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Abstract

As a result of recent technological advances, the availability of collected high dimen-

sional data has exploded in various fields such as text mining, computational biology,

health care and climate sciences. While modeling such data there are two problems that

are frequently faced. High dimensional data is inherently difficult to deal with. The

challenges associated with modeling high dimensional data are commonly referred to as

the “curse of dimensionality.” As the number of dimensions increases the number of

data points necessary to learn a model increases exponentially. A second and even more

difficult problem arises when the observed data exhibits intricate dependencies which

cannot be neglected. The assumption that observations are independently and iden-

tically distributed (i.i.d.) is very widely used in Machine Learning and Data Mining.

Moving away from this simplifying assumption with the goal to model more intricate

dependencies is a challenge and the main focus of this thesis.

In dealing with high dimensional data, dimensionality reduction methods have proven

very useful. Successful applications of non-probabilistic approaches include Anomaly

Detection [1], Face Detection [2], Pose Estimation [3], and Clustering [4]. Probabilistic

approaches have been used in domains such as Visualization [5], Image retrieval [6] and

Topic Modeling [7]. When it comes to modeling intricate dependencies, the i.i.d. as-

sumption is seldomly abandoned as in [8, 9]. As a result of the simplifying assumption

relevant dependencies tend to be broken.

The goal of this work is to address the challenges of dealing with high dimensional

data while capturing intricate dependencies in the context of predictive modeling. In

particular we consider concepts from both non-probabilistic and probabilistic dimen-

sionality reduction approaches.

From the perspective of non-probabilistic dimensionality reduction, we explore semi-

supervised dimensionality reduction methods and their relationship to semi-supervised

predictive methods. The predictive methods that we consider include label propagation

and semi-supervised graph cuts. By introducing a uniform framework for graph-based

semi-supervised learning we illustrate how both label propagation and semi-supervised

graph cuts can be viewed as semi-supervised embedding. In addition to the gained
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insights, a new family of label propagation methods is proposed based on existing

dimensionality reduction methods. When it comes to capturing dependencies, non-

probabilistic dimensionality reduction methods tend to utilize a graph Laplacian, a

positive semi-definite matrix which captures relationships between data points only.

The main focus of the thesis is oriented towards concepts from probabilistic dimen-

sionality reduction. In particular we examine to what extent ideas from dimensionality

reduction can be used to create probabilistic multivariate models, capable of capturing

covariance structure across multiple dimensions. Since most data naturally occurs in

form of a matrix, modeling covariance structure within each dimension is relevant in

a wide variety of applications. In essence this means moving away for the i.i.d. as-

sumption. We propose models for multi-label classification, missing value prediction

and topic modeling.

In multi-label classification each data point is associated with possibly multiple la-

bels. Modeling covariances among labels in an effective and scalable manner is one of

the major challenges. We propose Bayesian Multivariate Regression (BMR), as an effi-

cient algorithm for multi-label classification, which takes into consideration covariances

among labels. While it does not explicitly model covariances among data points, it

captures similarities from the feature space by treating the mapping of from features to

labels as an embedding. As illustrated by our empirical evaluations, BMR is a compet-

itive to the state-of-the-art, at the same time it is scalable enough to be applied to very

large data sets.

Making the i.i.d. assumptions in domains such as multi-label classification, missing

value prediction or climate modeling can be expensive in terms of modeling accuracy.

We consider the more general problem of modeling real-valued matrices and propose

Probabilistic Matrix Addition (PMA), a novel model capable of modeling real-valued

matrices of arbitrary size while capturing covariance structure across rows and across

columns of the matrix simultaneously. Unlike approaches which vectorize matrices to

model more intricate dependencies, PMA exhibits a very sparse dependency structure

and has a generative model. As a result scalable inference is possible. We illustrate

the effectiveness of the model in the domains of missing value prediction as well as

multi-label classification.
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Lastly we address the problem of modeling multiple covariance structures simul-

taneously in the domain of topic modeling. Topic models are typically implemented

as hierarchical mixture models, whereby a document is represented by a multinomial

distribution over topics, and topics in turn are assumed to be distributions over words.

We propose Gaussian Process Topic Models (GPTM), the first topic model capable of

incorporating a Kernel among documents while capturing covariances among data sets.

This is accomplished by assuming a PMA prior over the latent document-topic matrix.

Experiments on benchmark data sets show that the model is indeed effective.

Part of this work is also the development of an object-oriented machine learning

toolbox for MATLAB. All algorithms in this thesis have been implemented in it. We

briefly summarize its inner workings.
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Chapter 1

Introduction

While modeling data in most real-world applications there are two challenges that are

frequently faced. Observations have the tendency to be high dimensional, making it

difficult to infer accurate models from a limited number of observations. Another even

bigger problem is the task of capturing intricate dependencies which might be present

within the data. The assumption that observations are independently and identically

distributed is very widely used. Moving away from this simplifying assumption with

the goal to model more intricate dependencies is a challenge. The focus of this work is

to address the issues of high dimensionality and capturing dependencies in the context

of predictive modeling. Specifically, we consider the tasks of classification and missing

value prediction.

1.1 Motivation

In a wide range of applications data tends to have a high dimensional representation.

Images for instance are typically reshaped into long vectors, while text documents tend

to be represented by high dimensional frequency count vectors. The ability to deal with

high dimensional data effectively has become very important. In learning predictive

models the amount of required training data increases exponentially with the number

of feature dimensions. This is also referred to as the “curse of dimensionality.” High

dimensional data can also be problematic from a visualization perspective. In order to

avoid serious problems, the ability to handle high-dimensional data effectively is crucial

1
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in predictive modeling.

In addition to high dimensionality, an even more challenging issue that one faces

is the modeling of potentially intricate dependencies within the data. Most existing

approaches in Machine Learning and Data Mining make a simplifying assumption that

observations or outputs are independently and identically distributed. While this as-

sumption may lead to simpler models, it neglects potentially relevant relationships.

The domain of multi-label classification can be seen as an illustrative example. In

multi-label classification every data point is assumed to be associated with possibly

multiple labels. The goal is to obtain a predictive model for labels, given feature obser-

vations. In particular, consider the problem of protein function prediction. The input in

this case would be possibly high-dimensional feature vectors representing proteins, indi-

cating their physical structure. The output would be given by a binary vector reflecting

which functions, out of a known set, are associated with the protein. The outputs, as

in many applications, can be represented as a matrix, whereby each row represents a

label vector. In this setting the assumption that label vectors (rows) are drawn i.i.d.,

translates to assuming that relationships between proteins can be neglected. Similarly

assuming that individual labels (columns) are drawn i.i.d. leads to neglecting depen-

dencies between functions. Most multi-label classification approaches will model depen-

dencies in terms of a covariance structures either across data points or across labels.

As it can be seen in the protein function prediction example, neglecting dependencies

translates to discarding potentially relevant information. The main goal of this work is

to examine models which are capable of capturing dependencies across multiple dimen-

sions simultaneously. In the case of protein function prediction this means capturing

the covariance structure across proteins (rows) and functions (columns) simultaneously.

In other words covariances across inputs and outputs are modeled at the same time.

The applicability of models capable of capturing dependencies across multiple di-

mensions stretches far beyond multi-label classification. In particular such models in a

general sense can be used to place priors over arbitrary real-valued matrices, whereby

the covariance across rows and columns is modeled simultaneously. Applicability ex-

tends to any domains which involve the modeling of matrices. In particular climate

modeling across the globe, or missing value prediction problems fall into this category.

In missing value prediction frequently only a fraction of the values are known. Not
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discarding any relevant structure in terms simplifying modeling assumptions is crucial.

In real-world applications the problems of dealing with high-dimensional data and

capturing dependencies go hand in hand, since frequently observations tend to be pro-

vided in a high-dimensional space. We explore how dependencies can be captured while

dealing with high dimensional data in predictive models.

1.2 Overview

Over the recent years a variety of dimensionality reduction methods have been pro-

posed, both probabilistic and non-probabilistic to address the challenges associated

with high dimensional data. We explore both types of methods in the context of predic-

tive modeling. In particular we examine non-probabilistic approaches in the context of

semi-supervised classification and graph cuts, whereby dependencies across data points

are considered. We then explore probabilistic dimensionality reduction approaches for

modeling more intricate dependency structures.

1.2.1 Dimensionality Reduction and Semi-Supervised learning

Non-probabilistic dimensionality reduction methods tend to be frequently used either

to visualize or preprocess data. Label propagation is a family of graph-based semi-

supervised learning methods, that has proven rather useful over the last decade. Its

relationship to semi-supervised graph cuts is well known. However its interpretation

as semi-supervised embedding has not been explored. In this thesis we examine the

relationship between semi-supervised non-probabilistic dimensionality reduction, label

propagation, and semi-supervised graph cuts. In particular by treating the mapping

from features to labels, as an embedding, we show how label propagation as well as semi-

supervised graph cuts can be understood as semi-supervised dimensionality reduction.

In addition to providing valuable insights, we illustrate how existing embedding methods

can be converted into label propagation algorithms. We propose a new family of label

propagation methods derived from existing manifold embedding approaches [10]. When

it comes to dependencies most graph-based semi-supervised methods rely on graph

Laplacians, which a are positive semi-definite matrices capturing relationships among

data points only.
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1.2.2 Bayesian Multi-Variate Regression for Multi-Label Classifica-

tion

Up until a few years ago the state-of-the art in multi-label classification was to assume

that individual labels are drawn i.i.d. More recent approaches do take dependencies

among labels into account, however the assumption that each label vector is drawn i.i.d.

typically remains. Driven by the desire to address challenges in dealing with the data

from the Aviation Safety Reporting System (ASRS), we propose Bayesian Multivariate

Regression (BMR) [11], an efficient multi-label classification approach which models

covariance structure across labels. While BMR does not explicitly model covariance

structure across data points, it utilizes an embedding to map relationships from the

higher dimensional feature space to the lower-dimensional label space. We illustrate the

effectiveness of the model on a number of Benchmark data sets including ASRS.

1.2.3 Probabilistic Matrix Addition for Modeling Matrices

We propose Probabilistic Matrix Addition (PMA) [12], a novel model capable of mod-

eling real-valued matrices of arbitrary size while capturing covariance structure across

rows and across columns of the matrix simultaneously. PMA is based on Gaussian

Processes (GP). It assumes a data matrix X to be composed as a sum of two matrices,

where by the first matrix is drawn row-wise from a zero-mean Gaussian Process, and

the second matrix is drawn column-wise from a second zero-mean Gaussian Process.

The entries of the resulting data matrix X have dependencies across both rows and

columns. PMA has a very sparse dependency structure and a generative model. As

a result scalable inference can be devised and the model can naturally be extended to

tensors. If we think of Gaussian Processes as modeling functions of the form f(x), we

can think of PMA as modeling functions of the form f(x, y).

1.2.4 Capturing Multiple Covariance Structures in Topic Modeling

Topic models are typically implemented as hierarchical mixture models, whereby a doc-

ument is represented by a multinomial distribution over topics, and topics in turn are

assumed to be distributions over words. Since the output of topic models are lower
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dimensional topic representations of documents, they also can be understood as per-

forming dimensionality reduction. In the exiting literature one can find models which are

capable of capturing covariances among topics. However there are no topic models capa-

ble of incorporating covariances among documents and among topics at the same time.

We propose Gaussian Process Topic Models (GPTM) [13]. GPTM is the first topic

model which can incorporate semi-supervised information among documents in form

of a kernel while capturing covariance structure among topics. This is accomplished

by imposing a PMA prior over the latent topic-document matrix. Using benchmark

experiments we illustrate that the proposed model can indeed effectively utilize semi-

supervised information in form of a kernel among documents to influence the resulting

topics. All of this is accomplished without sacrificing the quality and interpret-ability

of extracted topic distributions.

1.2.5 Machine Learning Toolbox for MATLAB

For purposes of conducting experimental evaluations in this thesis, we have developed

MALT an object-oriented machine toolbox for MATLAB. Among other things it pro-

vides a unified user interface for all algorithms, the ability to auto-generate plots, a

generic cross validation procedure as well as the ability to organize results, re-usable

computations and data sets in a primitive database. All experiments and all plots in

this work have been obtained using MALT.

1.3 Contributions of the Thesis

In summary, the contributions of this thesis revolve around using dimensionality reduc-

tion and capturing dependencies in predictive models. The focus is two-fold. For non-

probabilistic dimensionality reduction we provide a unified view of label propagation,

semi-supervised graph cuts and semi-supervised manifold embedding. As a result we

propose a new family of label propagation methods, based on exiting manifold embed-

ding methods. For probabilistic dimensionality reduction methods we note the inability

of exiting approaches to model dependencies across multiple dimensions simultaneously.

To address the problem we propose three models: (1) BMR, a simplistic approach for

multi-label classification which takes the covariance among labels into consideration, (2)
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PMA, a model for modeling arbitrary real-valued matrices, (3) GPTM, a topic model

with PMA as prior. Lastly we provide an object-oriented machine learning toolbox

(MALT) for conducting experiments.

The rest of this thesis is organized as follows. In Chapter 2 we describe the related

work and background in the area of dimensionality reduction. In Chapter 3 we propose

Bayesian Multivariate Regression, in chapter 4 we introduce Probabilistic Matrix Ad-

dition and in chapter 5 we describe Gaussian Process Topic Models. Finally we draw

conclusions and describe future work in chapter 6.



Chapter 2

Literature Review

Since our work is based on dimensionality reduction, in this chapter we cover a num-

ber exiting approaches from literature, both non-probabilistic approaches as well as

probabilistic ones.

2.1 Non-Probabilistic Methods

Non-probabilistic dimensionality reduction approaches typically formulate the embed-

ding as an optimization problem, whereby the objective function characterizes what

kind of properties are maintained in the lower-dimensional space. Over the last decade

a large number of non-probabilistic dimensionality reduction methods have emerged,

especially from the manifold embedding community. We briefly describe some of the

best known methods, which can be considered as the state-of-the-art. For the purposes

of the discussion let X = {x1, . . . , xn}, where xi ∈ R
d, i = 1, . . . , n, denote data points

in the high dimensional space. The objective in non-probabilistic dimensionality reduc-

tion is to compute n corresponding data points fi ∈ R
m where m < d. For simplicity

and for the sake of the discussion we let m = 1.

Principal Component Analysis (PCA) One of the most well known dimensionality

reduction approaches is Principal Component Analysis. In PCA the objective is to

obtain an embedding while preserving as much of the variance from the original data

set as possible (minimization of squared loss). PCA performs a linear projection, which

is obtained using the top m eigenvectors of the data covariance matrix [14]. Due to

7
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its linear nature, PCA is generally seen as not well suited for preserving non-linearities

[15, 16, 17]. In recent years, PCA has been extended to work with exponential family

distributions [18] and their corresponding Bregman divergences [19, 20].

Metric Multidimensional Scaling (MDS) Given a n × n dissimilarity matrix D

and a distance measure, the goal of MDS is to perform dimensionality reduction in

a way that will preserve dot products between data points as closely as possible [21].

We consider a particular form of MDS called classical scaling. In classical scaling, the

Euclidean distance measure is used and the following objective function is minimized:

EMDS =
∑

i,j,i 6=j

(xTi xj − fT
i fj)

2 =
∑

i,j,i 6=j

D2
ij . (2.1)

The first step of the method is to construct the Gram matrix XXT from D. This can

be accomplished by double-centering D2 [22]:

xTi xj = −
1

2

[

D2
ij −D2

i. −D2
.j +D2

..

]

, (2.2)

where

D2
i. =

1

n

n
∑

a=1

D2
ia, D

2
.j =

1

n

n
∑

b=1

D2
bj , D

2
.. =

1

n2

n
∑

c=1

n
∑

d=1

D2
cd .

The minimizer of the objective function is computed from the spectral decomposition of

the Gram matrix. Let V denote the matrix formed with the firstm eigenvectors of XTX

with corresponding eigenvalue matrix Λ that has positive diagonal entries {λi}mj=1. The

projected data point in the lower dimensional space are the rows of V
√
Λ, i.e.,

√
ΛV T = [f1 . . . fn].

The output of classical scaling maximizes the variance in the data set while reducing

dimensionality. Distances that are far apart in the original data set will tend to be far

apart in the projected data set. Since Euclidean distances are used, the output of the

above algorithm is equivalent to the output of PCA [14, 23]. However, other variants

of metric MDS are also possible where, for example, non-Euclidean distance measures

or different objective functions are used.

Locally Linear Embedding (LLE): In LLE [15], the assumption is that each point

in the high-dimensional space can be accurately approximated by a locally linear region.

In particular, the neighborhood dependencies are estimated by solving minW
∑

i ||xi −
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∑

j∈Ni
wijxj ||2, such that

∑

j∈Ni
wij = 1, where Ni is the set of neighboring points of

xi. Then W is used to reconstruct the points in a lower-dimensional space by solving:

min
f∈R

∑

i

||fi −
∑

j

wijfj||2 , s.t. f ⊥ 1, ||f ||2 = n . (2.3)

While the computation of W is carried out locally, the reconstruction of the points is

computed globally in one step. As a result, data points with overlapping neighborhoods

are coupled. This way LLE can uncover global structure as well. The constraints

on the optimization problems in the last two steps force the embedding to be scale

and rotation invariant. LLE is a widely used method that has been successfully used on

certain applications [24, 25] and has motivated several methods including supervised [15]

and semi-supervised [26] extensions, as well as other embedding methods [27].

Laplacian Eigenmaps (LE): LE is based on the correspondence between the graph

Laplacian and the Laplace Beltrami operator [28]. The symmetric weights between

neighboring points are typically computed using the RBF kernel as wij = exp(−||xi −
xj||2/σ2). Let D be a diagonal matrix with Dii =

∑

j wij.

Then W is used to reconstruct the points in a lower-dimensional space by solving:

min
f

1

2

∑

i,j

wij(fi − fj)
2 , s.t. f ⊥ D1 , fTDf = I . (2.4)

Local Tangent Space Alignment (LTSA): In LTSA, the tangent space at each

point is approximated using local neighborhoods and a global embedding is obtained by

aligning the local tangent spaces. IfXN
i denotes the matrix of neighbors of xi, then it can

be shown [16] that the principal components ofXN
i give an approximation to the tangent

space of the embedding fi. Let gi1, . . . , gik be the top k principal components for XN
i .

Let Gi = [e/
√
k, gi1, . . . , gid]

T . If Ni are the indices of the neighbors of xi, submatrices

of the alignment matrix M are computed as M(Ni,Ni) ← M(Ni,Ni) + I − GiG
T
i for

i = 1, . . . , n. Finally, using M , which is guaranteed to be positive semidefinite, an

embedding is subsequently obtained by minimizing the alignment cost:

min
f

fTMf , s.t. f ⊥ 1 , ||f ||2 = n. (2.5)

We refer the reader to [16] for a detailed analysis of LTSA.

Isometric Feature Mapping (ISOMAP): ISOMAP is another graph-based embed-

ding method [29, 30]. The idea behind ISOMAP is to embed points by preserving
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geodesic distances between data points. The method attempts to preserve the global

structure in the data as closely as possible. Given a graph, geodesic distances are mea-

sured in terms of shortest paths between points. Once geodesic distances are computed

MDS is used to obtain an embedding.

The algorithm consists of three steps. The first step is to construct a graph by

computing k-nearest neighbors. In the second step, one computes pairwise distances

Dij between any two points. This can be done using Dijkstra’s shortest path algorithm.

The last step of ISOMAP is to run the metric MDS algorithm with Dij as input. The

resulting embedding will give ||fi− fj||2 approximately equal to D2
ij for any two points.

By using a local neighborhood graph and geodesic distances, the ISOMAP method ex-

ploits both local and global information. In practice, this method works fairly well on a

range of problems. One could prove [30] that as the density of data points is increased

the graph distances converge to the geodesic distances. ISOMAP has been used in a

wide variety of applications [31, 32], and has motivated several extensions in the recent

past [17, 33, 26].

A methodology for converting non-linear dimensionality reduction methods to the semi-

supervised setting was proposed in [26]. To the best of our knowledge none of the existing

literature explores the relationship between dimensionality reduction, label propagation

and semi-supervised graph-cuts.

2.2 Probabilistic Methods

One of the oldest probabilistic dimensionality reduction approaches comes from the

field of Geostatistics and is known as the Linear Model of Corregionalization. More

recent developments include the extension of Gaussian Processes to model dimension-

ality reduction or topic modeling. Topic modeling reduces high dimensional document

representation into lower-dimensional mixtures of topics. Gaussian Processes and Ker-

nel methods generally model covariances among data points. Some approaches in topic

modeling on the other hand capture covariances among the embedded dimensions. Our

work differs from most of the methods in this section in that it models covariances both
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across data points and across the embedded dimensions simultaneously.

Gaussian Process Latent Variable Model (GPLVM): The Gaussian Process La-

tent Variable Model (GPLVM) [5] is one of the most well known probabilistic embedding

methods. GPLVM assumes that points in the higher dimensional space were generated

using a zero-mean Gaussian Process. The kernel is defined over the lower-dimensional

points and can be chosen depending on application. Using a kernel which is based on

an inner product matrix leads to Probabilistic Principal Component analysis. GPLVM

can be thought as modeling covariances across data points in the form of a kernel.

However it does not model covariances across the latent dimensions. GPLVM has been

applied successfully in several domains including localization [34], pose estimation [35]

and fault detection [36]. Semi-supervised [37] as well as discriminative variants have

been proposed [38].

Latent Dirichlet Allocation (LDA): Latent Dirichlet allocation (LDA) [39] is one

of the most widely used topic modeling algorithms. It is capable of extracting topics

from documents in an unsupervised fashion. In LDA, each document is assumed to be

a mixture of topics, whereby a topic is defined to be a distribution over words. LDA

assumes that each word in a document is drawn from a topic z, which in turn is generated

from a discrete distribution Discrete(π) over topics. Each document is assumed to have

its own distribution Discrete(π), whereby all documents share a common Dirichlet prior

α. The graphical model of LDA is in Figure 2.1, and the generative process for each

document w is as follows:

1. Draw π ∼ Dirichlet(α).

2. For each of m words (wj , [j]
m
1 ) in w:

(a) Draw a topic zj ∼ Discrete(π).

(b) Draw wj from p(wj |β, zj).

where β = {βi, [i]k1} is a collection of parameters for k topic distributions over totally

V words in the dictionary. The generative process chooses βi corresponding to zj . The

chosen topic distribution βi is subsequently used to generate the word wj. The most

likely words in βi are used as a representation for topic i.
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w

Figure 2.1: Graphical model for Latent Dirichlet Allocation.

Correlated Topic Model (CTM): The Correlated Topic Model [7] is an extension

of Latent Dirichlet allocation to use a Gaussian prior. Rather than using a Dirichlet

prior, the latent variable in CTM is drawn from a Gausian distribution. Unlike in LDA,

the latent variable in CTM is real-valued. To obtain θ, a lognormal transformation is

performed. The remainder of the generative model is identical to LDA. The CTM was

an improvement over LDA in that it models the covariance across topics, leading to a

higher quality model. The resulting covariance matrix can also be used to contract a

”topic graph”, visualizing how topics are related to each other. While CTM captures the

covariance among topics, it does not have a natural way of incorporating semi-supervised

information on the document level in terms of a kernel.

