Skip to main content
Investigation of core failure during excavation.
Wilk, Stephen Thomas (2012)
 

Title 
Investigation of core failure during excavation.

Issue Date
2012-08

Type
Thesis

Abstract
An increasing need to determine the in-situ stress state through indirect methods such as core disking has spawned much research over the past few years. While laboratory and field work have brought knowledge to the topic, many issues associated with these approaches have led to a reliance on numerical models for analysis. It is imperative that these numerical methods replicate the failure process and disk thicknesses, which are then related to a component of the in-situ stress state.</DISS_para> <DISS_para>The constitutive model of tensile softening was used to both replicate previous laboratory experiments and match the general relation between disk thickness and major principal stress. The failure process was analyzed in detail for various stress magnitudes along with size effect. Also, laboratory experiments involving the excavation of cores in a stressed rock were performed to investigate the effect of core damage on measured elastic parameters. It was determined that when the vertical stress σv = 0 and horizontal stresses σH = σh = 75 - 85% Co, where Co = uniaxial compressive strength, Young's modulus can decrease about 10% from the coring process.

Description
University of Minnesota M.S. thesis. August 2012. Major: Civil Engineering. Advisors: Professors Joseph F. Labuz and Charles Fairhurst. 1 computer file (PDF); iii, 90 pages, appendices A-B.

Suggested Citation
Wilk, Stephen Thomas. (2012). Investigation of core failure during excavation.. Retrieved from the University of Minnesota Digital Conservancy, http://purl.umn.edu/135608.


Content distributed via the University of Minnesota's Digital Conservancy may be subject to additional license and use restrictions applied by the depositor.