m
k=1

fθ(uk, y)

f̃(uk)

+

∑m
k=1 [∇ log fθ(uk, y)]

[
∇fθ(uk, y)

f̃(uk)

]
∑m

k=1

fθ(uk, y)

f̃(uk)

−


∑m

k=1 [∇ log fθ(uk, y)]
fθ(uk, y)

f̃(uk)(∑m
k=1

fθ(uk, y)

f̃(uk)

)2


[
∇

m∑
k=1

fθ(uk, y)

f̃(uk)

]
.

Completing the derivative for each term gives

∇2lm(θ|y) =

∑m
k=1 [∇2 log fθ(uk, y)]

fθ(uk, y)

f̃(uk)∑m
k=1

fθ(uk, y)

f̃(uk)

+

∑m
k=1 [∇ log fθ(uk, y)] [∇ log fθ(uk, y)]T

fθ(uk, y)

f̃(uk)∑m
k=1

fθ(uk, y)

f̃(uk)

−


∑m

k=1 [∇ log fθ(uk, y)]
fθ(uk, y)

f̃(uk)(∑m
k=1

fθ(uk, y)

f̃(uk)

)2

 [∇ log fθ(uk, y)]T.

(3.3)

We recognize the last term contains an expression for the MCLA gradient and rewrite
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the Hessian as

∇2lm(θ|y) =

∑m
k=1 [∇2 log fθ(uk, y)]

fθ(uk, y)

f̃(uk)∑m
k=1

fθ(uk, y)

f̃(uk)

+

∑m
k=1 [∇ log fθ(uk, y)] [∇ log fθ(uk, y)]T

fθ(uk, y)

f̃(uk)∑m
k=1

fθ(uk, y)

f̃(uk)

− [∇lm(θ|y)] [∇lm(θ|y)]T.

(3.4)

To reduce the risk of catastrophic cancellation, we combine the last two terms of the

Hessian:

∇2lm(θ|y) =

∑m
k=1 [∇2 log fθ(uk, y)]

fθ(uk, y)

f̃(uk)∑m
k=1

fθ(uk, y)

f̃(uk)

+

∑m
k=1 [∇ log fθ(uk, y)−∇lm(θ|y)] [∇ log fθ(uk, y)−∇lm(θ|y)]T

fθ(uk, y)

f̃(uk)∑m
k=1

fθ(uk, y)

f̃(uk) .

(3.5)

We are able to combine the last two terms because ∇lm(θ|y) is a weighted mean

of ∇ log fθ(uk, y). This is easily understood if we let

Z = ∇ log fθ(uk, y)
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and use the following equality:

E(ZZT )− E(Z)E(Z)T = E
[
(Z − EZ)(Z − EZ)T

]
. (3.6)

3.2 Sources of Error

Two sources of error arise when using MCLA for GLMMs. The first source of error

is from the process of sampling the observed data while the second source of error is

from the Monte Carlo process.

The first source is the variation of the MLE about the true parameter value. We

call this “sampling error.” Let θ̂ represent the MLE resulting from data with sample

size n and θ∗ represent the true parameter value. Then this source of variability is

the variance of the asymptotic distribution of
√
n
(
θ̂ − θ∗

)
. When calculating the

sampling error, the data are treated as random, which implies the MLE is random as

well.

The second source is the variation of the MCMLE about the MLE. We call this

“Monte Carlo error.” Let θ̂m represent the MCMLE resulting from a Monte Carlo

sample size m. Then this source of variability is the variance of the asymptotic

distribution of
√
m
(
θ̂m − θ̂

)
. When calculating the Monte Carlo error, the data are

treated as fixed (not random), which implies the MLE is fixed as well.

We consider these two sources of error separately, following the lead of Geyer

(1994). Sung (2003) found that the asymptotic errors can be added when the im-

portance sampling distribution is chosen independently of the data, but these results

cannot be applied in this thesis because the importance sampling distribution used

in glmm is constructed based on the data.
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3.2.1 Sampling Error and Fisher Information

To measure the sampling error, we use Fisher information. Let J(θ̂m) indicate our

estimate of observed Fisher information. Then

J(θ̂m) = −∇2lm(θ̂m|y) (3.7)

and a consistent estimator of the asymptotic variance of the MLE is
[
J(θ̂m)

]−1
, as

long as the regularity conditions in Geyer (2013) are met. If the user is unsure as to

whether the sample sizes are large enough for this approximation to hold, the user

can calculate bootstrap standard deviations and compare them to the standard er-

rors calculated using estimated Fisher information. However, bootstrapping a Monte

Carlo calculation is very slow.

We can also calculate expected Fisher information, but we focus on observed

Fisher information because it is less computationally expensive.

3.2.2 Monte Carlo Error

Equation (4.41) shows the Monte Carlo error of the gradient of the log likelihood at

the MLE θ̂ is

V =
1

γ21

∫
[∇ log fθ̂(u, y)] [∇ log fθ̂(u, y)]T

fθ̂(u, y)2

f̃(u)
du, (3.8)

where γ1 is defined in Equation (4.17). We can estimate this with the MCMLE θ̂m:

V̂ =

1

m

∑m
k=1

([
∇ log fθ̂m(uk, y)

] [
∇ log fθ̂m(uk, y)

]T fθ̂m(uk, y)2

f̃(uk)

)
(

1

m

∑m
k=1

fθ̂m(uk, y)

f̃(uk)

)2

.

(3.9)
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Let

Û = ∇2lm(θ̂m|y). (3.10)

In other words, Û is the MCLA Hessian evaluated at the MCMLE. Let U be the limit

of the MCLA Hessian as the Monte Carlo sample size increases to infinity. Then the

Monte Carlo error

U−1 V U−1 (3.11)

has plug in estimator

Û−1 V̂ Û−1 (3.12)

under the regularity conditions listed in Geyer (1994). An importance sampling

distribution for MCLA is proposed in Section 4.1. Section 4.2.6 proves that the

Monte Carlo error resulting from the proposed MCLA implementation is finite.

3.3 The Density of the Random Effects

This section expresses the log density of the random effects and its first two deriva-

tives. These expressions are necessary for Equations (3.1), (3.2), and (3.5).

For t = 1, . . . , K, let Et be a diagonal matrix with ones and zeroes on the

diagonal so that
∑K

t=1Et is an identity matrix and so that D =
∑K

t=1 νtEt. That is,

the diagonal of Et indicates which random effects have variance νt. Let qt be the trace

of Et; then qt is the number of random effects associated with variance component

νt. Since q is the number of random effects in the model, q =
∑K

t=1 qt.
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Before we begin with derivatives, we write the log density of the random effects:

log fν(u) = −q
2

log(2π)− 1

2
log |D| − 1

2
uTD−1u.

Because D is diagonal, the determinant of D is

|D| = νq11 . . . νqKK .

Therefore, we can write the log density of the random effects as

log fν(u) = −q
2

log(2π)− 1

2

[
K∑
t=1

qt log νt

]
− 1

2
uTD−1u.

Next we use the fact that D =
∑K

t=1 νtEt:

log fν(u) = −q
2

log(2π)− 1

2

[
K∑
t=1

qt log νt

]
− 1

2
uT

[
K∑
t=1

1

νt
Et

]
u

= −q
2

log(2π)− 1

2

[
K∑
t=1

qt log νt

]
− 1

2

K∑
t=1

1

νt
uTEtu.

(3.13)

The first and second derivatives of log fν(u) with respect to νt are:

∂

∂νt
log fν(u) = − qt

2νt
+

1

2ν2t
uTEtu (3.14)

and

∂2

∂ν2t
log fν(u) =

qt
2ν2t
− 1

ν3t
uTEtu. (3.15)
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All mixed partial derivatives are 0. That is, for all s 6= t,

∂2 log fν(u)

∂νs ∂νt
= 0.

3.4 The Density of the Data

This section expresses the density of the observed data and its first two derivatives.

These espressions are necessary for Equations (3.1), (3.2), and (3.5).

Recall that η represents the canonical random vector. Define c(η) to be the cu-

mulant function for η ∈ Rn where

log fβ(y|u) = yTη − c(η). (3.16)

Details for the cumulant function are in Section 3.5. The gradient and Hessian of

the MCLA require derivatives of log fβ(y|u). The first derivative of log fβ(y|u) with

respect to β is a vector of length p with jth component

∂

∂βj
log fβ(y|u).

To condense the derivative, we write it with respect to the entire vector β:

∂

∂β
log fβ(y|u) =

∂

∂β

[
yTη − c(η)

]
=

∂

∂β

[
yT (Xβ + Zu)− c(η)

]
= XTy − ∂

∂β
c(η).

We use c′(η) to indicate the derivative of c(η) with respect to η and c′′(η) to represent

the second derivative of c(η) with respect to η. In particular, c′(η) is a vector as
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defined in Section 3.5. The multivariate chain rule gives

∂

∂β
log fβ(y|u) = XTy − ∂η

∂β

∂c(η)

∂η

= XTy −XT [c′(η)]

= XT [y − c′(η)] ,

(3.17)

where y − c′(η) is a vector with components as described in (3.28). The second

derivative is

∂2

∂β2
log fβ(y|u) =

∂2

∂β2

[
yTη − c(η)

]
=

∂

∂β
XT [y − c′(η)]

= −XT

[
∂

∂β
c′(η)

]
,

(3.18)

and the multivariate chain rule gives

− ∂2

∂β2
log fβ(y|u) = −XT

[
∂ c′(η)

∂η

]
∂η

∂β

= −XT [c′′(η)] X.

