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Ranging and Positioning in Wireless Sensor Networks

ABSTRACT

Ranging and positioning in wireless sensor networks refers to the ability to determine the posi-

tions of all nodes in a sensor network using the known positions of a few nodes called reference

nodes and pairwise distance or range estimates between neighboring nodes. This is also known as

the sensor network localization problem. In this thesis we first present two time-of-arrival based

localization algorithms for indoor quasi-static environments based on statistical modeling of the

ultra-wideband multipath channel. A model of the multipath channel in the form of the signal

return and noise characterization is derived, and utilized to distinguish signal components from

noise. The first localization algorithm uses multiple (ranging) signal receptions at each reference

node, to differentiate between line-of-sight and non-line-of-sight components, and to accurately

estimate the position of the line-of-sight component in the received multipath signal. The location

is estimated through a mathematical programming problem formulation. The second localization

algorithm employs a time-of-arrival based algorithm to obtain pseudo range estimates which are

then used in a spatial domain quasi-maximum likelihood method for location estimation. Using

a synthesized bandwidth of 2 GHz, a 4-bit analog-to-digital converter and with 5-10 dB signal-

to-noise ratio, location estimation with close to sub-meter accuracy is achieved. Furthermore, the

associated range estimation error does not increase with increase in the transmitter-receiver range.

We next present a distributed solution of the sensor network localization problem based on

second-order cone programming relaxation. This algorithm is independent of the ranging technique

being used and is computationally more efficient than most contemporary approaches, and scalable

to networks with thousands of nodes. We show that the nodes can estimate their positions based on

local information. Unlike previous approaches, we also consider the effect of inaccurate reference

node positions. In the presence of reference node position errors, the localization is performed

in three steps. First, the unlocalized nodes estimate their positions using information from their

neighbors. In the second step, the reference nodes refine their positions using relative distance

information exchanged with their neighbors and finally, the previously unlocalized nodes refine their

position estimates. We demonstrate the convergence of the algorithm numerically. The simulation
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results, shown for both uniform and irregular network topologies, illustrate the robustness of the

algorithm to reference node position and distance estimation errors.

We also present the prototype implementation of a directional beacon based positioning al-

gorithm using radio frequency signals. This algorithm allows each unlocalized node to compute

its position with respect to a set of reference nodes which are equipped with rotating directional

antenna. The directional beacon based algorithm eliminates the need for strict synchronization

between the reference nodes and the unlocalized node. In contrast to time-of-arrival based po-

sitioning algorithms that rely on signal propagation time and bandwidth, the directional beacon

based algorithm depends on the width of the antenna beampattern and the rotational speed of the

directional antenna. We will show that these parameters can be optimized in a low cost solution

while providing good position estimates. The system implementation is based on the GNU Radio

software platform and the Universal Software Radio Peripheral as the hardware component. To

deal with obstructed line-of-sight scenarios, we do not rely purely on the received signal strength

and instead formulate a least squares problem to estimate the line-of-sight component in a mul-

tipath environment. These signal processing techniques yield a more accurate estimation of the

bearing of the unlocalized node with respect to each of the reference nodes. We demonstrate the

ability to obtain unlocalized node position estimates with sub-meter accuracy by transmitting a

narrowband signal of 1 KHz bandwidth in the 2.4 GHz band.

Finally, event detection scenarios in sensor networks are considered. The goal in these network

deployments is to detect certain critical or emergency conditions with minimum possible delay. We

propose a heuristic based sensor selection and a sequential detection procedure that significantly

improves the detection speed, measured in terms of the number of measurements needed for detec-

tion. In the proposed model, the fusion center selects one sensor at a time for measurement while

maximizing a greedy heuristic. Instead of collecting a fixed number of measurements, the fusion

center collects one measurement at each time step, until by some sequential decision rule the col-

lection stops and a decision is made. The sequential detection procedure significantly outperforms

a non-sequential (or fixed sample size) detector in that it always needs fewer measurements on

average to achieve the same detection performance. In addition, we derive a simplified heuristic

under the Gaussian probabilistic model. It is seen that the simplified heuristic performs as good as

or slightly better than the greedy heuristic. The greedy heuristic based sensor selection provides a

general framework for probabilistic models where a simplified heuristic is difficult to obtain.
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Chapter 1

Introduction

Advances in low-power circuit design, simple yet reasonably efficient wireless communication equip-

ment, reduced manufacturing costs and relative ease of deployment has made wireless communi-

cation technology ubiquitous. Ranging and location awareness are desirable features in a wireless

network, with applications in asset tracking, locating people in emergency situations and robotics.

Ranging refers to the ability to determine the distance between two neighboring nodes and location

awareness refers to the knowledge of a nodes’ position.

Recent years have also seen wireless sensor networks become extremely popular with the large-

scale deployment of these networks with thousands of sensor nodes [3]. These networks typically

combine wireless communication components, minimal computation capabilities and some sens-

ing of the physical environment into a network that can be deeply embedded into the physical

environment. All these components together in a single device form a sensor node. Some of the

application areas for sensor networks are industrial automation (process control), military (real-

time monitoring of troop movements), utilities (automated meter reading), building control and

environmental monitoring [4].

1.1 Motivation

Sensor nodes measure some physical quantity(s) at a given position. In most applications, the data

reported by the sensors is relevant only if tagged with the accurate location of the sensor nodes.

Thus knowledge of the node positions becomes imperative. Using nodes equipped with Global
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Positioning System (GPS) is a costly option. The location awareness feature is also emphasized

in the IEEE 802.15.4a wireless personal area networks [5]. The principle interest of this standard

is to provide communications and high precision ranging/location capability with 1 m accuracy

or better. Position location in wireless personal area networks (WPANs) has found a number of

applications ranging from commercial and residential (tracking people in assisted-living places and

assets in a manufacturing facility) to public safety and military (tracking fire fighters and soldiers

during their missions) [6].

The sensor network localization problem can be stated as follows. Assuming knowledge of

the positions of some nodes and some pairwise distance measurements, determine the position

of all nodes in the network. We will refer to nodes whose positions are known a priori as the

reference nodes (RN) and nodes whose positions are unknown as the unlocalized nodes (UN). The

sensor network localization problem typically consists of two main sub-problems: (i) the ranging

sub-problem, to determine the distance (or range) between two neighboring nodes and (ii) the

positioning sub-problem, to determine the position or location of the nodes given some pairwise

distances.

This thesis examines several problems related to positioning in wireless networks with specific

focus on wireless sensor networks. In Chapter 3 we present localization algorithms based on statis-

tical modeling of the ultra-wideband physical layer channel. In Chapter 4 we present a distributed

solution of the positioning sub-problem. This algorithm, based on second-order cone programming

relaxation, is independent of the ranging technique used to obtain the pairwise distances. Chapter

5 presents the prototype implementation of a directional beacon-based positioning algorithm and

signal processing solutions for the analysis of the experimental data. In Chapter 6 we focus on the

problem of selecting sensors for measurement in event detection scenarios so as to achieve faster

detection while meeting certain performance criterion.

1.2 Contributions and Thesis Organization

1.2.1 Localization Algorithms for UWB Multipath Environments

The use of ultra-wideband (UWB) communications at the physical layer of wireless systems allows

for very precise ranging due to the high time resolution of UWB signals. In indoor environments

the presence of reflectors and obstructions between the transmitter and receiver results in multiple
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copies of the transmitted signal being received at the receiver. This phenomenon is known as

multipath propagation. The high time resolution of UWB signals aids in mitigating the effect

of multipath propagation. The signal received following the direct path from the transmitter to

the receiver is referred to as the line-of-sight (LOS) component. The signals received following

reflection, scattering etc are referred to as the non-line-of-sight (NLOS) components.

In Chapter 3 we present two time-of-arrival (TOA) based localization algorithms for indoor

quasi-static environments based on statistical modeling of the ultra-wideband multipath channel.

A statistical model of the multipath channel in the form of the signal return and noise charac-

terization is derived. The first algorithm uses multiple (ranging) signal receptions to distinguish

signal components (LOS/NLOS) from noise and accurately estimate the LOS component. The

second algorithm fuses the range and position estimation phases in such a way that the geometric

relationship between the TOAs aids in the range estimation as well. Using a bandwidth of 2 GHz,

a 4-bit analog-to-digital converter and with 5-10 dB signal-to-noise ratio, location estimation with

close to sub-meter accuracy is achieved. It will also be shown that the associated range estimation

error does not increase with increase in the transmitter-receiver range [7, 8, 9].

1.2.2 Distributed Sensor Network Localization using SOCP Relaxation

In Chapter 4 we focus on the positioning sub-problem. The distance measurements between

neighboring nodes can be obtained via time of arrival (TOA) [10, 11], time difference of ar-

rival (TDOA) [12], angle of arrival (AOA) [13], received signal strength (RSS) [14] or other

techniques [15, 16]. However due to the resource constraints on the sensor nodes the distance

measurements are inaccurate or noisy. In addition, the reference node positions may be inaccurate

even when determined with the use of GPS or other techniques. Most approaches in the literature

do not account for inaccuracies in the reference node positions. The computational efficiency and

scalability of the algorithms are important considerations in addition to the localization accuracy.

A number of methods, based on minimizing some global error function, have been explored to ac-

count for the measurement uncertainties. It is observed that the computational complexity varies

based on the optimization model chosen.

We present a distributed algorithm, based on the second-order cone programming (SOCP)

relaxation, to determine the position of all nodes in the network given a few reference nodes and

some pairwise distance measurements. This algorithm is independent of the ranging technique used
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to obtain pairwise distances between neighboring nodes. An extensive simulation study, on uniform

and irregular network topologies, will be presented demonstrating the robustness of the proposed

algorithm to reference node position and distance estimation errors. The performance gains, in

terms of problem size reduction and computational efficiency, are achieved without sacrificing

localization accuracy [17, 18].

1.2.3 Implementation of a Directional Beacon based Positioning Algo-

rithm

In Chapter 5 we present the implementation of a directional beacon based positioning algorithm

using radio frequency (RF) signals. The existing localization systems can be broadly classified into

two categories. The first category consists of systems which develop a signaling system and support

infrastructure focused primarily on the positioning and tracking application. Systems in the second

category tend to use existing wireless network infrastructure with minimal modifications to locate

unlocalized nodes. The first category systems are designed for a desired positioning accuracy and

tend to use expensive, dedicated devices for the purpose. Examples of such systems include GPS.

The second category of systems, in the absence of dedicated devices, use smart algorithms to

overcome the low accuracy of the measured quantities. We demonstrate a system that fits in this

second category.

In the proposed implementation each UN computes its position with respect to a set of RNs

equipped with rotating directional antenna. This algorithm does not need synchronization between

RNs and the UN. We demonstrate the ability to obtain UN position estimates with sub-meter

accuracy by transmitting a narrowband signal of 1 KHz bandwidth in the 2.4 GHz band [19, 20].

This implementation will be shown to be resilient to timing and synchronization errors.

1.2.4 Sensor Selection and Event Detection using Heuristic based Se-

quential Hypothesis Testing

The development of extremely small sensing devices has led to the use of large scale networks

of these devices in numerous applications. Sensor nodes have enabled us to monitor/detect en-

vironments that have not been reachable until now. Sensor networks are typically designed to

monitor physical environments for days, months or even years. To obtain a complete picture of
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the environment it is desirable to collect information from all sensor nodes in the network. On

the other hand, sensor networks have energy constraints that do not allow taking measurements

from many sensors and transmitting these measurements reduces the network lifetime. Thus, in

order to extend the network lifetime it is essential to carefully select the sensor nodes from which

information will be collected. Several algorithms have been proposed in the literature for sensor

selection.

In Chapter 6 sensor networks used for event detection scenarios are considered. The goal

in these network deployments is to detect certain critical events or emergency conditions with

minimum possible delay. We propose a heuristic based sensor selection and a sequential detection

procedure that significantly improves the detection speed, measured in terms of the number of

measurements needed for the detection.
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Chapter 2

Related Work

2.1 Localization in UWB Multipath Environments

Ranging and location estimation in wireless networks has received considerable attention from

the research community recently. Some survey articles on the research area and its applications

are [15, 16, 21, 4]. Traditional localization techniques use one or more of the following measures:

received signal strength (RSS) indicators [14], time of arrival (TOA) [10, 11], time difference of

arrival (TDOA) [12], or angle of arrival (AOA) [13]. Techniques based purely on signal strength

are prone to inaccuracies and large variances in position estimates [6, 22].

TOA/TDOA techniques using ultrasound signals have also been explored. These provide lim-

ited range and need additional hardware. Ultra-wideband (UWB) signals have been employed

in position location systems [10, 11, 23, 24]. The use of ultra-wideband (UWB) communications

allows for very precise ranging due to the high time resolution of UWB signals. However the

presence of multipath components in the received signal due to non-line-of-sight (NLOS) propaga-

tion makes the problem of estimating the line-of-sight (LOS) position and determining the range

especially challenging. The LOS time delay estimation and hence positioning accuracy is inversely

proportional to the bandwidth of the signals and inversely proportional to the square root of the

observation time [25]. Most of the work reported in the literature is based on assumptions that the

line-of-sight (LOS) signal is always present [10, 11]. In [10] it is assumed that the LOS component

is the earliest arrival and a threshold is used in a window of the received signal to estimate the LOS

component. The results showed that the estimation error increases rapidly with the transmitter
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(TX) - receiver (RX) range. These approaches, despite using bandwidths in excess of 1 GHz, do

not achieve the sub-meter (< 1 m) ranging accuracy that some applications require.

Many approaches have been proposed in the literature that attempt to find some distinct

properties of NLOS range measurements to distinguish them from LOS measurements [26, 27, 28].

In [26] it is observed that the NLOS range measurements have greater variance than the LOS

measurements. Reference [27] models NLOS and LOS range measurements as Gaussian random

variables, and derives the theoretical framework for nonparametric and parametric hypothesis

tests. In [28], the authors present an algorithm to detect LOS measurements when NLOS error is

intermittently present in a time series of range measurements. These attempts and our own work

on NLOS identification suggest that using pure statistical characteristics to distinguish NLOS

measurements from LOS measurements is a difficult problem. Location estimation algorithms for

NLOS propagation have been studied in the literature. In [29] the property that NLOS errors are

always positive is used to estimate the location by adding some constraints or penalty function.

2.2 Sensor Network Localization using Optimization Tech-

niques

Sensor network localization has been an area of active research in recent years with a large number

of current and future applications. Most localization systems estimate the node positions using

some kind of range or distance information between nodes. However, some systems such as [21]

perform localization using connectivity information. Such systems depend on a high density of

reference nodes (RNs) and result in relatively low positioning accuracy.

It will be shown in Chapter 4 that the localization problem in its original form is a non-

convex optimization problem with many local minima. Doherty et al. in [30] formulate the

localization problem as a feasibility problem with convex radial constraints. However, this method

requires centralized computation which is not suitable for large-scale networks. Shang proposed a

distributed localization method MDS-MAP(P, R) based on multi-dimensional scaling (MDS) [2].

This method builds for each node a local map of the small sub-network in the node’s vicinity and

then merges these local maps to form a global map followed by a refinement step. This method

needs only a few RNs (or in the absence of RNs generates a relative map) and partly overcomes the

drawback associated with centralized computation. However, the construction of local maps for
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each node results in enormous amount of redundant computation as it is seen that most local maps

are not used in building the global map. MDS-MAP(P, R) is not entirely suitable for large networks

as the cost of refining and merging the local maps grows faster than linear due to the larger maps

being manipulated. Also the cost of refining the global map, a single global optimization step,

becomes dominant for large networks.

Costa et al. [1] apply distributed weighted MDS (dwMDS) to the sensor network localization

problem and formulate the problem using a general form of the cost function we use in Chapter 4.

They solve the minimization problem using majorizing functions.

Biswas and Ye solve the problem using the semidefinite programming (SDP) relaxation [31].

The SDP relaxation approach can solve small problems effectively. The authors report a few

seconds of PC execution time for a 50 node network. They have also proposed two techniques to

improve the accuracy of the SDP solution [32]. The first technique adds a regularization term to

the objective function to force the SDP solution to lie close to a low dimensional subspace of Rd

and the second technique improves the SDP estimated solution using a gradient-descent method.

However, the number of constraints in the SDP model is O
(
n2

)
, where n is the number of nodes

in the network

Most SDP solvers can handle problems with at most 100 variables, while sensor networks

typically have 100’s of nodes resulting in problem dimensions in the 10,000’s. To overcome this

difficulty, Biswas and Ye proposed a distributed method for solving the SDP [33]. In this iterative

distributed scheme, the RNs are first partitioned into many clusters according to their physical

locations. A sensor is assigned to a cluster if the sensor has a direct link to one of the RNs. Then

semidefinite programs are solved independently for each cluster. The nodes whose position becomes

known are used to iteratively locate the remaining unlocalized nodes (UNs). The authors report a

few minutes of PC execution time for a network with 4000 nodes. But, since the clustering is done

based on geographic locations [34], each cluster may have only partial connection information for

the border nodes if these have connections with multiple clusters. Thus nodes on the border of

each cluster may not get positioned accurately [35].

We consider the second-order cone programming (SOCP) relaxation due to its simpler structure

and the potential to be solved faster. The SOCP relaxation for the localization problem was first

studied by Tseng [36]. It has been shown in [36] that even though the SOCP relaxation is weaker

than the SDP relaxation, it can accurately position a large percentage of the sensors up to the
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square root of the distance error. The localization approach presented in Chapter 4 enables the

SOCP relaxation problem to be solved in a completely distributed fashion. Each UN executes the

localization algorithm independently using distance information to the RNs and nodes with which

it is directly linked.

A number of existing approaches consider the distance (or range) estimation errors [37, 38],

however most do not consider the inaccuracy in RN positions which is also a significant source of

error. The RNs are typically positioned using GPS or by means of surveying by humans. Civilian

GPS accuracy is limited to about 15m while surveying is prone to human observation errors.

In Section 4.4, we demonstrate the ability of the distributed SOCP approach to provide good

localization accuracy even in the presence of significant errors in the RN positions.