Linear Model of Corregionalization (LMC): Linear Models of Corregionalization

(LMCs) are a broad family of related models widely studied in Geostatistics [8, 9]. LMCs

were first introduced as a dimensionality reduction method. The simplest form of LMC,

also known as the separable model or intrinsic specification [40, 9], works with vectors

X(sj) ∈ R
m at locations sj, j = 1, . . . , n. The objective is to capture associations within

a given location and across locations. Following common notation from Geostatistics [9],

let

X(s) = Aw(s), (2.6)

be a process where A ∈ R
m×m is a full rank matrix and wj(s) ∼ N(0, 1) are i.i.d. pro-

cesses with stationary correlation function ρ(s−s′) = corr(wj(s), wj(s
′)) not depending

on j. X(s) is assumed to have zero mean and variance 1. Let T = AAT ∈ R
m×m denote

the local covariance matrix. The cross covariance ΣX(s),X(s′) can then be expressed as

ΣX(s),X(s′) = C(s− s′) = ρ(s − s′)T . (2.7)
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Thus, by flattening out X as vec(X) ∈ R
mn, the joint distribution of vec(X) ∼

N(0,Σvec(X)) where Σvec(X) = R ⊗ T , Rss′ = ρ(s − s′), and ⊗ denotes the Kronecker

product. More general versions of LMC can be obtained by abandoning the i.i.d. as-

sumption on wj(s) or by considering a nested covariance structure: [41, 9].

C(s− s′) =
∑

u

ρu(s − s′)T (u) . (2.8)

Since the component processes are zero mean, the intrinsic formulation of LMC [9] only

requires the specification of the second moment of the differences in measurements,

given by

ΣX(s)−X(s′) = Ψ(s− s′) = C(0)−C(s− s′)

= T − ρ(s− s′)T = γ(s− s′)T .
(2.9)

The function γ(s− s′) = ρ(0)− ρ(s− s′), where ρ(0) = 1, is referred to as a variogram.

Learning and inference in LMCs are typically performed by assuming a parametric form

for the variogram [42, 8]. Several recent publications in machine learning [43, 44] can

be seen as special cases of LMCs. Please note that LMC, is also considered to per-

form dimensionality reduction. It is the only existing approach which takes covariances

across multiple dimensions into account. However this is accomplished by vectorizing

the original matrix. As a result dependencies between every entry are modeled. The

drawback of this approach is that it practically does not scale well. The Probabilistic

Matrix Addition approach differs in that it assumes a sparse density structure. Further

our proposed model does not consider the matrix in vectorized form.



Chapter 3

Embeddings, Graph Cuts, and

Label Propagation

In this chapter we explore the relationships between dimensionality reduction, graph-

based semi-supervised learning and semi-supervised graph-cuts.

3.1 Introduction

Semi-supervised learning is becoming a crucial part of data mining, since the gap be-

tween the total amount of data being collected in several problem domains and the

amount of labeled data available for predictive modeling is ever increasing. Semi-

supervised learning methods typically make assumptions about the problem based on

which predictions are made on the unlabeled data [45]. A commonly used assump-

tion, called the smoothness assumption, is that nearby points should have the same

label. The assumption can be instantiated in several ways, and that has lead to several

different algorithms for semi-supervised learning [46, 47, 48].

Graph-based semi-supervised learning algorithms are an instantiation of the smooth-

ness assumption. In such a setting, a graph is constructed where each vertex corresponds

to a point, and the edge connecting two vertices typically has a weight proportional to

the proximity of the two points [46, 47]. Then, labels are “propagated” along the

14
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weighted edges to get predictions on the unlabeled data. Recent years have seen sig-

nificant interest in the design of label propagation algorithms for graph-based semi-

supervised learning. While interpretations of label propagation methods in terms of

random walks over graphs and semi-supervised graph cuts are not uncommon, the use

of embedding methods for the purpose of label propagation has not been extensively

explored. Further, empirical evaluation and comparison among the methods have been

rather limited. To the extent that it is not quite clear how various existing methods

compare to each other.

This chapter provides three major contributions. The first one is a unified view of

label propagation, semi-supervised graph cuts and semi-supervised non-linear manifold

embedding. A unification of label propagation in terms of a quadratic cost criterion

was provided in [45]. It is no surprise that most existing approaches can be summarized

using a common optimization framework. Unlike [45] the objective of our exposition is

to explicitly draw out connections between various methods, semi-supervised graph cuts

and semi-supervised embedding. This is not done in [45]. Another description of label

propagation approaches is presented in [49]. In particular chapter 5 of [49] presents

methods based on graph cuts, random walks and manifold regularization. These are

presented as three different algorithms, without the connections between them being

described. While we do not claim that our unification introduces previously unknown

connections, to the best of our knowledge no existing literature draws out all of these

connections explicitly. We believe that this exposition will serve as a good reference to

those interested in future label propagation research. We present our unified framework

by introducing a generic form of label propagation (GPL). We show how most existing

label propagation approaches fit into this framework. We further show that both semi-

supervised graph cuts and semi-supervised non-linear embeddings can also be described

in terms of the same framework. Our unified framework has several advantages, includ-

ing the ability to contrast exiting label propagation methods and to interpret them in

terms of semi-supervised graph cuts and semi-supervised embedding.

Having drawn out the connections between semi-supervised non-linear embedding,
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semi-supervised graph cuts and label propagation, the second contribution of this chap-

ter is to explore existing non-linear embedding methods for the purposes of label prop-

agation. In particular we provide a recipe for converting embedding methods to semi-

supervised label propagation approaches. A novel aspect in this work is the direct ap-

plication of semi-supervised embedding approaches to label propagation. In particular

we introduce a label propagation algorithm based on Local Tangent Space Alignment,

which we call LTSALP.

Finally, we present comprehensive empirical performance evaluation of the existing

label propagation methods as well as the new ones derived from manifold embedding.

Most existing publications on label propagation present very limited empirical evalua-

tions. As a result it is not quite clear how state of the art approaches compare to each

other. We performed extensive experiments. Among other things, we demonstrate that

the new class of embedding-based label propagation methods is competitive on several

datasets.

The rest of the chapter is organized as follows. We review background material in

Section 3.2. In Section 3.3, we introduce the GLP formulation and present an unified

view of existing label propagation methods. In Section 3.4, we show the relationship be-

tween semisupervised graph-cuts and the GLP formulation. We discuss semisupervised

manifold embedding and introduce a set of embedding based label propagation methods

in Section 3.5. We present empirical results in Section 3.6 and conclude in Section 4.5.

3.2 Background

In this section we review necessary background on graph-based semi-supervised learning

and graph Laplacians.

3.2.1 Graph-based Semi-Supervised Learning

Let D = {(x1, y1), . . . , (xℓ, yℓ), xℓ+1, . . . , xℓ+u} be partially labeled dataset for classifi-

cation, where only ℓ out of the n = (ℓ + u) points have labels, and yi ∈ {−1,+1} for

i = 1, . . . , ℓ.1 Let G = (V,E) be an undirected graph over the points, where each

1 While we focus on the 2-class case for ease of exposition, the extensions to multi-class are mostly
straightforward. We report results on multi-class problems in Section 3.6.
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vertex vi corresponds to a datapoint xi, and each edge in E has a non-negative weight

wij ≥ 0. The weight wij typically reflects the similarity between xi and xj, and is

assumed to be computed in a suitable application dependent manner. Given the par-

tially labeled dataset D and the similarity graph G, our objective is to learn a function

f ∈ R
n, which associates each vertex to a discriminant score fi and a final prediction

sign(fi) for classification. The problem has been extensively studied in the recent past

[50, 48, 45, 46, 47].

3.2.2 Graph Laplacians

Let G = (V,E) be an undirected weighted graph with weights wij ≥ 0, and let D

be a diagonal matrix with Dii =
∑

j wij. In the existing literature, there are three

related matrices that are called the graph Laplacian, and there does not appear to be

a consensus on the nomenclature [51]. These three matrices are intimately related, and

we will use all of them in our analysis. The unnormalized graph Laplacian Lu is defined

as:

Lu = D −W . (3.1)

The following property of the unnormalized graph Laplacian is important for our anal-

ysis: For any f ∈ Rn, we have

f tLuf =
1

2

∑

i,j

wij(fi − fj)
2 . (3.2)

The matrix Lu is a symmetric and positive semidefinite. There are also two normalized

graph Laplacians in the literature [52], respectively given by:

Lr = D−1Lu = I −D−1W , (3.3)

Ls = D−1/2LuD
−1/2 = I −D−1/2WD−1/2 . (3.4)

For the symmetrically normalized graph Laplacian, the following property holds: For

any f ∈ R
n, we have

f tLsf =
1

2

∑

i,j

wij

(

fi√
Dii
− fj
√

Djj

)2

. (3.5)

We refer the reader to [53, 52, 51] for further details on Laplacians and their properties.
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3.3 A Unified View of Label Propagation

In this section, we present a unified view of several label propagation formulations as

a constrained optimization problem involving a quadratic form of the Laplacian where

the constraints are obtained from the labeled data.

3.3.1 Generalized Label Propagation

The Generalized Label Propagation (GLP) formulation considers a graph-based semi-

supervised learning setting as described in Section 3.2.1. Let W be the symmetric

weight matrix and L be a corresponding graph Laplacian. Note that L may be any of

the Laplacians discussed in Section 3.2, and we will see how different label propagation

formulations result out of specific choices of the Laplacian. Let f ∈ R
n, where n = ℓ+u,

be the predicted score on each data point xi, i = 1, . . . , n; the predicted label on xi can

be obtained as sign(fi). The generalized label propagation (GLP) problem can be

formulated as follows:

min
f∈S

fTLf, s.t.
ℓ
∑

i=1

(fi − yi)
2 ≤ ǫ , (3.6)

where ǫ ≥ 0 is a constant and S ⊆ R
n. For most existing formulations S = R

n whereas

for a few S = {f |f ∈ R
n, f ⊥ 1} where 1 is the all ones vector. The Lagrangian

for the GLP problem is given by L(f, µ) = fTLf + µ
∑ℓ

i=1(fi − yi)
2, where µ ≥ 0

is the Lagrangian multiplier. Some variants assume yi = 0 for i = (ℓ + 1), . . . , n, so

the constraint will be of the form
∑n

i=1(fi − yi)
2 ≤ ǫ. Assuming the Laplacian to be

symmetric, which is true for Lu and Ls, the first order necessary conditions are given

by (L+ µI)f = µy, where I is the identity matrix. Several existing methods work with

the special case ǫ = 0, which makes the constraints binding so that
∑ℓ

i=1(fi − yi)
2 = 0

and fi = yi on the labeled points. The first order conditions for the special case is

given by Lf = 0. In the next several sections, we show how most of the existing label

propagation methods for semi-supervised learning can be derived directly as a special

case of the GLP formulation or closely related to it with special case choices of the

Laplacian L, the constant ǫ, and the subspace S.
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3.3.2 Gaussian Fields (GF)

Motivated by the assumption that neighboring points in a graph will have similar labels

in Gaussian fields, the following energy function is considered [46]:

E(f) =
1

2

n
∑

i,j=1

wij(fi − fj)
2 . (3.7)

The GF method computes labels by minimizing the energy function E(f) with respect to

f under the contraint that fi = yi for all labeled points. As observed in [46], the energy

function is harmonic, i.e., it is twice continuously differentiable and it satisfies Laplace’s

equation [54]. From the harmonic property of the energy function it follows that the

predicted labels will satisfy: f = D−1Wf . In terms block matrices corresponding to

labeled and unlabeled points we have:
[

Dℓℓ 0

0 Duu

][

fℓ

fu

]

=

[

Wℓℓ Wℓu

Wuℓ Wuu

][

fℓ

fu

]

.

Since fℓ = yℓ due to the constraints,2 the above system can be simplified to get a

closed form for fu given by

fu = (Duu −Wuu)
−1Wulyl . (3.8)

We can interpret the objective function in Gaussian Fields as a special case of the

GLP problem in (3.6). In particular, using the identity in (3.2) and noting that the

constraints on the labeled points are binding, GF can be seen as a special case of GLP

with L = Lu and ǫ = 0, i.e.,

min
f∈Rn

fTLuf , s.t.
ℓ
∑

i=1

(fi − yi)
2 ≤ 0 . (3.9)

3.3.3 Tikhonov Regularization (TIKREG)

Given a partially labeled data set, TIKREG [55] is an algorithm for regularized regres-

sion on graphs, where the objective is to infer a function f over the graph. The objective

function for TIKREG is given by

min
f

1

2

n
∑

i,j=1

wij(fi − fj)
2 +

1

γℓ

ℓ
∑

i=1

(fi − yi)
2 (3.10)

2 We abuse notation and denote [f1, . . . , fℓ]
T by fℓ (similarly for yℓ) and [f(ℓ+1), . . . , fn]

T by fu in
the sequel.



20

with the constraint that f ⊥ 1, i.e., f lies in the orthogonal subspace of 1, the all ones

vector. The parameter γ is assumed to be a real-valued number. A closed form solution

for the above problem is obtained [55] as:

f = (ℓγLu + Ik)
−1(ŷ + µ1) (3.11)

where ŷ = (y1, y2, . . . , yl, 0, . . . , 0), Ik = diag(1, . . . , 1, 0, . . . , 0) with the number of ones

equal to the number of labeled points. The orthogonality constraint on f is enforced

through the lagrange multiplier µ, which is optimally computed as:

µ = −1T (ℓγLu + Ik)
−1ŷ1T (ℓγLu + Ik)−11 . (3.12)

The objective function can be viewed as a special case of the GLP objective in (3.6). As

before, the first term is fTLuf , where Lu is the unnormalized Laplacian. The second

term corresponds to the constraint
∑

i(fi − yi)
2 ≤ ǫ, in (3.6) where 1/γℓ is the optimal

Lagrange multiplier corresponding to the constraint. In other words, if ǫ(1/γℓ) is the

constraint value that leads to the optimal Lagrange multiplier of 1/γℓ, the TIKREG

problem can be seen as a special case of GLP:

min
f∈Rn,f⊥1 fTLuf , s.t.

ℓ
∑

i=1

(fi − yi)
2 ≤ ǫ(1/ℓγ) . (3.13)

3.3.4 Local and Global Consistency (LGC)

The Local and Global Consistency (LGC) approach [47] gives an alternative graph

based regularization framework for semi-supervised learning. In particular, the LGC is

formulated based on the following objective function [47]:

min
f

1

2





n
∑

i,j=1

wij

(

1√
Dii

fi −
1

√

Djj

fj

)2

+ µ

n
∑

i=1

(fi − yi)
2



 , (3.14)

with µ > 0 as the regularization parameter. Note that LGC assumes that there is a

valid yi for all points; operationally, the yi, i = 1, . . . , ℓ is set to the true given label,

whereas yi, i = ℓ + 1, . . . , n is set to 0. The problem is solved using an iterative label

propagation algorithm. Given a weight matrix W among the points, the weights are

normalized to obtain S = D−1/2WD−1/2 with D diagonal and Dii =
∑

j wij . Starting

from an initial guess f (0), the iterative algorithm proceeds with the following updates:

f (t+1) = αSf (t) + (1− α)y , (3.15)
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where α ∈ (0, 1). As shown in [47], this update equation converges to f∗ = (1 −
α)(I − αS)−1y, which can be shown to optimize the objective function in (3.14) when

α = 1/(1 + µ). We now show that the LGC formulation is a special case of the GLP

formulation in (3.6). From the identity involving the normalized Laplacian in (3.5),

then the LGC can be seen as a special case of GLP as follows:

min
f

fTLsf , s.t.

n
∑

i=1

(fi − yi)
2 ≤ ǫ(µ) , (3.16)

where ǫ(µ) is the constant corresponding to the optimal Lagrange multiplier µ. Note

that since in LGC, one starts with an initial label yi, i = 1, . . . , n, the constraint involves

terms corresponding to all the points.

3.3.5 Related Methods

We review three other methods, viz cluster kernels, Gaussian random walks, and local

neighborhood propagation for graph-based semi-supervised learning which are closely

related to the GLP framework.

Cluster Kernels (CK)

The main idea in cluster kernels [56] is to embed the data into a lower dimensional

space based on its cluster structure and then subsequently build a classifier on the

low-dimensional data. If K denotes a suitable kernel on the data space, the embedding

method focuses on the k primary eigenvectors of the symmetrized matrix D−1/2KD−1/2.

If K corresponds to the edge weights on the graph G = (V,E) between the points, i.e.,

K = W , then the embedding corresponds to the k eigenvectors of the symmetrized

Laplacian Ls = I −D−1/2WD−1/2 corresponding to the smallest k eigenvalues. In par-

ticular, for k = 1, the embedding is given by the eigenvector corresponding to the small-

est eigenvalue of Ls which is the solution to LGC in absence of any semi-supervision.

CK trains a suitable (linear) classifier on the low-dimensional embedding to obtain the

final predictions.
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Gaussian Random Walks EM (GWEM)

Consider a random walk on the graph with transition probability P = D−1W . The

GWEM method [50] works with the m-step transition probability matrix Pm so that

the probability of going from xi to xj is given by pm|0(xj |xi) = (Pm)ij . The random walk

is assumed to start with uniform probability from any one of the nodes, so P (xi) = 1/n.

Using Bayes rule, one can obtain the posterior probabilities P0|m(xi|xj). Now, each

point is assumed to have a (possibly unknown) distribution p(y|xi) over the class labels.
For any point xj, the posterior probability of class label y is given by P (yj = c|xj) =
∑

i P (yi = c|xi)p0|mp(xi|xj). The prediction is based on yj = argmaxc P (yj = c|xj).
Now, since P (y|xi) is unknown for the unlabeled points, an EM algorithm can be used

to alternately maximize the log-posterior probability of known labels on the labeled

points
ℓ
∑

k=1

log P (yk|xk) =
ℓ
∑

k=1

log
N
∑

i=1

P (yi|xi)P0|m(xi|xk).

The EM algorithm alternates between the E step which estimates

P (xi|xk, yk) ∝ P (yk|xi)P0|m(xi|xk) (3.17)

where k denotes an index over labeled points, and the M step, which computes

P (y = c|xi) =
∑ℓ

k:yk=c P (xi|xk, yk)
∑ℓ

h=1 P (xi|xh, yh)
.

We now show that GWEM can be interpreted in terms of spectral decomposition

of a suitable asymmetrically normalized Laplacian Lr as in (3.3). For a fixed number

of steps m for the random walk, let ZT = Pm = (D−1W )m. Note that ZT itself is a

transition probability matrix, and Zij = Pm|0(xi|xj). Let DZ be a diagonal matrix such

that DZ,ii =
∑

j Zij . Since the prior probability P (xi) = 1/n, by Bayes rule we have

P0|m(xj|xi) =
Pm|0(xi|xj)
∑

i′ Pm|0(xi′ |j)
= (D−1

Z Z)ij.

Let fj = P (yj |xj). When the EM algorithm converges we will have:

f = D−1
Z Zf ⇒ (I −D−1

Z Z)f = 0



23

, where fi = yi for the labeled points. Since D−1
Z Z is a transition probability matrix,

from (3.3) we note that (I − D−1Z) can be viewed as a asymmetrically normalized

Laplacian Lr so that Lrf = 0. Finally, since DZf = Zf resembles the fixed point

equation for GFs, a block decomposition as in (3.8) yields fu = (Dz,uu − Zuu)
−1Zuℓyℓ.

Linear Neighborhood Propagation (LNP)

Linear Neighborhood Propagation (LNP) [48] is another recent approach, which differs

from the other methods as LNP computes a stochastic transition matrix U directly

from the data. In particular, one computes a probability distribution over neighbor-

ing points so that their expectation best approximates the point under consideration:

minui

∥

∥xi −XN
i ui

∥

∥

2
, where ui is probability distribution over the neighbors of xi and

XN
i is a matrix each of whose columns is a neighbor of xi. Once the transition proba-

bility matrix U is computed, the semisupervised learning problem is posed as follows:

min
f∈R

∑

i,j

uij(fi − fj)
2 + µ

n
∑

i=1

(fi − yi)
2 , (3.18)

where, similar to LGC [47], the labels yi, i = 1, . . . , ℓ are set to their true values, and

the unknown labels yi, i = ℓ+1, . . . , n are set to 0. Similar to LGC, the LNP problem is

solved by an iterative label propagation algorithm. Starting from an initial guess f (0),

the iterative algorithm proceeds with the following updates:

f (t+1) = αUf (t) + (1− α)y , (3.19)

where α = 1/(1 + µ) ∈ (0, 1). The updates are the same as in (3.15) for

LGC [47] with the difference that U is not normalized symmetrically, but is a tran-

sition probability matrix of a random walk. In spite of the similarities, a careful

consideration of the analysis in [48] reveals that update equation in (3.19) does not

solve the problem in (3.18). On convergence, the iterative updates in (3.19) leads to

f = (I − αU)−1(1 − α)y. On the other hand, setting derivatives of (3.18) to zero leads

to f =
(

I − α(U + UT )/2
)−1

(1 − α)y. The issue arises in the analysis [48] when one

assumes [(I − U) + (I − U)T ]f ≈ 2(I − U)f , which is not true unless U is symmetric.

For empirical evaluation, we use the iterative updates in (3.19).
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3.3.6 Label Propagation and Green’s Function

We briefly describe an interesting relationship between label propagation and the dis-

crete Green’s function. Green’s functions are typically used to convert inhomogenous

partial differential equations with boundary conditions into an integral problem. In par-

ticular the inverse Laplace operator with the zero mode removed can be interpreted as

a Green’s function for the discrete Laplace operator [57]. Let G = L† be the generalized

inverse of the Laplacian L. The solutions for both GF and GWEM can be expressed

as: fu = (Duu −Wuu)
−1Wulyl = L†

uzu where zu = Wulyl. Discarding the zero mode

of Lu, we have fu ≈ Guzu. As argued in [57], discarding the zero mode is important

to ensure that the Green’s function exists; further, it does not affect the final result.

Then fu can be viewed as a solution to a partial differential equation with boundary

value constraints. The interpretation is intuitive if the labeled points are treated as

electric charges. In particular one assumes labeled points to be postive and negative

charges. Using the Green’s function one then computes the influence of these charges

on unlabeled points [57]. For methods such as LGC and LNP the solution has the form

f = (I −A/(1 + µ))−1 µy/(1 + µ), with A = D−1/2WD−1/2 for LGC and A = U for

LNP. Considering the strong regularization limit as µ→ 0 and removing the zero mode

in L we obtain: f = L†y ≈ Gy.

