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ABSTRACT

A thermodynamic perturbation theory of symmetric polymer blends is developed that

properly accounts for the correlation in the spatial arrangement of monomers. By

expanding the free energy of mixing in powers of a small parameter α which controls

the incompatibility of two monomer species, we show that the perturbation theory has

the form of the original Flory-Huggins theory, to first order in α. However, the lattice

coordination number in the original theory is replaced by an effective coordination

number. A random walk model for the effective coordination number is found to describe

Monte Carlo simulation data very well.

We also propose a way to estimate Flory-Huggins χ parameter by extrapolating the

perturbation theory to the limit of a hypothetical system of infinitely long chains. The

first order perturbation theory yields an accurate estimation of χ to first order in α.

Going to second order, however, turns out to be more involved and an unambiguous

determination of the coefficient of α2 term is not possible at the moment.

Lastly, we test the predictions of a renormalized one-loop theory of fluctuations using

two coarse-grained models of symmetric polymer blends at the critical composition. It

is found that the theory accurately describes the correlation effect for relatively small

values of χN . In addition, the universality assumption of coarse-grained models is

examined and we find results that are supportive of it.
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Chapter 1

Introduction

Polymers are a class of molecules that consist of many repeating chemical units called

monomers. In particular, a homopolymer is made out of a single type of monomers,

while a block copolymer can be thought of as homopolymers of different types connected

together. Their spatial extent is usually much larger than the size of a monomer and this

difference in length scales makes them amenable to coarse-grained modeling: relatively

simple models could be used to describe the physics of polymers at the length scale

larger than the size of a polymer. In coarse-grained models of polymers, a monomer

(also called bead) represents a multiple of real chemical units, reducing the number

of degrees of freedom significantly. At the same time, they retain essential features

of real polymer systems such as connectivity of monomers in a polymer and the ex-

cluded volume interaction between monomers. In this thesis, thermodynamics of binary

homopolymer blends will be studied using such coarse-grained models.

1.1 Flory-Huggins theory

Flory-Huggins (FH) theory [1,2,3,4,5,6] describes the statistical mechanics and thermo-

dynamics of homogeneous polymer mixtures. In its most general form, the free energy

of mixing per monomer is expressed as a sum of the form [7],

∆f = kBT

A,B
∑

i

φi

Ni
lnφi + ∆fint(φ, T ) , (1.1)

1
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where Ni is the degree of polymerization of species i, for i = A or B, φA = φ and φB =

1 − φA are volume fractions, kBT is thermal energy, and ∆fint(φ, T ) is an interaction

free energy per monomer. The first term on the right hand side of Eq. (1.1) is the ideal

entropy upon mixing and it is obtained by assuming that the conformational entropy

of individual molecule is the same when the two types of molecules are mixed as when

they are separated. Note also that the notion of volume fraction here makes sense only

in symmetric blends or in incompressible blends.

In order to capture the variety of behaviors observed in real polymer mixtures,

it has long been understood [7, 8, 9, 10] that ∆fint should be allowed to exhibit an

essentially arbitrary dependence on temperature and composition. In any case, the

essential content of the theories is that the quantity ∆fint(φ, T ) is independent of chain

length. In other words, ∆fint(φ, T ) is the part of free energy which is sensitive only

to the local structure of a polymer liquid. In a corresponding generalized form of self

consistent field theory (SCFT) for inhomogeneous liquids [11,12], the key assumption is

that the free energy density at any point in the liquid depends only on the temperature

and average monomer concentration very near that point, independent of chain lengths,

chain architecture, or compositions at distant points.

The original FH theory combined this assumption of locality with a random mixing

approximation. It considered a lattice model in which there are NL sites and monomers

of type i and j on neighboring sites interact with a potential energy vij . The volume

fraction of each species is thus given by φi = MiNi

NL
where Mi is the number of chains of

type i. In the absence of vacancies, the random mixing approximation yields

∆fint = αzlattφAφB , (1.2)

where α = vAB − (vAA +vBB)/2 and zlatt is the number of lattice sites neighboring each

site. The Flory-Huggins parameter χ is defined in the original theory by

χ ≡ αzlatt

kBT
. (1.3)

1.2 Perturbation theory

The random mixing approximation is known to substantially overestimate the actual

energy of mixing for lattice models. In simulation studies of a lattice model blend,
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Sariban and Binder [13,14] found that the energy of mixing was much smaller (roughly

half) than that predicted by FH theory slightly modified for a lattice with vacancies.

