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Abstract

Natural convection in a horizontal fluid-superposed porous layer heated locally from

below is studied in this thesis. This problem occurs in numerous engineering and geophysical

systems, such as fibrous and granular thermal insulations, water reservoirs, grain storage

installations, solid-matrix heat exchangers, solidifying castings, and post-accident cooling

of nuclear reactors. In nature, thermal circulation in lakes, shallow coastal areas and other

reservoirs occurs in a system having a fluid layer superposed on top of a porous matrix

that is heated locally at the base. In spite of its fundamental nature, there are virtually

no studies in the literature pertaining to this problem. To address this shortcoming, the

fundamental aspects of this problem are studied in this work.

The goal of the thesis is to study how free convective heat transfer in a composite

layer with a localized bottom heat source is affected by parameters such as the size of the

heat source, the fluid-to-porous layer height ratio, the Darcy number, the aspect ratio, the

solid-to-fluid conductivity ratio, and the fluid Prandtl number. To that end, two particular

aspects of the problem are studied: (a) the steady-state and transient flow and temperature

fields, and (b) measurement and prediction of the overall heat transfer characteristics of the

system.

A numerical approach has been used to study the development of the temperature

and flow fields in the system and predict overall heat transfer rates. A one-domain formu-

lation, which uses a single set of governing equations to model fluid flow and heat transfer

throughout the entire composite domain, is used. To solve the governing equations, a con-

trol volume based numerical solution technique is used. Results show that the nature of

convective motion in a composite system with a localized bottom heat source is identical to

that observed when the base is uniformly heated. A cellular flow pattern is observed with

flow penetration occurring from the overlying fluid layer to the underlying porous layer.

Penetration, however, is significant only near the fluid-porous layer interface. The overall

heat transfer coefficients are found to depend strongly on the heater length, height ratio,

and the fluid-to-porous layer conductivity ratio, while the effects of the aspect ratio and the

fluid Prandtl number are not very significant. The effect of the Darcy number is moderate

up to Darcy numbers of 10−3 beyond which there is a sudden increase in heat transfer

coefficients.

Experiments are performed to validate the numerical solutions and develop empir-

ical Nusselt-versus-Rayleigh number correlations. Experiments are conducted in a cubical
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chamber with 3 mm DIA glass beads as the porous layer and distilled water as the satu-

rating fluid. Two different heater lengths and three different height ratios are investigated.

Experimental results confirm the numerical predictions that the Nusselt number increases

with a decrease in the heater length and an increase in the height ratio. However, significant

numerical differences are seen when experimental and numerical results are compared. The

most likely reason for the observed discrepancy is the implementation of the one-domain

model for the numerical solution. This discrepancy calls into question the results of prior

numerical studies for the fully heated bottom which have used a one-domain formulation

and emphasizes the necessity of validation via experiment.
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Chapter 1

Introduction

1.1 Background

A porous medium can loosely be defined as a solid with an interconnected void space

that is filled with one or more fluid phases [1]. Figure 1(a) shows a schematic diagram of

an idealized porous medium that is comprised of uniform spherical particles saturated with

a single fluid. In general, however, porous media, especially naturally occurring ones, have

an irregular geometry as shown in Figure 1(b). Porous media are ubiquitous in nature

and can also be found in several engineering applications. Examples of naturally occurring

porous media include beach sand, sandstone, limestone, rye bread, wood, and the human

lung, while engineering applications involving porous media include packed bed reactors,

geothermal energy extraction, energy storage devices, and thermal insulation systems.

Due to the wide range of situations in which porous media are encountered, the

study of heat transfer in these systems has received great deal of attention from both the

scientific and engineering communities. One particular problem that has attracted signif-

icant attention is that of natural convection in horizontal porous layers uniformly heated

from below. Beginning with the pioneering studies of Horton and Rogers [2] and Lapwood

[3], this problem, which constitutes the porous media equivalent of the Rayleigh-Bénard

problem for pure fluids, has been studied extensively over the last fifty years. Several vari-

ations of this problem have also been studied in great detail. These include convection

in multi-layered porous media, convection with localized heat sources, and convection in

anisotropic porous media. These studies have been primarily motivated by practical ap-

plications, such as the disposal of high level nuclear wastes in deep geological repositories,

cooling of electronic devices, design of energy efficient buildings, and geothermal energy

extraction. This problem is also important from a fundamental scientific perspective as it

an example of a system where a well-defined flow structure develops from an initial random
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Figure 1.1: Schematic diagram of (a) an idealized saturated porous medium, and (b) a
naturally occurring porous media.

disturbance and therefore allows for a fundamental investigation of stability modes. Ad-

ditionally, the mathematical formulation of the problem is one of the simplest non-linear

elliptic systems. As a result, it has been an ideal test problem for numerous numerical

studies. Indeed, the amount of literature available on this topic is a measure alone of its

scientific importance. Excellent review articles by Combarnous and Bories [4] and Cheng

[5] give detailed accounts of the early advances in this field while, more recently, books by

Neild and Bejan [1] and Kaviany [6] give a comprehensive overview of the current state of

research in this area.

An important variation of this problem is that of natural convection in a horizontal

composite system that consists of a fluid layer overlying a porous layer saturated with the

same fluid. This problem is of great importance from a geophysical perspective. Thermal

circulation in lakes and shallow coastal areas, flows in geysers and hot springs, and solutal

convection in sub-soil water reservoirs are all examples of this problem. This problem also

arises in several engineering and industrial applications such as fibrous and granular ther-

mal insulations, water reservoirs, grain storage installations, solid-matrix heat exchangers,

solidifying castings, and post-accident cooling of nuclear reactors.
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In spite of this universality, however, this problem has not been investigated in great

depth. Most existing studies on this topic deal with the problem of onset of convection in

composite system heated uniformly from below [7-19]. These studies have identified several

important aspects of this problem, most importantly the fact that convection in such a

composite system has a bimodal character and that the wavelength of the convective mode

at the onset point depends on the fluid-to-porous layer height ratio [9]. Even then, existing

studies do not agree on an exact critical point. This is primarily due to the fact that there

is no agreement on the most accurate approach to modeling fluid motion in this system. In

particular, there has been extensive debate on the appropriate form of the boundary con-

ditions at the porous-fluid layer interface. Three different modeling approaches have been

proposed and all of them predict somewhat different critical onset points. In recent years,

there has been much work [15-19] in reconciling the different models and identifying reasons

for the observed discrepancy of the results. However, the lack of conclusive experimental

studies has led to the problem being, as yet, unresolved.

Similarly, the overall heat transfer characteristics of the system at high Rayleigh

numbers are not very well understood. Only a handful of studies have explored this problem

from a theoretical [20-23] perspective, and they report widely different results. This can, in

part, be attributed directly to the different modeling approaches adopted in these studies.

A comprehensive set experimental studies by Prasad and co-workers [24-26] are available

but they have not been confirmed by other investigators. Also, no direct comparison of

experimental and theoretical studies at high Rayleigh numbers has been published which

has further compounded the validation of the numerical studies.

Another significant shortcoming of the literature on the dual-layer convection prob-

lem is that almost all existing studies consider the case where the composite layer is uni-

formly heated from below. A uniformly heated bottom, however, is most often an ideal-

ization that is rarely realized in nature where, many a times, the heat source is a local or

concentrated one. This is especially true in geophysical environments where troughs of vol-

canic debris act as localized heat sources. In addition, many practical situations involving

fluid-superposed layers deal with localized heat sources. It has been shown that in porous

layers heated locally from below, the evolution of the temperature and flow fields, and

also the overall heat transfer coefficients, are markedly influenced by the size of the heat

source. As such, it is vital to examine the problem of natural convection in fluid-superposed

porous layers heated locally from below. However, an extensive search of the literature of

the last thirty years has yielded minimal information pertaining to this particular problem.

This is a major shortcoming of the current state of knowledge of this topic which needs to

be addressed in order to obtain a complete understanding of the problem and its various
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aspects. To meet this goal, a thorough investigation of the problem of convection in fluid-

superposed porous layers is undertaken in this thesis with an emphasis on the particular

case of a localized bottom heat source.

1.2 Aims and objectives of the thesis

The primary aim of this thesis is to present a study of natural convection in horizon-

tal fluid-superposed porous layers heated locally from below. The principal objective is to

make a fundamental contribution to the existing literature on convection in porous layers.

As this problem has not been studied previously, this thesis will add to prior studies on this

topic and thus help to put together a complete overall picture of this problem. In order to

meet these objectives, it is important to understand how the presence of a localized heat

source at the base of a fluid-superposed porous layer causes flow instability and influences

the evolution of the flow and the temperature fields. It is also desirable to understand the

heat transfer characteristics of this system and its dependence on various parameters such

as the size of the heat source, the fluid layer-to-porous layer height ratio, the particle size,

the aspect ratio of the problem domain, the solid-to-fluid conductivity ratio, and the fluid

Prandtl number. Therefore, the bulk of the present work is aimed at studying, in detail, the

effects of the aforementioned parameters across a wide range of Rayleigh numbers with par-

ticular emphasis on the high Rayleigh number range that is important for most engineering

applications.

A complete study of the effects of each individual parameter on the overall heat

transfer rate and flow and temperature fields is however a formidable task. In order to

systematically analyze the problem, it is studied from both a theoretical and experimental

perspective. These two approaches are adopted for separate purposes. The theoretical

component of the study focuses on numerically solving the governing equations of mass,

momentum and energy conservation in order to understand the steady-state velocity and

temperature fields, as well as to predict of the overall heat transfer rates. The advantage of

numerical simulation is that the effects of each of the independent controlling parameters

can be studied separately in detail to yield a comprehensive set of results for all the cases.

An experimental study of comparable breadth would require enormous resources and is thus

not feasible. Additionally, accurate experimental data is difficult to obtain for low Rayleigh

numbers because of the high levels of uncertainty in the measurements. However, there

are some limitations inherent in the numerical solutions which have to be addressed with

experimental studies. First, the accuracy of the numerical results is open to question in the

light of the fact that there is yet no universally accepted mathematical model for fluid flow

in a dual-layer system. In addition, the highly non-linear nature of the governing equations
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at high Rayleigh numbers makes it computationally feasible to obtain numerical solutions

only up to moderately high Rayleigh numbers; at higher Rayleigh numbers, computational

costs can be prohibitive.

These drawbacks can be addressed by the experimental component of the study. A

carefully designed set of experiments is sufficient to determine the validity of the numeri-

cal model. Additionally, these experiments can help in conclusively determining the most

appropriate mathematical model for natural convection in a fluid-superposed porous layer

system. Also, as opposed to the numerical simulations, it is much easier to obtain measure-

ments of heat transfer rates at high Rayleigh numbers. Thus measurements will be made

at high Rayleigh numbers for the most important parameters. A combination of numerical

and experimental results can then be used to create a data set of heat transfer rates over a

wide range of Rayleigh numbers for the most important controlling parameters. Therefore

a combination of numerical and experimental studies will be necessary to meet the aims of

this thesis.

1.3 Structure and organization of the thesis

In the next chapter, the literature relevant to the problem at hand is reviewed in

detail with a particular emphasis on studies published over the last twenty five years. In

particular, studies on convection in porous layers with uniform and localized heat sources,

and in fluid-superposed porous layers heated uniformly are reviewed. The mathematical

model and the numerical solution technique are discussed in detail in the following chapter.

Chapter 4 discusses the numerical results in detail. Subsequently the design of the experi-

mental setup is discussed. Chapter 6 gives the experimental results along with a comparison

with selected numerical results. Finally the conclusions of the thesis are given along with

recommendations for future work.
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Chapter 2

Literature Review

As mentioned earlier, the literature pertaining to the problem being studied in this thesis

is very limited. However there is an extensive amount of literature on natural convection in

porous and fluid-superposed porous layers. These studies are of fundamental importance as

they identify the salient parameters that affect convection heat transfer in porous media. A

thorough review of the relevant literature will thus provide the framework within which a

coherent definition for the current problem can be constructed. To that end, the literature

on convection in porous layers heated uniformly from below is reviewed first. Thereafter,

the literature on porous media convection with localized bottom heat sources is studied.

Finally, studies on convection in fluid-superposed porous layers heated uniformly from below

are discussed. Based on these studies, it will be possible to identify the factors that are

most likely to play a significant role in the present study.

2.1 Natural convection in horizontal porous layers heated uniformly

The problem of natural convection in a horizontal porous medium heated from

below can be schematically represented as shown in Figure 2.1. This problem was first

studied over fifty years ago by Horton and Rogers [2] with the aim of understanding the

movement of convection currents in deep geological layers. Performing a linear stability

analysis, they found that the convection occurs when Ram = 4π2, where Ram is the porous

medium Rayleigh number. This problem was studied independently by Lapwood [3], who

obtained an identical condition for the onset of convection. Since then, an extensive amount

of work examining the various aspects of this problem has been done. As such, it would not

be possible to give an exhaustive literature review of the subject. Instead, the literature

review will focus on studies which are relevant to the problem at hand and can provide

crucial insights into the fundamental aspects of the problem. Of particular importance

are the experimental studies which measure the heat transfer characteristics of natural
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Figure 2.1: Schematic of the basic problem of natural convection in a horizontal porous
layer heated uniformly from below.

convection in a porous layer.

A large number of experimental studies on natural convection in horizontal porous

layers heated uniformly from below are available in the literature. Figure 2.2 shows a

compilation of the primary experimental data for this problem [27]. The principal aim of

experimental studies in this area has been to obtain a relationship of the form Num =

C × Ranm, where C and n are constants, and the Nusselt number, Num, and Rayleigh

number, Ram, are,

Num =
hH

km
, (2.1)

Ram =
gβKH∆T

ναm
. (2.2)

Here, km and αm are the effective stagnant conductivity, and the diffusivity of the

porous medium respectively and are,

km = φkf + (1− φ) km, (2.3)

αm =
km

(ρcp)m

, (2.4)

where φ is the porosity of the porous medium, and (ρcp)f is the heat capacity of the

saturating fluid.
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Figure 2.1. Nusselt number versus Rayleigh number relationship found for porous
media heated from below.

is the Rayleigh number for the fluid phase, and

Da =
K

H2
, (2.3)

is the Darcy number.

Continuing the Rayleigh-Bénard analogy, many investigators have sought to exper-

imentally verify the onset of convection predicted by the linear stability analysis.

Additionally, they sought to characterize the Nusselt number versus Rayleigh num-

ber relationship in a porous medium.

Schneider (1963) conducted experiments with a vertical porous layer heated from the

side. Several solid-fluid combinations were employed in his experiments. By analogy

with the Rayleigh-Bénard problem, Schneider expected a unique relationship between

the Rayleigh and Nusselt numbers. Instead, Schneider found marked divergence in
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Figure 2.2: Compilation of experimental results of Nusselt number versus Rayleigh num-
ber for convection in a horizontal porous layer heated uniformly from below
(Aichlmayr [27]).

Schneider [28] was the first to report experimental studies on free convection in a

horizontal porous layer. He conducted experiments with a wide range of porous media

and saturating fluids and found that for a given Rayleigh number there is a large variation

in the Nusselt number for steel-oil, glass-water and glass-oil systems. This divergence is

particularly pronounced at high Rayleigh numbers as can be seen in Figure 2.2. Schneider

noted that the data can be roughly correlated at low Rayleigh numbers if the Nusselt

number is based upon the effective stagnant conductivity of the saturated porous layer, km.

To correlate the data at relatively higher values of Ram, he proposed to base the Nusselt

number upon the fluid thermal conductivity, kf , rather than km, and found that this change

reduced the scatter in the data. Schneider argued that when Ram is large, the fluid thermal

conductivity somehow exerts a greater influence on the heat transfer than the solid phase,

and hence it is more appropriate to base the Nusselt number on kf .

Elder [29] also conducted experimental studies on natural convection in a horizontal

porous layer heated uniformly from below. For his experiments he used a cylindrical test

section with 3, 5, 8 and 18 mm DIA glass spheres, and expanded 6 mm DIA Styroporr

balls as the porous layer. Distilled water was used as the saturating fluid. Elder found that

around Ram ∼ 40, there is an abrupt change in the value of the Nusselt number indicating
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that the onset of convection occurs when the Rayleigh number reaches the theoretically

predicted critical value of 4π2. Beyond this critical value, for low values of the Rayleigh

number, he found that the data could be well correlated by the relation Num = Ram/40 ±
10%. At higher values of Ram, however, he found that this is no longer possible. Elder

noted that the departure of the data from this correlation closely follows the relationship

Num ∼ Ra1/4
m , which is valid for simple viscous convection. He therefore concluded that it

is more appropriate to use the fluid Nusselt and Rayleigh numbers, Nu and Ra, to correlate

the data in the high Rayleigh number regime. He showed that correlating the data with Nu

and Ra yielded relations that were remarkably similar to those reported in the literature

for viscous laminar convection between horizontal planes.

Katto and Masuoka [30] performed experiments with a wide range of porous media

to ascertain the criterion for the onset of convection. Their experiments were conducted

in a cylindrical test section with glass, steel and aluminium spheres of different sizes as

the porous material. To reduce the temperature difference between the upper and lower

surfaces required for creating large Rayleigh numbers, they used compressed nitrogen gas

as the saturating fluid. The main objective of the experiments was to determine whether

parameters such as the size of the porous material, the porosity of the layer, and the solid-to-

fluid conductivity ratio affect the critical Rayleigh number. They found that the condition

Ram = 4π2 is remarkably accurate over a wide range of porous media provided the thermal

diffusivity used in the definition of the Rayleigh number is given by equation (2.4).

In a subsequent study, Masuoka [31] performed experiments to determine the rela-

tionship between the Nusselt and the Rayleigh numbers. His experiments used 1.85 and

3.12 mm DIA glass beads as the porous layer and distilled water as the saturating fluid.

The height of the porous layer was varied between 30 mm and 100 mm. Masuoka found that

near the critical Rayleigh number of 40, the Nusselt-versus-Rayleigh number relation can

be expressed as Num = 1 + 2(1−4π2)/Ram. This relationship is valid up to Ram = 2Ramc,

where Ramc is the critical Rayleigh number for the onset of convection. Beyond 2Ramc he

found that the Nusselt number is independent of the layer height and the effective thermal

conductivity of the porous medium, km, and is directly proportional to Ram.

Combarnous and others [32-34] performed several experimental studies on natural

convection in porous layers which are reported in Combarnous and Bories [4]. In these

studies, polypropylene (4 mm DIA), glass (0.9, 2, 3, 4, 1.7 mm DIA), quartz (1.9, 2.25 mm

DIA) and lead (4 mm DIA) spheres were used as the porous layer, and oil and water as the

saturating fluids. Thus the solid-to-fluid conductivity ratio, λ, varied between 0.25 and 60.

The experiments were performed in a rectangular test section and the Rayleigh number,

Ram, was varied from 0 to 2000. Experimental results showed that the Num-versus-Ram

relation depends on the thermal characteristics of the medium. Instead of a single curve, the
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authors found that the data could represented by a family of curves for different λ values.

The authors suggested that this is probably due to the non-validity of the assumption of an

infinite heat transfer coefficient between the solid and the fluid phases. They also found that

the convection heat transfer has two distinct regimes: a steady regime, and a fluctuating

convective state that appears at Rayleigh numbers in the range 240-280.

Kaneko et al. [35] measured the heat transfer characteristics of saturated horizontal

and inclined porous layers. They used two different kinds of silica sands as the porous

material, and heptane and ethanol as the saturating fluids. For horizontal porous layers,

they found the critical Rayleigh number for the heptane-sand system to be 40 which is very

close to the theoretical value of 4π2. However, the critical Rayleigh number for the ethanol-

sand system was found to be 28, which is much lower than the theoretical value. They also

found the Num and Ram data for the heptane-sand system could be well correlated with

the linear relation Num = Ram/40 ± 10% through the range of Ram (up to 200) used by

them. Their data for the heptane-sand system is in close agreement with Schenider’s data

for steel-oil and glass-water systems, as well as Combarnous’ data for a sand-oil system.

Yen [36] conducted experiments to study the influence of the density inversion of

the saturating fluid on the onset of convection. He used 3 and 6 mm DIA glass beads

for the porous layer and distilled water as the saturating fluid. In order to study the

effect of density inversion of water, Yen performed two different sets of experiments. In

one set of experiments, the temperature of the top surface was maintained at either 4 ◦C

or 8 ◦C in order to eliminate the density inversion of water at 4 ◦C. In another set of

experiments, the upper boundary was maintained at 0 ◦C in order to capture the effect of

density inversion. For the first case, Yen found that the data could be represented by the

relation Num = 0.05Ra0.82
m while for the second case, the expression Num = 0.024Ra0.85

m

was found to be satisfactory. Yen also noted excellent agreement with the previous results

of Schneider [28], Masuoka [31] and Combarnous [32]. Additionally, he found that the effect

of density inversion on overall heat transfer is significant and that this effect decreases with

increase in temperature.

Buretta [37], and Buretta and Berman [38] measured convective heat transfer co-

efficients for a saturated permeable layer that was either heated uniformly from below or

by internally distributed heat sources. They used a cylindrical test section with 3, 6 and

14.3 mm DIA glass spheres as the porous layer and de-mineralized water as the saturat-

ing fluid. Experiments were performed with several different layer heights and porosities

with Rayleigh numbers up to 104. For the case of uniform bottom heating, they found the

critical Rayleigh number to be 38 which is close to the theoretical estimate of 4π2. They

also found that that the slope of their Nusselt-versus-Rayleigh number relationship at the

critical Rayleigh number is remarkably close to the theoretical slope of 1/2π2 predicted by
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Busse and Joseph [39]. Their experimental results were also found to be in good agreement

with the upper bound estimates of Gupta and Joseph [40]. Excluding the data for the 14.3

mm DIA beads for Ram > 400, they found that their data can be well correlated by,

log (Num ± 0.076) = 1.154 logRam − 1.823 (40 < Ram < 1000) , (2.5)

log (Num ± 0.35) = 0.835 logRam − 1.124 (40 < Ram < 1000) . (2.6)

Seki et al. [41] performed experiments to measure convective heat transfer in sat-

urated porous layers in the high Rayleigh number regime. They used a rectangular test

chamber for their experiments with 3 mm, 5.2 mm and 16.4 mm DIA glass beads as the

porous medium, and distilled water, ethyl alcohol, fluorocarbon R-11 and transformer oil

as the saturating fluids. Experiments were performed with a large number of porous layer

heights ranging from 16.4 mm to 103 mm. The authors found that the effects of particle di-

ameter, porous layer depth and fluid Prandtl number on the heat transfer at high Rayleigh

numbers are exceptionally large. For low values of the non-dimensional bead diameter, γ,

the Num-versus-Ram curve is linear. For larger values of γ, this linear relationship is valid

only for small Ram; at larger values of Ram significant deviations from the linear relation-

ship occur. They noted that this non-linear relationship for values of Prf ranging from 1.1

to 7.3 can be expressed as,

Num = 0.1Pr0.132
m γ−0.655Ra0.5

m (200 < Ram < 1400) , (2.7)

Num = 0.88Pr0.132
m γ−0.655Ra0.2

m (1400 < Ram < 40000) , (2.8)

From the above studies, it can be deduced that, in general, it is not possible to

correlate experimental data by a single Nusselt-versus-Rayleigh number correlation. Exper-

imental data for glass-water, glass-oil and heptane-sand systems are in good agreement with

theoretical predictions but data for steel-oil, lead-water and ethanol-sand systems are not,

especially at high Rayleigh numbers. This shows that the Nusselt-versus-Rayleigh number

relation depends on the system being considered.

To explain the spread in experimental data, several hypotheses have been proposed.

While Schneider [28] and Elder [29] proposed to use the fluid Nusselt and Rayleigh numbers

for correlating experimental data at high Rayleigh numbers, Combarnous and Bories [4,42]

hypothesized that the observed discrepancy is due to the non-validity of the assumption of

thermal equilibrium between the solid and fluid phases. To substantiate their hypothesis,

Combarnous and Bories [42] developed a two equation model to account for heat transfer

between the solid and fluid phases and used it in conjunction with the Darcy flow model.
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Using data from their experiments, they solved the resulting system of equations and found

that at high Rayleigh numbers, the Nusselt number is a strong function of the solid-to-

fluid conductivity ratio, λ. Consequently, when λ � 1, heat transfer occurs mainly by

conduction through the solid phase, and the condition of local thermal equilibrium is not

satisfied leading to a scatter in the experimental data.

Prasad [43] and Prasad et al. [44] on the other hand proposed that the scatter in

the experimental data occurs because the effective thermal conductivity is not properly rep-

resented. They noted that a plot of Num/Pr versus Grm does not depend on the thermal

conductivity of the medium and that when plotted in these coordinates, the water-glass and

the heptane-glass data coincide. This implies that the two systems have the same effective

Prandtl number, despite the fact that λ is very different for the two systems. They there-

fore concluded that the effective thermal conductivity of the medium is influenced by the

intensity of the convection. To account for the enhancement of conductivity by convection,

they proposed an ad hoc model where the effective conductivity, keff , is represented by a

weighted average of the fluid conductivity and the stagnant effective thermal conductivity

and is given by,

keff = $kf + (1−$) km, (2.9)

where the weighting factor $ is given as $ = (1 − 1/Num). They noted that a lot of the

scatter observed in the literature could be eliminated by using this form of the effective

conductivity.

Another explanation was put forward by Somerton [45], who proposed that the

data spread could be substantially reduced by taking into account the effect of the fluid

inertia (quadratic drag) which becomes increasingly important with increase in the Rayleigh

number. Somerton noted that by analogy with the Rayleigh-Bénard problem for single phase

natural convection, a Prandtl number dependence is expected but is not accounted for in

the Darcy flow model. Because the Prandtl number dependence in the Rayleigh-Bénard

problem arises from fluid inertia effects, he proposed that the extended Darcy momentum

equation is more appropriate to describe the flow. To demonstrate this dependence, he

showed that non-dimensional form of the of the extended Darcy momentum equation yields

two new non-dimensional numbers, the porous medium Prandtl number, Prm, and the

Cozeny-Karmen number, KC, which are,

Prm =
ν

αm
, (2.10)

KC =
cKH

K
, (2.11)
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where cK is the Cozeny constant. By defining an effective porous medium Prandtl number,

Preff (Preff = KC × Prm), Somerton showed that the data of Combarnous and Bories [4]

could be collapsed on to three different curves for three different Prm regimes.

To verify the hypothesis of Somerton [45], Catton and co-workers performed a series

of experimental and numerical studies [46-48]. First, Jonsson and Catton [46] experimen-

tally investigated natural convection in a saturated porous medium heated from below.

Their experiments were conducted in a cylindrical test chamber with glass, stainless steel,

and lead spheres for the porous medium and water, mercury, and silicone oil as the satu-

rating fluids. With this set of solid and fluid phases, they were able to achieve a range of

4.17×10−5 ≤ Preff ≤ 2. They found that the Nusselt number is a very strong function of the

effective Prandtl number when Preff < 0.1; when Preff > 0.1, however, the Nusselt number

is independent of Preff . Based on this result, they proposed the following Nusselt-versus-

Rayleigh number correlations,

Num = 0.118Ra0.65
m Pr0.132

eff (Preff ≤ 0.1) , (2.12)

Num = 0.147Ra0.65
m (Preff > 0.1) , (2.13)

Georgiadis and Catton [47], and Catton [48] numerically solved the equations for

the extended Darcy flow model using a finite-difference Galerkin scheme. They found good

agreement with the experimental results of Jonsson and Catton [46] when Ram < 200 and

Preff = 1.25, which corresponds to the glass-silicone oil system. They also found good

agreement when Ram < 200 and Preff = 0.02, which corresponds to the glass-water system.

For the stainless steel-water system where Preff = 0.02, however, their numerical solution

did not converge for Ram > 200. These studies show that while the effect of the Prandtl

number is important, it is not the sole factor that causes a scatter in the Num-versus-Ram

data.

Close [49], on the other hand, argued that the two principal factors affecting con-

vective heat transfer in a saturated porous layer are: (i) heat transfer between the solid

and fluid phases, and (ii) the effective stagnant conductivity of the saturated porous layer,

km. Therefore, these two factors must be considered carefully when attempting to correlate

any experimental data. From the two-equation model proposed by Combarnous and Bories

[42] to describe solid-to-fluid phase heat transfer, and a model for km proposed by Yagi

and Kunii [50], Close derived five dimensionless parameters which govern convective heat

transfer in a porous layer. Based on these, he proposed a parametric equation to fit the

data of Schneider [28], Combarnous [33] and Buretta [37]. Using a least-squares method for

fitting, he proposed the formula,
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Num

Nui
= 1.572× 10−2 ×Ra0.344

(
kf

kso

)0.227(H
dp

)0.446( φ

1− φ

)0.496

Pr0.279, (2.14)

Nui = 1 +
i∑
1

2

(
1− 4i2π2

Ram

)
. (2.15)

Here Nui is the overall Nusselt number which is the sum of the Nusselt numbers due to

independent contribution by each of the i convective modes. Close noted that equation

(2.14) is successful in correlating experimental data for Num < 10, but discrepancies are

present for Num > 10. To explain them, he suggested that Darcy’s law is inadequate in

describing the pressure gradients within the bed. He also noted that the almost identical

value of the exponents for Pr and kf/kso in equation (2.14) implied that Somerton’s claim

that the solid-to-fluid heat transfer in the bed is negligible compared to fluid inertia was

not necessarily correct.

Wang and Bejan [51] applied scale analysis to the mass, momentum and velocity

conservation equations with the aim of developing a single relation to correlate experimental

data reported in the literature. Their analysis led them to conclude that the Nusselt-versus-

Rayleigh number relation is characterized by two distinct regimes: the Darcy regime and

the Forchheimer regime. On the basis of their scale analysis, they found that in the Darcy

flow limit, Num ∼ (1/40)Ram, while in the Forchheimer flow limit, Num ∼ (Ram×Prp)1/2.

Here Prp is a porous medium Prandtl number that represents the transition between the

Darcy and Forchheimer regimes. To fit experimental data reported in the literature, Wang

and Bejan proposed the correlation,

Num =

[(
Ram

40

)−1.65

+
{

1896.4 (RamPrp)1/2
}−1.65

]−1/1.65

. (2.16)

With the exception of data points in Schneider’s results for Prp = 12 and in Jonsson and

Catton’s data for Prp = 28, the authors found good agreement with published experimental

data.

Kladias and Prasad [52] conducted a numerical investigation into natural convection

in a square cavity heated from below. They considered a Brinkman-Forchheimer extended

Darcy model for the fluid motion and performed a parametric study to investigate the

effects of the Darcy number, fluid Prandtl number, and the thermal conductivity ratio on

the Nusselt number. From the numerical solution they found that for Pr > 10, the Prandtl

number does not have any significant influence on fluid flow. For Pr < 10, on the other
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hand, the Nusselt number was found to increase with the fluid Prandtl number. They

also found that an increase in the conductivity ratio, λ, substantially increases the Nusselt

number and the critical Rayleigh number. In addition they found that the effect of the

Prandtl number intensifies as λ increases. Based on these observations they concluded that

the conductivity ratio strongly affects the contribution of the inertia terms in the momentum

equation.

Subsequently, Kladias and Prasad [53] conducted experiments to determine the ac-

curacy of their numerical model. Their experiments were conducted in a cavity with an

aspect ratio A1 = 5 and a uniformly heated base. They used glass, acrylic and steel spheres

as the porous material, and water, glycol and heptane as the saturating fluid. The selected

solid-fluid combinations and particle sizes were aimed at maximizing the range of the ther-

mal conductivity ratios, as well as the Darcy, Rayleigh, and Prandtl numbers. In general,

they found that the experimental results confirmed the functional relationships predicted

by their numerical solutions. They found excellent agreement for glass-water, glass-glycol,

and acrylic-water systems at high Rayleigh and Darcy numbers. For the steel-water and

steel-glycol systems, however, they found that the agreement is marginal at low Rayleigh

numbers and rapidly diverges at high Rayleigh numbers. The divergence is largest for the

steel-glycol system. This discrepancy was not improved even when a dispersive thermal

conductivity proposed by Georgiadis and Catton [47] was incorporated in the numerical

model.

The above discussion illustrates several important aspects of porous media natural

convection. The most important aspect is the existence of a unique critical point for the

onset of convection irrespective of the nature of the porous matrix, the saturating fluid or

the problem domain. Beyond the critical point, however, all of these factors affect the overall

heat transfer rates. The parameters that most significantly affect heat transfer in the high

Rayleigh number (Ram) range the solid-to-fluid conductivity ratio and the fluid Prandtl

number. Although the exact effect of these parameters is unclear, their importance is

readily apparent. In addition, these studies show that the effect of fluid inertia is significant

at high Rayleigh numbers and cannot be ignored. These findings are extremely important

for the present study as the aforementioned parameters are also likely to play a significant

role for convection in a fluid-porous layer composite system.

2.2 Natural convection in horizontal porous layers heated locally

The problem of free convection in horizontal porous layers heated locally from below

is now considered. The prototypical problem is one where only a portion of the bottom sur-

face of the porous layer is heated and the remaining bounding surfaces are either adiabatic
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Figure 2.3: Two-dimensional domain of convection in a horizontal porous layer heated lo-
cally from below.

or isothermally cooled. Figure 2.3 shows a schematic diagram of the basic two dimensional

problem where a rectangular cavity is filled with a saturated porous layer of height H

and width L of which a central section of width LH is heated. Various thermal boundary

conditions can be considered for this situation and these are listed in Table 2.1.

Elder [29] was the first to study natural convection in a horizontal porous layer

with localized heating from below. He considered the case where all the walls of the cavity

are held at a temperature TC , except for the centrally heated portion which is held at a

temperature TH (Case 1, Table 2.1). Using a finite-difference method, he numerically solved

the governing equations for fluid flow and heat transfer and obtained the streamlines and

isotherms for various values of the dimensionless heat source length, δ1. For a fixed aspect

ratio A = 10, when δ1 = 1, he found that the heated fluid rises as a thin column for Ram as

low as 50. For this heater size, recirculation of the fluid in the plume is very low (30%). For

δ1 = 2, two regions of opposite circulation are produced with a narrow fluid plume rising

from the heated segment and a more diffuse, weaker return flow in the outer portion of the

slab. For δ1 = 3, a pair of nearly square cells with opposite circulation, called Rayleigh cells,

are produced over the heater and for δ1 = 6, three pairs of Rayleigh cells are produced.