3.4 Semi-Supervised Graph Cuts

We now demonstrate how label propagation formulations can be viewed as solving a

relaxed version of semi-supervised graph-cut problems. Let G = (V,E) be a weighted

undirected graph with weight matrix W . If V1, V2 is a partitioning of V , i.e., V1 ∩
V2 = ∅, V1 ∪ V2 = V , then the value of the cut implied by the partitioning (V1, V2)

is given by: cut(V1, V2) = 1
2

∑

vi∈V1,vj∈V2
wij. The minimum cut problem is to find a

partitioning (V1, V2) such that cut(V1, V2) is minimized. Due to practical reasons, one

often works with a normalized cut objective, such as the ratio-cut [58] or normalized-

cut [59], which encourage the partitions V1, V2 to be more balanced. The objective for

ratio-cut is Rcut(V1, V2) = cut(V1,V2)
|V1|

+ cut(V2,V1)
|V2|

. The objective for normalized-cut is

similar, however it normalizes cuts by the weight of the edges in each partition. Letting

V ol(V ) =
∑

i∈V Dii, we have: Ncut(V1, V2) =
cut(V1,V2)
V ol(V1)

+ cut(V2,V1)
V ol(V2)

.
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While the graph-cut problems outlined above are unsupervised, given labels on some

of the nodes, one can construct a semi-supervised graph cut problem that respects

the labeling [60, 61]. Let A1 be the subset of vertices with label +1, and A2 be the

subset with label -1. Clearly, A1 and A2 are disjoint subsets of V . The semi-supervised

unnormalized cut problem can be posed as follows: Find a partitioning (V1, V2) such

that cut(V1, V2) is minimized subject to the constraint A1 ⊆ V1, A2 ⊆ V2. In order

to achieve balanced cuts, we also consider semi-supervised versions of the ratio-cut

(or normalized-cut) problem. In particular, the semi-supervised ratio-cut problem can

be posed as follows: Find a partitioning (V1, V2) such that Rcut(V1, V2) is minimized

subject to the constraint A1 ⊆ V1, A2 ⊆ V2. Similarly, one can pose the semi-supervised

normalized-cut problem usingNcut(V1, V2) instead of Rcut(V1, V2) above. The problems

outlined above are NP-hard, and there has been some work on developing polynomial-

time approximation schemes (PTASs) for related problems [60, 61]. In this section, we

show that relaxed versions of these problems lead to special cases of the GLP formulation

for a suitable choice of the Laplacian L and the constraint ǫ, and hence can be solved

using label propagation methods.

3.4.1 Semi-Supervised Unnormalized Cut

Consider a graph partitioning given by V1 and V2. Let f be defined as follows

fi =







1 if vi ∈ V1

−1 if vi ∈ V2 .
(3.20)

From (3.2), we now have

f tLuf =
1

2

n
∑

i,j=1

wij(fi − fj)
2 = 4cut(V1, V2) . (3.21)

For any given disjoint sets A1, A2 which constitute the semi-supervision, we construct

constraints on the labels as yi = +1 if vi ∈ A1 and yi = −1 if vi ∈ A2. Then, for all

nodes in the labeled set, i.e., vi ∈ A1 ∪ A2 = L, we have the constraint that fi = yi.

Then, the semi-supervised unnormalized cut problem can be written as:

min
V1,V2

f tLuf, s.t. fi is as in (3.20), ∀vi ∈ L, fi = yi . (3.22)
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By relaxing the problem such that f ∈ R
n and noting that the constraint above is

equivalent to
∑ℓ

i=1(fi − yi)
2 ≤ 0, we obtain the following formulation:

min
f∈Rn

f tLuf, s.t.

ℓ
∑

i=1

(fi − yi)
2 ≤ 0 (3.23)

Clearly, the objective function is a special case of our GLP formulation using an unnor-

malized graph Laplacian and ǫ = 0. In particular, the above is exactly the same as the

formulation for Gaussian Fields [46] described in section (3.2).

3.4.2 Semi-Supervised Ratio Cut

In the context of the ratio cut problem, consider again a graph partitioning given by V1

and V2. Let f be defined as

fi =







+
√

|V2|/|V1| if vi ∈ V1

−
√

|V1|/|V2| if vi ∈ V2 .
(3.24)

Now, following (3.2), we can express

fTLuf =
1

2

∑

i,j

wij(fi − fj)
2 = |V |Rcut(V1, V2) (3.25)

where |V | is a constant. From the predefined values of f we can see that fT1 = 0,

and ||f ||2 = n. The objective function for the semi-supervised ratio-cut problem can

therefore be expressed as:

min
V1,V2

fTLuf, s.t. f ⊥ 1, ||f ||2 = n, f as in (3.24), ∀vi ∈ L, fi = yi . (3.26)

We relax the problem and perform the optimization over f ∈ R
n such that f ⊥ 1. Note

that in the unsupervised case, i.e., L = ∅, the empty set, the solution to the problem

is simply the second eigenvector of L corresponding to the second smallest eigenvalue.

Now, relaxing the constraint3 on ||f || and allowing fi to mildly deviate from yi on

vi ∈ L, we get the following problem:

min
f∈Rn

fTLuf, s.t. f ⊥ 1 ,

ℓ
∑

i=1

(fi − yi)
2 ≤ ǫ , (3.27)

3 Since the final prediction depends on sign(fi), the norm constraint ||f ||2 = n does not have an
effect on the accuracy.
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which is exactly the problem TIKREG solves [55]. The key difference between the

relaxed unnormalized formulation in (3.23) and the normalized formulation in (3.27) is

the constraint f ⊥ 1⇒∑

i fi = 1, which ensures f lies in the subspace of Rn orthogonal

to 1. The balancing constraint ensures the total score on positive predictions is the same

as that on the negative predictions.

3.4.3 Semi-Supervised Normalized Cut

In the context of normalized cut, for a graph partitioning given by V1 and V2, let f be

defined as follows

fi =







√

vol(V2)/vol(V1) if vi ∈ V1

−
√

vol(V1)/vol(V2) if vi ∈ V2 .
(3.28)

Following an analysis similar to that of ratio cut, a semi-supervised normalized cut can

be posed as the following optimization problem:

min
V1,V2

f tLuf, s.t. Df ⊥ 1, fTDf = vol(V ) , f as in (3.28),∀vi ∈ L, fi = yi . (3.29)

First, we relax the problem and perform the optimization over f ∈ R
n such that f ⊥ 1.

With g = D1/2f , the relaxed problem is

min
g∈Rn

gTD−1/2LuD
−1/2g s.t. g ⊥ D1/21, ||g||2 = vol(V ), ∀vi ∈ L, gi = D1/2yi. (3.30)

Note that if L = ∅, then the solution to the problem is simply the second eigenvector

of the symmetrically normalized Laplacian Ls = D−1/2LuD
−1/2 corresponding to the

second smallest eigenvalue. Now, relaxing the constraint on ||g|| and allowing gi to

mildly deviate from D1/2yi on vi ∈ L, we get the following problem:

min
g∈Rn

gTLsg s.t. g ⊥ D1/21, ℓ
∑

i=1

||gi −D1/2yi||2 ≤ ǫ . (3.31)

Algorithms for the above formulation have not been explored in the literature. The for-

mulation is nearest to that of CK, but not the same since CK is a heterogeneous method

which uses the normalized Laplacian for embedding, and then applies a classification

algorithm on the embedding. It is also similar to LGC [47], although the constraint in

LGC includes all points with yi = 0 for i = (ℓ+1), . . . , n and does not involve the D1/2

scaling on yi in the constraint.
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There has been notable attempts in the literature to directly solve some of the

semi-supervised graph cut problems [60, 61]. Among such methods, the spectral graph

transducer (SGT) [62] solves a problem closely related to the semi-supervised ratio cut

problem, and reduces to TIKREG [55] under certain assumptions.

3.5 Semi-Supervised Embedding

In this section, we show how label propagation methods can be viewed as doing semi-

supervised embedding. The geometric perspective helps in identifying relationships

between existing embedding and label propagation methods, e.g., between Laplacian

Eigenmaps [28] and Gaussian Fields [46]. More generally, we derive a new family of label

propagation methods based on existing embedding methods, including Locally Linear

Embedding (LLE) [63], Local Tangent Space Alignment (LTSA) [16] and Laplacian

Eigenmaps (LE) [28]. While all such methods can be seen as a special case of the GLP

formulation, they differ in the details—in particular, in the choice of the postive semi-

definite matrix L and nature of constraints. Since our exposition is focussed on two

class classification, the embedding will always be on R, a one dimensional space.

3.5.1 Non-linear Manifold Embedding

Manifold embedding methods obtain a lower dimensional representation of a given

dataset such that some suitable neighborhood structures are preserved. In this section

we briefly review three popular embedding methods by formulating them in a similar

form and demonstrate that their semi-supervised generalizations solve a variant of the

GLP formulation.

Locally Linear Embedding (LLE):

Letting M = (I −W )T (I −W ), which is positive semi-definite and can be viewed

as an iterated Laplace operator [28], we can rewrite the objective function as:

min
f

fTMf , s.t. f ⊥ 1 , ||f ||2 = n . (3.32)

Laplacian Eigenmaps (LE): Using (3.2), the objective function is fTLuf . Letting

g = D1/2f , with M = Ls = D−1/2LuD
−1/2 we can express the objective function as

min
g

gTMg , s.t. g ⊥ D1/21 , ||g||2 = 1 . (3.33)
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Local Tangent Space Alignment (LTSA): In LTSA we have:

min
f

fTMf , s.t. f ⊥ 1 , ||f ||2 = n. (3.34)

3.5.2 Semi-Supervised Embedding

In this section, we consider two variants of semi-supervised embedding and its applica-

tions to label propagation. The variants differ in whether they consider the constraints

associated with the corresponding unsupervised embedding problem. As discussed in

Section 3.5.1, there are typically two types of constraints: f ⊥ A1, where A = I or

D1/2, and ||f ||2 = c, a constant. Since the prediction is based on sign(fi), the norm

constraint does not play any role in a classification setting, and will be ignored for our

analysis. The two variants we consider are based on whether f ⊥ A1 is enforced or not,

in addition to the constraints coming from the partially labeled data.

Unconstrained Semi-Supervised Embedding

Following [64], we want to obtain an embedding f = [fℓ fu]
T , where the exact em-

beddings of the first ℓ points are known and given by yℓ.
4 The objective for semi-

supervised embedding is given by

min
f

fTMf , s.t fℓ = yℓ , (3.35)

where M is a suitable positive semi-definite matrix. Since fℓ is fixed, the problem can

be cast in terms of block matrices as:

min
fu

[

fT
ℓ fT

u

]

[

Mℓℓ Mℓu

Muℓ Muu

][

fℓ

fu

]

, (3.36)

Setting the first derivative to zero one obtains:

fu = −M−1
uu Muℓyℓ . (3.37)

In the context of label propagation for a 2-class classification setting, we will have

yi = +1 or yi = −1 for i = 1, . . . , ℓ. In other words, the labeled points are being em-

bedded to its true class label, and the rest will be embedded while trying to maintain

4 While the constraints can be relaxed to consider
∑ℓ

i=1(fi−yi)
2 ≤ ǫ, we do not focus on the general

case here.
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the neighborhood structure. For LLE, M = (I −W )T (I −W ) and we call the corre-

sponding label propagation algorithm LLELP. Similarly, for LTSA, M is as discussed

in Section 3.5.1, and the corresponding algorithm will be called LTSALP. For uncon-

strained LE from (2.4), M = Lu, and the corresponding algorithm will be called LELP.

For LELP, since M = Lu, the unnormalized Laplacian, from (3.37) we have

fu = −L−1
uuLuℓyℓ = −(Duu −Wuu)

−1(Duℓ −Wuℓ)yℓ

= (Duℓ −Wuℓ)
−1Wuℓyℓ ,

since Duℓ = 0 as D is a diagonal matrix. We note that the solution is exactly the same

as that for GF as in (3.8) implying the equivalence of GF and LELP.

Constrained Semi-Supervised Embedding

In this section, we consider embedding problems when the orthogonality constraint of

the form f ⊥ A1 is enforced. In particular, we consider the following problem

min
f

fTMf , s.t.

ℓ
∑

i

(fi − yi)
2 ≤ ǫ , f ⊥ A1 , (3.38)

where A = I for LLE and LTSA, and A = D1/2 for LE. Let α and µ be the Lagrange

multipliers for the two constraints respectively. The first order necessary conditions

obtained from the Lagrangian corresponding to (3.38) yields

f = (M + αIk)
−1(αy + µA1/2) (3.39)

Since 1TAT f = 0, a direct calculation gives the optimal Lagrange multiplier as

µ = −2α 1TAT (M + αIk)
−1y1TAT (M + αIk)−1A1 . (3.40)

For LLE, M = (I −W )T (I −W ) and A = I, and we call the corresponding algorithm

LLELPC. For LTSA, M is as discussed in Section 3.5.1 and A = I, and we call the

corresponding algorithm LTSALPC. For LE as in (3.33), M = Lsym = I −D1/2WD1/2

and A = D1/2 and we call the corresponding algorithm LELPC.
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3.6 Experiments

In this section we provide an empirical evaluation of label propagation methods discussed

in this chapter. To our knowledge, this is the most comprehensive empirical comparison

of the methods till date. Our experiments are divided into two parts: First we compare

seven methods on 14 benchmark data sets in terms of their accuracy; next, we take a

closer look at the performance of the new label propagation methods obtained from the

perspective of semi-supervised manifold embedding. For the first set of experiments, the

methods we consider include 6 standard methods: GF, LNP, CK, GWEM, TIKREG and

LGC, as discussed in Section 3.3. In addition, we include LTSALP, the novel approach

based on semi-supervised LTSA embedding. For the second set of experiments, the

methods we consider are the 6 embedding based methods introduced in Section 3.5.

Methodology: We conducted our experiments on 14 well known benchmark data

sets. They include the following 8 UCI data sets: Hepatitis, Cancer, Pima, Wine, Iris,

Glass, USPS (1-4 only), and Letter (E and F only). In addition we also ran experi-

ments on 6 text datasets, which are all subsets of the 20Newsgroup data set: Differ-

ent100, Similar100, Same100, Different1000 and Same1000 [65]. Each dataset contains

a subset of 3 newsgroups with varying degree of difficulty for classification. Different100

(1000) includes alt.atheism, rec.sport.baseball, and sci.space, which are easy to sepa-

rate; Same100 (1000) includes comp.graphics, comp.os.ms-windows, comp.windows.x,

which are difficult to separate; whereas Similar100 includes talk.politics.guns, talk. pol-

itics.mideast, talk.politics.misc, which are moderately difficult to separate. We also used

the well known Classic-3 benchmark data set containing 3893 documents, whereby 1033

are from medical journals, 1400 are aeronautical system papers and 1460 are information

retrieval papers. For each method and each data set we ran five-fold semi-supervised

cross validation. Specifically, the training points were chosen from four folds and the

test error was measured on the fifth fold. All points were used to construct the neigh-

borhood graph. Further, for each approach involving parameters, e.g., CK using SVMs

with RBF kernel, parameter values were selected by cross-validation.
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3.6.1 Experimental Results

The performance of the 6 methods from the literature as well as the novel LTSALP in

shown in Figures 3.4, 3.5 and 3.6. All results reported are on the test set. To avoid

clutter, we display the results for the top five methods based on average test-set error

in Figures 3.1 and 3.2 . We make the following observations based on the results:

• There is no dominating method across all datasets. However, there is a set of

methods that seem to be fairly consistently among the top few, and the perfor-

mance of the top few methods is typically close. While across the top methods the

differences typically don’t appear significant, when compared to the worst meth-

ods the improvements do tend to be significant. For instance, if we examine the

results in Figure 4 for the USPS data set we can see that the performance for the

top methods is around 1.5 − 1.8%, while the performance for the worst methods

is between 3.0% and 7.6%. The improvements of the best methods are clearly

significant in comparison to the worst judging by the standard deviation in error.

• Our results also indicate that no given method is always among the best methods

for each data set. For any method we could find at least one data set where

its performance is among the worst. It appears that the assumptions made by

various approaches do not work well across all manifold structures encountered in

various data sets. From an embedding perspective this makes sense, since different

embedding approaches tend to capture slightly different aspects of a manifold.

• The new method LTSALP is among the top performing methods in most of the

UCI datasets. However, it performs poorly on the text datasets, possibly indicat-

ing that the idea of aligning the tangent spaces may have to be suitably modified

for sparse high-dimensional datasets.

• TIKREG is among the most consistent methods on the text datasets. However

its performance is not as consistent on the UCI data sets.

• In spite of an issue with its formulation, LNP is found to be quite competitive

across several UCI and text datasets. Its parameter insensitivity make it rather

easy to tune.
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• When CK does well, it outperforms all the other methods. However, it does not

have a consistent performance, which probably can be addressed by more thorough

cross-validation over its parameter choices.

• GF seems to be a slow starter, not performing well for small number of labeled

points, but improving significantly as the number of labeled points increases. This

can particularly be seen on the text data sets. As more labeled points are consid-

ered GF becomes the best performing method on several text data sets. Generally

GF is among the consistently well-performing methods.

• GWEM does not demonstrate a consistent performance and seems quite sensitive

to the predefined number of steps in the random walk.

In summary, while several of the methods perform well on some datasets, the embedding-

based proposed method LTSALP seems to be either the best or among the best methods

for 6 out of 8 UCI data sets. Further, GF and TIKREG also stand out as quite consistent

in terms of their performance, GF on both the UCI and text datasets, and TIKREG

mostly on the text data sets.

3.6.2 Semi-Supervised Embedding Methods

We now compare the six label propagation methods based on semi-supervised mani-

fold embedding. In particular we examine both variants of Laplacian Eigenmaps based

Label Propagation (LELP, LELPC), Locally Linear Embedding based Label Propaga-

tion (LLELP, LLELPC), and Local Tangent Space Alignment based Label Propagation

(LTSALP, LTSALPC). Note that LTSALP has already been compared to the existing

methods in Figures 3.1, 3.2, 3.4, 3.5 and 3.6 to serve as a reference. We compare the

methods on the UCI datasets, and show representative plots in Figure 3.3.5 Based

on our experiments, we observe that LELP and LTSALP performed most consistently

well, while LLELP did well only on specific data sets such as Wine. The performance of

LLELP seems to be more sensitive to the geometry of a data set. The effect of the or-

thogonality constraint on these methods can be understood when comparing the restults

for Cancer and Hepatitis in Figure 3.3. While the performance is clearly affected by the

5 We report results on 2-class problems in Figure 3.3. Since Wine is a 3-class dataset, we constructed
a 2-class subset Wine(2) for these experiments.
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constraints, it does not necessarily result in improved performance. For example, the

constraints lead to better performance in Hepatitis but worse performance in Cancer.

For the embedding methods, the quality of semi-supervised label propagation seems

to depend on how well the unsupervised embedding preserves the class separation. Fig-

ure 3.8 illustrates the difference between unsupervised embedding and semi-supervised

embedding on Wine. Note that the unsupervised embedding obtained from LLE and

LTSA maintains the class separation better than LE for this particular dataset. When

semisupervision is added, the embedding obtained from all the methods changes suit-

ably. The class separation is most clear in LLELP followed by LTSALP and LELP, a

fact reflected in the test-set error rates in Figure 3.5 (right panel). In general, label

propagation based on a semi-supervised embedding method works well if the geometric

structure of the class labels is well aligned with the biases of the embedding method.

3.7 Conclusions

In this chapter, we have developed a unified perspective to a large set of graph-based

semi-supervised learning methods. Using our framework we have showed that semi-

supervised approaches to graph-cuts or manifold embeddings lead to the same com-

putational problem. We have provided a recipe for converting embedding methods to

label propagation algorithms. While the individual theoretical connections are known

among experts in the community, unlike existing literature, we uniformly present label

propagation from the perspective of graph cuts and embedding methods. In particu-

lar we provide interpretations of existing approaches both in terms of graph cuts and

semi-supervised embedding methods. Our extensive empirical evaluation reveals that

while there are no clear winners in terms of performance, certain methods seem con-

sistent across several datasets, including some of the new embedding based methods

introduced in this chapter. Our analysis improves our theoretical understanding of an

important class of methods in semi-supervised learning, introduces several new methods

to solve the problem, and, to our knowledge, provides the first comprehensive empirical

performance evaluation of this family of models. The competitive performance of the

embedding-based label propagation methods such as LTSALP provides strong incentive

to investigate the embedding-based family of methods further.
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Figure 3.1: Five-fold cross validation as increasingly many points are labeled.
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Figure 3.2: Five-fold cross validation as increasingly many points are labeled.
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Figure 3.3: Comparison of embedding based label propagation methods: LELP(C),
LTSALP(C), LLELP(C).
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gf mwem lnp lgc tikreg ck ltsalp

Hepatitis 21.1 ± 0.4 21.4 ± 0.7 25.8 ± 3.0 22.7 ± 1.2 20.8± 0.0 20.8 ± 0.0 24.3 ± 2.5

Cancer 11.2 ± 1.9 12.7 ± 2.5 10.6 ± 1.7 11.1 ± 2.5 10.8 ± 1.9 11.3 ± 1.3 10.3± 1.5

Wine 31.9 ± 1.7 32.2 ± 0.9 29.6 ± 3.5 32.4 ± 2.1 30.7 ± 2.2 30.1 ± 2.2 23.4± 3.0

Iris 5.5 ± 2.5 4.8± 4.1 6.0 ± 2.5 5.3 ± 3.8 5.7 ± 3.4 9.2 ± 1.0 5.3 ± 1.9

Glass 40.8 ± 4.0 41.4 ± 4.1 39.5± 4.2 41.2 ± 5.5 42.8 ± 5.5 49.6 ± 4.5 45.3 ± 4.9

Pima 31.6± 2.5 34.1 ± 3.3 36.0 ± 3.0 34.5 ± 2.5 33.2 ± 2.1 34.8 ± 0.2 32.1 ± 3.2

USPS 2.2 ± 0.4 13.0 ± 2.1 6.3 ± 0.9 4.9 ± 0.7 3.4 ± 1.4 1.5± 0.1 2.4 ± 0.4

Letter(EF) 8.3 ± 2.8 15.4 ± 2.8 8.5 ± 1.0 9.8 ± 2.7 8.3 ± 1.7 48.5 ± 0.5 7.8± 2.6

Dif100 7.3 ± 1.4 12.4 ± 1.3 13.6 ± 2.4 13.0 ± 1.2 11.5 ± 2.6 6.1± 0.6 12.7 ± 2.2

Sim100 27.0± 3.6 34.3 ± 5.3 32.7 ± 5.1 32.6 ± 2.5 32.5 ± 7.0 63.4 ± 2.1 41.0 ± 5.8

Sam100 48.8 ± 8.5 45.9 ± 4.5 47.9 ± 1.9 45.3± 3.6 47.0 ± 2.3 65.7 ± 2.0 51.7 ± 7.6

Dif1000 19.0 ± 13.6 23.3 ± 2.6 16.0 ± 1.9 19.7 ± 3.1 12.0± 1.5 65.8 ± 2.5 28.2 ± 14.6

Sam1000 54.9 ± 8.9 47.0 ± 3.4 47.7 ± 3.6 45.4± 4.0 46.0 ± 3.6 66.4 ± 1.4 61.0 ± 4.7

Classic3 9.3 ± 10.5 12.1 ± 1.7 29.2 ± 1.1 28.8 ± 0.7 5.7 ± 4.1 1.6± 0.1 14.7 ± 10.4

Figure 3.4: Performance comparisons with 30 labeled points on 14 datasets and 7 meth-
ods.

gf mwem lnp lgc tikreg ck ltsalp

Hepatitis 21.4 ± 1.7 21.0 ± 1.0 23.8 ± 3.0 22.3 ± 1.8 20.9± 0.6 20.9 ± 0.6 25.4 ± 1.4