(3.19)

3.5 The Cumulant Function

This section expresses the cumulant function and its first two derivatives. We dis-

tinguish between the cumulant function for a vector η and for a scalar ηi. Let ci(ηi)

denote the cumulant function for ηi. Because the components of y are conditionally

independent given the random effects in a GLMM, we can write

c(η) =
n∑
i=1

ci(ηi).
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Define c′(η) to be a vector with c′i(ηi) as the ith entry. Define c′′(η) to be a diagonal

matrix with c′′i (ηi) as the ith diagonal entry. Note that c′(η) is the expected value of

the responses conditional on the random effects. That is, c′i(ηi) = E(Yi|U = u).

The exact specification of the cumulant function and its derivatives depends on the

conditional distribution of the response vector’s elements given the random effects.

We perform Bernoulli and Poisson GLMM: the elements of the response vector are all

conditionally Bernoulli (with responses being 0 or 1) or conditionally Poisson (with

responses being 0, 1, 2, . . .) given the random effects.

When the elements of the response vector are conditionally Bernoulli-distributed

given the random effects, then

ci(ηi) = log(1 + eηi). (3.20)

c′i(ηi) =
eηi

1 + eηi
(3.21)

c′′i (ηi) =
eηi

1 + eηi
− e2ηi

(1 + eηi)2 .
(3.22)

We rewrite these expressions to improve their computational stability. The following

representation of the cumulant avoids overflow resulting from large values of ηi.

ci(ηi) =

log(1 + eηi) if ηi ≤ 0,

ηi + log(e−ηi + 1) if ηi > 0,

(3.23)

To reduce loss of precision in the cumulant when ηi is near zero, calculation of the

function ηi 7→ log(1 + ηi) should be performed with the R function log1p(). This

function uses the Taylor series expansion for log(1 + ηi) around ηi = 0.
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Similarly, we rewrite the cumulant’s derivative by considering two cases for ηi:

c′i(ηi) =


eηi

1 + eηi
if ηi ≤ 0

1

1 + e−ηi
if ηi > 0

(3.24)

Equation (3.22) is in danger of “catastrophic cancellation,” a loss of precision

resulting from subtraction of two numbers. Let

p(ηi) =


eηi

1 + eηi
if ηi ≤ 0

1

1 + e−ηi
if ηi > 0

(3.25)

and

q(ηi) =


e−ηi

1 + e−ηi
if ηi ≥ 0

1

1 + eηi
if ηi < 0

(3.26)

Then

c′′(ηi) = p(ηi)q(ηi) (3.27)

and

yi − c′(ηi) =

−p(ηi) if yi = 0

q(ηi) if yi = 1.

(3.28)

When the elements of the response vector are conditionally Poisson-distributed
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given the random effects, then

ci(ηi) = eηi

c′i(ηi) = eηi

c′′i (ηi) = eηi .

(3.29)

These expressions overflow for ηi large and underflow for ηi small. No precautions are

taken to improve these expressions’ computationally stability because little can be

done. There is a Taylor series expansion for the function ηi 7→ eηi−1, which can help

in the case when yi = 1, but there are not Taylor series expansions around integers

other than 1.

Both Bernoulli and Poisson cumulant functions are strictly positive and have

strictly positive first derivatives.



Chapter 4

An MCLA Implementation

MCLA requires an importance sampling distribution for generating random effects.

In this chapter, we propose an importance sampling distribution for MCLA implemen-

tation. We then characterize the asymptotic behavior of the MCLA gradient, which

is used for calculating the Monte Carlo error of the MCMLE (Equation (3.12)).

4.1 The Proposed Importance Sampling Distribu-

tion

Let s be a vector of length q that represents the random effects on the standard

normal scale. That is, s is defined such that u = D1/2s. Let σ be a vector of length

K with components
√
νt, t = 1, . . . , K. Let β∗, s∗ and σ∗ denote the PQL estimates

for β, s and σ, respectively. Let

A∗ =
K∑
t=1

Et σ
∗
t

and

D∗ = A∗A∗.

28
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We can “unstandardize” our PQL-predicted random effects:

u∗ = A∗s∗.

Let p1, p2, p3 be proportions such that p1 + p2 + p3 = 1. Let f(u|µ,Σ) denote the

density for a multivariate normal distribution with mean µ and variance matrix Σ.

Let f̀(u|0, D∗) denote the density for a q-dimensional multivariate t distribution with

mean 0, scale matrix D∗, and ζ = 5 degrees of freedom. Then we propose the following

importance sampling distribution:

f̃(u) = p1f̀(u|0, D∗) + p2f(u |u∗, D∗)+

+ p3f(u |u∗, (ZT c′′(Xβ∗ + Zu∗)Z + (D∗)−1)−1).
(4.1)

The first component f̀( · |0, D∗) of Equation (4.1) is chosen to ensure the gradient

of the MCLA has a central limit theorem (as shown in Section 4.2.6). The second

component is chosen because it is centered at u∗ and has variance D∗. The last

component is centered at u∗ and has a variance based on the Hessian of the penalized

likelihood from PQL. More specifically, the Hessian of the log density of the last

distribution matches the Hessian of the log density of the target distribution fθ(u, y).

4.2 Asymptotic Behavior of the MCLA Gradient

In this section, we focus on the asymptotic behavior of the MCLA gradient resulting

from use of our proposed importance sampling distribution. We focus on the cases

of Bernoulli- and Poisson-distributed elements of the response vector. All limits are

taken as the Monte Carlo sample size increases to infinity. For every θ and every y,
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we want to show

∇lm(θ|y) −→ ∇l(θ|y)

almost surely as the Monte Carlo sample size m increases to infinity. We also want

to show

√
m (∇lm(θ|y)−∇l(θ|y))

converges in distribution to a normal distribution with mean 0 and finite variance

for every θ and every y as the Monte Carlo sample size increases to infinity. This

is analogous to showing the gradient of the Monte Carlo likelihood approximation

is consistent and asymptotically normal. These results ensure that our Monte Carlo

errors are finite.

4.2.1 Recognizing a Normal Density

The following lemma about normal densities will be used several times in this chapter’s

proofs.

Lemma 4.2.1

Let u be a vector. Let a be a vector of the same length as u. Let b be a constant. If

D is a variance matrix (positive definite and symmetric), then the function

u 7→ exp
(
−uTD−1u+ aTu+ b

)
is proportional to a normal density with mean

1

2
Da and variance matrix

1

2
D.
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Proof

First, we multiply our expression by a constant and rearrange the terms:

exp
(
−uTD−1u+ aTu+ b

)
∝ exp

(
−uTD−1u+ aTu+ b

)
exp

(
−b− aTDa

4

)
= exp

(
−uTD−1u+ aTu− (Da)Ta

4

)
.

In the last term, we multiply by the identity matrix in the form of D−1D:

exp

(
−uTD−1u+ aTu− (Da)Ta

4

)
= exp

(
−uTD−1u+ aTu− (Da)TD−1Da

4

)
.

Next, we factor the expression:

exp

(
−uTD−1u+ aTu− (Da)TD−1Da

4

)
= exp

(
−
(
u− 1

2
Da

)T
D−1

(
u− 1

2
Da

))
.

Now, we multiply and divide by the same number:

exp

(
−
(
u− 1

2
Da

)T
D−1

(
u− 1

2
Da

))

= exp

(
−1

2

(
u− 1

2
Da

)T (
2D−1

)(
u− 1

2
Da

))
.

We recognize this expression as the kernel for a multivariate normal density with

mean
1

2
Da and variance matrix

1

2
D.
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�

The converse of Lemma 4.2.1 is also true, but we do not prove it.

4.2.2 Passing the Derivative under the Integral

This lemma will be used in Section 4.2.3.

Lemma 4.2.2

Efθ [∇ log fθ(u, y)|y] = ∇l(θ|y). (4.2)

Proof

We begin with the right-hand side of Equation (4.2):

∇l(θ|y) =
∇L(θ|y)

L(θ|y)

=
∇
∫
fθ(u, y) du

L(θ|y)

(4.3)

To pass the derivative in Equation (4.3) under the integral sign, we use a lemma from

Ferguson (1996, p. 124). We provide separate arguments for derivatives with respect

to elements of β and for derivatives with respect to elements of ν.

Let k be given. Let a1 < a2. If ∂fθ(u, y)/∂βk exists and is continuous in βk for all

u and for all βk ∈ (a1, a2), and if∣∣∣∣ ∂∂βk fθ(u, y)

∣∣∣∣ ≤ κ1(u) (4.4)
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on (a1, a2) where

∫
κ1(u) du <∞,

and if

∫
fθ(u, y) du <∞, (4.5)

then

∂

∂βk

∫
fθ(u, y) du =

∫
∂

∂βk
fθ(u, y) du. (4.6)

Condition (4.5) is clearly met because the integral is the marginal probability

mass function for y, which can also be thought of as the likelihood L(θ|y). For any θ

and any y, L(θ|y) exists.

Next, we show that ∂fθ(u, y)/∂βk exists and is continuous in βk for all u. We start

by writing the joint density as the product of marginal and conditional:

∂

∂βk
fθ(u, y) =

∂

∂βk
[fβ(y|u)fν(u)] .

Since fν(u) is free of βk, this derivative can be rewritten as

∂

∂βk
fθ(u, y) =

[
∂

∂βk
fβ(y|u)

]
fν(u)

= fβ(y|u)

[
∂

∂βk
log fβ(y|u)

]
fν(u).

The density fν(u) does not contain βk and so it is automatically continuous in βk

for every u. The density fβ(y|u) is an exponential family. Equation (3.16) clearly

shows that fβ(y|u) is continuous in βk for every u. The derivative of log fβ(y|u) is
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(3.17), and the kth component of this vector represents ∂ log fβ(y|u)/∂βk. Since c′(η)

is continuous in βk for all u, so is ∂ log fβ(y|u)/∂βk.