These results are shown in Figure 2.4. By performing a linear stability analysis, Elder found

that Rayleigh cells would appear for δ1 = 2, 4, and 6.

Elder also examined the transient convection problem numerically and experimen-

tally [54]. Using the same configuration as in his previous study, he studied the time

dependent evolution of the flow and temperature fields when the localized region on the

bottom is suddenly heated. He considered two different cases: (i) A = 4, δ1 = 2, Ram = 400,
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Table 2.1: The various thermal boundary conditions used for the local heating problem.

Case Central Bottom Outer Bottom Sides Top

1 T = TH T = TC T = TC T = TC

2 T = TH T = TC
∂T
∂n = 0 T = TC

3 T = TH
∂T
∂n = 0 ∂T

∂n = 0 T = TC

4 ∂T
∂n = − q′′

k
∂T
∂n = 0 ∂T

∂n = 0 T = TC

5 T = TH T = TC T = TC + y
H (TT − TC) T = TT

0 ≤ t∗ ≤ 0.1, and (ii) A = 10, δ1 = 8, Ram = 200, 0 ≤ t∗ ≤ 0.4. In the first case he found

that flow evolution begins with the formation of a pair of eddies with counter-circulations

at the edge of the heater producing a rapidly rising column of hot fluid. With time another

pair of eddies forms near the edges leading to a rapid re-adjustment of the flow field there.

A small double eddy is then formed at the center of the heater which eventually grows and

merges with the end eddy to form a single circulating cell in the half cavity. The bulk of

the heat is carried by the hot plume rising from the center of the heater. In the second

case, the initial onset of convection is identical to the first case with a pair of eddies forming

at the edge of the heater. However, in this case, Elder found that successive circulating

cells grow above the heater starting from the edge and moving towards the center with an

approximately constant velocity. For his experiments, Elder used a Hele-Shaw cell, 5 cm

× 20 cm with a plate spacing of 4.0 mm, and silicone oil as the fluid. The heated section

had a width of 10 cm, while all the other surfaces were maintained at a constant tempera-

ture. The visualization streamlines were found to be qualitatively similar to the numerical

simulations.

Horne and O’Sullivan [55] performed a numerical and experimental investigation of

convection in a horizontal layer with localized heating from below in order to examine the

stability of convective flow and determine the possibility of oscillatory or other unsteady

flows. They considered the case where the sides of the cavity are adiabatic, and the top

and outer bottom surfaces are maintained at a temperature TC (Case 2 in Table 2.1). They

used a domain with an aspect ratio A = 2 and δ = 0.25, 0.5 and 0.75. Their results

show that for localized heating the system is self-restricting and either stabilizes into a

steady multi-cellular flow or regularizes to a periodic oscillatory flow depending upon the

values of Ram and δ. For δ = 0.25, they observed oscillatory flow at Ram approximately

greater than 450 while for δ = 0.5 this was seen at Ram > 480. Within a single oscillation,

17



Free convection in a porous medium 39 

5. End-effects 

~~ 

1.000- 

e = 

A = = -& 
(b) ,  = (d), 1 = 3; ( e )  = 4; (9 )  (h) = 6 .  

0.03, 

of 

1963 

Figure 2.4: Isotherms (left column) and streamlines (right column) in a horizontal porous
layer of aspect ratio A = 10 and Rayleigh number Ram = 80 for various values
of the dimensionless heater length δ1. (a) and (b), δ1 = 2; (c) and (d), δ1 = 3;
(e) and (f), δ1 = 4; (g) and (h), δ1 = 6. (Elder [29]).

approximately mushroom shaped isotherms with plume like flow above the heated region

were found to occur. This is shown in Figure 2.5. For δ = 0.75, however, the authors found

no oscillatory flow in the Rayleigh number range 250 < Ram < 1250. Instead, a tricellular

steady flow pattern was seen. The authors suggest that this happens because in this case

the length of the unheated segment is comparable to the cell width and thus reinforces the

steady cellular flow pattern in spite of disturbances. Horne and O’Sullivan also performed

experiments with a Hele-Shaw cell to verify their numerical findings. In their experiments

they observed the same oscillatory flow pattern predicted by their simulations. The authors

noted that this oscillatory flow is best exemplified by periodic observations of ‘tongues’ of

fluid in the ascending and descending regions of the flow.

In a subsequent paper, Horne and O’Sullivan [56] extended their previous study

to examine whether oscillatory flow in the porous layer is triggered by circulating thermal

disturbances or by boundary layer instabilities. For this they considered the case where

the top surface of the fluid is unconfined and compared the results with those obtained

with a confined fluid. The setup and boundary conditions were identical to their earlier

work except that they only studied the case where half the base was heated (δ = 0.5).

They found that the constant pressure boundary condition at the top surface for the case of
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Figure 2.5: Computed isotherms during a single oscillation for a localized heating problem
in a porous layer of aspect ratio A = 2, Ram = 750, heater length δ1 = 0.5
(Horne and O’Sullivan [55]).

unconfined fluid allows only cold descending fluid. As such there is no descending fluid, and

hence no recirculation of thermal disturbances. In spite of this result, they found oscillatory

flow patterns which are similar to those formed when the fluid is confined, although for the

unconfined case, the ascending disturbances have larger amplitudes and velocities, and their

onset occurs at lower values of Ram. Thus oscillatory disturbances have their origin in the

thermal boundary layer on the heated bottom surface. It was also found that in both cases

the frequency of the oscillation is proportional to Ra
3/2
m .

In a series of studies, Kulacki and co-workers examined the effect of a localized

bottom heating on the flow patterns and heat transfer rates. Prasad and Kulacki [57]

numerically studied the case when the central portion of the bottom surface is heated to a

temperature TH while the remaining bottom surface area and the sides are adiabatic, and

the top surface is kept at TC (Case 3, Table 2.1). To examine the effect of the size of the

heat source and the horizontal extent of the porous layer, they considered two cases: (i)

the width of the layer, L, was varied by keeping the height of the layer and length of the

heater fixed (δ1 = 1), and (ii) the aspect ratio is fixed (A = 2) for δ1 = 0.4, 1.0 and 1.6.

They found that for fixed δ1 and A, the conduction field is modified and a symmetrical

circulatory flow field is setup for Ram as low as 10. With increasing the Ram to 100, the

isotherms move upwards in a plume-like motion and produce a highly stratified region near

the top surface. This plume-like flow is strengthened when Ram is increased to 1000. Due to

strong buoyancy effects, they found that the velocities are higher near the heated segment

and the returning cold fluid moves with a higher velocity towards the heated center. The
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temperature gradients and velocities were found to decrease continually with increase in

horizontal distance from the heat source. The authors also found that heat transfer rate

always increases with Ram. However, due to the thermal stratification, the rate of increase

of Num (based on the area of the upper surface) decreased with increasing Ram. For fixed

A, the overall heat transfer increases asymptotically with δ1. For a fixed δ1, however, an

increase in the aspect ratio affects heat transfer in only a small region of the entire domain.

They also found that for a fixed Ram and δ1, Num increases with A and then decreases to

an asymptotic value. They did not, however, observe any oscillatory behavior.

In a subsequent study, Prasad and Kulacki [58] extended their earlier work to ex-

amine the effects of the size and strength of the heat source for a relatively large layer with

A = 10. Numerical results were obtained for δ = 0.1, 0.2, 0.4, 0.6 and 0.8 and Ram up to

1000. The authors found that the convective flow in the half-cavity is unicellular as long

as the length of the heated segment is smaller than or equal to the height of the porous

layer i.e. δ1 = 2. An increase in the size of the heat source beyond δ1 = 2 results in a

multi-cellular flow behavior. In this case the main convective cell with clockwise flow moves

to the right of the half cavity and a new counter-clockwise flow cell is produced on the left

side, above the heater. Also, with increasing Ram the authors found the isotherms to get

more and more skewed. The local heat transfer rate at the upper surface was found to be

a strong function of the number, size and strength of the convective cells. Also, the energy

lost per unit area of the heat source was found to always increase with a reduction in the

heater size for δ < 0.4. Similarly, the overall heat transfer coefficient was found to always

increase with the size of the heat source and to be directly proportional to the length of the

heater, LH , when δ > 0.4 and Ram > 100.

El-Khatib and Prasad [59] extended the above studies to consider the case where a

linear thermal stratification is present in a horizontal porous layer that is locally heated from

below. They considered a configuration where TH is the temperature of the centrally placed

bottom heater, TC the temperature of the remaining bottom surface, TT the temperature of

the top surface and the sides are subjected to a linear temperature gradient (Case 5, Table

2.1). The thermal stratification is thus expressed by the parameter St = (TT − TC)/(TH −
TC). Numerical calculations were performed for A = 2, δ = 0.5, 0 ≤ St ≤ 10, and Ram up

to 1000. They found that when St = 0, i.e. when there is no stratification, the effect of an

increase in Ram is to produce a plume like flow above the heated region. With an increase

in Ram, the domain affected by the heat source, as well as the amount of heat lost by the

heater, increases. On the other hand, for a fixed value of Ram, an increase in St reduces

the convective velocities and hence the energy lost by the heat source. This indicates that

there exists a critical value of St, as a function of Ram, beyond which the heat source gains

energy. In fact under certain circumstances, it was seen that a part of the heated segment
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can gain energy while the other part is losing heat. Also, for St > 1 the energy gained by

the upper surface is almost independent of Ram.

Rajen and Kulacki [60], on the other hand, performed a numerical and experimental

study of convection in a horizontal porous layer for the case where the central bottom

heater emits a uniform heat flux instead of being maintained at a constant temperature.

The remaining part of the lower surface and the side walls were adiabatic while the top

surface was maintained at a constant temperature TC (Case 4, Table 2.1). They used finite

element method to numerically solve the governing equations. For A = 16, δ = 1/12 and

Ram = 5 they observed no convective flow in the right half cavity. However, for Ram = 50,

a plume like flow was seen above the heated surface although much of the domain was

found to remain unaffected by the heat source. For δ = 1/2 and Ram = 50 they found

that several convective rolls were formed over the heater; the number and strength of these

rolls was found to increase with Ram. For their experiments they used 6 mm DIA glass

beads for the porous layer and distilled water as the saturating fluid. Experiments were

performed in a rectangular test section and the strip heaters were used to vary the heated

fraction of the base from 1/12 to 1/2. They obtained Num-versus-Ram relations for different

values of A and δ and found very good agreement between their theoretical predictions and

experimental results. An interesting aspect observed by them was that the inflexion in the

Num versus Ram curve observed for a fully heated bottom disappears when the base is

partially heated. They also found that for a fixed A and Ram, an increase in δ decreases

the Nusselt number.

Lai and Kulacki conducted an experimental study of free and mixed convection with

localized heating [61]. Experiments were performed using 3 mm DIA glass beads and water

as the saturated porous medium. The porous layer under consideration had an aspect ratio

of A = 21 and a constant depth of 5.08 cm. For natural convection, their measured heat

transfer coefficients were found to be smaller than those predicted by numerical simulations

for δ1 = 1, and larger for δ1 = 3 and 5. Overall, however, they found good agreement

between their experimental results and theoretical predictions. For natural convection, they

found that the Nusselt-versus-Rayleigh number relation is of the form Num = 0.269Ra0.451
m .

The authors noted that improved agreement between their measurements and the predicted

values could be obtained by using the effective conductivity, keff (equation 2.9), for defining

the Nusselt number. The authors also did not observe the oscillatory behavior predicted by

Elder [29, 54] and Horne and O’Sullivan [55, 56].

Lai and Kulacki [62] also performed a numerical study of steady-state natural con-

vection in two-dimensional layered porous media heated partially from below. In their study,

the central bottom heater was kept at a constant temperature, the remaining bottom surface

and the sides were adiabatic and the top surface was at TC . The boundary conditions at
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the interface of the two porous layers were the continuity of temperature, pressure, normal

flow and heat flow. A finite difference scheme was used to solve the governing equations.

Calculations were made over a wide range of permeability ratios 0.01 < K1/K2 < 100 and

layer height ratios, H1/(H1 + H2) (subscripts 1 and 2 refer to the bottom and top layer,

respectively). The authors found that for H1/(H1 +H2) = 0.25, 0.5 and 0.75, the flow and

temperature fields for a layered structure with K1/K2 > 1 are completely different from

those with K1/K2 < 1. Heat transfer always begins as conduction in the less permeable

layer and as convection in the layer with higher permeability. With an increase in the base

Rayleigh number (Rayleigh number for the lower layer), Ram1, the convection from the

more permeable layer begins to penetrate the less permeable layer and eventually both the

layers reach a convective mode for sufficiently high values of Ram1. For K1/K2 < 1, this

penetration is in the form of an inverse plume. For fixed Ram1, the strength of the circula-

tion in the convective cell was found to increase with the height ratio. For K1/K2 > 1, the

overall Nusselt number was found to be less than that for a homogeneous porous layer but

greater than that for K1/K2 < 1. Also for a given Ram1, the Nusselt number was found to

increase with the sub-layer thickness ratio for K1/K2 > 1. However, for K1/K2 < 1, the

Nusselt number first decreases with the thickness ratio until the convection cells are formed

in both layers, and then it increases with the thickness ratio.

Jendoubi and Kulacki [63] extended the above work to consider mixed convection

in a doubly layered porous medium heated locally from below and above. The primary aim

of their study was to ascertain whether the heat transfer results could alone be used to

determine whether the heating is from the top or the bottom. Their problem set up was

identical to that of Lai and Kulacki [62], and they used a finite volume method to numerically

solve the governing equations. Results were obtained for a fixed aspect ratio A = 20 and

various values of the permeability ratio, K1/K2, conductivity ratio, k1/k2, height ratio,

H1/(H1 + H2) (subscripts 1 and 2 refer to the bottom and top layer, respectively), and

non-dimensional heater length, δ1. For the special case of bottom heating with no external

flow, i.e., natural convection in a two-layer composite medium, the authors found that

Nusselt number depends strongly on both the Rayleigh number and the height ratio. For

K1/K2 > 1, increasing the height ratio increases the Nusselt number especially at higher

Rayleigh numbers. Similarly for a given height ratio and conductivity ratio, increasing

K1/K2 leads to an increase in the Nusselt number. For K1/K2 = 1, i.e. for a single

porous layer, the Nusselt number was found to decrease with increase in the heater length

particularly at high Rayleigh numbers.

The studies of convection in porous layers heated locally from below show how

presence of a localized heat source at the base affects the temperature and velocity profiles

as well as the overall heat transfer rates. In particular, these studies show that there exists
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Figure 2.6: Schematic of the problem of natural convection in superposed fluid and porous
layers heated uniformly from below.

a complex relationship between the heater length ratio and the aspect ratio such that for

every aspect ratio there is a particular heater length for which the overall heat transfer rate

is a maximum. These two parameters must thus be carefully considered when studying

convection in a composite system with a localized heat source. In addition, the studies of

convection in layered porous media are of immense relevance to the present study because

the problem being investigated is a special case of the layered media problem for the limiting

case of K2 → ∞. As there are no available studies relevant to the present problem, these

past studies can give significant insight into the nature of the results that can be expected

from this study.

2.3 Convection in fluid-superposed porous layers heated uniformly

Having examined the literature for convection in a single porous layer heated from

below, we now look at the literature on convection in fluid-superposed porous layers. For

this problem, the literature almost exclusively points to the case where the bottom surface

is uniformly heated. The prototypical problem can be represented as shown in Figure 2.6.

A saturated porous layer with an overlying fluid layer is held between two impermeable

surfaces. The lower surface is held at a higher temperature than the upper surface and side

walls are kept adiabatic.

Sun [7] was probably the first investigator to examine the onset of convection in

this composite system and conducted a comprehensive analytical and experimental study

of convective stability. Using the perturbation method, he predicted the critical Rayleigh

numbers for a variety of thermal and hydrodynamic conditions at the surface. He also
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performed experiments to determine the onset of convection and considered the case where

there is internal heat generation in the porous layer. He studied the influence of various

parameters such as the layer depth ratio, porosity, permeability, density, and diffusivity and

found that the predicted critical Rayleigh number for various bed height ratios compared

well with his experimental data for 0.826 < η < 1. He also found that for a fixed Rayleigh

number, the Nusselt number decreases with an increase in the height of the porous bed.

This problem was later studied analytically by Nield [8] who used a linear stability

analysis to predict the onset of convection in a two-layer system that extended infinitely in

the horizontal direction. He applied the Beavers-Joseph [61] condition at the fluid-porous

layer interface and included the possibility of a Marangoni effect at the deformable upper

surface. Nield, however, did not solve the resulting tenth-order eigenvalue problem because

of its tedious nature. Instead he obtained the stability criterion for limiting values of various

parameters such as the fluid viscosity, height ratio, and conductivity ratio.

On the other hand, Rhee et al. [62] experimentally measured the heat transfer rates

in a composite system consisting of a porous layer made up of heat generating particles

that was cooled by a layer of fluid from above. Their experiments were conducted in a

cylindrical test section with 6.35 mm DIA steel balls as the porous layer and distilled water

as the saturating fluid. The sides and the bottom of the test section were kept insulated

while the top surface was maintained at a constant temperature. The steel balls were

inductively heated by a 10 turn, 210 mm ID induction coil that was placed around the

lower section of the test section. The height of the particulate bed was either 26 mm (η =

0.244) or 52 mm (η = 0.122) while the height of the overlying liquid layer was parametrically

varied from 0 to 209 mm. Their results showed that the critical Rayleigh number for the

porous layer, Ram, decreases rapidly as the fluid-to-porous layer depth ratio, η1, approaches

unity; above this value of η1, Ram reaches an asymptotic value of 12. In the absence of

the overlying liquid layer, however, the critical Rayleigh number is 46, indicating that the

presence of the liquid layer facilitates the onset of convection. The presence of the liquid

layer was also seen to increase the rate of heat transfer through the bed. For a liquid layer

about one fifth the height of the porous layer, the authors observed a threefold increase in

the heat transfer rate. The authors noted that this was due to the inflow and outflow of

fluid from the porous bed. They also noted that for η1 > 1, the heat transfer data can be

correlated by the relation Num = 0.19Ra0.69
m .

The problem of a fluid layer overlying a volumetrically heated porous bed was stud-

ied analytically by Somerton and Catton [63] who conducted a linear stability analysis to

predict the onset of convection in this system. Instead of using Darcy’s law, they used

Brinkman’s extension of Darcy’s law to model fluid flow in the porous layer. This allowed
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them to avoid using the Beavers-Joseph boundary condition [46] at the interface and in-

stead use more generalized boundary conditions describing the continuity of velocity and

shear stress at the interface. The resulting equations were solved approximately by using

the Galerkin method. They found the following: (i) the critical wave number is a function

of the fluid-to-bed depth ratio, η1 , the conductivity ratio, λ, and the Darcy number, Da;

(ii) the sole parameter controlling the onset of convection is a single Rayleigh number for

the entire system; (iii) a larger λ tends to produce a more stable fluid layer while a large

Da tends to produce a less stable fluid layer; (iv) the presence of the overlying fluid layer is

destabilizing and can drive fluid motion in the porous bed. They, however, did not measure

the heat transfer characteristics of the system.

Poulikakos et al. [20] studied the problem of flow instability in a horizontal com-

posite layer beyond the critical Rayleigh number regime. They numerically solved the full

equations for transient flow and used the Beavers-Joseph boundary condition at the porous

layer-fluid layer interface. In their study the authors used a fixed Prandtl number, thermal

diffusivity ratio and porous-to-total layer height ratio (η = 0.5). The parameters varied

were the aspect ratio, A (0.4−2), the fluid Rayleigh number, Ra (102−106) and the Darcy

number, Da (10−7− 10−4). They obtained plots showing the streamlines and isotherms for

various values of these parameters and found that with increasing Rayleigh number, the ve-

locities of the two-dimensional cellular rolls increase but their numbers remains fixed. Also

with increasing Rayleigh number, a reversal in flow behavior of the rolls occurs. However

the authors did not observe any significant change in the Nusselt number with increase

in the Darcy number but found that it decreases with increasing aspect ratio. They also

found that the critical Rayleigh number is in the range of 500-600. Beyond this range, the

Nusselt-versus-Rayleigh number correlation is given by Nu ≈ 0.129Ra0.33.

Poulikakos [21] extended the above study by using a general flow model to describe

flow through the porous media. This model incorporated the Brinkman and Forchheimer

extensions to the Darcy model to account for the effects of macroscopic shear and flow

inertia. Poulikakos used a single set of conservation equations for both the fluid and the

porous layers. This was accomplished by using a binary parameter which assumes the value

zero in the fluid region and unity in the porous region, thus eliminating terms such as the

Darcy term in the fluid region. By this methodology, no explicit account is needed at the

interface between the fluid and the porous layers. Numerical solutions were obtained by

using a finite-volume technique for various values of parameters such as the aspect ratio,

A (1 − 5), the height ratio, η (0.1 − 0.8), the fluid Rayleigh number, Ra (103 − 105), the

Darcy number, Da (10−5 − 10−3) and the Forchheimer coefficient, F (0 − 1.0). Figure

2.7 shows the streamlines and isotherms for one of these cases. Poulikakos found that the

velocity of convection motion increases with an increase in the Rayleigh number when all
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Figure 2.7: Streamlines (a) and isotherms (b) for natural convection in fluid superposed
porous layer for Ra = 105, A = 4, η = 0.5, Da = 10−4, and F = 0.5 (Poulikakos
[21]).

other parameters are held constant. Also, the number of cells doubles when the Rayleigh

number attains the value of 2 × 105. With increase in the height of the overlying fluid,

a drastic increase in the overall Nusselt number occurs. Poulikakos noted that beyond a

critical height ratio of η ≈ 0.75 the flow field ceases to have any effect on heat transfer and

heat removal is primarily by conduction. He also observed that an increase in Da increases

the Nusselt number.

In a series of studies, Chen and Chen [9,10,22] investigated the convective insta-

bilities and heat transfer characteristics of fluid-superposed porous layers both analytically

and experimentally. In connection to the problem of directional solidification of concen-

trated alloys, Chen and Chen [9] first considered the problem of salt-finger convection in

this two-layer system and used a linear stability analysis to determine the onset of finger

convection. They used Darcy’s law to model fluid flow in the porous layer and applied

the Beavers-Joseph boundary condition at the fluid-porous layer interface. The additional

effect of a salinity gradient was included in their conservation equations in order to model

salt-finger convection. The authors used a fourth order Runge-Kutta shooting method to

solve the resulting eigenvalue problem. To check the accuracy of their problem formulation

and method of solution, they considered, as a special case, the pure thermal convection

problem. They found that the parameters which affect the critical condition are the fluid-

to-porous layer height ratio, η1, the Darcy number, Da, the thermal diffusivity ratio, ε,

and the Beavers-Joseph constant, α̂. For fixed values of Da, ε and α̂, they found that the

marginal stability curve is bimodal. For η1 < 0.12, the long wave branch is most unstable

and the convection is dominated by the porous layer. For η1 > 0.12, the short wave branch

is the most unstable and the convection is dominated by the fluid layer. They also found
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that critical Rayleigh number decreases precipitously with increase in the depth ratio, η1.

In a subsequent paper, Chen and Chen [10] conducted experiments to verify their

earlier findings which were in disagreement with the experimental results of Sun [7]. For

their experiments they used a rectangular test section with 3 mm DIA glass beads for

the porous layer and water, 60% and 90% glycerin-water solutions, and 100% glycerin as

the saturating fluids. The depth ratio η1 was varied from 0.0 to 1.0. Fluids of increasing

viscosity were used for cases with larger η1 in order to keep the temperature difference across

the test section within reasonable limits. The experimental results showed: (i) a precipitous

decrease in the critical Rayleigh number as the depth of the fluid layer is increased from zero,

and (ii) an eightfold decrease in the critical wavelength between η1 = 0.1 and 0.2. These

findings confirmed their earlier theoretical predictions. They also visualized the convective

cells and found them to be three dimensional.

Chen and Chen [22] further performed a computational analysis to study the heat

transfer characteristics of the two-layer system analyzed in their previous studies. To model

fluid flow in the porous layer, they considered the modified form of Darcy’s equation which

included the Brinkman and Forchheimer terms to account for viscous and inertial effects.

The boundary conditions at the fluid-porous layer interface were the continuity of velocity,

temperature, heat flux, normal stress and shear stress. The flow was assumed to be two-

dimensional and periodic in the horizontal direction with a wavelength equal to the critical

value of the wavelength at onset, as predicted by the linear stability theory. The authors

used a combined Galerkin and finite-difference method to numerically solve the governing

equations. They found that convection remains steady for Ram ≤ 20Ramc when the depth

ratio, η1, is varied between 0.1 and 1.0. For η1 < 0.13 (the critical height ratio), the Nusselt

number increases sharply with Ram, whereas at larger η1 the increase is very moderate.

Heat transfer rates predicted by the numerical scheme for η1 = 0.1 and 0.2 show good

agreement with their earlier experimental results [10].

Chen [11] conducted a linear stability analysis of the convective instability in the

composite system with through-flow in the vertical direction. He found that in such a

physical configuration, both stabilizing and destabilizing factors due to vertical through-

flow could be enhanced allowing a more precise control of the buoyancy driven instability in

either the fluid or the porous layer. For a depth ratio η1 = 0.1, the onset of convection occurs

in both fluid and porous layers, the relation between the critical Rayleigh number for the

porous layer, Ramc, and the through-flow strength, ζ, is linear, and the effect of the Prandtl

number, Pr, is insignificant. For η1 > 0.2, the onset of convection was largely confined to

the fluid layer, and the relation became Ramc ∼ ζ2 for most of the cases considered except

for Pr = 1 where the relation was Ramc ∼ ζ3.

Further analytical studies were conducted by Chen and co-workers [12-14]. Chen
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et al. [12] studied the onset of thermal convection in a system consisting of a fluid layer

overlying a porous layer with anisotropic permeability and thermal diffusivity. Flow in

the porous medium was assumed to be governed by Darcy’s law and the Beavers-Joseph

condition was applied at the interface between the two layers. The linear perturbation

equations were solved numerically by using a shooting technique based on a hybrid Adams-

Bashforth finite-difference method. The authors found that the effects of anisotropy on

the onset of thermal convection are most profound for small values of the depth ratio, η1.

For fixed values of the vertical permeability in the porous medium, decreasing the value

of the horizontal-to-vertical permeability ratio, ξ, led to stabilization of the superposed

layer configuration because of increased resistance to motion in the porous medium. For

larger values of η1, the onset of motion was increasingly confined to the fluid layer, with

the transport of heat through the porous layer primarily by conduction. Accordingly, the

authors concluded that the influence of ξ on the stability characteristics for larger η1 was

less significant than the effects of an anisotropic thermal conductivity.

Chen and Hsu [13] extended this work to cover a wide range of depth ratios, η,

horizontal-to-vertical permeability ratios, ξ, and horizontal-to-vertical thermal diffusivity

ratios, χ. The authors found that for η1 < 0.1, the critical Rayleigh number, Ramc, is

essentially an explicit function of χ/ξ and the corresponding critical wave number, amc, is a

function of (ξ×χ)1/4. Because for η1 < 0.1 the porous layer dominates the two-layer system

by convection, the anisotropic and inhomogeneous effects are significant as demonstrated

by the well defined dependence of the critical Rayleigh number on the permeability and

diffusivity ratios. For η1 > 0.1, however, the authors did not obtain any explicit function

for Ramc or amc in terms of ξ and χ. They noted that because the onset of convection is

largely confined to the fluid layer for η1 > 0.1, the anisotropic and inhomogeneous effects

characteristics of the porous layer are not significant.

On the other hand, Chen and Wu [14] numerically studied the effects of vari-

able viscosity on the stability characteristics of the motionless overlying fluid. They used

Darcy’s law to model fluid flow in the porous layer and applied the Beavers-Joseph bound-

ary condition at the interface. The viscosity variation was represented by the relation

Ξ = log(νmax/νmin), where ν is the kinematic viscosity of the fluid. They found that the

stability characteristics in terms of the critical Rayleigh number, Ramc, the critical wave

number, amc, and the critical flow patterns, are all profoundly influenced by the viscosity

variation. The intrinsic features of the critical flow are mainly determined by the values of

Ξ and the depth ratio, η1. The authors also identified three critical flow patterns on the

basis of varying Ξ and η1 and found that the transition between any two of these three flow

patterns is a bimodal instability.

Prasad and co-workers [24-26] conducted a series of experimental studies to visualize
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the flow patterns and measure the heat transfer characteristics of a fluid superposed porous

medium uniformly heated from below. They used an immersion method to measure the

refractive index of acrylic spheres, and matched it with the refractive index of the silicon

fluid. This technique allowed the visualization of interesting flow interactions between the

porous bed and overlying fluid layer. Aluminum particles were used for visualizing the flow

patterns. In one set of experiments, Prasad and Tian [24] used glass beads of sizes 6, 15

and 24 mm DIA and varied the height ratio in the range 0.067 ≤ η ≤ 1. The extended

visualization studies showed that the flow field is highly complex and three dimensional,

and active flow interactions between the overlying fluid and the packed beds were seen

even when Ram ∼ O(1). Strong, jet-like, vertical convective flows were seen to move from

the underlying porous layer to the upper fluid layer. This results in a sharp drop in the

critical Rayleigh number for the porous layer from 4π2 as η is reduced below unity. The

authors reported that the observed flow patterns qualitatively matched those predicted by

Poulikakos et al [20]. The authors also found that for small bead diameters, Nu decreases

with increase in η. For larger bead diameters, Nu first decreases with η until γmin and then

increases again. For the largest beads, a couple of inflexions on the Nu−γ curve were seen.

In another set of experiments [25], 12.7 and 25.4 mm DIA acrylic balls were used

and the height ratio, η, was varied between 0 and 1. The visualization studies showed

that flow channels through large voids produce highly asymmetric and complicated flow

structures. The number of convective rolls was found to depend on η. The heat transfer

rate was found to generally increase with the Rayleigh number but its dependence on the

non-dimensional particle size, γ, and the porous bed height was found to be very complex.

This can be seen in Figure 2.8. Generally, the average Nusselt number increases with γ

(i.e., with increase in bead diameter), but it was found that there may exist some values of

η for which the heat transfer rate for a smaller γ is higher. Also, the Nusselt number first

decreases with an increase in γ and reaches a minimum at γmin. Any further increase in

porous layer height beyond this minimum value augments the heat transfer rate, and the

Nusselt number curves show peaks at γmin ≤ γ ≤ 1. A general correlation for the Nusselt

number was obtained in the form Nu = CRan, where the constants C and n were found to

depend on η and γ.

Prasad [26] extended these studies further to include the influence of Prandtl number

and different solid-fluid conductivity ratios. Experiments were conducted with acrylic,

aluminum, and glass spheres for the porous bed, and two kinds of silicone oils and ethylene

glycol as the saturating fluids. He found that the complex relationship between Nusselt

number and porous layer height remains unaltered with a variation in thermal conductivity

ratio and/or the Prandtl number. Also, an increase in thermal conductivity of the solid

matrix was seen to enhance the heat transfer rate. Further, Prasad found that the composite
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Figure 2.8: Overall Nusselt number versus height ratio for convection in a fluid-superposed
porous layer. (Prasad et al. [25]).

fluid and porous layer can transport more energy than the just a pure fluid layer provided

the porous matrix is highly permeable and the solid-to-fluid conductivity ratio is large. The

effect of Prandtl number seemed to follow the trend reported for a cavity completely filled

with the porous layer, particularly in high Darcy and Rayleigh number regimes.

Kim and Choi [23] numerically solved the stability problem for the onset of con-

vection in an overlying fluid-porous layer composite system with the aim of validating the

boundary conditions at the interface. Their scheme was able to accurately predict the num-

ber of circulating cells formed at the onset point. They found that when the depth ratio, η1,

is greater than 0.12, the number of circulating cells increases continuously as the Rayleigh

number increases, which in turn increases the Nusselt number continuously. However, for

η1 < 0.1, the recirculating cells constantly readjust their positions and sizes in the compos-

ite layer as the Rayleigh number increases. They also confirmed the abrupt and steep drop

in the critical Rayleigh number with increase in the fluid depth ratio as observed by Chen

and Chen [22]. However, they found that the number of cells in the supercritical convection

regime does not increase monotonically with the Rayleigh number. Also, the corresponding

Nusselt number variation is quite different from the numerical results of Chen and Chen

[22].

Recently, there has been some renewed interest in this topic. Carr and Straughan

[67] provided an accurate numerical calculation for the instability that arises due to pen-

etrative convection when water overlies and saturates a layer of porous material. In their

study, the lower (porous) surface was maintained at 0 ◦C and the upper (fluid) surface
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was stress free with its temperature being above 0 ◦C. This physical picture is capable of

encompassing water at the density maximum of 4 ◦C in the layer and was thus capable of

describing a model for patterned ground formation under water layers. To account for the

fact that the density may have a maximum in the layer they adopt an equation of state

which expresses the density in the buoyancy force as a quadratic function of temperature.

They used a D2-Chebyshev tau method applicable to the porous-fluid layer thermal con-

vection problem. Their results show significant convective penetration from the underlying

porous layer into the upper fluid layer.

Steven [68] performed an experimental study to measure the heat transfer charac-

teristics of a fluid superposed porous layer system heated from below. His experiments were

performed in a cylindrical test chamber with 6 mm DIA glass beads as the porous layer and

water as the saturating fluid. Heat transfer rates were measured for four different values of

the height ratio η. Steven observed temperature fluctuations within the system at various

radial and vertical locations. He also found that for a given Rayleigh number, the overall

Nusselt number for a composite system is higher than that for a pure porous layer indicating

the overlying layer enhances the overall rate of heat transfer. However, the overall Nusselt

number does not change significantly with η for different Rayleigh numbers.

Hirata and co-workers have recently published a few studies examining the problem

of convective stability in superposed fluid and porous layers [16-19]. The primary aim of

these studies has to been to investigate how the modeling of fluid flow in the porous region,

and the boundary conditions at the fluid-porous layer interface affect the prediction of the

onset of convection. In the first of these studies, Hirata et al. [16,17] carried out a lin-

ear stability analysis with three different modeling approaches: (i) a one-domain approach,

in which the porous layer is treated as a pseudo fluid and the entire composite system is

modeled with a single set of conservation equations; (ii) a two-domain approach where the

fluid flow in the porous layer is modeled by Darcy’s law, and the Beavers-Joseph condition

is applied at the interface; and (iii) a modified two-domain approach where fluid flow in

the porous layer is modeled by Brinkman’s extension to Darcy’s law, and the interfacial

boundary conditions are the continuity of velocity, temperature, heat flux, normal stress

and shear stress. The resulting eigenvalue problem was solved with a generalized integral

transform technique. The authors found that the marginal stability curves obtained with

the two-domain and modified two-domain approaches are in close agreement with each

other, but differ significantly with the curves obtained with the one-domain approach, indi-

cating that the mathematical formulation of the problem has great influence on the stability

results. Their results also show that the effect of the including the Brinkman’s term in the

momentum equation is minimal.