Cancer 10.1 ± 1.3 9.5 ± 0.9 9.3 ± 1.3 8.9 ± 1.0 10.6 ± 2.3 12.1 ± 2.3 8.8± 1.2

Wine 31.0 ± 1.6 31.4 ± 1.0 27.0 ± 3.0 31.2 ± 1.5 30.3 ± 2.4 30.1 ± 1.8 22.8± 2.4

Iris 2.5± 2.0 3.1 ± 0.5 6.4 ± 2.7 3.6 ± 1.9 4.0 ± 2.1 9.6 ± 1.4 4.4 ± 2.3

Glass 39.9 ± 1.9 38.7± 3.6 39.1 ± 4.0 40.1 ± 4.1 42.4 ± 2.1 44.4 ± 3.7 41.3 ± 3.8

Pima 31.3 ± 1.6 32.0 ± 2.7 35.0 ± 1.4 33.2 ± 2.5 33.7 ± 2.9 34.8 ± 0.2 31.1± 3.0

USPS 1.9 ± 0.3 9.0 ± 2.1 5.4 ± 1.5 4.0 ± 0.8 3.2 ± 1.8 1.5± 0.1 2.1 ± 0.7

Letter(EF) 8.0 ± 3.5 12.7 ± 2.6 7.7± 2.4 8.6 ± 2.1 7.9 ± 1.5 48.8 ± 0.6 7.8 ± 3.3

Dif100 6.8 ± 1.1 11.3 ± 1.6 13.5 ± 1.7 13.4 ± 1.8 11.4 ± 1.4 6.5± 0.3 11.8 ± 2.3

Sim100 24.5± 3.9 31.6 ± 4.5 29.8 ± 3.7 31.7 ± 3.2 25.8 ± 2.3 60.2 ± 3.0 37.8 ± 6.6

Sam100 41.6 ± 6.0 40.3± 6.3 43.7 ± 2.8 40.5 ± 4.5 44.0 ± 4.6 66.0 ± 2.9 44.3 ± 5.4

Dif1000 13.0 ± 10.2 20.8 ± 1.8 15.2 ± 1.4 17.5 ± 1.3 11.1± 3.2 65.7 ± 2.6 19.6 ± 8.1

Sam1000 48.7 ± 10.9 45.0 ± 3.0 44.6 ± 4.6 42.4± 4.0 42.5 ± 4.1 65.9 ± 1.0 55.4 ± 9.0

Classic3 3.2 ± 2.5 9.2 ± 0.5 28.5 ± 0.2 28.5 ± 0.3 4.1 ± 1.8 1.6± 0.1 4.7 ± 2.1

Figure 3.5: Performance comparisons with 40 labeled points on 14 datasets and 7 meth-
ods.
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gf mwem lnp lgc tikreg ck ltsalp

Hepatitis 22.1 ± 1.0 21.7± 1.2 25.0 ± 2.2 22.1 ± 1.6 21.7 ± 1.2 21.7 ± 1.2 24.8 ± 2.1

Cancer 9.0 ± 1.7 9.0 ± 0.7 9.4 ± 1.6 8.9 ± 0.7 11.3 ± 2.7 10.6 ± 1.8 8.4± 1.0

Wine 29.5 ± 2.4 29.1 ± 1.4 25.9 ± 5.8 30.2 ± 2.6 29.7 ± 3.3 28.0 ± 1.9 22.0± 2.4

Iris 3.2± 1.1 3.8 ± 0.4 6.6 ± 2.9 4.4 ± 1.1 4.2 ± 1.3 9.2 ± 2.3 3.2 ± 1.1

Glass 41.1 ± 1.9 40.4 ± 2.4 39.1± 1.8 39.9 ± 2.3 42.0 ± 2.8 42.9 ± 2.8 42.1 ± 4.4

Pima 31.1 ± 1.6 31.5 ± 2.2 35.3 ± 2.4 32.8 ± 1.9 33.7 ± 2.7 34.8 ± 0.3 30.7± 0.8

USPS 1.8 ± 0.2 7.6 ± 1.6 4.6 ± 1.2 3.6 ± 0.4 3.0 ± 1.4 1.5 ± 0.1 1.8 ± 0.4

Letter(EF) 7.4 ± 2.7 10.8 ± 3.3 6.5 ± 1.9 7.2 ± 1.8 6.2± 2.8 48.8 ± 0.6 7.7 ± 3.1

Dif100 6.9 ± 1.1 9.6 ± 1.6 10.7 ± 2.3 10.0 ± 1.2 7.5 ± 1.9 6.7 ± 1.0 10.2 ± 1.3

Sim100 21.4± 2.1 28.5 ± 3.1 27.3 ± 2.5 28.7 ± 1.3 22.4 ± 2.2 62.6 ± 3.0 30.6 ± 2.6

Sam100 35.6± 3.6 36.0 ± 4.2 40.0 ± 2.7 37.4 ± 3.9 41.1 ± 3.7 65.4 ± 2.0 39.6 ± 5.4

Dif1000 9.1± 7.7 18.9 ± 1.8 14.7 ± 1.2 16.2 ± 1.1 10.2 ± 2.8 63.5 ± 2.5 18.0 ± 6.6

Sam1000 43.0 ± 9.9 43.0 ± 2.1 42.2 ± 2.9 41.1 ± 3.1 39.4± 3.6 65.3 ± 1.4 55.6 ± 5.8

Classic3 2.2 ± 1.1 7.6 ± 1.5 28.5 ± 0.1 28.5 ± 0.4 3.4 ± 1.0 1.6 ± 0.1 3.4 ± 1.2

Figure 3.6: Performance comparisons with 50 labeled points on 14 datasets and 7 meth-
ods. LTSALP performs well on UCI datasets, GF performs well on text datasets.
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Figure 3.8: Unsupervised and unconstrained semi-supervised embedding on Wine. The
prediction performance (top) is better if the unsupervised embedding (bottom) keeps
the classes separate.



Chapter 4

Bayesian Multi-Variate

Regression

In this chapter we introduce a scalable algorithm for multi-label classification capable

of modeling the covariance across labels.

4.1 Introduction

Multi-label classification problems, where a data point can have multiple labels, are

becoming important in a variety of domains, such as protein function prediction in

computational biology, image annotation in computer vision, and text categorization

in document analysis [66, 67, 68]. For a problem with K possible labels, there are

M = (2K − 1) distinct categories, so a direct multi-class classification with M classes

would be computationally prohibitive, and may miss out on any covariance among the

labels. Until a few years ago, the convention was to train and apply binary one-vs-rest

classifiers to each label separately. However, even this approach ignores the possibility

of label covariance, which is typically present in real world domains.

In addition to accounting for label covariance, multi-label classification methods

should be scalable and capable of handling partially labeled data. Real-world data sets

tend to be ever-growing. Furthermore, labels are sometimes only partially observed.

While a data point can have any subset of K possible labels, in reality we often know

only some of the labels it has for sure, with no information whatsoever on certain

42
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other labels. The problem of partial labels is unique to multi-label classification, and is

important in real world applications, such as in protein function prediction [66].

We propose Bayesian Multivariate Regression (BMR), a novel and highly scalable

algorithm for multi-label classification and missing label prediction. The proposed ap-

proach is a probabilistic model based on multi-variate regression. In BMR, every data

point is mapped to a Gaussian distribution, whereby each distribution shares the same

covariance matrix. The resulting distributions are eventually utilized in the generation

of the individual labels. As a result BMR is capable of modeling covariances among

labels while being very efficient and applicable to large data sets. The prediction in

BMR reduces to a mere matrix multiplication. We illustrate the performance of BMR

on a variety of benchmark data sets ranging from 593 to 10,000 in size. The multi-label

classification results indicate a competitive performance across all evaluation measures,

both in terms of prediction and execution time.

In large real-word data sets frequently only partially labeled data are available.

Typically two questions arise: (1) Can we predict the missing labels accurately? (2) Can

we utilize the structure from the partially labeled data to obtain an improved classifier

for future points? We extend the BMR model to handle missing labels. This is done by

utilizing the covariance structure captured by the BMR model. To evaluate performance

on predicting missing labels we compare it to Probabilist Matrix Factorization (PMF)

[69], a well-known state-of-the-art approach. Despite the simplicity of the BMR model,

the results indicate a superior performance. To address the second question we conduct

experiments in which we contrast performance in cases where partially labeled data

is used for training and cases where partially labeled data is discarded. The results

illustrate a significant improvement in performance when partially labeled data are

used.

The rest of the chapter is organized as follows: In Section 4.2, we give a brief

overview on related work. In Section 6.2, we propose our Bayesian Multivariate Regres-

sion approach and a variational inference algorithm to learn the model. We present the

experimental results in Section 4.4, and conclude in Section 4.5.
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4.2 Related Work

Conventionally, multi-label classification problems are solved by decomposing them into

multiple independent binary classification problems, while ignoring relationships be-

tween labels. In recent years, several approaches have been proposed which attempt to

utilize the correlation structure among labels.

Kernel methods for multi-label classification tend to be extensions of the maximum

margin idea. In [70], a maximum margin approach is proposed which minimizes the

ranking loss. In [71], a method is proposed to learn a kernel which is shared across

labels, to be subsequently used in individual label classifiers. While the ability to handle

kernels is important in several domains, most existing approaches do not have a natural

way of dealing with missing labels and are not probabilistic, i.e., no direct uncertainty

quantification.

A number of probabilistic models have also been proposed for multi-label classifica-

tion. In [68], a mixture model is proposed for text classification. More recently, in [72],

a fully Bayesian model was proposed based on sparse and infinite canonical correlation

analysis. It directly models correlations among labels and is one of few models which

has the flexibility of dealing with missing labels. An extension of Gaussian Process

prediction to the multi-label setting was proposed in [73].

The state-of-the-art also includes two approaches based on the k-nearest neighbor

idea. In [42], label statistics from neighborhoods are used to build a Bayesian classifier.

In [74], features are constructed based on label information from neighborhoods and

subsequently used in logistic regression. In recent years, a family of methods based on

multi-label dimensionality reduction has emerged [75, 76]. Our proposed model also

falls in this category. Another interesting approach is presented in [77], where semi-

supervised multi-label classification is proposed using the Sylvester equation.

There are two major problems with most existing approaches. They have a tendency

not to explicitly model correlations among labels, but rather attempt to indirectly in-

corporate them. The second issue is that most existing approaches are too complex to

be applicable to large scale datasets. Unlike most existing methods, our approach is a

scalable probabilistic method which explicitly models the correlation structure among

labels.
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4.3 Bayesian Multivariate Regression

In multi-label classification, every data object is associated with a subset of possible

labels. Assuming a total of c possible labels L = {ℓ1, . . . , ℓc}, for any given data object

x, the label information can be captured by a c-length bit vector h ∈ {0, 1}c, where
hs = 1 denotes the membership of x in class s.

4.3.1 The Model

We now introduce our novel approach which we call Bayesian Multivariate Regression

(BMR). Given a real valued feature vector x ∈ R
k we assume a mapping W ∈ R

c×k,

such that µ(x) = Wx. Subsequently we draw a latent label vector representation η

from N(µ(x),Σ), where Σ ∈ Rc×c denotes a covariance matrix among classes. While

the covariance Σ is global in our model, the mean µ(x) differs for every data point. Our

latent variable can alternatively be expressed as

η = Wx+ ε

where ε ∼ N(0,Σ). From this we can see that the empirical covariance of η will not be

solely determined by Σ, but rather jointly by the mean function µ(x) and Σ.

Each entry ηni ∈ R is treated as the natural parameter of a Bernoulli distribu-

tion determining if the data point xn has label ℓi. Thus, the label yni ∈ {0, 1}
is generated from the Bernoulli distribution with mean parameterization: θi(ηn) =
[

1
1+exp(ηni)

, exp(ηni)
1+exp(ηni)

]

.

Since it does not consider the marginal distribution over x, BMR is a discriminative

model.

Let xn denote a k-dimensional data point, the generative process for each label

c-dimensional label vector yn can be specified as follows:

1. ηn ∼ N(Wxn,Σ).

2. yni ∼ Discrete(θi(ηn)), for i = 1 . . . c.

For convenience, we express the Bernoulli distribution p(yni|ηn) of the labels given

the natural parameterization in standard exponential family form as: p(yni|ηn) =
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Figure 4.1: Graphical model for Bayesian Multivariate Regression.

exp {yniηni − ln(1 + expηni)}. With C(ηn) =
∑c

i=1 ln(1 + expηni), for yn we have:

p(yn|ηn) =
c
∏

i=1

p(yni|ηn) = exp
{

yT
nηn −C(ηn)

}

. (4.1)

The graphical model for BMR is shown in Figure 4.1. Given the model, the likelihood

function of yn is given by

p(yn|xn,Σ,W ) =

∫

ηn

p(ηn,yn|xn,Σ,W )dηn (4.2)

=

∫

ηn

p(ηn|Wxn,Σ)p(yn|ηn)dηn .

= Eηn
[p(y|ηn)]

Therefore, for a dataset with N data points X = {xn, [n]
N
1 } ([n]N1 ≡ n = 1 . . . N) and

Y = {yn, [n]
N
1 }, the likelihood function is

p(Y |X,Σ,W ) =
N
∏

n=1

∫

ηn

p(ηn|Wxn,Σ)p(yn|ηn)dηn . (4.3)

=

N
∏

n=1

Eηn
[p(y|ηn)] .

4.3.2 Inference and learning

For given data points X and corresponding Y , the learning task of BMR involves finding

the model parameters W and Σ, such that the likelihood of p(Y |X,Σ,W ) as in Equation

(4.3) is maximized. A general approach for such a task is to use multivariate optimiza-

tion algorithms. However, the likelihood function in (4.3) is intractable, implying that
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a direct application of optimization is infeasible. Therefore, we propose a variational

inference method, which alternates between obtaining a tractable lower bound to the

true log-likelihood and choosing the model parameters W and Σ to maximize the lower

bound.

In order to obtain a tractable lower bound to (4.2), instead of using the true

latent variable distribution p(ηn|Wxn,Σ) in expectation calculation, we introduce a

family of parameterized variational distributions q(ηn|µ̂n, Σ̂n) as an approximation to

p(ηn|Wxn,Σ), where q(ηn|µ̂n, Σ̂n) is a Gaussian distribution, and µ̂n and Σ̂n are varia-

tional parameters denoting the mean and covariance. Following Jensen’s Inequality [39],

we have

log p(yn|xn,Σ,W ) ≥ Eq[log p(ηn,yn|xn,W,Σ)]− Eq[log q(ηn|µ̂n, Σ̂n)] (4.4)

= Eq[log p(ηn|xn,W,Σ)] + Eq[log p(yn|ηn)]− Eq[log q(ηn|µ̂n, Σ̂n)] .

We can denote the lower bound (4.4) using L(µ̂n, Σ̂n,W,Σ), and each term in

L(µ̂n, Σ̂n,W,Σ) are given by

Eq[log p(ηn|xn,W,Σ)] = −1

2

(

Tr(Σ−1Σ̂n) + (µ̂n −Wxn)
TΣ−1(µ̂n −Wxn)

)

− c

2
log 2π +

1

2
log |Σ−1|

Eq[log p(yn|ηn)] = Eq[y
T
n ηn − C(ηn)] ≈ yT

n µ̂n − [C(ζn) + g(ζn)
T (µ̂n − ζn)]

Eq[log q(ηn|µ̂n, Σ̂n)] = −
k

2
− k

2
log 2π +

1

2
log |Σ̂−1

n |

Note, we approximated the term Eq[log p(yn|ηn)] by considering a first order Taylor

expansion for C(ηn). We note that ∂C
∂ηni

= exp ηni

1+exp ηni
= gi(ηn), where g denotes the

gradient. For any fixed vector ζn ∈ int(dom(C)) the first order Taylor approximation

for C(ηn) is given by:

C(ζn) + g(ζn)(ηn − ζn) .

The best lower bound can be obtained by maximizing each L(µ̂n, Σ̂n,W,Σ) with

respect to the variational parameters µ̂n and Σ̂n, which gives

µ̂n = Wxn +Σ[yn − g(ζn)] (4.5)

Σ̂n = Σ. (4.6)
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The lower bound of the log-likelihood on the whole dataset Y is given by sum-

ming the lower bound over the individual points
∑N

n=1 L(µ̂n, Σ̂n,W,Σ). To obtain the

estimate for model parameters, we use this lower bound function as a surrogate objec-

tive to be maximized. Given a fixed value of (µ̂∗
n, Σ̂

∗
n) from (4.5) and (4.6), the lower

bound function
∑N

n=1 L(µ̂
∗
n, Σ̂

∗
n,W,Σ) is a function of model parameters (W,Σ). By

maximizing
∑N

n=1 L(µ̂
∗
n, Σ̂

∗
n,W,Σ) with respect to W and Σ, we have

W =

(

N
∑

n=1

µ̂nx
T
n

)(

N
∑

n=1

xnx
T
n

)−1

(4.7)

Σ =
1

N

N
∑

n=1

(

Σ̂n + (µ̂n −Wxn)(µ̂n −Wxn)
T
)

. (4.8)

4.3.3 Variational optimization

Following the update equations in (4.5)-(4.8), we construct a variational optimization al-

gorithm to learn the model. Starting from an initial guess of (W (0),Σ(0)), the algorithm

alternates between the following two steps in each iteration t:

1. Inference-step: Given (W (t−1),Σ(t−1)), for each (xn,yn), find the optimal varia-

tional parameters

(µ̂(t)
n , Σ̂(t)

n ) = argmax
(µ̂n,Σ̂n)

L(µ̂n, Σ̂n,W
(t−1),Σ(t−1)) ,

which can be done using (4.5) and (4.6).

2. Optimization-step: Maximizing the aggregate lower bound gives us an improved

estimate of the model parameters:

(W (t),Σ(t)) = argmax
(W,Σ)

N
∑

n=1

L(µ̂(t)
n , Σ̂(t)

n ,W,Σ) ,

which can be done following (4.7) and (4.8).
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After t iterations, the objective function becomes L(µ̂
(t)
n , Σ̂

(t)
n ,W (t),Σ(t)). In the (t+1)th

iteration, we have

N
∑

n=1

L(µ̂(t)
n , Σ̂(t)

n ,W (t),Σ(t)) ≤
N
∑

n=1

L(µ̂(t+1)
n , Σ̂(t+1)

n ,W (t),Σ(t))

≤
N
∑

n=1

L(µ̂(t+1)
n , Σ̂(t+1)

n ,W (t+1),Σ(t+1)) .

The first inequality holds because (µ̂
(t+1)
n , Σ̂

(t+1)
n ) maximizes L(µ̂n, Σ̂n,W

(t),Σ(t)) in

the Inference-step. The second inequality holds because (W (t+1),Σ(t+1)) maximizes
∑N

n=1 L(µ̂
(t+1)
n , Σ̂

(t+1)
n ,W (t+1),Σ(t+1)) in the Optimization-step. Therefore, the objec-

tive function is non-decreasing until convergence.

We note that the computations involved per iteration during training are scalable.

Most operations involved are simple matrix multiplications or matrix-vector products.

There is a matrix inversion involving a d× d matrix in (4.7), but since the matrix only

depends on the feature vectors xn, the inverse can be computed offline, even before

starting the iterations. The algorithm does need to invert Σ in every iteration. Since Σ

is a c×c matrix where c is the number of classes, the inverse can be computed efficiently

even for hundreds of classes.

4.3.4 Learning With Missing Labels

In certain application domains, such as protein function prediction in computational

biology [66], one encounters multi-label classification problems where data points have

partial labels, i.e., instead of knowing y ∈ {0, 1}K , we know only some of the entries

in y, the others being missing. Most existing multi-label approaches were not designed

to handle labels with missing values [70, 42]. However information contained even in

partially observed label vectors is potentially valuable and it is important for a model to

be able to utilize it. Since BMR provides a generative model for labels and it captures

correlations among labels, it can naturally handle data sets with partial labels. The

training of our model when missing labels are present has to be adjusted slightly. From

a generative model perspective, the missing labels are assumed not to be generated by

the model. However, during training, the corresponding µ̂ and all parameters which

depend on it still have to be estimated.
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To allow learning when some labels are missing for a data point, we need to ad-

just the estimation of µ̂ ∈ R
K . We break down the component variables into entries

corresponding to known labels and unknown labels. In particular we let

µ̂ =

[

µ̂l

µ̂u

]

, Σ−1 =

[

Σ−1
ll Σ−1

lu

Σ−1
ul Σ−1

uu

]

, W =

[

Wl

Wu

]

,

where l denotes set of known labels and u denotes a set of unknown labels. In a similar

fashion we break down all the other parameters: µ̂ and y. For a data point with missing

labels, the problem of estimating µ̂ can be posed as:

max
µ̂l,µ̂u







−1

2

([

µ̂l

µ̂u

]

−
[

Wlxn

Wuxn

])T

Σ−1

([

µ̂l

µ̂u

]

−
[

Wlxn

Wuxn

])

+yT
l µ̂l − g(ζl)

T
µ̂l

}

.

The first order conditions yield the updates:

µ̂l = Wlxn + (Σ−1
ll )−1(Σ−1

lu (µ̂u −Wuxn)

+ yl − g(ζl)) (4.9)

µ̂u =
(

Σ−1
uu

)−1
Σ−1
ul (µ̂l −Wlxn) +Wuxu . (4.10)

These updates are coupled, therefore we perform them iteratively. The computation of

all other variables/parameters remains the same (in terms of µ̂) when missing values

are present.

4.3.5 Prediction

Assuming that Σ and W have been estimated from training data, we wish to predict

the label vector h̄ for an unseen data point x̄. First note that the maximum likelihood

estimate of η̄, given W and Σ is obtained by η̄
∗ = W x̄, since η̄ ∼ N(W x̄,Σ). With η̄

∗

interpreted as a vector of log odds we can obtain the maximum likelihood estimate for

ȳ, by considering the sign of the individual entries of η̄∗:

η̄
∗ = W x̄ (4.11)

with

h̄i =







1 if η̄
∗
i > 0

0 otherwise .
(4.12)
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Effectively the prediction task in our model reduces to a matrix multiplication. For this

reason our model can be seen as rather simple, and unlike most existing approaches, it

can be easily used on millions of data points.

4.4 Empirical Evaluation

In this section we present our experimental results on both multi-label classification

and missing label prediction. Our empirical evaluation consists of four parts. We first

evaluate BMR on multi-label classification with fully labeled data. Subsequently we

contrast BMR to PMF on missing label prediction. We then examine to what extent

BMR can take advantage of partially labeled data, when making predictions on unseen

points. Lastly we evaluate the execution time for learning and making predictions.

4.4.1 Data Sets

We evaluated the BMR model using a number of data sets ranging in size from 593 to

10,000 data points. The number of labels in these data sets range from 6 to 374. The

main large data set that we have used, which also motivated the development of BMR

[11] stems from the Aviation Safety Reporting System (ASRS). It encompasses a subset

of 10,000 aviation safety reports assigned to 58 anomaly categories. The ASRS-10000

data set contains 200 features obtained from running Latent Dirichlet Allocation (LDA)

[39] on the original reports. Further data sets that we used include Mediamill-10000. A

subset of 10,000 data points from the Mediamill data set [78]. It includes 120 features

and 101 labels. Two smaller data sets that we used include Scene [79] and Emotions

[80]. In table 5.2 a summary is provided for all of the data sets used.