2.3 Range-Free Sensor Network Localization Approaches

There have been investigations into range-free techniques for sensor network localization. These

are attractive as a cost-effective alternative to range-based schemes but rely on high density of

nodes and tend to offer lower localization accuracy. UNs use primarily connectivity information

for inferring proximity to a set of RNs. In the Centroid localization scheme [21], UN localizes

itself to the centroid of its proximate RNs. In APIT [39], each UN decides its position based

on the possibility of being inside or outside of a triangle formed by any three RNs within its

communication range. Spotlight system [40] creates well controlled (in time and space) events in

the network while the sensor nodes detect and timestamp these events. From the spatio-temporal

knowledge for the created events and the temporal information provided by sensor nodes, nodes’

spatial information can be obtained. In the StarDust system [41], sensor nodes are equipped with

optical retro-reflectors. An aerial device projects light towards the deployed sensor network, and

records an image of the reflected light. An image processing algorithm is developed for obtaining

the locations of sensor nodes. The Lighthouse system [42] uses a parallel light beam, that is emitted

by a RN which rotates with a certain period. The UN detects the light beam for a period of time,

which is dependent on the distance between it and the light emitting device.
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2.4 Directionality based Position Location Algorithms

The TOA/TDOA based techniques need large bandwidths and long observations times which

might be difficult to meet in some real world applications. TOA/TDOA techniques using radio

frequency (RF) signals are sensitive to timing estimation errors. Small timing errors of the order

of micro-seconds result in very large position errors because of the high propagation speed (3×108

m/s) of the electromagnetic waves. AOA information has been used earlier in the literature for

determining the position of a node [43, 44, 45]. For AOA techniques, the error in time delay

estimation translates into error in angle estimation which results in significantly smaller position

error. The proposed implementation of the directional beacon based algorithm results in a position

estimation error of only 0.5 m with a 500 msec error in delay estimation (refer Section 5.5 for further

discussion on this matter). Thus, directionality based techniques can provide good accuracy with

relatively inexpensive hardware.

McGillem and Rappaport [44] were one of the earliest to propose the use of AOA information for

positioning and navigation along with a system implementation demonstrating the technique. They

used infrared beacons with a rotational optical receiving system to obtain angular measurements

using beacons. Nasipuri presented a directionality based positioning scheme in [45]. Later in [46]

they proposed a system implementation using rotating optical beacon generators and sensor nodes

equipped with photo sensors. Shah and Tewfik in [43] presented an enhanced positioning scheme

based on directional beacons using the time of earliest arrival for detecting the LOS component.

Although many directionality based positioning techniques have been described in the literature,

very few have presented practical system implementations, and to our knowledge none based on

radio signals has been presented. A positioning system based on radio signals allows the use of

the existing transceiver circuitry on wireless devices for positioning. However, the hostile wireless

propagation environment introduces distortion in the radio signals and poses unique challenges to

the system design. Smart algorithms to address these issues are presented in Chapter 5.

2.5 Sensor Selection and Event Detection Schemes

A survey of various sensor selection schemes is presented in [47]. Information theoretic approaches

to sensor management are presented in [48]. An information-driven sensor query approach is

proposed in [49]. Sensor selection method based on mutual information is presented in [50]. An
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entropy-based heuristic approach is proposed in [51] which greedily selects the next sensor to reduce

overall uncertainty. Bounds on the performance of information theoretic measures, based on the

notion of submodularity, are obtained in [52, 53]. It has been noted that most of the information

theoretic measures for sensor selection are computationally expensive. A statistical approach to

decide which sensors to use in answering a query was proposed in [54].
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Chapter 3

Localization Algorithms for UWB

Multipath Environments

In this chapter we present two novel localizations algorithms. The first algorithm solves the non-

line-of-sight (NLOS) identification problem by using multiple signal receptions in a maximum

likelihood estimation framework to differentiate between LOS, NLOS components and noise. The

ranging algorithm is based on statistical modeling of the multipath channel. The multipath channel

is modeled based on the IEEE 802.15.3a channel model 3 (CM3). The signal (LOS or NLOS) and

noise components are characterized during an initial calibration phase, which is used to distinguish

signal components from noise. Multiple signal receptions at each reference node (RN) are used to

differentiate between LOS and NLOS components, and accurately estimate the LOS position in

the received signal.

The mathematical programming approach presented here assumes that all the range estimates

are LOS and uses two bounds (lower and upper) on each range estimate. The bounds are deter-

mined by the Cramer-Rao bound on the estimation error. Infeasibility of the constraints helps

to identify NLOS estimates. This method will be shown to give more accurate position estimates

than the previously reported approaches. Simulations also show that the range estimation error

with this approach does not increase with the range.

It is seen that traditional localization methods can be decomposed into two steps. In the first

step, the TOA (or TDOA) measurements associated with the visible RNs are obtained. In the
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second step, a location algorithm is implemented, fusing the measurements obtained in the first

step into a position estimate. It is seen that the geometric relationship between the TOAs (or

TDOAs) is logically exploited in the second step to obtain the position estimate but is not used to

assist in the TOA estimation of the first step [55].

The second algorithm we present in this chapter fuses the range (or TOA) estimation and

location estimation phases in such a way that the geometric relationship of the TOAs also aids in

the range estimation. This lowers the probability of reporting NLOS range estimates. This addi-

tional information is available while estimating the range and improves the localization accuracy

dramatically compared to the traditional approaches. At the same time the proposed algorithm is

computationally efficient.

The ranging algorithm, using the statistical characterization of signal (LOS/NLOS) and noise

components, obtains multiple pseudo range estimates. One of these estimates will be due to the

LOS component while others will be due to NLOS components or noise. The range estimates from

all visible RNs are combined in a spatial-domain quasi-maximum likelihood (QML) estimation

technique to arrive at the final location estimate.

The approaches presented here achieve better results by exploiting the knowledge of the channel

statistics. These statistics are determined during an initial calibration phase and thereafter used

during the localization phase. It will also be shown that the calibration phase is sufficient to gather

all the necessary channel information and no other prior information about the channel is needed.

Suitable modifications enable these algorithms to be used in low bandwidth (BW) and multi-band

systems.

3.1 Localization Model

We refer to the nodes whose positions are known a priori as the reference nodes (RN) and nodes

whose positions are to be estimated as the unlocalized nodes (UN). Consider a setup in which a

number of UNs and RNs communicate with each other for estimating locations of the UNs. The

RNs and UNs can be time-synchronized using techniques such as [56]. In the absence of such time

synchronization, the range to a reference node is calculated using the Two-Way Time Transfer

(TWTT) method, originally developed to permit precise synchronization and range estimation

between satellites and ground stations. In our implementation of the TWTT, reference node A
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sends a message to unlocalized node B along with the time at which it was sent. After a turnaround

time T, B sends a message back to A along with the time at which it was sent and the arrival

time of the message it received from A. Both A and B determine the arrival times of the message

they receive by determining the time of earliest arrival corresponding to the message. Using the

message transmission times and the earliest arrival times of the messages at both A and B, A can

determine the time of flight between A and B. This information is sent to a central location where

it is fused with similar information from other RNs to produce a location estimate of B.

The UNs and/or RNs transmit a short duration Gaussian monopulse (the ranging pulse) for

the purpose of ranging and location estimation. The transmit signal, after going through the

multipath channel, is input to a matched filter receiver. The matched filter output is subjected to

thresholding to detect local peaks. A threshold is chosen based on the desired error performance

and the estimated signal-to-noise ratio (SNR). This system model is depicted in Fig 3.1. Fig 3.2

shows the matched filter output in the presence of Gaussian noise. The waveform has significant

multipath components and the signal peak does not occur at the leading edge of the waveform.

A calibration phase, explained in the next section, aids in differentiating noise from LOS/NLOS

peaks and multiple measurements are used to distinguish LOS from NLOS components.

In multi-band communication systems, the whole bandwidth is divided into several sub-bands.

In each time interval, a signal is transmitted in one of the sub-bands. We assume that the UNs and

RNs transmit a short duration Gaussian monopulse with a bandwidth of 528 MHz. Signals from

4 sub-bands are combined to give a virtual large bandwidth (2 GHz) signal using the technique

in [57]. Signal in each sub-band is sampled at 1 GHz and then upsampled by a factor of 4 to

give an effective sampling rate of 4 GHz. Higher sampling rates are achieved via processing in the

digital domain. The sample rate for the waveform in Fig 3.2 is 20 GHz.

Multipath Channel
(modeled using 

IEEE 802.15.3a CM3)

Matched Filter
Receiver

Record peaks 
detected by
thresholding

Matched filter 
output

Ranging signal 
(Gaussian monopulse)

Figure 3.1: Block diagram of the proposed UWB ranging and localization system.
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Figure 3.2: Matched-filter output in the presence of Gaussian noise.

3.2 Statistical Modeling: Offline Calibration Phase

In the calibration phase, two sets of training runs are carried out. The first set of training is done

in an ideal noise free or virtual high SNR environment achieved by averaging several measurements

over a short time interval. Alternatively, we can use a reliable channel model, such as the IEEE

802.15.3a. Here we report results using the IEEE 802.15.3a channel model 3 (CM3) which is based

on NLOS (4-10 m) channel measurements reported in [58, 59]. Similar UWB channel models have

been proposed in [60, 61, 62]. In a high SNR environment the local peaks detected will either be

due to the LOS or NLOS components. It is reasonable to assume that under high SNR conditions

and over a set of simulations, the first detected peak would be due to the direct path or the LOS

and all other peaks are due to NLOS components. The measured peak strengths are normalized

by the strength of the global peak in the output of the matched filter. Global peak is defined

as the largest peak detected in a single received ranging pulse. Histograms are estimated for the

strengths of the LOS and NLOS peaks using these measurements.

The second set of training runs are carried out in the presence of Gaussian noise but in the

absence of a transmit signal, i.e., under noise-only conditions. The procedure outlined above is fol-

lowed to estimate a histogram for the relative strength of the noise peaks. The histograms obtained

from simulations performed using 250 different channel realizations are shown in Fig 3.3. It is seen



16

that the relative strength of the signal (LOS/NLOS) peaks follows an exponential distribution,

whereas that of the noise peaks follows a lognormal distribution. By normalizing these histograms

to unit area we obtain probability density functions for the relative strengths of the signal and

noise peaks, which we denote by fsignal(ρ) and fnoise(ρ), respectively.

fsignal(ρ) =
1
β

exp
(
− ρ

β

)

fnoise(ρ) =
1

σ
√

2π
exp


−

ln2
(

ρ
ρ0

)

2σ2


 (3.1)

The histograms for the time difference between the location of the local peaks and the global

peak in the matched filter output are also estimated, shown in Fig. 3.4. These results agree with

the IEEE 802.15.3a channel model and illustrate an alternative approach for estimating these

characteristics in the absence of a channel model. This characterization of the LOS/NLOS and

noise peaks is used in the two ranging and location estimation algorithms which are described in

the next two sections.

3.3 Ranging and Location Estimation Algorithm using Mul-

tiple Signal Receptions

3.3.1 Overview of the Ranging Approach

We assume all the nodes in the network are quasi-static or slow moving. Each UN transmits

multiple copies of the ranging pulse at fixed intervals of time. All RNs within the radio range of a

given UN record these multiple signal receptions to be used for range estimation. We detect the

received signal peaks due to multiple pulses by thresholding and estimate the LOS component as

the earliest peak across all receptions (the underlying assumption). Using multiple signal receptions

helps to average over noise and increases the effective signal power and SNR, resulting in improved

ranging accuracy.

3.3.2 Identifying Candidate LOS Component

To estimate the position of the LOS component, the time axis is divided into a number of small

time bins. Each detected peak in a time bin is also referred to as a return. For each time bin two



17

(a)

(b)

Figure 3.3: Relative strength (ρ) distribution for the: (a) signal (LOS/NLOS) peaks and (b) noise
peaks.
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(a)

(b)

Figure 3.4: Time difference (δ) distribution for the: (a) signal (LOS/NLOS) peaks and (b) noise
peaks.
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hypotheses are proposed: (i) the bin contains returns due to noise or (ii) the returns are due to a

LOS or NLOS component. The likelihood of the peaks coming from the LOS or NLOS distribution

is calculated looking across all of the collected signal receptions and using the histogram for the

relative strengths of the LOS/NLOS components. Similarly, for each bin the likelihood of the

returns being due to noise is calculated using the histogram for the relative strength of the noise

peaks. Based on which likelihood function turns out to be larger, each bin is estimated to contain

either a LOS or NLOS component or noise. The earliest time bin that has a higher likelihood of

containing a signal (LOS or NLOS) component is chosen as the estimate of the direct path or LOS

signal position.

The likelihood function under each hypothesis is evaluated as a product of the probabilities

of the returns in a bin, across all the collected signal receptions, being either due to LOS/NLOS

components or due to noise. The likelihood function evaluation procedure is shown in Figs. 3.5

and 3.6. Consider the case where we use three signal receptions for ranging at each node. We

record all the (normalized) peaks detected in the three receptions in a given time bin. For each

detected peak, the relative strength is calculated, say ρ1. The probability of the peak being due

to noise, P (ρ1), is found by locating ρ1 on the relative strength distribution (x-axis) for the noise

peaks and reading the corresponding value on the y-axis. This computation is shown in Fig 3.6.

The product of these probabilities for all peaks in a given bin, gives the likelihood of the bin

containing a noise peak. If a time bin does not contain any return, the probability of the return

being less than the threshold is used to evaluate the likelihood function.

Pnoise(ti) =
S∏

j=1

P (peak detected in time bin i in signal j is due to noise)

where S is the number of signal receptions collected at each RN.

Similar computation is done to obtain the likelihood associated with the time bin containing a

signal return (LOS or NLOS peak) denoted by Psignal(ti). The earliest time bin ti with Psignal(ti) ≥
Pnoise(ti) is chosen as the LOS position estimate. Note that the peak chosen as the LOS estimate

may actually correspond to a NLOS component. The location algorithm described next takes this

possibility into account while estimating the location.
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Figure 3.5: Illustration of Likelihood evaluation.
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Figure 3.6: Illustration of Likelihood function evaluation.

3.3.3 Location Estimation Algorithm

In our localization set-up, range estimates to a given UN from a number of other nodes are used

for location estimation. Each range estimate provides a circle centered on the corresponding node,

on which the UN lies. In the absence of measurement error, the position of the UN is given by the

intersection of the circles derived from the range estimates. However due to measurement error,

the estimates correspond to circular rings whose width depends on the estimation error.

Let (x,y) be the unlocalized nodes’ position, (xi,yi) the position of the ith RN and ri the range

estimate from the ith RN to the UN. The range estimation error (εr) is chosen to be a multiple of

the Cramer-Rao lower bound (CRLB) on the range estimation error variance [57].

For each range estimate ri:

(ri − εr)2 ≤ (xi − x)2 + (yi − y)2 ≤ (ri + εr)2 (3.2)

where i = 1, . . . , N . Let Ki = x2
i + y2

i and R = x2 + y2. Then (3.2) can be rewritten as:

(ri − εr)2 −Ki ≤ −2xix− 2yiy + R ≤ (ri + εr)2 −Ki.

In matrix form,

h1 ≤ GZ ≤ h2
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where

h1 :=




(r1 − εr)2 −K1

(r2 − εr)2 −K2

...

(rN − εr)2 −KN




, h2 :=




(r1 + εr)2 −K1

(r2 + εr)2 −K2

...

(rN + εr)2 −KN




,

G :=




−2x1 −2y1 1

−2x2 −2y2 1
...

...
...

−2xN −2yN 1




and Z :=




x

y

R


 .

Thus the location estimation can be formulated as a constrained minimization that tries to find

the maximum-likelihood (ML) location estimate assuming all the range estimates to be LOS [63].

min {(h2 −GZ)T Ψ−1(h2 −GZ)} (3.3)

subject to h1 ≤ GZ ≤ h2

where

Ψ = 4c2BQB,

B = diag{r1, . . . , rN},

Q is the noise covariance matrix and c is the signal propagation speed.

Infeasibility of the constraints will imply that one or more of the range estimates are NLOS and

need to be dropped from the location estimation procedure. It is seen that if at most M estimates

can be NLOS, then at least (M +1) or more accurately max(M +1, 4) LOS estimates are needed to

obtain an unambiguous location estimate. Figs. 3.7(a) and 3.7(b) illustrate the case with M = 1;

four estimates give more than one possible location estimate, hence 5 range estimates are needed

to resolve this ambiguity.

3.4 Spatial Domain Quasi-Maximum Likelihood Location

Estimation Algorithm

Each node that needs to be localized transmits a ranging pulse. All RNs (and previously localized

nodes) which receive the transmission, record the received pulse. Each of these RNs (or nodes)
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NLOS estimate

(a) 1 NLOS and 3 LOS range estimates; resulting in location ambiguity.

NLOS estimate

(b) 1 NLOS and 4 LOS range estimates; location ambiguity resolved.

Figure 3.7: Location Estimation with 1 NLOS range estimate (M = 1).
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executes the first phase of the localization algorithm to identify the pseudo range estimates. These

range estimates are referred to as pseudo since only one estimate is due to the LOS component

while the others are due to NLOS components or noise. The pseudo range estimates are then

communicated to a central processing node along with the position of the node that measured

them. At the central node this information is fused with similar information from other RNs (or

nodes) to produce an estimate of the UN location. This localization model employs a centralized

framework where most of the computation is done at a central node while minimal processing is

done at the UNs. This is desirable when UNs are resource constrained and can only perform a

minimal amount of computation. In a distributed framework, the RNs transmit the ranging pulse

and the UN computes its location by estimating the pseudo ranges corresponding to each RN.

3.4.1 Identifying Pseudo Range Estimates

The ranging pulse transmitted by a UN is received by all RNs within its radio range. At each RN,

a threshold is chosen to detect peaks in the received signal. The detected peaks are recorded in

terms of their normalized signal strength (ρj,i) and the time difference (δj,i) between the detected

peak and the global peak in the received signal, where i refers to the ith RN and j refers to the

jth detected peak. The time difference is used to estimate the pseudo range (rj,i) due to each of

the detected peaks (as if each of the peaks were due to the LOS component). Let tpeak,i denote

the time stamp of the global peak in the received signal at the ith RN, then:

rj,i = c · (tpeak,i − δj,i). (3.4)

Each pseudo range estimate gives a circle centered on the corresponding RN with radius rj,i on

which the UN could lie (refer Fig. 3.8).

3.4.2 Location Estimation Algorithm using Pseudo Range Estimates

The localization procedure using pseudo range estimates is described below:

Step 1. At each RN, detect peaks in the received signal by setting a threshold; record the pair

(ρj,i,δj,i) for each detected peak.