An extension of the above study was subsequently published by Hirata et al. [18]
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in which the authors performed a linear stability analysis using the modified two-domain

approach described above but with a different set of interfacial conditions. Instead of consid-

ering the continuity of shear stress at the interface, the authors incorporated a stress-jump

boundary condition proposed by Ochoa-Tapia and Whitaker [69,70]. The other interfacial

conditions were the continuity of velocity, temperature, heat flux and normal stress. The

authors found that the stress-jump co-efficient strongly influences the bimodal marginal

stability curves. For small fluid-to-porous layer height ratios, increasing the stress jump

coefficient causes the convection in the fluid layer to become unstable. The convection in

the porous layer, however, remains unaffected by the magnitude the stress-jump coefficient.

Since convection in the fluid layer occurs due to perturbation of large wave numbers, the

authors concluded that the stress-jump condition induces a more unstable situation at large

wave numbers.

In another paper, Hirata et al. [19] repeated their earlier study on stability analysis

with the one-domain, two-domain and modified two-domain approaches. The goal of this

study was to examine the cause for the differences in the marginal stability curves obtained

with the one-domain and the two-domain approaches. The conservation equations and

the boundary conditions for the three approaches were the same as that used in their

earlier studies. However, in their problem formulation for the one domain approach, they

incorporated the hypothesis proposed by Kataoka [71] that the average properties of the

porous medium like the porosity, permeability and effective diffusivity are Heaviside step

functions and hence their differentiation must be considered in the meaning of distributions.

Using this approach they found that the marginal stability curves for the one domain and

two domain approaches are almost identical and show almost the same bimodal behavior

irrespective of the depth ratio. Based on their results the authors concluded that the one

and two domain approaches are identical provided that the one domain approach is properly

interpreted mathematically, i.e., in the meaning of distributions.

From these studies it is evident that the ratio of the fluid layer height to the porous

layer height exerts a significant influence on the flow and temperature profiles in both the

fluid and the porous layers. It also has a significant influence on overall heat transfer

rates through the composite system. Numerical studies have shown that the boundary

conditions at the fluid-porous layer interface have a great effect on convective stability in

such a system. Visualization studies of the flow patterns have also shown that there is

significant interaction among the overlying fluid and the underlying porous layer. These

results are extremely relevant to the present study as interfacial effects are also likely to play

a significant role in determining flow patterns, temperature distributions and heat transfer

rates when only a fraction of the base of such a composite system is heated. Hence careful

attention must be paid in choosing the governing equations and boundary conditions during
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problem formulation.

2.4 Closure

From the preceding discussion it is clear that there exists a significant literature

pertaining to the problem of natural convection in horizontal porous and fluid-superposed

porous layers heated from below. These studies have examined various fundamental aspects

of the problem and have enabled a thorough understanding of the principal governing crite-

rion. In particular, they have identified how parameters such as the solid-to-fluid conductiv-

ity ratio, the fluid Prandtl number and fluid-to-porous layer height ratio affect convection

heat transfer in these systems. However, the majority of them consider the case where the

heat source is uniformly distributed along the bottom. The few studies that do consider a

localized bottom heat source deal almost exclusively with saturated porous layers. There

are apparently no published studies on natural convection in fluid-superposed porous layers

heated locally from below. This is a significant shortcoming for the literature on natural

convection in porous media. As mentioned earlier, a localized bottom heat source is often

a more realistic boundary condition than a uniformly heated boundary. It is thus both

important and timely to examine the problem of convection in a fluid-superposed porous

layer with a concentrated bottom heat source. Such a study would give a more complete

picture of natural convection in fluid-superposed porous layers and complement existing

studies on convection in such composite systems with uniform bottom heating.
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Chapter 3

Mathematical Formulation and

Numerical Method

In this chapter, the mathematical formulation for the problem being studied is presented,

and the numerical solution technique is discussed in detail. The governing equations for

natural convection in two-dimensional fluid-superposed porous layers are described first.

Thereafter, the boundary conditions for the problem are elucidated. In particular, the

boundary conditions at the interface of the fluid and porous layers are discussed in detail.

The one-domain formulation, which describes convection in a composite fluid-porous layer

system with a single set of equations, is then derived, and the governing equations are

presented in dimensionless form using the vorticity-stream function formulation. Finite

difference equations are then derived using the control-volume method. The quadratic

upwind interpolation for convective kinetics (QUICK) scheme [80] for handling convective

terms, is also discussed in detail. Thereafter, a brief discussion on the direct method

used for solving the system of linear equations is given. Also, the post-processing of the

numerical data is discussed. Finally, an analysis is presented for the stability, convergence

and accuracy of the numerical technique.

3.1 Mathematical Formulation

3.1.1 Governing equations

The dual fluid-porous layer system being examined in the present study is shown

schematically in Figure 1. A horizontal fluid layer of thickness Hf extends over a saturated

porous layer of thickness Hm. The two-layer system is confined in a two-dimensional en-

closure of overall height H and length L, and is bounded on all four sides by impermeable

boundaries. The two vertical walls are assumed to be adiabatic, the upper horizontal wall is

held at a constant temperature TC , and the lower boundary has a centrally heated portion
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Figure 3.1: Domain of the composite two-layer problem.

of length LH that is held a constant temperature TH while the remaining portion is kept

adiabatic. In addition, it is assumed that the system is potentially unstable, i.e., TH > TC

causing a buoyancy-driven flow instability. A Cartesian co-ordinate system is chosen with

the x-axis horizontal and the y-axis pointing vertically upwards.

For the given system, two sets of continuity, momentum and energy equations de-

scribe natural convection heat transfer, one for each layer. For the fluid layer, the governing

equations are,

∇ · uf = 0, (3.1)

ρ

[
∂uf

∂t
+ (uf · ∇)uf

]
= −∇Pf + µf∇2uf + βρ(Tf − T0)g, (3.2)

∂Tf

∂t
+ (uf · ∇)Tf = αf∇2Tf. (3.3)

Here uf is the fluid velocity vector (uf = ufi + vfj), ρ denotes the fluid density, T the time,

Pf the fluid pressure, µf the fluid dynamic viscosity, β the coefficient of thermal expansion

of the fluid, Tf the fluid temperature, T0 a reference temperature and αf the fluid thermal

diffusivity. The gravitational acceleration vector g vector points in the negative y direction,

and subscript ‘f’ denotes the fluid. In accordance with the Boussinesq approximation, the

fluid density is assumed to be constant everywhere except in the buoyancy term of the
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momentum equation where its dependence on temperature is assumed to be linear and is,

ρ = ρ0 [1− β (Tf − T0)] , (3.4)

where ρ0 denotes the fluid density at the reference temperature T0.

The corresponding continuity, momentum and energy equations for the porous layer

are,

∇ · um = 0, (3.5)

ρ

[
∂um

∂t
+ (um · ∇)

um

φ

]
= −∇Pm + µeff∇2um −

(
µφ

K

)
um

−
(
ρφF√
K

)
|um|um + βρ(T − T0)g, (3.6)

σ
∂Tm

∂t
+ (um · ∇)Tm = αeff∇2Tm. (3.7)

Here um, Tm and Pm represent the volume averaged velocity, temperature, and pressure in

the porous medium, φ denotes the porosity, K the permeability, µeff the effective viscosity

of the Brinkman term and F the Forchheimer inertial coefficient. The heat capacity ratio

σ is defined as,

σ =
φ(ρcp)f + (1− φ)(ρcp)so

(ρcp)f
, (3.8)

while the effective thermal diffusivity is defined as αeff = keff/(ρcp)f where the effective

conductivity keff is,

keff = φkf + (1− φ)kso. (3.9)

The values of the parameters K and F depend on the nature of the porous medium. In

this study, we consider the porous medium to comprise randomly packed spheres. For such

a porous medium, the permeability and the Forchheimer coefficient are,

K =
d2φ3

175(1− φ)2
, (3.10)

F =
1.75φ3/2

√
175

, (3.11)

where d is the diameter of the spherical particles.
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It is instructive at this point to consider in some detail the form of the governing

equations for transport through a porous medium as given above. The continuity, momen-

tum and energy conservation equations for the porous layer are valid at the macroscopic

scale of the porous medium and represent the volume averaged forms of these equations over

a representative elementary volume (REV). This REV includes both the solid and the fluid

components of the porous medium and is chosen in a manner such that it is much larger

than the pore volume, but much smaller than the volume of the entire porous medium.

A schematic representation of an REV is shown in Figure 3.2. These volume-averaged

equations are useful from an engineering standpoint but are at the expense of the loss of

detailed information concerning the microscopic structure of the porous medium. In par-

ticular, these equations do not account for the tortuosity of the porous medium, the nature

of the boundaries between the solid and fluid phases, and the actual variation of quanti-

ties such as the pressure within the pores. However, the gross macroscopic effects of these

factors are still retained in the form of parameters such as the porosity, permeability, and

effective viscosity; these quantities can be related to the statistical properties of the porous

medium under consideration as shown above. As such the volume averaged equations can

adequately capture the effects of the microstructure of the porous medium at a macroscopic

level without making the problem mathematically intractable. For this reason, the volume

averaged governing equations are generally of immense importance in engineering analysis

of porous media transport.

Another important aspect that needs to be discussed is the form of the energy

equation given by equation (3.7). By writing a single energy equation for both the fluid and
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the solid phases, it has been implicitly assumed that a condition of local thermal equilibrium

between the two phases exists in the porous layer. This is a reasonable assumption when

the solid-to-fluid conductivity ratio, λ, is close to unity. For larger conductivity ratios,

especially for λ � 1, however, this condition is not strictly true. In that case, separate

energy equations are needed for the solid and the fluid phases and the thermal resistance

between the phases needs to be taken into account. This two-equation model, however,

makes the numerical solution much more involved. As such, it will not be considered in the

present study. An equilibrium model such as the present one can, however, highlight several

important aspects of the problem for large conductivity ratios. As a result, this model will

be used to study problems with conductivity ratios as high as λ = 100, though it must be

borne in mind that the results are only for qualitative understanding and may not yield

correct quantitative predictions.

3.1.2 Boundary Conditions

For the given problem, the appropriate boundary conditions at the system bound-

aries are,

uf = vf = 0, Tf = TC , at y = H, (3.12)

um = vm = 0,

Tm = TH at y = 0, L−LH
2 ≤ x ≤ L+LH

2 ,

∂Tm
∂y = 0 at y = 0, elsewhere,

(3.13)

u = v = 0,
∂T

∂x
= 0, at x = 0, L. (3.14)

The initial boundary conditions can be written,

u = 0, v = 0, T = 0, at t = 0. (3.15)

In addition, the following boundary conditions need to be satisfied at the fluid-

porous layer interface,

uf = um, (3.16)

−Pf + 2
∂vf

∂y
= −Pm +

2

φ

∂vm

∂y
(3.17)

∂uf

∂y
=

1

φ

∂um

∂y
, (3.18)
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Tf = Tm, (3.19)

kf
∂Tf

∂y
= km

∂Tm

∂y
. (3.20)

The above boundary conditions express the continuity of velocity, normal and tan-

gential shear stress, temperature, and heat flux across the fluid-porous layer interface. These

boundary conditions are however the subject of much controversy and there is no consen-

sus yet on which set of boundary conditions accurately captures the fluid dynamics and

heat flow at the interface. Of particular interest are the boundary conditions which express

the continuity of tangential velocity and tangential shear stress at the interface. As dis-

cussed in the previous chapter, several different approaches have been proposed to model

the interfacial velocity and shear stress. Beavers and Joseph [64] demonstrated that the

tangential velocity is discontinuous and that this discontinuity could be expressed in terms

of a semi-empirical slip boundary condition. Ochoa-Tapia and Whitaker [69,70] on the

other hand have used volume averaging to model flow behavior at the interface and have

proposed a stress-jump boundary condition to account for the discontinuity in the tangen-

tial shear stress at the interface. All these boundary conditions, however, have been derived

for the special case of Poisseuille flow adjacent to a porous layer and can only be applied

in conjunction with Darcy’s law in the porous layer. The interfacial boundary conditions

for buoyancy driven flow in composite fluid-porous systems, however, have not been clearly

elucidated. In addition, boundary conditions that describe either the discontinuity of ve-

locity or tangential shear stress at the interface involve an empirical parameter whose value

must be determined experimentally.

Due to the lack of a consistent formulation for the interfacial boundary conditions,

the continuity boundary conditions will be considered in the present study. A study by Singh

and Thorpe [72] found that for buoyancy driven flow in composite layers, the particular

form of the interfacial boundary conditions has little effect on the flow patterns and overall

heat transfer rates for Darcy numbers up to 10−3. At higher Darcy numbers, Darcy’s law

breaks down, and boundary conditions modeling the discontinuity of velocity or shear stress

can no longer be applied. However the continuity boundary conditions, which are used in

conjunction with the Darcy-Brinkman formulation, can be used for all values of the Darcy

number. These boundary conditions are therefore applicable for a wide range of porous

media. The use of the continuity conditions has another advantage in that it allows one to

use the one-domain formulation in which the two sets of governing equations for the fluid

and porous layers can be combined into a single set of equations. In other words, both

39



the porous and the fluid layers can be modeled as a single domain by one set of equations,

the solution of which satisfies the continuity of velocity, stress, temperature, and heat flux

at the interface. This approach significantly simplifies the numerical solution as no special

modifications have to be made to the computer program to accommodate the interfacial

conditions. Therefore the one-domain formulation will be used in the present study.

3.1.3 One-domain Formulation

The one-domain formulation requires a single set of governing equations for the en-

tire composite domain. In the present study, these equations will be presented using the

stream function-vorticity representation for the momentum equation. With this formula-

tion, the pressure term in the momentum equation can be eliminated, which enormously

simplifies the numerical solution. In order to derive the one-domain formulation, the fol-

lowing dimensionless parameters are defined,

x∗ =
x

H
u∗ =

u

(αf/H)
T ∗ =

T − TC
TH − TC

,

y∗ =
y

H
v∗ =

v

(αf/H)
t∗ =

t

(H2/αf)
,

(3.21)

where the superscript ( )∗ denotes dimensionless quantities. Also, the dimensionless stream

function and vorticity are,

ω∗ =
∂v∗

∂x∗
− ∂u∗

∂y∗
, (3.22)

u∗ = −∂ψ
∗

∂y∗
v∗ =

∂ψ∗

∂x∗
. (3.23)

With the above definitions, the dimensionless stream function-vorticity equation is,

∂2ψ∗

∂x∗2
+
∂2ψ∗

∂y∗2
= ω∗. (3.24)

Note that the above equation satisfies the continuity equation identically.

Using the above definitions, the non-dimensional governing equations for the fluid

layer are,

∂ω∗

∂t∗
+ (u∗ · ∇)ω∗ = Pr∇2ω∗ +RaPr

∂T ∗

∂x∗
, (3.25)

∂T ∗

∂t∗
+ (u∗ · ∇)T ∗ = ∇2T ∗, (3.26)
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where the Rayleigh and the Prandtl numbers are,

Ra =
gβH3(TH − TC)

ναf
, (3.27)

Pr =
ν

αf
. (3.28)

Similarly, the governing equations for the porous layer are,

φ
∂ω∗

∂t∗
+ (u∗ · ∇)ω∗ = Prφ∇2ω∗ −

(
Prφ2

Da
+

Fφ2

√
Da
|u∗|

)
ω∗

+
Fφ2

√
Da

(
u∗
∂|u∗|
∂y∗

− v∗∂|u
∗|

∂x∗

)
+RaPrφ2∂T

∗

∂x∗
, (3.29)

σ
∂T ∗

∂t∗
+ (u∗ · ∇)T ∗ = κ∇2T ∗, (3.30)

where the Darcy number and conductivity ratio are,

Da =
K

H2
, (3.31)

κ =
km

kf
. (3.32)

To derive the one-domain formulation for the vorticity transport equation, one needs

to consider the definitions of the permeability, K, and Darcy number, Da. In the fluid layer

the porosity has no meaning, i.e. φ ≡ 1, and the permeability and Darcy number are,

φ→ 1 ⇒ K →∞, Da→∞. (3.33)

Substituting the above in equation (3.29), it can be seen that the vorticity transport equa-

tion for the porous layer reduces to that for the fluid layer in the limit of the porosity

approaching unity. Thus equation (3.29) alone is sufficient to represent vorticity transport

in the composite fluid-porous layer system. The porosity thus acts as a switching parameter

that allows the vorticity transport equation to take on the appropriate form depending on

whether the solution domain lies in either the fluid or the porous layer. This conditionality

can be expressed as,

φ =

1, in the fluid layer,

0, in the porous layer.
(3.34)
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The one domain formulation for the energy equation can be derived in a similar

manner. For the fluid layer the thermal conductivity ratio, σ, stagnant conductivity, km,

and the conductivity ratio, κ, can be written,

φ→ 1 ⇒ σ → 1, km → kf , κ→ 1. (3.35)

Thus in the limiting case of the porosity approaching unity, the energy equation for the

porous layer reduces to the energy equation for the fluid layer. This equation is therefore

the one-domain representation of the energy equation

Therefore, for the one-domain formulation, the dimensionless governing equations

are,

∂ω

∂t
+ (u · ∇)ω = Prφ∇2ω +RaPrφ2∂T

∂x
, (3.36)

φ
∂ω

∂t
+ (u · ∇)ω = Prφ∇2ω −

(
Prφ2

Da
+

Fφ2

√
Da
|u|
)
ω

+
Fφ2

√
Da

(
u
∂|u|
∂y
− v∂|u|

∂x

)
+RaPrφ2∂T

∂x
, (3.37)

σ
∂T

∂t
+ (u · ∇)T = κ∇2T, (3.38)

where the superscript, ( )∗, has been dropped for convenience. Dimensionless quantities

will henceforth be written without any superscripts.

The corresponding dimensionless boundary conditions are,

u = v = 0, ω =
∂2ψ

∂y2
, T = 0, at y = 1, (3.39)

u = v = 0, ω =
∂2ψ

∂y2
,

T = 1 at y = 0, L−LH
2H ≤ x ≤ L+LH

2H ,

∂T
∂y = 0 at y = 0, elsewhere,

(3.40)

u = v = 0, ω =
∂2ψ

∂x2
,

∂T

∂x
= 0, at x = 0, A. (3.41)

The dimensionless initial conditions are,

u = v = 0, ψ = ω = 0, T = 0, at t ≤ 0. (3.42)
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3.2 Numerical solution of the governing equations

An important question that arises during numerical simulations is the accuracy of

the results in describing the actual physical process being studied. The numerical method

selected must ensure that the discretized equations possess the physical properties of the

original differential equations while giving stable, consistent, and accurate solutions. It

is thus vital to select an appropriate numerical technique. In this section, the numerical

solution technique used in the present study is discussed in detail. In addition, various

aspects of the numerical solution, such as the effects of spatial discretization, convergence

criterion, and truncation and round off errors, will be discussed. Because all of these factors

combine to limit the accuracy of the simulations, a thorough understanding of these issues

will enable correct interpretation of the results.

3.2.1 Derivation of the finite difference equations

The first step in the numerical solution of the governing equations is to derive

the discretized form of the governing differential equations. Usually this can be done using

several different techniques. In the present study, the control-volume formulation developed

by Spalding and co-workers [73,74] is used. In this method, the computational domain is

covered with a set of non-overlapping control-volumes, each of which contains a single grid

point. The governing equations are then integrated over each control-volume and piecewise

profiles expressing the variation of the dependent variable between the grid points are used

to evaluate the resulting integrals. The result is a set of discretized equations containing

the values of the dependent variable for a set of grid points. This approach ensures that the

conservation laws are satisfied over any control-volume and, thus, over the entire calculation

domain. This characteristic exists for any number of grid points, not just in a limiting sense

that the number of grid points has to be sufficiently large. Thus, even coarse-grid solutions

exhibit integral balance which makes this technique highly attractive and useful.

The equations to be solved for the present problem can be classified into two major

classes of differential equations. The stream function-vorticity equation is an elliptic partial

differential equation similar to Poisson’s equation while the vorticity transport and the

energy equations are advection-diffusion equations, which have mixed characteristics. These

two classes of differential equations have different solution techniques and each will be

considered separately.

3.2.1.1 Stream function-vorticity equation

The solution of the stream function-vorticity equation will be considered first. Re-

writing equation (3.36),
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∂

∂x

(
∂ψ

∂x

)
+

∂

∂y

(
∂ψ

∂y

)
− ω = 0. (3.43)

In order to derive the finite-difference equations, consider a single control-volume as shown

in Figure 3.3. The focus is on the grid point P which has grid points E, W , N , and S as

its neighbors. Here E denotes the east side, i.e., the positive x-direction and W denotes

the negative x-direction. Similarly, N and S denote the positive and negative y-directions,

respectively. The control volume faces are denoted by e, w, n, and s, and the control

volume corners are denoted by ne, se, sw, and nw. In the present study a uniform grid is

considered. As such, the control volume faces are located exactly midway between the grid

points. Integrating equation (3.43) over a control volume one has,

∫ n

s

∫ e

w

∂

∂x

(
∂ψ

∂x

)
dx dy +

∫ e

w

∫ n

s

∂

∂y

(
∂ψ

∂y

)
dx dy −

∫ n

s

∫ e

w
ω dx dy = 0, (3.44)

or,

[(
∂ψ

∂x

)
e

−
(
∂ψ

∂x

)
w

]
∆y +

[(
∂ψ

∂y

)
n

−
(
∂ψ

∂y

)
s

]
∆x− ω̄∆x∆y = 0, (3.45)

where ω̄ represents the average value of ω over the control volume. In order to evaluate

the derivatives in equation (3.45) suitable profile assumptions for the stream function are

needed. Assuming a piecewise linear profile,(
∂ψ

∂x

)
e

=
(ψE − ψP )

(δx)e
, (3.46a)

(
∂ψ

∂x

)
w

=
(ψP − ψW )

(δx)w
, (3.46b)

(
∂ψ

∂y

)
n

=
(ψN − ψP )

(δy)n
, (3.46c)

(
∂ψ

∂y

)
s

=
(ψP − ψS)

(δy)s
. (3.46d)

Here (δx)e, (δx)w, (δy)n, and (δy)s represent the distances between the grid point P and

the grid points E, W , N , and S, respectively (Figure 3.3). Substituting equation (3.46) in

(3.45) and simplifying, one has,

CE(ψE − ψP )− CW (ψP − ψW ) + CN (ψN − ψP )− CS(ψP − ψS)− ωP∆x∆y = 0, (3.47)
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where ωP is the value of vorticity at the grid point P . Here it has been assumed that the

value of ω at grid point P prevails over the entire control volume. Thus ω̄ can be substituted

with ωP . Also, the coefficients CE , CW , CN and CS are,

CE =
∆y

(δx)e
, (3.48a)

CW =
∆y

(δx)w
, (3.48b)

CN =
∆x

(δy)n
, (3.48c)

CS =
∆x

(δy)s
. (3.48d)

Finally, the discretized equation for the grid point P can be written,

CPψP − (CEψE + CWψW + CNψN + CSψS) = −ωP∆x∆y, (3.49)

where

CP = CE + CW + CN + CS . (3.50)

The discretized equation given by equation (3.49) can be written for every grid

point in the computational domain thus producing a set of simultaneous linear algebraic

equations, the solution of which will give the value of the stream function at every grid

point. The solution of a large set of algebraic equations, however, introduces additional

challenges with respect to convergence characteristics and computational cost which must

be considered carefully. These issues will be discussed later in this chapter.

3.2.1.2 Vorticity transport and energy equations

The discretization of the vorticity transport and energy equations will now be con-

sidered. Both these equations are of the advection-diffusion type. Such equations have

mixed characteristics, and their mathematical classification changes with a change in the

magnitude of the velocity vector, and in a more general formulation, the Peclet number, Pe.

At low values of Pe, these equations have predominantly elliptic characteristics, whereas

at high Pe they are primarily hyperbolic in nature. As such, special consideration must be

given to the solution of these equations to ensure that the resulting solutions are valid over a

wide range of Peclet numbers. This is achieved by treating the advection and diffusion parts

of the equation separately using different techniques. To illustrate, consider the following

generic advection-diffusion equation,
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Figure 3.3: Schematic of (a) the computational grid, and (b) a single control volume.
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∂θ

∂t
+ (u · ∇) θ = Γ∇2θ + S. (3.51)

Here θ represents either vorticity or temperature, Γ denotes the diffusion coefficient, and S

represents the source-term. For the vorticity transport equation, Γ = Pr, and the source

term is,

S = −
(
Prφ2

Da
+

Fφ2

√
Da
|u|
)
ω +

Fφ2

√
Da

(
u
∂|u|
∂y
− v∂|u|

∂x

)
+RaPrφ2∂T

∂x

= SCN + SPω.

(3.52)

Here, SCN represents the constant part of the source terms and SP is the coefficient of ω.

Writing the source-term as the sum of SCN and SP linearizes it and incorporates it into the

overall linear framework. The above linearization is in accordance with the procedure for

source-term linearization in the control volume formulation [74]. For the energy equation,

Γ = κ and S = 0. In conservative form, equation (3.51) can be written,

∂θ

∂t
+

∂

∂x
(uθ) +

∂

∂y
(vθ) =

∂

∂x

(
Γ
∂θ

∂x

)
+

∂

∂y

(
Γ
∂θ

∂y

)
+ S. (3.53)

The above equation is discretized by integrating it over a single control volume and

over the time interval t to t+ ∆t,

∫ n

s

∫ e

w

∫ t+∆t

t

[
∂θ

∂t
+

∂

∂x
(uθ) +

∂

∂y
(vθ)

]
dt dx dy

=

∫ n

s

∫ e

w

∫ t+∆t

t

[
∂

∂x

(
Γ
∂θ

∂x

)
+

∂

∂y

(
Γ
∂θ

∂y

)
+ S

]
dtdx dy. (3.54)

To simplify the above equation, each side of the equation will be considered separately. For

the right hand side (RHS) of equation (3.54), integration over the control volume gives,

RHS =

∫ t+∆t

t

[{(
Γ
∂θ

∂x

)
e

−
(

Γ
∂θ

∂x

)
w

}
∆y +

{(
Γ
∂θ

∂y

)
n

−
(

Γ
∂θ

∂y

)
s

}
∆x

+ (SCN + SP θ) ∆x∆y

]
dt. (3.55)

As before, profile assumptions describing the variation of θ between the grid points are

required in order to evaluate the derivatives in equation (3.55). Similar to the stream

function, a piecewise linear profile is assumed for θ,
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(
Γ
∂θ

∂x

)
e

=
Γe(θE − θP )

(δx)e
, (3.56a)

(
Γ
∂θ

∂x

)
w

=
Γw(θP − θW )

(δx)w
, (3.56b)

(
Γ
∂θ

∂y

)
n

=
Γn(θN − θP )

(δy)n
, (3.56c)

(
Γ
∂θ

∂y

)
s

=
Γs(θP − θS)

(δy)s
, (3.56d)

Here Γe, Γw, Γn and Γs denote the diffusion coefficients at the control volume faces e, w,

n, and s respectively. Substituting equation (3.56) in (3.55) one obtains,

RHS =

∫ t+∆t

t

[{
Γe(θE − θP )

(δx)e
− Γw(θP − θW )

(δx)w

}
∆y

+

{
Γn(θN − θP )

(δy)n
− Γs(θP − θS)

(δy)s

}
∆x+ (SCN + SP θ) ∆x∆y

]
dt. (3.57)

One now needs to complete the integration over the time-step, which can be done

using several different methods. In the present study a fully implicit scheme time integration

scheme will be used. The advantage of this technique is that it is unconditionally stable

and ensures that physically realistic solutions are always obtained. The time integration in

this scheme is given as,

∫ t+∆t

t
θ dt = θ1∆t, (3.58)

where θ1 represents the value of θ during the current iteration. The fully implicit scheme

therefore postulates that at any time t the value of θ drops abruptly from its value during

the previous iteration, θ0, to its current value and stays at that value for the rest of the

time step. Thus the temperature during the time step is characterized by θ1. Using this

scheme, equation (3.57) can be written,

RHS =

[
Γe(θE − θP )

(δx)e
− Γw(θP − θW )

(δx)w

]
∆y∆t

+

[
Γn(θN − θP )

(δy)n
− Γs(θP − θS)

(δy)s

]
∆x∆t+ (SCN + SP θ) ∆x∆y∆t, (3.59)
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where the superscript ‘1’ has been dropped for convenience. Similarly the left hand side

(LHS) of equation (3.54) can be written,

LHS = (θP − θ0
P )∆x∆y + (ueθe − uwθw)∆y∆t+ (vnθe − vsθw)∆x∆t. (3.60)

Equating equations (3.59) and (3.60), the discretized form of the general transport equation

can be written,

(θP − θ0
P )

∆x∆y

∆t
+ (ueθe − uwθw)∆y + (vnθe − vsθw)∆x

=

[
Γe(θE − θP )

(δx)e
− Γw(θP − θW )

(δx)w

]
∆y +

[
Γn(θN − θP )

(δy)n
− Γs(θP − θS)

(δy)s

]
∆x

+ (SCN + SP θ) ∆x∆y. (3.61)

The above discretization can be further simplified to,

(θP − θ0
P )a0

P + (Jeθe − Jwθw) + (Jeθe − Jwθw) = De(θE − θP )

−Dw(θP − θW ) +Dn(θN − θP )−Ds(θP − θS) + (SCN + SP θ) ∆x∆y, (3.62)

where the time constant a0
P and the flow rates across the control volume faces, Je, Jw, Jn,

and Js, are,

a0
P =

∆x∆y

∆t
(3.63)

Je = ue∆y, (3.64a)

Jw = uw∆y, (3.64b)

Jn = vn∆x, (3.64c)

Js = vs∆x. (3.64d)

Also, the coefficients De, Dw, Dn, and Ds are,

De =
Γe∆y

(δx)e
, (3.65a)

Dw =
Γw∆y

(δx)w
, (3.65b)

Dn =
Γn∆x

(δy)n
, (3.65c)
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Ds =
Γs∆x

(δy)s
. (3.65d)

Equation (3.62) reveals that the discretized equation contains the value of θ at the

four control volume faces, which arises from the discretization of the convective part of

the transport equation. In order to complete the discretization equation, an interpolation

formula for the face values of θ in terms of its values at the neighboring grid points is

required. This interpolation can be done using several different techniques. The two most

commonly used methods are central differencing and upwind differencing. Both of these

methods however suffer from severe limitations. The central difference scheme tends to be

dispersive and produces oscillatory behavior in the obtained solution for strongly convective

flows. Also, this scheme often leads to physically unrealistic solutions [81]. On the other

hand, the upwind differencing scheme gives rise to false, or artificial, diffusion which tends

to smear out sharp changes or gradients in the solution. In addition, the upwind scheme

has a first-order truncation error. As such, excessively fine grids are needed in order to

attain a grid independent solution.

The problems associated with both the central and upwind differencing schemes can

be overcome by using a three-point upstream-weighted quadratic interpolation scheme for

each wall value. This scheme, known as Quadratic Upwind Interpolation for Convective

Kinetics, or QUICK, was first proposed by Leonard [75] and has since been tested against

several model problems [76-78]. This scheme simultaneously possesses good accuracy and

convective stability and has been found to be superior to other numerical schemes [79, 80].

It has also been applied to various engineering problems by different investigators and has

been found to give highly accurate results. Owing to its many advantages, this scheme will

be used in the present study.

3.2.1.3 The QUICK scheme

Since the original publication of the QUICK scheme, several modifications have been

proposed for implementing the scheme for a variety of problems more complex than the one

originally inspected by Leonard [75]. In this study a modified version of the QUICK scheme

proposed by Hayase et al. [81] will be used. This scheme has been specifically developed

within the framework of the control volume formulation and can handle problems involving

unsteady convection with source terms. To illustrate the basic concepts of this scheme,

consider equation (3.62). According to the QUICK scheme, the control volume face values

of θ are,
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θe =

θP + S+
e , Je > 0,

θE + S−e , Je ≤ 0,
(3.66a)

θw =

θW + S+
w , Jw > 0,

θP + S−w , Jw ≤ 0,
(3.66b)

θn =

θP + S+
n , Jn > 0,

θN + S−n , Jn ≤ 0,
(3.66c)

θs =

θS + S+
s , Js > 0,

θP + S−s , Js ≤ 0,
(3.66d)

where

S+
e =

1

8
(3θ0

E − 2θ0
P − θ0

W ) S−e =
1

8
(3θ0

P − 2θ0
E − θ0

EE), (3.67a)

S+
w =

1

8
(3θ0

P − 2θ0
W − θ0

WW ) S−e =
1

8
(3θ0

W − 2θ0
P − θ0

E), (3.67b)

S+
n =

1

8
(3θ0

N − 2θ0
P − θ0

S) S−e =
1

8
(3θ0

P − 2θ0
N − θ0

NN ), (3.67c)

S+
s =

1

8
(3θ0

P − 2θ0
S − θ0

SS) S−e =
1

8
(3θ0

S − 2θ0
P − θ0

N ). (3.67d)

Here the superscript ‘0’ indicates a value from the previous iteration and the grid points

EE, WW , NN , and SS are as shown in Figure 3.3. The QUICK scheme introduces a

parabolic correction term (3.67a-d) to the standard upwind differencing scheme and can

thus be regarded as a higher order upwind differencing scheme. The truncation error of

the QUICK scheme is third-order, and it is thus often referred to as a third-order upwind

scheme. The third-order truncation error significantly reduces the false diffusion that is

inherent in the upwind scheme while retaining its convective stability.