Data Set Data Points Features Labels

Scene 2407 294 6
Emotions 593 72 6

ASRS-10000 10000 200 58
Mediamill-10000 10000 120 101

Table 4.1: Data sets used for empirical evaluation.
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4.4.2 Algorithms

We compare BMR with three multi-label classification algorithms. As baselines, we

consider one-vs-rest SVM as a multi-label classifier, which we refer to as MLSVM. In

addition we use a one-vs-rest implementation of logistic regression, which we call MLLR.

We also consider two state-of-the-art approaches for multi-label learning: Multi-label

K-nearest Neighbors (MLKNN) [42], a method which applies the k-nearest neighbor

idea to the multi-label setting; and Instance Based Learning by Logistic Regression

(IBLR) [74], where features are first transformed to incorporate label information from

local neighborhoods prior to applying logistic regression. Additionally we use a chain of

logistic regression classifiers (CCML) [81], a recently proposed approach which models

each label conditioned on all other labels. To evaluate performance on missing value

prediction we use Probabilistic Matrix Factorization (PMF) as a baseline.

4.4.3 Methodology

All of our multi-label classification and missing value prediction experiments are con-

ducted using five-fold cross validation. Five-fold cross validation is also used to tune

any parameters that are needed. Partially labeled data is utilized in two ways. We eval-

uate the performance in predicting missing label entires in the training data. We also

evaluate the prediction performance on unseen points, given a partially labeled training

set. Lastly in our computational efficiency experiments execution time is measured in

CPU time, as given by the cputime function in MATLAB.

Evaluation Measures

We evaluated classification performance using five different measures: one error, preci-

sion, coverage, ranking loss, and Hamming loss. Let g(x, l) denote a real-valued function

which assigns a score to label l for data point x, such that a larger score is considered

better. Also, let f(x) denote the classifier whose output is the predicted multi-label

vector. Further, let Lx denote a set of true labels associated with x.

1) One error evaluates how frequently the top ranked predicted label is not among
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the true labels. If 1[·] denotes the indicator function, we have:

OneError(g) =
1

D

D
∑

d=1

1 [argmaxl∈L g(xd, l) 6∈ Lxd
] . (4.13)

2) For true labels l ∈ Lx, average precision evaluates the fraction of labels in Lx

that rank at least as high as l according to the scoring rule g on average. For any data

point x and any label l ∈ Lx, let R(x, l) = {l′ ∈ Lx|rankg(x, l′) ≤ rankg(x, l)}, where
the ranking is among all possible labels. Then, average precision is:

AvePrec(g) =
1

D

D
∑

d=1

1

|Lxd
|
∑

l∈Lxd

|R(xd, l)|
rankg(xd, l)

. (4.14)

3) Coverage reflects on average how far one needs to go down in the label ranking

to cover all actual labels of an instance:

Coverage(g) =
1

D

D
∑

d=1

(max
l∈Lxd

rankg(xd, l)− 1) . (4.15)

4) Hamming loss evaluates the fraction of label instance pairs that were misclassified:

HammingLoss(f) =
1

D

D
∑

d=1

1

c
|f(xd)△Lxd

| . (4.16)

where △ denotes the symmetric difference between two sets.

5) Ranking loss reflects the average number of labels that are reversely ordered for a

given instance. Let T (xd) = {(l1, l2) | g(xd, l1) ≤ g(xd, l2), (l1, l2) ∈ Lxd
× L̄xd

}, where
L̄xd

denotes the complement of Lxd
. Ranking loss is defined as:

RankLoss(g) =
1

D

D
∑

d=1

|T (xd)|
|L̄xd
||Lxd

| . (4.17)

For both Hamming loss and ranking loss, smaller values are better. In particular for

a perfect performance HammingLoss(h) = RankLoss(g) = 0.

The prediction of missing labels within training data is evaluated using Hamming

loss only.
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4.4.4 Multi-Label Classification

Tables 4.2-4.5 list the prediction results when using five fold cross validation. MLSVM

and MLLR, the two one vs. rest approaches perform the worst, as expected. These

results clearly illustrate that looking at Hamming loss alone is actually quite misleading.

For instance MLSVM has a hamming loss of 11.9% for ASRS-10000, however its one

error is at 85.8%. Even for a degenerate classifier which predicts only zeros, one would

obtain a low hamming loss. For this reason we have opted to evaluate our results using a

range of five different evaluation measures, commonly used in multi-label classification.

Our proposed model performs either better or very competitively compared to all

other approaches, including MLKNN, IBLRML, and the two state-of-the-art methods

across all five evaluation measures. Across all evaluation measures our approach seems to

be followed by MLKNN and then IBLRML. Considering the simplicity of our approach,

these results are quite interesting. After all, the predictive step in our model merely

involves a matrix multiplication, and yet we are outperforming very complex algorithms

such as SVMs or even state-of-the-art multi-label learning methods such as MLKNN

and IBLRML. CCML appears to be more competitive on the larger data sets. However,

overall it does not seem to be standing out.

For the top four algorithms, BMR, MLKNN, CCML and IBLRML, we also examined

what happens when a smaller fraction of the data set is labeled. We omitted the one

vs. rest approaches to prevent clutter, and also since we already established that their

performance is substantially inferior. We ran 5-fold cross validation while gradually

increasing the set of labeled points. The results can be seen in Figures 5.3-4.5. The first

thing that we can note is that overall the performance of IBLRML appears to be worse

than that of MLKNN. CCML seems to perform either worse or as good as IBLRML.

Across all evaluation measures our proposed method, BMR, consistently performs either

competitively or better compared to all three algorithms. This seems to indicate that

our approach is robust, even when the size of the training set is reduced.

4.4.5 Partially Labeled Data

In our first set of experiments involving partially labeled data we evaluate the Hamming

loss in predicting missing labels. The results for the Emotions and Scene data sets are
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given in Table 4.6. We compare the performance to Probabilistic Matrix Factorization

(PMF), as the percentage of missing values is varied between 10% and 30% of the label

entries. The results are obtained by using again five-fold cross validation. As we can see

across both benchmark data sets BMR outperforms the well-known PMF. Even though

BMR is a rather simplistic model, it performs quite well. While PMF only considers

the label matrix when making predictions, BMR considers both observed labels and

observed features.

The second set of experiments involving partially labeled data examines the predic-

tion performance on unseen points, given a training set with partially labeled data. On

both the Emotions and Scene data sets we set randomly 30% of the label entries to be

missing. We than evaluate the prediction performance on unseen data points. This is

done using five-fold cross validation and all five evaluation measures described earlier.

The performance of BMR is compared to BMR-D, CCML-D, MLKNN-D and IBLRML-

D. The suffix ”D” indicates that partially labeled data in the training set is discarded in

these versions of the algorithms. The point of this experiment is see whether BMR can

benefit from the additional structure provided by partially labeled data. The results

are given in Table 4.7. BMR clearly dominates. The results seem to suggest that BMR

can indeed take advantage of the structure learned from partially labeled data.

4.4.6 Scalability

To contrast the computational cost involved in utilizing MLKNN, IBLRML and BMR

we conducted an experiments in which we tested how long it takes to learn the respective

models and make predictions. We excluded CCML from these experiments due to its

poor performance in the previous evaluations. The number of data points both in the

training set and the test set was varied from 2000 points to 6000 points. The Mediamill

data set with 120 features and 101 labels was used for this purpose. The experiments

were conducted on a 8 core Dell PowerEdge machine, with cores clocked at 2.3 GHz and

32 GB of RAM. The execution time for learning the models can be seen in figure 4.6.

IBLRML clearly takes the longest time to be trained. This can be attributed to the fact

that it requires 101 Logistic Regression models to be learned. MLKNN on the other

hand only needs to be trained once. Overall we can see that BMR is the most efficient

out of the three when it comes to learning.
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Figure 4.7 illustrates the execution time for making predictions. In this case MLKNN

performs the worst. Even when making predictions it has to compute the K-nearest

neighbors. IBLRML is somewhat better, even though it maintains 101 Logistic Re-

gression models, once they are trained making predictions can be done in a reasonable

time. BMR significantly outperforms both approaches. This can be attributed to the

fact that in BMR making predictions is reduced to a mere matrix multiplication. As a

result BMR can be easily applied to millions of records in less than a second, a property

which is very desirable in many real-world domains.

There appears to be a trade off between IBLRML and MLKNN. While one method

dominates the other for learning, for making predictions the picture is reversed. No such

trade off has to be made with BMR, which is consistently efficient both for learning and

making predictions.

Table 4.2: Five-fold cross validation on the ASRS-10000 data set. BMR clearly outper-
forms all the other methods.

BMR CCML MLKNN IBLRML MLLR MLSVM

OneError 39.6± 0.8 47.6 ± 1.3 43.7± 0.8 44.3 ± 1.4 50.7± 1.6 85.8 ± 18.1
AvePrec 63.4± 0.7 59.9 ± 0.9 60.1± 0.6 60.3 ± 0.6 57.0± 0.9 33.6 ± 8.2
Coverage 7.77± 0.19 10.3 ± 0.5 9.18 ± 0.36 8.39± 0.29 9.63 ± 0.51 13.81 ± 0.87

HammingLoss 4.3± 0.0 4.8 ± 0.1 4.6± 0.1 4.7± 0.0 5.5± 0.1 11.9 ± 1.1
RankLoss 5.5± 0.2 8.9 ± 0.8 6.9± 0.3 6.7± 0.3 7.9± 0.6 12.9 ± 1.7

Table 4.3: Five-fold cross validation on the Mediamill-10000 data set. BMR clearly
outperforms all the other methods.

BMR CCML MLKNN IBLRML MLLR MLSVM

OneError 16.7± 0.6 25.3 ± 5.8 18.2 ± 1.0 28.7 ± 4.3 45.2 ± 2.1 76.7± 9.2
AvePrec 67.8± 0.3 62.7 ± 1.4 67.7 ± 0.3 62.3 ± 2.6 58.4 ± 1.3 37.3± 1.9
Coverage 17.2± 0.4 29.3 ± 1.8 17.4 ± 0.5 21.4 ± 2.4 22.1 ± 1.0 29.8± 1.3

HammingLoss 3.1± 0.0 3.4± 0.0 3.3 ± 0.0 4.5± 2.0 3.9± 0.0 4.8± 0.5
RankLoss 4.8± 0.1 12.9 ± 1.2 5.0 ± 0.2 7.5± 2.5 8.6± 0.6 10.5± 1.0
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Table 4.4: Five-fold cross validation on the Emotions data set. BMR clearly outperforms
all the other methods.

BMR CCML MLKNN IBLRML MLLR MLSVM

OneError 26.7± 0.8 35.9 ± 7.3 38.9 ± 4.3 44.9 ± 5.8 32.2 ± 5.4 70.9± 7.3
AvePrec 80.1± 1.4 75.6 ± 4.9 71.0 ± 1.4 67.3 ± 4.3 76.8 ± 2.3 55.0± 5.1
Coverage 1.8± 0.1 2.0± 0.2 2.2 ± 0.1 2.4± 0.2 1.9± 0.1 2.8± 0.2

HammingLoss 20.4± 0.8 23.7 ± 3.5 25.8 ± 0.4 36.7 ± 2.4 23.1 ± 1.5 25.1± 2.4
RankLoss 16.7± 1.3 20.6 ± 4.5 25.7 ± 1.7 30.0 ± 5.5 18.8 ± 1.7 39.2± 6.2

Table 4.5: Five-fold cross validation on the Scene data set. BMR clearly outperforms
all the other methods.

BMR CCML MLKNN IBLRML MLLR MLSVM

OneError 27.1± 0.9 36.1 ± 2.0 23.2± 1.4 29.7 ± 3.0 35.6 ± 2.5 87.3± 6.1
AvePrec 83.2± 0.7 75.2 ± 1.2 86.1± 0.6 81.7 ± 1.6 75.0 ± 2.2 48.6± 4.7
Coverage 0.6± 0.0 1.0± 0.1 0.5± 0.0 0.7± 0.0 0.9± 0.1 1.6± 0.2

HammingLoss 11.2± 0.6 14.1 ± 0.6 9.0± 0.4 12.7 ± 1.3 14.3 ± 0.3 19.1± 1.9
RankLoss 10.0± 0.7 23.9 ± 1.2 8.1± 0.3 11.5 ± 1.0 19.8 ± 2.3 30.6± 4.1

4.5 Conclusions

In this chapter we have proposed Baysian Multivariate Regression (BMR), a rather

simple but effective model for multi-label classification. Our proposed model addresses

three very important challenges when it comes to multi-label data. It models the covari-

ance structure among labels, thereby capturing more intricate dependencies. It is very

scalable, which makes the approach applicable to a wide variety of real-world problems

with ever-growing data sets. The scalability is possible since the learning step only

involves matrix multiplications and inverting small matrices and the prediction step

involves only a matrix multiplication. Lastly, BMR can naturally handle missing labels.

This is especially important for huge data sets where a full labeling is not always avail-

able. For instance when it comes to micro-array data or recommendation systems not

all values might be observed.

Our empirical evaluation shows that BMR is competitive with the state of the art

both in multi-label classification and missing label prediction. We have tested the

approach using a number of different data sets. BMR appears to be rather consistent in

its performance. The most significant improvements can be seen in cases where partially
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Table 4.6: Error rates for recovering missing labels obtained using five-fold cross valida-
tion on the Emotions and Scene data sets. Performance of BMR and PMF is evaluated
while an increasing percentage of labels are missing in the training data. Missing La-
bels are randomly selected. The error rates reflect the percentage of missing labels
incorrectly recovered.

10% 15% 20% 25% 30%

Emotions
PMA 27.1 ± 5.1 27.1 ± 4.8 26.8 ± 3.0 27.9± 2.0 28.6 ± 1.9
BMR 19.8± 4.6 21.1 ± 3.0 21.6± 4.1 24.2± 3.3 24.6± 2.1

Scene
PMA 14.6 ± 5.6 13.8 ± 3.0 16.2 ± 3.4 18.5± 2.8 20.1 ± 3.0
BMR 11.9± 4.4 13.8 ± 2.3 12.3± 2.4 13.2± 2.0 14.5± 1.6

labeled data is used in training the model. BMR appears to capable of taking advantage

of the additional structure provided by partially labeled training points.
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Table 4.7: Five-fold cross validation on the Emotions and Scene data sets. BMR clearly
outperforms all the other methods.

BMR BMR-D CCML-D MLKNN-D IBLRML-D

Emotions
OneError 29.3 ± 1.2 42.8 ± 5.7 49.1± 5.8 52.9 ± 8.6 59.1± 8.4
AvePrec 77.9 ± 3.4 70.9 ± 3.3 47.3± 1.0 59.4 ± 4.9 58.5± 5.1
Coverage 1.9± 0.2 2.2± 0.3 2.4 ± 0.2 2.9± 0.4 3.1 ± 0.3

HammingLoss 21.2 ± 3.9 28.3 ± 3.1 53.5± 1.0 31.6 ± 1.7 39.7± 4.4
RankLoss 18.3 ± 3.5 23.7 ± 3.6 44.9± 5.2 39.1 ± 4.9 40.1± 7.4

Scene
OneError 29.6 ± 4.2 37.8 ± 9.3 67.7± 3.2 43.1 ± 8.4 64.4± 9.5
AvePrec 82.3 ± 4.3 76.2 ± 5.6 37.4± 1.6 74.9 ± 5.6 53.6± 7.8
Coverage 0.6± 0.2 0.8± 0.2 1.4 ± 0.2 0.8± 0.2 1.9 ± 0.3

HammingLoss 12.8 ± 2.3 15.5 ± 3.0 51.7± 2.1 14.6 ± 1.5 28.9± 4.8
RankLoss 10.1 ± 3.6 14.8 ± 3.5 48.1± 3.5 14.1 ± 5.2 41.8 ± 10.4
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Figure 4.2: Five fold cross validation on ASRS-10000 data set. To avoid clutter we only
include the top three algorithms. These plots indicate what happens when a smaller
fraction of the data set is labeled. Even in this setting BMR consistently outperforms
both MLKNN and IBLRML.
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Figure 4.3: Five fold cross validation on the Mediamill-10000 data set.
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Figure 4.4: Five fold cross validation on the Emotions data set.
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Figure 4.5: Five fold cross validation on the Scene data set.
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Figure 4.6: Computational time to train the model as more and more data points are
considered. BMR outperforms MLKNN and IBLRML.
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Figure 4.7: Computational time to make predictions as more and more data points are
considered. BMR outperforms MLKNN and IBLRML.



Chapter 5

Probabilistic Matrix Addition

In the previous chapter we considered explicitly modeling covariances across one dimen-

sion. In this chapter we propose a model capable of modeling covariances across both

rows and columns of a matrix.

5.1 Introduction

We introduce a novel approach for modeling data matrices which can simultaneously

capture (nonlinear) covariance structures among rows as well as columns. For a n×m

matrix X, existing approaches which consider both covariance structures can be broadly

divided into two categories: Gaussian Process approaches, which suitably modify a

given kernel to incorporate relational information and subsequently draw outputs (rows)

i.i.d. from a single GP [82, 83, 84]; and Linear Models of Corregionalization (LMC) [8, 9],

a widely used family of models from Geostatistics, which effectively flattens out the data

matrix into a long vector, and uses suitable covariance structures over the vectorized

form. As a result, the entries, rows, or columns of the matrix are not independent

as covariances between all entries are modeled. However, the lack of (conditional)

independence can lead to serious scalability problems for inference in LMCs.

In this chapter, we introduce the Probabilistic Matrix Addition (PMA) model which

simultaneously considers two (nonlinear) kernels K1 and K2 corresponding to the rows

and the columns of the matrix respectively. The kernels are utilized in two Gaussian

Processes (GPs), from which we draw two latent matrices with independence along rows

66



67

and along columns respectively. The latent matrices from the two GPs are combined

in an additive fashion to obtain the final matrix, yielding a generative model for real-

valued data matrices of any size. As GPs define priors over functions f(x), PMA can

be viewed as a simple but non-trivial way to define priors over functions f(x, y) which

when instantiated lead to finite sized matrices.

Similar to LMCs, the joint distribution of PMA over the matrix entries does not

factorize over entries, rows, or columns, and thus can capture intricate dependencies

among the entries. Unlike LMC, PMA does not assume stationarity. It exhibits a

conditional independence structure over the latent variables, which allows for fast ap-

proximate inference algorithms. We present two methods for approximate inference in

PMA, respectively based on Gibbs sampling and MAP inference. The Gibbs sampler

is efficient since it takes full advantage of the conditional independence structure, and

precision matrices over the conditioning variables can be computed using a suitable

application of the Sherman-Morrison formula. The MAP inference is obtained by solv-

ing a Sylvester equation [85, 86], where both row and column covariances play a role

in determining a latent variable matrix. For parameter estimation and missing values

prediction, the inference methods are used in a suitable alternating update method.

We illustrate the effectiveness of PMA on two tasks: matrix missing value predic-

tion, where the goal is to infer multiple missing values in a given data matrix; and

multi-label classification, where the goal is to predict an entire new row given a matrix

which may also have missing values. For matrix missing value prediction, we compare

PMA to a single GP capturing covariances either across rows or columns, Probabilistic

Matrix Factorization (PMF) [69] and LMC [9]. PMA clearly outperforms a single GP,

and is competitive or better than PMF and LMC. For multi-label classification, we

compare PMA to three baselines including state-of-the art approaches designed specif-

ically for multi-label classification. Across all evaluation measures and datasets, PMA

consistently outperforms the other methods.

The rest of the chapter is organized as follows. In Section 6.2, we introduce PMA, dis-

cuss its properties, and contrast it with LMCs. We consider the missing value prediction

problem in Section 5.3, propose two inference approaches for PMA, and present empir-

ical evaluation of the ideas. In Section 5.4, we discuss how new rows (or columns) can

be predicted using PMA, and present empirical evaluation on the multi-label prediction
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problem. We briefly discuss related work in Section 5.5 and conclude in Section 6.6.

5.2 The Model

The Probabilistic Matrix Addition (PMA) model defines distributions over real valued

matrices. Let X be a n×m matrix. We start by outlining a generative model for any

such matrix for arbitrary n and m. Consider two Gaussian processes G1 ≡ GP (0,K1)

with covariance function K1 corresponding to rows and G2 ≡ GP (0,K2) with covariance

function K2 corresponding to columns. For n rows, we get the following distribution

over any column f ∈ R
n from G1:

p(f |G1) =
1

(2π)D/2|K1|1/2
exp

(

−1

2
fTK−1

1 f

)

. (5.1)

Since the matrix will have m columns, we sample f1, . . . , fm ∈ R
n independently fol-

lowing the above distribution. The samples form the following n×m matrix F :

F =
[

f1 · · · fm

]

=









f1(1) · · · fm(1)
...

. . .
...

f1(n) · · · fm(n)









. (5.2)

For m columns, we get the following distribution over any row g ∈ R
m from G2:

p(g|G2) =
1

(2π)D/2|K2|1/2
exp

(

−1

2
gTK−1

2 g

)

. (5.3)

Since the matrix will have n rows, we sample g1, . . . , gn ∈ R
m independently following

the above distribution. The samples form the following n×m matrix G:

G =









gT1
...

gTn









=









g1(1) · · · g1(m)
...

. . .
...

gn(1) · · · gn(m)









. (5.4)

Given the two random matrices F and G, we generate the n×m random matrix X

as

X = F +G . (5.5)

In particular, each entry of X is (Figure 5.1)

xij = fj(i) + gi(j) . (5.6)
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While the generative process for X is simple, it leads to intricate dependencies between

its entries, in particular capturing (nonlinear) covariance structures along rows as well

as columns.

m

n

X

K

K

1

2
g

f

Figure 5.1: Graphical model for PMA: X is generated as the sum of F , sampled by
column, and G, and sampled by row.

5.2.1 Joint and Conditional Distributions

Joint Distribution: First, we consider the joint distribution of the components of the

entire matrix X = [xij] ∈ R
m×n. Since fj(i) ∼ N(0,K1,(i,i)) and gi(j) ∼ N(0,K2,(j,j)),

the marginal distribution of xij is a univariate Gaussian: xij ∼ N(0,K1,(i,i) + K2,(j,j)).

To compute the joint covariance, first note that

E[fj(i)fj(ℓ)] = K1(i, ℓ), E[fj(i)fk(ℓ)] = 0 . (5.7)

Similarly,

E[gi(j)gi(k)] = K2(j, k), E[gi(j)gℓ(k)] = 0 . (5.8)

Since E[xij ] = 0, we have Cov(xij , xℓk) = E[xijxℓk]. From (??), for the diagonal

elements we know

E[xijxij ] = K1(i, i) +K2(j, j) .
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For the off-diagonal entries we have

E[xijxik] = E[(fj(i) + gi(j))(fk(i) + gi(k))]

= E[fj(i)fk(i)] + E[fj(i)gi(k)]

+ E[gi(j)fk(i)] + E[gi(j)gi(k)]

= 0 + 0 + 0 +K2(j, k)

= K2(j, k) .

(5.9)

Similarly,

E[xijxℓj] = K1(i, ℓ) . (5.10)

Further, note that

E[xijxℓk] = E[(fj(i) + gi(j))(fk(ℓ) + gℓ(k))]

= E[fj(i)fk(ℓ)] + E[fj(i)gℓ(k)]

+ E[gi(j)fk(ℓ)] + E[gi(j)gℓ(k)]

= 0 + 0 + 0 + 0

= 0 .