Step 2. Using (3.4) estimate rj,i for each detected peak.



25

RN1

RN4

RN2

RN3

Figure 3.8: Pseudo range estimates from 4 RNs to an unlocalized node; the UN is located at the
intersection of the LOS ranges.

Step 3. Each RN transmits the recorded information along with its location information to a

central processing location.

Step 4. After information from all RNs has been received at the central location, the area

of interest, where the UN could possibly exist, is divided into a grid of cells.

(Note: Area of interest is determined based on the known locations of the RNs

and the largest pseudo range estimate from each RN. This is reasonable since each

pseudo range gives how far the UN could be located from the RN). The cell size

is determined by the smallest resolvable time interval during the pseudo range

identification phase.

Step 5. Represent the grid of cells as a matrix. The matrix is populated such that the entry

in each cell represents the likelihood of the cell containing a LOS range estimate.

This computation is explained next.

Likelihood Matrix Computation

Let yi(t) = x(t)+ni(t) be the received signal at the ith RN, where x(t) represents the transmitted

signal and ni(t) the Gaussian noise. We assume that noise is independent for each RN and for

each received pulse. Let ρj,i be the relative strength of the jth peak, mapped to a cell, due to

the signal received at the ith RN. The mapping to a cell is done based on the pseudo range rj,i
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corresponding to the peak ρj,i. Then, the likelihood of the peak being due to signal or noise is

given by f(signal/ρj,i) or f(noise/ρj,i), respectively.

f(signal/ρj,i) =
f(ρj,i/signal).f(signal)

f(ρj,i)
=

fsignal(ρj,i).f(signal)
f(ρj,i)

f(noise/ρj,i) =
f(ρj,i/noise).f(noise)

f(ρj,i)
=

fnoise(ρj,i).f(noise)
f(ρj,i)

. (3.5)

To compute the UN location, we need to combine measurements from all RNs. There are two

possibilities to consider. These correspond to two models for the path loss from the UN to each

of the RNs, and the likelihood of any peak being due to signal or noise: (i) We may consider the

path losses to be correlated since they are dominated by a deterministic loss that is a function

of the RNs and UN geometry. In this case, extensive calibration would be needed to model each

of the individual path losses which is not practical. (ii) We may alternatively consider the path

losses to be random and independent due to the arbitrary placement and dynamic structure of

the obstructions between the UN and each of the RNs. In this case, we can assume that the path

losses are independent realizations drawn from the same distribution. We use the latter model as

a reasonable approximation in the presence of multipath propagation.

In each cell peaks from a number of RNs each with strengths ρj,i (i = 1, . . . , N and j = 1, . . . , Ni,

where Ni are the number of peaks detected at the ith RN) are reported. If each of these is an

independent observation, the overall likelihood function would be a product of the individual

likelihoods. Otherwise, the product of the individual likelihoods is not the overall likelihood.

Nevertheless, it provides a reasonable cost function that we will maximize below. We refer to this

cost function as a quasi-likelihood function.

Intuitively, each range estimate rj,i can be represented by a circle around the RN on a map of

the network. The intersection of the circles from all the visible RNs would give a grid of possible

locations for the UN. The position with the maximum likelihood (or quasi-likelihood) value is

chosen as the UN location estimate.

Let Ameasured,i represent the matrix of likelihood values for the ith RN. Since each pseudo range

estimate comes from a peak in the received signal, the likelihood of it being due to the LOS signal

component is related, directly to the likelihood of the peak coming from the signal (LOS/NLOS)

distribution, and inversely to the likelihood of the peak being from the noise distribution. For each

detected peak with relative strength, say ρi (the second subscript on ρ is omitted for the sake of

simplicity), the likelihood of it being due to noise fnoise(ρi), is obtained from the noise relative
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strength distribution. Locate ρi on the x-axis of the noise distribution and the corresponding

value on the y-axis gives fnoise(ρi). This computation is similar to that shown in Fig. 3.6. The

likelihood fsignal(ρi) is calculated in a similar manner using the signal relative strength distribution.

We denote fsignal(ρi) and fnoise(ρi) assigned to the matrix cell (h, k) by fsignal(ρi, h, k) and

fnoise(ρi, h, k), respectively.

Using (3.5) we obtain:

Ameasured,i(h, k) =
f(signal/ρi, h, k)
f(noise/ρi, h, k)

=
fsignal(ρi, h, k)
fnoise(ρi, h, k)

(3.6)

where i is the RN index and (h, k) are used to index the matrix or cell entries. Each of the matrices

Ameasured,i indicates where the UN is most likely to be present. Thus by overlaying each of these

matrices, one over the other, on the cell grid would give the overall likelihood distribution:

Aoverall(h, k) =
N∏

i=1

Ameasured,i(h, k). (3.7)

The cell with the maximum valued entry when mapped to the area of interest gives the location

estimate (xs,ys) of the unlocalized node.

(xs, ys) ⇔ (hs, ks) = argmax
(h,k)

[
N∏

i=1

(
fsignal(ρi, h, k)
fnoise(ρi, h, k)

)]
. (3.8)

3.5 Simulation Results

Extensive simulations were carried out using 250 different channel realizations based on the IEEE

802.15.3a channel model 3 (CM3). The transmit signal or ranging pulse is a Gaussian monopulse

with a center frequency of 2 GHz and a bandwidth of 3.14 GHz. Noise is assumed to be independent

for each signal reception. A 4-bit analog-to-digital converter (ADC) is used in the receiver circuitry

and the SNR reported includes the quantization noise effects due to the ADC.

3.5.1 Location Estimation Algorithm using Multiple Signal Receptions

Following the approach in Section 3.3, the UN transmits multiple copies of the ranging pulse and

each RN in its radio range records these multiple signal receptions. Each RN then obtains the

range estimate to the UN and finally this range information from all RNs is used to estimate the

UN location. The use of multiple signal receptions for range estimation reduces the noise variance

and helps to eliminate large estimation errors. In Fig. 3.9 we plot the range estimation error using
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three signal receptions as a function of the transmitter (TX) - receiver (RX) distance. It is seen

that the range estimation error does not increase significantly with the TX-RX distance. TX-RX

distances for the simulations ranged from 0-8 m.

The approach in [10] looks for the LOS in a small window of the received signal. Estimating the

window size becomes extremely difficult at long ranges due to the complex LOS blockage and this

results in large estimation errors. The previous approaches relied on the signal strength for LOS

estimation. Since the signal strength decreases with increase in the range which lowers the SNR

with a resultant increase in the range estimation errors. In our approach, we are able average out

noise and achieve a higher effective SNR by looking at multiple signal receptions. This approach

thus works well even for larger TX-RX distances.

In Fig. 3.10, the range estimation error resulting from the approach using multiple signal

receptions (with S = 3) is compared with the method where only a single signal reception is used.

The comparison is shown for different values of the SNR. For 10-15 dB SNR, the average and rms

range estimation errors are smaller than 0.2 m using three signal receptions.

Fig. 3.11 is a histogram of the range estimation error showing the number of range errors of

different magnitudes. The peak vertical bar in the histogram plot corresponds to around 220 range

estimates with an error of less than 0.1 m. It is also seen that there are relatively very few large

errors.

Next consider the situation illustrated in Fig. 3.7(b). The unlocalized node position is estimated

using 5 range estimates:

Estimated ranges = {4.8900, 0.2850, 1.9200, 0.1950, 3.5400} m

True ranges = {3.4350, 0.2700, 1.9050, 0.2400, 3.5050} m

Location Estimate = (−0.0174,−0.0100) m

True Location = (0.0, 0.0) m.

The location estimation algorithm (3.3) found the constraints due to the estimated ranges to be

infeasible and thus an attempt was made to solve with 4 constraints. Eliminating the constraint

due to the first estimate, which is a NLOS estimate, results in a feasible solution. Thus, even if the

ranging algorithm reports NLOS estimates, the localization algorithm is able to identify and elimi-

nate them while estimating the location. The sub-meter ranging and localization accuracy achieved

here is better than other approaches, using similar bandwidths, reported in the literature [11, 10].
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Figure 3.9: Range estimation error vs. TX-RX distance using multiple signal receptions.
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Figure 3.10: Range estimation error vs. SNR using multiple signal receptions.
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Figure 3.11: Range estimation error histogram.

3.5.2 Spatial Domain Quasi-Maximum Likelihood Location Estimation

Algorithm

The simulations in this sub-section use pseudo range estimates from 5 RNs for estimating the UN

location. The RN coordinates are randomly generated on a square grid and the SNR is fixed at 10

dB. This localization experiment is repeated 50 times. The simulation results from 5 such trials,

each using independent channel realizations, are shown in Fig. 3.12. The true UN location is (0,

0) m. Solid lines indicate the error between the estimated and true UN locations.

Fig. 3.13 shows the average and rms position estimation error, based on all 50 trials, as a

function of the SNR. It is seen that the localization accuracy improves with SNR and there is no

significant degradation in the accuracy even when the SNR is reduced to 5 dB.

The spatial domain QML approach does not try to locate the LOS position in each received

signal. Rather we combine the pseudo range estimates from a number of RNs and the final location

estimate corresponds to the cell with the maximum likelihood of containing a signal component.

This works well because it is highly unlikely that a majority of the RNs would report NLOS

estimates which overlap at a given point (or cell).
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Figure 3.13: Position estimation error vs. SNR using spatial domain QML location estimation
algorithm.
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3.6 Conclusion

In this chapter we presented two localization algorithms based on statistical modeling of the UWB

multipath channel in terms of signal (LOS/NLOS) and noise characterization. The first algorithm

uses multiple signal receptions for range estimation. Simulation results have shown that this

approach gives sub-meter ranging accuracy even for large TX-RX ranges. The accuracy achievable

is limited only by the size of the time bin chosen and the SNR. The bin size is related to the time

resolution achievable with the ranging signal being used, which in turn depends on its bandwidth.

In the absence of sufficient bandwidth and/or SNR, collecting more number of signal receptions

for each range estimate and increasing the recording time for the received signal can improve the

ranging and localization accuracy.

The second algorithm, based on spatial domain quasi-maximum likelihood estimation, fuses the

range estimation and location estimation phases such that the geometric relationship of the TOAs

aids the range estimation phase as well. This approach while being computationally efficient has

shown the ability to provide close to sub-meter localization accuracy. Again the accuracy achievable

is limited only by the cell size chosen and the SNR. The cell size is related to the time resolution

achievable with the ranging signal being used, which in turn depends on its bandwidth. Also, by

not trying to directly estimate the LOS position in each of the received signals, we overcome the

difficult problem of NLOS identification.
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Chapter 4

Distributed Sensor Network

Localization using SOCP

Relaxation

In this chapter we present a distributed approach based on second-order cone programming (SOCP)

for solving the sensor network localization problem. It is assumed that the pairwise range or

distance estimates are available (obtained using a suitable ranging method). Here we focus on the

positioning sub-problem and thus the distributed solution presented here is independent of the

ranging method used. The distributed SOCP approach is computationally efficient and scalable to

large network sizes. In addition, we demonstrate the ability to handle distance (or range) estimation

errors and errors in the reference node (RN) positions. In the presence of distance estimation

errors the approach consists of a single step wherein each unlocalized node (UN) determines its

position by executing the localization algorithm independently using distance information to the

RNs and other nodes with which it is directly linked (i.e., which are within its communication

range). If in addition to the distance estimation errors, the RN positions also have errors then the

approach consists of three steps: using the local distance information and inaccurate RN positions

each UN estimates its position. Then, the RNs execute the localization algorithm using position

information from their neighboring nodes and the associated distance information to refine their

positions. Finally, the previously UNs re-execute the localization algorithm to refine their position
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estimates.

One of the significant advantages of our approach is that it is fully distributed and converges

to an optimal (or near-optimal) solution. As a result of the distributed nature of the solution, the

problem dimension at each node is a linear function of only the number of neighbors of the node.

There is no significant increase in the computational effort per node even in large networks (for

a given node connectivity level), whereas most existing methods result in an exponential increase

in the computation time with network size. This makes the distributed SOCP approach suitable

for large-scale networks with thousands of nodes. As we will demonstrate, the performance gains

are achieved without sacrificing localization accuracy. We demonstrate the convergence of our

algorithm numerically.

4.1 Sensor Network Localization: Problem Formulation

The sensor network localization problem is mathematically formulated as follows. Consider n

distinct points (or nodes) in Rd (d ≥ 1). Given the positions of the last (n−m) points (or RNs)

xm+1, ..., xn and the Euclidean distance dij between neighboring points (or nodes) i and j where

(i, j) ∈ A. A is the neighbor set defined as A = {(i, j) :‖ xi − xj ‖≤ RadioRange} 1, we need to

estimate the positions of the first m points (or UNs). In the presence of distance estimation errors,

this can be formulated as the following non-convex minimization [64]:

min
x1,...,xm

∑

(i,j)∈A

| ‖xi − xj‖2 − d2
ij | (4.1)

where ‖ · ‖ denotes the Euclidean norm. If the distance estimation errors are assumed to be

independent and normally distributed, it can be shown that (4.1) is closely related to the maximum

likelihood estimation of the node positions [65].

The original problem (4.1) can be reformulated in convex form using relaxation techniques. As

a first step, (4.1) can equivalently be written as:

min
x1,...,xm,yij

∑

(i,j)∈A

|yij − d2
ij | s.t. yij = ‖xi − xj‖2, ∀(i, j) ∈ A.

Relaxing the equality constraints to “greater than or equal to” inequality constraints yields the

1The set A is undirected: (i, j) = (j, i),∀(i, j) ∈ A
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following convex problem:

min
x1,...,xm,yij

∑

(i,j)∈A

|yij − d2
ij | s.t. yij ≥ ‖xi − xj‖2,∀(i, j) ∈ A (4.2)

which is an SOCP. The problem in (4.2) can equivalently be written as:

min
x1,...,xm,yij ,tij

∑

(i,j)∈A

tij (4.3)

s.t. yij ≥ ‖xi − xj‖2 ∀(i, j) ∈ A

tij ≥|yij − d2
ij | ∀(i, j) ∈ A.

One approach would be to solve the SOCP problem as a global minimization over the entire

network. However, due to the problem sizes encountered in sensor networks solving the SOCP

relaxation globally might be computationally demanding as shown in [36]. The distributed approach

has the advantage that the algorithm can be executed on the sensor nodes themselves thus removing

the need to relay all the information to a central processor. A parallel or distributed algorithm is

preferred in sensor networks which we propose next.

4.2 Distributed SOCP Localization Algorithm

In a distributed algorithm, implemented over multiple processors, the algorithm is divided into

“phases”. During each phase, every processor must execute a number of computations that depend

on the results of the computations of other processors in previous phases. However, the timing

of computations at any one processor during a phase can be independent of the timing of the

computations at other processors within the same phase. All interactions between processors take

place at the end of the phases. Such distributed algorithms are also called synchronous. Here we

show how the SOCP relaxation for the sensor network localization problem can be formulated as

a synchronous distributed algorithm [66].

We can approximately reformulate (4.2) as:

min
x1,...,xm,yij

∑

(i,j)∈A

{|yij − d2
ij | +I−(fij(x, y))}

where fij(x, y) = ‖xi − xj‖2 − yij and I−(u) =





0 u ≤ 0,

∞ u ≥ 0.
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Here I− is the indicator function which can be approximated by the logarithmic barrier function

and the problem reduces to:

min
x1,...,xm,yij

∑

(i,j)∈A

{|yij − d2
ij | −(1/t)log(yij − ‖xi − xj‖2)}. (4.4)

It is seen that the objective function in (4.4) is separable. For each i ∈ {1, ..., m}, the objec-

tive function depends only on the positions of the neighboring nodes and the pairwise distance

measurements between them. This enables the objective function to be decomposed and the min-

imization can then be carried out at each node xi using local information. Each UN will be able

to independently solve this minimization using information from its neighboring nodes and RNs.

Let NA(i) = {j : (i, j) ∈ A} be the neighbor set for node xi. Using the separability observation,

(4.3) can be solved independently over the m UNs xi (i = 1, . . . ,m), where each node uses informa-

tion (xj , dij) from its neighboring nodes xj , j ∈ NA(i). The information exchange between nodes

occurs at the end of each iteration (or phase). Thus (4.3) decomposes to the following distributed

formulation:

min
xi,yij ,tij

∑

j∈NA(i)

tij

s.t. yij ≥ ‖xi − xj‖2 ∀j ∈ NA(i)

tij ≥|yij − d2
ij | ∀j ∈ NA(i).

This can be written in standard SOCP form as:

min
xi,yij ,tij

∑

j∈NA(i)

tij (4.5)

s.t.

(
yij + t

′
i

2

)2

≥
(

yij − t
′
i

2

)2

+ ‖xi − xj‖2 ∀j ∈ NA(i)

tij ≥|yij − d2
ij | ∀j ∈ NA(i)

t
′
i = 1.

The distributed SOCP algorithm consists of a phase where each UN estimates its position using

information from the neighboring nodes and solving the SOCP (4.5). In an iterative distributed

scheme, this would be followed by a communication phase wherein each node exchanges its position

estimate with its neighbors. These iterations could be repeated after fixed intervals of time or when

any new information becomes available at a node. It should be noted that the algorithm uses
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information from neighboring RNs as well as other neighbor nodes to position a given node. Thus

to obtain a non-trivial position estimate each node needs at least 3 neighbors (for 2-D localization)

with position estimates, as opposed to the more stringent requirement of having 3 RNs in the

neighborhood that many triangulation/trilateration schemes impose.

If the RN positions are inaccurate, the distributed SOCP approach will consist of three steps:

after the UNs estimate their positions based on the inaccurate RN positions and distance informa-

tion, the RNs solve the local SOCP (4.5) using position information from their neighboring nodes

and the associated distance information to refine their positions. As we will show, this second step

results in a significant improvement in the positioning accuracy of the inner RNs. Finally, another

iteration of the local SOCP (4.5) over the previously unlocalized nodes further refines their position

estimates.

Let ni(=|NA(i)|) represent the number of neighbors of the node xi. SOCP (4.5) has 2ni + 3

variables, 2ni conic constraints and 1 equality constraint. In sensor networks, due to the relatively

short radio range of the sensors, the number of neighbors of a given node is a small fraction of

the total number of nodes in the network (i.e., ni ¿ n). Thus the distributed SOCP approach

(4.5) results in significantly smaller problem sizes than approaches proposed in the literature. The

SOCP problem (4.5) can be efficiently solved in practice by interior point methods. Here we use

SeDuMi [67] to solve this problem2.