The final discretization equation for the general transport equation can now be

written. Substituting equations (3.66) and (3.67) into (3.62), and simplifying, the general

discretization equation is,

aP θP = aEθE + aW θW + aNθN + aSθS + b, (3.68)

where

ae = De + 〈−Je, 0〉, (3.69a)
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aw = Dw + 〈Jw, 0〉, (3.69b)

an = Dn + 〈−Jn, 0〉, (3.69c)

as = Ds + 〈Js, 0〉, (3.69d)

aP = aE + aW + aN + aS + a0
P − SP∆x∆y, (3.70)

b = a0
P θ

0
P + SC∆x∆y + (S0

e − S0
w + S0

n − S0
s ). (3.71)

Here the operator 〈X,Y 〉 denotes the greater of X and Y . The terms S0
e , S0

w, S0
n

and S0
s are the correction terms for the QUICK scheme which are treated as additional

source terms. They are,

S0
e = S+

e 〈Fe, 0〉 − S−e 〈−Fe, 0〉, (3.72a)

S0
w = S+

w 〈Fw, 0〉 − S−w 〈−Fw, 0〉, (3.72b)

S0
n = S+

n 〈Fn, 0〉 − S−n 〈−Fn, 0〉, (3.72c)

S0
s = S+

s 〈Fs, 0〉 − S−s 〈−Fs, 0〉. (3.72d)

Equation (3.68) represents the general form of the discretization equation for any

advection-diffusion type of transport equation. As seen earlier, a discretization equation

can be written for every grid point in the computational domain. The solution of the

vorticity transport and energy equations therefore reduces to a solution of a set of algebraic

equations.

3.2.1.4 Calculation of the Velocities

In order to solve the vorticity transport and energy equations, the velocities at the

control volume faces are needed, and discretized equations for calculating the velocities are

required. Recalling the definition of the velocities, it can be seen that the discretized form

of equation (3.23) will give the required discretized equations. Therefore the velocities at

the control volume faces can be written as,

ue =
ψse − ψne

∆y
, uw =

ψsw − ψnw
∆y

, (3.73)

vn =
ψne − ψnw

∆x
, vs =

ψse − ψsw
∆x

, (3.74)

where ue, uw, un, and us are the velocities at the control volume faces e, w, n, and s,

respectively, and ψne, ψse, ψnw, and ψsw are the values of the stream function at the
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four control volume corners. In writing the above equations, the earlier assumption of a

piecewise linear profile for ψ has been used. From equations (3.73) and (3.74), it can be seen

that the values of ψ at the control volume corners are required to evaluate the velocities.

However, because the value of ψ is available only at the grid points, interpolation formulas

for evaluating it at the control volume corners are needed. These interpolation formulas

are,

ψne =
1

2

[(
ψP + ψE

2

)
i

+

(
ψP + ψE

2

)
i−1

]
, (3.75a)

ψnw =
1

2

[(
ψP + ψW

2

)
i

+

(
ψP + ψW

2

)
i−1

]
, (3.75b)

ψse =
1

2

[(
ψP + ψE

2

)
i

+

(
ψP + ψE

2

)
i+1

]
, (3.75c)

ψsw =
1

2

[(
ψP + ψW

2

)
i

+

(
ψP + ψW

2

)
i+1

]
. (3.75d)

where i represents the ith row in the computational grid. Once again, the piecewise linear

profile of ψ has been used to obtain these interpolation formulas.

3.2.1.5 Treatment of Boundary Conditions

The discretization equations given for the stream function-vorticity, vorticity trans-

port, and energy equations are only valid for grid points that are situated in the interior

of the computational domain. Additional considerations must be given for the treatment

of grid points that are located adjacent the system boundaries and the fluid-porous layer

interface. These grid points will henceforth be referred to as boundary grid points. The

discretization equations for the boundary grid points must be derived separately so as to

correctly incorporate the appropriate boundary conditions. Of particular importance is the

derivation of discretization equations for boundary grid points in the QUICK scheme. Also,

special consideration must be given for incorporating the Neumann boundary conditions

for the energy equation.

First, consider the boundary conditions for the stream function-vorticity equation.

Since this equation does not have any convective terms, and is only subjected to Dirichlet

boundary conditions, derivation of the discretization equations for the boundary grid points

is straightforward. Recalling the discretization equation (3.49), it can be seen that depend-

ing on which boundary is considered, either ψE , ψE , ψE , or ψE will be known. For example,

on the left boundary, ψW is known, and the discretization equation can be written,

CPψP − (CEψE + CNψN + CSψS) = −ωP∆x∆y, (3.76)
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where the boundary condition ψW = 0 has been applied. This equation is applicable to the

all left hand boundary grid points. Similar equations can be derived for grid points located

at other boundaries.

The treatment of the boundary conditions for the vorticity transport equation will

now be considered. Because this equation also has Dirichlet boundary conditions, the

discretization equation for the boundary grid points can be written similar to that for the

stream function-vorticity equation. For example, for a grid point on the left boundary of

the system the discretization equation can be written,

aPωP − (aBωB + aEθE + aNθN + aSθS) = b, (3.77)

where ωB is the value of the vorticity at the boundary grid point B (Figure 3.4) and the

definitions of aP , aE , aN , aS , and b are the same as before. Unlike the stream function

equation however the value of ωB is not given but instead must be calculated from the

stream function-vorticity equation. For example, on the left boundary the vorticity is,

ω =
∂2ψ

∂x2
, (3.78)

and ωB must be evaluated from a finite-difference formula for the second-order stream

function derivative. Several finite-difference formulations have been proposed for this pur-

pose. In this study the formulation proposed by Orszag and Israeli [82] has been used as

it has been found to very efficient for numerical solutions of the vorticity-stream function

formulation of the Navier-Stokes equation [83]. According to this formulation ωB is,

ωB =
10ψ1,j − ψ2,j

3∆x2
, (3.79)

where ψ1,j and ψ2,j are the values of the stream function along and first and second vertical

grid lines, respectively. In a similar manner, the vorticity values along the other boundaries

can be calculated.

Another aspect that needs special consideration is the evaluation the parabolic cor-

rection terms for the QUICK scheme. Because the QUICK scheme involves a three-point

quadratic interpolation, with two of the points taken from the upstream side, discretized

equations for the boundary grid points cannot be written using the standard formulation as

one will then need to consider points which lie outside the calculation domain. To illustrate

consider a left boundary grid point as shown in Figure 3.4. From equation (3.67b) it can be

seen that S+
e cannot be calculated for this grid point as θ0

W lies outside the domain. Similar

observations can be made for grid points on other boundaries. To address this situation,

different quadratic interpolation formulas are used for the boundary grid points,
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Figure 3.4: Boundary control volume on an adiabatic boundary.
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1

3

(
ω0
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B

)
, (3.80c)

Left Boundary : S−s =
1

3

(
ω0
S − ω0

B

)
, (3.80d)

where ω0
B is the boundary value of the vorticity. The equations for S−e , S+

w , S−n and S+
s are

as given in equation (3.67).

Finally, the boundary conditions for the energy equation will be discussed. Since the

temperature boundary condition at the top and bottom surfaces are of the Dirichlet type,

the discretization equations for the top and bottom boundary grid points can be derived

in the same manner as shown for the vorticity transport equation. Similarly the quadratic

interpolation formulas for the boundary grid points will be identical to equation (3.80).

Therefore, only the discretization equations for the Neumann boundary conditions at the

left and right system boundaries are needed. To do this, consider once again a control

volume on the left hand boundary of the system as shown in Figure 3.4. Because this

boundary is adiabatic, the temperature needs to be evaluated at both the grid points P
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and B. As such, discretization equations are needed for both these points. First, consider

the grid point P . Since the left boundary is adiabatic and impermeable,(
Γ
∂T

∂x

)
w

= 0, uw = 0. (3.81)

Following the discretization process shown in the previous section, one gets Dw = 0 and

Jw = 0 which gives aW = 0. The discretization equation for P can thus be written,

aP θP − (aEθE + aNθN + aSθS) = b, (3.82)

aP = aE + aN + aS + a0
P . (3.83)

where all the terms have their usual definitions. To derive a discretized equation for cal-

culating the temperature at point B, equation (3.56b) can be re-written for the boundary

control volume shown in Figure (3.4) as,(
Γ
∂T

∂x

)
w

=
ΓB (TP − TB)

(δx)B
. (3.84)

Because the boundary is adiabatic, the above equation gives TB = TP . Thus the tem-

perature on the boundary is equal to the temperature at the grid point adjacent to the

boundary. The discretized equations for control volumes on the right hand boundary can

be obtained in a similar manner.

To complete the treatment of boundary conditions, the discretized equations for the

grid points located adjacent to the fluid-porous layer interface will be discussed briefly. The

discretized equation given by equation (3.68) is valid for the interfacial grid points. However,

special consideration must be given to the diffusion coefficients at the interface. In order to

derive the interfacial diffusion coefficients, the harmonic mean formulation of Patankar [74]

will be used. According to this formulation, the interfacial diffusion coefficient, Γint, is,

Γint =
2ΓfΓm

Γf + Γm
, (3.85)

where Γf and Γm are the diffusion coefficients in the fluid and porous layers respectively.

Thus for interfacial control volumes in the fluid layer, Γs will be replaced by Γint, while for

interfacial control volumes in the porous layer, Γn will be replaced by Γint.

3.2.2 Solution of the discretization equations

The discretization process results in a set of linear algebraic equations of the form,

MΘ = b, (3.86)
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where M is a N × N matrix (N is the total number of grid points) and Θ is a vector of

unknowns. An important characteristic feature of the matrix M is that it is very sparse.

Because the discretized equations have non-zero coefficients for only the neighboring grid

points, only 5 × N of the total N2 entries in the matrix A are non-zero. In addition, the

non-zero elements in the matrix have a specific fill pattern, a tri-diagonal structure with two

additional diagonals on either side creating a symmetric penta-diagonal structure. Because

matrix inversion is a computationally demanding task, it is important to consider linear

solvers that can take advantage of this matrix structure.

In general, linear solvers can be classified as either direct or iterative. Direct meth-

ods typically do not take advantage of matrix sparseness and involve a fixed number of

operations to obtain the final solution which is determined to machine accuracy. Also,

because direct methods involve a large number of arithmetic operations, they involve high

computational costs. Iterative methods on the other hand, can easily be formulated to

take advantage of the matrix sparseness. Because these methods successively improve the

solution, iterations can be stopped when the solution at any given iteration has been ob-

tained to a sufficient level of accuracy and not have to incur the expense of obtaining the

machine-accurate solution. Thus iterative solvers are most often used in computational fluid

dynamics (CFD). Recently, however, much research has been devoted to the development

of direct methods that take advantage of the matrix sparseness and also obtain solutions to

machine accuracy. These solvers offer the advantages of both direct and iterative techniques

and are thus highly attractive.

In this study, a state-of-the-art fast direct solver developed specifically for symmetric

sparse matrices has been used [82]. This solver uses an up-looking Cholesky factorization

for sparse matrices to obtain the final solution and can be readily implemented in the

commercial software package MATLABr. In order to test the performance of this method,

it is compared with two standard iterative techniques most commonly encountered in CFD

studies: successive over relaxation (SOR) and preconditioned conjugate gradient (PCG).

In each case tested, the direct method gives significantly lower solution times and better

accuracy. For this reason, the direct method has been used for the simulations in the

present study. A detailed description of the solution algorithm of this direct solver is given

in Appendix A.

3.2.3 General solution algorithm

As seen previously, the numerical solution process basically involves the solution

of three non-dimensional equations - the stream function-vorticity equation, the vorticity

transport equation and the energy equation. Owing to the inherent coupling of these equa-

tions, as well as their strongly non-linear nature, an iterative solution process is employed.
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The solution is started from the given initial conditions and is marched forward in time

through a series of successive iterations until steady-state is reached. This process thus

emulates the temporal evolution of the flow and temperature fields from an initial state to

steady-state. Every intermediate solution during the iterative process captures the tran-

sient state of the system at a particular instant. This final solution is the actual solution of

the original non-linear problem that is obtained by the iterative solution of a set of linear

equations. The solution process can be summarized as follows:

1. Initial values for the stream function, vorticity and temperature are assigned for all

the grid points.

2. The convergence criterions are set and the iterative process is started.

3. Interpolation formulas are used to calculate the values of the stream function at the

control volume corners. Using these values, the velocities at the control volume faces

are calculated using (3.73) and (3.74).

4. The vorticity transport equation is then solved. For this, the discretization equation

is recast into the form given by (3.84) and the direct method is invoked to solve the

system of equations.

5. Using the obtained value of the vorticity, the stream function-vorticity equation is

solved. As done for the vorticity equation, the discretization equation is expressed in

matrix form and the resulting set of linear equations is solved using the direct method.

6. The energy equation is solved with a method similar to the vorticity transport equa-

tion.

7. Iterations are continued until steady state is reached.

3.3 Post-processing of data

Having described the numerical solution procedure for the present problem, the

post-processing of the numerical data will be discussed briefly. It will be recalled that the

aim of the numerical simulations is to understand the evolution of the flow and temperature

fields and predict the overall heat transfer rates. Because the numerical solution gives a set

of numeric values for the temperature, stream function and vorticity for the entire compu-

tational domain, graphical representation of the numerical data in terms of streamline and

isotherm plots can be used to visualize and understand the flow patterns and temperature

distribution.
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The overall heat transfer rate can be calculated by expressing it in dimensionless

form using the conduction-referenced Nusselt number. The Nusselt number characterizes

the non-dimensional temperature gradient, and it can be calculated at any point within the

computational domain. In the present study, the average Nusselt number over the heated

surface is determined by,

Nu =
q

kf(LH/H)(TH − TC)

= κ

(
H

LH

)∫ LH/H

0

(
∂T

∂y

)
y=0

dx. (3.87)

Here q is the heat supplied to the system though the heater at the base and LH is the

length of the heater. The temperature gradient is calculated using the first order accurate

backward finite difference formula(
∂T

∂y

)
y=0

=
TH − T1

(δx) /2
, (3.88)

where T1 represents the non-dimensional temperatures along the first row of grid points

situated just above the heater surface. It must be noted that higher order backward dif-

ference formulas in general give faster convergence to the grid independent value of the

Nusselt number. However, in the present case it is seen that the first-order formula given

in equation (3.86) has much better convergence characteristics. This is discussed in detail

in Chapter 4 where the convergence characteristics of first and second order accurate finite

difference formulas are compared. The integration in equation (3.85) is carried out using

Simpson’s rule.

3.4 Convergence and accuracy of the numerical scheme

3.4.1 Convergence criterion

For an iterative solution technique, there exists a residual error caused by the differ-

ence between the exact solution of the finite-difference equations, and the solution obtained

when the iterations are stopped. Obviously, this error could be reduced to zero if the num-

ber of iterations were to be made very large. This is however not feasible in most practical

scenarios due to the enormous computational costs that would be incurred. Thus it is es-

sential to clearly define a convergence criterion in order to terminate the solution loop. The

convergence criterion is usually expressed by: 1) calculating the total fractional change of

each dependent variable in successive iterations, or 2) calculating the fractional change in

the maximum value of each dependent variable in successive iterations. If this fractional
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change is less than a particular tolerance value, the solution is said to have converged. In

the present study, the first formulation is adopted which can be expressed mathematically,

m∑
i=1

n∑
j=1

|ϑn+1
i,j − ϑ

n
i,j |

m∑
i=1

n∑
j=1

|ϑn+1
i,j |

< τ, (3.89)

where ϑ represents ψ, ω and T , r represents the iteration number and τ is the tolerance

limit. Also, m and n represent the number grid points in the x and y directions, respectively.

The choice of the value tolerance limit is rather arbitrary. In the present study, the value

of the tolerance limit is set at 10−5.

3.4.2 Relaxation parameter

Because of the strongly non-linear nature of the governing equations and the iterative

process employed in the solution, the use of under relaxation parameters is required in

order to ensure convergence. Under relaxation slows down the changes in the value of the

dependent variable from iteration to iteration and prevents divergence in the solution. As

with other aspects of a numerical technique, there are no universal rules governing the

selection of a particular method for introducing under relaxation or selecting a value for

the relaxation parameter. As such exploratory simulations are required to determine the

most efficient technique. After extensive trial runs, it was found that under relaxation of

the stream function-vorticity equation alone is sufficient to ensure convergence in all cases.

The procedure given by Patankar [74] is used for introducing the relaxation parameter. To

briefly outline the procedure, equation (3.49) is re-written,

ψP = ψ0
P +

(∑
iCiψi − ωP∆x∆y

CP
− ψ0

P

)
, (3.90)

where the summation runs over the four adjacent grid point E, W , N and S, and ψ0
P

represents the value of the stream function from the previous iteration. From the above

equation it can be seen the term within the parenthesis represents the change in the value

of ψ during the current iteration. This change can be modified by introducing a relaxation

parameter Ω, so that,

ψP = ψ0
P + Ω

(∑
iCiψi − ωP∆x∆y

CP
− ψ0

P

)
. (3.91)

Finally, the discretization equation with the relaxation parameter can be written,
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CP
Ω
ψP − (CEψE + CWψW + CNψN + CSψS) = −ωP∆x∆y + (1− Ω)

CP
Ω
ψ0
P . (3.92)

It can be seen that when the iterations converge, i.e. when ψP equals ψ0
P , the original

discretization equation is recovered. After several test runs, a value of 0.8 is selected for

the relaxation parameter.

3.4.3 Grid convergence

The accuracy of the solutions depends strongly on the grid spacing. In general, an

accurate solution is obtained only when the grid is sufficiently fine. However, a truly grid

independent solution may be a difficult to obtain when the computational cost is taken

into consideration. This is further compounded by the fact that grid convergence cannot be

uniquely quantified as there are several parameters which can be used to provide an estimate

for grid convergence. Also, grid independence is strongly dependent on the convergence

criterion that is set for the iterative solution, as well as on different parameters, such as the

Rayleigh number and the size of the heat source.

There are no universal rules for testing grid convergence. Thus exploratory calcula-

tions are required at the beginning of every computation to provide some useful information

about the behavior of the solution scheme. From such computations, an appropriate grid

size can be selected depending upon the value of the Rayleigh number, aspect ratio and

heater size. In the present study, three different parameters are used to check for the grid

convergence of the solution. These are the average Nusselt number along the heater surface,

the maximum stream function, and the fractional energy difference between the top and

bottom surfaces. Generally, grid refinement is continued until the percentage change in

all these parameters is less than 1%. The use of multiple parameters to quantify the grid

convergence behavior of the solution increases the overall accuracy of the obtained results.

3.4.4 Energy balance

As mentioned above, an overall energy balance serves as a check on the accuracy of

the results. The energy balance is verified by taking the fractional difference of the total

energy input and output,

∆E =

[
(Total Heat Input)− (Total Heat Output)

(Total Heat Input)

]
=

(
Nub −Nut

Nub

)
, (3.93)

where Nub and Nut are the Nusselt number along the bottom and top surfaces and are
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defined as,

Nub =
qbH

kfL(TH − TC)

= κ

(
H

L

)∫ L/H

0

(
∂T

∂y

)
y=0

dx. (3.94)

Nut =
qtH

kfL(TH − TC)

=

(
H

L

)∫ L/H

0

(
∂T

∂y

)
y=1

dx. (3.95)

For the exact solution, the value of ∆E is equal to zero because the finite difference

equations have been derived using the control volume approach which, as mentioned ear-

lier, possesses the characteristic of the integral conservation of energy. Therefore, from a

theoretical point of view, the total heat output must be equal to the total heat input, thus

making the value of ∆E zero. However, due to the accumulation of round-off errors, the

value of ∆E is not zero but a very small number. This value depends on several parame-

ters, such as the Rayleigh number, aspect ratio, the Darcy number and the size of the heat

source.
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Chapter 4

Numerical Results

In this chapter, results from the numerical simulations are presented. As mentioned ear-

lier, the aim of the numerical simulations is to predict the overall heat transfer coefficients,

and understand the evolution of the flow and temperature fields in fluid-superposed porous

layers heated locally from below. To that end, results from both steady-state and transient

numerical solutions are presented here. First, the stability and convergence characteristics

of the numerical solution are discussed. Thereafter, the validity of the numerical solu-

tion technique is demonstrated by comparing selected numerical results to prior studies on

natural convection in porous layers, fluid layers, and fluid-superposed porous layers. The

steady-state heat transfer characteristics of the system under consideration are then studied

in detail. In particular, the effects of the various non-dimensional controlling parameters,

such as the heater-to-base length ratio, the porous-to-fluid layer height ratio, the overall

aspect ratio, the Darcy number, the solid-to-fluid conductivity ratio, and the fluid Prandtl

number are investigated. Finally, the temporal evolution of the convective flow is examined

and results are compared to the transient behavior of composite systems heated uniformly

from below.

4.1 Convergence, accuracy and stability of the numerical scheme

The first step in determining the validity of the numerical solution technique is to test

the convergence, accuracy and stability of the scheme. In the present study, the convergence

of the numerical scheme is determined by evaluating the average Nusselt number along

the heater surface and the maximum absolute value of the stream function, |ψmax|, for

successively finer grids and calculating the percentage change in both these quantities with

grid refinement. The solution is considered to be grid independent when any further change

in grid size produces a less than one percent change in Nu and |ψmax|. The parameters

used in the simulations for testing grid convergence are: δ = 0.5, η = 0.5, A = 2, Da =
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Figure 4.1: Convergence characteristics of the numerical scheme. (a) Change in average
Nusselt number, Nu and maximum value of the stream function, |ψmax| with
grid refinement. (b) Percentage change in Nu and |ψmax| with successive grid
refinement.
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Figure 4.2: Grid convergence of the solution in terms of the number of iterations and the
CPU time.

10−6, P r = 7, λ = 1, and Ra = 105, where all the symbols have their usual definitions. In

addition, for all the simulations reported in this chapter, the following parameters are kept

fixed: φ = 0.4, F = 0.5, and Ω (relaxation parameter) = 0.8.

The grid convergence behavior of the solution is shown graphically in Figure 4.1.

In addition, the values of the Nusselt number evaluated from both first and second-order

backward difference formulas for the temperature gradient at the heater surface are shown.

As can be seen, the Nusselt number calculated using a first-order finite difference scheme

converges more rapidly to the final value than the second-order scheme. The reason for this

is that for localalized heat sources, the temperature gradients along the heater edges are

very high and heat flow there occurs in both the normal and lateral directions. Hence using

higher-order finite difference schemes to calculate the normal temperature gradient at the

heater surface requires an excessively fine grid. It was found that a grid size of 120× 240 is

required to achieve similar results using both first and second-order finite difference schemes.

Using a first-order scheme, however, the solution converges at grid size of 52× 104. This is

further confirmed by noting that further grid refinement produces only about a one percent

change in the value of |ψ|max. This trend is noticed in all the solutions reported later in this

chapter. For this reason, a first-order backward difference scheme is selected for calculating

the Nusselt number in all subsequent results. It can also be seen that for grids coarser

than 40 × 80, grid refinement causes a much larger percentage change in Nu and |ψ|max
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Figure 4.3: Energy balance given in terms of the percentage difference between the heat
fluxes at the top and bottom surfaces.

than any successive grid refinement. As such, this is the minimum grid size selected for

all calculations. Figure 4.2 shows the convergence behavior of the solution in terms of the

number of iterations and CPU time.

As a further check on the accuracy of the solutions, the energy balance is calculated

for all solutions. The energy balance for the test problem is shown in Figure 4.3. It can

be seen that the heat fluxes at the top and bottom surfaces differ by about 2.5% when the

solution converges. This difference is somewhat higher when compared to problems with

uniform heating along the base where the energy balance is always less than one percent at

similar grid sizes, all other parameters being kept constant. This is again, most likely due

to the strong lateral temperature gradients near the heater edges. It is probable that a non-

uniform grid with a high number of control volumes along the base may more accurately

capture the temperature gradients and give a better energy balance. However, with the

energy balance less than 2.5% for most of the cases run in the present study, a non-uniform

grid was not considered so as to put all of the results on an equal basis.

Finally, it is also worthwhile to look at the stability of the numerical solution tech-

nique. As mentioned in the previous chapter, a fully implicit time integration scheme is

adopted in the present study. This scheme is unconditionally stable, and therefore no os-

cillations are expected in the Nusselt number during the progress of the solution towards

steady-state. Figure 4.4, which shows the time evolution of the Nusselt number, confirms
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Figure 4.4: Time evolution of the Nusselt number the effect of the time step.

this expectation. In addition, it can be seen that the time step selected does not have any

effect on the final solution, as is to be expected for a fully implicit scheme. For this reason,

a time step of 0.1 is selected for all computations as it gives good balance between accuracy

and computational time.

4.2 Verification of the numerical scheme

In order to verify the numerical solution technique, numerical results are first ob-

tained for three base problems: natural convection in a fluid layer, natural convection in a

saturated porous layer, and natural convection in a fluid-superposed porous layer, all heated

uniformly from below. The first problem is the well known Rayleigh-Bénard problem, while

the second problem is the equivalent of the Rayleigh-Bénard problem for porous media,

also known in the literature as the Horton-Rogers-Lapwood problem. Both these problems

have been extensively studied, and well established solutions for them are available in the

literature. These two problems are therefore ideal for testing the accuracy of the numerical

scheme. In addition, numerical results are also compared to past studies on convection in

fluid-superposed porous layers, although it must be noted that there are no standard bench-

mark studies available in the literature for this problem. The various parameters used in

these simulations are given in Table 4.1.
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Table 4.1: Parameters used in the simulations for code validation.

Base Problem Parameters Range of Fixed Data
Studied Values Parameters Presented

1. Rayleigh-Benard Ra, Nu Ra = 103− 105 A = 2 Nu-vs-Ra

Problem Pr = 7

2. Horton-Rogers- Ram, Num Ram = 10−350 A = 2 Num-vs-Ram

Lapwood Problem Pr = 7

Da = 10−6

λ = 1

3. Fluid-Superposed Ra, Nu Ra = 103− 105 A = 2 Nu-vs-Ra

Porous Layer Pr = 7
Problem

Da = 10−6

λ = 1

The first test of the numerical solution technique is to compare results for the

Rayleigh-Bénard problem. Recalling the definition of the height ratio, η, and the heater

length, δ, it can be seen that this problem is a special case of the present problem for η = 0

and δ = 1. Figure 4.5 shows the comparison of the present numerical results with the

numerical solutions of Clever and Busse [85], and Ouertatani et al. [86], as well as with

experimental results from various investigators compiled by Hollands et al. [87]. As can be

seen, the current numerical results are slightly lower than those of Clever and Busse [85] and

slightly higher than benchmark numerical solutions of Ouertatani et al. [86]. The maximum

difference, however, is less than seven percent in either case. The numerical results also show

excellent agreement with the experimental data compiled by Hollands et al. [87], especially

at high Rayleigh numbers. The present numerical code slightly under predicts the onset of

convection, and the Nusselt numbers near the onset point. The critical Rayleigh number is

found to be ∼ 1800 whereas the theoretical value for the critical Rayleigh number is 1708.

This discrepancy is most likely due to the effect of the lateral walls on convective motion.

As Catton has pointed out [68,69], lateral walls introduce additional shear, which delays

the onset of convection and subsequent convective motion. Because the domain studied

here has a relatively short horizontal extent (L/H = 2), the effect of the lateral walls is

significant at low Rayleigh numbers.

Comparison to literature results for the Horton-Rogers-Lapwood problem is shown

in Figures 4.6 (a,b). This problem is a special case of the current problem for η = 1 and

δ = 1. Figure 4.6(a) shows the comparison with the numerical results of Caltagirone [88]
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Figure 4.5: Nusselt-versus-Rayleigh number relations for the Rayleigh-Bénard problem
showing comparison with literature data.

and Combarnous and Bories [4]. It can be seen that the present numerical results show

excellent agreement with these studies. The critical Rayleigh number (Ram) for the onset

of convection predicted by the present results is 40, which is very close to the theoretical

value of 39.48. It is well known that for convection in saturated porous layers, there exists

a second critical point beyond which oscillatory convection prevails and no steady-state

is attained. The value of this second critical Rayleigh number is approximately in the

range 380 − 390. In the present study, no attempt was made to evaluate this second

critical Rayleigh number although it must be noted that no unique steady-state solution

was obtained for Ram > 400. Figure 4.5 also shows excellent agreement of the present

numerical results with the experimental results of Elder [29], Buretta and Berman [38],

and Combarnous and Bories [4] except at very high Ram where the code slightly under

predicts the Nusselt number. This trend has been reported in earlier numerical studies

[4]. Combarnous and Bories have suggested that this may be due to the effects of the

variation of material properties with temperature as well as due to the breakdown of the

assumption of thermal equilibrium between the solid and fluid phases, both of which can

become pronounced at high Rayleigh numbers.

Finally, numerical results for the problem of convection in fluid-superposed porous

layers heated uniformly from below are compared to literature data. Figures 4.7 (a,b)

show the comparison of the present numerical results to the numerical results of Poulikakos
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Figure 4.6: Nusselt-versus-Rayleigh number relations for the Horton-Rogers-Lapwood prob-
lem. (a) Comparison to numerical studies. (b) Comparison to experimental
data.
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[20] and Poulikakos et al. [21]. It can be seen that the present numerical results agree

reasonably well with the results of Poulikakos [20]. The present method predicts a slightly

lower critical Rayleigh number, and also over predicts the Nusselt number near the onset

point, compared to the data of Poulikakos. Also, no change in the number of circulating

cells is seen at Rayleigh numbers greater than 2×105. However, the maximum difference in

the Nusselt numbers is only about 6%. The present study uses a one-domain formulation,

similar to that in the Poulikakos study [20], and the agreement with his results provides

sufficient verification for the present numerical scheme.

On the other hand, the numerical results differ significantly with the results of

Poulikakos et al. [21] as can be seen from Figure 4.7(b). This can be attributed to the

different modeling of the interfacial boundary conditions. Poulikakos et al. [21] use the

Beavers-Joseph slip boundary condition at the interface which differs from the continuity

boundary conditions implicitly assumed in the present model. As mentioned earlier, no

unique formulation for the interfacial boundary conditions exists in the literature and hence

it is impossible to truly ascertain the validity of the present model by comparison to prior

studies. This issue is revisited in the final chapter while commenting on the comparison

between the numerical and experimental results.

4.3 Convection in fluid-superposed porous layers heated locally

The dimensionless governing equations for the present problem contain seven di-

mensionless parameters which determine the overall heat transfer characteristics. These

parameters are the heater-to-base length ratio, δ, the porous layer-to-total height ratio,

η, the overall aspect ratio, A, the Darcy number, Da, the fluid Prandtl number, Pr, the

solid-to-fluid conductivity ratio, λ, and the overall Rayleigh number, Ra. The presence of

so many independent parameters not only makes a complete computational study of the

problem a formidable task, it also makes a systematic presentation of the results a challeng-

ing one. In order to perform a thorough parametric analysis of the problem, the effect of

each individual parameter on the flow and temperature fields, and the overall heat transfer

rates, is studied and analyzed separately. This will aid in identifying the most important

parameters and developing a general heat transfer correlation that is applicable to a wide

range of problems where this system is encountered. The values of the parameters used in

the calculations are summarized in Table 4.2.

4.3.1 Effect of the heater-to-base length ratio

The effect the heater length ratio will be considered first. In order to clearly un-

derstand the effects of having a localized heat source at the base, it is important to first

understand the flow and temperature fields. Figures 4.8, 4.9 and 4.10 show the steady-state
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Figure 4.7: Nusselt-versus-Rayleigh number relations for convection in fluid-superposed
porous layers. (a) Comparison with numerical results of Poulikakos [21]. (b)
Comparison with numerical results of Poulikakos et al. [20].
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Table 4.2: Values of the parameters used in the various simulations.

Section
Parameters
Studied

Range of Values
Fixed
Parameters

Grid Size

4.3.1 Effect of Ra, δ Ra = 103 − 106 η = 0.5 40× 80(Ra < 104)
the heater δ = 0.25, 0.5, 1 Da = 10−6 52×104(Ra < 106)
length A = 2 64×128(Ra ≥ 106)
fraction (δ) Pr = 7

λ = 1

4.3.2 Effect of Ra, η Ra = 103 − 106 δ = 0.5 For η = 0.25, 5

the height η = 0.25, 0.5, 0.75 Da = 10−6 40× 80(Ra < 104)
ratio (η) A = 2 52×104(Ra < 106)

Pr = 7 64×128(Ra ≥ 106)
λ = 1

For η = 0.75

40× 80(Ra < 104)
80×160(Ra > 104)

4.3.3 Effect of Ra, Da Ra = 103 − 106 δ = 0.5 40× 80(Ra < 104)
the Darcy Da = η = 0.5 52×104(Ra < 106)
number (Da) 10−2, 10−4, 10−6 A = 2 64×128(Ra ≥ 106)

Pr = 7
λ = 1

4.3.4 Effect of Ra, A Ra = 103 − 106 η = 0.5 For A = 2
the aspect A = 2, 4, 6 Da = 10−6 40× 80(Ra < 104)
ratio (A) δ = 0.5 (A = 2, 4, 6) Pr = 7 52×104(Ra < 106)

δ = 0.75 (A = 6) λ = 1 64×128(Ra ≥ 106)

For A = 4, 6

40× 80(Ra < 104)
64×128(Ra > 104)

4.3.5 Effect of the Ra, λ Ra = 103 − 106 δ = 0.5 40× 80(Ra < 104)
conductivity λ = 1, 50, 100 η = 0.5 52×104(Ra < 106)
ratio (λ) Da = 10−6 64×128(Ra ≥ 106)

A = 2
Pr = 7

4.3.6 Effect of Ra, Pr Ra = 103 − 106 δ = 0.5 40× 80(Ra < 104)
the Prandtl Pr = 0.7, 7 η = 0.5 52×104(Ra < 106)
number (Pr) Da = 10−6 64×128(Ra ≥ 106)

A = 2
λ = 1
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Figure 4.8: Streamline and isotherm patterns for convection in a composite layer for δ = 1
and η = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

streamline and isotherm patterns for η = 0.5 and δ = 1, 0.5 and 0.25, respectively at four

different Rayleigh numbers. For δ = 1, i.e., when the base is uniformly heated, there is no

convective motion at Ra = 103 and the system is in the conduction mode. Although the

streamline patters show a cellular convective motion, these are meaningless as the gradient

of the stream function is extremely low. When the Rayleigh number increases to 104, how-

ever, convective motion commences and two pairs of convective cells circulating in opposite

directions appear. The corresponding isotherms show a rising thermal plume.