More recently, Matsen and coworkers [15,16] studied a lattice model of diblock copoly-

mer melts and found that the random mixing approximation predicted a order-disorder

transition temperature (a temperature at which the two blocks phase-separate into A-

rich and B-rich domains) much larger than that observed in their simulations. These

studies clearly showed the problem of the approximation in describing thermodynamics

of polymer systems.

The inaccuracy of the random mixing approximation is in part a result of the

fact that it neglects the existence of an inter-molecular correlation hole. The imme-

diate neighborhood of any monomer in a dense polymer liquid is crowded with other

monomers from the same chain. In a nearly incompressible liquid, this causes a com-

pensating depression in the number of neighboring monomers from other chains, leading

to a decrease in the inter-molecular interaction energy. In a lattice model, the simplest

way to correct for this effect is to replace zlatt by zlatt − 2 to take into account the fact

that two nearest neighboring sites of a monomer are always occupied by two monomers

from the same chain.

To better account for the correlation effect, we develop a perturbation theory of

symmetric blends (NA = NB = N) using both lattice and continuum models (Chapter

4). Taylor expansion of the free energy in powers of a small parameter α, which is a

measure of incompatibility between an A monomer and a B monomer, will yield

∆f ≃ kBT

A,B
∑

i

φi

Ni
lnφi + αz(N)φAφB + O(α2) . (1.4)

In this expansion, z(N) is an effective coordination number whose value is sensitive

to local correlations in the one component reference state with α = 0. The effective

coordination number turns out to be directly proportional to the average number of

inter-molecular neighbors of a test monomer for the case of a lattice model. The pertur-

bation theory can accurately describe the thermodynamics of a mixture of long chains

because z(N) properly takes the effect into account.

The coefficients appearing in the expansion of Eq. (1.4) (e.g. z(N)) are defined in

terms of the positions of monomers and how they interact with each other. Therefore,

they can be measured directly from simulations of the models in the one-component
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reference state. Also, they can be related to model specific parameters used in more

coarse-grained theories, allowing the parameters to be estimated via computer simula-

tions for a given model.

1.3 Coarse-grained loop expansion

The FH theory (and SCFT) has long been believed to be exact in the limit of infinitely

long chains. The basis for this belief is, in part, the predictions of a variety of closely

related one-loop theories of fluctuation effects. The one-loop theory [17, 18, 19, 20, 21,

22] is a coarse-grained theory, that, when properly interpreted [21, 22], predicts small

corrections to the free energy of an underlying FH theory. The relative magnitude of

the fluctuation correction to the free energy is found [18, 19, 21, 22] to scale as N̄−1/2,

where N̄ = c2b6N is an invariant degree of polymerization for the system of chains of

length N with statistical segment length b at average monomer concentration c. This

also implies that the FH theory becomes asymptotically exact as N → ∞.

The result of the one-loop theory that the corrections to the FH theory are controlled

by N̄ is consistent with the coarse-grained nature of the theory. This is because
√

N̄ is

a measure of density at the scale of a size of a chain molecule: consider a size of volume

occupied by a Gaussian chain with N segments and statistical segment length b. The

root mean square of the end to end distance is R = b
√

N and the volume the chain

occupies is approximately R3 = b3N3/2. Now the number of chains in the same volume

can be estimated by cR3/N = cb3
√

N . Therefore, one can see that
√

N̄ measures the

extent of overlap of chains and N̄ is a proper measure of a degree of polymerization

for coarse-grained models that are not supposed to have the same meaning about what

constitute a monomer.

In relation to the perturbation theory, non-perturbative coarse-grained theories can

predict the chain length dependence of the coefficients in the expansion of Eq. (1.4).

Therefore one can test them by comparing these predictions to the results of simulations

in which the coefficients are evaluated directly.
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1.4 Outline

The works presented in this thesis are efforts to develop a perturbation theory of sym-

metric polymer blends and also test quantitatively the predictions of a coarse-grained

theory (renormalized one-loop theory [22, 23]) that tries to account for the correlation

effect. Along the way, an attempt to examine the universality assumption of coarse-

grained models, taking two widely used models as representatives, is made.