4.3 Localization with Accurate Reference Node Position In-

formation

The experiments in this section assume that accurate RN position information is available. In this

setting, the localization problem is solved by executing the distributed SOCP algorithm at each

of the UNs. We assess the average-case performance on networks with uniform topology as well

as irregular topology. For each parameter setting, the algorithm is run on 5 randomly generated

examples.

We randomly generate the true positions of the UNs and RNs xt
1, . . . , x

t
n according to a uniform

distribution on the unit square [−0.5, 0.5]2 and noisy distance measurements dij are generated by

2Refer to Appendix A for details on how to rewrite SOCP (4.5) in the SeDuMi form
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adding normally distributed measurement noise to the true distance. Specifically:

dij = ‖xt
i − xt

j‖ ·max{0, 1 + εij · nfd} ∀(i, j) ∈ A

A = {(i, j) : ‖xt
i − xt

j‖ ≤ RadioRange}

where εij is a normal random variable N (0, 1) representing measurement noise, RadioRange ∈
(0, 1) represents the radio range of the nodes and nfd ∈ [0, 1] is the noise factor (standard deviation

of the distance error in percentage) for the distance measurements. For a standard deviation of

10% in the distance estimation error we set nfd = 0.10.

We wrote the code in Matlab to solve the SOCP relaxation. Our code calls SeDuMi (Version

1.1) [67], a C implementation of a predictor-corrector primal-dual interior point method for solving

SDP/SOCP. The simulations were carried out on a PC with 2.53 GHz Pentium 4 processor and 1

GB RAM running Matlab 7.0.1 (R14).

To check the positioning accuracy of our algorithm, we define the average error as:

err =
∑m

i=1 ‖xi − xt
i‖

m
·

First we consider the uniform topology. Fig. 4.1 shows the results using the SOCP algorithm for

a randomly generated 500 node network with nfd = 0.05. It is seen that there is a close match

between the estimated and true positions for nodes which lie in the convex hull of their neighbors.

The average positioning error is 0.032 (21.3% of the RadioRange). The estimated positions become

less accurate as we move towards the boundary.

Fig. 4.2 shows the effect of the percentage of RNs (p) on the average positioning error (err) for

different network sizes with similar node connectivity levels. Increasing p from 12 to 15% lowers

the average error. The variation in the average error across network sizes (for a given p) is most

likely due to the small differences in the node connectivity levels.

The positioning accuracy improves significantly with increase in the node connectivity level.

Fig. 4.3 shows that the average error decreases steadily as RadioRange is increased from 0.08 to

0.20. For larger radio ranges the error tends to reach a lower bound determined by the distance

estimation errors.

Irregular topologies are more difficult than uniform topologies. The results for an irregular

topology, namely a C-shaped network, with 300 nodes and nfd = 0.05 are shown in Fig. 4.4. The

average positioning error is 0.048 (32% of the RadioRange).
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Figure 4.1: Distributed SOCP results for Uniform topology: n = 500, RadioRange = 0.15, p = 0.15
and nfd = 0.05. err = 0.032 and errmax = 0.232. True positions of the UNs (◦) and RNs (¦) along
with the estimated node positions (+). The solid lines indicate the error between the estimated
and true UN positions.
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Figure 4.2: Average positioning error as a function of the network size (n) for two different per-
centages of RNs. (RadioRange = 0.10, nfd = 0.05 and average node connectivity ≈ 30)
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Figure 4.3: Average positioning error as a function of RadioRange. (n = 1000, p = 0.15 and
nfd = 0.05)
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Figure 4.4: Distributed SOCP results for irregular (C-shaped) topology: n = 300, RadioRange =
0.15, p = 0.15 and nfd = 0.05. err = 0.048 and errmax = 0.448. True positions of the UNs (◦) and
RNs (¦) along with the estimated node positions (+). The solid lines indicate the error between
the estimated and true UN positions.
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Table 4.1 lists the test cases used to understand the computational complexity of the distributed

SOCP algorithm. RadioRange is chosen such that the average node connectivity is about the same

across all test cases. Table 4.1 lists the input parameter values, the cardinality of A (denoted by

|A|), the average node connectivity, the typical SOCP (4.5) dimension and the computation time

per node (excluding the time needed for computing the relative distances dij and communication

or message exchanges). Comparison with the SOCP dimensions reported by Tseng [36] for similar

network sizes reveals that the dimensions in Table 4.1 are smaller by at least two orders of magni-

tude and are still in the realm of problem sizes which can be handled efficiently, even for a network

with 4000 nodes. The SOCP dimension, which depends on the number of neighboring nodes, does

not increase with the network size for a given average node connectivity. As a result, the per node

computational burden is significantly reduced.

Table 4.2 presents test cases used with the MDS-MAP(P, R) algorithm [2]. The cost of refining

and merging the local maps, and the optional global refinement step in the MDS-based algorithm

becomes dominant for large networks (n > 300). Hence, network sizes for these tests are smaller

than those for the distributed SOCP algorithm. However RadioRange is chosen such that the

node connectivity is approximately the same as for the test cases in Table 4.1.

From Tables 4.1 and 4.2, it is seen that the MDS-MAP(P, R) algorithm requires slightly more

than three times the computational effort needed for the distributed SOCP algorithm, even for

relatively small network sizes. Thus the distributed SOCP algorithm significantly improves the

computational efficiency without sacrificing localization accuracy.

4.4 Localization with Reference Node Position Errors

The experiments in this section consider the inaccuracy in the RN positions in addition to the

distance estimation errors. The goal is to localize the UNs while reducing the adverse impact of

the RN position errors on the positioning accuracy. One way to achieve this is to solve SOCP

(4.5) simultaneously at each of the UNs and RNs. We ran a few simulation test cases using this

approach, but the results did not converge in each of those cases. Hence we propose a three-step

distributed approach. In the first step, each UN estimates its position using distance information

from its neighbors. In the second step, the RNs use information from their neighbors to refine their

positions. We also observed that the second step aids in refining only those RN positions which
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Test n RadioRange p |A| Avg. Node SOCP CPU time
Case Connectivity dimension per node

(Typical) (in sec)
1 500 0.15 0.12 15104 30.2 123× 181 1.24
2 500 0.15 0.15 15054 30.2 181× 124 1.19
3 1000 0.10 0.12 28368 28.4 115× 169 1.20
4 1000 0.10 0.15 28158 28.2 115× 169 1.18
5 2000 0.08 0.12 73566 36.8 151× 223 1.30
6 2000 0.08 0.15 76706 38.4 155× 229 1.29
7 4000 0.05 0.15 119082 29.8 123× 181 1.03

Table 4.1: Distributed SOCP: Input parameters for the test cases, corresponding SOCP (4.5)
dimensions and CPU times. (p gives the percentage of reference nodes, and Noise figure nfd = 0.05
for all test cases).

Test Case n RadioRange p Avg Node CPU time per node
Connectivity (in sec)

1 100 0.35 0.050 29.6 4.03
2 200 0.25 0.025 32.9 4.57
3 300 0.20 0.017 30.9 4.35
4 500 0.15 0.010 30.8 4.07

Table 4.2: MDS-MAP(P, R): Input parameters for the test cases and CPU times. (p gives the
percentage of reference nodes, and Noise figure nfd = 0.05 for all test cases).
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are within the convex hull of their neighbors (or in the interior of the network). Thus the RN

refinement step is applied only for RNs in the interior of the network. Finally, we repeat one more

iteration of the distributed SOCP algorithm over the previously unlocalized nodes using the refined

RN positions. It is seen that the refined RN positions improve the UN positioning significantly.

The simulation setting is similar to that in section 4.3 except for the following differences. The

noisy distance measurements and inaccurate RN positions are generated as:

dij = ‖xt
i − xt

j‖ ·max{0, 1 + εij · nfd} ∀(i, j) ∈ A

xi = xt
i ·max{0, 1 + εij · nfa} ∀i = (m + 1), . . . , n.

where nfa and nfd ∈ [0, 1] are the noise factors for RN positions and distance measurements,

respectively. Simulations in this section were carried out on a PC with 3 GHz Pentium 4 processor

and 2 GB RAM running Matlab 7.2.0 (R2006a).

We experimented with the noise factors (nfd and nfa) to understand their effect on the posi-

tioning accuracy. Fig. 4.5 shows the variation of the average error (err) with increasing nfd. The

distributed SOCP algorithm handles distance errors as large as 20% gracefully with a small degra-

dation in positioning accuracy. MDS-MAP(P, R) algorithm gives better accuracy using the O(n3)

global refinement step and shows similar degradation. It should be noted that MDS-MAP(P), the

MDS-MAP algorithm without global refinement, shows loss in performance compared to MDS-

MAP(P, R). MDS-MAP(P) also uses more computations than the distributed SOCP due to the

merging and refinement of local maps. It is observed that the singular value decomposition (SVD)

step of the MDS-MAP algorithms takes progressively longer to converge as the distance errors

increase. Localization systems based on received signal strength (RSS) measurements regularly

encounter distance estimation errors of 15− 20%. The distributed SOCP approach is thus robust

to large distance errors while being computationally efficient.

Fig. 4.6 shows the effect of the noise factor nfa on the average error. The distributed SOCP

algorithm is robust to RN position errors with results comparable to the MDS-MAP(P, R) algo-

rithm. The degradation in the positioning accuracy is not significant even in the presence of 30%

error in the RN positions. MDS-MAP(P, R) algorithm which typically works with very few RNs,

needs more RNs to compensate for the errors introduced by the inaccurate RN positions.

In Section 4.3 we showed the improvement in the positioning accuracy achievable as a result

of increasing the radio range for all the nodes. Since increasing the radio range of all nodes is



45

0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18 0.2
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

Noise factor for distance measurements

A
ve

ra
g

e 
P

o
si

ti
o

n
in

g
 E

rr
o

r

 

 
Distributed SOCP
MDS−MAP(P)
MDS−MAP(P, R)

Figure 4.5: Average positioning error as a function of the Noise Factor nfd. (n = 500,
RadioRange = 0.15, p = 0.15 and nfa = 0.10)
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typically not feasible due to the resource constraints, increasing the radio range for the RNs is

more reasonable. Also, in reality RNs tend to have more transmit power and a longer range.

Fig. 4.7 illustrates the effect of increasing the radio range of the RNs while keeping the range

of the other nodes fixed. Increasing the radio range of the RNs from 0.10 to 0.15 results in a

very significant improvement in the UN positioning accuracy, but further increase in the RN radio

range does not improve the positioning. This behavior can be explained as follows. During position

estimation for a UN, we use information from only those nodes and RNs which are within its radio

range. We do not account for the fact that some RNs are able to transmit to a UN even though the

UN cannot transmit to those RNs (due to asymmetric radio ranges). In effect, we use information

from only those nodes which have a bidirectional link with the UN. So the increased range of the

RNs only aids in refining the position estimates of the RNs when they communicate with other

RNs, which improves the positioning accuracy of the UNs, but with diminishing return. Further

improvement in positioning accuracy can be expected by using information from all RNs which

can transmit to a given UN.

We now revisit the irregular C-shaped network and use longer ranges for the RNs than the

other nodes in the network. Radio range of the RNs is labeled as RadioRangeRef and the radio

range of all other nodes is labeled as RadioRangeSensor. Fig. 4.8 shows the positioning result

when the radio range is 0.20 for the RNs and 0.15 for all other nodes. The average positioning

error is 0.031 (20.6% of the RadioRangeSensor), a 10% improvement over the accuracy achieved

with the radio range set to 0.15 for both RNs and other nodes. Fig. 4.9 shows the results with

the RN range increased to 0.25 resulting in an average positioning error of 0.025 (16.7% of the

RadioRangeSensor).

4.5 Tracking a Mobile Sensor Node

In this section we consider the scenario where the goal is to track a mobile sensor node in an

indoor environment using a few high-power and long range RNs. This arises in situations such

as tracking fire-fighters, who are on a rescue mission, inside a building on fire. The fire-fighters

will have wearable sensors which can be tracked using high-power transmitters placed outside the

building.

To make the experiments more realistic, we include a fading coefficient (f), which represents
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Figure 4.7: Average UN positioning error as a function of the radio range of the reference nodes
(RadioRangeRef). (n = 1000, p = 0.15, nfd = 0.05, nfa = 0.10, RadioRangeSensor = 0.10)

the fraction of all RNs which cannot be heard by the mobile node at any given time. This models

the obstructions encountered in indoor environments which limit the number of RNs that can be

heard at any point.

The RNs are placed equidistantly at the boundary of a [−0.5, 0.5]2 square grid. We use 8

RNs for the experiments. The tracking results of our algorithm under different parameter settings

are shown in Figs. 4.10 and 4.11. In Fig. 4.10 the distance estimates have ±15% error standard

deviation (nfd = 0.15) whereas in Fig. 4.11 nfd = 0.10. There is no significant degradation in

the results as the error standard deviation in the RN positions was increased from 5% to 15%

(nfa = 0.05 to 0.15). Thus we kept nfa fixed at 0.10 for all the tracking results shown here.

The estimated tracks are fairly accurate with up to 15% error standard deviation in the distance

estimates. Distance estimates with more than 20% error standard deviation begin to degrade the

results. The various error metrics for these experiments are shown in Table 4.3.
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Figure 4.8: Distributed SOCP results for irregular (C-shaped) topology: n = 300,
RadioRangeSensor = 0.15, RadioRangeRef = 0.20, p = 0.15 and nfd = 0.05. err = 0.031
and errmax = 0.444. True positions of the UNs (◦) and RNs (¦) along with the estimated node
positions (+). The solid lines indicate the error between the estimated and true UN positions.

Test Run nfd f Number of Average Error Error Standard Maximum
RNs Heard Deviation Error

1 0.15 0.50 4 0.094 0.043 0.182
2 0.15 0.40 5 0.075 0.026 0.152
3 0.10 0.50 4 0.061 0.038 0.169
4 0.10 0.40 5 0.044 0.029 0.117

Table 4.3: Simulation parameters for the tracking results. f is the fading coefficient, total number
of RNs = 8, nfa = 0.10 for all test runs.
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Figure 4.9: Distributed SOCP results for irregular (C-shaped) topology: n = 300,
RadioRangeSensor = 0.15, RadioRangeRef = 0.25, p = 0.15 and nfd = 0.05. err = 0.025
and errmax = 0.429. True positions of the UNs (◦) and RNs (¦) along with the estimated node
positions (+). The solid lines indicate the error between the estimated and true UN positions.
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Figure 4.10: Tracking Results: Circles (◦) on the [−0.5, 0.5]2 square grid represent the true RN
positions, the diamonds (¦) represent the inaccurate RN positions used for the experiments. ⊕
indicates mobile node positions along the actual path. Solid lines indicate the actual path followed
by the mobile node. Estimated paths are indicated by dash-dot lines for test run 1 and dotted
lines for test run 2. (Test Run 1: nfd = 0.15, f = 0.50. Test Run 2: nfd = 0.15, f = 0.40 )
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Figure 4.11: Tracking Results: Circles (◦) on the [−0.5, 0.5]2 square grid represent the true RN
positions, the diamonds (¦) represent the inaccurate RN positions used for the experiments. ⊕
indicates mobile node positions along the actual path. Solid lines indicate the actual path followed
by the mobile node. Estimated paths are indicated by dash-dot lines for test run 3 and dotted
lines for test run 4. (Test Run 3: nfd = 0.10, f = 0.50. Test Run 4: nfd = 0.10, f = 0.40)
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4.6 Asynchronous Distributed Algorithm

In this section we consider asynchronous execution of the distributed SOCP algorithm. The mo-

tivation for this is to understand the convergence properties of the algorithm under asynchronous

execution, and to compare the time to convergence and communication penalty with its syn-

chronous counterpart. We also demonstrate a variation of the asynchronous algorithm that allows

the distributed SOCP approach to be used with fewer RNs.

4.6.1 Synchronous vs. Asynchronous

Asynchronous algorithms lack the notion of phases and coordination between the different proces-

sors is less strict. To simulate asynchronous execution for the SOCP algorithm, we randomly pick

the nodes which will update their positions during any given iteration. Each node localizes itself

based on whatever information happens to be available from its neighbors at that time; including

some information which may not have been updated for the last few iterations.

Table 4.4 presents a representative comparison between the synchronous and asynchronous

executions of the algorithm. It is seen that the asynchronous algorithm needs about three times as

many iterations to achieve the same positioning accuracy as the synchronous version. Despite this

fact, the computational time per node (excluding the time for communication) increases by a much

smaller factor. The communication requirements for the asynchronous version might exceed those

for the synchronous execution due to the larger number of iterations resulting in more message

exchanges between nodes. Note that the tradeoff between computation time and the number of

messages assumes that there are no queuing delays affecting the computation. Considering the

results in Table 4.4 it can be said that the asynchronous algorithm converges at about the same

rate as the synchronous algorithm. This agrees with the analysis of other well-known algorithms

such as the Bellman-Ford algorithm.

4.6.2 Localization with fewer RNs using the asynchronous algorithm

One of the advantages of a distributed iterative localization algorithm is the ability to use the

nodes positioned in one iteration as pseudo RNs in the following iterations. The distributed SOCP

algorithm makes use of this implicitly. Here we outline a procedure to make explicit use of this,

thus allowing the algorithm to localize the nodes using fewer RNs.
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Total Number Computational Average Position Error
of Iterations time per node Before RN After RN

(in sec) Refinement Refinement
Synchronous 20 1.91 0.0436 0.0232
Asynchronous 60 2.67 0.0447 0.0213

Table 4.4: Comparison of Synchronous and Asynchronous Algorithm Execution. Simulation
parameters: n = 1000, nfd = 0.05, nfa = 0.10, p = 0.15, RadioRangeRef = 0.15,
RadioRangeSensor = 0.10.

In a variation of the asynchronous algorithm, instead of randomly choosing nodes which update

their positions in a given iteration, the position update will be based on the availability of at least

three neighboring nodes which have obtained an estimate of their position.

Fig. 4.12 shows the positioning results for a network with n = 500 nodes and 5% RNs (or 25

RNs). The RNs are placed on a uniform grid to ensure good coverage. It is seen that the results

converge giving an average positioning error of 0.0346 (or 21.6% of the RadioRangeSensor). This

illustrates the ability of the distributed SOCP approach to localize nodes with fewer RNs, without

loss of positioning accuracy.