It may be noted that convective motion is confined to the overlying fluid layer with

some penetrative convection in to the underlying porous layer. The issue of penetrative con-

vection in composite systems has been the subject of a large number of numerical studies in

the literature, but no definitive conclusion can be drawn from the evidence available. Some
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Figure 4.9: Streamline and isotherm patterns for convection in a composite layer for δ = 0.5
and η = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

studies report the occurrence of penetrative convection [20,21] while others [22,23] report

that convection is limited to only the upper fluid layer with minimal or no penetration in to

the lower porous layer. This lack of argument cannot be simply attributed to the modeling

of the interfacial boundary conditions given that studies using a particular boundary con-

dition have reported different results. Visualization studies by Prasad and co-workers have

shown that penetrative convection does indeed occur [24-26]. However, owing to the highly

porous nature and large pore sizes of the porous media used in their studies, this conclusion

cannot be considered to be generic. At this point, it is sufficient to say that the present

results are in accordance with the mathematical formulation of the problem which assumes

the continuity of x- and y-direction velocities across the porous-fluid layer interface, and

hence, implicitly allows for penetrative convection. Thus the present results indicate that
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Figure 4.10: Streamline and isotherm patterns for convection in a composite layer for δ =
0.25 and η = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

beyond the critical Rayleigh number, a state of pure conduction with no fluid motion in the

underlying porous layer never exists. It must be noted, however, that convective motion in

the porous layer occurs primarily in the vicinity porous-fluid layer interface. In the region

away from the interface, there is little convective motion and heat transfer is mainly by

conduction.

With increase in the Rayleigh number to 105, the velocities of the convective motion

in the overlying fluid layer increase, though the extent of flow penetration in to the lower

porous layer does not seem to increase significantly. The individual cells appear to be

horizontally stretched and the isotherm patterns show a narrow plume rising along the

centerline of the cavity. With further increase in the Rayleigh number to 106, this plume

becomes narrower and the convective motion in the upper fluid layer becomes more intense.
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When the size of the heater covers only half of the base, i.e., for δ = 0.5, the isotherm

patterns change significantly. However, the streamline patters show little noticeable change

except that at Ra = 103 a cellular convective pattern can be seen. Though the gradient of

the stream function at this Rayleigh number is small, it is not negligible, which indicates

that a circulatory fluid motion with low velocity exists. This fluid motion does not however

significantly enhance the overall heat transfer rate and the isotherms are essentially identical

to ones obtained for the conduction solution (Ra ∼ 1). This shows that convection is not the

dominant mode of heat transfer and, hence, the cellular fluid motion cannot be attributed to

the onset of convective flow. Rather, the circulatory fluid motion arises due to the presence

of the localized heat source. At the edge of the heated section of the base a horizontal

temperature gradient exists which triggers a circulatory fluid motion. This phenomenon

has also been observed in studies on convection in porous and fluid layers with localized

heat sources [20-22,27]. These cells are often referred to as “end cells” as they primarily

appear at the heater edges.

An interesting observation that can be made is that these cells are not located

at the heater edges, but rather in the overlying fluid layer. This phenomenon can be

explained by recalling that for convection in fluid-superposed porous layers, fluid motion is

always confined to the overlying fluid layers except for very large height ratios (η > 0.91).

The present results show that this is true even when the heat source is localized. Thus,

irrespective of whether the source of instability is either latent in the system or imposed by a

local heat source, the mode of convection is essentially the same. This is a significant finding

of the present study and shows that localized heat sources do not change the fundamental

convective modes. Rather the heat source merely acts as a trigger for the onset of convective

motion and the ensuing flow patterns remain unaffected by whether heating at the base is

uniform or localized.

With increasing Ra, the overall nature of the flow remains essentially the same

as that for a uniform heat source. The flow remains confined to the fluid layer and the

extent of penetration in to the lower porous layer does not increase. The isotherms however

differ significantly from those of a uniform heat source. With increasing Ra, the thermal

plume rising above the heat source is seen to become narrower, as seen in the case of a

uniformly heated source. However, the porous layer outside the pluming region and away

from the interface remains essentially isothermal and does not participate in heat transfer.

The temperature in this quiescent region is very close to the upper surface temperature,

indicating that region essentially has a pool of cold stagnant fluid. This situation is in

contrast to the case of a uniformly heated base where there porous region away from the

plume has heat transfer by conduction.

A further decrease in the heater length ratio to δ = 0.25 shows much of the same
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Figure 4.11: Nusselt-versus-Rayleigh number relationship for different heater length ratios
and η = 0.5.

characteristics as described above. A circulatory pattern is seen to exist at Ra = 103 and

its form is almost the same as that seen for δ = 0.5, further confirming that is pattern is

merely due to the instability created by a horizontal temperature gradient at the heater

edge. At higher Rayleigh numbers, the streamline patterns are similar to those for δ =

0.5 which shows that the flow patterns are unaffected by the heater size. The isotherm

patterns show a narrow plume rising from the center of the heater and, as noted earlier,

the porous region outside the pluming zone remains relatively unaffected and is essentially

isothermal. Interestingly, much of the fluid region, and hence, much of the composite domain

is essentially isothermal at Ra = 106. This is likely to get more pronounced as the heater

size shrinks further until, in the limiting case of a point heat source, the region outside the

rising plume is likely to be completely quiescent.

The effect of the localized heat source on the overall heat transfer coefficient is shown

in Figure 4.11. For a uniformly heated base, the critical Rayleigh number for the onset of

convection is ∼ 7.5× 103 below which the average Nusselt number is unity indicating that

heat transfer occurs solely by conduction. When the heater size is finite, however, the

Nusselt number is no longer unity even at low values of Ra. This is simply a consequence of

the fact that the presence of a localized heat source initiates a circulatory motion due to the

temperature gradient at the heater edge, as mentioned above. Hence a pure conduction state

never exists for a localized heat source. This, however, does not imply the dominant mode of
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heat transfer is convection. As Figure 4.11 shows, even for discrete heat sources, the Nusselt

number remains approximately constant till the critical point is reached. Hence while the

pre-critical point heat transfer regime is not purely a conduction regime, it certainly is

conduction dominated. Also noteworthy is that while the transition to the convective

regime is a discrete one for δ = 1, the transition to the convective regime is a smooth

one. This aspect has been previously observed for convection in porous and fluid layers

with discrete heat sources [29, 57-61] and is a consequence of the fact that when the heat

source is localized, a circulatory pattern already exists in the cavity before convection

becomes dominant. As such, there is no sudden initiation of convective motion but a

gradual strengthening of the existing base flow pattern.

The most interesting aspect however is that over the entire range of Rayleigh num-

ber, the average Nusselt number over the heater increases with decrease in the size of the

heat source. This too has been previously observed with respect to convection in pure fluid

and porous layers. This observation can be understood by going back to the discussion on

the flow and isotherm patterns. As mentioned earlier, for a uniformly heated base, heat

transfer away from the pluming region is primarily by conduction, which for a low solid-

to-fluid conductivity ratio (λ = 1 here) is fairly low. On the other hand, for a discrete

heater, most the heater area falls in the pluming region and hence almost all the heat input

is carried away by convection. In this case conduction heat transfer occurs only near the

edges of the heated section. With further decrease in δ almost all the energy supplied is

carried away by convective flow. Therefore with a decrease in the size of the heater more

and more of the energy input at the base is transferred to the top via convection. It can

thus be deduced that a localized heat source is more efficient in channeling away the energy

influx at the heater via the rising thermal plume thus leading to higher Nusselt numbers

for lower heater lengths.

Finally, to conclude the discussion on the effects of a localized heat source, the

temperature profiles along the centerline of the cavity at Ra = 105, are shown in Figure

4.12. It can be seen that with decrease in the size of the heated fraction of the base, the

temperature profiles along the centerline of the plume change significantly. For example

the temperature at the interface (y/H = 0.5) decreases with decrease in the heater length.

This is true for temperatures throughout the entire cavity height. This can be understood

by looking at the isotherm patterns. With decreasing heater size, much of the temperature

drop along the plume occurs very close to the heater while in the rest of the plume, the

temperature changes gradually. This directly leads to the fact that with decreasing heater

size, the plume draws away more and more of the heat that is supplied to the system.
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Figure 4.12: Dimensionless temperature (T ∗ = T −TC/TH −TC) profiles along the vertical
centerline of the domain for different heater length ratios. η = 0.5 and Ra =
5× 105.

4.3.2 Effect of the porous layer-to-total height ratio

Similar to the approach adopted earlier, description of the effect of the porous-to-

total height ratio will begin with a discussion of the flow and temperature fields at different

height ratios. In these simulations, all parameters are kept fixed except for the height ratio.

Figures 4.13, 4.14 and 4.15 show the streamline and isotherm patterns for three different

height ratios, η = 0.5, 0.25 and 0.75, respectively, and δ = 0.5, A = 2, Da = 10−6, P r = 7,

and λ = 1.

First, the case of η = 0.5 will be discussed as this case (η = 0.5, δ = 0.5) has already

been encountered in the previous section. To briefly summarize the previous discussion, the

salient feature of the flow pattern is that the convective motion is restricted to the overlying

fluid layer with some penetration in to the underlying porous layer. Also, a circulatory

motion triggered by the presence of a localized heat source is seen at Ra ≤ 103, although

convection is still not the dominant mode of heat transfer. These two observations point to

the fact that a state of pure conduction heat transfer never exists in the underlying porous

layer when a localized heat source is present. Thus a sharp critical point for the onset of

convection cannot be defined for a localized heat source; a critical point in this case merely

indicates that convection becomes the dominant mode of heat transfer. With increase in

the Rayleigh number, the velocities of convective motion increase and at very high Ra
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Figure 4.13: Streamline and isotherm patterns for convection in a composite layer for δ =
0.5 and η = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

recirculating patterns can be seen within the same convective cell. The isotherm patterns

for η = 0.5 indicate that that with increasing Ra, the plume rising from the central portion

of the heater becomes narrower and the region outside the plume in the porous layer is

essentially isothermal.

When the height ratio drops to η = 0.25, i.e., when only a quarter of the entire cavity

is occupied by the porous layer, the streamline and isotherm patterns are very much similar

to those obtained for pure fluid convection with a localized heat source. As noted earlier,

the convection motion is restricted to the overlying fluid layer with some penetration in to

the underlying porous layer. However, since three-quarters of the entire domain is occupied

by the fluid layer, convective motion exists in almost the entire cavity. At Ra = 103,

circulatory motion driven by the localized heat source can be seen. The absolute maximum
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Figure 4.14: Streamline and isotherm patterns for convection in a composite layer for δ =
0.5 and η = 0.25. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

value of the stream function at this Rayleigh number, however, is an order of magnitude

higher than that for η = 0.5 indicating that the intensity of fluid motion is much higher.

This flow behavior is to be expected generally considering the fact that the porous layer

provides the greatest resistance to fluid motion within the composite domain. Therefore a

reduction in the total amount of porous matrix in the domain reduces the overall resistance

to fluid motion and leads to higher fluid velocities. This trend is noticed at all values of Ra.

Based on this observation, it can be deduced that the overall heat transfer rate increases

with a decrease in the height ratio owing to a reduction in the resistance to fluid motion

by the porous layer and an associated increase in convection. With an increase in the

Rayleigh number the velocity of the fluid motion increases. The shape of the convection

cells however is different from those of η = 0.5. The cells are almost square in shape and
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Figure 4.15: Streamline and isotherm patterns for convection in a composite layer for δ =
0.5 and η = 0.75. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

the size of the core region, where the flow velocities are highest, is noticeably larger as a

direct consequence of the convection being dominated by the overlying fluid layer. As the

fluid motion is restricted primarily to the fluid layer, the size and shape of the circulating

cells adjust to fit the fluid space. With the aspect ratio fixed, the width of the cells are

constrained. However the height of the cells changes with change in the height of the fluid

layer. Thus, as the fluid layer height increases, the cells become squarer; the opposite

happens as the fluid height layer decreases. At Ra = 106, two pockets of recirculating cells

can be seen on opposite sides of the same convective cell and their size is noticeable larger.

The isotherm patterns are similar to those observed for η = 0.5. The central feature

is a plume like flow along the mid-section of the cavity, which becomes narrower as the

Rayleigh number increases. With convective motion being prevalent almost throughout the
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entire cavity, no noticeable quiescent isothermal region exists, even in the porous layer.

The plume itself becomes wider at it approaches the upper surface and has an umbrella like

shape near the upper surface.

When the porous layer occupies three-quarters of the cavity, i.e., for η = 0.75, the

flow and isotherm patterns change significantly. At Ra = 103, the heater driven instability

causes a pair of circulation cells to form. However the maximum absolute value of the

stream function is extremely low making the flow velocities almost negligible. Hence it can

be concluded that there is little or no fluid motion in the system at this Rayleigh number.

When the Rayleigh number increases to 104, the circulation velocities are still very low.

The isotherms show practically no change indicating that heat transfer is still primarily

by conduction. With further increase in Ra to 105, the isotherm patterns change slightly

indicating that convection is taking over as the dominant mechanism of heat transfer. As

mentioned earlier, the transition to convection dominated heat transfer takes place grad-

ually for discrete heat sources, and gradual transition can be seen here too. Finally when

the Rayleigh number increases to 106, a convection dominant flow can be seen with the

accompanying plume like flow.

For high values of the height ratio, several important aspects can be noticed. The

first is that even at Ra = 106, convective flow occurs with fairly low velocities as can be

seen from the value of the stream function. This is obviously due the fact that increase in

the porous layer height increases the resistance to convective motion. Another way to look

at it is in terms of the porous medium Rayleigh number, Ram which is defined as,

Ra =
Ram

Daη3κTI
, (4.1)

where TI is the interface temperature. It has been shown using linear stability theory that

with increase in the height of the porous layer, the critical value of Ram for the onset of

convection increases [7,9]. From equation (4.1) it can be seen that this increases the value

of Ra for the onset of convective motion. This implies that with an increase in the height

of the porous layer, much higher values of Ra are needed to induce convective motion of

higher intensities. Another important aspect of the flow is that with an increase in the

Rayleigh number, flow penetration into the underlying porous layer increases. This is in

contrast to the flow patterns at lower values of η where the degree of flow penetration is

independent of the Rayleigh number. The reason for this is not entirely clear. It may be

that penetration takes place simply to accommodate the flow pattern which does not have

sufficient space within the fluid layer to develop. The isotherm patterns indicate that the

plume like flow has not fully developed even at Ra = 106. Based on the previous results, it

can be anticipated that with an increase in the Rayleigh number, a narrow plume like flow
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Figure 4.16: Nusselt-versus-Rayleigh number relationship for different height ratios and δ
= 0.5.

will eventually develop.

Further insights into the effects of the flow fields can be gained by looking at the

overall heat transfer coefficients. Figure 4.16 shows the Nusselt-versus-Rayleigh number

relation for three different height ratios. The results mirror the inferences that can be drawn

from an analysis of the flow and temperature fields. As seen earlier, the onset point for

convection dominated heat transfer increases with the increase in the fraction of the cavity

occupied by the porous layer, which is also in accordance with the predictions of the linear

stability theory. However the Nusselt number in the conduction regime remains the same

at all height ratios and is expected as the heater size remains fixed. At Rayleigh numbers

higher than the critical point, overall heat transfer coefficients are higher for lower height

ratios. This too is a direct consequence of the fact that the velocities of convective motion

for a given Rayleigh number is higher when the value of η is lower, i.e., when the thickness

of the overlying fluid layer is higher. This trend has also been noticed in numerical studies

by Chen and Chen [22] and experimental studies by Prasad and co-workers [24-26]. Finally,

it must be noted that the Nusselt number curves all have the same pattern irrespective of

the height ratio. In fact, a close look at the curves will show that they are almost parallel

indicating a common mechanism of heat transfer with a different point of origin that is

dictated by the height ratio. This can be further confirmed by looking at the dimensionless

temperature profiles along the centerline of the cavity as shown in Figure 4.17. It can be
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Figure 4.17: Dimensionless temperature (T ∗ = T −TC/TH −TC) profiles along the vertical
centerline of the domain for different height ratios. δ = 0.5 and Ra = 5× 105.

seen that the temperature profiles for all height ratios converge to the same value within

the porous layer and the difference among them is noticeable only in the fluid layer. Within

the fluid layer, centerline temperatures increase with the height ratio leading to higher heat

transfer flux at the upper boundary.

4.3.3 Effect of the Darcy number

The Darcy number is dimensionless measure of the permeability of the porous

medium and it is of vital importance to understand how heat transfer coefficients change

with change in the permeability of the system. It must be noted that the Darcy number in

the present study is defined as Da = K/H2, where H is the overall height of the composite

system. This definition of the Darcy number thus depends on the system under considera-

tion and does not express the intrinsic Darcy number of the porous layer which would be

based on a length scale suitable for the porous medium. However a Darcy number based

on a different length scale can be derived directly from the current definition of Da. For

example, a Darcy number based on the pore diameter, d, can be defined,

Dap =
K

d2
= Daγ2, (4.2)

where Dap is the Darcy number based on the particle diameter, and γ is the non-dimensional

particle diameter. Thus conclusions based on the current definition of the Darcy number
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Figure 4.18: Streamline and isotherm patterns for convection in a composite layer for Da =
10−6, δ = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

are also applicable to alternative definitions of the Darcy number; numerical results for such

definitions may be readily obtained from the present results by using equation (4.2), or a

similar definition.

In the present study, three different Darcy numbers are considered: 10−6, 10−4,

and 10−2. As before, the discussion will begin with an analysis of the streamline and

isotherm patterns, followed by a study of the Nusselt-Rayleigh number relationships. In

addition, the case of Da = 10−6 will not be discussed in detail as this has already been

extensively analyzed in the previous two sections. Instead, this case will be considered to

be the “benchmark” and the discussion will follow the comparison of the other two cases

with this case. Figures 4.18, 4.19 and 4.20 show the streamline and isotherm patterns

at Da = 10−6, 10−4, and 10−2 at four different Rayleigh numbers. Comparing the flow
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Figure 4.19: Streamline and isotherm patterns for convection in a composite layer for Da =
10−4, δ = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

patterns for Da = 10−6, and 10−4 it can be seen that there is not much difference between

them. At Ra = 103, the localized heater driven convection patterns can be seen. The

fluid velocities for Da = 10−4 are slightly higher than those for 10−6 as indicated by the

slight difference in the value of the stream function. This, trend, is expected as a porous

medium with a higher Darcy number offers lower resistance to fluid motion, and hence

allows for higher flow velocities. Isotherm patterns, however, show that heat transfer is still

conduction dominated at this value of Ra.

With an increase in the value of the Rayleigh number to 104, a convection dominated

flow pattern can be seen for both values of the Darcy number. Fluid velocities increase and

a pluming pattern can be seen to start forming in both cases. The values of the stream

function indicate that flow velocities are almost identical in both cases. This is also the

case when the Rayleigh number is increased to 105. The flow and temperature fields are
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Figure 4.20: Streamline and isotherm patterns for convection in a composite layer for Da =
10−2, δ = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

virtually identical indicating that an increase in the Darcy number from 10−6 to 10−4 has

little effect on the overall flow patterns, and hence, the heat transfer coefficients. When

the Rayleigh number increases to 106, however, there is a noticeable difference between

the two cases. The streamlines show that while the flow velocities are comparable there

is increased penetration of the flow into the underlying porous layer for Da = 10−4. The

isotherm patterns also show that the average temperatures in the fluid layer increase with

an increase in the Darcy number. These observations point to the fact that significant

differences in flow patterns, and as a consequence, overall heat transfer rates between these

two cases can be seen only at very high Rayleigh numbers.

When the Darcy number is further increased to 10−2, significant changes can be
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Figure 4.21: Nusselt-versus-Rayleigh number relationship for different Darcy numbers. δ =
0.5 and η = 0.5.

seen. The most important one is that the flow is now no longer confined to the upper

fluid layer, but is instead spread out across the two layers. This is a direct consequence

of the increased permeability of the porous layer which allows much higher levels of flow

penetration. The higher value of the Darcy number also means that the porous layer offers

minimal resistance to convective flow which leads to higher flow velocities. With an increase

in the Rayleigh number, the intensity of the convective motion increases and the convective

cells acquire an almost square shape, indicating that convective motion in the fluid and

porous layers is comparable. In fact the flow patterns at Ra = 106 bear a great resemblance

to those seen in the Rayleigh-Bénard connection. Further insight can be gained by looking

at the isotherm patterns. At Ra = 103, the isotherms show that the system is still in the

conduction mode. At Ra = 104, a plume like flow is seen which is much more developed as

compared to the isotherms for lower Darcy number flows. Interestingly, the thermal plume

has an almost uniform character throughout the height of the cavity whereas at lower Darcy

numbers, the plume had different characteristics in the fluid and porous regions. Thus it

can be deduced that the temperature profile along the plume will be significantly different

from the profiles for lower Darcy numbers. This aspect will be discussed shortly.

The overall heat transfer results for different Darcy numbers are shown in Figure

4.21. As can be seen, the Darcy number has an effect on both the onset of convection as

well as the overall heat transfer coefficients beyond the critical point. As the Darcy number
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Figure 4.22: Dimensionless temperature (T ∗ = T −TC/TH −TC) profiles along the vertical
centerline of the domain for different Darcy numbers. δ = 0.5, η = 0.5 and
Ra = 5× 105.

increase from 10−6 to 10−4, the critical Rayleigh number where convection takes over as

the dominant heat transfer mode decreases slightly, although this is not very clearly visible.

With further increase in Da, however, the critical Rayleigh number drops noticeably. The

value of the Nusselt number in the conduction dominated heat transfer regime however is

the same for all Darcy numbers as the heater length is kept fixed. Once convection starts

dominating, the heat Nusselt numbers for Da = 10−6 and 10−4 are very close to each other

except at very high Rayleigh numbers where the effects of lower permeability can be seen.

It is likely that this effect is due to the fact that inertial effects start dominating the flow.

The heat transfer coefficients for Da = 10−2 are, however, much higher than those at lower

Darcy numbers. This result is expected based on the prior discussion of the flow patterns

which shows that high levels of convective penetration into, and reduced resistance to fluid

motion by, the underlying porous layer leads to increased heat transfer. The dimensionless

temperature profiles along the centerline of the cavity (Figure 4.22) also indicate that the

temperature distribution for Da = 10−2 is significantly different from those Darcy numbers.

This is especially true for the temperatures within the porous layer and clearly shows that

the porous layer at such high values of the Darcy number has an almost fluid like character.

These results may be of high importance for applications where the porous layer is loosely

packed.
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Figure 4.23: Streamline and isotherm patterns for convection in a composite layer for A = 2,
δ = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

4.3.4 Effect of the aspect ratio

The aspect ratio is a very important parameter in determining the overall heat

transfer rates, especially when the heat source is localized. Prior investigations of convection

in fluid and porous layers with localized heat sources have shown that there is a complex

relation between the aspect ratio and the heater length. It is therefore worthwhile to

investigate whether such a relation exists for convection in fluid superposed porous layers.

In the present study, three different aspect ratios are considered: A = 2, 4, and 6. Figures

4.23, 4.24, and 4.25 show the streamline and isotherm patterns at four different Rayleigh

numbers for aspect ratios A = 2, 4, and 6 respectively. The parameters kept constant in

these simulations are η = 0.5, Da = 10−6, λ = 1 and Pr = 7. From 4.23(a) and 4.24(a)

it can be seen that the aspect ratio does not have any significant influence on the flow

92



(a)

(d)

(c)

(b)

Figure 4.24: Streamline and isotherm patterns for convection in a composite layer for A = 4,
δ = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

and temperature fields at Ra = 103. The circulating flow triggered by the heater-edge

temperature gradient can be seen for both aspect ratios. Interestingly, the cells for A = 4

are far apart from each other and are almost centered on the vertical lines drawn at the

edges of the heater, further indicating their origin point. This feature cannot be seen at

lower aspect ratios owing to the smaller horizontal extent of the domain. Also, the velocity

of the convective motion is slightly higher at A = 4. The corresponding isotherms, however,

indicate that convection dominated heat transfer has not yet commenced in either system.

At Ra = 104, convection dominated heat transfer can be seen for both aspect ratios. It

can be seen that for A = 4, the shape and the position of the circulating cells changes

once convective flow is underway. The cells move away from their original positions and

towards each other. This happens because the cells are associated with the thermal plume

and therefore move towards the center of the heater to align themselves with the developing

convective flow. The flow, however, remains confined to the upper fluid layer. As the

Rayleigh number increases further to 105, the cells stretch outwards towards the lateral

walls. This behavior can be more prominently seen for the larger aspect ratio domain. The

values of the stream function however have almost the same values for both aspect ratios

indicating that the flow velocities are comparable in the two cases. The isotherm patterns
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show that the rising thermal plume becomes narrower and takes on a well defined shape

in both the long and short domains. Further increase in the Rayleigh number causes the

circulating cells to stretch further and the thermal plume to become narrower.

An interesting aspect of the flow is that the number of circulating cells does not

increase with an increase in the aspect ratio. This is in contrast to the case of a uniformly

heated base where the wavelength and hence the number of the convective cells is determined

by the aspect ratio of the domain. Thus for a domain with A = 4, there would be four

circulating cells when the base is uniformly heated. However when the heating is localized,

the number of cells is a function of both the aspect ratio and the heater-to-base length

ratio. This phenomenon has been observed in studies on convection in porous layers with

localized heating by Elder [29] and Prasad and Kulacki [57,58]. Thus in the present case

the values of δ and A are such that only two cells are observed.

When the aspect ratio increases to A = 6, several interesting flow patterns are seen.

At Ra = 103, circulatory cells triggered by the heater edge temperature gradient can be

seen. As for lower aspect ratios, the flow is conduction dominated which can be clearly seen

from the isotherm patterns. With an increase in the Rayleigh number to 104, convection

dominated flow commences and two pairs of circulating cells are seen. This is a further

example of how the number of cells depends on both the heater length and the aspect

ratio. Within each pair of cells, there is, however, a conspicuous lack of symmetry; the cells

towards the center of the domain are smaller while those near the lateral walls are larger.

This is primarily a consequence of the readjustment of the size and position of the cells due

the particular combination of the heater length and aspect ratio. With further increase in

the Rayleigh number to 105, the same flow pattern is seen with higher flow velocities. Also,

the cells near the lateral walls stretch further horizontally to cover the entire domain. The

isotherm patterns show two thermal plumes, each associated with one pair of convective

cells. When Ra = 106, however, a very interesting phenomenon occurs. The cells in each

circulating pair merge to create a single pair of cells which span the entire domain. The

isotherm patterns now show a single narrow rising plume reflecting the flow restructuring.

This readjustment occurs at around Ra = 5× 105. This phenomenon is very unique and is

not seen when the base is uniformly heated. It seems that the origin of this phenomenon lies

in the asymmetry of the flow structure that was noted earlier and due to this asymmetry

the cells near the vertical walls keep growing laterally while the inner cells remain fixed in

size. When these outer cells cannot grow further outward, they start growing inward and

swallow up the inner cells to give rise to a two cell flow structure.

To further illustrate this point, consider the above case of A = 6 but with a heater

length fraction δ = 0.75 instead of δ = 0.5. The streamlines and isotherms for this configu-

ration are shown in Figure 4.26. At Ra = 104, three pairs of circulating cells are seen,
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the same number of cells that would be present if the base were uniformly heated. As

seen before, due to the presence of a local heat source, the outermost pairs of cells are

asymmetrical. As a result, when the Rayleigh number is increased to 105, restructuring of

the flow takes place and two pairs of circulating cells are formed. However, the asymmetry

in the system still persists. Thus further increase in the Rayleigh number leads to further

flow restructuring, and at Ra = 106, a single pair of circulating cells remain. These cells

span the entire horizontal extent of the cavity although the largest fluid velocities are in

the overlying fluid layer. The isotherm patterns show that with increase in the Rayleigh

number, the number of thermal plumes decreases progressively. These results show that

when the heat source at the base is localized, the number of circulating cells is a function

of the aspect ratio, heater length ratio, and the Rayleigh number. This phenomenon has

not been observed in prior studies on convection in horizontal fluid or porous layers heated

locally from below. Poulikakos [21] has reported the occurrence of flow restructuring at

high Rayleigh numbers in fluid-superposed porous layers heated uniformly. However, no

such phenomenon was observed in the present study for δ = 1. It may thus well be that

such rearrangement of convection patterns is an artifact of the numerical solution although

it is impossible to say this at the present with any degree of certainty. Thus, this aspect

needs to be explored further experimentally.

The Nusselt-versus-Rayleigh number relation for different aspect ratios is shown in

Figure 4.27. As can be seen, the curves for all aspect ratios have the same pattern across

the entire range of Rayleigh numbers although the overall heat transfer rate decreases with

an increase in the aspect ratio. In each case, however, the critical Rayleigh number for

the onset of convection dominated heat transfer is approximately the same. The curves

also show several interesting features which are a direct consequence of the flow patterns

discussed earlier. Looking at the curves for A = 2 and 4, it can be seen that beyond the

onset of convection dominated flow, Nusselt numbers for A = 4 increase at a higher rate

than that for A = 2 until Ra ≈ 5 × 104, after which they remain approximately parallel

indicating that the overall heat transfer rate increases at approximately the same rate for

both cases. This can be explained by considering the flow patterns in the two systems. At

low Rayleigh number, a fraction of the domain for A = 4 does not have any fluid motion.

However, the streamline patterns for A = 2 indicate that fluid motion covers almost the

entire horizontal extent of the domain. Hence the system with a lower aspect ratio is

able to more efficiently transfer heat by convection. However, with increase in Ra, the

flow spreads further towards the side walls for the system with the larger aspect ratio and

the stagnant fluid near the walls now participates in convection. For smaller aspect ratio

domains, however, the flow cannot further spread laterally as it has already reached its

maximum extent. As such, the heat transfer coefficient A = 4 increases more rapidly. Once
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Figure 4.27: Nusselt-versus-Rayleigh number relationship for different aspect ratios. δ =
0.5 and η = 0.5.

the flow has spread to its maximum lateral extent for the longer system, however, the rate of

increase of the Nusselt number becomes identical for both the aspect ratios. For A = 6, the

curve is almost parallel to that of A = 2 until Ra ≈ 2.5×105. Beyond this Rayleigh number

however there is an abrupt change in the slope of the curve, and Nusselt numbers beyond

this point are much closer to those for lower aspect ratios. This is a direct consequence of

the flow restructuring that creates a single pair of circulating cells. When the number of

cells is larger, there are pockets of stagnant fluid between the cells which do not participate

in convection. However, when the cells merge, all the fluid within the domain participates

in convective motion leading to higher overall rates of heat transfer.

The dimensionless temperature profiles along the centerline of the cavity atRa = 105

are shown in Figure 4.28. These profiles show some very interesting patterns. It can be seen

that all along the cavity height, the centerline temperatures increase with the aspect ratio.

This pattern is remarkably similar to the temperature centerline temperature profiles for

different values of the heater length ratio δ, shown earlier in Figure 4.12. It can be seen that

for A = 2, the temperature drops much more rapidly within the porous layer than for A = 4

and 6. This implies that the temperature gradient near the heater increases with a decrease

in the aspect ratio. This leads to a more efficient channeling of the heat input from the

heater and causes the lower aspect ratio domain to have higher heat transfer coefficients.
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Figure 4.28: Dimensionless temperature (T ∗ = T −TC/TH −TC) profiles along the vertical
centerline of the domain for different aspect ratios. δ = 0.5, η = 0.5 and
Ra = 5× 105.

4.3.5 Effect of the solid-to-fluid conductivity ratio

All simulation thus far have been carried out for the case where the conductivities

of the solid and fluid phase are the same, i.e., λ = 1. In reality, however, this condition

is rarely satisfied, and many practical applications involve high solid-to-fluid conductivity

ratios. Modeling of convection in porous media with high conductivity ratios, however, poses

several challenges. First, a suitable model for the effective stagnant conductivity must be

selected as improper representation of this parameter can significantly affect the overall

results. Secondly, for very high conductivity ratios, the assumption of thermal equilibrium

between the fluid and solid phases breaks down and, as a result, a single energy equation can

no longer be used. Instead a two-equation model that accounts for the thermal resistance

at the solid-fluid interface must be used which makes the numerical solution of the problem

highly involved.

In order to systematically study the effect of the conductivity ratio it is important to

look first look at the modeling of the effective conductivity. Aichlmayr and Kulacki [27] have

shown that the effective conductivity data from various literature sources can be grouped

primarily into three categories based on the conductivity ratio: small conductivity ratios

(1 ≤ λ < 10), intermediate conductivity ratios (10 ≤ λ < 1000), and high conductivity

ratios (λ ≥ 1000). They postulate that these ranges demarcate the relative importance of
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Figure 4.29: Streamline and isotherm patterns for convection in a composite layer for λ = 1,
δ = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

the interfacial effects between the solid and fluid phases. High conductivity ratio systems

typically have strong interfacial effects and, as a result, require the consideration of separate

models for the solid and fluid phases. Owing to the difficulty of solving two-equation models,

high conductivity ratio systems will not be considered here. Instead study will focus on

low and intermediate conductivity ratios. Three different values of the conductivity ratio

are considered here: λ = 1, 50, and 100. These values have been chosen based on the

effective conductivities of glass-water (λ = 1.08), glass-air (λ = 48), and steel-water (λ =

102) systems, all of which are very relevant for practical applications. To calculate the

effective conductivity, two different models are used. For λ = 1 the mixture model is used,

while for λ = 50 and λ = 100, the model of Kunii and Smith [89] is used.

The streamline and isotherm patterns for λ = 1, 50, and 100 for different Rayleigh
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Figure 4.30: Streamline and isotherm patterns for convection in a composite layer for λ =
50, δ = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

numbers are shown in Figures 4.29, 4.30, and 4.31 respectively. In all these simulations the

following parameters are fixed: δ = 0.5, η = 0.5, A = 2, Da = 10−6, and Pr = 7. The

case of λ = 1 has been discussed previously and will be discussed only with respect to the

results for the other conductivity ratios. Comparing all the figures, it can be seen that there

are significant differences in both the streamline and the isotherm patterns. As before, for

Ra = 103, circulation patterns created by the presence of a localized heat source are seen in

all cases and the heat transfer is primarily by conduction. The isotherm patterns, however,

show significant differences. For λ = 1, a gradual temperature change occurs across the

entire domain. On the other hand, for λ = 50 and λ = 100 the temperature gradient

across the porous layer is very small and the entire layer is approximately at a constant

101



(a)

(d)

(c)

(b)

Figure 4.31: Streamline and isotherm patterns for convection in a composite layer for λ =
100, δ = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

temperature. The major temperature drop takes place in the fluid layer indicating the

presence of a high temperature gradient there. This is a direct consequence of the higher

conductivity of the porous layer. Expressed differently, the saturated porous layer has a

lower conduction resistance than the overlying fluid layer. As a result, a small temperature

difference exists across the underling layer.