In Chapter 2, a brief review of standard coarse-grained theories of correlation in

polymer physics is given.

Chapter 3 will be devoted to explanation of the computational models and methods

employed in the works presented here.

Chapter 4 is based on a published work by Morse and Chung [24]. We first construct

a thermodynamic perturbation theory of a class of symmetric polymer blends in which

the incompatibility of two monomer species is controlled by a small parameter α. We

find that the theory is almost identical to the original FH theory except for the fact

that the lattice coordination number in the original theory is replaced by a chain length

dependent effective coordination number. Using the Gaussian random walk model for

the chain, we develop an analytical theory on how the effective coordination number

depends on the chain length N and present Monte Carlo simulations to test the predic-

tions. The renormalized one-loop theory is also shown to give consistent results with

the perturbation theory. We also argue that the true FH χ parameter can be obtained

by taking the limit N → ∞ of the perturbation theory.

In Chapter 5, the first order perturbation theory for symmetric blends of the previous

chapter is extended to second order in an attempt to improve the accuracy of the FH

χ parameter to second order in α.

Based on the developments, the simulation results of composition fluctuations in

models of symmetric polymer blends will be reported and compared to the predictions

of the one-loop theory in Chapter 6. Especially, we take advantage of the situation of

having two microscopically different coarse-grained models at our disposal and try to

see if they show consistent results at larger length scale than a polymer. We show that

if a physical observable in polymer systems is a function only of χN and N̄ (e.g. large

scale composition fluctuations), one should be able to collapse data of the quantity from
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one model onto those from the other model by a mapping procedure. We find evidence

that supports the universality of the two models.



Chapter 2

Coarse-grained models of

correlations in polymer liquids

In this chapter, two coarse-grained theories of polymer liquids will be reviewed in some

detail. One is the random phase approximation that attempts to describe correlations in

monomer concentrations and the other is a renormalized one-loop theory that describes

the effect of the correlations upon polymer thermodynamics.

2.1 Model and notation

Throughout this thesis, we consider a coarse-grained model of blends where there are Mk

molecules of type k with chain length Nk and statistical segment length bk in a volume

V . All the energy will be measured in units of β−1 = kBT where kB is the Boltzmann

constant and T is temperature. The average volume per monomer is v = V/(
∑

k MkNk)

and the spatially averaged monomer concentration is c = v−1.

In the model, a homopolymer is composed of monomers whose positions are specified

by the position vector Rmk(s), where s is a monomer index along a molecule m and k

denotes the type (A or B) of the monomer. The fluctuating number concentration of

monomer of type k at position r is defined as

ck(r) =
∑

m,s

δ(r − Rmk(s)), (2.1)

7
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in which m is taken over molecules of species k and s runs from 1 to Nk. The volume

fraction of monomers of species k is defined as

φk(r) ≡ vck(r) , (2.2)

while δck(r) will denote the deviation of the concentration from its ensemble average,

i.e.

δck(r) ≡ ck(r) − 〈ck(r)〉 . (2.3)

Spatial averages of these quantities will be written with the position dependence re-

moved, e.g. ck ≡ MkNk/V and φk ≡ vck.

The correlation in monomer concentrations is characterized by a static structure

factor

Skk′(r, r′) = 〈δck(r)δck′(r′)〉 (2.4)

or its Fourier transform

S̃kk′(q) ≡
∫

dr 〈δck(r)δck′(0)〉eiq·r . (2.5)

The total potential energy of the model of polymer blends we consider has a form

U = Uchain + Uint . (2.6)

Here, Uchain is an intra-molecular potential energy and Uint is a pairwise additive po-

tential energy given by

Uint =
1

2

∑

k,k′

∫

dr

∫

dr′ Ukk′(r − r′)ck(r) ck′(r′) , (2.7)

in which Ukk′(r−r′) is an interaction potential energy between two monomers of species

k and k′.