To prove Equation (4.6), the final step is to find κ1(u) and show that it is inte-

grable. The function to be dominated by κ1(u) is∣∣∣∣∂ log fβ(y|u)

∂βk
fβ(y|u) fν(u)

∣∣∣∣ =

∣∣∣∣∂ log fβ(y|u)

∂βk
exp

(
yTη

)
exp (−c(η)) fν(u)

∣∣∣∣
.

Letting b be a constant such that

fν(u) = b exp
(
−uTD−1u

)
,

we see

∣∣∣∣∂ log fβ(y|u)

∂βk
fβ(y|u) fν(u)

∣∣∣∣
=

∣∣∣∣b [ ∂

∂βk
log fβ(y|u)

]
exp

(
yTη

)
exp (−c(η)) exp

(
−uTD−1u

)∣∣∣∣ .

When elements of the response vector are conditionally Poisson or Bernoulli given

the random effects, c(η) > 0, which implies 0 < exp (−c(η)) < 1. Therefore,∣∣∣∣b [ ∂

∂βk
log fβ(y|u)

]
exp

(
yTη

)
exp (−c(η)) exp

(
−uTD−1u

)∣∣∣∣
<

∣∣∣∣b [ ∂

∂βk
log fβ(y|u)

]
exp

(
yTη

)
exp

(
−uTD−1u

)∣∣∣∣
=

∣∣∣∣b [ ∂

∂βk
log fβ(y|u)

]
exp

(
yTXβ

)
exp

(
yTZu

)
exp

(
−uTD−1u

)∣∣∣∣ .
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We must now dominate exp
(
yTXβ

)
. The function

βk 7→ exp
(
yTXβ

)
is continuous over the compact set [a1, a2]. Therefore, it achieves its maximum. Let

M1 denote this maximum. Then

exp
(
yTXβ

)
≤M1

for βk in (a1, a2). This implies

∣∣∣∣b [ ∂

∂βk
log fβ(y|u)

]
exp

(
yTXβ

)
exp

(
yTZu

)
exp

(
−uTD−1u

)∣∣∣∣
≤
∣∣∣∣b [ ∂

∂βk
log fβ(y|u)

]
M1 exp

(
yTZu

)
exp

(
−uTD−1u

)∣∣∣∣ .

We now want to dominate∣∣∣∣ ∂∂βk log fβ(y|u)

∣∣∣∣
.

Recall that ∂ log fβ(y|u)/∂βk is the kth component of (3.17). If the elements of the

response vector are conditionally Bernoulli given the random effects, then elements

of the response vector are either 0 or 1 and the first derivative of the cumulant is a

probability. Therefore, |yi − ci(ηi)| ≤ 1 for all i, which implies

∣∣∣∣ ∂∂βk log fβ(y|u)

∣∣∣∣ ≤ 1
n∑
j=1

|xjk|. (4.7)
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Let M2 be a constant such that

n∑
j=1

|xjk| < M2. (4.8)

This implies

∣∣∣b [ ∂

∂βk
log fβ(y|u)

]
M1 exp

(
yTZu

)
exp

(
−uTD−1u

) ∣∣∣
<
∣∣∣b M2 M1 exp

(
yTZu

)
exp

(
−uTD−1u

) ∣∣∣

as long as the elements of the response vector are conditionally Bernoulli given the

random effects. Therefore, for the Bernoulli case,

κ1(u) =
∣∣∣b M2 M1 exp

(
yTZu

)
exp

(
−uTD−1u

) ∣∣∣
= b M2 M1 exp

(
yTZu

)
exp

(
−uTD−1u

)
= b M2 M1 exp

(
−uTD−1u+ yTZu

)
.

(4.9)

Since M1 > 0, M2 > 0, and b > 0, we recognize κ1(u) for the Bernoulli case as

proportional to the density of a multivariate normal distribution by the lemma in

Section 4.2.1. Therefore, κ1(u) is integrable.

We now turn our attention to expressing ∂ log fβ(y|u)/∂βk for the case in which

the elements of the response vector are conditionally Poisson given the random effects.

This derivative is the kth element shown in Equation (3.17), where elements of c′(η)

are given in Equation (3.29). Let xj· denote the jth row of X and let zj· denote the
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jth row of Z. Then, for the Poisson case, we use the triangle inequality:

∣∣∣∣∂ log fβ(y|u)

∂βk

∣∣∣∣ =

∣∣∣∣∣
n∑
j=1

xjkyj − xjk exp (xj·β + zj·u)

∣∣∣∣∣
≤

n∑
j=1

|xjkyj|+
n∑
j=1

|xjk| exp (xj·β + zj·u)

=
n∑
j=1

|xjkyj|+
n∑
j=1

|xjk| exp (xj·β) exp (zj·u).

(4.10)

The function

βk 7→ exp (xj·β)

is continuous on the compact set [a1, a2]. Therefore, it attains its maximum, which

we denote by Nj. Then

n∑
j=1

|xjk| exp (xj·β) exp (zj·u) ≤
n∑
j=1

|xjk| Nj exp (zj·u) .

Then we have dominated our function for the Poisson case and found κ1(u):

κ1(u) = b

[
n∑
j=1

|xjkyj|+
n∑
j=1

|xjk| Nj exp (zj·u)

]
M1 exp

(
yTZu

)
exp

(
−uTD−1u

)
.
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We must now show κ1(u) is integrable. The expression

∫
b

[
n∑
j=1

|xjkyj|+
n∑
j=1

|xjk|Nj exp (zj·u)

]
M1 exp

(
yTZu

)
exp

(
−uTD−1u

)
du

= b M1

n∑
j=1

|xjkyj|
∫

exp
(
−uTD−1u+ yTZu

)
du +

+ b M1

∫ n∑
j=1

|xjk| Nj exp
(
−uTD−1u+ yTZu+ zj·u

)
du

exists because exp
(
−uTD−1u+ yTZu+ zj·u

)
and exp

(
−uTD−1u+ yTZu

)
are each

proportional to a normal density by Section 4.2.1.

We have now shown condition (4.4) for the Bernoulli case and the Poisson case.

We have now met all the requirements to prove Equation (4.6).

We now prove a similar statement about differentiating with respect to a variance

component. Let t be given. Let a2 > a1 > 0. If ∂fθ(u, y)/∂νt exists and is continuous

in νt for all u and for all νt ∈ (a1, a2) , and if∣∣∣∣ ∂∂νtfθ(u, y)

∣∣∣∣ ≤ κ2(u) (4.11)

on (a1, a2) where

∫
κ2(u) du <∞,

then, for a1 < νt < a2,

∂

∂νt

∫
fθ(u, y) du =

∫
∂

∂νt
fθ(u, y) du. (4.12)

To show ∂fθ(u, y)/∂νt exists and is continuous in νt for all u, we start by expressing
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our joint density as the product of marginal and conditional and take the derivative:

∂

∂νt
fθ(u, y) =

∂

∂νt
[fβ(y|u)fν(u)]

=
∂

∂νt
[fν(u)] fβ(y|u)

=

[
∂

∂νt
log fν(u)

]
fν(u) fβ(y|u).

(4.13)

The density fβ(y|u) does not contain νt and therefore it is continuous in νt for all u.

The density fν(u) is a multivariate normal distribution; therefore, it is continuous in

νt for all u. The partial derivative is shown in (3.14), and it is continuous in νt for all

u.

To prove (4.12), the final step is to find κ2(u) and show that it is integrable. We

need κ2(u) to dominate∣∣∣∣fβ(y|u) fν(u)
∂ log fν(u)

∂νt

∣∣∣∣ =

∣∣∣∣exp
(
yTη − c(η)

)
fν(u)

∂ log fν(u)

∂νt

∣∣∣∣
.

Using Equation (3.14) leads to∣∣∣∣exp
(
yTη − c(η)

)
fν(u)

∂ log fν(u)

∂νt

∣∣∣∣
=

∣∣∣∣exp
(
yTη − c(η)

)
fν(u)

[
−qt
2νt

+
uTEtu

2ν2t

]∣∣∣∣
= exp

(
yTη − c(η)

)
fν(u)

∣∣∣∣−qt2νt
+
uTEtu

2ν2t

∣∣∣∣
.

(4.14)

Let b be a constant such that

fν(u) ≤ b

(
K∏
j=1

ν
−qj/2
j

)
exp

(
−1

2

K∑
j=1

1

νj
uTEju

)
.
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Then

exp
(
yTη − c(η)

)
fν(u)

∣∣∣∣−qt2νt
+
uTEtu

2ν2t

∣∣∣∣
≤ b exp

(
yTη − c(η)

) ( K∏
j=1

ν
−qj/2
j

)
exp

(
1

2

K∑
j=1

1

νj
uTEju

) ∣∣∣∣−qt2νt
+
uTEtu

2ν2t

∣∣∣∣
.

Using the triangle inequality on the last term gives

b exp
(
yTη − c(η)

)( K∏
j=1

ν
−qj/2
j

)
exp

(
−1

2

K∑
j=1

1

νj
uTEju

)∣∣∣∣−qt2νt
+
uTEtu

2ν2t

∣∣∣∣
≤ b exp

(
yTη − c(η)

)( K∏
j=1

ν
−qj/2
j

)
exp

(
−1

2

K∑
j=1

1

νj
uTEju

)[
qt
2νt

+
uTEtu

2ν2t

]
.

The function

νt 7→
uTEtu

2ν2t
+

qt
2νt

is continuous and decreasing on [a1, a2] and therefore attains its maximum at a1.