(5.11)

As a result, E[x2ij ] = K1(i, i) +K2(j, j), E[xijxik] = K2(j, k), E[xijxℓj] = K1(i, ℓ),

and E[xijxℓk] = 0. Putting everything together, if vec(X)T = [XT
(:,1), . . . ,X

T
(:,m)] denotes

the vectorized version ofX, then the joint distribution of vec(X) ∈ R
mn is a multivariate

Gaussian, i.e., vec(X) ∼ N(0,Σvec(X)) where

Σvec(X) = (Im ⊗K1) + (K2 ⊗ In) = K1 ⊕K2. (5.12)

where ⊕ denotes the Kronecker sum [87].

Conditional Distributions: We now consider the conditional distribution of each

fij, gij , and xij given the rest of the latent matrices, i.e., F(−i,−j) and G(−i,−j). Given

F(−i,−j), fj(i) only depends on fj(−i), the other elements of fj. Further, fj(i) is con-

ditionally independent of G(−i,−j) given F(−i,−j). To see this, note that in the PMA

graphical model there are two types of paths connecting fj(i) to elements in G(−i,−j):

paths going through the collider xij and paths going through elements in fj(−i). The

conditional d-separation between fj(i) and G(−i,−j) given F(−i,−j) stems from the fact
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that there is no conditioning on the collider xij for paths of the first type and condition-

ing on the non-colliders (elements of fj(−i)) for paths of the second type. By a similar

argument, gi(j) depends only on gi(−j), the other elements of gi, and is conditionally

independent of F(−i,−j) given G(−i,−j). As a result, we have

fj(i)|(F(−i,−j), G(−i,−j)) ∼ N(mf
j (i), s

f
j (i)) ,

gi(j)|(F(−i,−j), G(−i,−j)) ∼ N(mg
i (j), s

g
i (j)) ,

(5.13)

where

mf
j (i) = K1,(i,−i)K−1

1,(−i,−i)fj(−i) ,

sfj (i) = K1,(i,i) −K1,(i,−i)K−1
1,(−i,−i)K1,(−i,i) ,

mg
i (j) = K2,(j,−j)K−1

2,(−j,−j)gi(−j) ,

sgi (j) = K2,(j,j) −K2,(j,−j)K−1
2,(−j,−j)K2,(−j,j) .

(5.14)

Since xij = fj(i) + gi(j), we have

xij|(F(−i,−j), G(−i,−j)) ∼ N(mij , sij) , (5.15)

where

mij = mf
j (i) +mg

i (j) ,sij = sfj (i) + sgi (j) . (5.16)

5.2.2 Relationship with LMCs

Linear Models of Corregionalization (LMCs) are a broad family of related models widely

studied in Geostatistics [8, 9]. We compare and contrast the proposed PMA with LMCs.

The proposed PMA is related to LMCs as is evident from the structure of the joint co-

variance matrices. However, there are important differences between the two models,

including modeling assumptions as well as efficiency of inference algorithms. We briefly

discuss these aspects below. First, LMCs are stationary models where the covariance

depends on (s−s′), whereas PMA does not make such an assumption. Further, generally

LMCs do not have an explicit latent variable based generative model in their specifica-

tion. In particular, the statistical dependency structure of the elements of X tends to be

complete. As a result, inference in LMCs typically involve one or both of the following
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possible issues: (i) Inverting large covariance matrices, say R
(mn−p)×(mn−p) matrices for

p missing entries, which is computationally prohibitive, (ii) Assuming a parametric form

of the variogram which greatly restricts modeling flexibility [9]. In contrast, PMA has

a latent variable based model specification and the statistical dependency structure in

PMA is significantly sparse. The sparsity can be exploited to develop efficient approx-

imate inference algorithms (see Section 5.3). Since the joint distribution is Gaussian,

exact inference can be done in PMA but has the same computational issues as in LMCs.

5.3 Predicting Missing Values

For missing value prediction, we are given a partially observed data matrix X. The

goal is to infer the missing values based on the structure of the known observations. In

this section we outline two approaches for missing value prediction, respectively based

on Gibbs sampling and MAP inference. We conclude the section with an experimental

evaluation of PMA for missing value prediction.

5.3.1 Gibbs Sampling

Let X̃ be a full matrix, where the missing values have been initialized to random values.

For a given (K1,K2), the sampler updates the latent matrices and the missing entries in

X̃. Since X = F +G, it is sufficient to sample only F or only G—we choose to sample

G. If K1 and/or K2 is unknown, we alternate between sampling (G,X) and estimating

K1 and/or K2.

Sampling G: Given K1,K2, and a full data matrix X̃, using Bayes rule we have

p(gi(j)|G(−i,−j), X̃,K1,K2) ∝
p(gi(j)|G(−i,−j), X̃(−i,−j),K1,K2)p(x̃ij |G, X̃(−i,−j),K1,K2)

= p(gi(j)|G(−i,−j),K2)p(x̃ij − gi(j)|F(−i,−j),K1) ,

due to conditional independence and the fact that F(−i,−j) = X̃(−i,−j) −G(−i,−j). Note

that the individual distributions are univariate Gaussians as in (5.13) and (5.14). Since

the product of two Gaussians is also a Gaussian, we have

p(gi(j)|G−i,−j ,X,K1,K2) ∝ N(gi(j)|µij , σ
2
ij) (5.17)
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where

µij =
mg

i (j)s
f
j (i) +mf

j (i)s
g
i (j)

sfj (i) + sgi (j)
, σ2

ij =
sfj (i)s

g
i (j)

sfj (i) + sgi (j)
, (5.18)

with mg,mf , sg, sf are from (5.14) with F = X −G.

The sampler involves several matrix inverses, but these can be computed efficiently

from K−1
1 and K−1

2 . For computations involving F , instead of computing n inverses

of (n − 1) × (n − 1) sub-matrices of K1 (see (5.14)), we can obtain each such inverse

from rank-2 modifications to K1. Assuming that K−1
1 has been computed, consider the

problem of computing K−1
1,(−1,−1) = K−1

1,(2 : n,2: n). According to the Sherman-Morrison

formula, we have

(K1 + uvt)−1 = K−1
1 −

K−1
1 uvtK−1

1

1 + vtK−1
1 u

, (5.19)

where 1 + vtK−1
1 u 6= 0 and u, v ∈ R

n. We construct rank-2 updates to zero out entries

K1,(2 : n,1) and K1,(1,2: n). This can be accomplished in two steps, first we obtain A =

K1 + u1v
T
1 where u1(1) = 0, u1(2:n) = −K1(2:n,1), v1(1) = 1, v1(2:n) = 0. Then we obtain

B = A + u2v
T
2 where u(1) = 1, u(2:n) = 0, v(1) = 0, v(2:n) = −K1(1,2:n). Applying the

Sherman-Morrison formula twice we compute B−1 = (K1+u1v
T
1 +u2v

T
2 )

−1. From basic

properties of block matrices it follows: K−1
1,(−1,−1) = K−1

1,(2 : n,2: n) = B−1
(2:n,2:n). We follow

a similar computation for all the n submatrices K1,(−i,−i). Further, for computations

involving G, we can efficiently compute the m inverses of (m−1)× (m−1) sub-matrices

K2,(−j,−j) of K2.

Sampling X̃: Missing values inX are sampled by extending the sampler and treating

the missing x̃ij as latent variables. In particular, we sample x̃ij conditioned on X̃(−i,−j)

and one of F and G. Conditioning on F , we have

p(x̃ij |X̃(−i,−j), F,K1,K2) = N(xij |x̄ij , ζij) (5.20)

where

x̄ij = fj(i) +K2,(i,−i)K
−1
2,(−i,−i)(x̃−i,j − fj(−i)) ,

ζij = K2,(i,i) −K2,(i,−i)K
−1
2,(−i,−i)K2,(−i,i) . (5.21)
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Parameter Estimation: IfK1 andK2 are unknown, we initialize K̂1 ≻ 0, K̂2 ≻ 0, and

alternate between sampling (G, X̃) and estimating (K̂1, K̂2). We have already outlined

how to sample G and X̃. Let F = X̃ − G. Then, we have K̂1 = 1
m

∑m
i=1 fjf

T
j and

K̂2 =
1
n

∑n
i=1 gig

T
i .

5.3.2 MAP Inference

As before, we start with a full matrix X̃ , where the missing values have been filled at

random. For given gram matrices (K1,K2), we alternate between estimating F (or G)

and X̃.

Estimating F : Given X̃,K1, and K2 the joint log-likelihood over (X,F ) is:

log p(X̃, F |K1,K2) = log p(F |K1) +

n
∑

i=1

log p(x̃i:|f:(i),K2) .

For a given X̃ , the MAP F can be obtained by maximizing the joint log-likelihood, or

equivalently minimizing
n
∑

i=1

(x̃i − F T eni )
TK−1

2 (x̃i − F T eni ) +
m
∑

j=1

emj
TF TK−1

1 Femj ,

where eni ∈ R
n, emj ∈ R

m are vectors of all zeros with the ith and jth position set to one

respectively. A direct calculation shows that the solution has to satisfy the following

Sylvester equation

FK2 +K1F = K1X̃ . (5.22)

A solution to the Sylvester equation exists if and only if no eigenvalue of K1 is equal to

the negative of an eigenvalue of K2 [85]. Since both K1 and K2 are positive definite, the

condition is satisfied, and the solution can be obtained by standard methods [85, 86].

Estimating X̃: We iteratively update the originally missing entries x̃ij based on the

mode of the distribution p(x̃ij|F, X̃(−i,−j),K1,K2), given by

x̃newij = fj(i) +K2,(j,−j)K−1
2,(−j,−j)(x̃−i,j − fj(−i)) . (5.23)

Note that the expression is similar to (5.21), where we sample from the corresponding

distribution.

Parameter Estimation: We initialize K̂1 ≻ 0, K̂2 ≻ 0, and the missing values of X

randomly. Then, we alternate between updating (X̃, F ), and estimating K̂1, K̂2. We

have already discussed updates for (X̃, F ). Let G = X̃ − F . Then K̂1 = 1
m

∑m
j=1 fjf

T
j

and K̂2 =
1
n

∑n
i=1 gig

T
i .
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5.3.3 Experimental Evaluation

We report results from two sets of experiments for missing value prediction. In the first

set, we compare PMA to Gaussian Process regression (GPR) on simulated datasets.

In the second set, we compare PMA to other algorithms, including GPR, Probabilistic

Matrix Factorization (PMF) [69], and intrinsic LMC (I-LMC) on benchmark datasets.

Datasets and Evaluation: For the first set, we use PMA to generate artificial

datasets, of size 50× 20 and 50× 50. Evaluation is done using mean square error of the

predicted values. For the second set, we use two multi-label classification datasets—

Emotions [80] and Scene [79]. In multi-label classification, for n points and m classes,

class memberships are represented as n×m binary matrix B. We consider a truncated

log-odds matrix X, with xij = c if bij = 1, and xij = −c if bij = 0. For the experiments,

certain entries xij are assumed to be missing. Evaluation is done using class membership

prediction accuracy based on sign(x̂ij).

Methodology: All experiments were conducted using five-fold cross validation.

For the first set, both K1 and K2 are assumed to be unknown, and are estimated from

data. For the second set, K1 is instantiated using the RBF kernel function K1 based on

feature vectors of the data objects, and K2 is estimated from data.

Algorithms: For the first set, we compare PMA to GPR. GPR-D1 treats rows as

data points, while GPR-D2 treats columns as data points. We utilize one implementa-

tion of PMA based on MAP inferece (PMA-MAP) and one based on Gibbs sampling

(PMA-GIBBS). For the second set, we compare six different algorithms: GPR, PMA-

MAP, PMA-GIBBS, PMA-EXACT, PMF, I-LMC and BMR. PMA-EXACT performs

exact prediction by flattening out the matrix X into a vector, assuming a covariance

matrix of the form K1⊕K2. I-LMC corresponds to intrinsic LMC in the prediction step,

whereby we utilize a covariance matrix of the form K1 ⊗ K2. For both PMA-EXACT

and I-LMC we use a provided kernel K1 and K2 as obtained by Gibbs sampling. The

purpose of comparing the latter two algorithms is to see whether PMA suffers by as-

suming a sparser dependency structure. BMR is the Bayesian Multivariate Regression

approach proposed in the previous chapter.

Performance: The results for the first set involving simulated data is in Figure 5.3.

PMA performs better than both GPR-D1 and GPR-D2, suggesting that there is a clear

benefit in modeling both K1 and K2. While not all matrices will necessarily have relevant
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correlation structure across both dimensions, when this is the case, PMA appears to do

better. PMA-GIBBS and PMA-MAP perform similarly, with PMA-GIBBS appearing

slightly better.

The results for the second set involving benchmark datasets is in Table 5.1. We

make the following observations: (i) PMA clearly outperforms a GPR, illustrating the

value in modeling correlations across both rows and columns; (ii) The differences in

performance between PMA-GIBBS, PMA-EXACT and I-LMC are negligible. The re-

sults indicate that PMA does not suffer by assuming a sparser dependency structure.

Further, PMA-GIBBS is fairly accurate when compared to PMA-EXACT, which can

be computationally prohibitive for large datasets; (iii) PMA-GIBBS appears to perform

slightly but consistently better than PMA-MAP; (iv) PMA is competitive compared to

PMF and BMR. On Emotions, PMF and BMR appear slightly better. On Scene, PMA

is significantly better, suggesting a clear advantage for certain datasets.
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Figure 5.2: Five fold cross validation on two artificially created data sets. PMA clearly
benefits from modeling both covariance structures. The GPR both across rows (GPR-
D1) and columns (GPR-D2) is weaker. Gibbs sampling appears to do slightly better
compared to MAP, when it comes to inference in PMA.
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10% 15% 20% 25% 30%

Emotions
GPR 32.3± 5.9 33.1 ± 4.7 32.6 ± 5.0 34.6 ± 2.3 35.3 ± 2.3

PMA-MAP 23.9± 6.5 25.3 ± 3.8 26.9 ± 4.4 29.7 ± 4.8 30.8 ± 4.7
PMA-GIBBS 23.3± 5.3 24.8 ± 3.2 25.1± 3.8 27.2 ± 3.9 28.0 ± 4.0
PMA-EXACT 19.7 ± 4.9 23.6± 6.9 25.8 ± 4.0 27.3 ± 5.4 27.9 ± 4.1

I-LMC 20.3 ± 4.6 25.1 ± 5.9 25.7 ± 3.7 27.6 ± 4.5 27.8± 3.8
PMF 21.8± 5.0 22.6± 2.4 24.6± 3.0 26.3 ± 1.6 26.0± 3.7
BMR 21.0 ± 5.3 22.5± 5.9 24.5± 2.1 25.6 ± 2.1 25.6± 3.5

Scene
GPR 14.7± 1.7 34.5 ± 8.0 17.2 ± 2.1 17.4 ± 1.7 18.0 ± 2.1

PMA-MAP 11.9± 1.0 13.6 ± 2.5 13.8 ± 2.7 13.9 ± 3.2 14.8 ± 1.5
PMA-GIBBS 10.3 ± 1.4 10.9± 2.6 11.1± 1.8 11.3 ± 2.1 12.3± 1.2
PMA-EXACT 10.4 ± 1.0 11.0± 1.0 11.6± 1.8 11.9 ± 1.2 12.5± 2.3

I-LMC 10.4± 1.0 10.9± 1.0 11.8± 1.7 11.8 ± 1.2 12.9± 2.6
PMF 9.2± 2.2 13.8 ± 3.0 16.1 ± 3.4 18.5 ± 2.8 20.1 ± 3.0
BMR 12.9± 1.7 13.0 ± 0.9 13.3 ± 2.0 14.1 ± 1.6 15.6 ± 2.5

Table 5.1: Error rates for recovering missing labels obtained using five-fold cross vali-
dation on the Emotions and Scene data sets. Performance of GPR, PMA-MAP, PMA-
GIBBS, PMA-EXACT, I-LMC, PMF and BMR is evaluated while an increasing per-
centage of labels are missing in the training data. Missing Labels are randomly selected.
The error rates reflect the percentage of missing labels incorrectly recovered.

5.4 Predicting New Rows

We consider the problem of predicting a new row in the data matrix X assuming that K1

is a known kernel function. The motivation comes from multi-label classification, where

a new row translates to all labels for a data point not encountered before. The methods

developed can also be applied to predict new columns assuming K2 is a known kernel

function. As before, we outline two inference approaches based on Gibbs sampling and

MAP inference respectively. We evaluate PMA for new row prediction in the task of

multi-label classification.

We first focus on initializing the new row x(n+1): of X. Since F and G do not have

values for this new row, one needs to get suitable extensions for F and G. Since F has

dependencies along columns, for each column j, we obtain the MAP estimate fj(n+1)
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using GP regression and K1 yielding the extended matrix F̃ ∈ R
(n+1)×m. Since G does

not have dependencies along columns, we sample a new row gTn+1 ∼ GP (0,K2) yielding

the extended G̃ ∈ R
(n+1)×m.

For Gibbs Sampling, we obtain the initial extended matrix as X̃ = F̃ + G̃. Then we

proceed as in Section 5.3.1, while treating the entire last row of X̃ as latent, in addition

to G̃ and any other missing entries in X̃ . For MAP inference, since gTn+1 is zero mean,

the (n+ 1)st row of F̃ serves directly as an estimate for the new row x(n+1): . In either

setting, if K2 is unknown, we alternate between sampling/estimating X̃ and estimating

K2.

5.4.1 Experimental Evaluation

We compare the performance of PMA (PMA-GIBBS) to existing state-of-the-art meth-

ods for multi-label classification on a number of benchmark data sets. We use the Scene

[79], Emotions [80],Image [88] and YeastProt [89] datasets for evaluation. In table 5.2 a

summary is provided for all of the data sets used. As before, we use truncated log-odds

during learning, and the sign of the predicted score for evaluation.

Algorithms and Methodology: We evaluate PMA-GIBBS against four multi-

label classification algorithms. For PMA-GIBBS, we assume that K1 is an RBF Kernel

over the points, where its parameters are estimated using cross validation, and K2 is

unknown and estimated from the data. The inputs into K1 are given by feature vectors

of the data points. As a baseline, we consider one-vs-rest SVM as a multi-label classifier,

which we refer to as MLSVM. We also consider two state-of-the-art approaches for multi-

label learning: Multi Label K-nearest Neighbors (MLKNN) [42], a method which applies

the k-nearest neighbor idea to the multi-label setting; and Instance Based Learning by

Logistic Regression (IBLR) [74], where features are first transformed to incorporate

label information from local neighborhoods prior to applying logistic regression. In all

multi-label experiments, we utilize an RBF Kernel in PMA, where the parameter σ

is chosen by cross-validation. We also compare performance to Bayesian Multivariate

Regression (BMR), developed in the previous chapter.

We also consider the setting where the training set has partial labels, i.e., missing

entries in X. While PMA and BMR can utilize partial labels, the other algorithms

cannot. Hence, we construct a reduced training set discarding points with partial labels.
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The corresponding models are called PMA-GIBBS-D, BMR-D MLKNN-D, IBLRML-D

and MLSVM-D.

Evaluation Measures: We evaluated multi-label classification performance using

three different measures: one error, precision, and ranking loss. Let g(x, l) denote a

real-valued function which assigns a score to label l for data point x, such that a larger

score is considered better. Further, let Lx denote a set of true labels associated with x.

1) One error evaluates how frequently the top ranked predicted label is not among

the true labels. If 1[·] denotes the indicator function, we have:

OneError(g) =
1

D

D
∑

d=1

1 [argmaxl∈L g(xd, l) 6∈ Lxd
] .

2) For true labels l ∈ Lx, average precision evaluates the fraction of labels in Lx

that rank at least as high as l according to the scoring rule g on average. For any data

point x and any label l ∈ Lx, let R(x, l) = {l′ ∈ Lx|rankg(x, l′) ≤ rankg(x, l)}, where
the ranking is among all possible labels. Then, average precision is:

AvePrec(g) =
1

D

D
∑

d=1

1

|Lxd
|
∑

l∈Lxd

|R(xd, l)|
rankg(x, l)

.

3) Ranking loss reflects the average number of labels that are reversely ordered for a

given instance. Let T (xd) = {(l1, l2) | g(xd, l1) ≤ g(xd, l2), (y1, y2) ∈ Lxd
× L̄xd

}, where
L̄xd

denotes the complement of Lxd
. Ranking loss is defined as:

RankLoss(g) =
1

D

D
∑

d=1

|T (xd)|
|L̄xd
||Lxd

| .

Thus, for one error and ranking loss, lower is better; for average precision, higher is

better. We evaluate all multi-label algorithms using all performance measures and five

fold cross validation.

Performance: We evaluate performance on both multi-label datasets by consider-

ing an increasing number of labeled points. As seen in Figure 5.3, PMA outperforms

the other four methods on all data sets and for all three performance measures, and

the improvements are in almost all cases significant. Further, all four methods designed

specifically for multi-label classification tend to outperform MLSVMs. Compared to
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BMR, PMA is slightly better on the Emotions data set and it is significantly better on

the remaining data sets.

We also tested the prediction performance when missing labels are present in the

training data. As seen in Table 5.3, PMA-GIBBS outperforms the other models due to

its ability to leverage partially labeled data. Among algorithms which discard points

with partial labels, PMA-GIBBS-D outperforms the others.

Data Set Points Features Labels

Scene 2407 294 6
Emotions 593 72 6
Image 2000 135 5

YeastProt 2000 215 138

Table 5.2: Data sets used in multi-label classification

OneError AvePrec Coverage

PMA-GIBBS 29.7± 4.2 82.3± 2.7 10.6 ± 2.3
BMR 33.3 ± 4.9 79.9 ± 2.4 11.6 ± 2.0

PMA-GIBBS-D 51.1 ± 7.5 67.5 ± 4.8 22.4 ± 3.7
BMR-D 54.7 ± 6.7 64.5 ± 4.6 26.1 ± 3.4

MLKNN-D 70.5 ± 2.0 46.3 ± 4.3 23.7 ± 8.1
IBLRML-D 61.9 ± 8.9 36.9 ± 3.9 54.8 ± 3.9
MLSVM-D 87.9 ± 2.0 40.9 ± 1.6 83.1 ± 1.4

Table 5.3: Five fold cross validation on the Scene data set with 25% of label entries
missing. PMA-GIBBS utilizes all available data while training. PMA-GIBBS-D, BMR-
D, MLKNN-D,IBLRML-D and MLSVM-D discard data points with missing label entries
in the training stage.

5.5 Related Work

In this section we review work previously done in extending Gaussian Processes to cap-

ture correlations across outputs. We also review work done in multi-label classification.

One of the most popular approaches to capture correlations among outputs of a GP
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is to utilize convolution processes (CPs) [90, 84]. In CPs each output is represented

as the convolution of a smoothing kernel and a latent function. The outputs of the

convolutions are then modeled by a single Gaussian Process [91], whereby data points

are still assumed to be drawn i.i.d. In our model the i.i.d. assumption is not made.

From a convolution stand point our model also differs. Let Pf (F ) denote the PMA

prior over matrices F , Let Pg(G) denote a prior over matrices G. In PMA we have

P (X) =
∫

F Pg(X − F )Pf (F )dF = (Pf ∗ Pg)(X), where Pf and Pg are GP-based priors

over matrices. Please note that in PMA this convolution view point does not hold for

single rows or columns of X, since Pf is defined over columns and Pg over rows.