In the idealized limit of an effectively incompressible mixture in which the aver-

age volume per monomer at constant pressure is independent of composition, the ma-

trix S̃kk′(q) may be characterized by a scalar function S(q) = S̃AA(q) = S̃BB(q) =

−S̃AB(q). In the same limit, the Helmholtz free energy of mixing per monomer ∆f

for the model blend is related to the long wavelength limit S(0) ≡ limq→0 S(q) by the

identity

S−1(0) = v
∂2β∆f

∂φ2
A

. (2.8)
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On the other hand, the free energy of mixing can be decomposed into an ideal part

and an excess part as

∆f = fid + fex (2.9)

where fid is the entropy upon mixing introduced in Eq. (1.1) and fex is defined by the

above equation. Substituting Eq. (2.9) into Eq. (2.8) yields

S−1(0) = v

(

1

NAφA
+

1

NBφB
− 2χa

)

, (2.10)

where we defined an apparent χ parameter

χa ≡ − 1

2kBT

∂2fex

∂φ2
A

. (2.11)

2.2 Random phase approximation (RPA)

The random phase approximation is an analytical method to calculate a static structure

factor S̃(q) of homogeneous polymer liquids [3,4,5,25]. This formalism originates from

the theory of electronic structure of solids and was first introduced to the field of polymer

physics by de Gennes [25]. The basic idea of the RPA is to use the linear response theory

to calculate S̃(q) together with the self-consistent field framework.

2.2.1 General formulation for polymer mixtures

Imagine applying a weak external perturbing potential Vk(r) coupled to monomer con-

centration ck(r). Note that one can take any system as the reference system and we

have not specified it yet. The linear response theory relates the ensemble averaged

concentration deviation from the unperturbed value to the correlation function as,

δ〈ck(r)〉 = −β
∑

k′

∫

dr′ Skk′(r − r′) Vk′(r′), (2.12)

where Skk′(r − r′) = 〈δck(r)δck′(r′)〉 is the structure factor.

To apply the linear response theory to the polymer mixture at hand, we take a system

of non-interacting polymer chains as the reference state. As a result, the structure factor

matrix S has non-zero elements only along the diagonal, which are just intra-molecular

correlation functions. The perturbing potential has two contributions, first of which is a
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weak potential applied from the outside of the system. The other comes from interaction

between polymers, which consists of local density fluctuations and compressibility. Let

Vk(r) be the external potential and V RPA
k (r) be the part caused by interaction between

polymers. Eq. (2.12) can be written as

δ〈ck(r)〉 = −β
∑

k′

∫

dr′ S
(0)
kk′(r − r′)

[

Vk′(r′) + V RPA
k′ (r′)

]

, (2.13)

in which S
(0)
kk′ is the structure factor of the non-interacting chain system. After Fourier

transforming both sides,

δ〈c̃k(q)〉 = −β
∑

k′

S̃
(0)
kk′(q)

[

Ṽk′(q) + Ṽ RPA
k′ (q)

]

. (2.14)

Let χkk′ be a dimensionless phenomenological interaction parameter between monomers

of type k and k′ and δ〈φk′(r)〉 = vδ〈ck(r)〉, then V RPA
k (r) can be written explicitly as

V RPA
k (r) = β−1

∑

k′

χkk′ δ〈φk′(r)〉 +
1

κ

∑

k′

δ〈φk′(r)〉, (2.15)

where the first term represents the mean potential felt by a monomer of type k and the

second term accounts for the weak compressibility. For the case of strictly incompressible

liquids, we either introduce a Lagrange multiplier to impose the constraint or let κ → 0

at the end of calculation. Taking Fourier transformation of both sides of Eq. (2.15)

yields

Ṽ RPA
k (q) =

∑

k′

χ̂kk′ δ〈φ̃k′(q)〉 , (2.16)

where χ̂kk′ ≡ β−1χkk′ + κ−1 was defined for notational convenience. Substituting Eq.

(2.16) into Eq. (2.14) and rearranging terms, one obtains

∑

k′′

[

δkk′′ + vβ
∑

k′

S̃
(0)
kk′(q) χ̂k′k′′

]

δ〈c̃k′′(q)〉 = −β
∑

k′

S̃
(0)
kk′(q) Ṽk′(q). (2.17)

For further simplification, define a matrix Ã with elements

Ãkk′′(q) = δkk′′ + vβ
∑

k′

S̃
(0)
kk′(q) χ̂k′k′′ , (2.18)

in which δkk′′ is the Kronecker delta. Or, in matrix notation

Ã = I + vβS̃(0)χ̂ (2.19)
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Similarly, Eq. (2.17) can be written compactly in matrix form as