Then for a1 < νt < a2,

uTEtu

2ν2t
+

qt
2νt
≤ uTEtu

2a21
+

qt
2a1

,
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which implies

exp
(
yTη − c(η)

) ( K∏
j=1

ν
−qj/2
j

)
exp

(
−1

2

K∑
j=1

1

νj
uTEju

) [
uTEtu

2ν2t
+

qt
2νt

]

≤ exp
(
yTη − c(η)

) ( K∏
j=1

ν
−qj/2
j

)
exp

(
−1

2

K∑
j=1

1

νj
uTEju

) [
uTEtu

2a21
+

qt
2a1

]
.

The function

νt 7→ exp

(
−1

2

K∑
j=1

1

νj
u′Eju

)

is continuous on [a1, a2] and attains its maximum at a2. Therefore, the function is

bounded on (a1, a2):

exp

(
−1

2

K∑
j=1

1

νj
u′Eju

)
= exp

(
−1

2

1

νt
u′Etu

)
exp

(
−1

2

∑
j 6=t

1

νj
u′Eju

)

≤ exp

(
−1

2

1

a2
u′Etu

)
exp

(
−1

2

∑
j 6=t

1

νj
u′Eju

)
.

Let D2 be a diagonal matrix such that

exp
(
−uTD−12 u

)
= exp

(
−1

2

1

a2
u′Etu

)
exp

(
−1

2

∑
j 6=t

1

νj
u′Eju

)
.
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In particular, note that D2 is constructed to be free of νt. Then

exp
(
yTη − c(η)

) ( K∏
j=1

ν
−qj/2
j

)
exp

(
−1

2

K∑
j=1

1

νj
uTEju

) [
uTEtu

2a21
+

qt
2a1

]

≤ exp
(
yTη − c(η)

) ( K∏
j=1

ν
−qj/2
j

)
exp

(
−uTD−12 u

) [uTEtu
2a21

+
qt

2a1

]
.

Next, note the function

νt 7→
K∏
j=1

ν
−qj/2
j

is continuous on [a1, a2] and attains its maximum. Denote this maximum by M .

Then, for a1 < νt < a2,

K∏
j=1

ν
−qj/2
j ≤M,

which implies

exp
(
yTη − c(η)

) ( K∏
j=1

ν
−qj/2
j

)
exp

(
−uTD−12 u

) [uTEtu
2a21

+
qt

2a1

]
≤ exp

(
yTη − c(η)

)
M exp

(
−uTD−12 u

) [uTEtu
2a21

+
qt

2a1

]
.

Define

κ2(u) = exp
(
yTη − c(η)

)
M exp

(
−uTD−12 u

) [uTEtu
2a21

+
qt

2a1

]
.
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We must now show that κ2(u) is integrable:∫
κ2(u) du

=

∫
exp

(
yTη − c(η)

)
M exp

(
−uTD−12 u

) [uTEtu
2a21

+
qt

2a1

]
du

=

∫
exp

(
yTη

)
exp (−c(η)) M exp

(
−uTD−12 u

) [uTEtu
2a21

+
qt

2a1

]
du

When the elements of the response vector are conditionally Poisson or Bernoulli given

the random effects, c(η) ≥ 0, which implies 0 ≤ exp (−c(η)) ≤ 1. Using this gives

∫
exp

(
yTη

)
exp (−c(η)) M exp

(
−uTD−12 u

) [uTEtu
2a21

+
qt

2a1

]
du

=

∫
exp

(
yTη

)
M exp

(
−uTD−12 u

) [uTEtu
2a21

+
qt

2a1

]
du

=

∫
exp

(
yTXβ

)
exp

(
yTZu

)
M exp

(
−uTD−12 u

) [uTEtu
2a21

+
qt

2a1

]
du.

Rearranging the terms gives

∫
exp

(
yTXβ

)
exp

(
yTZu

)
M exp

(
−uTD−12 u

) [uTEtu
2a21

+
qt

2a1

]
du

= exp
(
yTXβ

)
M

∫
exp

(
−uTD−12 u+ yTZu

) [uTEtu
2a21

+
qt

2a1

]
du (4.15)

We recognize

exp(−uTD−12 u+ yTZu)

as proportional to a normal density by Section 4.2.1. Therefore, Equation (4.15) is

proportional to the expectation of
uTEtu

2a21
+

qt
2a1

with respect to a normal distribution,

and this expectation exists. Therefore, we have proven Equation (4.12).
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Combining Equation (4.6) and Equation (4.12) yields

∇
∫
fθ(u, y) du =

∫
∇fθ(u, y) du.

Therefore, continuing with Equation (4.3), we see

∇l(θ|y) =
∇
∫
fθ(u, y) du

L(θ|y)

=

∫
∇fθ(u, y) du

L(θ|y)

=

∫
[∇ log fθ(u, y)] fθ(u, y) du

L(θ|y)
.

However, L(θ|y) = fθ(y), which is a constant with respect to u and can be passed

into the integral. Therefore,

∇l(θ|y) =

∫
[∇ log fθ(u, y)] fθ(u, y) du

fθ(y)

=

∫
[∇ log fθ(u, y)] fθ(u, y)

fθ(y)
du.

Dividing a joint density by a marginal density creates a conditional density. Therefore,

this expression is an expectation with respect to a conditional density:

∇l(θ|y) =

∫
[∇ log fθ(u, y)] fθ(u|y) du

= Efθ [∇ log fθ(u, y) |Y = y] .

�
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4.2.3 Law of Large Numbers for the MCLA Gradient

Lemma 4.2.3

For every θ,

∇lm(θ|y) −→ ∇l(θ|y) (4.16)

almost surely as m→∞.

Proof

Define

∫
fθ(u, y) du = fθ(y) = γ1. (4.17)

Because we fix y at its observed value, we consider γ1 to be constant and finite.

Additionally, note that

∫
f̃(u) du = 1.

Recall the calculation for the MCLA gradient originally stated in Equation (3.2).

Both the numerator and denominator of Equation (3.2) are sample means. Since γ1

is finite, the law of large numbers applies to the denominator of Equation (3.2) as

m→∞:

1

m

m∑
k=1

fθ(uk, y)

f̃(uk)

a.s.−→ Ef̃

[
fθ(u, y)

f̃(u)

]
=

∫
fθ(u, y)

f̃(u)
f̃(u) du

=

∫
fθ(u, y) du

= γ1.

(4.18)
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Section 4.2.2 proves

Efθ [∇ log fθ(u, y)|Y = y] = ∇l(θ|y)

and shows the existence of ∇l(θ|y). By the law of large numbers, as m→∞ ,

1

m

m∑
k=1

[∇ log fθ(uk, y)]
fθ(uk, y)

f̃(uk)

a.s.−→ Ef̃

[
[∇ log fθ(u, y)]

fθ(u, y)

f̃(u)

]
=

∫
[∇ log fθ(u, y)]

fθ(u, y)

f̃(u)
f̃(u) du

= γ1

∫
[∇ log fθ(u, y)]

fθ(u, y)

γ1
du

= γ1Efθ [∇ log fθ(u, y)|Y = y]

= γ1∇l(θ|y).

(4.19)

Then, by Slutsky’s theorem,

∑m
k=1 [∇ log fθ(uk, y)]

fθ(uk, y)

f̃(uk)∑m
k=1

(
fθ(uk, y)

f̃(uk)

) a.s.−→ γ1∇l(θ|y)

γ1 .

More simply,

∇lm(θ|y)−→∇l(θ|y)

almost surely.

�
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4.2.4 Central Limit Theorem for the Numerator of the MCLA

Gradient

Lemma 4.2.4

The quantity

1

m

m∑
k=1

[∇ log fθ(uk, y)]
fθ(uk, y)

f̃(uk)
(4.20)

has a central limit theorem. That is,

√
m

(
1

m

m∑
k=1

[∇ log fθ(uk, y)]
fθ(uk, y)

f̃(uk)
− γ1∇l(θ|y)

)

converges to a normal distribution with mean zero and finite variance.
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Proof

Section 4.2.3 shows

Ef̃

[
[∇ log fθ(u, y)]

fθ(u, y)

f̃(u)
|Y = y

]
= γ1 ∇l(θ|y).

To prove the lemma in Section 4.2.4, we require

Var

(
[∇ log fθ(u, y)]

fθ(u, y)

f̃(u)

)
<∞. (4.21)

This is true if all of the following conditions are true for every j and for every t:

Var

([
∂ log fβ(y|u)

∂βj

]
fθ(u, y)

f̃(u)

)
<∞ (4.22)

Var

([
∂ log fν(u)

∂νt

]
fθ(u, y)

f̃(u)

)
<∞ (4.23)∣∣∣∣Cov

([
∂ log fβ(y|u)

∂βj

]
fθ(u, y)

f̃(u)
,

[
∂ log fν(u)

∂νt

]
fθ(u, y)

f̃(u)

)∣∣∣∣ <∞. (4.24)

We start with Condition (4.22). Let j be given. Because uk, k = 1, . . . ,m are

drawn from a distribution with density f̃(uk),

Var

([
∂ log fβ(y|u)

∂βj

]
fθ(u, y)

f̃(u)

)
< Ef̃

[([
∂ log fβ(y|u)

∂βj

]
fθ(u, y)

f̃(u)

)2
]

=

∫ [
∂ log fβ(y|u)

∂βj

]2
[fθ(u, y)]2

f̃(u)
du

=

∫ [
∂ log fβ(y|u)

∂βj

]2
[fβ(y|u)]2 [fν(u)]2

f̃(u)
du.
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Since f̃(u) ≥ p1f̀(u|0, D∗) and we require p1 > 0,

∫ [
∂ log fβ(y|u)

∂βj

]2
[fβ(y|u)]2 [fν(u)]2

f̃(u)
du

≤
∫ [

∂ log fβ(y|u)

∂βj

]2
[fβ(y|u)]2 [fν(u)]2

p1f̀(u|0, D∗)
du.