In [92] a model is proposed which is capable of incorporating relational side informa-

tion in form of a graph, resulting in correlated outputs of a GP. Unlike our approach this

method does not model correlations on two different levels explicitly. In [82] a model is

proposed which assumes latent functions to be the sum of two random variables, one of

which contains relational side information. The resulting model, unlike PMA, is repre-

sented by a single GP with a modified Kernel, from which points are drawn i.i.d. In [83]

an approach is proposed that combines ideas from [92] and [82]. Latent variables are

assumed to be a sum of multiple random variables which encode relational information,

whereby the aggregate latent variables are representable as outputs of a single GP (see

discussion after equation (11) in [83]). Further in [83] unlike in PMA links are modeled

explicitly.

When it comes to multi-label classification the state-of-the art is comprised of meth-

ods which attempt to capture correlations among labels. In recent years several such

methods have been proposed. In [70], a maximum margin approach is proposed which

minimizes the ranking loss. While the ability to handle kernels is important in several

domains, most existing approaches do not have a natural way of providing a direct un-

certainty quantification. A number of probabilistic models have also been proposed for

multi-label classification. In [68], a mixture model is proposed for text classification.

More recently, in [72], a fully Bayesian model was proposed based on sparse and infinite

canonical correlation analysis. Most of the probabilistic models do not have a good way

of incorporating kernels, and if they do as in [73], they do not model correlations among

labels explicitly.

In [42], label statistics from neighborhoods are used to build a Bayesian classifier.
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In [74], features are constructed based on label information from neighborhoods and

subsequently used in logistic regression. Our model stands out as unique as it is capa-

ble of incorporating a kernel, providing direct uncertainty quantification and modeling

correlation structure among labels explicitly at the same time.

5.6 Conclusions

We have introduced a novel model for matrix data analysis capable of capturing correla-

tions among rows and columns simultaneously. PMA has sparse statistical dependency

structures yielding fast approximate inference algorithms. We have presented prelim-

inary experiments demonstrating the advantage of PMA over single GPs for matrix

analysis, as well as its ability to handle missing data. The ability of PMA to capture

correlations along rows and columns simultaneously appears especially beneficial in do-

mains such as multi-label classification. Our empirical evaluation shows that PMA can

significantly outperform some of the existing multi-label classification algorithms. Fur-

ther, PMA can readily be extended to higher order structures such as tensors which we

plan to investigate in future work.
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(c) Emotions - Ranking Loss
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(d) Scene - OneError
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(e) Scene - AvePrec
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(f) Scene - Ranking Loss

10 20 30 40 50 60 70 80 90 100 110
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

Number of Labeled Points

O
ne

 E
rr

or

Five Fold Cross Validation on the Image Data Set

 

 
mlknn
iblrml
mlsvm
pma−gibbs
bmr

(g) Image - OneError
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Figure 5.3: Five fold cross validation on the Emotions, Yeast and Image data sets using
three evaluation measures. PMA consistently outperforms the other methods on all
datasets according to all evaluation measures.



Chapter 6

Gaussian Process Topic Models

Having introduced PMA in the previous chapter, we propose a novel topic model capable

of modeling the covariance across topics while incorporating a kernel among documents.

This is accomplished by utilizing PMA as a prior.

6.1 Introduction

In recent years, significant progress has been made in analyzing text documents using

topic models. Statistical topic models such as Latent Dirichlet Allocation (LDA) [93]

and its variants have proven useful and effective. Such topic models allow mixed mem-

berships of documents to several topics, where a topic is represented as a distribution

over words.

In LDA, the topic proportions for each document are drawn from a Dirichlet distri-

bution. As a consequence, LDA does not have the flexibility of modeling correlations

among the topics. Correlated Topic Models (CTMs) [7] were proposed to address this

issue. Instead of a Dirichlet prior, CTMs use a multi-variate normal distribution with

a covariance parameter and map samples from the normal distribution to the topic

simplex using a mean parameterization. The prior model assumes a fixed mean and

covariance parameter for the entire corpus, and the corpus is used to learn these pa-

rameters. Correlations between topics are captured by the resulting covariance matrix.

Frequently one might have additional information about a text corpus, possibly in

the form of additional features/structures, labels, one or more weighted graphs, etc. For

84



85

the purposes of this chapter, we assume that such additional information can be captured

by a suitable kernel defined over the documents. While there has been recent work on

incorporating link structure among documents [94], existing topic models, including

CTM, are unable to leverage such information in form of a kernel. In this chapter,

we propose Gaussian Process Topic Models (GPTMs) which can capture correlations

among topics as well as leverage known similarities among documents using a kernel.

GPTMs can be considered a generalization of CTMs using ideas from Gaussian Process

(GP) embedding and regression. Given a kernel among documents, GPTM defines a

Gaussian Process mapping from a suitable document space into the topic space. While

topic proportions for all documents in CTM are generated from a single mean, the topic

proportions in GPTM are generated from different means. The location of the means

for any document is determined by the Gaussian Process mapping.

Gaussian Processes (GPs) define distributions over function spaces and have been

successfully used for non-linear regression, classification and embedding [95, 96, 5]. The

Gaussian Process Latent Variable Model (GPLVM) [5] is a probabilistic embedding

method which utilizes a GP mapping from the embedded space to the data space.

While GPLVM is powerful non-linear embedding method, current literature does not

have effective models for combining kernel based non-linear embedding models such

as GPLVM with probabilistic topic models such as CTM. One can obtain embeddings

from either family of methods—from LDA/CTM based on the topic structure or from

GPLVM using the kernel and observed features. The proposed GPTM can systemat-

ically leverage both types of information and obtain an embedding based on both the

topic structure and the kernel.

We propose suitable approximate inference algorithms for learning GPTMs and mak-

ing predictions on a test set. The proposed inference algorithm marginalizes the latent

variables in the topic model and maximizes over the latent variables in the embedding,

so we obtain one good embedding. During learning, GPTMs work with two different

positive definite matrices—a topic covariance matrix over the topics and a document

kernel matrix over the documents. Our analysis shows that the two matrices get inte-

grated in an elegant manner to determine the final embedding. In particular, we obtain

a Sylvester equation involving both matrices whose solution gives the final embedding.

While Sylvester equations have been extensively studied in control theory, to the best
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of our knowledge, their usage in the context of topic models is novel.

The rest of the chapter is organized as follows. We introduce GPTMs in Section 6.2

and discuss learning GPTMs in Section 6.3. We present experimental results in Sec-

tion 6.4, provide a discussion on our model in Section 6.5 and conclude in Section 6.6.

6.2 The Model

Correlated Topic Models (CTMs) [7] are an important recent advance in the realm

of topic models [93, 97]. CTMs have the ability to capture correlation among topics.

However, CTMs were not designed to capture any additional information regarding the

documents, possibly in the form of a kernel over the documents. In this section, we in-

troduce Gaussian Process Topic Models (GPTMs) which are a systematic generalization

of CTMs capable of incorporating knowledge from a kernel over the documents.

The key difference between CTM and the proposed GPTM is how the model samples

mixed memberships over topics for each document. In CTMs, one samples η ∈ R
K

from a multivariate Gaussian N(µ,Σ) and maps η to the topic simplex using a mean

parameterization [7]. As a result, E[η] = µ, i.e., apriori all documents have the same

mixing proportions in expectation. In GPTMs, apriori all documents have different

mixing proportions in expectation. The mixing proportions are derived from the kernel

over the documents and, intuitively, similar documents according to the kernel have

similar mixing proportions.

Given a kernel function K over documents, the corresponding GP defines a distribu-

tion over functions over all documents. For a set of D documents, we get a distribution

over f ∈ R
D given by

p(f |K) = 1

(2π)D/2|K|1/2 exp

(

−1

2
fTK−1f

)

. (6.1)

Assuming there are K topics, we independently sample f1, . . . , fK ∈ R
D from the above

distribution, and construct a K ×D matrix F , whose ith row is fT
i . Hence p(F |K) =

∏K
i=1 p(fi|K). Now, for each document d = 1, . . . ,D we generate ηd ∈ R

K following

p(ηd|µd,Σ) ∼ N (η|µd,Σ) (6.2)

where Σ denotes a K ×K topic covariance matrix and µd = Fed ∈ R
K , where ed ∈ R

D

represents the all zeros vector with only the dth entry 1. Thus, µd ∈ R
K is the dth column
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of F . Each ηd is then mapped to the topic simplex using the mean parameterization:

θ(ηd) =
exp(ηd)∑
i exp(ηd(i))

. Since the rows of F were drawn independently from the GP with

kernel K, similar documents according to the kernel will implicitly have similar µd, and

hence similar topic proportions apriori. Thus, the GP prior captures global relationships

between documents in determining the apriori mixed memberships.

The entire generative model (Figure 6.1) can be specified as follows:

1. Draw F |K ∼ p(F |K) =∏iN (fi|0,K).

2. For each document d = 1, . . . ,D:

(a) ηd|F,Σ ∼ N (ηd|Fed,Σ).

(b) For each word wn, n = 1, . . . , Nd:

i. Draw a topic zn|ηd ∼ Discrete(θ(ηd)).

ii. Draw a word wn|zn, β1:K ∼ Discrete(βzn).

The joint probability of all observed and latent variables in GPTM is given by:

p(w, z, η, F |K,Σ, β) =
K
∏

i=1

p(fi|K)
D
∏

d=1

p(ηd|Fed,Σ)

Nd
∏

n=1

p(zn|ηd)p(wn|zn, β) .
(6.3)

The proposed GPTM is different from both CTM as well as GPLVM, while drawing

from the strengths of both of these models. Unlike CTM, the apriori topic proportions

of the documents are different and the difference is based on the kernel K. Unlike

GPLVM, GPTM takes topic structure into account. The final embedding will be based

on both the kernel as well as the structure of the documents as determined by the topic

model. As a result, GPTM leverages the strength of both topic models as well as kernel

methods, in particular CTMs and GPs.

6.3 Learning GPTMs

Exact inference in GPTMs is computationally intractable. In this section, we first

explain why some standard approaches to approximate inference may not be desirable
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Figure 6.1: Gaussian Process Topic Model

and then outline a somewhat non-standard approach for doing approximate inference

in GPTMs. The log-likelihood of the observed words w given (K,Σ, β) is given by:

log p(w|K,Σ, β) = logE(F,η,z)[p(w, z, η, F |K,Σ, β)] , (6.4)

where the expectation is over the distribution on the latent variables (F, η, z). In several

GP-based models [96], one can integrate over all functions f which translates to the dis-

tribution over F in GPTM. Focussing on the terms involving F in the joint distribution,

we have
K
∏

i=1

p(fi|K)
D
∏

d=1

p(ηd|Fed,Σ) =
1

|K|k/2|Σ|D/2
×

exp

{

−1

2

(

Tr(FK−1F T ) + Tr(F TΣ−1F )
)

+Tr(F TΣ−1
η)

}

,

where η = [η1 · · · ηD] is the K ×D matrix of means variables ηd. The terms involving

F have both row and column dependencies, one coming from K and the other from Σ.

Hence, exact marginalization over F is difficult. Further, while the apriori marginal over

each entry ηid of η are univariate Gaussians with zero mean and variance Σi,i + Kd,d,

the joint distribution over η will have both row and column dependencies, and hence

exact marginalization of η is also difficult. While variational inference by assuming a

fully factorized distribution over F, η will lead to a variational lower bound, such an

approach to inference undermines a key property of GPTMs, viz dependencies along

both rows and columns. Gibbs sampling based inference is possible for the model but

could be computationally burdensome. It involves inverting (K − 1) × (K − 1) and

(D − 1)× (D − 1) matrices for each entry in η in each sampling iteration.
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In GPTMs, there are two sets of latent variables to consider: the matrix F , arising

out of the GP, and variables (η, z), which are common in topic models [7]. In light of the

previous discussion, we choose to maximize the log-likelihood over F and variationally

marginalize it over (η, z). As we shall see shortly, the maximum aposteriori (MAP)

inference over F can be done while maintaining the row and column dependencies. In

particular, the first order conditions lead to a Sylvester equation [86, 98] in F involving

both Σ and K. Further, MAP inference over F leads to an embedding of the data points

taking into account both the kernel, the covariance among topics, as well as observed

words. While maximizing over F is unconventional in the context of GPs, related ideas

have been explored in the recent literature in the context of probabilistic embedding

using GPLVMs [5]. In Section 6.4, we compare the embedding performance of GPTMs

to that of GPLVMs as well as CTMs.

6.3.1 Approximate Inference

Our goal in terms of learning is to choose (F,Σ, β) so as to maximize

log p(w,F |K,Σ, β) = logEη,z[p(w, z, η, F |K,Σ, β)] . (6.5)

In principle, one can also optimize over K using kernel learning methods, but we do

not explore this aspect in this chapter. Since computing the expectation over the latent

variables (η, z) is intractable, following [7], we propose a variational inference approach

to lower bound the expectation over (η, z). In particular, for each document, we consider

the family of fully factored variational distributions q as:

q(η1:K , z1:N |λ1:K , ν21:K , φ1:N ) =
K
∏

i=1

q(ηi|λi, ν
2
i )

N
∏

n=1

q(zn|φn) , (6.6)

where q(ηi|λi, ν
2
i ) are univariate Gaussian distributions with mean λi and variance ν2i ,

and q(zn|φn) are discrete distributions with parameter φn.

Using Jensen’s inequality [7], for any F we have:

log p(w,F |K,Σ, β)

≥ log p(F |K) +
D
∑

d=1

{

Eq[log p(ηd|Fed,Σ)]

+ Eq[log p(zd|ηd)] + Eq[log p(wd|zd, β)]
}

+H(q)

(6.7)



90
Table 6.1: Terms of the lower bound for expected loglikelihood

Term Expression

log p(F |K) K
2
log |K−1| − KD

2
log 2π − 1

2
Tr(FK−1F T )

Eq[log p(ηd|Fed,Σ)]
1
2
log |Σ−1| − K

2
log 2π − 1

2
{Tr(diag(ν2)Σ−1) + (λ− Fed)

TΣ−1(λ− Fed)}

Eq(log p(zn|η))
∑K

i=1 λiφn,i − ζ−1
(

∑K

i=1 exp{λi + ν2
i /2}

)

+ 1− log(ζ)

Eq[log p(wn|zn, β)]
∑K

i=1 φn,i log βi,wn

H(q)
∑K

i=1
1
2
(log ν2

i + log 2π + 1)−
∑N

n=1

∑K

i=1 φn,i log φn,i

We give the exact expressions for each term in Table 6.1. For the derivation of the

last three terms we refer the reader to [7], since these terms are the same as in CTM.

The first two terms are unique to our model and stem from the introduction of F . For

the first term, by definition, we have

log p(F |K)

=
K
∑

i=1

{

1

2
log |K−1| − D

2
log 2π − 1

2
fT
i K−1fi

}

=
K

2
log |K−1| − KD

2
log 2π − 1

2
Tr(FK−1F T ) .

For the second term corresponding to each document we have

Eq[log p(ηd|Fed,Σ)] =
1

2
log |Σ−1| − K

2
log 2π

− 1

2
Eq[(ηd − Fed)

TΣ−1(ηd − Fed)]

=
1

2
log |Σ−1| − K

2
log 2π +Tr(diag(ν2d)Σ

−1)

+ (λd − Fed)
TΣ−1(λd − Fed) ,

where ed ∈ R
D is the all zeros vector with only the dth entry as one. Further, note

that the third term Eq[log p(zn|η)] cannot be computed in closed form, and we obtain

a variational lower bound (see Table 6.1) with parameter ζ following [7].

6.3.2 Parameter Updates

The variational lower bound is optimized by updating the variational parameters (λ, ν, φ, ζ)

and the model parameters (F,Σ, β). Since parts of our objective function are similar

to CTM, a number of updates remain the same [7]. In particular, for the parameters
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corresponding to the topics, we have:

βi,j ∝
D
∑

d=1

Nd
∑

n=1

φdn,iw
j
dn, (6.8)

φdj,i ∝ exp{λi}βi,j , (6.9)

where wj
dn is an indicator that the nth word in the dth document is the jth word in the

vocabulary. Further, for each document, the update for ζ is given by:

ζ =
K
∑

i=1

exp{λi + ν2i /2} (6.10)

A solution for λi and ν2i cannot be obtained analytically For each document. So gradient

descent is used with gradients

gλ =− Σ−1(λ− Fed) + ΣN
n=1φn,1:K

− (N/ζ) exp{λ+ ν2/2}
gν2i

=− Σ−1
ii /2− (N/2ζ) exp{λi + ν2i /2}+ 1/(2ν2i ) .

We now focus on computation of parameters which are different from CTM. Since these

are unique to our model, we present them in more detail.

Computation of Σ: Unlike in CTM, we have to compute one covariance matrix

given multiple means. Starting with (6.7) we can pose the problem as:

max
Σ

{

D

2
log |Σ−1| − 1

2

D
∑

d=1

Tr(diag(ν2d)Σ
−1)

−1

2
Tr
[

(L− F )TΣ−1(L− F )

}

,

(6.11)

with L = [λ1 · · · λD] where λd and νd denote the variational parameters associated

with document d. Taking the derivative with respect to Σ, we get

Σ =
1

D

(

D
∑

d=1

diag(ν2d) +
D
∑

d=1

(λd − Fed)(λd − Fed)
T

)

. (6.12)

Computation of F: The matrix F ∈ R
K×D is entirely new in our model. From

(6.7), the optimization problem over F can be posed as:

min
F

{

Tr
[

(L− F )TΣ−1(L− F )
]

+Tr
[

FK−1F T
]

}

(6.13)
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Taking derivative with respect to F and setting it to zero, we obtain the following

equation:

ΣF + FK =
D
∑

d=1

λde
T
dK . (6.14)

With A = Σ, B = K and C =
∑D

d=1 λde
T
dK, the equation is of the form: AF +FB = C.

The equation is known as the Sylvester equation, and it is widely studied in control

theory [85, 86]. A solution to the Sylvester equation exists if and only if no eigenvalue

of A is equal to the negative of an eigenvalue of B. In our case, since A and B are both

positive semi-definite, such a situation can arise only if A and B both have at least one

zero eigen-value. For that to happen, both Σ and K have to be singular, implying Σ−1

and K−1 are not well defined. Since Σ and K both act as covariance matrix/function of

a Gaussian distribution/process, we assume them to be full rank and positive definite.1

As a result, a solution to the Sylvester equation exists and can be obtained using

standard methods [86, 98].

6.3.3 Inference On New Documents

In the learning phase, one obtains the parameters (β,Σ) as well as the best F for the

training set. While applying the model on new documents, (β,Σ) will stay unchanged,

and we do variational inference to obtain parameters (λ, ν, φ, ζ) on the test set. Further,

using the fact that location of the mean µd = Fed is determined by a GP, we can use

GP regression to obtain estimates of document means in the test set.

First, consider one new document, so that the corpus is of size (D + 1). Let F̃ ∈
RK×(D+1) denote the matrix containing the means of the entire corpus so that F̃ =

[F F∗], where F∗ denotes the mean for the new document. Let f̃ = [f f∗] denote a

row of F̃ , where f corresponds to the first D documents and f∗ corresponds to the new

document. A kernel for the entire corpus can be expressed as follows:

K̃ =

[

Kf,f Kf,∗

K∗,f K∗,∗

]

,

1 One can generalize the models using pseudo-inserves, but we do not consider such generalizations
here.
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where K̃ ∈ R(D+1)×(D+1). From GP regression [96], we know that the posterior proba-

bility distribution p(f∗|f) can be expressed as:

p(f∗|f) =
1

(2π)1/2|K|1/2
exp

(

−(f∗ − f)2

2K

)

, (6.15)

where f ∈ R and K ∈ R+ is given by

K = K∗,∗ −K∗,fK−1
f,fKf,∗ (6.16)

f = K∗,fK−1
f,ff . (6.17)

Similarly we can obtain a posterior distribution for a collection of M new documents.

Let F∗ ∈ RK×M denote the matrix containing the means of the new documents and

F̃ = [F F∗]. Following the same steps as above, we note that each row fi,∗ of F∗

follows a multi-variate Gaussian distribution with mean equal to the row f i of F , where

F
T
= K∗,fK−1

f,fF
T , and covariance K = K∗,∗ − K∗,fK−1

f,fKf,∗. Since the rows of F∗ are

independent, the probability of the entire matrix is given by

p(F ∗|F, K̃) =
K
∏

i=1

p(fi,∗|F, K̃) =
1

(2π)K/2|K|K/2
×

exp

{

−1

2
Tr
[

(F∗ − F )K−1
(F∗ − F )T

]

}

.

(6.18)

With the above prior distribution on F∗ on the test set conditioned on the F from the

training set, the rest of the generative model for the test set remains the same as GPTM.

Introducing variational distributions as before, inference on new documents boils down

to optimizing the variational parameters and F∗ over the test set. The optimization

over the variational parameters are same as in the training set. Focussing on the terms

involving F∗, we get the following problem:

min
F∗

{

1

2
Tr
[

(L− F∗)
TΣ−1(L− F∗)

]

(6.19)

+
1

2
Tr
[

(F∗ − F )K−1
j (F∗ − F )T

]

}

,

where L = [λ1 · · · λM ] is the K ×M matrix of variational parameters λd on the test

set. The first order conditions lead to the following matrix equation:

ΣF∗ + F∗K =

(

D
∑

d=1

λde
T
d + F

)

K , (6.20)
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which is again a Sylvester equation. Note that the right hand side is affected by both

observed words in the test set in the form of λd and by the estimated mean F obtained

from training set documents.

6.4 Experimental Evaluation

In this section we evaluate GPTM both as a topic model and as an embedding method,

respectively in comparison to CTM and GPLVM.

Datasets: Our experiments are performed on 6 text data sets. Dif100, Sim100,

and Same100 are subsets of the 20Newsgroup data set, each having 300 data points

from 3 categories; CMU100 is a larger subset which contains 1000 documents from 10

categories. We also report experiments on NASA’s Aviation Safety Reporting System

(ASRS) dataset: ASRS is a subset of 1000 reports from 25 categories, and ASRS3 is a

subset of 788 documents from 3 categories.

Kernel Functions: We consider two kernels for our experiments: an unsupervised

nearest-neighbor kernel derived from the document vectors and a semi-supervised must-

link kernel derived from must-link constraints on some pairs of documents.

Let X = {x1, . . . , xD} denote a set of feature vectors represented by the word counts

in a given document. Let G = (V,E) be a k-nearest neighbor graph which is sym-

metrized by making sure that (xi, xj) ∈ E whenever (xj, xi) ∈ E. The graph neighbors

are determined using cosine similarity among the document vectors. The nearest neigh-

bor (NN) kernel is defined as:

KNN (xi, xj) =























γ exp
(

−d(xi,xj)
2σ2

)

if (xi, xj) ∈ E

c if i = j

0 otherwise ,

(6.21)

where d(xi, xj) = 1 − xT
i xj

‖xi‖‖xj‖
, and σ2, γ, c are constant parameters chosen to en-

sure KNN is positive definite. The parameters are tuned for each data set using cross

validation.