When the Rayleigh number is increased to 104, convective flow patterns are seen in

all the three cases. The flow patterns for λ = 1 appear slightly different than that for λ

= 50 and 100 in terms of the direction of the velocity vectors. Also, for λ = 1, the flow is

more prominent near the center of the domain whereas for λ = 50 and 100, the flow is more

prominent near the lateral walls of the cavity. The flow velocities in the former case are also
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slightly lower than velocities at higher conductivity ratios. Another interesting feature that

can be seen is that flow penetration into the underlying porous layer is much higher for λ

= 50 and 100. The isotherm patterns, however, differ significantly for the low (λ = 1) and

high (λ = 50, 100) conductivity ratios. For λ = 1 a developing plume like pattern can be

seen at Ra = 104. However, for λ = 50 and 100, no clear plume like flow pattern is visible.

Instead the isotherms, especially those in the fluid layer, indicate that heat transfer is still

primarily by conduction. In addition the isotherms crossing the fluid-porous layer interface

show an abrupt change in slope at the interface. This has been observed previously in

studies on layered porous media by Lai and Kulacki [62] and is a direct consequence of the

difference in conductivities of the two layers. The above observations also indicate that the

overall flow and heat transfer patterns roughly follow the demarcation based on the effective

conductivity: flow fields for λ = 50 and 100 differ significantly from those for λ = 1. As

such, the remaining discussion will focus on analyzing results based the conductivity ratio

regime, i.e., low (λ = 1) and high (λ = 50, 100) instead of analyzing each case separately.

This will help in clearly illustrating the effects of the conductivity ratio.

With further increase in the Rayleigh number to 105, a well defined convective flow

is seen in all the three cases. The streamlines indicate that the flow patterns in all the

three cases are more or less identical. Interestingly, the flow velocities in the core of the

convection cells are higher for the higher conductivity ratios. The isotherm patterns show

a rising thermal plume for all conductivity ratios, although the plume for λ = 1 is more

developed than that seen at the higher conductivity ratios. Also, for the higher conductivity

ratios, there is a very rapid drop in temperature from the top of the plume, to the upper

isothermal surface indicating the presence of strong temperature gradients near the upper

surface and thus much higher rates of heat transfer for the higher λ values. This will be

discussed further when the heat transfer characteristics and the temperature profiles in the

cavity are analyzed.

Finally when the Rayleigh number increases to 106, identical flow patterns are seen

in all the three cases. Interestingly, the intensity of convective motion increases with an

increase in the conductivity ratio as can be seen from the values of the stream function.

Also, flow penetration from the overlying fluid later to the lower porous layer is higher

for the higher conductivity ratios. The isotherms indicate a well formed rising thermal

plume in all cases. As noted earlier, large temperature gradients exist near the top of the

plume for the higher conductivity ratios. Interestingly, the abrupt changes in the isotherm

gradients at the fluid-porous layer interface that are seen at lower Rayleigh numbers are

much less pronounced than at higher Rayleigh numbers. This is another indication that

convection is the dominant mechanism of heat transfer and helps to smooth out the effects

of conductivity mismatch between the upper and lower layers. A significant effect of having
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Figure 4.32: Nusselt-versus-Rayleigh number relationship for different conductivity ratios.
δ = 0.5 and η = 0.5.

a highly conductive porous layer is that the onset of convection dominated heat transfer

occurs at higher Rayleigh numbers when compared to a less conductive matrix. This can be

understood much better by comparing the heat transfer coefficients for the three systems

at different Rayleigh numbers.

The Nusselt-versus-Rayleigh number relation for different conductivity ratios is

shown in Figure 4.32. The figure clearly shows that an increase in the conductivity ra-

tio increases the overall rates of heat transfer through the system as can be expected. A

more interesting observation is that the curves for λ = 50 and 100 are almost similar indi-

cating that a twofold increase in the conductivity ratio does not significantly increase the

overall heat transfer rates. This can be much better understood by considering the effective

conductivity ratio, κ, for the two cases. For λ = 50, κ = 6.1 whereas for λ = 100, κ = 7.5.

Because the effective conductivity is the independent parameter in the governing equations,

the close value of κ for the two cases is responsible for the almost same Nu−Ra curves for

them. Another interesting feature of the graphs is that the curves for λ = 1 and λ = 50, 100

are not parallel to each other. This indicates that it is simply not the higher conductivity of

the solid matrix which contributes to the higher heat transfer rates for higher conductivity

ratios. As noted earlier, the intensity of the convective motion in the upper fluid layer, as

well as the flow penetration in the underlying fluid layer, is higher at the higher conductivity

ratios, which leads to higher overall heat transfer rates.

104



0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

T*

y
*

 

 

λ = 1

λ = 50

λ = 100

Figure 4.33: Dimensionless temperature (T ∗ = T −TC/TH −TC) profiles along the vertical
centerline of the domain for different conductivity ratios. δ = 0.5, η = 0.5 and
Ra = 5× 105.

Finally, the temperature profiles along the centerline of the cavity at a Rayleigh

number of 5 × 105 are shown for the three conductivity ratios. As can be expected, the

profiles for the higher and lower conductivity ratios are widely different. For small values of

λ, there is rapid drop in temperature across the porous layer after which the temperature

drop in the fluid layer is very low except near the upper surface. However, for higher values

of λ, there is a very small drop in temperature across the porous layer and practically no

drop in the temperature in the fluid layer. Almost all the temperature change occurs near

the upper surface where there exists a very large temperature gradient. This was seen

earlier from the isotherm patterns. This shows that heat transfer across the cavity takes

place differently for high and low conductivity ratios. For low values of λ (1 ≤ λ ≤ 10), the

bulk of the heat influx into the system is rapidly channeled away near the heater surface.

On the other hand, for larger values of λ, the bulk of the heater influx is transferred to the

cold surface very near the upper wall.

4.3.6 Effect of the Prandtl number

The effect of the Prandtl number has not been covered in prior studies of convection

in fluid-superposed porous layers heated from below and hence there is no benchmark to

compare the present results against. As such, wherever possible, results will be compared

with prior studies on convection in fluid and porous layers. Two different values of the
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Figure 4.34: Streamline and isotherm patterns for convection in a composite layer for Pr =
7, δ = 0.5 . (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

Prandtl number are considered here: Pr = 0.7 and 7. These are approximately equal

to the Prandtl numbers of air (Pr = 0.71 at 25 ◦C) and water (Pr = 6.26 at 25 ◦C)

respectively. These fluids have been selected for two primary reasons. First, becasue these

two fluids are most commonly encountered in studies on fluid and porous media convection,

there are several references available in the literature for comparison. Also, for these fluids,

there is not a significant change in the fluid viscosity, and hence the Prandtl number,

with temperature. For fluids with higher viscosity, the temperature dependence of Prandtl

number cannot be ignored. However, because the present model is valid only for constant

Pr, high viscosity fluids, though very important in a large number of applications, are not

considered in the present study.

The flow and temperature fields for Pr = 0.7 and 7 are shown in Figures 4.34
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Figure 4.35: Streamline and isotherm patterns for convection in a composite layer for Pr =
0.7, δ = 0.5. (a) Ra = 103, (b) Ra = 104, (c) Ra = 105, and (d) Ra = 106.

and 4.35, respectively. At Ra = 103 the flow patterns for both fluids look identical. Two

circulating cells produced due to end effects at the heater are seen and the fluid velocities are

identical. Similarly, the isotherms indicate that the heat transfer is conduction dominated.

With increase in the Rayleigh number to 104, much of same flow patterns seen earlier in

the chapter - initiation of convection dominated heat transfer, strengthening of the existing

cellular flow patterns, and confinement of the flow to the upper fluid layer - are seen for

both fluids. Fluid velocities too are almost the same in both cases as seen from the value

of the stream function. Similarly the isotherms show a gradually developing thermal plume

as convection heat transfer rates start increasing.

When the Rayleigh number is increased further to 105, however, different streamline
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patterns are seen for the two fluids. For Pr = 0.7, the fluid velocities within the core of

the circulation cells are at an angle to the fluid-porous layer interface. On the other hand,

for Pr = 7, flow velocities within the core of the cellular flow patterns are parallel to the

interface. This effect occurs due to lower shear resistance in the low Prandtl number fluid

and is also seen in simulations of Rayleigh-Bénard problem with fluids of different velocities.

However, the maximum absolute values of the stream functions are almost identical in both

cases. This indicates that the fluid velocities, though having different directions within the

core, have approximately the same velocities. The isotherm patterns however look virtually

identical indicating that heat transfer rates for the two fluids are almost same. Finally,

when the Rayleigh number is increased to 106, the streamline patterns for Pr = 0.7 become

highly skewed and unsymmetrical. The core of the convection cells is seen to become narrow

near the rising plume, i.e., near the vertical centerline of the cavity, while the other end

is noticeably larger and has a small pocket of higher velocities. For Pr = 7, however,

the convective cells are symmetrical and show two small pockets of higher fluid velocities.

The isotherms show a narrow rising plume while the region outside the plume is largely

isothermal, especially in the porous layer.

The Nusselt-versus Rayleigh number relationships for different Prandtl numbers is

shown in Figure 4.36. As can be seen, the two curves are almost identical indicating that

the Prandtl number has little effect on the overall heat transfer rates of the system. This

observation is in accordance with the results of both the Rayleigh-Bénard problem and the

Horton-Rogers-Lapwood problem. The only noticeable difference in the overall heat transfer

coefficients can be seen for Ra > 105 and can be directly attributed to the difference in

the flow patterns at Ra = 106. The centerline temperature profiles for Ra = 105 do not

show much difference between the two systems. Based on all the above arguments it can

be concluded that the Prandtl number is not a significant parameter in determining the

overall heat transfer characteristics of the present system.

4.4 Evolution of the flow and temperature fields

To get a fundamental understanding of the mechanism by which the convective flow

develops from an initial disturbance, two cases are chosen: convection in a fluid-superposed

porous layer with a uniformly heated base and convection in a similar system with a localized

heating at the base. For these two simulations, the following parameters are kept fixed:

Ra = 105, η = 0.5, Da = 10−6, A = 2, λ = 1, and Pr = 7. Only the heater-to-base length

ratio, δ, is different for the two cases. In the first case δ = 1 and the second case δ = 0.5.

The evolution of the flow and temperature fields for the two cases is shown in Figures

4.38 and 4.39. The figures essentially show snapshots of the streamlines and isotherms at
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Figure 4.36: Nusselt-versus-Rayleigh number relationship for different Prandtl numbers. δ
= 0.5 and η = 0.5.
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Figure 4.37: Dimensionless temperature (T ∗ = T −TC/TH −TC) profiles along the vertical
centerline of the domain for different Prandtl numbers. δ = 0.5, η = 0.5 and
Ra = 5× 105.
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various values of the dimensionless time t∗ starting from t∗ = 0 to the final steady-state.

For δ = 1, the solution is initiated by introducing a small sinusoidal perturbation to the

temperature field at t∗ = 0. This is shown in 4.38(a). At t∗ = 1, two convective cells

are seen. The flow at this time is almost entirely restricted to the overlying fluid layer.

The corresponding isotherms corroborate this fact: the temperature field inside the porous

layer resembles a conduction heat transfer mode and some convection can be seen in the

fluid layer. At t∗ = 40, a much more well defined flow pattern emerges. Circulatory fluid

motion in present in the entire fluid layer and signs of flow penetration into the porous

layer appear. The corresponding isotherm patterns show a plume like flow in an early

stage of development. When t∗ = 60, an increase in the velocities of convective motion

accompanied by further flow penetration in to the porous layer occurs. Simultaneously,

the thermal plume becomes better defined. As time progresses this process continues until

steady state is attained. The flow patterns do not show any signs of oscillatory motion.

This is consistent with earlier findings on convection in fluid-superposed porous layers heated

uniformly [36,39].

When δ = 0.5, the flow evolution progresses in a slightly different manner. In this

case no initial perturbation is given to initiate the iterative solution. Rather the horizontal

temperature gradient at the edge of the heater triggers the onset of convective motion.

This can be seen in Figure 4.39(a) where two small end cells are seen at the edge of the

heater. Once the onset of convective motion is triggered a weak circulatory fluid flow is

seen in the upper fluid layer at t∗ = 10. The corresponding isotherms, however, show only

a small disturbance to the conduction temperature field indicating that convective motion

has not yet commenced. At t∗ = 50, the first signs of the onset of convective motion can be

seen. A non-negligible circulatory flow pattern develops in the fluid layer and rising thermal

plume begins to take shape. Thereafter, the flow evolution essentially follows the same path

towards steady state as δ = 1: flow intensities keep increasing; there is a flow penetration

in to the underlying porous layer, and a narrow thermal plume rises from the center of the

heater. Thus the presence of a localized heating source does not affect the steady-state

convection pattern or the path to steady-state; it merely provides different trigger for the

onset of convective motion.

4.5 Conclusions

From the numerical results presented in this chapter, the following conclusions can

be drawn:

• The presence of a localized heat source does not affect the mode of convective motion

but merely provides a different trigger for the onset of convection. Also overall heat
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Figure 4.38: Evolution of the flow and temperature fields in fluid-superposed porous layers
heated uniformly from below. (a) t∗ = 0, (b) t∗ = 1, (c) t∗ = 5, (d) t∗ = 10,
(e) t∗ = 20, (f) t∗ = 40, and (g) t∗ = 60. Ra = 105, δ = 1, η = 0.5, P r =
7, Da = 10−6, A = 2, λ = 1.
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Figure 4.39: Evolution of the flow and temperature fields in fluid-superposed porous layers
heated uniformly from below. (a) t∗ = 0, (b) t∗ = 1, (c) t∗ = 5, (d) t∗ = 10,
(e) t∗ = 20, (f) t∗ = 40, and (g) t∗ = 60. Ra = 105, δ = 0.5, η = 0.5, P r =
7, Da = 10−6, A = 2, λ = 1.
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transfer rates increase with decrease in the heater length fraction.

• Fluid motion is primarily confined to the upper fluid layer with penetrative convective

motion in to the lower fluid layer.

• Overall heat transfer rates increase with increase in the height of the fluid layer. A

similar trend is noticed with an increase in the Darcy number. Both of these effects

can be attributed to the same fundamental cause: a decrease in the resistance to fluid

motion offered by the porous layer.

• The effect of the aspect ratio on the flow structure and overall heat transfer rates is

complex and depends also on the heater length and the Rayleigh number. For a given

heater length fraction, heat transfer rates decrease slightly with an increase in the

aspect ratio. Also the number of convective cells at a given aspect ratio and heater

length fraction is found to change with increasing Rayleigh number.

• Increase in the solid-to-fluid conductivity ratio leads to significant enhancements in

the overall heat transfer rates. This is not only due to higher conductivity of the

solid matrix but also due to an increase in the intensity of the convective motion with

increase in the conductivity ratio.

• The Prandtl number has very little effect on the overall heat transfer rates except at

very high Rayleigh numbers.
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Chapter 5

Experimental Design and

Procedure

In this chapter, the design, setup and procedure for the experiments is discussed in detail.

Because of the large number of independent controlling parameters, a complete paramet-

ric experimental investigation of the present problem is a challenging task. As such, an

exhaustive experimental study is not undertaken in the present study. Instead, a limited

set of experiments is performed to attempt a validation the numerical solutions. To that

end, this chapter begins with a discussion on the design of the experiments. Thereafter,

a detailed description of the experimental apparatus and the associated instrumentation is

given. Finally, the experimental procedure adopted is discussed briefly.

5.1 Design of experiments

The first step in the experimental study is to carefully design the experiments that

need to be performed. As mentioned above, the principal aim of the experimental study is

to validate the predictions of the numerical simulations. In addition, it is also desirable that

the experiments be designed in a manner such that overall heat transfer coefficients can be

measured for high Rayleigh numbers, a parametric range that cannot be explored by nu-

merical simulations. In this way, a combination of numerical simulations and experimental

measurements can be used to explore natural convection in fluid-superposed porous layers

over a wide range of Rayleigh numbers. In order to achieve this with the minimum number

of experiments, a statistical design of experiments is necessary. To perform a systematic

design of experiments, it is essential to first clearly identify the quantities that need to be

measured. The main aim of the experiments is to express the overall heat transfer rates for

different experimental conditions in terms of the overall Nusselt and Rayleigh numbers,
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Nu =
q′′H

kf(TH,avg − TC,avg)
, (5.1)

Ra =
gβH3 (TH,avg − TC,avg)

νfαf
. (5.2)

Here q′′ is the net heat flux supplied to the system, TH,avg and TC,avg are the average

temperatures along the heater and top surfaces, respectively, and the other quantities have

their usual meanings. The quantities that need to be measured during each experiment are

the average cooled and heated surface temperatures, and the net heat flux supplied by the

heaters.

The next step in the design process is to identify the most important controlling

parameters for the present problem. As seen in the previous chapter, there are six primary

independent parameters for the problem, namely, the heater-to-base length ratio, δ, the

porous-to-overall height ratio, η, the aspect ratio, A, the Darcy number, Da, the solid-to-

fluid conductivity ratio, λ, and the fluid Prandtl number, Pr. In addition, the following

parameters, which were assumed to be constant for the numerical simulations, must also

be considered: the porosity of the porous layer, φ, the Forchheimer number, F , and the

specific heat ratio, σ. There are thus a total of nine independent controlling parameters for

the present problem. Even at the minimum value of two levels for each parameter, the total

number of experiments is 29 = 512. Because it is practically impossible to perform such

a large number of experiments, it is essential to identify those parameters which primarily

govern the heat transfer mechanism in the system. For that, the following considerations

are made:

• Measurements will be made only for steady-state convection, and therefore the specific

heat ratio, does not need to be considered.

• For random stacking of spherical particles, the porosity φ is approximately in the

range of 0.36–0.4 and can hence be considered to be constant.

• For constant porosity, the Darcy and the Forchheimer numbers can be considered to

be functions of the non-dimensional bead diameter, γ.

• Based on the numerical simulations, it can be concluded that the fluid Prandtl number

and the aspect ratio of the system do not have a significant effect on the overall heat

transfer rates, and hence their effect can be neglected
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Based on the above considerations, the primary controlling parameters for the

present problem are the heater length ratio, δ, the height ratio, η, the conductivity ra-

tio, λ, and the non-dimensional bead diameter, γ. If, however, only a single set of beads

is used for all the experiments, both λ and γ will be constant and the effects of only two

independent parameters will need to be investigated. This will drastically reduce the total

number of experiments to be performed. In addition, from the numerical simulations, it is

clear that the two most important controlling parameters for the present problem are the

height ratio, η, and the heater length ratio, δ. Therefore selecting a single set of beads for

the porous layer will enable a very careful understanding of the effect of these two param-

eters. In the present experiments 3 mm DIA sodasilicate glass beads are chosen for the

porous layer, with water as the saturating fluid. The physical and thermal properties of

the beads are given in Appendix B. With this, the aim of the present set of experiments

can be summarized as: i) understanding the effect of η at a particular value of δ, and ii)

understanding the effect of δ at a particular value of η.

In order to meet these, the number of levels to be studied for each parameter, as

well the values of the parameters at each of those levels needs to be delimited. From a

statistical perspective, the minimum number of levels for each parameter is two. A higher

number of levels for each parameter can lead to a better understanding of its effect on the

overall heat transfer rates but may not be experimentally feasible. Keeping in mind the

fact that the overall objective of the experimental study is to validate the predictions of the

numerical simulations, the following design is adopted for the experiments: i) heater length

ratio: two levels, and ii) height ratio: four levels.

It must be noted that in selecting the number of levels for each parameter, primary

consideration has been given to the practical feasibility of conducting different sets of ex-

periments. Conducting experiments with different heater length ratios is a challenging task

as it requires significant changes to be made to the apparatus before experiments with a

different heater size can be performed. The main and guard heaters, as well as the thermo-

couples for measuring the heater temperatures must be removed and a new set of heaters

along with the associated instrumentation must be re-installed. Because of this, only two

levels are selected for studying the effects of δ. Experiments with different porous layer

height ratios however do not need any changes to be made to the apparatus. Thus, four

levels of η are chosen. Of these, one level (η = 1) is selected for investigation to validate

the experimental setup with literature data on convection in porous layers heated locally

from below.

In order to select the values of δ and η for the different levels, several other factors,

such as the availability of heater sizes, the bead size, the working height, and the range of

Rayleigh numbers desired need to be considered. Selection of the two values of δ is fairly
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Table 5.1: Overview of the experimental design selected.

Experiment δ η Porous layer ∆T (◦C) Ra

height (cm)

1. Validation
of setup

0.44 1 3.81 3-40 3× 106 − 9× 107

0.5 1.91

2. Effect of η 0.44 0.67 2.54 3-40 3× 106 − 9× 107

0.75 2.86

3. Effect of δ
0.11

0.5 1.91 3-40 3× 106 − 9× 107

0.44

straightforward. For the required heater lengths, two different heater widths (W in Figure

5.2) are available: 2.54 cm and 10.16 cm, for which the two values of δ are 0.11 and 0.44

respectively. Selection of the appropriate values of η requires consideration of the desired

range of Rayleigh numbers. Because the upper end of Ra for the simulations is in the range

106− 5× 106, it is desirable to have the lower end of the experimental data in this Rayleigh

number range. Recalling the definition of the overall Rayleigh number and noting that the

minimum temperature difference that can be maintained across the heater surface and the

top plate is ∼ 2− 5 ◦C, a working height of 3.81 cm (1.5 in.) would give the required lower

Ra range.

In order to select the different height ratios, consideration must also be given to the

effect of the dimensionless bead diameter, γ. It is well known that the porosity of porous

layers keeps increasing as γ approaches unity. This is because the pore space adjacent to

any surface is about 20% higher than in the interior of the porous layer [1,2]. Katto and

Masuoka [30] have shown that end effects can be neglected when γ ≤ 0.2, i.e., when the

porous layer is at least five particle diameters. In the present study, the porous layer is

selected to be at least six particle diameters high or in other words, (Hm)min = 1.8 cm.

With this consideration, the different experimental values of η can be selected. A detailed

design of experiments is shown in Table 5.1.

5.2 Design of experimental setup

The design of the experimental setup is the most critical part of the experimental

study as the accuracy of the apparatus design directly affects the accuracy of the obtained

results. The primary challenge in designing the experimental system is in ensuring that the

final setup is an accurate physical representation of the problem under investigation. In

addition, the setup must be designed in a way such that all quantities of interest can be
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accurately measured with minimal uncertainty. The primary design challenges are:

1. Minimizing uncertainties: Boundary conditions must be maintained accurately

so that the set up conforms to the problem definition. This implies that adiabatic

surfaces must be carefully insulated, the test chamber must be adequately sealed to

prevent fluid leakage, and suitable guard heaters must installed to prevent heat loss

from the heater and ensure a constant heat flux boundary condition.

2. Material selection: Both thermal and mechanical consideration must be included in

the selection of materials for fabricating the various components of the set up. These

considerations include thermal conductivity, mechanical strength, and machinability.

3. Accurate instrumentation: Instrumentation involved in measuring the various

quantities of interest is an integral part of the experimental apparatus. The incorpo-

ration of instrumentation, like heater leads and thermocouple wires, into the exper-

imental apparatus can introduce several design challenges which must be given due

consideration.

4. Operator ease: The experimental apparatus needs to be designed for maximum

experimental flexibility. Therefore, a modular design approach is desirable so that

different sets of experiments can be performed by making minimal changes to the

apparatus.

Each of the above mentioned factors must be carefully considered while designing

the experimental setup. In order to simplify the design process, it is easier to break up

the experimental setup into two distinct components: a) the experimental apparatus, and

b) the instrumentation and final assembly. Each of these components can be individually

fabricated and assembled for the final setup and hence it is easier to consider them one by

one.

5.2.1 Experimental apparatus

The experimental apparatus is the primary component of the overall experimental

setup. The apparatus consists of a test chamber that holds the fluid-superposed porous

layer and provides the required heated and cooled surfaces at the bottom and at the top.

The guiding principle behind the design of the apparatus is that it must be easily assembled

and disassembled. Because of this requirement, a modular design approach is necessary.

With this approach the apparatus is built by assembling several independent modules, each

of which is independently fabricated and assembled. This ensures that the apparatus can

be easily disassembled and then reassembled after making the required modifications for

a particular experiment. This approach also helps in incorporating instrumentation into
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the apparatus during the setup of the entire experimental system. The apparatus used in

the present experiments is made up of three modules: the convection cell, the base plate

assembly, and the top plate assembly. Figure 5.1 shows a schematic diagram of a breakdown

of the apparatus into the different modules.

5.2.1.1 Convection cell

The convection cell is the fundamental component of the experimental setup. It

provides a test chamber which holds the porous and fluid layers and in which the experiments

are conducted. In order to design the cell, close attention must be paid to the following

factors: i) it must be long enough to ensure that end-effects do not have a significant

influence on the heat transfer characteristics of the system; ii) it must have sufficient width

in order to allow three dimensional effects to be manifested; iii) the total height of the cell

must not be too great as with increasing height, the temperature difference between the

top and bottom surfaces needed to induce the onset of convection increases which can lead

to appreciable variations in the thermophysical properties of the fluid; iv) The convection

cell must be constructed out of a material that has low thermal conductivity in order to

minimize heat losses through the walls.

The material must also be easily machinable to facilitate easy construction. Based

on the above factors, a 22.86 cm long, 22.86 cm wide and 25.4 cm high convection cell is

chosen for the experiments. This is shown schematically in Figure 5.2. The walls of the

cell are constructed out of 1.27 cm thick polycarbonate, which is chosen for its low thermal

conductivity and ease of machining. It must be noted that the height of the convection cell

is much larger than what is required for the present experiments. The height of the cell has

been deliberately kept large keeping in mind further extensions of the present work where a

large working height might be required. The required working height is obtained by making

the height of the top plate adjustable. This design approach allows the selection of any

working height or aspect ratio depending on the requirements of a particular experiment

and provides the necessary flexibility for conducting future experiments.

5.2.1.2 Base plate assembly

The base plate assembly comprises of the base plate, the main heaters, and the

guard heaters. Figure 5.3 shows a schematic diagram of the base plate assembly. As can

be seen, the base plate forms the principal part of the assembly. The main heater and

the guard heater are attached to the upper and lower sides of the base plate respectively.

The primary requirement of the base plate is to maintain the uniform heat flux boundary

condition at the heated section of the base, i.e., preventing heat loss through the base so

that the flux produced by the heaters is supplied entirely to the porous layer above. From

a one-dimensional steady state heat conduction model, the heat loss through the base is,
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Figure 5.1: Schematic of experimental setup showing the three different modules.
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Figure 5.2: Schematic of the convection cell showing (a) the top view and, (b) the front
view.

q′′loss = −kbase
∆Tbase

Hbase
, (5.3)

where q′′loss, kbase, ∆Tbase and Hbase are the heat flux through the base, the thermal con-

ductivity of the base plate, the temperature difference across the plate and the thickness of

the plate, respectively.

From equation (5.3), it is clear the heat loss through the base can be minimized by

reducing the temperature difference across the plate, increasing the thickness of the plate,

or reducing the plate thermal conductivity. A large plate thickness, however, would make

assembly of the apparatus very cumbersome. A better alternative is to fabricate the base

plate from a material which has a low thermal conductivity. The thermal and physical

properties of polycarbonate are listed in Appendix B. For the present experiments, the

base plate is constructed out of 1.27 cm thick polycarbonate sheet. No material however is

perfectly insulating and a finite amount of heat loss always takes place for any temperature

gradient across the plate. By employing a guard heater, however, this heat loss can be

compensated. This is explained later.

The main heater is attached to the top of the base. The primary purpose of the

main heater is to provide a constant heat flux into the overlying composite fluid-porous layer

over a wide range of temperatures. Flexible wire-wound silicon rubber heaters (Watlow,

St. Louis, MO) are used in the present experiments as the main heaters. These heaters

are chosen because of their ruggedness, reliability, and ease of handling. The heaters are

of a sandwich-type construction and consist of a heating element sandwiched between two
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sheets of silicon rubber. The heating element is constructed by winding fine resistance

wires around a fiberglass cord. The primary advantage of these heaters is their ability to

provide a highly uniform heat flux and maintain a constant resistance over a wide range of

temperatures. Another advantage of these heaters is that they can be easily attached to and

removed from the base plate. The heaters are provided with a pressure sensitive adhesive

on their lower surface and can be attached to the base plate by placing them in position and

applying pressure. After use for a particular experiment, they can be removed by simply

peeling them off the plate, much like adhesive tape. This ease of handling provides great

flexibility in experimental design as it allows heaters of different sizes to be used for different

sets of experiments. In the present experiments, the main heater is constructed by placing

two separate heaters side-by-side along their width (Figure 5.3). The power ratings of the

heaters are matched to ensure that they produce identical heat fluxes for a given power

supply voltage. This ensures that a constant heat flux boundary condition is maintained

over the entire length of the main heater.

The guard heaters are attached to the lower end of the base plate, exactly underneath

the main heaters. The guard heaters used here are identical to the main heaters in terms of

size, construction, and power rating. The purpose of the guard heater is to prevent the loss

of heat from the primary heaters to the base plate and ensure that all the heat flux generated

by the main heaters is supplied to the porous layer above. As mentioned above, a finite

amount of heat loss always takes place through the base for a given temperature difference

across the base plate. By employing a guard heater and suitably adjusting its power, the

temperature difference across the base plate can be reduced to zero, thereby eliminating

any heat loss through the base. If the guard heater is not employed, heat loss through the

base will increase with rise in the boundary temperature and the heat flux supplied by the

main heater to the convection cell will decrease as the experiment progresses.

5.2.1.3 Top plate assembly

The top plate assembly comprises the third component of the experimental appara-

tus. It consists of the top plate and the supporting plate (Figure 5.4). The main purpose

of the top plate is to provide a constant temperature upper boundary that will set up an

unstable temperature gradient across to convection cell and trigger the onset of convection.

For the present experiments, a 21.59 cm × 21.59 cm × 0.32 cm copper plate is chosen as

the top plate. This plate has a 0.64 cm DIA coiled copper tubing brazed to its top surface

through which water can be circulated. Copper is chosen as the plate material due to its

high thermal conductivity and the plate thickness is kept very small. This causes the ther-

mal resistance across the plate thickness to be very small and ensures that rapid thermal

equilibrium is achieved between the circulating water and the plate.
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Figure 5.3: Schematic of the base plate assembly. (a) top view, and (b) side view.

The supporting plate forms the upper part of the assembly and its purpose is to

hold the top plate in position. The cooling plate is attached to the supporting plate with

three screw rods. As can be seen from Figure 5.4, this construction allows the distance be-

tween the top plate and the supporting plate, HT , to be adjusted. In this way the working

height and the aspect ratio for any particular experiment can be easily set depending on

the requirements of that experiment. The supporting plate is also provided with a bleed

hole to prevent any pressure build-up within the cell during the experiments. During as-

sembly of the entire apparatus, it is important that the top plate assembly be easily and

accurately mounted. This is enabled by machining a shallow groove on the lower surface of

the supporting plate into which the side walls of the convection cell can be fit.
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Figure 5.4: Schematic diagram of the top plate assembly showing the different components.

5.2.2 Instrumentation and assembly

The instrumentation used in the present experiments and the assembly of the overall

experimental setup will be now discussed. This is a very crucial part of the experimental

process as the accuracy of the instrumentation and overall assembly will directly influence

the accuracy of the obtained results. In particular, close attention must be paid to the

selection of the instrumentation and its incorporation into the experimental apparatus to

ensure that the instrumentation does not interfere with the convective motion during the

experiment. As discussed earlier, two primary quantities need to be measured during the

experiments: temperatures at various locations inside the apparatus, and the power supply

to the main heaters. All temperature measurements in the present study are made with

Type E thermocouples (chromel-constantan). These couples are chosen for their high ac-

curacy (1.2 ◦C or 0.75% error, whichever is highest) and ruggedness. The thermocouple

junctions are made with the twist-and solder method. For increased accuracy, the Special

Limits of Error grade of thermocouple wire is used. Two different sizes of thermocouple

wires are used: 36 Ga (0.127 mm DIA) wire for measuring the top plate temperatures, and

30 Ga (0.254 mm DIA) wires for all other temperature measurements. Prior to attaching

them, the accuracy of all the thermocouples is verified by measuring the ice point of water

(0 ◦C) in an ice bath. The maximum observed error is found to be ±0.5◦C, well within the

accuracy range of type E thermocouples.

For every experiment, temperature measurements are made at six different locations
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Table 5.2: Thermocouple locations at the different surfaces.

Thermocouple location Number Position

Transverse and longitudinal centerlines

Main heater surface 9 Transverse: 2.2 cm apart

Longitudinal: 5.08 cm apart

Guard heater surface 5 Zig-zag pattern: 6.35 cm apart

Top plate 4 Random locations

Inner walls 4 Center of wall, 0.19 cm above base

Outer walls 4 Center of wall, 0.19 cm above base

Transverse and longitudinal centerlines

Cavity mid-plane 9 Transverse: 2.2 cm apart

Longitudinal: 3.81 cm apart

within the apparatus. These locations along with the number of thermocouples at each lo-

cation are summarized in Table 5.2. Figure 5.5 shows the thermocouple locations on the top

plate, main heaters, and the guard heaters. Five thermocouples are used to measure the top

surface and the guard heater surface temperatures while a total of nine thermocouples are

used to measure the main heater surface temperature. A larger number of thermocouples

are used for the main heaters as the construction of the apparatus for the present exper-

iments is such that a constant heat flux boundary condition exists on the heater surface

as opposed to a constant temperature boundary condition, and thus the temperature on

the main heater surface varies significantly, especially in the transverse direction. To un-

derstand this variation and accurately compute the average temperature across the heater

surface, five thermocouples are mounted in both the lateral and transverse directions. It

must be noted that while the guard heater too produces a constant flux, the temperature

variation across the heater is not very high as the heater is operated at a very low power.

As such, fewer thermocouples are required to monitor the guard heater temperature.