Let b1 and b2 be constants with respect to u such that

f̀(u|0, D∗) = b1
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
and

fν(u) =
√
b2 exp

(
−uTD−1u

)
.

Entering the densities for f̀(u|0, D∗) and fν(u) yields

∫ [
∂ log fβ(y|u)

∂βj

]2
[fβ(y|u)]2 [fν(u)]2

p1f̀(u|0, D∗)
du

=
b2
b1

∫ [
∂ log fβ(y|u)

∂βj

]2
[fβ(y|u)]2 exp(−uTD−1u)

[1 + uT (D∗)−1u/ζ]−(ζ+q)/2
du

=
b2
b1

∫ [
∂ log fβ(y|u)

∂βj

]2 [fβ(y|u)]2
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du.

Since fβ(y|u) is an exponential family,

b2
b1

∫ [
∂ log fβ(y|u)

∂βj

]2 [fβ(y|u)]2
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du

=
b2
b1

∫ [
∂ log fβ(y|u)

∂βj

]2 exp(2yTη)
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2c(η)) exp(uTD−1u)

du.

(4.25)

The partial derivative is the jth element of Equation (3.17). Letting x·j indicate the
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jth column of X, we can write

∂ log fβ(y|u)

∂βj
= xT·j (y − c′(η)) .

Substituting this into Equation (4.25) yields

b2
b1

∫ [
∂ log fβ(y|u)

∂βj

]2 exp(2yTη)
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2c(η)) exp(uTD−1u)

du

=
b2
b1

∫ [
xT·j (y − c′(η))

]2 exp(2yTη)
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2c(η)) exp(uTD−1u)

du.

Because c(η) > 0 when elements of the response vector are conditionally Bernoulli or

Poisson given the random effects, 0 ≤ exp(−2c(η)) ≤ 1. This implies

b2
b1

∫ [
xT·j (y − c′(η))

]2 exp(2yTη)
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2c(η)) exp(uTD−1u)

du

≤ b2
b1

∫ [
xT·j (y − c′(η))

]2 exp(2yTη)
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du.

Writing out η gives

b2
b1

∫ [
xT·j (y − c′(η))

]2 exp(2yTη)
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du

=
b2
b1

exp(2yTXβ)

∫ [
xT·j (y − c′(η))

]2 exp(2yTZu)
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du.

(4.26)
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Next, we write out the sum and use the triangle inequality:

[
xT·j (y − c′(η))

]2
=

[
n∑
i=1

xij(yi − c′i(ηi))

]2

≤

[
n∑
i=1

|xij| |yi − c′i(ηi)|

]2
.

(4.27)

We now consider the effect of y and c′(η) on (4.26) for the Bernoulli case and

Poisson case separately. When elements of the response vector are conditionally

Bernoulli given the random effects, then elements of y and elements of c′(η) are

bounded between 0 and 1 and we can use a similar argument to that in Equation

(4.7):

[
n∑
i=1

|xij| |yi − c′i(ηi)|

]2
≤

[
1

n∑
i=1

|xij|

]2

=

[
n∑
i=1

|xij|

]2
.

(4.28)

Substituting this into Equation (4.26) and rearranging the terms of the integrand

gives

b2
b1

exp(2yTXβ)

∫ [
xT·j (y − c′(η))

]2 exp(2yTZu)
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du

≤ b2
b1

exp(2yTXβ)

[
n∑
i=1

|xij|

]2 ∫
exp(2yTZu)

[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du

=
b2
b1

exp(2yTXβ)

[
n∑
i=1

|xij|

]2
×∫ [

1 + uT (D∗)−1u/ζ
](ζ+q)/2

exp(−uTD−1u+ 2yTZu) du.

(4.29)
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By Section 4.2.1, exp(−uTD−1u+2yTZu) is proportional to a normal density. There-

fore, this integral is proportional to the expectation of
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
with

respect to a normal density. This moment exists. Therefore, we have shown Condition

(4.22) for the Bernoulli case.

Now we move on to the Poisson case for Equation (4.27).

[
n∑
i=1

xij(yi − ci(ηi))

]2
=

[
n∑
i=1

xij(yi − exp(ηi))

]2

=

[
n∑
i=1

xij(yi − exp(xiβ + ziu))

]2

Substituting this into Equation (4.26) gives

b2
b1

exp(2yTXβ)

∫ [
xT·j (y − c′(η))

]2 exp(2yTZu)
[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du

=
b2
b1

exp(2yTXβ)×∫ [ n∑
i=1

xij(yi − exp(xiβ + ziu))

]2
exp(2yTZu)

[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du.
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Now we rearrange the terms of the integrand:

b2
b1

exp(2yTXβ)×∫ [ n∑
i=1

xij(yi − exp(xiβ + ziu))

]2
exp(2yTZu)

[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du

=
b2
b1

exp(2yTXβ)×∫ [ n∑
i=1

xij(yi − exp(xiβ + ziu))

]2 [
exp(yTZu)

]2 [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
[exp(uTD−1u/2)]2

du

=
b2
b1

exp(2yTXβ)

∫ [ n∑
i=1

−xij exp
(
−uTD−1u/2 + yTZu+ xiβ + ziu

)
+

+ xijyi exp
(
−uTD−1u/2 + yTZu

)]2 [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
du.

Next, we use the triangle inequality:

b2
b1

exp(2yTXβ)

∫ [ n∑
i=1

−xij exp
(
−uTD−1u/2 + yTZu+ xiβ + ziu

)
+

+ xijyi exp
(
−uTD−1u/2 + yTZu

)]2 [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
du

≤ b2
b1

exp(2yTXβ)

∫ [ n∑
i=1

|xij| exp
(
−uTD−1u/2 + yTZu+ xiβ + ziu

)
+

+ |xijyi| exp
(
−uTD−1u/2 + yTZu

)]2 [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
du.

(4.30)

We could expand the sum of squares and each term would be proportional to a

normal density. Thus, the integral in Equation (4.30) represents the expectation of[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
with respect to a normal density. Therefore, the integral

exists and we have shown Condition (4.22) for the Poisson case.
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Therefore, Condition (4.22) is met whether the elements of the response vector

are conditionally Bernoulli or conditionally Poisson given the random effects.

Next, we move on to showing Condition (4.23). We start with

Var

([
∂ log fν(u)

∂νt

]
fθ(u, y)

f̃(u)

)
≤ Ef̃

[(
∂ log fν(u)

∂νt

fθ(u, y)

f̃(u)

)2
]

=

∫ [
∂ log fν(u)

∂νt

]2
[fθ(u, y)]2

f̃(u)
du

=

∫ [
∂ log fν(u)

∂νt

]2
[fβ(y|u)]2 [fν(u)]2

f̃(u)
du.

(4.31)

Using the definition of f̃(u) and the requirement that 0 < p1 ≤ 1, we see

∫ [
∂ log fν(u)

∂νt

]2
[fβ(y|u)]2 [fν(u)]2

f̃(u)
du

≤
∫ [

∂ log fν(u)

∂νt

]2
[fβ(y|u)]2 [fν(u)]2

p1f̀(u|0, D∗)
du

≤
∫ [

∂ log fν(u)

∂νt

]2
[fβ(y|u)]2 [fν(u)]2

f̀(u|0, D∗)
du.

Next, we use the fact that fβ(y|u) is a density for an exponential family:

∫ [
∂

∂νt
log fν(u)

]2
[fβ(y|u)]2 [fν(u)]2

f̀(u|0, D∗)
du

=

∫ [
∂

∂νt
log fν(u)

]2
exp(2yT (Xβ + Zu)) [fν(u)]2

exp(2c(η))f̀(u|0, D∗)
du.
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Next, we substitute in the densities for f̀(u|0, D∗) and fν(u):

∫ [
∂

∂νt
log fν(u)

]2
exp(2yT (Xβ + Zu)) [fν(u)]2

exp(2c(η))f̀(u|0, D∗)
du

=
b2
b1

∫ [
∂

∂νt
log fν(u)

]2
exp(2yT (Xβ + Zu))

[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2c(η)) exp(uTD−1u)

du.

Entering the partial derivative yields

b2
b1

∫ [
∂

∂νt
log fν(u)

]2
exp(2yT (Xβ + Zu))

[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2c(η)) exp(uTD−1u)

du

=
b2
b1

∫ [
− qt

2νt
+
uTEtu

2ν2t

]2
exp(2yT (Xβ + Zu))

[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2c(η)) exp(uTD−1u)

du.

If we use the fact that both the Bernoulli and Poisson cumulant functions are strictly

positive, we see

b2
b1

∫ [
− qt

2νt
+
uTEtu

2ν2t

]2
exp(2yT (Xβ + Zu))

[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2c(η)) exp(uTD−1u)

du

<
b2
b1

∫ [
− qt

2νt
+
uTEtu

2ν2t

]2
exp(2yT (Xβ + Zu))

[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du.

(4.32)
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Rearranging the terms in the integrand, we see

b2
b1

∫ [
− qt

2νt
+
uTEtu

2ν2t

]2
exp(2yT (Xβ + Zu))

[
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(uTD−1u)

du

=
b2
b1

exp(2yTXβ)×∫ [
− qt

2νt
+
uTEtu

2ν2t

]2 [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(−uTD−1u+ 2yTZu) du.

(4.33)

We recognize that exp(−uTD−1u + 2yTZu) is proportional to a normal density by

Section 4.2.1. Therefore, Equation (4.33) is proportional to the expectation of

[
− qt

2νt
+
uTEtu

2ν2t

]2 [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
with respect to a normal distribution. Therefore, Equation (4.33) exists. This satisfies

Condition (4.23).