Ãδ〈c̃〉 = −βS̃(0)Ṽ. (2.20)

Solving for δ〈c̃〉, we get

δ〈c̃〉 = −βÃ−1S̃(0)Ṽ. (2.21)

On the other hand, if we applied the linear response theory with the interacting polymer

mixture as the reference state, we would have

δ〈c̃〉 = −βS̃Ṽ, (2.22)

where S̃ is the structure factor matrix of the interacting system. Therefore, we arrive

at the RPA structure factor matrix for the mixture as

S̃ = Ã−1S̃(0) = (I + vβS̃(0)χ̂)−1S̃(0) . (2.23)

For a more general case of a compressible liquid with an interaction energy of the

form given in Eq. (2.7), the mean potential is given by

V RPA
k (r) = v−1β−1

∑

k′

∫

dr′ Ukk′(r − r′)δ〈φk′(r′)〉. (2.24)

Or in Fourier space,

Ṽ RPA
k (q) = v−1β−1

∑

k′

Ũkk′(q)δ〈φ̃k′(q)〉. (2.25)

Note that this version of the interpretation of the RPA is more microscopic than the

previous one because the interaction parameter Ũkk′(q) is directly related to the bare

interaction potential. By comparing Eq. (2.25) with Eq. (2.16), the RPA structure

factor for the system [26] can be identified as

S̃ =
[

I + S̃(0)Ũ
]−1

S̃(0) (2.26)

2.2.2 RPA structure factor for blends

Specializing Eq. (2.23) for the case of an incompressible binary blend, consider a AB

polymer blend in which the lengths of the two types of chains are NA and NB. The radii
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of gyration and the average number density will be denoted by Rg,i and ci for i = A or

B. The volume per monomer is given by v = c−1 = (cA + cB)−1. The structure factor

matrix S̃(0) for the non interacting polymer blend has the form of a diagonal matrix

given by

S̃(0) =

[

S̃
(0)
AA(q) 0

0 S̃
(0)
BB(q)

]

. (2.27)

In the case where the continuous random walk model is used to represent a single

chain, S̃
(0)
ii (q) becomes a single chain structure factor Ωi(q) ≡ ciNifD(q2R2

g,i) in which

fD(x) = 2
x2 (e−x−1+x) is the Debye function. In the following, q dependence of various

quantities will be suppressed for simplicity. With this, we get

Ã−1 = (I + vβS̃(0)χ̂)−1

=
1

|Ã|

[

1 + vβS̃
(0)
BB χ̂BB −vβS̃

(0)
AA χ̂AB

−vβS̃
(0)
BB χ̂AB 1 + vβS̃

(0)
AA χ̂AA

]

, (2.28)

in which the determinant |Ã| is given by

|Ã| = 1 + vS̃
(0)
AA(χAA + κ−1β) + S̃

(0)
BB(χBB + κ−1β)

+ v2S
(0)
AAS

(0)
BB

[

κ−1β(χAA + χBB − 2χAB) + χAA χBB − χ2
AB

]

. (2.29)

For the case of incompressible liquid, we take κ → 0 limit and keep the terms linear in

κ−1 to get

Ã−1 → 1

S̃
(0)
AA + S̃

(0)
BB − 2vχ

[

S
(0)
BB −S

(0)
AA

−S
(0)
BB S

(0)
AA

]

, (2.30)

in which we defined χ ≡ χAB − 1
2(χAA + χBB). Finally, we obtain the RPA for incom-

pressible binary blends as

S̃(q) = S(q)

[

1 −1

−1 1

]

. (2.31)

The scalar structure factor S̃(q) is given by

[S(q)]−1 = [S̃
(0)
AA(q)]−1 + [S̃

(0)
BB(q)]−1 − 2vχ (2.32)
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2.3 Renormalized one-loop theory of fluctuations

A renormalized one-loop theory (ROLT) of fluctuations is a coarse-grained theory that

tries to take into account the composition fluctuation effects ignored in FH theory (and

SCFT) or mean field theories in general. Recent theoretical developments by Wang [21]

and Grzywacz et al. [22] have successfully removed the so-called UV divergence which

had plagued the theory previously. In this section, the model and main results of the

theory when it is applied to polymer blends [23] are reviewed. ROLT will allow us to

interpret SCFT and RPA as exact theories only for the hypothetical system of infinitely

long chains.