While KNN can be used in practice, constructing a kernel based on document vec-

tors may not be conceptually desirable from a generative model perspective. Note

that the experiments using KNN demonstrate the ability of our model to incorporate
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neighborhood information, which may come from supplemental information regarding

the documents. Further, GPTMs are not tied to the use of KNN . To illustrate the

effectiveness of GPTMs, we consider another kernel constructed purely based on semi-

supervised information, viz must-link constraints between certain pairs of documents,

without utilizing the documents themselves.

In particular, we consider a semi-supervised setting with a set C of must link con-

straints, i.e., if (xi, xj) ∈ C, then the documents are assumed to have the same label.

Using such a must-link constraint set, we define the must-link (ML) kernel as:

KML(xi, xj) =



















γ if (xi, xj) ∈ C

c if i = j

0 otherwise ,

(6.22)

where γ > 0 and c is chosen to ensure positive definiteness of KML. The parameters

are tuned per data set using cross validation.

Perplexity Computation: In our experiments we use test-set perplexity to eval-

uate variants of GPTM as well as compare GPTM to CTM. When comparing variants

of GPTM we compute perplexity as:

Perplexityw,F∗
= exp

(

−
∑M

i=1 log p(wi, F∗)
∑M

i=1Ni

)

, (6.23)

based on the joint likelihood of the test documents wi with MAP estimate F∗.

To compare our model to CTM, we compute conditional perplexity for GPTM as

follows:

Perplexityw|F∗
= exp

(

−
∑M

i=1 log p(wi|F∗)
∑M

i=1 Ni

)

(6.24)

Since the conditional distribution p(w|F∗) is a distribution over the space of docu-

ments, which is the same for CTM, the perplexity comparison is meaningful and fair.

We also consider additional measures, including topics inferred, document embeddings

generated, and classification performance using the embeddings, to get a better under-

standing of their comparative performance.
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Table 6.2: Perplexity on hold out test set.

CTM GPTM KML GPTM KKNN

Dif100 1231 ± 32 1195 ± 49 1183± 36

Sim100 1720 ± 19 1706 ± 22 1684± 21

Same100 761± 6 758 ± 6 755± 12

ASRS 491± 8 488 ± 8 483± 3

News100 2944 ± 83 2943 ± 66 2936± 82

6.4.1 GPTM vs. CTM

We report perplexity results comparing CTMs with GPTMs using both the ML-kernel

and the NN-kernel with neighborhood k = 10 in Table 6.2. Perplexity was evaluated

on a held out test-set using five-fold cross validation and the number of topics set to

three. Compared to CTMs, we observe mild to moderate improvements in perplexity

across all datasets for GPTMs using both kernels. Thus, in terms of perplexity on the

test-set, GPTMs are better or at least as good as CTMs. For GPTMs, the NN-kernel

appears to perform mildly better compared to the ML-kernel.

Table 6.3: Topics extracted by CTM from 20Newsgroup data

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
car plant echo pittsburgh system god
oil court list period mac existence

brake scsi motif lemieux files exist
fluids disk xterm stevens disk islam
tires cement set play file standard
dot data mailing power comp science

convention ram host njd software atheism
abs card mail scorer ftp religion

braking property sun pgh sys religion
cars atlantic school islanders macintosh laws

We also qualitatively examined the topics obtained by both models. In Tables

6.3,6.4 and 6.5 we list the 10 most likely words for some of the topics obtained from the

News100 dataset. As is evident, GPTMs returns topics which appear as interpretable

as those obtained by CTM. Taking a closer look, we can see that some of the topics
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Table 6.4: Topics extracted by GPTM using K = KNN and the 20Newsgroup data

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
car convention drive play system god
oil don disk power mac good

brake party hard period files islam
fluids people drives pittsburgh disk exist
tires price bios islanders comp pain
dot business controller hockey file laws
abs hess floppy scorer software thing
cars karl card pts macintosh time

braking institute rom jersey sys existence
system libertarian scsi good ftp faith

appear more coherent in GPTMs. For example, Topic 1 in CTM contains car part

related words and the word convention. In GPTM with NN-kernel, we have a topic

on car parts (Topic 1), and a topic about the liberterian party convention held at the

Karl Hess business institute (Topic 2). Topic 2 in CTM appears to be memory related,

along with words such as plant, court, cement, and atlantic. While in GPTM with

KNN the corresponding topic (Topic 3) appears only memory related. The two versions

of GPTM produce rather similar topics. With KML the hockey topic appears more

generic, possibly because there are multiple hockey related documents within the same

class. While these are only anecdotal examples, the bottom line is that both CTMs and

GPTMs produce high quality interpretable topics.

6.4.2 Variants Of GPTMs

We compare four variants of GPTMs to understand the value of the topic covariance

matrix Σ and the kernel matrix K. In particular, we consider: (i) GPTM-SI-KI, where

both Σ and K are identity matrices. Since correlation among topics and similarity among

documents are not considered, this model is closest to LDA in spirit; (ii) GPTM-KI,

where K is identity but Σ is learnt from the data. This model is closest in spirit to

CTM; (iii) GPTM-SI, where Σ is identity and K is set to either KNN or KML. This

model is similar to LDA with a kernel over documents; and (iv) GPTM, where Σ is

learned from data and K is either KNN or KML.
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Table 6.5: Topics extracted by GPTM using K = KML and the 20Newsgroup data

Topic 1 Topic 2 Topic 3 Topic 4 Topic 5 Topic 6
car liberation drive team system god

brake committee tape hockey mac morality
oil institute scsi game files atheism

fluids president problem players ftp moral
dot hess dos games file existence
abs karl windows play disk exist
tires business system year comp standard

braking national floppy nhl software faith
system defense cable player sys good
cars college computer playoffs macintosh true

Table 6.6: Different Variants of GPTM. Performance improves as more informative
kernel and covariance matrices are considered.

GP-SIKI GP-KI GP-SI KML GP-SI KKNN GPTM KML GPTM KKNN

Dif100 1264 ± 47 1232 ± 29 1198 ± 46 1138 ± 42 1121 ± 40 1095± 53

Sim100 1778 ± 51 1741 ± 51 1720 ± 46 1656 ± 41 1639 ± 46 1610± 37

Same100 829 ± 21 792 ± 11 745 ± 28 633 ± 14 638 ± 12 608± 10

ASRS 514 ± 11 508 ± 7 472 ± 7 485 ± 9 466± 9 467 ± 7

News100 3093 ± 89 3047 ± 56 2911 ± 65 2877 ± 79 2818 ± 51 2769± 86

Table 6.2 shows the perplexity numbers on a held out test set using five fold cross-

validation. We observe a consistent ordering in terms performance. GPTM-SI-KI per-

forms worst, followed by GPTM-SI, GPTM-KI, and GPTM performs the best. The

fact that GPTM-KI performs better than GPTM-SI-KI is consistent with the observa-

tion that CTM outperforms LDA. The comparison between GPTM-KI and GPTM-SI

shows that GPTM-SI has a consistent better performance possibly implying the kernel

adds more value in terms of perplexity than the topic covariance matrix. Finally, the

full GPTM outperforms all the special cases. The results clearly illustrate the value in

having a suitable kernel over the documents.

Comparing the two different Kernels in GPTM, KNN fairly consistently results in

better perplexity numbers. Interestingly, as far as perplexity is concerned, the nearest

neighbor information appears more valuable compared to must-link constraints among
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the documents.

6.4.3 Embeddings

We investigate the embeddings obtained by CTM, GPLVM and GPTM using the kNN

kernel. With GPLVM a separate derivation of updates is required for different Kernels.

We used an existing implementation based on the RBF Kernel. Due to space constraints,

we only show results on Dif100 and ASRS3 (Figure 6.3). The number of topics is set

to the correct number of classes for all models and datasets. For CTM we plot λ, for

GPLVM we plot the embedded points and for GPTM we plot F . Similar to CTM,

for K topics, the degrees of freedom in η for GPTMs is K − 1 since it eventually

gets mapped to the topic simplex. Thus, following CTM, we display the embedding in

(K − 1) dimensions. The data points are colored based on their true class label. Note

that the CTM embeddings are based on the document structure as provided by the

topic model, while GPLVM embeddings are based on the kernel and observed features.

GPTM leverages both the topic structure of words as well as the provided kernel.

From Figure 6.3, we note that for each dataset GPTM produces an embedding where

the classes are most cleanly separated. The kernel appears to be helping in preserving

the neighborhood structure of the documents which is coherent with the class labels.

The better embeddings also help explain why the perplexity goes down when the kNN-

Kernel is used.

In Figure 6.4, we illustrate that the kernel can indeed provide control over document

embeddings using the semi-supervised ML kernel defined in (6.22). We show results on

the final embedding using this kernel on Dif100 and ASRS3 using 10, 100, and fully

labeled points. Labels are converted to constraints using transitive closure. If we know

the class labels (partially) upfront, the question is can we incorporate this knowledge

into the topic model? As shown in Figure 6.4, in each data set, the classes become

increasingly separated with additional labeled points while maintaining the structure

in each class. The effect is especially evident in Figure 6.4(f), where the red and blue

classes remain somewhat intertwined even with the fully labeled data.

Finally, we apply support vector machines on the embeddings generated by CTM,

GPLVM, and GPTM using the must-link kernel. For CTMs and GPLVMs, the partially

labeled data is used only for training the SVM. For GPTMs, they are used to determine
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Figure 6.2: The SVM algorithm is applied to the respective outputs of CTM, GPTM
and GPLVM.

the ML kernel in GPTM as well as for training the SVM. Due to space constraints, we

show results only on Dif100 and ASRS3 in Figure 6.2. The SVM is trained with an RBF

Kernel, and the parameters are tuned using 5-fold cross validation. The classification

results show that GPTM produces embeddings with the best class separability and

lowest error rates.

6.5 Discussion

In this section we briefly discuss computational aspects in GPTMs and how GPTMs

compare to CTMs in terms of capturing topic correlations.

6.5.1 Computational Aspects

There are two major new computational aspects in our model. One pertains to the

inversion of the D × D kernel matrix during GP regression on the test set, and the

second is the solution of a Sylvester equation.

The inversion of the kernel matrix is something that most GP based models have

to perform [96]. In recent years, progress has been made on making the computation

scalable. For example, several sparsity-based approaches [99, 100] have been developed,
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Figure 6.3: Embeddings obtained from CTM, GPLVM, and GPTM without using class
label information. GPTMs separate the classes better than CTM and GPLVM (Best
viewed in color).

which can be readily leveraged in GPTMs. We will explore such approaches in future

work.

Solving the Sylvester equation repeatedly is an important computational step in

GPTMs. The equation has two matrices: the K × K topic covariance matrix Σ and

the D×D kernel matrix K, where D ≫ K. During learning, the smaller matrix Σ gets

updated iteratively whereas the bigger matrix K is fixed. Using the fact that K does

not change during training, computations involved in solving the Sylvester equation

repeatedly can be speeded up significantly. In the test set, since both Σ and K are fixed

and only the variational parameters λd on the test set get iteratively updated, repeated

solution of the Sylvester equation can also be done efficiently.
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Figure 6.4: Semi-supervised embeddings from GPTM using ML kernel. As more la-
beled points are considered, GPTM separates the classes better while preserving topic
structure. (Best Viewed in Color)

6.5.2 Topic Correlations

Throughout this chapter we have made comparisons between GPTMs and CTMs. While

both models have a topic covariance matrix Σ, the type of information captured in Σ is

somewhat different in GPTMs, as a result the covariance matrices in these two models

cannot be directly compared.

Consider an example where we model only two topics. A level set of the prior distri-

bution for CTMs is an ellipse over the topic space in R
2. In GPTMs, each document has

its own mean in R
2 drawn from the GP. As a result, a level set of the prior for GPTMs

involve D ellipses (possibly overlapping/merged) with the same axes but different cen-

troids. In other words, GPTMs consider D different Gaussians with different means but

the same covariance matrix. In principle, one can consider different covariance matrices
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in different parts of the topic space. Such extensions will be considered in future work.

The topic covariance Σ in CTMs is inferred only based on the observed words. On

the other hand, in GPTMs, the estimated covariance matrix Σ also has a dependency

on F which in turn depends on the kernel K. While Σ in GPTMs may not capture the

exact same information as that in CTMs, as shown in Table 6.6, the performance in

terms of perplexity improves when a non-identity covariance matrix is considered.

6.6 Conclusions

We have introduced a novel family of topic models called GPTMs which can take ad-

vantage of both the topic structure of documents and a given kernel among documents.

GPTMs can be viewed as a systematic generalization of CTMs which leverages a kernel

over documents. The kernel is used to define a GP prior over the topic mixing propor-

tions of documents ensuring that similar documents according to the kernel have similar

mixing proportions apriori. The final topic proportions for each document depend both

on the kernel as well as the observed words. As our experiments illustrate, with a suit-

able kernel choice our model can provide good results both in terms of extracted topics

as well as the resulting embedding. In particular the kernel allows semi-supervised

information to be incorporated into the model, and we illustrate that increased semi-

supervision leads to better class separability in the topic space.



Chapter 7

Object-Oriented Machine

Learning Toolbox for MATLAB

(MALT)

In this chapter we describe MALT, a powerful object-oriented Machine Learning tool-

box, which was developed as a framework for conducting all empirical evaluations in

this thesis.

7.1 Motivation

Most currently available machine learning code is written in terms of non-object oriented

functions. When utilizing other people’s code, several time-consuming challenges may

arise. The code in many instances may not be well-documented or easy to use. Further

the assumed data formats may be very different from algorithm implementation to

implementation.

For instance, if we are interested in running experiments which utilize existing code

for Support Vector Machines (SVMs) and Boosting, we may find ourselves confused as

to what parameters one can use and how to pass them, unless the code is thoroughly

documented. Further we may find that the SVM and Boosting implementations assume

different data formats. As a result utilizing provided code can be very costly. Our
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Figure 7.1: MALT framework. Allows algorithms to be plugged in. Provides unified
parameter passing, repositories, and generic cross validation.

goal was to provide a framework which unifies how parameters are passed, thereby

minimizing the need to study usage. Further our objective was to introduce a uniform

data format for all algorithms to make comparisons easier.

Challenges can also arise when experiments on self-developed code are conducted.

Every algorithm utilizes different parameters. As a result cross-validation has to be

written over and over again, taking into consideration different usages of different algo-

rithms. Another issue may arise when experiments are conducted on shared resources.

After running cross-validation for 2 weeks, someone may shut down a machine. Our

framework was designed to provide a cross-validation method in a generic sense, mean-

ing that it works with all algorithms, irrespective of what parameters they accept. The

cross-validation method in MALT was also built to withstand interruptions. If compu-

tations are interrupted, they can be resumed.

MALT is an object-oriented MATLAB toolbox, created with the intention to ad-

dress challenges that arise with empirical evaluations in Machine Learning and Data

Mining. It allows a researcher to conduct experiments very efficiently and obtained

auto-generated graphs with little effort.

Currently there is no other Machine Learning package which can accomplish the

same. WEKA is on of the most well known machine learning packages. However, it
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is written in JAVA. While it works well, setting up experiments, adding self-developed

code and figuring out how to use functions, can take up a lot of time.

Spider is another object-oriented package for MATLAB. It is a very useful package

which illustrates the power of object-oriented design. However, the framework does not

follow object-oriented principles as strictly as MALT. It also does not allow incremental

cross-validation, or the ability to use repositories and arbitrary data sets.

7.2 MALT Features

Rather than describing the design of MALT we will highlight some of its features.

7.2.1 Unified Passing of Parameters

Each algorithm in the MALT framework is invoked in the same fashion and it returns

results in the same way. Parameters are passed within an object, which means the user

does not have to memorize the order of parameters. This unified interface is powerful

because the time one has to spend with reading documentation is minimal.

7.2.2 Generic Data Sets

MALT has its own data set format. Unlike spider however, it allows for arbitrary data

sets to be stored. In text modeling problems features might be represented by word

counts. One might even be interested in knowing what the words are. MALT allows

the user to store arbitrary components of a data set.

7.2.3 Generic Cross Validation

The MALT framework provides a generic cross validation algorithm. The user can plug

in any algorithm into the framework and will be able to produce cross validation results.

7.2.4 Incremental Cross Validation and Reruns

Unlike any existing package, MALT provides the ability to run cross validation incre-

mentally. In other words existing cross validation results can be extended by adding

one algorithm, without having to rerun anything else. Interruptions of experiments, or
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Figure 7.2: Unified use of algorithms.

the desire to add additional methods to existing results do not pose a problem with

MALT. Another very useful feature is the ability to rerun only one algorithm, given an

existing cross validation result.

7.2.5 Built-in Repositories

Repositories in MALT are objects which represent primitive databases. They allow data

set, result sets, or anything else to be stored. For instance one can create a repository

of datasets used in a particular experiment, and use them conveniently. Repositories

can also be used to speed up algorithms. For example if k-nearest neighbors have to be
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Figure 7.3: Data sets represented by a collection of components.

repeatedly computed in cross validation, one can precompute them and deposit them

in a repository. This is another useful feature which can only be found in MALT.

7.2.6 Auto-Generated Plots

Results produced by cross validation are objects which can be plotted right away. The

result set object fully labels the graph, making it publication ready.
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Figure 7.4: Generic Cross Validation

Figure 7.5: Repositories represent primitive and easy to use storage containers.



Chapter 8

Conclusions

In this thesis we have illustrated how the concept of dimensionality reduction can play

a very important role beyond preprocessing and visualizing of data. In the first part

of the thesis we have utilized semi-supervised dimensionality reduction to gain a better

understanding of an entire family of semi-supervised predictive methods. As a result

we have introduced novel label propagation algorithms based on exiting manifold em-

bedding methods. We have also empirically illustrated that the proposed approaches

are competitive in performance with the state-of-the-art methods in label propagation.

The implication is that potential advances in non-probabilistic dimensionality reduction

methods would translate to label propagation.

When it comes to probabilistic dimensionality reduction methods we attack a very

important problem in statistical machine learning, namely modeling of matrices while

capturing covariance dependencies across each dimension. We first introduced BMR, a

very simple and scalable approach for mutli-label classification. The empirical evalua-

tions indicates a number of favorable properties, including a competitive performance

and high scalability.

With Probabilistic Matrix Addition we propose a model for arbitrary size real-valued

matrices. Our model is closely related to the Linear Model of Corregionalization, which

has a rich background in the field of Geostatistics. We illustrate through experimental

evaluation that the PMA is approach is very competitive with the state of the art in

multi-label classification. Further we illustrate competitive performance compared to

Probabilistic Matrix Factorization when it comes to missing value prediction.
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To illustrate the power of PMA and its use as part of a bigger model, we apply PMA

as the prior in a topic model. With it we introduce the first topic model capable of cap-

turing the covariance among topics while modeling the covariance among documents.

The experiments illustrate the ability of the model to incorporate semi-supervised in-

formation without sacrificing the interpretability of topics.

In this thesis we have illustrated how intricate dependencies can be modeled effec-

tively while dealing with high dimensional data. In particular we have introduced a

new family of matrix priors, which move away from the i.i.d assumption and are appli-

cable to a wide variety of applications. Our work is grounded in its relationship to the

research from the field of Geo-statistics, in particular the Linear Model of Corregional-

ization. Furthermore we have illustrated the effectiveness of the idea when applied to

Topic Modeling.

A possible extension of the work presented in this thesis would be to consider higher

dimensional data structures such as tensors. In the case of tensors, for each dimension

one would sample a tensor. The final output would be the sum of all the generated

tensors. Due to the sparse dependency structure in PMA, a tensor extension would not

be problematic.
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[74] W. Cheng and E. Hüllermeier. Combining instance-based learning and logistic

regression for multilabel classification. Mach. Learn., 76(2-3):211–225, 2009.

[75] Y. Zhang and Z. Zhou. Multi-label dimensionality reduction via dependence max-

imization. In AAAI, 2008.

[76] S. Ji and J. Ye. Linear dimensionality reduction for multi-label classification. In

IJCAI 09: Proceedings of the 22nd International Joint Conference on Artificial

Intelligence, 2009.

[77] G. Chen, Y. Song, F. Wang, and C. Zhang. Semi-supervised multi-label learning

by solving a sylvester equation. In SDM, 2008.

[78] C. G. M. Snoek, M. Worring, J. C. Van Gemert, J. Geusebroek, and A. W. M.

Smeulders. The challenge problem for automated detection of 101 semantic con-

cepts in multimedia. In In Proceedings of the ACM International Conference on

Multimedia, pages 421–430. ACM Press, 2006.

[79] M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene

classification. Pattern Recognition, 37(9):1757–1771, 2004.

[80] K. Trohidis, G. Tsoumakas, G. Kalliris, and I. Vlahavas. Multilabel classification

of music into emotions. In ISMIR, 2008.

[81] J. Read, B. Pfahringer, G. Holmes, and E. Frank. Classifier chains for multi-label

classification. In Proc 13th European Conference on Principles and Practice of

Knowledge Discovery in Databases and 20th European Conference on Machine

Learning, 2009.

[82] R. Silva, W. Chu, and Z. Ghahramani. Hidden common cause relations in rela-

tional learning. In NIPS 07: Proceedings of the 20th Annual Conference on Neural

Information Processing Systems, 2007.

[83] Z. Xu, K. Kersting, and V. Tresp. Multi-relational learning with gaussian pro-

cesses. In IJCAI 09: Proceedings of the 22nd International Joint Conference on

Artificial Intelligence, 2009.



120

[84] D. M. Higdon. Space and space-time modelling using process convolutions. In

Quantitative methods for current environmental issues, pages 37–56. Springer-

Verlag, 2002.

[85] G. Golub et al. A Hessenberg-Schur method for the problem AX + XB= C. IEEE

Transactions on Automatic Control, 24(6), 1979.

[86] E. L. Wachspress. Iterative solution of the Lyapunov matrix equation. Applied

Mathematics Letters, 1(1):87–90, 1988.

[87] A. J. Laub. Matrix Analysis for Scientists and Engineers. SIAM, 2005.

[88] Z. Zhou and L. Zhang. Multi-instance multi-label learning with application to

scene classification. In NIPS 06: Proceedings of the 19th Annual Conference on

Neural Information Processing Systems, 2006.

[89] G. Pandey, C. Myers, and V. Kumar. Incorporating functional inter-relationships

into protein function prediction algorithms. BMC Bioinformatics, 10(1):142+,

2009.

[90] P. Boyle and M. Frean. Dependent Gaussian processes. In NIPS 05: Proceed-

ings of the 18th Annual Conference on Neural Information Processing Systems,

volume 17, pages 217–224. MIT Press, 2005.

[91] M. Alvarez and N. D. Lawrence. Sparse convolved gaussian processes for multi-

output regression. In NIPS 08: Proceedings of the 21st Annual Conference on

Neural Information Processing Systems, pages 57–64, 2008.

[92] W. Chu, V. Sindhwani, Z. Ghahramani, and S. Sathiya Keerthi. Relational learn-

ing with Gaussian processes. In NIPS 07: Proceedings of the 20th Annual Con-

ference on Neural Information Processing Systems. 2007.

[93] D. M. Blei et al. Latent dirichlet allocation. Journal of Machine Learning Re-

search, 3:993–1022, January 2003.

[94] J. Chang and D. Blei. Relational topic models for document networks. In Pro-

ceedings of the Twelfth International Conference on Artificial Intelligence and

Statistics, 2009.



121
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