By the Cauchy-Schwartz inequality, Conditions (4.22) and (4.23) imply Condition

(4.24). Now we have shown Conditions (4.22), (4.23), and (4.24). This is enough to

prove Equation (4.21). Therefore, we can conclude that

1

m

m∑
k=1

[∇ log fθ(uk, y)]
fθ(uk, y)

f̃(uk)
(4.34)

has a central limit theorem.

�
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4.2.5 Central Limit Theorem for the Denominator of the

MCLA Gradient

Lemma 4.2.5

The quantity

1

m

m∑
k=1

fθ(uk, y)

f̃(uk)
(4.35)

has a central limit theorem. That is,

√
m

[
1

m

m∑
k=1

fθ(uk, y)

f̃(uk)
− γ1

]

converges to a normal distribution with mean 0 and finite variance.

Proof

Equation (4.18) shows

Ef̃

[
fθ(u, y)

f̃(u)
|Y = y

]
= γ1.

We now need proof that

Var

(
fθ(u, y)

f̃(u)

)
<∞. (4.36)
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We begin with

Var

(
fθ(u, y)

f̃(u)

)
< Ef̃

[(
fθ(u, y)

f̃(u)

)2
]

=

∫
fθ(u, y)2

f̃(u)
du

=

∫
fβ(y|u)2fν(u)2

f̃(u)
du.

Next, we use the definition of f̃(u) and the requirement that 0 < p1 ≤ 1:

∫
fβ(y|u)2fν(u)2

f̃(u)
du ≤

∫
fβ(y|u)2fν(u)2

p1f̀(u|0, D∗)
du

≤
∫
fβ(y|u)2fν(u)2

f̀(u|0, D∗)
du.

Entering the densities for f̀(u|0, D∗) and fν(u) yields

∫
fβ(y|u)2fν(u)2

f̀(u|0, D∗)
du =

b2
b1

∫
exp(−uTD−1u) fβ(y|u)2

[1 + uT (D∗)−1u/ζ]−(ζ+q)/2
du.

Because fβ(y|u) is the density for an exponential family,

b2
b1

∫
exp(−uTD−1u) fβ(y|u)2

[1 + uT (D∗)−1u/ζ]−(ζ+q)/2
du

=
b2
b1

∫
exp(−uTD−1u) exp(2yTη)

[1 + uT (D∗)−1u/ζ]−(ζ+q)/2 exp(2c(η))
du
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Expanding η, we see

b2
b1

∫ [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2yTη)

exp(uTD−1u) exp(2c(η))
du

=
b2
b1

exp
(
2yTXβ

) ∫ [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2yTZu)

exp(uTD−1u) exp(2c(η))
du.

Now we use the fact that both the Bernoulli and Poisson cumulant functions are

strictly positive:

b2
b1

exp
(
2yTXβ

) ∫ [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2yTZu)

exp(uTD−1u) exp(2c(η))
du

≤ b2
b1

exp
(
2yTXβ

) ∫ [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2yTZu)

exp(uTD−1u)
du.

Rearranging the terms of the integrand, we see

b2
b1

exp
(
2yTXβ

) ∫ [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(2yTZu)

exp(uTD−1u)
du

=
b2
b1

exp
(
2yTXβ

) ∫ [
1 + uT (D∗)−1u/ζ

](ζ+q)/2
exp(−uTD−1u+ 2yTZu) du.

(4.37)

Since exp
(
−uTD−1u+ 2yTZu

)
is proportional to a normal density by Section 4.2.1,

Equation (4.37) is proportional to an expectation with respect to a normal distribu-

tion. Therefore, Equation (4.37) exists. This satisfies Condition (4.36) whether the

elements of the response vector are conditionally Bernoulli or conditionally Poisson

distributed given the random effects.
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Therefore,

1

m

m∑
k=1

fθ(uk, y)

f̃(uk)
(4.38)

has a central limit theorem.

�

4.2.6 Central Limit Theorem for the MCLA Gradient

Theorem 4.2.6

∇lm(θ|y) has a central limit theorem. That is,

√
m [∇lm(θ|y)−∇l(θ|y)]

converges to a normal distribution with mean zero and finite variance.

Proof

First, we rewrite our expression:

√
m [∇lm(θ|y)−∇l(θ|y)]

=
√
m


1

m

∑m
k=1 [∇ log fθ(uk, y)]

fθ(uk, y)

f̃(uk)

1

m

∑m
k=1

fθ(uk, y)

f̃(uk)

−∇l(θ|y)



=
√
m


1

m

∑m
k=1 [∇ log fθ(uk, y)]

fθ(uk, y)

f̃(uk)
−∇l(θ|y)

1

m

∑m
k=1

fθ(uk, y)

f̃(uk)

1

m

∑m
k=1

fθ(uk, y)

f̃(uk)


.

(4.39)
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Using Section 4.2.4, we see the the numerator of Equation (4.39) converges to a

normal distribution with mean 0 and variance

Var

(
[∇ log fθ(u, y)]

fθ(u, y)

f̃(u)

)
.

By the law of large numbers, the denominator of Equation (4.39) converges almost

surely to γ1. Therefore, by Slutsky’s theorem, Equation (4.39) converges to a normal

distribution with mean zero and variance

1

γ21
Var

(
[∇ log fθ(u, y)]

fθ(u, y)

f̃(u)

)
.

(4.40)

Because γ1 > 0, the variance is finite.

�

If we wish, we can express the gradient’s variance in terms of an integral:

1

γ21

∫
[∇ log fθ(u, y)] [∇ log fθ(u, y)]T

fθ(u, y)2

f̃(u)
du. (4.41)



Chapter 5

R package glmm

The R package glmm (Knudson, 2015) approximates the entire likelihood function for

GLMMs with a canonical link. The importance sampling distribution used is listed

in (4.1). glmm calculates and maximizes the MCLA to find MCMLEs for the fixed

effects and variance components. Additionally, the value, gradient vector, and Hessian

matrix of the MCLA are calculated at the MCMLEs. Observed Fisher information

is estimated and used to calculate standard errors for the MCMLEs.

In this chapter, we instruct users on how to format their data to use glmm in Sec-

tion 5.1, we discuss the analysis of the salamander data set in Section 5.2, we discuss

the analysis of a data set with a Poisson response in Section 5.3, and we compare the

glmm MCMLEs to the point estimates from other R packages in Section 5.4.

5.1 Formatting the Data

The following vectors can be used to fit a generalized linear mixed model using the

glmm package. These vectors can be contained in a data frame, but they do not need

to be.

1. A response vector. If your response is Poisson, then the entries in the response

vector must be natural numbers. If your response is Bernoulli, then the entries

62
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in the response vector must be 0 and 1. (For this version of glmm, these are the

only two response types possible.)

2. At least one vector that will be used for defining the random effects’ design

matrix. For this version of glmm, the vector(s) should be class factor.

3. Vector(s) that will be used for defining the fixed effects’ design matrix. The

vector(s) can be of class factor or numeric.

The first two types of vectors described in the list are required. The last type is op-

tional. That is, the minimum requirement to fit a glmm model is the response vector

and one vector for defining the random effects’ design matrix.

5.2 Analyzing the Salamander Data

Consider the salamander data described in Section 1.3. For your convenience, this

data set is included in the glmm package. The variable Mate tells us whether the pair

of salamanders mated: the value is 1 if they successfully mated and 0 if they did not.

The variable Cross describes the type of female and male salamander. For example,

Cross = W/R indicates a White Side female was crossed with a Rough Butt male.

The variable Female contains the identification number of the female salamander,

and the variable Male contains the identification number of the male salamander.

The first R command shown below gives us access to the glmm package and and

all of its commands. The second line of code gives us access to the salamander data

frame. The next three commands help us begin to understand the data. We have four

variables: Mate, Cross, Female, and Male. The summary shows us Mate is numeric,

Cross is a factor with four levels, Female is a factor, and Male is a factor.
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library(glmm)

data(salamander)

names(salamander)

[1] "Mate" "Cross" "Female" "Male"

head(salamander)

Mate Cross Female Male

1 1 R/R 10 10

2 1 R/R 11 14

3 1 R/R 12 11

4 1 R/R 13 13

5 1 R/R 14 12

6 1 R/W 15 28

summary(salamander)

Mate Cross Female Male

Min. :0.000 R/R:90 10 : 6 10 : 6

1st Qu.:0.000 R/W:90 11 : 6 11 : 6

Median :1.000 W/R:90 12 : 6 12 : 6

Mean :0.525 W/W:90 13 : 6 13 : 6

3rd Qu.:1.000 14 : 6 14 : 6

Max. :1.000 15 : 6 15 : 6

(Other):324 (Other):324
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5.2.1 Fitting the Model

We now fit Model A as described in Section 1.3.2 and originally proposed by Karim

and Zeger (1992). In the following code, we fit the model using the glmm command

and save the model under the name sal. Because Mate is our response, it is on the

left of the ∼ symbol. We want to have a fixed effect for each of the four levels of

Cross, so we type Mate ∼ 0 + Cross. Because Cross is a factor, typing Mate ∼

Cross would fit an equivalent model.

Next, the random list creates the design matrices for the random effects. Since we

want two random effects for each cross (one from the female salamander and one from

the male salamander), we type list(∼ 0 + Female, ∼ 0 + Male). We include the

0 because we want our random effects to be centered at 0. Almost always, you will

want your random effects to have mean 0.

Following the random list, the argument varcomps.names allows us to name the

list of variance components. In the random list, we have placed the females first.

Therefore, the order of the variance components names are first “F” and then “M.”