In addition to the top surface and the heater surfaces, temperatures are also mea-

sured along the inner and outer walls of the apparatus and along the vertical center-plane

of the experimental domain. The thermocouples at the inner and outer walls of the convec-

tion cell are used for temperature measurements at these locations from which the heat loss

through the sides of the apparatus can be calculated. Also, a total of nine different tem-

perature measurements are made along the horizontal mid-plane of the cavity by attaching

125



 

(a) 

(b) 

(c) 

Figure 5.5: Thermocouple locations at (a) main heater surface, (b) top plate, and (c) guard
heater surface.

thermocouples to a fixed grid. The grid is made from a 21.6 cm × 1.6 cm polycarbonate

frame to which two slightly stretched nylon wires are attached in the transverse and longi-

tudinal directions along the center. The frame kept at a height of 1.9 cm above the base

of the convection cell and is positioned by placing it on four corner posts that are glued to

the inner walls of the cell at the four corners (Figure 5.6). The aim of these temperature

measurements is to measure the size of the convective cells and compare them with the

predictions from the numerical simulations. In addition, these measurements will aid in

understanding the three-dimensional pattern of the convective motion. For the reason, the

thermocouples are positioned differently in to two directions. In the longitudinal direction,

the thermocouples are placed just above the heater surface as the bulk of the convection

motion is expected to be in this region. In the transverse direction, the thermocouples are

positioned evenly along the depth of the convection cell. The exact thermocouple positions

are listed in Table 5.2.
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Figure 5.6: (a) Position of the thermocouple frame inside the cavity. (b) Thermocouple
locations on the frame.

In all cases, the thermocouples are attached to the surfaces with high thermal con-

ductivity epoxy (Omega Engineering Inc., Stamford, CT). In order to minimize interference

with the experiment, the epoxy beads are kept as small as possible. This is particularly

important in attaching the thermocouples to the main heater surface and the thermocouple

frame where the size of the epoxy beads is kept smaller than the size of the glass beads.

Similarly, in order to avoid interference, the thermocouple wires are taped to the base and

side walls of the convection cell. The wires are run upwards along the side walls of the cell all

the way up to the cell and are taken out through holes provided on the top supporting plate.

The ends of the wires are connected to a digital data acquisition system (Model 34970A,

Agilent Technologies, Santa Clara, CA) that is capable of handling over 50 thermocouple

measurements. This data acquisition system converts the thermocouple voltage output to

temperature readings and sends to the output directly to a PC, where the measurements
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Figure 5.7: Power supply circuit to the main and guard heaters.

are recorded to the hard drive.

Power is supplied to the main and guard heaters through two separate variable

voltage regulators which are connected to the main AC supply voltage line. With this

arrangement, the power supply to main and guard heaters can be individually controlled.

The heat flux produced by the main heaters is calculated by measuring the AC voltage

across the heaters and using the resistance heating formula,

q′′ =
1

Atot

(
V 2

R1
+
V 2

R2

)
, (5.4)

where V is the voltage drop across the two main heaters, R1 and R2 are the resistances of

the heaters and Atot is the total area covered by the two heaters. The voltage drops across

the heaters are measured by connecting two wires in parallel across the heater circuit to

the data acquisition system. The measurement circuit is shown schematically in Figure 5.7.

A schematic diagram of the final experimental setup is shown in Figure 5.8. For the final

assembly, the apparatus is placed on a laboratory bench and is made horizontal by adjusting

the screws on the four corner supports and checking with a spirit-level. The top plate is

connected to the main water supply line and drain. Finally the apparatus is insulated on

all sides using 5.08 cm thick Styrofoam boards.
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Figure 5.8: Overall experimental setup.

5.3 Experimental procedure

The experimental procedure comprises of several different steps which must be care-

fully performed in order to minimize the uncertainties in the obtained data. A number of

these steps must actually be performed prior to each experiment. First, the glass beads used

are thoroughly cleaned to ensure that no unwanted dust or debris end up in the apparatus.

This cleaning is done on the day prior to the actual experiment. The beads are first washed

with a mild soap and tap water. Thereafter, they are rinsed several times with tap water

to ensure that all the soap is washed away and no residue is left behind. Finally, the beads

are washed once with distilled water. The excess water is allowed to drain away and the

beads are then left to dry overnight at room temperature.

On the day of the experiment, the beads are carefully inspected for traces of residual

moisture that may have been trapped in them. In general, the beads were always found
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to be dry. On a few occasions when the beads are not completely dry, traces of residual

moisture are removed by mildly heating them over and hot plate and then allowing them

to cool. Prior to the beginning of an experiment, the inside of the apparatus is carefully

cleaned with a moist cloth to remove any dust present. Thereafter, the instrumentation

wires are carefully inspected to check for signs of tear or damage. After verification, the

data acquisition system is turned on and the temperature and the voltage readings are

checked for any anomalies. The acquisition system is allowed to run for 15 min after

which the thermocouple readings are checked to ensure that the readings are close to room

temperature which is measured separately with a mercury-in-glass thermometer.

After the initial checks are complete, de-gassing of the distilled water that is to be

used as the saturating fluid is started. De-gassing the saturating fluid is very important in

order to prevent the release and accumulation of air bubbles inside the apparatus during

the experiment. In the present experiments, water is de-gassed by heating it in a metal

pan over a hot plate up to its boiling point. After several trial runs it is seen that a total

heating time of 45 min is sufficient to remove all the dissolved air. After de-gassing, the

water is allowed to cool to room temperature. To accelerate the cooling process, coiled

copper tubing with tap water running through it is placed inside the metal pan.

During the de-gassing of the water, the apparatus is prepared for the experiment

by filling it with glass beads up to the desired height. To ensure uniform distribution of

the beads, the apparatus is gently shaken by holding it at its base. For the present set of

experiments it is very important that the interface between the glass beads and the overlying

fluid layer is very nearly flat. To ensure a flat surface, a thick aluminum plate fitted with

a screw rod is placed over the beads and is pressed down firmly in order to create a flat

surface on top layer of the beads. Once the height of the porous layer and the flatness of the

interface are checked, the beads are saturated with water by siphoning through a flexible

tube that is attached to one of the inner walls of the convection cell. During filling of the

tank, the aluminum plate is kept on top of the beads till after the porous layer is saturated

with water. This ensures that no defects are created on the top layer during the filling

process and an almost flat interface exists between the porous layer and the overlying fluid

layer. Once the beads are saturated with water, the aluminum plate is removed and the

cell is filled up to its working height. The top plate assembly is then slowly lowered into

the cell and placed on top of the fluid layer. Placement of the top plate over the fluid layer

is done very carefully to avoid trapping any air bubbles under the plate.

Once the top plate is in place, the circulation of tap water through the coils of the

top plate is started. The apparatus is checked one final time to ensure that there are no

leaks or loose wire connections. The temperature readings on the data acquisition system

too are checked for any discrepancies. The Styrofoam insulation boards are then placed in
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position around the sides and the base of the apparatus and are held in place by adhesive

tape. The experiment is started by switching on the power supply to the main and guard

heaters. During the initial part of each experimental run, the base and guard temperatures

are closely monitored to ensure that the average surface temperatures of both the heaters

are very close to each other. The voltage regulators for both heaters are then adjusted

accordingly. Usually this is done during the first fifteen minutes of each run as the largest

changes in heater temperatures occur during this time. After this the experiment is allowed

to run till it reaches steady-state. During this time, the temperature readings on the main

and guard heaters, as well as the top plate, are monitored periodically. Steady-state is

assumed to have been attained when the average heater and top surface temperatures do

not change by more than 0.5% over a five minute time period. The time to attain steady-

state depends primarily on the Rayleigh number with shorter times being required at higher

Rayleigh number. In general, steady-state is achieved within 35-40 min although for some

cases it is about 90 min.

Once the system has attained steady-state, the temperature readings are stored on

the computer and the experiment is stopped by turning off the power supply to the heaters.

The insulation is removed and the system is allowed to cool to room temperature. During

this time, the water circulation through the top plate is allowed to continue to enable

the system to cool faster. In general the cooling time is found to be no more than 15-20

min during which the system temperatures are monitored. Once cooling is done, a new

experiment is started following the same procedure described above.
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Chapter 6

Experimental Results

In this chapter, results from the experimental study are presented. Because the main

aim of the experiments is to obtain the overall Nusselt-versus-Rayleigh number relations

for different heater lengths and fluid-to-porous layer height ratios, it is important that

these quantities, along with their net uncertainties, be calculated accurately. This chapter

therefore begins with a detailed description of the data analysis procedure adopted in this

study. Thereafter, the experimental data is presented. Finally, the results are discussed in

detail.

6.1 Data analysis procedure

6.1.1 Data reduction procedure

During each experiment, the digital data acquisition system generates an ASCII file

that contains all the data recorded during every measurement: the temperatures measured

by the thermocouples, the supply voltages for the main and guard heaters, and the time

point for each measurement. To perform the data reduction, two different MATLAB c©

(Mathworks Inc., Natick, MA), scripts have been developed. These scripts take the ASCII

files generated by the data acquisition system and together perform the following procedure:

1. Calculate steady-state values: The steady-state value for each quantity measured

during a particular experimental run is computed by taking an arithmetic mean of

the steady-state data over a 4 minute time period or over the final 24 time point

measurements. In order to estimate the error in the steady-state measurements, the

standard deviation is also computed.

2. Average temperatures for the main heater, guard heater, and the top plate are com-

puted by taking an arithmetic mean of all the thermocouple measurements for each

surface. The standard deviation of the measurements is also computed.
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3. The heat supplied by the primary heater is calculated using the formula

q =
V 2

Reff
, (6.1)

where Reff is the effective parallel resistance of the two heaters and is,

Reff =
1

R1
+

1

R2
. (6.2)

4. Heat losses through the base and side walls are calculated. This is discussed in detail

in the next section.

5. The overall Nusselt number is calculated from the formula

Nu =
(q − qloss)H

kfAtot (TH,avg − TC,avg)
. (6.3)

6. The overall Rayleigh number is calculated from the formula

Ra =
gβH3 (TH,avg − TC,avg)

ναf
. (6.4)

7. Uncertainty analysis is performed to determine the overall uncertainties in the values

of the Nusselt and Rayleigh numbers. This is described in detail in Appendix D.

As can be seen, all the required quantities can be calculated directly from the ex-

perimental data using the above procedure. The only quantity that needs to be carefully

estimated the net heat loss from the apparatus. This is described next.

6.1.2 Estimation of heat losses

A crucial component of the data analysis procedure is the accurate estimation of

the heat loss occurring from the experimental apparatus. Since the losses are, to an extent,

unavoidable, correct estimation of the overall loss is important for calculating the Nusselt

number and for reducing the overall uncertainty in the measurements. For the given ap-

paratus, the two main sources of heat loss are: a) losses through the side walls, and b)

heat loss through the base. In order to calculate these losses, data from the temperature

measurements are used.

To estimate the heat loss through the side walls, a one-dimensional conduction

analysis is used. As mentioned in the previous chapter, a total of eight thermocouples -
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Figure 6.1: Thermal resistance network for the side wall.

four on the inner surface of the side walls (one on each wall), and four on the outer surface

of the insulation boards - are specifically assigned for this purpose. For each pair of inner

wall-outer wall thermocouples a conduction resistance network can be constructed. This is

shown schematically in Figure 6.1. As can be seen, the thermal resistances of the side wall

and the insulating board form a series resistance circuit, for which the effective resistance

is,

Rside = Rins +Rwall

=

(
wins

Ainskins
+

wins

Ainskins

)
. (6.5)

Based on the theory of thermal resistances, the heat loss though the side wall is,

qls =
Tin − Tout

Rside
, (6.6)

where Tin and Tout are the temperatures on the inner wall of the apparatus and the outer

wall of the insulation, and qls is the heat loss though a single side wall. The total heat loss

through the four side walls can then be written as,

qside =
1

Rside

4∑
i=1

[(Tin)i − (Tout)i] . (6.7)

This provides a direct and simple way to estimate the side wall heat loss.

Estimation of the heat loss through the base plate is slightly more involved. This

is because heat loss through the base plate occurs both in the transverse as well as the

lateral direction. To better understand the nature of heat transfer in the base plate, a
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Figure 6.2: Finite-element simulation of the heat transfer problem in the base plate. (a)
Problem setup and boundary conditions, (b) finite-element grid used, (c) steady-
state temperature contours, and (d) heat flow lines.

finite element simulation of the conduction problem in the plate is performed. This will

enable a better understanding of the direction of heat losses and their magnitude. For the

simulation, a two-dimensional problem is selected with the following parameters:

• Length of plate: 30.38 cm.

• Thickness of the plate: 1.27 cm.

• Main heater: 10.16 cm, 25 W/m2 heat flux.

• Guard heater: 10.16 cm, 2.5 W/m2 heat flux.

• Top surface, non-heated section: Tf = 25 ◦C.

• Side edge: T∞ = 25 ◦C.

The results from the simulations are shown in Figure 6.2. As can be seen, at

steady-state, the temperature field along the center of the plate is uniform indicating a very

small temperature gradient across the plate thickness. This is to be expected based on the

fact that the presence of the guard heater neutralizes the heat loss through the bottom

of the main heater. Across the plate length the isotherms are nearly vertical indicating

the presence of a lateral temperature gradient. This can be better seen by considering the
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Figure 6.3: Thermal resistance network for the base plate.

temperature gradients in the plate as shown in Figure 6.2(d). Except near the centerline of

the plate, where there is some heat flow in the transverse direction, the bulk of the heat flow

in the plate is in the lateral direction. A simple technique for calculating the heat losses

in both directions is to break up the two-dimensional problem into two one-dimensional

problems. With this approach the heat losses in the transverse and lateral directions are

treated independently of one another.

First, the method for calculating the transverse heat loss is discussed. A one-

dimensional conduction model is used to estimate the heat loss through the base based

on the temperature measurements on the main and guard heater surface. Consider the

schematic diagram of the base plate heater assembly, as shown in Figure 6.2. Based on a

thermal resistance model, the heat lost through the base is,

qlb =
TH,avg − TG,avg

Rbase

=
Atotkbase (TH,avg − TG,avg)

wbase
, (6.8)

where TH,avg and TG,avg are the average surface temperatures of the main and guard heaters,

respectively. It must be noted here that the thermocouples for measuring the heater tem-

peratures are located on top of heater surface. As a result, in writing this equation, it has

been assumed that the thermal resistances of the main and guard heaters are negligible.

This is a reasonable assumption considering the very small thickness of the heaters (1.4

mm). Also, since the heaters have a heating element sandwiched between two silicone rub-

ber sheets that provides a constant heat flux, it is reasonable to assume that the entire

heater is isothermal across its cross-section. It may be recalled that the primary reason

behind installing the guard heater is to actually prevent any heat loss through the base by

eliminating the temperature gradient in the transverse direction. As such, heat loss in the

transverse direction should be zero. However, since it is not possible to exactly match the
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main and guard heater temperatures during an experiment, a small but finite heat loss does

take place during each run. This is estimated with equation (6.8).

Next, the lateral heat loss through the base plate is calculated. Based on a one-

dimensional conduction model, the lateral heat loss can be written as,

ql = 2

[
Acskbase (Tcl − T∞)

lbase/2

]
. (6.9)

Here Acs is the cross-sectional area of the base plate Tcl is the average centerline

temperature across the plate thickness. Since there is no direct method for measuring the

temperature across the centerline of the base plate, Tcl is assumed to be equal to the average

temperature along the centerline (along the length of the heater) of the main heater surface.

This is a reasonable assumption considering that the temperature across the plate thickness

is almost uniform in the center due to the presence of the guard heater. Also, because there

are four thermocouples mounted along the main heater centerline, the average temperature

across the heater can be estimated with reasonable accuracy.

An important observation that can be made from the results of the finite-element

simulation is the presence of large temperature gradient near the edges of the main heater.

The heat flow lines in Figure 6.4(d) clearly show that a part of the heat lost by the main

heater makes its way back into the convection cell near the edges of the heater. This means

that the surface of the base plate outside the heater is not truly adiabatic. It also indicates

that the lateral heat loss is less than what is estimated with equation (6.9). From the

finite-element simulations, the heat leaking back into the convection cells is ∼ 40% of the

lateral heat loss (actual 38.4%). In terms of the total energy balance of the system however

this is an extremely small value. For most experiments, the lateral heat loss is less than

1% of the total energy supplied by the main heaters. As such, the heat leaking back into

the system is only a very small fraction of the total energy input and can be neglected

without introducing significant errors in the overall heat transfer calculations. Therefore in

the present calculations, the heat leakage into the system near the edges of the heater is

neglected.

6.2 Experimental Results

6.2.1 Validation of the experimental setup

To validate the present experimental setup and the data reduction procedure, two

different sets of experiments were performed, each with a different heater size. Experiments

were performed for a fully porous layer (η = 0) with heater length ratios δ = 0.44 and

0.11. Each experiment was repeated thrice to ensure repeatability of the results. Results
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Table 6.1: Parameters used for studies on validation of experimental setup.

Parameter Present Study Rajen and Kulacki [60] Lai and Kulacki [61]

Height ratio, η 0 0 0

Heater length ratio, δ 0.44, 0.11 0.5 0.14

Aspect Ratio, A 6 6 21

Darcy number, Da 4.04 × 10−6 2 × 10−6 3.4 × 10−6

for the experiments are show in Figure 6.4 along with comparison with the numerical and

experimental results of Rajen and Kulacki [60] and Lai and Kulacki [61]. In these results,

the Nusselt number, Num, is based on the effective stagnant conductivity, km, and the

Rayleigh number, Ra∗m, is the flux based porous media Rayleigh number which are defined

as,

Num =
q′′netH

km (TH,avg − TC,avg)
, (6.10)

Ra =
gβKH2q′′net (TH,avg − TC,avg)

ναmkm
, (6.11)

where qnet is the net heat flux supplied by the heaters and all other quantities have their

usual meanings. Details of the comparison studies are listed in Table 6.1.

Comparison of the present experimental results with those of Rajen and Kulacki

[60] is shown in Figure 6.4. As can be seen, agreement is very good with both the numerical

and experimental results except at very low Rayleigh numbers where current results are

lower than the numerical predictions. Although error bars are not shown here, it will be

seen in the next section that the maximum uncertainty in the Nusselt number occurs at low

Rayleigh numbers which can explain the observed discrepancy. Beyond the critical point,

agreement with the numerical simulations is very good over the entire range of Rayleigh

number with a maximum difference of ∼ 4.5% at Ra∗m = 620. The present results also agree

well with the experimental results of Rajen and Kulacki though the difference between them

is higher than. The maximum difference is about 7%. This is to be expected considering

that the heater length ratio used in the present experiments (δ = 0.44) is slightly higher

than that used by Rajen and Kulacki (δ = 0.5).

Figure 6.5 shows the comparison of the present results for δ = 0.11 with the numer-

ical and experimental results of Lai and Kulacki [61]. Again, there is some discrepancy in
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Figure 6.4: Comparison of current experimental data with the numerical and experimental
results of Rajen and Kulacki [60].
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tal results of Lai and Kulacki [61].
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the two sets of results near the onset point. Beyond the critical point, however, the agree-

ment is very good over the entire range of Rayleigh numbers. It must be noted that the

heater length ratio in the present study is slightly smaller than that used by Lai and Kulacki

[61]. The results also agree well with the results of their numerical simulations although

the present numerical results consistently over-predict the Nusselt number by about 6%.

6.2.2 Heat transfer results

Heat transfer results for convection in fluid-superposed porous layers will now be

discussed. Table 6.2 lists all the primary measured parameters, and Table 6.3 gives the

reduced heat transfer rates in terms of overall Nusselt and Rayleigh numbers along with their

uncertainties. The overall Nusselt-versus-Rayleigh number data for all the experiments are

shown in Figures 6.5 to 6.8 along with the best fit lines. The error bars on the graphs show

the net uncertainties in evaluating these parameters. As can be seen, the heat transfer data

on all the graphs can be correlated by straight lines on logarithmic coordinates indicating a

power-law relationship of the form Nu = CRan, which is agreement with the predictions of

the numerical simulations. It also agrees with the established result that heat transfer data

for natural convection problems that are derivatives of the Rayleigh-Bénard problem always

follows a power-law relationship. Correlations of heat transfer data for the experiments are

given in Table 6.4.

A better understating of the experimental results can be obtained by considering

Figure 6.9 which shows the best-fit correlations for the three porous layer height ratios,

η, studied here. As can be seen, the overall Nusselt number for a given Rayleigh number

increases with a decrease in height ratio. This is in agreement with the predictions of

the numerical simulations. Also, the curves for η = 0.5 and η = 0.75 are nearly parallel.

This too is in agreement with the predictions of the numerical simulations. The curve for

η = 0.67, however, shows some anomalies. At lower Rayleigh numbers, the Nusselt numbers

of η = 0.67 and η = 0.75 are almost identical. This can be explained by considering

uncertainties in the experimental measurements. As can be seen from Figures 6.6 and 6.7

the uncertainties in the Nusselt number at the lower end of the Nu-Ra curve are the highest.

In addition, from an experimental perspective the difference between η = 0.67 and η = 0.75

is only about one bead diameter. Because the uncertainty in the height of the porous layer

is one bead diameter, overlap of the Nusselt number is highly likely and is most likely the

reason why the slope of the η = 0.67 curve is somewhat different than the other two cases.

The effect of the heater length ratio on the overall heat transfer rates is shown in

Figure 6.8. It can be seen that the Nusselt number increases with a decrease in the heater

length ratio, δ, from 0.44 to 0.11. This trend too is in agreement with the predictions of

the numerical simulations. This increase is however only clearly evident at higher Rayleigh
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Table 6.2: Measured parameters for all experiments.

Run No. δ η ∆T (◦C) qmain (W) qnet (W) q′′net (W/m2)

1

0.44 0.5

5.07 4.05 4.16 179.42

2 11.05 13.55 13.67 588.88

3 15.06 28.97 29.22 1258.31

4 19.84 61.01 61.27 2638.17

5 26.61 112.57 112.81 4857.35

6 30.41 138.47 138.48 5962.67

7 36.03 202.15 202.28 8709.6

1

0.44 0.67

5.59 4.33 4.16 179.33

2 12.22 15.85 15.56 670.28

3 15.78 30.6 30.35 1306.74

4 21.22 67.93 68.15 2934.43

5 25.5 105.71 106.81 4598.97

6 31.32 157.07 157.46 6779.77

7 36.51 211.96 212.15 9134.45

1

0.44 0.75

6.04 4.38 4.03 173.86

2 11.15 13.15 12.07 519.68

3 16.16 26.41 26.1 1124.09

4 20.6 45.18 44.79 1928.87

5 27.24 76.8 76.36 3288.05

6 37.13 123.8 123.25 5306.65

1

0.11 0.5

6.4 1.85 1.82 314.82

2 12.26 4.36 4.31 742.19

3 17.29 8.5 8.36 1440.41

4 21.32 13.58 13.38 2305.56

5 26.87 22.1 21.93 3777.44

6 31.51 30.27 30.04 5174.88

7 36.49 39.45 39.15 6744.14

8 41.75 50.17 49.62 8545.88
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Table 6.3: Reduced heat transfer data for all experiments.

Run No. δ η Ra× 10−7 Nu URa (%) UNu (%)

1

0.44 0.5

0.54 2.22 16.01 16.91

2 1.36 3.32 8.82 7.87

3 2.06 5.17 7.44 6.04

4 3.07 8.18 6.63 4.99

5 4.83 11.12 6.07 4.27

6 5.93 11.89 5.9 4.03

7 8.05 14.54 5.73 3.8

1

0.44 0.5

0.6 2.01 14.69 15.69

2 1.59 3.4 8.3 7.23

3 2.26 5.11 7.27 5.84

4 3.38 8.49 6.48 4.79

5 4.62 10.96 6.13 4.34

6 6.34 13.1 5.72 3.78

7 8.23 15.04 5.86 3.99

1

0.44 0.5

0.7 1.79 13.75 14.96

2 1.43 2.89 8.76 7.93

3 2.35 4.29 7.19 5.78

4 3.35 5.74 6.53 4.9

5 5.42 7.31 6.02 4.23

6 8.67 8.57 5.71 3.77

1

0.44 0.5

0.72 3.12 13.11 20.52

2 1.55 3.82 8.3 9.85

3 2.42 5.24 7.01 6.5

4 3.24 6.75 6.48 5.27

5 4.57 8.67 6.07 4.46

6 5.76 10.06 5.87 4.1

7 7.51 11.26 5.73 3.86

8 9.46 12.44 5.63 3.26
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Figure 6.6: Nusselt-versus-Rayleigh number relation for η = 0.5, δ = 0.44. Error bars
indicate the total uncertainties.
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Figure 6.7: Nusselt-versus-Rayleigh number relation for η = 0.67, δ = 0.44. Error bars
indicate the total uncertainties.
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Figure 6.8: Nusselt-versus-Rayleigh number relation for η = 0.75, δ = 0.44. Error bars
indicate the total uncertainties.
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Figure 6.9: Nusselt-versus-Rayleigh number relation for η = 0.5, δ = 0.11. Error bars
indicate the total uncertainties.
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Figure 6.10: Effect of height ratio, η, on the overall Nusselt-versus-Rayleigh number rela-
tions (δ = 0.5).
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Figure 6.11: Effect of heater length ratio, δ, on the overall Nusselt-versus-Rayleigh number
relations (η = 0.5).
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Table 6.4: Curve fit parameters for all the experiments.

Experimental parameters Curve-fit equations R2

δ = 0.44, η = 0.5 Nu =
(
2× 10−5

)
×Ra0.7843 0.9779

δ = 0.44, η = 0.67 Nu =
(
4× 10−6

)
×Ra0.8277 0.9784

δ = 0.44, η = 0.75 Nu =
(
7× 10−5

)
×Ra0.6464 0.9833

δ = 0.11, η = 0.5 Nu =
(
2.5× 10−4

)
×Ra0.5911 0.9749

numbers, while at lower values of Ra the two data sets overlap. As mentioned earlier, the

most likely due the higher uncertainties in the overall heat transfer rates. It must also be

borne in mind that this comparison is not a direct comparison of the actual Nusselt number

data but rather of the best-fit curves. Inspection of the actual Nusselt and Rayleigh number

data listed in Table 6.3 will show that the Nusselt number for δ = 0.11 is slightly higher

than that for δ = 0.11 even at the lower Rayleigh numbers.

6.2.3 Temperature profiles

In the present set of experiments, temperature profiles are measured along the hor-

izontal mid-plane of the convection cell in both the longitudinal (along the length of the

heater) and the transverse directions (perpendicular to the heater direction). Figures 6.9

(a) shows the dimensionless temperature profiles for η = 0.67 and δ = 0.44 at three dif-

ferent Rayleigh numbers. In order to illustrate the salient features of the temperature

distribution, only a single set of measurements are discussed here. As can be seen, the

transverse temperature profiles show a distinct plume like flow along the centerline of the

convection cell above the heater surface. With increasing Ra, the thermal plume becomes

more pronounced. Even though the aspect ratio is 6, a single plume is seen present only

above the heater zone. This is in excellent agreement with the predictions of the numerical

simulations. The most important aspect of the transverse temperature profile, however,

is the vertical location of the thermal plume within the composite domain. Because the

thermocouples are located at the horizontal mid-plane of the cavity and because η = 0.67,

the thermocouples are actually embedded within the porous layer below the fluid-porous

layer interface. The presence of a plume-like flow inside the porous layer is direct evidence

that convective motion is present inside the porous layer. This is direct confirmation of

penetrative convection within the porous layer and is in agreement with the predictions

of the numerical simulations. It also shows that the flow inside the porous layer is not

conduction dominated. These will be discussed in further detail in the next chapter when

the results of the numerical simulations are compared with the present experimental data.
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Figure 6.12: Non-dimensional temperature profiles along the length of the convection cell
and along the horizontal mid-plane at three different Ra values. The position
of the heater is also shown on the x-axis.
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Figure 6.13: Non-dimensional temperature profiles along the depth of the convection cell
and along the horizontal mid-plane at three different Ra values.
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The longitudinal temperature profiles shown in Figure 6.9(b), however, show a com-

plex flow pattern. Interestingly, the temperature field changes with increasing Rayleigh

number. For Ra = 1.6× 107, a single well developed thermal plume and another partially

developed thermal plume are seen. At Ra = 3.39 × 107, however, only a single plume can

be seen. Further increase in Ra creates two well developed thermal plumes. This shows

that the flow pattern changes and evolves with the Rayleigh number. It also reveals a

flow structure that is highly asymmetric and three dimensional. These observations are in

agreement with the experimental observations of Chen and Chen [14].

6.3 Conclusions

The experimental results from the present study have revealed several important

features of convection heat transfer in fluid-superposed porous layers. These are:

• Heat transfer rates for all experiments are found to obey a power-law correlation,

similar to observations made for different derivatives of the Rayleigh-Bénard problem.

• Results show that the overall heat transfer rates decrease with increase in the porous-

to-total height ratio η. This is in agreement with results of the numerical simulations

as well as literature results on convection in fluid-superposed porous layers heated

uniformly from below.

• The overall heat transfer rates are found to decrease with increase in the heater length

ratio, δ, as predicted by the numerical simulations.

• The temperature fields along the mid-plane of the cavity reveal that a plume like flow

exists in the porous layer indicating the presence of penetrative convection and show-

ing that heat transfer through the porous layer in not simply conduction-dominated.

• Finally it is seen that that flow patterns are highly asymmetric due to the three-

dimensional nature of the convective motion.

148



Chapter 7

Conclusions

In this chapter, the final conclusions of the thesis are presented along with recommendations

for future work. The chapter begins with a comparison of the numerical and experimental

results. Thereafter, the discrepancy between the numerical predictions and empirical mea-

surements is discussed in detail. Because the primary aim of the experiments is to validate

the numerical model presented, the discussion focuses on the validity of the one-domain for-

mulation. Numerical results available in the literature are compared and the discrepancies

among different modeling approaches are commented upon. Thereafter, the importance of

the present study in the context of the overall problem of convection in composite fluid-

porous systems is discussed. Finally, the limitations of the present study are pointed out

and recommendations are made for future work in this field.

7.1 Comparison of numerical and experimental results

In order to accurately compare the results of the numerical and the experimental

studies, a new set of simulations is performed using the independent controlling parameters

of the experiments. These parameters are: A = 6, Da = 4.04 × 10−6, φ = 0.36, δ =

0.44, λ = 1, F = 0.52, σ = 0.5, η = 0.5, 0.75. Figures 7.1 and 7.2, and Table 7.1

show a comparison of the numerical and experimental results. For both η = 0.5 and η =

0.75, the difference between the numerical predictions and experimental measurements is

significant in the Rayleigh number range where the two data sets overlap. This mismatch

is more pronounced for η = 0.5 that for η = 0.75. However, in both cases, the percentage

difference between the numerical and experimental data is ≥ 60 %. It can also be seen

that the slope of the experimental data fit line is much higher than that of the numerical

data. This mismatch causes the experimental fit line to meet the extrapolated numerical

data fit line at higher Rayleigh numbers. This would seem to indicate that the numerical

simulations agree with experimental results in the high Rayleigh number range (∼ 4×107).
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Figure 7.1: Comparison of numerical and experimental data for δ = 0.44, η = 0.5.
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Figure 7.2: Comparison of numerical and experimental data for δ = 0.44, η = 0.75.
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Table 7.1: Comparison of experimental and numerical results.

Height Ratio, η Ra Nu (Experimental) Nu (Simulation) % Error

0.5
5.47× 106 2.219 7.52 70.5

7.5× 106 2.79 7.86 64.5

0.75 7.45× 106 1.789 4.45 59.82

However, because no simulations have been at such high Rayleigh numbers, this conclusion

cannot be made with any degree of certainty. Also, the fundamentally different nature of

the two curves indicates that there is a more fundamental underlying discrepancy between

the numerical and experimental results. This discrepancy is also seen for the other two sets

of experiments performed.

The observed discrepancy between the numerical and experimental results indicates

that this mismatch cannot be simply attributed to factors such as the uncertainty in the

experimental results or the grid convergence of the numerical solution. To confirm this fact,

experiments for η = 0.5 were carefully repeated twice. Also, simulations at a few Rayleigh

numbers were run with finer grids and more stringent convergence criterion. However, no

significant change in the overall nature of both the data sets was seen. Also, because both

the computer code and the experimental setup were verified by comparison with literature

results for well established test cases (Rayleigh-Bénard and Horton-Rogers-Lapwood prob-

lems), the observed difference cannot simply be attributed errors in post-processing of the

data. It can therefore be concluded that the observed difference points to a discrepancy that

is more fundamental in nature. To investigate the cause behind the observed differences,

attention is focused on two fundamental aspects of the problem: i) problem definition and

setup, and ii) mathematical formulation.

7.1.1 Discrepancies due to differences in boundary conditions

The first reason for the observed discrepancy between the numerical predictions and

experimental results may be due to the differences in the boundary conditions for the two

studies. In particular, attention needs to be focused on the boundary conditions along the

lower surface. It may be recalled that the fundamental problem explored via the numerical

simulations is that of two-dimensional natural convection in a fluid-superposed porous layer

with a localized isothermal heat source at the base. The experiments on the other hand

are conducted in a three-dimensional enclosure with a strip heater supplying a constant

heat flux to the porous layer. The boundary conditions at the heater surface are, therefore,

different for the two problems. This was noted in Chapter 5 while discussing the design of
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Table 7.2: Temperature distribution on the heater surface for η = 0.75, δ = 0.44.

Run No. TH,avg S.D. (%) TC,avg S.D. (%)

1 29.57 4.28 23.53 0.24

2 33.98 9.99 22.83 0.38

3 39.11 13.08 22.94 0.61

4 43.84 13.66 23.23 0.90

5 52.28 13.37 25.04 1.08

6 61.79 14.3 24.65 1.61

the experimental setup. The difference in boundary conditions can be better understood

by comparing the temperature distributions at the heater and top surfaces for a single

experiment (δ = 0.44, η = 0.5), as shown in Table 7.2. It can be seen that while a near

isothermal condition exists at the top plate, the same is not true for the heater surface.

For most runs, the percentage standard deviation (S.D.) of the heater surface temperature

is greater than 10%. The large variation in temperature across the heater,which is in part

responsible for the high uncertainties in Nu and Ra, indicates that a direct comparison to

the numerical data is not appropriate.

Another point of discrepancy lies in the boundary conditions at the base outside

the heater area. The formulation for the numerical solution assumes that base area outside

the heated region is adiabatic. This condition is however not replicated in the experimental

setup. As seen in the previous chapter, a numerical solution of the conduction problem in

the base plate shows that there is a small amount of heat flow from the area outside the

strip heater into the porous layer. Although this heat flow is a very small fraction of the

total energy supplied by the heaters, it nevertheless causes a part of the area outside the

strip heater to be non-adiabatic.