We will consider the model of blends introduced in Sec. 2.1. Let B0 be a dimension-

less compression energy and χ0 be a dimensionless bare interaction parameter between

species A and B. For our model binary blends, we assume Uij(r − r′) takes the form

(

Uij

)

= v

(

B0 B0 + χ0

B0 + χ0 B0

)

δΛ(r − r′) , (2.33)

where δΛ is a function with a range Λ−1 and
∫

drδΛ = 1. In the limit of Λ → ∞, δΛ

approaches the Dirac δ function. In that limit, the Helmholtz free energy per volume

f , can be written as a sum,

βf =
βF

V
= fid + fmf + fcorr, (2.34)

in which fid is the ideal Flory-Huggins entropy of mixing and fmf is the mean field

approximation for the free energy per volume. In a translationally invariant system,

they are given by,

fid =
φA

NAv
lnφA +

φB

NBv
lnφB (2.35)

fmf =
1

2

∑

i,j

∫

dr Uij(r)〈ci(r)〉〈cj(r)〉

= v−1χ0φAφB . (2.36)

The last term in Eq. (2.34) is the free energy due to the correlations in the number

densities of monomer species. The one-loop approximation f1L for fcorr in the case of a

compressible liquid is given by

f1L =
1

2

∫

dq

(2π)3
ln
[

det
∣

∣I + Ω̃(q)Ũ(q)
∣

∣

]

. (2.37)
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The matrix elements of Ω̃(q) and Ũ(q) are

Ω̃ij(q) = δijΩi(q) (2.38)

Ũij(q) =

∫

dr Uij(r)e
iq·r , (2.39)

in which Ωi(q) = v−1φiNifD(q2R2
g,i) is the intra-molecular correlation function of a

continuous random walk model with a radius of gyration Rg,i and fD(x) is the Debye

function. A derivation of Eq. (2.37) by a fictitious charging process is given in Appendix

A.

In the limit of incompressible liquids, which is effected by taking the limit B0 → ∞,

f1L is reduced to

f1L =
1

2

∫

d3q

(2π)3
ln [(ΩA + ΩB − 2χ0vΩAΩB) v] . (2.40)

The Fourier integral in Eq. (2.40) is known to diverge at high values of q, a behavior

known as the UV divergence. However, in recent works, Wang [21] and Grzywacz et

al. [22] analyzed the structure of the high q divergence of f1L by introducing a cutoff Λ

for the integral. Grzywacz et al. showed f1L can be expressed as a sum

f1L = fΛ
1L + f∗

1L (2.41)

of an UV divergent part fΛ
1L which increases with increasing Λ plus a contribution f∗

1L

that is independent of Λ. They interpreted fΛ
1L + fmf as the relevant form of SCFT

that should be regarded as an input to the one-loop theory. The remaining cutoff

independent f∗
1L was identified as a universal correction to the underlying SCFT.

After this renormalization, the total free energy density can be recast as a sum of

the form,

f = fid + fint + fend + f∗
1L , (2.42)

where fend is a non universal excess free energy associated with chain ends and has N−1

chain length dependence. The SCF interaction free energy is given by,

fint = v−1χeφAφB , (2.43)

where χe is an effective SCF interaction parameter that is independent of chain length.

The UV convergent part of correlation free energy f∗
1L has a specific dependence on
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parameters of SCFT, i.e.

f∗
1L =

1

R3
f̂∗
1 (χN, φA, NB/NA, RB/RA)

=
v−1

NN̄1/2
f̂∗
1 (χN, φA, NB/NA, RB/RA) (2.44)

where R = RA is a reference length that is taken to be the end-end distance of a A

chain, N = NA is a reference degree of polymerization and f̂∗
1 is a function obtained by

non-dimensionalizing the renormalized form of the integral in Eq. (2.40). The above

equation shows clearly that the universal correction is smaller than the SCF free energy

(fid +fint +fend) by a factor of N̄−1/2. The χ parameter in Eq. (2.44) is left unspecified

because different choices (χa or χe) result in different variants of the theory [23].