Next, we specify the name of our data set. This is an optional argument. If the

data set is not specified, glmm looks to the parent environment for the variables you

have referenced.

After the name of the data set, we need to specify the type of the response. In

the salamander mating example, the family is bernoulli.glmm because the response

is binary. If your response is a count, then the family is poisson.glmm.

Next, we specify our Monte Carlo sample size m. The general rule is a larger Monte

Carlo sample size results in a more accurate Monte Carlo likelihood approximation

and more accurate MCMLEs. Ideally, you want the largest m that time allows. For

this vignette, we have chosen a Monte Carlo sample size that allows for quick compu-

tation. If you are interested in accuracy in the resulting estimates for the salamander

model, we suggest a larger Monte Carlo sample size.
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We put these function arguments together in the following commands. We set the

seed so that we can have reproducible results. In other words, if you set your seed

to the same number and type the exact command listed below, your results should

be identical to those listed here. Additionally, the proc.time commands have been

used to give you an idea of how quickly the model can be fit. The times shown here

are from fitting a model on an ultrabook that cost 500 USD in 2013.

set.seed(1234)

ptm<-proc.time()

sal <- glmm(Mate ~ 0 + Cross, random = list(~ 0 + Female,

~ 0 + Male), varcomps.names = c("F", "M"), data = salamander,

family.glmm = bernoulli.glmm, m = 10^4, debug = TRUE)

proc.time() - ptm

user system elapsed

58.210 0.251 59.036

5.2.2 Adding Optional Arguments

Additional arguments may be added for more control over the model fit. These

options are intended for advanced users.

Setting Variance Components Equal

By default, glmm assumes each variance component should be distinct. Suppose we

want to set νF = νM . Then we would add the argument varcomps.equal to indicate

the equality. Since the list of random effects has two entries and we want those

entries to share a variance component, we would set varcomps.equal = c(1,1). In
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this scenario, we would only have one variance component, so we only need one entry

in varcomps.names. Thus, the new command to fit this updated model with one

variance component could be the following:

sal2 <- glmm(Mate ~ 0 + Cross, random = list(~ 0 + Female,

~ 0 + Male), varcomps.equal = c( 1, 1), varcomps.names =

c("Only Varcomp"), data = salamander, family.glmm =

bernoulli.glmm, m = 10^4, debug = TRUE)

As another example, suppose the list random has three entries, indicating three

variance components ν1, ν2, ν3. To set ν1 = ν3, we write varcomps.equal = c(1,2,1).

Thus, the shared variance component would be listed first in any output, and ν2 would

be listed second. The entries in the varcomps.equal vector must start at 1, then

continue through the integers. The order of the names of the variance components

listed in varcomps.names must correspond to the integers in varcomps.equal. In

this problem, the names could be varcomps.names = c("shared", "two").

Altering the Importance Sampling Distribution

The following default arguments can be adapted to alter the importance sampling

distribution: doPQL, p1, p2, p3, and zeta.

By default, penalized quasi-likelihood estimates are used to form the importance

sampling distribution for the generated random effects. To skip PQL, add the ar-

gument doPQL=FALSE. If PQL is skipped, then the importance sampling distribution

uses arbitrary estimates of 0 for the random effects, 0 for the fixed effects, and 1 for

the variance components. Sometimes the examples in the glmm documentation skip

the PQL step so that the package can load more quickly. Most of the time, the model

will fit more accurately and efficiently if PQL estimates are used in the importance

sampling distribution.
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The importance sampling distribution is a mixture of three distributions, as shown

in Equation (4.1). By default, the mixture is evenly weighted, with each component’s

contribution set at 1/3. If you wish to change the mixture, you can alter p1, p2, and

p3 from the default of p1 = 1/3, p2 = 1/3, and p3 = 1/3. The only restrictions are

that the three probabilities must sum to 1 and p1 must be non-zero.

Recall the first component of the importance sampling distribution is a scaled

multivariate t-distribution with zeta degrees of freedom. Therefore, another way to

alter the importance sampling distribution is by changing zeta from its default of 5.

Adjusting Optimization Arguments

It may be useful to adjust the trust arguments rmax and iterlim. The argument

rmax is the maximum allowed trust region radius. By glmm default, this is arbitrarily

set to 1000. The smaller this number is, the longer the optimization time.

The argument iterlim must be a positive integer that limits the length of the

optimization. If iterlim is too small, then the trust optimization will end before the

MCMLA has been maximized. If iterlim is reached, then trust has not converged

to the MCMLE. When the summary command is called, a warning will be printed

telling the user that the parameter values are not MCMLEs, but glmm can be rerun

starting at these outputted parameter values. To do this, use the par.init argument.

Starting at a Specified Parameter Value

Rather than using the PQL estimates, you can provide parameter values to glmm using

the argument par.init. The glmm argument par.init is a vector that specifies the

user-supplied values of the fixed effects and variance components. The parameters

must be inputted in the order that summary outputs them, with fixed effects followed

by variance components.

If par.init is provided, then PQL estimates will not be computed. The par.init
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estimates will be used instead to form the importance sampling distribution. Then,

trust will use par.init as the starting point for the optimization. This argument

may be useful for very hard problems that require iteration.

5.2.3 Reading the Model Summary

The summary command displays

• the function call (to remind you of the model you fit).

• the link function.

• the fixed effect estimates, their standard errors (calculated using observed Fisher

information), their z value test statistics (testing whether the coefficients are

significantly different from zero), the corresponding p-values, and the R-standard

significance stars (optional).

• the variance component estimates, their standard errors (calculated using ob-

served Fisher information), their z value test statistics (testing whether the

variance components are significantly greater than zero), the corresponding p-

values, and the R-standard significance stars (optional).

The p-value for the fixed effects is calculated using a two-sided alternative hy-

pothesis (HA : β 6= 0) while the p-value for the variance components is calculated

using a one-sided alternative hypothesis (HA : ν > 0) because variance components

must be nonnegative.
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To view the model summary, we use the summary command.

Call:

glmm(fixed = Mate ~ 0 + Cross, random = list(~0 + Female, ~0 + Male),

varcomps.names = c("F", "M"), data = salamander,

family.glmm = bernoulli.glmm, m = 10^4, debug = TRUE)

Link is: "logit (log odds)"

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

CrossR/R 0.9560 0.3503 2.729 0.00634 **

CrossR/W 0.2805 0.3660 0.766 0.44347

CrossW/R -1.8968 0.4223 -4.492 7.05e-06 ***

CrossW/W 0.9723 0.3580 2.716 0.00661 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Variance Components for Random Effects (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

F 1.2878 0.4435 2.904 0.00184 **

M 1.0840 0.4131 2.624 0.00435 **

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

The output tells us the type of cross affects the salamanders’ odds of mating.

Additionally, both the variance components are significantly different from zero and

should be retained in the model.
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The summary provides the estimates needed to write our model. First, we es-

tablish a little notation. Let πi represent the probability of successful mating for

salamander pair i. Let I() be an indicator function, so that I(Cross=R/R) is 1 when

a rough butt female is paired with a rough butt male and 0 otherwise. Let uFi repre-

sent the random effect from the female salamander in the ith pair. Let uMi represent

the random effect from the male salamander in the ith pair. Using this notation, we

write the model as follows.

log

(
πi

1− πi

)
= 0.956 ∗ I(Cross=R/R) + 0.2805 ∗ I(Cross=R/W)

+−1.8968 ∗ I(Cross=W/R) + 0.9723 ∗ I(Cross=W/W)

+ uFi + uMi

uFi
i.i.d.∼ N(0, 1.288)

uMi
i.i.d.∼ N(0, 1.084)

Recall that the Monte Carlo sample size m in the above model was chosen for

convenience to save time. We can reduce the Monte Carlo error to yield more accurate

MCMLEs by increasing the Monte Carlo sample size.

5.2.4 Isolating the Parameter Estimates

If we wish to extract the estimates for the fixed effect coefficients or the variance

components, we use the commands coef and varcomps, respectively. These com-

mands isolate the estimates that are shown in the summary (as displayed in section

Section 5.2.3).

To extract the fixed effect coefficients, the only argument needed is the model.

The commands coef and coefficients are interchangeable. We can type either of

the following:
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coef(sal)

CrossR/R CrossR/W CrossW/R CrossW/W

0.9560113 0.2804932 -1.8968316 0.9722904

coefficients(sal)

CrossR/R CrossR/W CrossW/R CrossW/W

0.9560113 0.2804932 -1.8968316 0.9722904

To extract the variance components, the only argument needed is the model.

varcomps(sal)

F M

1.287848 1.083975

To further isolate variance components or fixed effects, use indexing. The fol-

lowing demonstrates how to extract the last two fixed effects and the first variance

component.

coef(sal)[c(3,4)]

CrossW/R CrossW/W

-1.8968316 0.9722904

varcomps(sal)[1]

F

1.287848
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5.2.5 Calculating Confidence Intervals

We can calculate confidence intervals for parameters using the confint command.

(Prediction is not yet possible in this version of the package). If we wish to calculate

95% confidence intervals for all of our parameters, the only argument is the model

name.

confint(sal)

0.025 0.975

CrossR/R 0.9647676 1.2975071

CrossR/W 0.2896434 0.6373526

CrossW/R -1.8862749 -1.4851238

CrossW/W 0.9812412 1.3213731

F 1.2989347 1.7202402

M 1.0943035 1.4867789

The output is a matrix. Each row represents one parameter. The first column is

the lower bound of the confidence interval, and the second column is the upper bound

of the confidence interval.