Finally, in Table 4.5 we provide a representative comparison of the distributed SOCP, dwMDS [1]

and MDS-MAP algorithms [2] in terms of performance and complexity, on networks with a low per-

centage of RNs. Some of the parameter values are estimated based on the data presented in [2, 1].

dwMDS and distributed SOCP are similar in computational complexity, however the distributed

SOCP method provides better accuracy. The results using MDS-MAP algorithms, despite using

O(n3) operations, do not differ significantly from the distributed SOCP algorithm.



54

−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5
Average Positioning Error = 0.0346

Figure 4.12: Asynchronous distributed SOCP using low percentage of RNs: n = 500, p = 0.05,
RadioRangeRef = 0.16, RadioRangeSensor = 0.16, nfd = 0.10 and nfa = 0. Positioning error
err = 0.0346. True positions of the UNs (◦) and RNs (¦) along with the estimated node positions
(+). The solid lines indicate the error between the estimated and true UN positions.
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4.7 Conclusion

The proposed distributed algorithm based on SOCP relaxation solves the sensor network local-

ization problem, in the presence of inaccuracies in the RN positions and distance measurements,

with significant computational savings and without sacrificing positioning accuracy. An extensive

numerical study of the algorithm under different scenarios has been presented. This method is also

able to improve positioning of the RNs which are in the convex hull of their neighbors. The asyn-

chronous version of the algorithm also shows good convergence properties and allows localization

with fewer RNs.
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Chapter 5

Implementation of a Directional

Beacon based Positioning

Algorithm

In this chapter we discuss the implementation of a directional beacon (DB) based positioning algo-

rithm using narrowband radio frequency (RF) signals. We develop a signal processing framework

to work with the low-accuracy experimental data obtained using low-cost hardware. The posi-

tioning algorithm allows each unlocalized node (UN) to compute its position with respect to a

set of reference nodes (RNs) which are equipped with rotational directional antenna. The system

implementation is based on the GNU Radio software platform and uses Universal Software Radio

Peripheral (USRP) as the hardware component. Even though the technique needs some modifi-

cation at the RNs in the form of a rotational directional antenna, we show that the UNs do not

need hardware modifications. In contrast to positioning algorithms that rely on the bandwidth

and propagation time of the transmit signal, the positioning algorithm used here depends on the

width of the antenna beampattern and the rotational speed of the directional antenna. Our low-

cost implementation using directional antenna and stepper motor provides sub-meter positioning

accuracy. Another important advantage of this algorithm is that it does not require any synchro-

nization between the RNs and the UN. However, the RNs are assumed to be synchronized. We

use intelligent techniques such as maximum likelihood (ML) based amplitude estimation and least



58

squares based line-sf-sight (LOS) time-delay estimation, to estimate the bearing of the UN with

respect to each of the RNs in the presence of multipath components due to reflection etc. We

also demonstrate a technique to combine received signal data from multiple transmit antenna ro-

tations to improve the estimation accuracy. These techniques allow us to obtain enhanced position

estimates with sub-meter accuracy.

5.1 Localization Principle, Signal Model and Positioning

Algorithm

5.1.1 Localization Principle and System Model

This section summarizes the localization principle that is the basis for the directional beacon (DB)

based positioning algorithm [43]. We refer to the nodes whose positions are known a priori as the

reference nodes (RNs) and nodes whose positions are unknown as the unlocalized nodes (UNs).

Consider a wireless network that contains three reference nodes RN-1, RN-2 and RN-3. The RNs

can be located at arbitrary but known positions. For simplicity, we consider that the RNs are

located at the corners of a rectangular field as shown in Fig. 5.1. We further assume that the

co-ordinate system origin is at RN-3. Now, consider the situation where a unlocalized node Q

joins the network and needs to determine its coordinates (x, y) with respect to the RNs.

We now describe the DB based algorithm which will allow node Q to determine its coordinates.

This algorithm requires each RN to be equipped with a rotating directional antenna. The hardware

implementation of the rotating antenna is discussed in the next section. The localization principle

is based on observing the times when node Q receives the different beacon signals, and estimating

its angular bearings and location with respect to the RNs by triangulation [44, 45]. It is necessary

that the transmissions from different RNs are distinguishable at Q. This may be achieved, for

example, by using different frequencies or coded sequence of pulses for each beacon.

If the times at which Q receives beacons from RN-1, RN-2 and RN-3 are t1, t2 and t3, respec-

tively, the bearings of Q (refer to Fig. 5.1) can be obtained as:

α = φ1 − ω(t2 − t1)

β = φ2 − ω(t3 − t2) (5.1)

where ω is the angular speed of the rotating directional beam in rad/s, and φ1 and φ2 are the
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Figure 5.1: Arrangement of the reference nodes and the coordinate system.

constant angular separation between the directional beams of the RNs. φ1 and φ2 can be expressed

in terms of the initial angular positions of each of the RN antenna beams (θi, i = 1, 2, 3 shown in

Fig. 5.1). Thus, φ1 = θ1 − θ2 and φ2 = θ2 − θ3. From (5.1) it is clear that absolute timings are

not required as we are dealing with time differences in calculating the bearings. The coordinates

(x, y) can be obtained by making use of the geometry of the RNs. Using simple trigonometry, it

can be shown that the coordinates (x, y) of the node Q can be computed as

x =
L2 cos γ

sin β
cos(β − γ)

y =
L2 cos γ

sin β
sin(β − γ) (5.2)

where

γ = tan−1

(
L2 cot β − L1

L1 cot α− L2

)

The symmetric arrangement of the RNs in Fig. 5.1 leads to a simple relation in (5.2). However,

the localization principle used to arrive at (5.2) is valid for any arrangement of the RNs.

5.1.2 Signal Model

Each of the RNs (RN-1 to RN-3) is assumed to transmit a continuous time signal with a complex

low-pass equivalent represented as p(t). Then the low-pass equivalent of the received signal at the



60

UNs is given by

r(t) = z(ϕ)p(t) + ν(t) (5.3)

where ν(t) is the additive noise and z(ϕ) is the amplitude profile of the received signal which is

a function of the angular position ϕ = ωt of the directional antenna. The amplitude profile z(ϕ)

includes the effect of path loss and the antenna beampattern. In the presence of reflectors, z(ϕ)

can be modeled as

z(ϕ) =
M∑

m=1

ams(ϕ− ψm) (5.4)

where s(ϕ) is the expected amplitude profile based on the actual beampattern of the directional

antenna. In (5.4), we assume that M signal components (the LOS and multipath components)

are received at the UN with amplitudes {am}M
m=1 and angular shifts {ψm}M

m=1 determined by the

angle of departure of the signal components from the directional antenna.

In discrete time, the received signal samples can be expressed as

r(n) = z(n)p(n) + ν(n) (5.5)

where r(n) := r(t)|t=nTs , z(n) := z(ϕ)|ϕ=nωTs and Ts is the sampling time. Thus, the amplitude

profile of the received signal can be written as

z(n) =
M∑

m=1

ams(n− τm) (5.6)

where s(n) := s(ϕ)|ϕ=nωTs and τm := ψm/ωTs. The signal model in (5.6) highlights the differences

between the DB based positioning algorithm and the conventional time-of-arrival (TOA) schemes.

One important difference is in the interpretation of s(n). In TOA schemes, s(n) refers to the

transmitted pulse in the time domain while in the DB based positioning algorithm s(n) corresponds

to the beampattern of the directional antenna. Thus, the antenna beam-width in the DB algorithm

is analogous to the pulse-width in TOA schemes. Similarly, where the accuracy of TOA schemes is

dependent on the pulse-width (or signal bandwidth in the frequency domain) and the propagation

speed, the positioning accuracy of the DB algorithm depends on the beampattern and rotational

speed ω of the antenna. A quantitative discussion of these issues in presented in Section 5.5.4.

5.1.3 Directional Beacon based Positioning Algorithm

The directional beacon based positioning algorithm requires detection of the LOS component

to mark the time instant when the transmitting beam is aligned with the receiver. Different
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approaches can be used to detect the LOS component. For instance, the scheme in [45] searches

for the maximum of the received signal strength in order to mark the times. Due to the very nature

of indoor multipath propagation environment, the received signal consists of signal copies due to

reflection and scattering in addition to the direct LOS component. We rely on the earliest signal

component (instead of the strongest component) to detect the LOS component. This works well

for both clear LOS and obstructed LOS scenarios.

For the system shown in Fig. 5.1, each RN broadcasts its known position and the initial angular

position of its antenna beam. Using this information the unlocalized node Q executes the following

steps of the positioning algorithm to localize itself:

Step 1. RN-1 transmits a signal continuously while its antenna is being rotated at a constant

angular speed (ω).

Step 2. The received signal r(t) at the UN consists of multiple copies of the transmit signal due

to multipath propagation. The discrete-time samples r(n) of the received signal

are stored for further analysis.

Step 3. The amplitude profile z(n) of the received signal at the UN is estimated (refer Sec-

tion 5.3).

Step 4. The time shift t1 associated with the LOS signal component in z(n), due to RN-1, is

estimated (refer Section 5.4).

Step 5. Steps 1-4 are repeated for RN-2 and RN-3 to obtain t2 and t3, respectively. Finally,

the coordinates of the UN are obtained using (5.1) and (5.2).

5.2 Prototype Implementation

In this section, we describe the hardware and software implementation of the directional beacon

based positioning algorithm. Our implementation is based on a software defined radio (SDR)

platform. We use the GNU radio software and its hardware companion, the Universal Software

Radio Peripheral (USRP). The SDR set-up allows us the ease and flexibility to design and transmit

user-defined waveforms. In addition, the RF transceiver circuitry is fairly inexpensive. The rotating

beacons are generated using a directional antenna coupled to a stepper motor. Further details are
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described in the following subsections. Figs. 5.2 and 5.3 illustrate the block level set-up at the

transmitter and receiver, respectively.
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USB Cable

4 MSamples/s

GNU 
Radio

Serial Com 
HyperTerminal

Laptop

Motor Mechanical
Coupling

Rotating Directional 
Tx Antenna

Motor 
Controller

Stepper
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Figure 5.2: Hardware setup for the transmitter (or RN) with rotating directional antenna.

USRP Board
USB Cable

4 MSamples/s

GNU 
Radio

Disk
Storage

20 KSamples/s

Laptop

Software Defined Radio

Omnidirectional Rx Antenna

Figure 5.3: Hardware setup for the receiver (or UN).

5.2.1 Hardware Platform

The RF front end for the software radio comprises the USRP boards from Ettus Research [68].

The USRP consists of a daughter board (RFX2400), capable of transmitting and receiving RF sig-

nals in the 2.4-2.5 GHz band. The USRP also contains a motherboard that includes the universal

serial bus (USB) interface, a field-programmable gate array (FPGA) to implement high-speed base-

band processing and analog-to-digital converters (ADCs) and digital-to-analog converters (DACs).

There are four on-board ADCs each with a 12-bit resolution sampling at 64MSamples/s and four
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14-bit DACs each operating at 128MSamples/s.

The rotating beacons are generated by mounting a directional antenna on the stepper motor.

The directional antenna TLX2415, is a 16 element linear antenna array from Telex with a main

lobe half-power beam-width of 30◦ [69]. A bipolar stepper motor 8718L-02S, from Lin Engineering,

is used to rotate the antenna with a constant angular speed [70]. The stepper motor is chosen to

provide a torque of 900 oz-in (6.355 N.m) sufficient to rotate the antenna. For the experiments, a

narrowband signal with a bandwidth of 1 KHz is used as the transmit signal and the motor is set

to rotate the antenna at 0.47 rpm (ω = 0.049 rad/s).

5.2.2 Software Platform

The software component of the SDR set-up is called the GNU radio which is implemented as an

open public license software [71]. GNU radio provides a library of blocks for radio transmission and

reception. These blocks are glued together using the Python scripting language. We use gr block

and usrp sink c to continuously transmit a single frequency tone. The receiver is implemented using

the usrp source c block that captures the data from the RF front end and writes it to a file.

5.2.3 Experimental Setup

The experiments were carried out in an indoor fieldhouse at the University of Minnesota Recreation

Center. The test area was a rectangular field measuring 55.14 m by 43 m. Snapshots of the

experimental set-up are shown in Figs. 5.4 and 5.5. The RNs were placed at three corners of the

rectangular field and the UN whose position is to be determined was placed inside the field.

Figure 5.4: Experimental Setup: The unlocalized node whose position is to be determined.
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Figure 5.5: Experimental Setup: The reference node equipped with directional antenna.

5.2.4 Data Collection and Processing

Steps 1-4 (from Section 5.1.3) are repeated for each of the RNs. The received signal at the UN

is downconverted to a complex baseband signal. The I and Q components of the complex signal

are passed through their respective channels. Each channel path has an ADC sampling at 64

MSamples/s. To reduce the burden on the USB interface, the ADC output is downsampled by

32 resulting in a 2 MSamples/s data stream. The digital samples from the I and Q channels are

packed together and passed to the GNU radio software through the USB interface. This results

in an effective data rate of 4 MSamples/s across the USB. Since each data sample is represented

using 4 Bytes, the data rate across the USB is 16 MB/s. The samples of the received signal are

finally written to a file. To keep file sizes manageable, we store only the first 32 samples out of

every 6400 samples to the hard disk.

After the data has been pre-processed, as explained above, the collected data undergoes a

number of post-processing steps as illustrated in Fig. 5.6. The details of some of the statistical

signal processing algorithms are discussed in the next section. The collected data is first sliced

to separate the data from each RN and from multiple antenna rotations at each RN. Next the

data undergoes serial-to-parallel conversion into blocks of size Nb samples. Each data block is

then subjected to a signal detection test, the results of which are used for further grouping of the

data blocks. This aids in the estimation of the received signal amplitude profile. The estimated

amplitude profile is used in a least squares (LS) framework for multipath time-delay estimation.

Finally, the time delay estimates from all RNs are combined to obtain the bearing and position
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coordinates of the unlocalized node.
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Figure 5.6: Post processing of the experimental data using statistical signal processing techniques.

5.3 Signal Detection and Enhanced Amplitude Estimation

5.3.1 Signal Detection

Using the GNU radio software, we generate a baseband discrete time signal of the form p(n) =

sin(2πfo n + θ) where fo ∈ [0, 1] is the normalized digital frequency and θ is the phase. The

discrete-time samples of the transmit signal are passed to the USRP which produces an analog

signal of 1 KHz bandwidth. The RFX2400 daughter board on the USRP modulates the analog

signal to the 2.4-2.5 GHz RF band.

Due to practical constraints, the data transfer over the USB interface to the USRP is inter-

mittent resulting in intermittent signal transmission. We model this scenario, at the receiver, as

two hypotheses: H1 represents the case where the data is successfully transferred to the USRP

resulting in a successful transmission (and reception) and H0 represents the case where we assume

that the data transfer to the USRP failed resulting in only noise being received. Thus, the received

signal during the lth data burst under the two hypotheses can be written as

H1 : rl(n) = z sin(2πfo n + θl) + νl(n)

H0 : rl(n) = νl(n) for n = 0, · · · , Nb − 1 (5.7)

where z represents the amplitude of the received tone that is assumed to be constant over a burst

of Nb samples. This assumption is invariably true due to the high sampling rates of the order

of 106 samples/s. The amplitude z of the received signal includes the effect of path loss and the

antenna beampattern. As a first step we would like to detect whether a given burst of Nb samples

belongs to H1 or H0. The ML estimation of the amplitude z for a given data burst containing Nb
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samples is given by [72, pg. 195]

ẑ =
2

Nb

∣∣∣∣∣
Nb−1∑
n=0

rl(n)e−j2πfon

∣∣∣∣∣ . (5.8)

We then set a threshold ZT to decide between the two hypotheses such that ẑ
H0

≶
H1

ZT . The threshold

ZT is empirically set to 5-10% of the maximum value of the received signal. The received signal

samples (or data bursts) which were classified under H1 are used for further processing, as outlined

in the next subsection.

5.3.2 Enhanced Amplitude Estimation

In order to improve the quality of the ML estimate obtained from (5.8) it is necessary to increase

the number of samples used for the estimation. The ML estimate approaches the minimum variance

unbiased estimate as Nb →∞. Since the number of samples in a single burst is fixed at Nb
1, the

quality of the estimate can be enhanced by estimating the amplitude over multiple consecutive

data bursts. Let us assume we have L consecutive signal bursts (bursts satisfying hypothesis H1)2.

In [19] this is formulated as the ML amplitude estimation of a constant frequency sinusoid with

unknown initial phase.

The vector of received signal samples during the lth burst can be expressed as

rl = zHl θl + νl for l = 1, · · · , L (5.9)

where rl := [rl(0) · · · rl(Nb − 1)]T , θl := [cos θl sin θl]T and

Hl :=




0 1

sin 2πfo cos 2πfo

...
...

sin(Nb − 1)2πfo cos(Nb − 1)2πfo




.

Concatenating the L consecutive bursts

r = Hθ + ν. (5.10)

where r :=
[
rT
1 · · · rT

L

]T , θ := z[θT
1 · · · θT

L]T and H := diag(H1 · · · HL). Also note that,

θT θ = Lz2.

1In our set-up Nb = 32 since only 32 consecutive samples out of 6400 are stored to the disk.
2L has a maximum limit such that assuming the same amplitude for these bursts is reasonable.
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Using the result from [19, Chapter 6], the enhanced ML estimate of the amplitude ẑ using L

consecutive bursts is given by

ẑ =

√
θ̂

T
θ̂

L
(5.11)

where θ̂ =
(
HT H

)−1
HT r.

5.4 Estimating the LOS Component in Multipath Environ-

ment

This section describes the procedure for estimating the LOS component in a multipath environment

using the least squares error criterion. Let ẑ(n) represent the estimated amplitude of the nth

received signal burst obtained using the procedure outlined in Section 5.3. Sample values of ẑ

corresponding to the parts of the received signal which were classified as H0 are obtained through

linear interpolation of the neighboring samples. Using the multipath model for z(n) presented

in (5.6), we can write

ẑ(n) =
M∑

m=1

ams(n− τm) + η(n) (5.12)

where η(n) represents the error between the estimate ẑ(n) and the true profile z(n) given by (5.6).

It is important to note that the samples of ẑ(n) in (5.12) are spaced at an interval larger than Ts.