Chapter 3

Molecular simulations: models

and methods

3.1 Models of polymers

For the study of polymer melts and blends, atomistic and chemically realistic models are

too expensive in terms of computational cost. The reason is that for these systems, there

exists a wide range of characteristic time and length scales and the cost is determined by

the shortest scale [27]. Therefore, simulations of many chains in realistic representation

is prohibitively time consuming.

In the study of meso-scale (length scale larger than a monomer but less than bulk

material) correlation effects in melts and blends, however, the microscopic details of a

given model should not matter as long as it reflects the essential features of real systems

at the physical scale of interest [28]. This premise of coarse-grained modeling is also

a topic we will investigate in this thesis. For this reason, computational studies of

polymeric liquids have been done using so called coarse-grained models. An effective

interaction unit, or bead in any coarse-grained model of polymer, represents a number of

chemical monomers. They are connected via a bond and two monomers are not allowed

to occupy the same position due to the excluded volume interaction.

Most coarse-grained models are constructed either on a lattice or in a continuum

space. Lattice models are computationally efficient compared to continuum models.

The main reasons are: (1) integer arithmetic, and (2) fast checking of excluded volume

16
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[27, 29]. For our study we employ a bead-spring model as a continuum model, and the

bond fluctuation model as a lattice model.

3.1.1 Bead-spring model (BSM)

We adopt a bead-spring model of a linear polymer chain where the interaction between

two non-bonded beads is described in a variant of Lennard-Jones (LJ) form

F (r) =

{

4[(σ/r)12 − (σ/r)6] + 1 for r < 21/6σ

0 otherwise

where r is the distance between two non-bonded beads. Monomers of the same type

(A-A or B-B), then interact via a potential

vAA(r) = vBB(r) = ǫF (r) . (3.1)

The interaction between monomers of different type (A-B) is given by

vAB(r) = ǫ(1 + ξ)F (r) , (3.2)

where ξ is a small parameter that controls the incompatibility of the two types. In

this model, ǫ and σ are the units of energy and length and all other quantities can be

expressed as combinations of them. The temperature of the simulated system is in units

of ǫ/kB with kB being the Boltzmann constant.

Two bonded monomers interact via a harmonic potential of the form

vbond(r) =
1

2
κ(r − l)2 , (3.3)

where r is the distance between two bonded beads and κ is a spring constant which is

measured in units of ǫ/σ2. l is a reference length. This interaction will be the same

regardless of the types of beads in polymer blends. Another popular choice for a bond

potential is the FENE (finite extensible nonlinear elastic) potential [30,31] which allows

only a finite extension of bond length to prevent two bonds from cutting through each

other. With proper choice of constant κ, however, chain crossing can also be prevented

without causing inefficiency in simulation.
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3.1.2 Bond fluctuation model (BFM)

A lattice model which has been widely used for the study of many chain systems is

the bond fluctuation model [32]. It is different from a simple self-avoiding walk (SAW)

model in which there are 6 bond vectors possible in 3-dimensions for a simple cubic

lattice and a bead occupies one lattice site. In the BFM constructed on a simple cubic

lattice, each bead blocks 8 sites of the elementary cube of the lattice. Also the bond

vector connecting two monomers takes one out of 108 choices, making the model closer

to a continuum model than the SAW model. In the model we adopt [33, 34], a bond

vector is taken from the allowed set

b = P (2, 0, 0), P (2, 1, 0), P (2, 1, 1), P (2, 2, 1), P (3, 0, 0), P (3, 1, 0) (3.4)

where P stands for all permutations and sign combinations of the components of vectors

listed. The inter and intra molecular interaction are modeled via a square well potential

of spatial range
√

6 in units of lattice spacing. This spatial range amounts to a bead

having 54 interacting neighbors. More precisely, the interaction energy between same

type (A-A or B-B) is given by

vAA(r) = vBB(r) = −ǫξ if r ≤
√

6 (3.5)

while monomers of different types interact via

vAB(r) = ǫξ if r ≤
√

6 , (3.6)

where r is the distance between centers of two beads. As in the bead spring model, ξ

controls the incompatibility of the two species A and B.