If we wish to change the level of confidence from the default of 95%, we use the

argument level and specify a number between 0 and 1. For example, the following

produces 90% confidence intervals and 99% confidence intervals:

confint(sal,level=.9)

0.05 0.95

CrossR/R 0.9735239 1.2887508

CrossR/W 0.2987937 0.6282024
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CrossW/R -1.8757183 -1.4956804

CrossW/W 0.9901921 1.3124222

F 1.3100217 1.7091532

M 1.1046318 1.4764506

confint(sal,level=.99)

0.005 0.995

CrossR/R 0.9577625 1.3045121

CrossR/W 0.2823232 0.6446728

CrossW/R -1.8947202 -1.4766785

CrossW/W 0.9740806 1.3285338

F 1.2900651 1.7291098

M 1.0860409 1.4950415

We can calculate 90% confidence intervals for the first and third fixed effects

through indexing or by listing the names of the fixed effects:

confint(sal,level=.9,c(1,3))

0.05 0.95

CrossR/R 0.9735239 1.288751

CrossW/R -1.8757183 -1.495680

confint(sal,level=.9,c("CrossR/R","CrossW/R"))

0.05 0.95

CrossR/R 0.9735239 1.288751

CrossW/R -1.8757183 -1.495680
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To calculate a 95 percent confidence interval for the variance component for the

female salamanders, we can again either use indexing or list the name of the variable.

There are four fixed effects so νF is the fifth parameter in this model. (Similarly, νM

is the sixth parameter in this model).

confint(sal, c(5))

0.025 0.975

F 1.298935 1.72024

confint(sal, c("F"))

0.025 0.975

F 1.298935 1.72024

All confidence intervals are calculated using the observed Fisher information from

the Monte Carlo likelihood approximation.

5.2.6 Estimating the Variance-Covariance Matrix

The variance-covariance matrix for the parameter estimates can be found using the

vcov function. The only input is the model name.

(myvcov <- vcov(sal))

CrossR/R CrossR/W CrossW/R CrossW/W F

CrossR/R 0.122676531 0.024012058 0.02086939 -0.010709735 -0.009392339

CrossR/W 0.024012058 0.133963096 -0.02178909 0.014823950 0.001149926

CrossW/R 0.020869390 -0.021789085 0.17830719 0.021167259 -0.027846771

CrossW/W -0.010709735 0.014823950 0.02116726 0.128187999 0.026420898
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F -0.009392339 0.001149926 -0.02784677 0.026420898 0.196674003

M -0.002885214 -0.021014244 -0.01669001 -0.003236856 -0.033417152

M

CrossR/R -0.002885214

CrossR/W -0.021014244

CrossW/R -0.016690009

CrossW/W -0.003236856

F -0.033417152

M 0.170678041

The variance-covariance matrix can be useful for some hypothesis testing. For

example, suppose we want to test the hypotheses:

H0 : βRR − βWW = 0

H0 : βRR − βWW 6= 0.

The Wald test statistic is

β̂RR − β̂WW − 0√
Var

(
β̂RR − β̂WW

) ∼ N(0, 1).

To calculate

Var
(
β̂RR − β̂WW

)
= Var

(
β̂RR

)
+ Var

(
β̂WW

)
− 2 Cov

(
β̂RR, β̂WW

)
we use the variances and covariances from the variance-covariance matrix:
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myvar <- myvcov[1,1] + myvcov[4,4] - 2* myvcov[1,4]

SE <- sqrt(myvar)

SE

[1] 0.5218084

Then the test statistic and its associated p-value can be calculated:

test.stat <- (coef(sal)[1] - coef(sal)[4]) / SE

as.numeric(2 * pnorm(test.stat))

[1] 0.975112

Therefore, we do not have evidence to reject H0 : βRR = βWW . The probability of

two White Side salamanders mating is not significantly different from the probability

of two Rough Butt salamanders mating.

Similarly, we could do a Wald-style hypothesis test to find the two variance com-

ponents νF and νM are not significantly different.

5.2.7 Accessing Additional Output

The model produced by glmm has information that is not displayed by the summary

command. The names command helps us see what we can access.

names(sal)

[1] "beta" "nu" "likelihood.value"

[4] "likelihood.gradient" "likelihood.hessian" "trust.converged"

[7] "mod.mcml" "fixedcall" "randcall"

[10] "x" "y" "z"
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[13] "family.glmm" "call" "varcomps.names"

[16] "varcomps.equal" "debug"

The first two items are beta and nu. These are the MCMLEs for the fixed effects

and variance components.

The third item is likelihood.value, the value of the MCLA evaluated at the

MCMLEs. The fourth item is likelihood.gradient, the gradient vector of the

MCLA evaluated at the MCMLEs. The fifth item is likelihood.hessian, the Hes-

sian matrix of the MCLA evaluated at the MCMLEs.

Next is trust.converged, which tell us whether the trust function in the trust

package converged to the optimizer of the MCLA. If trust did not converge, then

the summary will print the following warning: “WARNING: the optimizer trust has

not converged to the MCMLE. The following estimates are not maximum likelihood

estimates, but they can be used in the argument par.init when rerunning glmm.”

Items 7 through 16 relate to the original function call. The list mod.mcml contains

the model matrix for the fixed effects, a list of model matrices for the random effects,

and the response vector. These are also displayed in x, z, and y, respectively. Then,

the call (the original formula representations of the fixed and random effects) are

contained in fixedcall, randcall, and call.

The last argument is debug. If the model was fit with the default debug = FALSE,

then this argument is just FALSE. If the model was fit with debug = TRUE, then

debug contains a list of output for advanced users and programmers. In particular,

this contains the matrix of random effects generated from the importance sampling

distribution.
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5.3 Analyzing the Radish Data

We now fit a model with a Poisson response. The data in this example are a subset

of the data collected by Ridley and Ellstrand (2010). The scientists were interested

in whether non-native radishes had adapted to the climate they had been growing in

for the last 150 years. In other words, they wanted to compare two types of radish

to see whether each type would grow just as well in their own climate as they would

in the other climate.

In this dataset, the response is the number of radish flowers. This is assumed

to have a Poisson distribution. Site is a categorical variable with two categories

representing the two sites where plants were grown. The variable Region is categorical

with two categories representing the two places in California from which the plants

were taken. The variable Pop is a categorical variable representing the population

of radish, and Pop is nested in Region. The variable Block is a categorical blocking

variable nested in Site. Following the example of Ridley and Ellstrand (2010), Block

and Pop are random while Site and Region are fixed. The scientists were interested

in the interaction between Site and Region, since that would indicate that radishes

grow better in the area they have been grown during recent history.

We load the data and fit the model using glmm:

library(glmm)

load("radish2.rda")

set.seed(1234)

mod<-glmm(resp~Site*Region,random=list(~0+Block,~0+Pop),

family.glmm="poisson.glmm",varcomps.names =c("block","pop"),

m=10^4,debug=TRUE,data=radish2)

summary(mod)
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Call:

glmm(fixed = resp ~ Site * Region, random = list(~0 + Block,

~0 + Pop), varcomps.names = c("block", "pop"), data = radish2,

family.glmm = "poisson.glmm", m = 10^4, debug = TRUE)

Link is: "log"

Fixed Effects:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 5.911667 0.006972 847.92 <2e-16 ***

SiteRiverside 0.268346 0.009247 29.02 <2e-16 ***

RegionS -0.423975 0.010583 -40.06 <2e-16 ***

SiteRiverside:RegionS 0.507595 0.012190 41.64 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Variance Components for Random Effects (P-values are one-tailed):

Estimate Std. Error z value Pr(>|z|)/2

block 0.514197 0.230077 2.235 0.0127 *

pop 0.011086 0.006607 1.678 0.0467 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Notably, the Site-Region interaction is statistically significant, which indicates

local adaptation.
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5.4 Comparing the Results

The following sections compare the MCMLEs from glmm (produced in Section 5.2

and Section 5.3) to point estimates from other methods.

5.4.1 Salamander Results

We used glmm (Knudson, 2015) to fit Model A Karim and Zeger’s (1992) with a Monte

Carlo sample size of m = 105. The resulting MCMLEs are listed in the following table

along with Booth and Hobert’s (1999) MCEM point estimates and the PQL-based

point estimates from lme4 (Bates et al., 2014) for comparison.

β̂RR β̂RW β̂WR β̂WW ν̂F ν̂M

Knudson (2015) (glmm) 1.03 .34 -1.94 1.00 1.36 1.23

Booth and Hobert (1999) (MCEM) 1.03 .32 -1.95 .99 1.4 1.25

Bates et al. (2014) (lme4) 1.01 .31 -1.89 .99 1.17 1.04

We can see that the results produced by Knudson (2015) match those produced by

Booth and Hobert (1999). Additionally, the Booth and Hobert (1999) point estimates

and the Knudson (2015) point estimates were checked using Markov chain Monte

Carlo. These checks confirmed that the sets of point estimates are MLEs.

The fixed effect estimates from Bates et al. (2014) match the Knudson (2015) and

Booth and Hobert (1999) results, but the lme4 variance component estimates are

smaller than those found by Knudson (2015) and Booth and Hobert (1999). This is

consistent with research that has found a downward bias in PQL variance component

estimates (Breslow and Lin, 1995; Lin and Breslow, 1996).
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5.4.2 Radish Results

We used glmm (Knudson, 2015) to fit the model described in Section 5.3. The result-

ing MCMLEs are listed in the first row. The second row contains the point estimates

from lme4. The first four columns represent estimates of the fixed effects. The last

two columns represent estimates of the variance components.

Intercept SiteRiverside RegionS Site:Region Block Pop

glmm 5.91 .27 −.42 .51 .51 .011

lme4 5.92 .26 −.41 .51 .50 .012

The similarities between these sets of estimates indicate lme4 works well. The

lme4 package appears to perform better for Poisson-distributed responses than for

Bernoulli-distributed responses.
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