Let us assume we have N samples3 of ẑ(n) in a single rotation of the antenna that are used to

estimate a = [a1 · · · aM ]T and τ = [τ1 · · · τM ]T . We can write (5.12) in matrix-vector form as

ẑ = S(τ )a + η (5.13)

where ẑ = [ẑ(0) · · · ẑ(N − 1)] and S(τ ) is an N ×M matrix with [S(τ )]n,m = s(n− τm). The least

squares (LS) error criterion for the model in (5.13) becomes

J(τ ,a;n) = ||ẑ− S(τ )a||2 (5.14)

where ||.|| represents the l2 norm. The minimization of (5.14) poses two problems [73, 74]: 1) the

cost function in (5.14) is non-linear in τ , and 2) the estimates {τ̂m}M
m=1 can only take values that

are integer multiples of the sampling time period and hence limit the resolution of the estimate.

3In our set-up, N = 10000, the number of samples of ẑ(n) in one rotation of the antenna.



68

To overcome these problems we consider the equivalent frequency domain model of (5.12) which

can be expressed as

z̃(k) = s̃(k)
M∑

m=1

ame−j2πkτm/N + η̃(k) for k = 0, · · · , N − 1 (5.15)

where z̃(k) =
∑N−1

n=0 ẑ(n)e−j2πnk represents the N -point discrete Fourier transform (DFT) of

{ẑ(n)}N−1
n=0 . Similarly, s̃ is the DFT of {s(n)}N−1

n=0 . Re-writing (5.15) into an equivalent matrix-

vector form we obtain

z̃ = G̃(τ )a + η̃ (5.16)

where z̃ := [z̃(0) · · · z̃(N − 1)]T and G̃(τ ) := S̃DH(τ ) with H(τ ) being an N ×M matrix of the

form

H(τ ) :=




1 · · · 1

e−j2πτ1/N · · · e−j2πτM /N

...
. . .

...

e−j2π(N−1)τ1/N · · · e−j2π(N−1)τM /N




and S̃D := diag[s̃(0) · · · s̃(N − 1)]. Now, the least squares error criterion for the frequency domain

model in (5.16) can be formulated as

J(τ ,a; k) = ||z̃− G̃(τ )a||2. (5.17)

Since (5.17) is linear in a for a given τ , the least squares estimate for a is given by

â =
[
G̃H(τ )G̃(τ )

]−1

G̃H(τ ) z̃. (5.18)

Substituting â from (5.18) into (5.17) reduces the LS error criterion to

J(τ ; k) = ||G̃⊥(τ ) z̃||2 (5.19)

where G̃⊥(τ ) = IN − G̃(τ )
[
G̃H(τ )G̃(τ )

]−1

G̃H(τ ).

It has been shown that the error function in (5.19) is highly oscillatory or multimodal [73]

with closely spaced multiple local minima which makes the minimization extremely difficult. A

solution, suggested in [73, 74], is to allow the amplitude estimate â to be complex which results in a

smoother error function. The conjugate symmetry associated with z̃ and S̃D forces the amplitude

estimates in (5.18) to be real. Thus, to permit â to be complex, we need to consider the single
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sided spectrum in the least squares error function (5.17). Hence we define the following using

single-sided spectrums:

z̃p := [z̃(0) · · · z̃(
N

2
− 1)]T ,

S̃Dp := diag[s̃(0) · · · s̃(N

2
− 1)] and

Hp(τ ) :=




1 · · · 1

e−j2πτ1/N · · · e−j2πτM /N

...
. . .

...

e−j2π( N
2 −1)τ1/N · · · e−j2π( N

2 −1)τM /N




.

We can now re-write the LS error function in (5.17) as

JC(τ ,aC ; k) = ||z̃p − G̃p(τ )aC ||2, (5.20)

with G̃p(τ ) = S̃DpHp(τ ) and the LS estimate of the complex amplitudes given by

âC =
[
G̃H

p (τ )G̃p(τ )
]−1

G̃H
p (τ ) z̃p. (5.21)

Substituting âC into (5.20) leads to JC(τ ; k) that is known to be a smoother function with far

fewer oscillations [73]. However, the minimum of JC(τ ; k) is not the true minimum of J(τ ; k).

Adding a penalty term proportional to the imaginary part of aC to JC(τ ; k) allows us to control

its smoothness [73]. The modified error function can be written as

J
′
C(τ ; k) = ||z̃′p − G̃

′
p(τ )â

′
C ||2 (5.22)

where z̃
′
p :=




Re{z̃p}
Im{z̃p}

0


, G̃

′
p(τ ) :=




Re{G̃p(τ )} −Im{G̃p(τ )}
Im{G̃p(τ )} Re{G̃p(τ )}

0 αpIM


 and â

′
C :=


Re{âC}

Im{âC}


.

The penalty term is controlled by αp that allows us to trade-off between the smoothness of

JC(τ ; k) and its bias from the global minimum of J(τ ; k). We solve for τ̂ by minimizing the error

function in (5.22) after substituting for âC from (5.21).

5.4.1 LOS Estimation using Data from Multiple Repeated Antenna Ro-

tations

Our experimental setup allows us to collect received signal samples at the UN for multiple repeated

rotations of the transmit antenna at the RNs. Assuming the environment has not changed signif-

icantly between rotations, the data collected during each rotation will result in similar amplitude
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profiles. If we collect N samples in each of the R rotations then the received signal vector of NR

samples can be modeled as

ẑ(R) = S(R)(τ )a + η (5.23)

where ẑ(R) = [ẑ(0) · · · ẑ(NR−1)]T and S(R)(τ ) is an NR×M matrix with
[
S(R)(τ )

]
n,m

= s(〈n〉N−
τm), where 〈·〉N represents modulo-by-N operation. For M multipaths, we have τ = [τ1 · · · τM ]T

and a = [a1 · · · aM ]T . Similar to (5.15), the frequency domain model for the data from R rotations

of the antenna can be expressed as

z̃(R)(k) = s̃(R)(k)
M∑

m=1

ame−j2πkτm/NR + η̃(k) for k = 0, · · · , NR− 1 (5.24)

where z̃(R)(k) and s̃(R)(k) represents the NR-point DFT of ẑ(R) and {s(〈p〉N )}NR−1
p=0 , respectively.

Transforming (5.24) into matrix-vector form, we obtain

z̃(R) = G̃(R)(τ )a + η̃ (5.25)

where

z̃(R) := [z̃(R)(0) · · · z̃(R)(NR− 1)]T ,

G̃(R)(τ ) := S̃(R)
D H(R)(τ ),

S̃(R)
D := diag[s̃(R)(0) · · · s̃(R)(NR− 1)]

and H(R)(τ ) an NR ×M matrix with
[
H(R)(τ )

]
p,m

= e−j2π(p−1)τm/NR. The LS estimates of a

and τ can be obtained by minimizing an LS error function of the form (5.22).

5.5 Experimental Results

5.5.1 Estimation of Amplitude Profile

The first step in the DB based positioning algorithm is to estimate the amplitude profile of the

sinusoidal signal received at the unlocalized node Q. A typical plot of the received signal at node

Q for one 90◦ rotation of the transmitting antenna at RN-2 is shown in Fig. 5.7. The ML estimate

of the amplitude profile ẑ(n), using (5.8) to estimate the amplitude of the sinusoid in a single

burst of the received data, is shown in Fig. 5.8(a). To improve the estimated amplitude profile, we

determine the instances of consecutive signal bursts and obtain an enhanced ML estimate of the
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Figure 5.7: Received signal from 90◦ rotation of the RN-2.

sinusoid amplitude using (5.11). The enhanced amplitude profile is shown in Fig. 5.8(b). The use

of consecutive bursts to estimate the amplitude reduces the effect of noise as seen by comparing

Figs. 5.8(a) and 5.8(b).

5.5.2 Estimation of the LOS Component

We use the algorithm described in Section 5.4 to estimate the LOS and multipath components in

the received signal data. For simplicity, we use M = 2, i.e., we consider the LOS component and

a single reflection or multipath component. In our experimental setup, the estimated amplitude

profile ẑ(n) consists of N = 10000 samples for 90◦ rotation of the directional antenna (ϕ = 0 to

90◦). These samples are taken every 3.2 ms. In Fig. 5.9(a) a plot of the estimated amplitude profile

ẑ(n) for the received signal from RN-3 is shown. The antenna beampattern (or radiation pattern)

for the azimuth angle ranging from 0 to 90◦, which represents s(n), is shown in Fig. 5.9(b).

To keep the required computations at a reasonable level, we downsample ẑ(n) and s(n) by 16

and use 1024-point DFT. For the penalty term in (5.22), we use αp = 104. MATLAB optimization

routines (fminunc) are used to minimize (5.22) and obtain the time-delay estimate τ̂ = [τ̂1 τ̂2]T .

Substituting τ̂ in (5.21) gives us the LS estimate of the complex amplitude âC = [âC1 âC2]T which

comprises the LOS and multipath component amplitudes. For the received signal from RN-3, the
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(a) ML amplitude estimation using single burst of Nb = 32 samples.
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(b) ML amplitude estimation using multiple consecutive bursts.

Figure 5.8: Estimated amplitude profile of the received signal from RN-2 (Fig. 5.7).
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(a) Estimated amplitude profile of the received
signal.
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(b) Antenna Beampattern representing s(n).
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(c) Estimated LOS and multipath components.

Figure 5.9: Experimental results based on the received signal from RN-3.
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estimated LOS and multipath components are shown in Fig. 5.9(c) with amplitudes |âC1| and

|âC2|, respectively. We estimate the earliest component (smaller of the τi’s, i = 1, 2) as the LOS

component which is true for both clear LOS and obstructed LOS scenarios. This procedure is

repeated for the received signal from each RN to obtain the estimates for ti, i = 1, 2, 3 in (5.1).

5.5.3 Position estimation and lower bound on estimation error variance

Based on the estimated LOS component for each RN, we obtain the corresponding time-delay

estimates ti, i = 1, 2, 3. Finally, we use (5.1) and (5.2) to estimate the position of the unlocalized

node Q. For further improving the accuracy of the position estimate we use the technique outlined in

section 5.4.1 for obtaining the time-delay estimates using multiple 90◦ rotations of the transmitting

antenna at each RN. Since this increases the data record length used for estimation, we expect

the signal-to-noise ratio (SNR) to increase and the estimation error variance to decrease as we add

data from multiple antenna rotations. In Fig. 5.10, we plot the variance of the position estimation

error as a function of the number of 90◦ antenna rotations. It is seen that with as few as eight 90◦

rotations of the transmit antenna, the estimation error variance goes down by 10 dB. Let E denote

the position estimation error. We obtain a lower bound on the variance of the position estimation

error, the details of which are given in Appendix B, as:

var(E) ≥ (
K2

x + K2
y

) · 1
ξ

No/2 F̄ 2
(5.26)

It should be noted that this bound is not as tight as the Cramer-Rao lower bound (CRLB) and is

rarely attainable, but is mathematically more tractable.

Using a single rotation of the antenna, the root mean square value of the position estimation

error is 1.457 m. After using data from eight 90◦ rotations of the antenna the root mean square

position error goes down to 0.362 m.
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Figure 5.10: Position estimation error variance as a function of the number of rotations of the
antenna.

5.5.4 Effect of Time Delay Estimation, Synchronization and Motor Speed

Step Errors on Position Estimation

Following the notation used in Appendix B, we can express the estimation error in the x and y

coordinates as:

∆x̂ =
∂g(t)
∂γ

· ∂γ

∂α
· ω ·∆t = Kx ·∆t

∆ŷ =
∂h(t)
∂γ

· ∂γ

∂α
· ω ·∆t = Ky ·∆t

where ∆t is the time delay estimation error. Thus the position estimation error is:

E =
√

(∆x̂)2 + (∆ŷ)2. (5.27)

On the other hand, for a TOA based technique, the position estimation error corresponding to a

time delay estimation error of ∆t is given by:

ETOA ≈
√

(c∆t)2 + (c∆t)2 (5.28)

where c = 3× 108 m/s is the speed of electromagnetic waves in free space.
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Comparing (5.27) and (5.28) it is seen that the position error for directionality based techniques

is proportional to the angular speed of the rotational antenna (ω) while for TOA techniques it is

proportional to the signal propagation speed (c) which is many orders of magnitude larger. This

comparison is also illustrated in Fig. 5.11. The directional beacon based method results in a

positioning error of less than 0.5 m with up to 500 milliseconds error in time delay estimation for

ω = 0.049 rad/s. Fig. 5.11 also shows that the time needed for each position estimation using the

directional beacon based method can be reduced significantly by increasing ω without significant

loss in positioning accuracy. The positioning error remains nearly 8 orders of magnitude smaller

than TOA schemes for similar time-delay estimation errors.

Similar analysis can be applied to the synchronization error between the reference nodes. The

directional beacon based technique can tolerate synchronization errors of the order of milliseconds,

which has been shown to be achievable in real applications [56], without significant positioning

errors. Another source of error in the directional beacon based algorithm would be due to changes

in the angular speed of the rotational antenna (ω). The stepper motor used in our experiments is

rated for a step error of ±1.08 arc minutes (or 0.018◦). It can be shown that a 500 milliseconds

error in time delay estimation is equivalent to a 1.4◦ step error over the duration of one position

estimation and the rated step error is close to two orders of magnitude lower. This shows that the

step error can be safely ignored as a source of error in our experimental set-up.

5.6 Conclusion

The prototype implementation for a directional beacon based positioning algorithm using RF sig-

nals was presented. Novel techniques for improving the position estimation accuracy using max-

imum likelihood amplitude estimation, least squares based time-delay estimation and combining

data from multiple antenna rotations, were presented. It was also shown that the accuracy of the

directional beacon based algorithm depends on the width of the antenna beampattern and the

rotational speed of the directional antenna. We demonstrated, through experiments, the ability to

obtain position estimation results with sub-meter accuracy. The robustness of the algorithm (and

the implementation) to timing and synchronization errors was also demonstrated.
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Figure 5.11: Comparison of the Directional Beacon and TOA based position estimation methods
in terms of their sensitivity to time delay estimation error.
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Chapter 6

Sensor Selection and Event

Detection using Heuristic based

Sequential Hypothesis Testing

In this chapter we address the sensor selection and event detection problems in applications where

sensor networks are used for monitoring critical points or infrastructure and detecting abnormal

or emergency conditions. In these applications, sensor nodes are used to automatically detect such

conditions and enable a central node or the fusion center to take further action. Examples of such

applications include detecting leaks in nuclear power plants, detecting heat sources in the context

of forest fires etc. The goal in these network deployments is to detect these conditions (or events)

with the minimum amount of delay. We propose a greedy heuristic based sensor selection and

a sequential detection procedure that significantly improves the detection speed [75]. It will be

shown that the greedy heuristic can be expressed in closed form for most probabilistic models.

In the proposed model, the fusion center based on some a priori knowledge of the sensors in its

neighborhood, selects one sensor at a time while maximizing a greedy heuristic. Specifically, instead

of collecting a fixed number of measurements, the fusion center collects measurements from one

sensor at each time step, until by some sequential decision rule the collection stops and a decision

is made. We compare the performance of the sequential detector with that of a non-sequential or

fixed sample size (FSS) detector. The comparison is based on the number of measurements needed
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to achieve a certain detection accuracy. The sequential procedure significantly outperforms the

FSS detector in that it always needs fewer measurements on average to achieve the same detection

performance. A simplified heuristic is also derived for the Gaussian probabilistic model. The

simplified heuristic performs as good as or slightly better than the greedy heuristic. The greedy

heuristic based sensor selection provides a general framework applicable for arbitrary probabilistic

models and for models where a simplified heuristic is difficult to obtain. We also present an

extension of the sensor selection and sequential detection procedure for M-ary hypothesis testing

problems.

6.1 Sensor Selection and Event Detection: System Model

In this section we describe the underlying system model. A wireless sensor network typically con-

sists of a fusion center – a central node with high computational power for data processing and

decision making, few local coordinator nodes – nodes with relatively high computational power

which manage sensor nodes in a certain geographical region, and a large number of sensor nodes.

Fig. 6.1 illustrates the system architecture. The fusion center communicates with the local coordi-

nators directly or through multiple hops involving other nodes. As a result of this communication

the fusion center is aware of the overall network topology. We consider sensor network deployments

aimed at event detection where sensor nodes are used to automatically detect critical events or

conditions. It has been observed that typically the occurrence and non-occurrence of events can be

modeled as two hypotheses which differ in the statistics (or distributions) of the sensor measure-

ments. The local coordinators are tasked with querying the sensor nodes in their region regularly

to obtain estimates of the measurement statistics. This can be carried out using a mechanism

similar to continuous probabilistic query (CPQ) proposed in [54]. The local coordinators pass this

information to the fusion center which uses it to query specific sensor nodes, following some sensor

selection criterion, allowing it to detect events when they occur. This outlines the centralized

framework where the decision making and event detection occurs at the fusion center. If the local

coordinators manage relatively large geographical regions a distributed implementation might be

more efficient where each local coordinator uses the above framework to detect events in its region

and notifies the fusion center when an event is detected.



80

Local 
Coordinator

Fusion 
Center

Local 
Coordinator

Figure 6.1: Typical Wireless Sensor Network System Model

6.2 Binary Sequential Hypothesis Testing

Consider a scenario where the goal is to detect the occurrence of an event using a network of N

sensor nodes. We can formulate this as a binary hypothesis testing problem, where H0 represents

the null hypothesis or non-occurrence of the event and H1 the alternative hypothesis or the case

where the event occurred. Assuming we have some knowledge about the probability density func-

tions (PDF) or distributions of the sensor measurements under each hypothesis, we can model the

two hypotheses as:

H0 : yk ∼ p
(
yk/H0

)
and

H1 : yk ∼ p
(
yk/H1

)
, for k = 1, . . . , N (6.1)

where yk represents the kth sensors’ measurement and p
(
yk/Hm

)
,m = 0, 1 its conditional PDF.