The differences in the boundary conditions mentioned above indicate that a certain

amount of difference between the numerical and experimental results can be expected.

However, it is worthwhile to investigate whether all of the observed discrepancy occurs

solely because of this reason. As there are no published studies on convection in fluid-

superposed porous layers with a constant heat flux boundary condition at the base, a direct

estimation of the effect of the boundary conditions on the Nusselt and Rayleigh numbers

is not possible. There are, however, several studies on natural convection in porous layers

with localized isothermal and constant flux heat sources at the base. Because the porous

layer convection problem is a special case of the present problem for η = 1, results from
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these studies can be used to understand the effect of the boundary conditions on the overall

heat transfer coefficients.

A comparison between the numerical results of Prasad and Kulacki [58] with the

numerical and experimental results of Rajen and Kulacki [60] is chosen to investigate the

effects of the boundary conditions. The simulations of Prasad and Kulacki are performed

with the following parameters: A = 10, δ = 0.5, centrally positioned isothermal heater.

The numerical and experimental results of Rajen and Kulacki use the following parameters:

A = 9.6, δ = 0.5, centrally positioned constant flux heater. Except for the boundary

condition at the heater surface, the two studies have near-identical problem formulations

and boundary conditions and are ideally suited for comparison. It must be noted that

Prasad and Kulacki define the Rayleigh number, Ram, based on the temperature difference

across the heated and cooled surfaces. On the other hand, Rajen and Kulacki use a flux

based definition for the Rayleigh number Ra∗m. The two Rayleigh numbers are related as,

Ra∗m = Ram ×Num, (7.1)

where Num is the Nusselt number based on the stagnant conductivity of the porous layer.

Using equation (7.1), the Num-versus-Ra∗m data of Rajen and Kulacki [58] is converted to

Num-versus-Ram data for comparison. This is similar to the experimental data reduction

procedure adopted in the present study where the temperature based Rayleigh number, Ra,

is used for a constant flux heater.

Comparison of the data for the above studies is shown in Figure 7.3. The differences

in the two sets of data are readily apparent. This confirms the fact that heat transfer

coefficients change with a change in the boundary conditions. However, several interesting

facts can be observed from Figure 7.3. First, even though the two sets of data are different,

the Num-versus-Ram curves have almost identical overall character although the slope of

the curve for the constant heat flux data is higher. In addition, for a given Ram, the value

of Num is higher for the constant heat flux boundary condition data. If these observations

are extrapolated to the present problem, one would expect to see: a) identical characters

for the numerical and experimental Nu-versus-Ra curves, and b) experimental data over-

predicting Nu over the entire range of Ra. It can be immediately seen that none of these

characteristics are observed for the present data. Based on this it can be concluded the

observed discrepancy between the numerical and experimental results of the present study

cannot be attributed to the differences in boundary conditions for the two studies. The

only effect that the boundary conditions may have is to make the Nu-versus-Ra curve for

the experimental data to be steeper than the curve for the numerical data.
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Figure 7.3: Comparison of the numerical and experimental results of Prasad and Kulacki
[58], and Rajen and Kulacki [60].

7.1.2 Effect of the mathematical model

The other possible source of discrepancy between the simulation and experimental

data may lie in the mathematical formulation of the problem for the numerical solution.

In particular, attention must be focused on the one-domain formulation that is adopted in

the present study. It may well be that the limitations of this particular formulation are

responsible for the observed lack of agreement with the experimental results. If this is the

case, it is vital that these limitations be identified so that suitable corrections can be made.

In order to further explore this issue, it is important to first understand the validity

and accuracy of the one-domain formulation. An extensive review of the literature reveals

that there has been no thorough experimental validation of the one-domain formulation for

the present problem. The only reported comparison of simulations using this formulation

to experimental data has been reported by Kim and Choi [23]. The authors determined

the critical wave number for different height ratios and found good agreement with the

experimental data of Chen and Chen [10]. They also determined the Nusselt numbers for

Rayleigh number up to two times the critical value at η = 0.91 and found good agreement

with Chen and Chen’s [10] results. However, they did not validate their numerical solution

at Rayleigh number much higher than the critical point. Because of this, it is quite possible
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Figure 7.4: Comparison of simulations results for δ = 1 and η = 0.5, 0.8 with the experi-
mental results of Prasad and Tian [24].

that the model may have some deficiencies, especially in the high Rayleigh number range

where its validity is yet to be demonstrated. To explore this possibility, simulations are

performed with the present code for the case of convection with a uniformly heated base

and the results are compared with the experimental results of Prasad and Tian [24]. The

parameters used in the simulations are: A = 2, Da = 3.71 × 10−6, φ = 0.396, λ =

6.8, P r = 8835, F = 0.56, σ = 0.7, η = 0.5, 0.8. These parameters are suitable for a

randomly packed layer of 6 mm DIA glass beads saturated with Dow Corning 200 Silicone

oil and are selected to facilitate direct comparison with Prasad and Tian’s [24] data.

Comparison of the results of the simulations with the data of Prasad and Tian [24]

is shown in Figure 7.4 and Table 7.3. The marked discrepancy between the two sets of

data is clearly apparent. Although Prasad and Tian [24] do not provide information on the

uncertainties in their measurements, it can be safely said that such a large disagreement

cannot be simply due to the uncertainties. From Table 7.3 it can be seen that the difference

between the simulation and experimental data is higher for η = 0.5 than for η = 0.8. This

is identical to what is observed for the present experimental measurements. It can therefore

be said that the discrepancy between the theoretical and experimental results is highest at

intermediate height ratios (η ∼ 0.5). The likely reason for this is that the simulation results
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Table 7.3: Comparison of numerical simulations with data of Prasad and Tian [24].

η = 0.53 η = 0.78

Ra Nu (Sim.) Nu (Expt.) % Diff. Nu (Sim.) Nu (Expt.) % Diff.

1 × 106 8.08 3.11 61.42 4.51 2.45 45.60

1.5 × 106 8.67 3.27 62.25 4.81 2.60 45.95

2.5 × 106 9.48 3.48 63.21 5.17 2.80 45.86

3.5 × 106 10.04 3.63 63.81 5.41 2.94 45.62

5 × 106 10.66 3.79 64.42 5.64 3.09 45.06

agree with experimental data for the special case of η = 1. As such, the gap between the

numerical and experimental results shrink as this limiting value is approached.

The comparison with the data of Prasad and Tian [24] seems to indicate that the

present implementation of the one-domain model gives physically unrealistic data in the

high Rayleigh number range. It may be recalled from Chapter 4 that simulation data

obtained with the present code was compared to the numerical results of Poulikakos [21]

and excellent agreement was obtained. However, because Poulikakos [21] too used a one-

domain formulation it can be concluded that the problem may not lie in the implementation

of the model in the computer code. To get a better idea of the influence of the effect of

the modeling on the heat transfer results, results from all numerical studies available in

the literature are compared with the present simulation results for δ = 1. This is shown

in Figure 7.5. The parameters used in each of the compared studies are listed in Table

7.4. It can be seen that the simulation parameters used in all the studies are more or less

identical. The only parameters that differ somewhat among all studies are the aspect ratio,

A, and the Darcy number, Da. However, as seen in Chapter 4, these parameters do not

significantly affect the overall heat transfer rates. As such, the comparison can give a good

idea of the effect of the modeling approach. It must be noted that three difference modeling

approaches are compared here: i) the two-domain approach which uses Darcy’s law in the

porous layer and the Beavers-Joseph slip boundary condition [64] at the interface [20], ii)

a two-domain formulation which uses Brinkman’s extension to Darcy’s law in the porous

layer and the continuity of shear stress and tangential velocity at the interface [22], and iii)

a one-domain formulation which does not involve any explicit specification of the interfacial

boundary conditions [21,23].

A quick glance at Figure 7.5 shows how the particular modeling approach drastically

affects the overall Nu-versus-Ra relation. In particular, it can be seen how different results
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Table 7.4: Parameters used in the different numerical studies compared.

Parameter Poulikakos Poulikakos Chen and Kim and Present
et al. [20] [21] Chen [22] Choi [23] Study

A 2 2 Infinite 5 2

Da 10−6 10−4 2.2 × 10−6 2.2 × 10−6 10−6

η 0.5 0.5 0.5 0.5 0.5

Pr 7 7 6.26 6.26 7

λ 1 1 1.62 1.62 1

are obtained using the one-domain formulation. While, the present results show excellent

agreement with the results of Poulikakos [21], they differ significantly from those of Kim

and Choi [23] although all three studies use the one-domain formulation. This indicates

that the limitations of the one-domain model may lie not in the mathematical formulation

of the model but rather in its implementation for the numerical solution.

The most conclusive evidence for this hypothesis can be found in a series of recent

publications by Hirata and co-workers [17-19]. This fact was pointed out earlier in Chapter

2 but its significance can be best understood in the present context. To briefly recall the

earlier discussion, Hirata et al. [17] first published a study in which they investigated the

effect of the mathematical formulation of the problem on the prediction of the stability

criterion for the onset of convection. In particular, they compared three different modeling

approaches: The results of Hirata et al. [17] show that the modeling approach adopted

has a profound effect on the prediction the stability criterion. They found that while both

the two-domain formulations give almost identical marginal stability curves, the curves

obtained using the one-domain formulation are markedly different. The stability curves for

the one-domain formulation do not exhibit the signature bi-modal character that is unique

to the problem of convection in fluid-superposed porous layers. Also the critical Rayleigh

numbers predicted by the one-domain formulation differ from those predicted by the two-

domain approaches by 30-40 % at different height ratios. This is contrast to the findings of

Zhao and Chen [15] who too studied the stability problem using the one-domain formulation

and found that the stability curves show the expected bi-modal character. These findings

further point to the fact that the results obtained using the one-domain formulation strongly

depend on the particular solution technique adopted.

To further investigate the source of this discrepancy, Hirata et al. [19] re-examined

the same problem with a different approach to the numerical treatment of the interfacial con-

ditions. In their problem formulation, the authors incorporated the hypothesis proposed by
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Figure 7.5: Comparison of present results for δ = 1 with all published numerical studies.

Kataoka [71] that the average properties of the porous medium such as the porosity, perme-

ability, and effective diffusivity are Heaviside step functions and hence their differentiation

must be considered in the meaning of distributions. Using this approach they found that

the marginal stability curves for the one domain and two domain approaches were almost

identical and showed almost the same bimodal behavior irrespective of the depth ratio.

Based on their results the authors concluded that the one- and two-domain approaches are

identical provided that the one domain approach is properly interpreted mathematically,

i.e., in the meaning of distributions. Based on this evidence, it can be concluded that the

limitation of the one-domain formulation lies in its implementation in a numerical code.

This conclusion is further supported by the fact the mathematical formulation of the one-

domain model is identical to that of the two-domain model which assumes the continuity

of velocity, normal stress, shear stress, heat flux and temperature at the fluid-porous layer

interface. The model is different only in the sense that it does not involve the explicit

specification of the interfacial boundary conditions.

It can therefore be concluded special care must be taken while numerically imple-

menting the one-domain formulation. In particular, the discretization equations for the

interfacial control volumes must be treated separately so that the differentiations of the

Heaviside step functions are correctly performed. It must be mentioned here that approach
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adopted by Hirata et al. [19] must not be considered as an integral part of the one-domain

model. Other reported results obtained using the one-domain model obtain good agreement

with experimental results without using specific mathematical constructs [71]. Also, their

approach has not been verified by any subsequent study. Of special note is the fact that

their study has been restricted to the determination of the stability criterion. The extension

of this approach to the high Rayleigh number domain of the problem is still lacking. Most

importantly though, all existing studies devoted to the stability problem still rely on a single

set of experiments, performed by Chen and Chen [10], for validation. These experiments

were performed over twenty years ago and have not been replicated by other authors. There-

fore, at this point it cannot be conclusively said that the mathematical approach proposed

by Hirata et al. [19] can resolve the conundrum regarding the most accurate mathematical

model for the fluid-porous layer model. However it is an avenue that must be explored.

A question that must be answered at this point is why the one-domain model was

chosen considering the confusion that exists regarding its implementation. The reasoning

behind using the model is two-fold. First, the model is much simpler to use and implement

than other modeling approaches as a single set of governing equations can be used for the

entire domain and discretization equations for the boundary conditions do not have to be

separately derived. Secondly, from a physical perspective, the one-domain model is more

generic. It may be recalled that the crux of the model is that the porosity of the porous layer

acts as a switching parameter that allows the appropriate form of the governing equations

to be selected based on whether the solution domain lies in the fluid or porous layers. In

the present study the porosity is a binary parameter and can only assume the values zero

and unity. However, there is no restriction on the values that it can take. This allows

problems involving non-homogenous, fissured, and layered porous media to be handled

easily by simply assigning spatial or functional values to the porosity. This property makes

the one-domain formulation very powerful. When coupled with its ease of programming

and implementation, it can be easily seen why this technique is so attractive. That is the

reason why so much research has been recently devoted to reconcile this formulation with

existing two-domain models.

7.2 Contributions of the present study

The present study has been undertaken to study the phenomenon of natural con-

vection heat transfer in fluid-superposed porous layers heated locally from below. This

particular topic was primarily selected as it had not been explored previously. The objec-

tive at the beginning of the study was to make a fundamental contribution to the existing

literature so that a more complete picture of the dual porous-fluid could be obtained. The
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Table 7.5: Parameters used in the different experimental studies compared.

Study A Da Pr λ

Prasad et al. [24] 2 3.27 × 10−6 8835 6.81

Prasad et al. [25] 2 1.3 × 10−5 578 1.19

Prasad et al. [26] 2 8.2 × 10−5 8835 1

Chen and Chen [10] 6 2.2 × 10−6 6.26 1.62

Steven [68] 0.5 3.1× 10−6 6.26 1

Present Study 6 4.4 × 10−6 6.26 1

combination of numerical and experimental methods has led to the following contributions:

• This is the first study to report numerical and experimental results on convection in

fluid-superposed porous layers.

• This is the first study to report experiments with a constant heat flux boundary

condition.

• This study represents an important step in trying to validate numerical predictions in

the high Rayleigh number range through carefully designed experiments. Such valida-

tions of theoretical studies are virtually absent in the literature owing to the difficulty

in designing experiments which can measure heat transfer rates in the Rayleigh num-

ber range that is accessible to simulations.

• The numerical simulations have highlighted some of the challenges that arise when

implementing the one-domain formulation.

The contributions of the present study can be better understood by considering the

results in the overall context of the problem of convection in fluid-superposed porous layers.

As can be gathered from the discussion in the preceding section, the vast differences in

the predictions of different numerical studies highlight some of the challenges that exist in

accurately modeling this problem. Although numerical solutions of this problem were first

published over twenty five years ago, no accepted set of results are yet available for this

problem even for the case of a uniformly heated base. This is especially true for the high

Rayleigh number regime where lack of any experimental validation has made impossible to

verify the accuracy of any of the modeling approaches proposed.

Similarly experimental studies have focused on studying very small sections of the

entire convection heat transfer regime. This is best illustrated in Figure 7.6 which shows
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Figure 7.6: Comparison of present experimental results with all existing experiment studies.

a compilation of all experimental data published over the years. It can be readily seen

that the data are scattered over a wide range of Rayleigh numbers and do not conform to

any well defined pattern. This is in contrast to the similar Rayleigh-Bénard and Horton-

Rogers-Lapwood problems for which the experimental data follow a coherent pattern which

hints towards a fundamental underlying relation. Part of this can be attributed to the

complexity of the dual-layer problem because of the large number of independent controlling

parameters. However, part of the reason why the overall nature of the problem is not yet

well understood is that previous studies have focused on studying very specific aspects of

the problem. Taken in this context, the combined numerical-experimental approach that is

adopted in this thesis represents an important step towards fundamentally understanding

the problem over a large portion of the entire heat transfer regime. Also, this thesis has

studied a new subsection of the dual-layer problem by investigating the effects of localized

heat sources which are more relevant from an engineering perspective.

7.3 Recommendations for future work

The discussions in this chapter point to the fact that the problem of convection in

fluid-superposed porous layers is a challenging one. Many aspects of this problem are still to

be resolved and this problem remains an area of active investigation. Based on the results

of this thesis, the following recommendations are proposed:
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• The numerical results presented in the present study can be improved by modifying the

code to account for the discontinuity of properties at the interface. The approach of

using Heaviside step functions to model properties such as the porosity, permeability,

and thermal diffusivity proposed by Hirata et al [19]. should be incorporated in to

the model.

• Simulations presented in the study can be extended by using a constant heat flux

boundary condition at the heated surface instead of an isothermally heated central

section. This approach will allow direct comparison with experimental data.

• Experiments can be extended by studying the effects of independent parameters such

as the conductivity ratio, λ, Prandtl number, Pr and the aspect ratio.

• Experiments with highly porous and permeable media can be performed as these have

important practical applications. These experiments will also allow one to study the

effect of fluid inertia and possible transitions to turbulent flow regimes.

• An important extension of the experimental study is to perform flow visualization

experiments with extremely narrow porous layers. These experiments can reveal to

what extent, if at all, flow penetration from to the fluid to the porous layer takes

place.

• Finally, careful experiments are needed for determining the critical Rayleigh number

for the onset of convection. These experiments can confirm the findings of Chen and

Chen [10]. They can also be used to validate the different mathematical models as

several studies on the stability problem have already been published.
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Appendix A

Direct solver for the linear

equations

The basic form of the linear equations obtained be the discretization process is

MΘ = b, (A.1)

where Θ is either the vorticity, stream function or temperature. In this study, the direct

solution of equation (A.1) is performed using the up-looking Cholesky factorization tech-

nique. The primary advantage of this technique is that it is very efficient for vary large

sparse matrices. This method involves three primary steps: i) the selection of permutation

matrices, ii) matrix factorization, and iii) final solution using back-substitution. The imple-

mentation of the individual sub-routines is performed using algorithms distributed via the

open-source packages AMD [90], CHOLMOD [91] and BLAS [92]. The individual packages

are accessed using the MATLAB interface. The different packages used in the individual

steps are given in Table A1.

The general solution procedure is fairly straightforward and involves an up-looking

Cholesky factorization of the matrix M which gives

P ′ ·M · P = R′ ·R, (A.2)

where P is a suitably selected permutation matrix, R is an upper triangular matrix and

P ′ and R′ are the transposes of matrices P and R, respectively. This process is actually a

combination of the steps i) and ii) described above. Here, the permutation matrix, P , is

first selected by calling the AMD package

P = amd(M). (A.3)

The above algorithm returns the approximate minimum degree permutation vector for the

sparse matrix U = M + M ′, where M ′ is the transpose of matrix M . This process speeds
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Table A.1: Packages used in the different steps of the direct solution.

Solution Step Package Sub-routine

Permutation matrix selection AMD amd

Up-looking Cholesky factorization CHOLMOD chol

Back-substitution BLAS DTRSV, DTRSM

up the solution process as the Cholesky factorization of P ·M · P ′ is considerably sparser

than that of M itself. In the next step, the factorization is performed as

chol(P ′ ·M · P ) = R′ ·R. (A.4)

Once the factorization is complete, the solution is obtained by the back-substitution pro-

cesses,

Θ = P · (R\(R′\(P ′ · b))), (A.5)

where the backslash represents a back-substitution. The back-substitution is performed

using the sub-routines DTRSV and DTRSM of the BLAS package.
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Appendix B

Data Tables

Data from the numerical simulations and experiments are listed here. For the simulations,

the Nusselt number is given at different values of the Rayleigh number and the independent

controlling parameters. For experimental data, all measured quantities are listed. All data

are available on a CD-ROM from the author.

Table B.1: Numerical Nusselt-Rayleigh number data for different values of δ.

Ra δ = 1 δ = 0.5 δ = 0.25

1× 103 1 1.6688 2.5492

1.5× 103 1 1.6693 2.5501

2.5× 103 1 1.6713 2.5534

5× 103 1 1.6981 2.5825

7.5× 103 1.0065 1.8308 2.6585

1× 104 1.3242 2.1193 2.8646

1.5× 104 1.675 2.5786 3.3137

2.5× 104 2.0265 3.0681 3.8296

5× 104 2.4707 3.6985 4.4881

1× 105 2.9138 4.3302 5.1525

1.5× 105 3.1787 4.7052 5.553

2.5× 105 3.5233 5.187 6.0724

5× 105 4.0167 5.864 6.8064

1× 106 4.4995 6.5294 7.5335
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Table B.2: Numerical Nusselt-Rayleigh number data for different values of η.

Ra η = 0.25 η = 0.5 η = 0.75

1× 103 1.6795 1.6688 1.6684

1.5× 103 1.7305 1.6693 1.6684

2.5× 103 1.9375 1.6713 1.6684

3.5× 103 2.2003 - -

5× 103 2.6553 1.6981 1.6684

7.5× 103 3.1194 1.8308 -

1× 104 3.9054 2.1193 1.6684

1.5× 104 4.3688 2.5786 1.6685

2.5× 104 4.9631 3.0681 1.6688

5× 104 5.8076 3.6985 1.6711

1× 105 6.6954 4.3302 1.6982

1.5× 105 7.2274 4.7052 1.9898

2.5× 105 7.8985 5.187 2.4059

5× 105 8.7552 5.864 2.9579

1× 106 9.6391 6.5294 3.52

Table B.3: Numerical Nusselt-Rayleigh number data for different values of A.

Ra A = 2 A = 4 A = 6

1× 103 1.6688 1.4315 1.3023

1.5× 103 1.6693 1.433 1.3034

2.5× 103 1.6713 1.4381 1.3071

5× 103 1.6981 1.4763 1.3332

7.5× 103 1.8308 1.5626 1.45

1× 104 2.1193 1.8441 1.7249

1.5× 104 2.5786 2.3023 2.1389

2.5× 104 3.0681 2.8342 2.5675

5× 104 3.6985 3.5506 3.1259

1× 105 4.3302 4.1792 3.6679

1.5× 105 4.7052 4.5301 3.9689

2.5× 105 5.187 4.9674 4.303

5× 105 5.864 5.5437 5.1303

1× 106 6.5294 6.1809 5.6898
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Table B.4: Numerical Nusselt-Rayleigh number data for different values of Da.

Ra Da = 10−2 Da = 10−4 Da = 10−6

1× 102 1.6685 - -

2.5× 102 1.6688 - -

5× 102 1.6697 - -

7.5× 102 1.6713 - -

1× 103 1.674 1.6689 1.6688

1.5× 103 1.6855 1.6696 1.6693

2.5× 103 1.7988 1.6725 1.6713

3.5× 103 2.123 - -

5× 103 2.5695 1.7204 1.6981

7.5× 103 3.0433 2.0056 1.8308

1× 104 3.3523 2.2959 2.1193

1.5× 104 3.7649 2.7178 2.5786

2.5× 104 4.2738 3.2072 3.0681

5× 104 4.9871 3.855 3.6985

1× 105 5.7606 4.5277 4.3302

1.5× 105 6.2514 4.9444 4.7052

2.5× 105 6.918 5.5089 5.187

5× 105 7.9205 6.3523 5.864

1× 106 9.05 7.3862 6.5294
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Table B.5: Numerical Nusselt-Rayleigh number data for different values of λ.

Ra λ = 1 λ = 50 λ = 100

1× 103 1.6688 3.3011 3.4284

1.5× 103 1.6693 3.3013 3.4285

2.5× 103 1.6713 3.3022 3.4292

5× 103 1.6981 3.3151 3.4389

7.5× 103 1.8308 3.4913 3.5897

1× 104 2.1193 4.2054 4.3267

1.5× 104 2.5786 5.3623 5.529

2.5× 104 3.0681 6.6362 6.9038

5× 104 3.6985 8.2186 8.6373

1× 105 4.3302 9.7408 10.3184

1.5× 105 4.7052 10.6266 11.3004

2.5× 105 5.187 11.7567 12.5532

5× 105 5.864 13.3573 14.3257

1× 106 6.5294 14.9801 16.1335

Table B.6: Numerical Nusselt-Rayleigh number data for different values of Pr.

Ra Pr = 0.7 Pr = 7

1× 103 1.6688 1.6688

1.5× 103 1.6693 1.6693

2.5× 103 1.6713 1.6713

5× 103 1.6981 1.6981

7.5× 103 1.8959 1.8308

1× 104 2.1496 2.1193

1.5× 104 2.5672 2.5786

2.5× 104 3.0387 3.0681

5× 104 3.6333 3.6985

1× 105 4.2239 4.3302

1.5× 105 4.5726 4.7052

2.5× 105 5.0129 5.187

5× 105 5.6044 5.864

1× 106 6.1349 6.5294
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Table B.7: Measured experimental parameters for δ = 0.44 and η = 0.5.

Run No. TH,avg TC,avg TG,avg V VG

1 27.612 22.54 27.71 17.98 4.55

2 33.198 22.144 33.238 32.86 7.49

3 37.24 22.174 37.69 48.04 7.3

4 42.298 22.454 42.88 69.71 4.54

5 49.608 22.99 50.323 94.69 1.83

6 53.316 22.902 53.503 105.02 1.84

7 59.914 23.876 60.495 126.89 0.005

Table B.8: Measured experimental parameters for δ = 0.44 and η = 0.67.

Run No. TH,avg TC,avg TG,avg V VG

1 27.87 22.274 27.51 18.59 4.84

2 34.798 22.572 34.15 35.54 8.36

3 38.58 22.792 37.988 49.37 7.37

4 43.722 22.5 44.405 73.56 1.827

5 48.946 23.356 50.485 91.76 4.54

6 60.47 23.954 60.675 129.93 0.005

7 54.764 23.438 55.725 111.85 0.005

Table B.9: Measured experimental parameters for δ = 0.44 and η = 0.75.

Run No. TH,avg TC,avg TG,avg V VG

1 29.572 23.532 28.57 18.69 3.875

2 33.988 22.836 31.065 32.37 9.311

3 39.11 22.942 38.338 45.87 13.153

4 43.84 23.236 42.84 59.99 13.405

5 52.286 25.046 50.848 78.21 15.223

6 61.792 24.658 59.998 99.3 19.15
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Table B.10: Measured experimental parameters for δ = 0.11 and η = 0.5.

Run No. TH,avg TC,avg TG,avg V VG

1 29.572 23.532 28.57 18.69 3.875

2 33.988 22.836 31.065 32.37 9.311

3 39.11 22.942 38.338 45.87 13.153

4 43.84 23.236 42.84 59.99 13.405

5 52.286 25.046 50.848 78.21 15.223

6 61.792 24.658 59.998 99.3 19.15
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Appendix C

Thermophysical Properties

Thermophysical properties of all materials used in the experiments are listed here. All solid

properties listed are evaluated at 25 ◦C and their sources are listed in Table B1. Fluid

properties are evaluated at the mean temperature TM = (TH + TC)/2. All fluid properties

are obtained from the NIST Standard Reference Database [93].

Table C.1: Thermophysical properties of solid materials.

Material ρ (kg/m3) cp (J/kg K) k (W/m K) Source

Glass beads 2500 918.2 0.64 [94]

Polycarbonate 1200 1250 0.2 [94]

Polystyrene insulation 1050 1300 0.08 [94]

Table C.2: Properties of water for experiment with δ = 0.44 and η = 0.5.

Run No. TM (◦C) k (W/m K) ν (m2/s) α (m2/s) β (1/K)

1 25.08 0.61 8.911 × 10−7 1.457 × 10−7 2.580 × 10−4

2 27.67 0.61 8.416 × 10−7 1.469 × 10−7 2.820 × 10−4

3 29.71 0.62 8.057 × 10−7 1.478 × 10−7 3.010 × 10−4

4 32.38 0.62 7.625 × 10−7 1.489 × 10−7 3.240 × 10−4

5 36.3 0.63 7.056 × 10−7 1.506 × 10−7 3.560 × 10−4

6 38.11 0.63 6.817 × 10−7 1.513 × 10−7 3.710 × 10−4

7 41.9 0.63 6.358 × 10−7 1.528 × 10−7 4.000 × 10−4
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Table C.3: Properties of water for experiment with δ = 0.44 and η = 0.67.

Run No. TM (◦C) k (W/m K) ν (m2/s) α (m2/s) β (1/K)

1 25.07 0.61 8.913 × 10−7 1.457 × 10−7 2.580 × 10−4

2 28.69 0.61 8.233 × 10−7 1.473 × 10−7 2.920 × 10−4

3 30.69 0.62 7.894 × 10−7 1.482 × 10−7 3.090 × 10−4

4 33.11 0.62 7.513 × 10−7 1.492 × 10−7 3.300 × 10−4

5 36.15 0.63 7.076 × 10−7 1.505 × 10−7 3.550 × 10−4

6 42.21 0.63 6.322 × 10−7 1.529 × 10−7 4.020 × 10−4

7 39.1 0.63 6.691 × 10−7 1.517 × 10−7 3.790 × 10−4

Table C.4: Properties of water for experiment with δ = 0.44 and η = 0.75.

Run No. TM (◦C) k (W/m K) ν (m2/s) α (m2/s) β (1/K)

1 26.55 0.61 8.624 × 10−7 1.464 × 10−7 2.720 × 10−4

2 28.41 0.61 8.283 × 10−7 1.472 × 10−7 2.890 × 10−4

3 31.03 0.62 7.838 × 10−7 1.484 × 10−7 3.120 × 10−4

4 33.54 0.62 7.448 × 10−7 1.494 × 10−7 3.340 × 10−4

5 38.67 0.63 6.745 × 10−7 1.515 × 10−7 3.750 × 10−4

6 43.23 0.64 6.209 × 10−7 1.533 × 10−7 4.100 × 10−4

Table C.5: Properties of water for experiment with δ = 0.11 and η = 0.5.

Run No. TM (◦C) k (W/m K) ν (m2/s) α (m2/s) β (1/K)

1 25.84 0.61 8.761 × 10−7 1.460 × 10−7 2.650 × 10−4

2 28.06 0.61 8.345 × 10−7 1.470 × 10−7 2.860 × 10−4

3 30.16 0.62 7.982 × 10−7 1.480 × 10−7 3.050 × 10−4

4 31.98 0.62 7.688 × 10−7 1.488 × 10−7 3.210 × 10−4

5 34.61 0.62 7.292 × 10−7 1.499 × 10−7 3.430 × 10−4

6 37.01 0.63 6.962 × 10−7 1.543 × 10−7 3.620 × 10−4

7 39.55 0.63 6.636 × 10−7 1.519 × 10−7 3.820 × 10−4

8 42.35 0.63 6.307 × 10−7 1.530 × 10−7 4.030 × 10−4
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Appendix D

Uncertainty Analysis

The uncertainty analysis presented here is based on Topping [95]. The two primary quanti-

ties that need to be evaluated are the experimental uncertainties in the Nusselt and Rayleigh

numbers.

D.1 Uncertainty in Nusselt number

Recalling the definition of the Nu given in equation (6.1), the uncertainty in Nu

using the method of least squares is,

U2
Nu =

(
∂Nu

∂qnet
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)2

+

(
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. (D.1)

The relative uncertainty in Nu is therefore,(
UNu
Nu

)2

=

(
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+
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. (D.2)
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D.2 Uncertainty in Rayleigh number

Using the definition of Ra given in equation (D.2), the least square uncertainty in

Ra is,

U2
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Therefore the relative uncertainty in Ra is,(
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=
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D.3 Uncertainty in thermophysical constants

The uncertainty of the thermophysical constants is based on standard deviation of

the polynomial equations used to calculate the value of the thermal expansion coefficient,

β, density, ρ, specific heat, cp, thermal conductivity, k, and dynamic viscosity, µ. These

uncertainty values are obtained from the data tables used to obtain the thermophysical

data for water [93]. The uncertainties in the aforementioned quantities are:

• Uβ = 7.766× 10−6 1/K.

• Uµ = 1.186× 10−5 kg/m s.

• Uρ = 0.2797 kg/m3.

• Ukf
= 0.0041 W/m K.

• Ucp = 0.9144 J/kg K.

The relative uncertainties in the derived thermophysical properties, namely the thermal

diffusivity, α (kf/cp), and the kinematic viscosity, ν (µ/ρ), are,

(
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, (D.5)
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. (D.6)
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D.4 Uncertainty in length and area measurements

In the present study, the uncertainty in all length and height measurements is as-

sumed to be 1 mm. The relative uncertainty in the measurement of the heater area is,

(
UAtot

Atot

)2

=

(
ULH

LH

)2

+

(
UWH

WH

)2

. (D.7)

D.5 Uncertainty in thermocouple measurements

The uncertainty in a thermocouple measurement is equal to the bias error of the

measurements. The thermocouples used in these experiments are of the special limits of

error grade which have reported uncertainty of ±1.2 ◦C for type E thermocouples and

±1.7 ◦C for type J thermocouples.

D.6 Uncertainty in ∆T

The least square uncertainty in ∆T is given as,

U2
∆T =

(
UTH,avg

)2
+
(
UTC,avg

)2
, (D.8)

where UTH,avg
and UTC,avg

are the uncertainties in the average temperatures at the heater

and top surfaces respectively and are

(
UTH,avg

)2
=
U2
T

nH
, (D.9)

(
UTC,avg

)2
=
U2
T

nC
, (D.10)

Here UT is the uncertainty in a single thermocouple measurement and nH and nC are the

number of thermocouples on the heater and top surface respectively.

D.7 Uncertainty in qnet

The least square uncertainty in qnet is,

U2
qnet

= U2
q + U2

qside
+ U2

qlb
. (D.11)

First, the uncertainty in the main heater power needs to be calculated. Recalling the

definition of the heater power,
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q =
V 2

Reff
, (D.12)

the uncertainty in the main heater power can be written,
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Voltage measurement in the present study are made with the Agilent 3907A digital mul-

tiplexer which according to its manual has an uncertainty of ± 0.6% for AC voltage mea-

surements. This is the assumed value of relative uncertainty in voltage measurements. The

relative uncertainty in the effective heater resistance is,
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The main heater resistances are measured with Radioshack 46-Range Digital Multimeter.

According to its owner’s manual, the multimeter reads resistances with an accuracy of

±0.4%. This is the assumed value of the relative uncertainty of resistance measurements.

To calculate the uncertainties in the side wall and base heat losses, the definitions

of qside and qlb given in equations (D.7) and (D.8) are used. Based on these definitions,

U2
qside

= 8×
(
UT
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)2

, (D.15)

U2
qlb

=

(
Atotkbase
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)2 (
U2
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+ U2
TG,avg

)
, (D.16)

where UTG,avg
is the uncertainty in average guard heater temperature.
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