Let yk
n denote the kth sensors’ measurement at the nth sampling instant. Given a set of measure-

ments {yk1
1 , · · · , ykn

n }, where the sequence ki(i = 1, . . . , n) represents the indices of the sensors

which were selected for measurement at each sampling instant, we can compute the log-likelihood

ratio Λ(n) as:

Λ(n) = log

{
p(yk1

1 , · · · , ykn
n /H1)

p(yk1
1 , · · · , ykn

n /H0)

}
(6.2)

A sequential decision rule is formulated as follows:

1. Decide H1 if Λ(n) > b

2. decide H0 if Λ(n) < a, else
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3. perform another measurement if Λ(n) > a and Λ(n) < b.

where a and b are thresholds such that −∞ < a ≤ 0 ≤ b < ∞. This is an example of a sequential

probability ratio test (SPRT). It has been shown that SPRT is the detector with the smallest

average sample size [76]. Using Wald’s approximation, the thresholds a and b are given as:

b ' log
(

PD

PFA

)

a ' log
(

1− PD

1− PFA

)
(6.3)

where

PD = Probability of detection =
∫ ∞

b

p (Λ(n) > b/H1) dΛ

PFA = Probability of false alarm =
∫ ∞

b

p (Λ(n) > b/H0) dΛ. (6.4)

For a desired detection performance, in terms of PD and PFA, we can use (6.3) to determine the

thresholds. Assuming that all the sensor measurements are independent the log-likelihood ratio

can be written in a recursive form as [77]:

Λ(n) = log

{(
n−1∏

i=1

p(yki
i /H1)

p(yki
i /H0)

)
· p(ykn

n /H1)
p(ykn

n /H0)

}

= Λ(n− 1) + log
{

p(ykn
n /H1)

p(ykn
n /H0)

}
(6.5)

6.3 Greedy Heuristic based Sensor Selection

In event detection problems, in addition to meeting the performance criterion based on the de-

tection and false alarm probabilities, it is equally important to detect the occurrence of the event

as soon as possible. Assuming that each sensor observation takes the same amount of time, we

would like to select the sensors to be sampled for measurement in a way that minimizes the total

observation time. In other words, we would like to select as few sensors as possible while meeting

the detection performance. Based on this we define the following greedy heuristic:

At each time instant, select a sensor for measurement which maximizes the probability of making

a correct decision on the next time instant (PC).

The probability of making a correct decision can be expressed as the sum of: (a) probability that

Λ(n) > b (i.e., decide on H1) when H1 is the true hypothesis, and (b) probability that Λ(n) < a
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when H0 is the true hypothesis. Thus we can express the greedy heuristic or the probability

measure PC as:

PC(k, n) = P (Λ(n) > b/H1) · P p(H1) + P (Λ(n) < a/H0) · P p(H0) (6.6)

where

Λ(n) = Λ(n− 1) + log
{

p(yk
n/H1)

p(yk
n/H0)

}

and P p(Hm),m = 0, 1 represents the a posteriori probability of each hypothesis which can be

written as:

P p(H1) = P
(
H1/yk1

1 , · · · , y
kn−1
n−1

)

=
P

(
yk1
1 , · · · , y

kn−1
n−1 /H1

)
· P (H1)

P
(
yk1
1 , · · · , y

kn−1
n−1

)

=

{∏n−1
i=1 p

(
yki

i /H1

)}
· P (H1)

P
(
yk1
1 , · · · , y

kn−1
n−1 /H0

)
· P (H0) + P

(
yk1
1 , · · · , y

kn−1
n−1 /H1

)
· P (H1)

.

Thus,

P p(Hm) =
Pm(n− 1) · P (Hm)∑

m=0,1 Pm(n− 1) · P (Hm)
, for m = 0, 1 (6.7)

where

Pm(n− 1) =
n−1∏

i=1

p
(
yki

i /Hm

)

and P (Hm) is the a priori probability of each hypothesis before any sensor measurements were

obtained. At any time instant n we perform the following maximization to decide which sensor to

select for the next measurement:

kn = argmax
k

PC(k, n) where k ∈ {1, · · · , N}. (6.8)

6.3.1 Greedy sensor selection and sequential detection

The overall combined strategy for greedy heuristic based sensor selection and sequential detection

can be outlined as follows:

Step 1. Compute the thresholds a and b based on the desired detection performance (PD and

PFA).

Step 2. Initialize Λ(0) = 0 and i = 1.
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Step 3. Greedy Selection: Solve for ki, the index of the sensor to be used for the next mea-

surement, using (6.8) and (6.6).

Step 4. Obtain measurement from the kth
i sensor and update the log-likelihood ratio to Λ(i)

using (6.5).

Step 5. Compare the log-likelihood ratio to the thresholds based on the sequential decision

rule.

Step 6. Repeat steps 3 − 5 above for successive measurements (i = i + 1), until a decision is

made in step 5.

6.4 Optimal Sensor Selection

In this section we consider the optimal sensor selection strategy. The optimal sensor selection

strategy can be stated as follows:

Given the sample observation values yki
i , where i = 1, . . . , n and ki ∈ {1, . . . , N}, from all

sensors for all time steps, choose a sequence of sensors (or sensor observations) which will allow

us to make a decision at the earliest (i.e., shortest sequence) while maximizing the probability of a

correct decision.

The optimal sensor selection and optimal sequence length are determined as follows (refer to

Fig. 6.2 for an illustration of the optimal selection strategy with two sensors):

Step 1. We assume that the observation values yki
i , where i = 1, . . . , n and ki ∈ {1, . . . , N},

from all sensors for all time steps are known a priori.

Step 2. Start with all sequences of length i = 1.

Step 3. For each sequence of length i (there are O(2i) such sequences), compute the log-

likelihood ratio and compare it with the thresholds a and b based on the sequential

decision rule.

Step 4. If any sequence in step 3 results in a decision it represents the optimal sequence. If

more than one sequence of length i results in a decision, the optimal sequence is

chosen as the one which maximizes the posteriori probability.
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Step 5. Repeat steps 3− 4 for sequences of length i = i + 1, until a decision results in step 4.

In Section 6.9 we provide a representative comparison, based on Monte Carlo simulations, between

the greedy heuristic based sensor selection and the optimal sensor selection strategies.

6.5 Analytical Evaluation under Gaussian Modeling

The general framework for sequential detection and greedy heuristic based sensor selection was

presented in Sections 6.2 and 6.3. We now consider a specific model and provide detailed analysis

for the sensor selection and sequential detection problems. We assume the sensor measurements

to be modeled as being Gaussian distributed. This model is justified since measurement noise

in sensors is frequently modeled by a zero-mean Gaussian distribution with finite variance. In

addition, in parametric estimation theory estimation errors are commonly approximated using

Gaussian distributions.

Consider the binary hypothesis testing problem with N sensors which are the available sources

of measurements. The hypotheses can be expressed as:

H0 : yk ∼ N (µ0,k, σ2
0,k)

H1 : yk ∼ N (µ1,k, σ2
1,k) for k = 1, · · · , N. (6.9)

Using this we obtain an expression for PC(k, n).

P (Λ(n) > b/H1) = P

(
Λ(n− 1) + log

(
σ0,k

σ1,k

)
+

(yk
n − µ0,k)2

2σ2
0,k

− (yk
n − µ1,k)2

2σ2
1,k

> b/H1

)

= P

(
(yk

n − µ0,k)2

2σ2
0,k

− (yk
n − µ1,k)2

2σ2
1,k

> b− Cn−1/H1

)
(6.10)
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Figure 6.2: Optimal sensor selection with two sensors (or observation/data sources) for n time
steps. yki

i represents the sample observation from the kth
i sensor at the ith time step.
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where Cn−1 = Λ(n− 1) + log
(

σ0,k

σ1,k

)
. The above expression can be re-written as:

P (Λ(n) > b/H1) = 1 +
1
2
· erfc(α′2)−

1
2
· erfc(α′1), for σ0,k 6= σ1,k (6.11)

and

P (Λ(n) > b/H1) =
1
2
erfc

(
−C

B − µ1,k√
2σ1,k

)
, for σ0,k = σ1,k. (6.12)

Similarly, we can write:

P (Λ(n) < a/H0) = P

(
Λ(n− 1) + log

(
σ0,k

σ1,k

)
+

(yk
n − µ0,k)2

2σ2
0,k

− (yk
n − µ1,k)2

2σ2
1,k

> a/H0

)

= P

(
(yk

n − µ0,k)2

2σ2
0,k

− (yk
n − µ1,k)2

2σ2
1,k

< a− Cn−1/H0

)
(6.13)

Thus:

P (Λ(n) < a/H0) =
1
2
erfc(β′1)−

1
2
erfc(β′2), for σ0,k 6= σ1,k (6.14)

and

P (Λ(n) < a/H0) = 1− 1
2
erfc

(
−C′

B − µ0,k√
2σ0,k

)
, for σ0,k = σ1,k (6.15)

The details are given in Appendix C. We now consider two scenarios under the Gaussian assump-

tion.

6.5.1 Homogeneous Model: Each sensor has the same variance across

hypotheses

In the homogeneous model, we assume that a sensor has the same variance across hypotheses, i.e.

σ0,k = σ1,k = σk or A = 0. Under this assumption we can express PC(k, n) as:

PC(k, n) =
1
2
erfc

(
−C

B − µ1,k√
2σk

)
· P p(H1) +

[
1− 1

2
erfc

(
−C′

B − µ0,k√
2σk

)]
· P p(H0)

=
1
2
erfc

(
−C

B − µ1,k√
2σk

)
+

[
1− 1

2
erfc

(
−C′

B − µ0,k√
2σk

)
− 1

2
erfc

(
−C

B − µ1,k√
2σk

)]
· P p(H0)

Thus the sensor selection rule is:

kn = argmax
k

PC(k, n)

⇐⇒ argmax
k

{
1
2
erfc

(
−C

B − µ1,k√
2σk

)
+

[
1
2
erf

(
−C′

B − µ0,k√
2σk

)
+

1
2
erf

(
−C

B − µ1,k√
2σk

)]
· P p(H0)

}

(6.16)
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6.5.2 Heterogeneous Model: Each sensor has different variance across

hypotheses

In the heterogeneous model, we assume that a sensor has different variance across hypotheses, i.e.

σ0,k 6= σ1,k or A 6= 0. Thus,

PC(k, n) =
(

1 +
1
2
erfc(α′2)−

1
2
erfc(α′1)

)
· P p(H1) +

(
1
2
erfc(β′1)−

1
2
erfc(β′2)

)
· P p(H0).

The sensor selection rule is:

kn = arg max
k

[(
1 +

1
2
erfc(α′2)−

1
2
erfc(α′1)

)

+
1
2

(erfc(α′1)− erfc(α′2) + erfc(β′1)− erfc(β′2)− 2) · P p(H0)
]

(6.17)

It should be noted that the greedy heuristic based selection and sequential detection strategy can

be extended to other probabilistic models using the general framework presented in Sections 6.2

and 6.3.

6.6 Sensor Selection based on Distance between Hypothe-

ses: Simplified Heuristic

In this section we attempt to obtain a simplified heuristic under the Gaussian probabilistic model

based on the expressions presented in Section 6.5. It will be shown that for the Gaussian case the

simplified heuristic provides a measure of the distance between the hypotheses.

6.6.1 Homogeneous Model

The following upper bounds for erfc(x) are well known [78]:

erfc(x) < e−x2 ≤ 1
(1 + x2)

(6.18)
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Using (6.16), (6.18) and the notation from Appendix C we can approximate the greedy heuristic

based sensor selection rule as:

kn = argmax
k

1
2
erfc

(
−C

B − µ1,k√
2σk

)

︸ ︷︷ ︸
f1k

+




1− 1
2
erfc

(
−C′

B − µ0,k√
2σk

)

︸ ︷︷ ︸
f2k

−1
2
erfc

(
−C

B − µ1,k√
2σk

)


· P p(H0)

⇐⇒ argmax
k

1
2

(
1

1 + f2
1k

)
+

[
1− 1

2

(
1

1 + f2
2k

)
− 1

2

(
1

1 + f2
1k

)]
· P p(H0) (6.19)

⇐⇒ argmax
k

(
µ1,k − µ0,k

σk

)
(6.20)

where f1k = (b−Cn−1)σk√
2(µ1,k−µ0,k)

− (µ1,k−µ0,k)

2
√

2σk
and f2k = (µ1,k−µ0,k)

2
√

2σk
− (Cn−1−a)σk√

2(µ1,k−µ0,k)
after simple algebraic

manipulations. It can be seen that f1k is monotonically decreasing and f2k monotonically increasing

with
(

µ1,k−µ0,k

σk

)
. (6.19) is obtained after using the upper bounds from (6.18). (6.20) follows from

the monotonicity properties of f1k and f2k. We assume that the second term in (6.19) can be

safely left out since f1k and f2k are monotonic in opposite directions with similar rates of change.

6.6.2 Heterogeneous Model

Starting with (6.17) and following an approach similar to that used for the homogeneous model

above we obtain:

kn = argmax
k

[erfc(α′2)− erfc(α′1)] · (1− P p(H0))− [erfc(β′1)− erfc(β′2)] · P p(H0)

⇐⇒ argmax
k

[
1

1 + α′2
2 −

1
1 + α′1

2

]
· (1− P p(H0)) +

[
1

1 + β′2
2 −

1
1 + β′1

2

]
· P p(H0) (6.21)

⇐⇒ argmax
k

(
(µ1,k − µ0,k)2

σ1,k · σ0,k

)
(6.22)

where α′1 = −σ1,k√
2

(
µ1,k−µ0,k

σ2
1,k−σ2

0,k

)
− σ0,k

√
1
2

(
µ1,k−µ0,k

σ2
1,k−σ2

0,k

)2

+
(

b−Cn−1

σ2
1,k−σ2

0,k

)
. To better understand the

monotonic property the following approximation can be used: α′1 ≈ − 1√
2

(
µ1,k−µ0,k

σ1,k−σ0,k

)
. Similar

expressions can be obtained for α′2, β′1 and β′2. Using these approximate expressions in (6.21)

followed by algebraic manipulations results in (6.22). It can be seen that the simplified heuristic

in (6.22) is a measure of the distance between the two hypotheses.

It must be noted that the simplified heuristic in this section are derived for the Gaussian model.

For other probabilistic models such simplified expressions may be difficult to obtain in which case

the greedy heuristic (6.6) will be used for sensor selection.
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6.7 Fixed Sample Size Detector

In this section we derive a fixed sample size (FSS) detector. An FSS detector is designed to

operate on a block of data. A test statistic is computed based on a fixed number of observations

and compared against a threshold [79]. For the binary hypothesis problem with two sources in

(6.9), consider an FSS detector with the decision rule Λ(nFSS)
H1

≷
H0

γ̃ with nFSS being the fixed

number of observations. The log-likelihood ratio can be written as:

Λ(nFSS) = log

{
nF SS∏

i=1

p(yki
i /H1)

p(yki
i /H0)

}

= log

{
n1∏

i1=1

p(y1
i1

/H1)
p(y1

i1
/H0)

·
n2∏

i2=1

p(y2
i2

/H1)
p(y2

i2
/H0)

}

where the first product term corresponds to observations from sensor source ki = 1 and the second

term is due to observations from the source ki = 2. Also, n1 + n2 = nFSS . Assuming Gaussian

distributions (6.9):

Λ(nFSS) = log

{(
σ0,1

σ1,1

)2n1

·
(

σ0,2

σ1,2

)2n2
}

+
n1∑

i1=1

[(
y1

i1
− µ0,1

)2

2σ2
0,1

−
(
y1

i1
− µ1,1

)2

2σ2
1,1

]

+
n2∑

i2=1

[(
y2

i2
− µ0,2

)2

2σ2
0,2

−
(
y2

i2
− µ1,2

)2

2σ2
1,2

]
(6.23)

6.7.1 Homogeneous Model

Under the homogeneous model (σ0,k = σ1,k = σk, k = 1, 2), (6.23) reduces to:

Λ(nFSS) =
(µ1,1 − µ0,1)

σ2
1

n1∑

i1=1

y1
i1 +

(µ1,2 − µ0,2)
σ2

2

n2∑

i2=1

y2
i2 + constant terms

H1

≷
H0

γ̃

= c1

n1∑

i1=1

y1
i1 + c2

n2∑

i2=1

y2
i2 + c3

H1

≷
H0

γ̃

Thus the decision rule for the FSS detector can be written as:

L = c1

n1∑

i1=1

y1
i1 + c2

n2∑

i2=1

y2
i2

H1

≷
H0

γ (6.24)

The conditional distributions of L under the two hypotheses are:

p(L/H0) = N (M0, S)

p(L/H1) = N (M1, S)
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where M0 = c1n1µ0,1 + c2n2µ0,2, M1 = c1n1µ1,1 + c2n2µ1,2 and S = c2
1n1σ

2
1 + c2

2n2σ
2
2 . Thus we

obtain the following constraints based on the desired PD and PFA:

1
2
erfc

(
γ −M1√

2S

)
≥ PD

1
2
erfc

(
γ −M0√

2S

)
≤ PFA (6.25)

Using (6.25) we obtain:

M1 −M0√
2S

≥ erfc−1(2PFA)− erfc−1(2PD) = κ (6.26)

We are trying to solve for n1 and n2, while trying to minimize the total number of samples (nFSS).

This can be formulated as the following optimization problem:

min
n1,n2

n1 + n2

subject to (µ1,1−µ0,1)
2

σ2
1

n1 + (µ1,2−µ0,2)
2

σ2
2

n2 ≥ 2κ2 (6.27)

n1 + n2 ≥ 1

n1 ≥ 0, n2 ≥ 0

6.7.2 Heterogeneous Model

The log-likelihood ratio (6.23) indicates that the FSS detector under the heterogeneous model is

somewhat intractable. In addition the FSS detector is unable to adapt to non-stationarity of the

measurements such as time-varying means.

6.8 Sensor Selection for M-ary Hypothesis Testing

In this section we present the framework for extending sensor selection and event detection to

scenarios involving a decision between M (M > 2) simple hypotheses, H1,H2, . . . ,HM . Let us

define the following pairwise log-likelihood ratio [80]:

Λp,q(n) = log

{
p(yk1

1 , · · · , ykn
n /Hp)

p(yk1
1 , · · · , ykn

n /Hq)

}

for p, q = 1, . . . , M . The binary sequential hypothesis testing procedure, outlined in Section 6.2,

can be modified for the M -hypotheses case as follows:

1. Compute Λp,q(n), p, q = 1, . . . , M, p 6= q.



90

2. Decide Hp if Λp,q(n) > Ap,q ∀q = 1, . . . , M, q 6= p, else

3. perform another measurement and repeat the test.

The thresholds Ap,q are given as [81]:

Ap,q =
1

Pe(p, q)
·

1−

∑

q 6=p

Pe(q, p)


 (6.28)

where Pe(p, q) p 6= q is the probability of incorrectly deciding in favor of Hp when Hq is the true

hypothesis. Thus, Pe(p, p) is the probability of correctly deciding in favor of Hp. Also, note that

ΣM
q=1Pe(p, q) = 1.

In addition to meeting the performance constraints imposed by these probabilities, we would

like to make a decision as soon as possible. This can be achieved by collecting as few sensor

observations as possible in order to make a decision while meeting the detection performance. We

consider the following two sensor selection strategies:

1. Select a sensor, for the next observation instant, which maximally separates the most likely

hypothesis from all the other hypotheses, i.e., mathematically:

kn = argmax
k





M∑
q=1

q 6=ml

dk
ml,q





(6.29)

where dk
p,q is a measure of the separation between hypotheses Hp and Hq based on the

observations from sensor k, and Hml
is the most likely hypothesis based on the posteriori

probabilities (6.7).

2. Select a sensor, for the next observation instant, which maximally separates the two most

likely hypotheses, i.e., mathematically:

kn = argmax
k

{
dk

ml1,ml2

}
(6.30)

where Hml1 and Hml2 are the two most likely hypotheses based on the posteriori probabilities.

Assuming Gaussian models for the different hypotheses, we can express the separation between

two hypotheses as dk
p,q =

(
(µp,k−µq,k)2

σp,k·σq,k

)
, based on the simplified heuristic derived in Section 6.6.
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6.9 Sensor Selection and Detection Performance under Gaus-

sian Modeling

For the experiments in this section, we consider the following binary hypothesis testing case with

two sensors (i.e., N = 2 for simplicity of illustration):

H0:
y1 ∼ N (µ0,1, σ

2
0,1)

y2 ∼ N (µ0,2, σ
2
0,2)

H1:
y1 ∼ N (µ1,1, σ

2
1,1)

y2 ∼ N (µ1,2, σ
2
1,2)

To investigate the sensor selection performance, we compare the greedy heuristic based sensor

selection with the optimal sensor selection strategy. The average sequence length needed for

detection using the greedy heuristic and the optimal selection strategies are computed using 1000

runs of the Monte Carlo simulation. Fig. 6.3 shows the results for the Gaussian homogeneous

model with time-invariant mean. It can be seen that on average the number of samples needed for

the greedy heuristic based sensor selection strategy is within 10% of that needed using the optimal

selection strategy.

Next, we discuss the performance of the following strategies for the sensor selection and event

detection problems:

1. Greedy heuristic based sensor selection and sequential detection.

2. Distance between hypotheses (simplified heuristic) based sensor selection and sequential

detection.

3. Fixed sample size detector.

We compare the strategies in terms of the average number of samples required for detection. The

average number of samples is a measure of the speed of the detector, since smaller this number

is, the faster the detection will be. We investigate the performance under both homogeneous and

heterogeneous Gaussian models. In addition, for each model we investigate the effect of time

varying statistics on the detection performance. Specifically, we consider the effect of time varying

means. The results of 5000 runs of Monte Carlo simulations are averaged to obtain the performance

curves. The performance criterion for detection are: PFA = 1 × 10−5 and PD is varied from 0.85

to 0.99.
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Figure 6.3: Comparison of the greedy heuristic based sensor selection with the optimal sensor
selection.

6.9.1 Performance under Homogeneous Model

Distributions with Time Invariant Mean

We assume that the means of the Gaussian distributions are time-invariant. Fig. 6.4 shows that

the strategies based on greedy heuristic and the simplified heuristic have very similar performance.

In addition these methods need on average less than half the number of samples for detection as

the FSS detector (i.e., the FSS detector needs at least twice the amount of time for detection).

Distributions with Time Varying Mean

Next we assume that the means of the Gaussian distributions are time varying. Specifically,

µm,k := µm,k(t) ∼ N (µm,k, σ2
µ) for m = 0, 1 and k = 1, 2.

Fig. 6.5 shows that the greedy heuristic based method takes on average about 20% more samples

than the method based on the simplified heuristic. However, both these methods significantly

outperform an FSS detector. This indicates that under the homogeneous model the sensor selection
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Figure 6.4: Gaussian Homogeneous Model with time invariant mean.

based on the simplified heuristic which is analogous to maximizing the distance between hypotheses

takes better advantage of the time varying statistics.

The proposed strategies extend in a straightforward way for a large number of sensors (N > 2).

Fig. 6.6 illustrates the detection performance when four sensors are available for measurement

under the Gaussian homogeneous model with time varying means.

6.9.2 Performance under Heterogeneous Model

Distributions with Time Invariant Mean

For the Gaussian heterogeneous model with time-invariant means, the sensor selection based on

simplified heuristic performs slightly better than the greedy heuristic, taking on average 15% less

samples for detection (refer Fig. 6.7).

Distributions with Time Varying Mean

With time varying means, the greedy heuristic and the simplified heuristic based sensor selection

methods result in very similar performance. Fig. 6.8 shows that the greedy and the simplified
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Figure 6.5: Gaussian Homogeneous Model with time varying mean.
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Figure 6.6: Gaussian Homogeneous Model with time varying mean for the case with four sensors
(N = 4).
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Figure 6.7: Gaussian Heterogenous Model with time invariant mean.

heuristic need about the same number of samples on average for detection.

6.9.3 M-ary Hypothesis Testing

Next we consider the M-ary hypothesis testing scenario with M > 2. Assume that we have two

sensors or sources for the observations (i.e., N = 2) and there exist three mutually exclusive and

exhaustive hypotheses (i.e., M = 3). The desired probability of making a correct decision is the

same for all hypotheses i.e., Pe(p, p) ∀p = 1, . . . , M . We also assume that the probability of making

an incorrect decision is same for all incorrect decisions i.e., Pe(p, q) p 6= q. The thresholds Ap,q are

determined based on these probabilities. Fig. 6.9 shows that the average number of measurements

needed for detection steadily increases with the desired probability of correct decision. It is also

seen that the sensor selection strategy of maximally separating the most likely hypothesis from all

other hypotheses performs slightly better than the strategy of maximally separating only the two

most likely hypotheses, at the cost of some additional computations.

Thus overall we observe that the sensor selection based on the greedy heuristic and the sim-

plified heuristic provide comparable performance. However, the greedy heuristic proves valuable
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Figure 6.8: Gaussian Heterogenous Model with time varying mean.
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Figure 6.9: M-ary sequential hypothesis testing. Three hypotheses and two sensors (M = 3, N =
2). Sensor-selection strategy 1: maximally separate most likely hypothesis from all other hypothe-
ses. Sensor-selection strategy 2: maximally separate the two most likely hypotheses.



97

for probabilistic models where a simplified heuristic is difficult to derive. In addition, these sensor

selection methods combined with sequential detection perform significantly better than the FSS

detector.

6.10 Conclusion

A greedy heuristic based sensor selection and a sequential detection procedure has been presented

that significantly improves the detection speed. The greedy heuristic was expressed in closed

form for the Gaussian model and can be extended for most probabilistic models. The numerical

experiments have shown that the sequential procedure significantly outperforms the FSS detector

in that it always needs fewer measurements on average to achieve the same detection performance.

A simplified heuristic, which provided a measure of the distance between the hypotheses, was

derived for the Gaussian probabilistic model. The simplified heuristic was seen to perform as

good as or slightly better than the greedy heuristic. The greedy heuristic provides a general

framework applicable to any probabilistic model and for models which do not yield a simplified

heuristic. Extension of the sensor selection and sequential hypothesis testing procedure for M-ary

hypotheses (M > 2) was also presented.
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Chapter 7

Conclusions and Future Directions

7.1 Conclusions

The research presented in this thesis addresses the localization problem in wireless sensor networks.

We presented two localization algorithms, based on the ultra-wideband channel model, suitable

for multipath propagation environments. Simulation results using these algorithms have shown

the ability to achieve close to sub-meter ranging accuracy. In addition, it was observed that the

positioning accuracy is limited only by the bandwidth of the transmit (or ranging) signal and the

signal-to-noise ratio.

Next we presented a distributed algorithm based on the second-order cone programming relax-

ation which solves the localization problem in the presence of inaccuracies in the reference node

positions and distance measurements, with significant computational savings and without sacri-

ficing positioning accuracy. This algorithm is well-suited for large networks with thousands of

nodes. An extensive numerical study of the algorithm under different scenarios was presented.

This method is also able to improve positioning of the reference nodes which are in the convex hull

of their neighbors.

We also presented the prototype implementation for a directional beacon based positioning

algorithm using radio frequency signals. Novel techniques for improving the position estimation

accuracy using maximum likelihood amplitude estimation, least squares based time-delay esti-

mation and combining data from multiple antenna rotations, were presented. The positioning

accuracy of the directional beacon based algorithm depends on the width of the antenna beampat-
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tern and the rotational speed of the directional antenna. The experiments demonstrated the ability

to obtain position estimation results with sub-meter accuracy. The robustness of the algorithm

(and the implementation) to timing and synchronization errors was also demonstrated.

Finally, a heuristic based sensor selection and sequential detection procedure was presented that

significantly improves the detection speed. The sequential procedure significantly outperforms the

fixed sample size detector in that it always needs fewer measurements on average to achieve the

same detection performance. A greedy heuristic was presented as a general framework applicable to

any probabilistic model. A simplified heuristic, which provided a measure of the distance between

the hypotheses, was derived for the Gaussian probabilistic model.

7.2 Future Directions

Below we describe some promising areas and/or problems for future investigation.

7.2.1 Implementation of Localization Algorithms for UWB Multipath

Environments

It will be interesting to implement the localization algorithms presented in Chapter 3 on hardware

testbeds. The availability of UWB radio modules which offer enough flexibility to implement user-

defined algorithms is crucial in this regard. The currently available commercial modules do not

seem to offer such flexibility.

7.2.2 Distributed SOCP Algorithm for RSSI based Localization

One of the advantages of the proposed distributed SOCP algorithm is the ability to handle large

distance estimation errors which are common in RSSI based schemes. The effectiveness of this

algorithm with experimental RSSI data is something that needs to be explored.

We have shown the convergence of the distributed SOCP algorithm numerically. It is desirable

to demonstrate the convergence theoretically.
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7.2.3 Sensor Selection with Unknown Parameters and other Probabilis-

tic Models

It was seen that the greedy heuristic for sensor selection, under the Gaussian model, reduces to

a simplified heuristic that maximizes the distance between the two hypotheses. It is desirable to

understand if this is true for any generic probabilistic model. It is also not clear at this point how

unknown parameters in the probability distributions would be handled for the sensor selection

problem.
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Appendix A

SOCP Problem Formulation in

SeDuMi form

SeDuMi solves problems of the form:

max bT y s.t. c−AT y ∈ K∗ (A.1)

where K∗ is the dual cone. We now express (4.5) in this form. Assuming 2-D (d = 2), we define:

Li :=
[

1 01×(4ni+2)

]

rj :=
[

0 d2
ij

]T

, tj :=
[

0 0 xj1 xj2

]T

Sj :=


 01×(2ni+3) 1ij 01×ni

01×(2ni+3) 01×ni 1ij




Uj :=




0.5 01×(2ni+2) 01×ni 0.5(1ij)

−0.5 01×(2ni+2) 01×ni 0.5(1ij)

0 1i1 01×ni 01×ni

0 1i2 01×ni 01×ni




where j ∈ NA(i), 1ij is a row vector of length ni and has a 1 corresponding to the variable tij and

zero elsewhere. Similarly, 1i1, 1i2 are row vectors each of length (2ni + 2) with a 1 corresponding

to the coordinates of xi = (xi1, xi2) and zero elsewhere.
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Define:

S :=




S1

...

Sni




, r :=




r1

...

rni




, U :=




U1

...

Uni




, t :=




t1
...

tni




, y :=




t
′
i

x

tij

yij




where x =
[

xi1 xi2

]T
(2ni+2)×1

, tij =
[

tij
]
ni×1

and yij =
[

yij

]
ni×1

. Then the conic con-

straints can be expressed as r − ST y ∈ Qcone2 × . . .× Qcone2, and t − UT y ∈ Qcone4 × . . .×
Qcone4, where the Cartesian product is taken over ni cones. (Qconek = {(x, y) ∈ R×Rk−1 : x ≥
‖y‖}).

Defining:

b̃ := −




0

02(ni+1)×1

1ni×1

0ni×1




, Ã :=




Li

S

U




T

, c̃ := −




1

r

t




the problem (4.5) can be written in the form (A.1) with b = b̃, A = Ã, c = c̃ and K being the

Cartesian product of all the cones.
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Appendix B

Lower Bound on Position

Estimation Error Variance

Consider the signal model described by (5.25). For our experimental setup, it is sufficient to

consider M = 2. Then the vector of parameters to be estimated is λ := [τ1 τ2 a2]. We ignore

a1 as it can always be normalized to unity. Using the Cramer-Rao lower bound (CRLB) we can

bound the variance as

var(λi) ≥ [I−1(λ)]ii for i = 1, 2, 3 (B.1)

where I(λ) is a 3× 3 Fisher Information matrix (FIM) with [I(λ)]ij = −E
[

∂2p(ỹ(L),λ)
∂λi∂λj

]
. To avoid

the matrix inversion in (B.1), we invoke the property that a FIM satisfies [72, p. 65]:

[I−1(λ)]ii ≥ 1
[I(λ)]ii

. (B.2)

This leads to a loose bound: var(λi) ≥ 1

[I(λ)]ii
, that is easier to compute though difficult to attain,

in general. It can be shown that for time-delay estimation, the diagonal elements of the FIM are

given by [72]:

[I(λ)]ii =
ξ

No/2
F̄ 2 for i = 1, 2 (B.3)

where ξ is the signal energy, F̄ 2 is the mean square bandwidth of the signal and No/2 is the noise

variance. Thus,

var(τi) ≥ 1
ξ

No/2 F̄ 2
for i = 1, 2. (B.4)
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Without loss of generality, we can assume that τ̂1 < τ̂2. Thus, for the signal received from RN-1

we have t1 = τ̂1 and the same principle applies to the estimation of t2 and t3.

For the sake of clarity, we assume that the error associated with the estimated coordinates

(x̂, ŷ) of node Q is due to the error in the estimation of t1 or τ̂1. In order to obtain a bound on the

variance of position estimation error (E) we proceed as follows. The position estimation error E is

defined as

E2 := (x̂− x)2 + (ŷ − y)2 (B.5)

where x̂ and ŷ are the estimated values of x and y co-ordinates, respectively. Taking expectation

of (B.5) we can write

E(E2) = var(x̂) + var(ŷ) (B.6)

To compute var(x̂), we assume that the error in x̂ is due to the error in the estimation of t1. Using

(5.1) and (5.2) we can write

x̂ = L2 cos γ sin γ + L2 cot β cos2 γ

:= g(t1)

where the dependence on t1 stems from the fact that γ depends on t1. Now, the CRLB for x̂ can

be expressed as

var(x̂) ≥ K2
x · var(τ1). (B.7)

where Kx := ∂g(t1)/∂t1. Similarly, if we define ŷ := h(t1) and Ky := ∂h(t1)/∂t1 then using (B.4)

we can bound the mean square value of the estimation error as

E(E2) ≥ (
K2

x + K2
y

) · 1
ξ

No/2 F̄ 2

where ξ
No/2 is the signal to noise ratio. For the computation of Kx and Ky, we can use chain rule

so that

Kx =
∂g(t1)

∂γ
· ∂γ

∂α
· ∂α

∂t1
and Ky =

∂g(t1)
∂γ

· ∂γ

∂α
· ∂α

∂t1
. (B.8)
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The partial derivatives in (B.8) can be evaluated as

∂α

∂t1
= ω,

∂γ

∂α
=

L1 sin 2γ

L1 sin 2α− 2L2 sin2 α
,

∂g(t1)
∂γ

= L2 cos 2γ − L2 cot β sin 2γ and

∂h(t1)
∂γ

= −L2 sin 2γ − L2 cot β cos 2γ.
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Appendix C

Gaussian Modeling for Binary

Hypothesis Testing

Using (6.10) we can write:

P (Λ(n) > b/H1) = P

(
(yk

n − µ0,k)2

2σ2
0,k

− (yk
n − µ1,k)2

2σ2
1,k

> b− Cn−1/H1

)

= P
(
A(yk

n)2 + Byk
n + C > 0/H1

)

where

A =
1
2
·
(

1
σ2

0,k

− 1
σ2

1,k

)

B =
µ1,k

σ2
1,k

− µ0,k

σ2
0,k

(C.1)

C =
µ2

0,k

2σ2
0,k

− µ2
1,k

2σ2
1,k

− b + Cn−1.

Thus, if A 6= 0 (i.e., σ0,k 6= σ1,k):

P (Λ(n) > b/H1) = P

(
yk

n >
−B +

√
B2 − 4AC

2A
/H1

)
+ P

(
yk

n <
−B −√B2 − 4AC

2A
/H1

)

=
1
2
erfc(α′2) + 1− 1

2
erfc(α′1) (C.2)
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where

α′1 =
α1 − µ1,k√

2σ1,k

and

α1 =
−B −√B2 − 4AC

2A
,

α′2 =
α2 − µ1,k√

2σ1,k

and

α2 =
−B +

√
B2 − 4AC

2A
.

However, if A = 0 (i.e., σ0,k = σ1,k) then:

P (Λ(n) > b/H1) =
1
2
erfc

(
−C

B − µ1,k√
2σ1,k

)
(C.3)

Starting with (6.13) and following the steps outlined above we can write:

P (Λ(n) < a/H0) = P

(
−B −√B2 − 4AC ′

2A
< yk

n <
−B +

√
B2 − 4AC ′

2A
/H0

)

where A and B are as defined in (C.1) and

C ′ =
µ2

0,k

2σ2
0,k

− µ2
1,k

2σ2
1,k

− a + Cn−1.

If A 6= 0 then:

P (Λ(n) < a/H0) =
1
2
erfc(β′1)−

1
2
erfc(β′2) (C.4)

and if A = 0:

P (Λ(n) < a/H0) = 1− 1
2
erfc

(
−C′

B − µ0,k√
2σ0,k

)
(C.5)

where

β′1 =
β1 − µ0,k√

2σ0,k

and

β1 =
−B −√B2 − 4AC ′

2A
,

β′2 =
β2 − µ0,k√

2σ0,k

and

β2 =
−B +

√
B2 − 4AC ′

2A
.
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