3.2 Monte Carlo sampling

Two main simulation methods for systems described by classical statistical mechan-

ics are molecular dynamics (MD) and Monte Carlo (MC) sampling [35, 36]. The term

Monte Carlo is used for a class of probabilistic methods that use random numbers. One

of the many problems where MC method becomes the tool of choice is the calcula-

tion of multi-dimensional integrals [37]. Also, only MC methods can be used to study

models on lattices such as classical spin systems [38, 39]. The basic idea of the MC
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method applied to molecular simulations is as follows: a trial change of system config-

uration is suggested and it is accepted or rejected by an appropriate criterion in such a

way that system configurations are sampled according to its equilibrium distribution or

Boltzmann distribution. This scheme, called importance sampling, will be explained in

detail in Section 3.2.1.

Molecular dynamics is the other method used widely in the field of molecular sim-

ulation. It provides numerical solutions to Newton’s equations of motion for classical

many-body systems. As a result, the method generates both static and dynamic in-

formation about the simulated model. The reasons of choosing MC method over MD

method for the study of polymer thermodynamics are two fold. First, thermodynamics

can be studied without realistic dynamics for which MD is the necessary tool. Secondly,

because of the first reason, one can implement various trial changes of the configura-

tion of molecules which are unrealistic, but help the exploration of the configurational

phase space tremendously. The latter point is also crucial for simulations of long chain

molecules because by natural dynamic process, the diffusive motion of entire molecule

is very slow.

3.2.1 Importance sampling

Importance sampling is a way to sample configurations of a model system according

to its Boltzmann probability distribution. Although configurations vary continuously

in molecular simulations, the following discussion will assume that configurations of

the system of interest can be counted discretely and each distinct configuration will

be labelled by an index l. Therefore, the canonical ensemble average and equilibrium

probability distribution can be expressed as,

P eq
l =

exp(−βUl)
∑

m exp(−βUm)
(3.7)

〈A〉 =
∑

l

AlP
eq
l (3.8)

By importance sampling, we want the initial arbitrary probability distribution Pl(t =

0) to approach to P eq
l after some transient period. Even though there is only one

simulation system at hand, it is conceptually helpful to imagine there are infinite number
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of replicas of the system and the number of replicas in state l is proportional to Pl(t).

The way we make Pl(t = 0) converge to P eq
l is by making transition from one state to

another and accepting or rejecting the proposed transition. wl→m will be used to denote

the probability of a system in state l at time t to move to state m at time t + 1.

To derive how Pl(t) evolves in discrete time step, we denote with Nl(t) the number

of replicas in state l at time t. At time t + 1,

Nl(t + 1) = Nl(t) +
∑

m6=l

Nm(t)wm→l −
∑

m6=l

Nl(t)wl→m. (3.9)

Dividing both sides of the above equation by the total number of replicas N =
∑

l Nl(t)

and noting Nl(t)
N = Pl(t), we obtain the master equation,

Pl(t + 1) = Pl(t) +
∑

m6=l

[Pm(t)wm→l − Pl(t)wl→m] . (3.10)

The summation in the above equation exclude the term with m = l, but the term does

not contribute to the sum, so we can remove the restriction on it. Then,

Pl(t + 1) = Pl(t) +
∑

m

[Pm(t)wm→l − Pl(t)wl→m]

= Pl(t) +
∑

m

Pm(t)wm→l − Pl(t)
∑

m

wl→m

=
∑

m

Pm(t)wm→l. (3.11)

The last line results from the fact that
∑

m wl→m = 1.

Once Pl(t) reaches to P eq
l , it should not change as time progresses. By setting

Pl(t) = Pl(t + 1) = P eq
l in Eq. (3.11), we obtain

∑

m

(P eq
m wm→l − P eq

l wl→m) = 0. (3.12)

The above equation dictates the relation between P eq
l and wl→m when equilibrium has

been reached. In practice, we require a more strict condition known as the detailed

balance condition [36,35,38,39]

P eq
m wm→l = P eq

l wl→m. (3.13)

In appendix B, a short proof that the detailed balance condition will drive Pl(t = 0)

to P eq
l is given. Once equilibrium is established, the ensemble average (Eq. (3.8))
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becomes the simple mean of the observed values of A, i.e. if L instances of A are

measured during the course of a simulation,

〈A〉 ≈ 1

L

L
∑

i=1

Ai . (3.14)

Because each measurement in the sum is not independent, care needs to be taken in the

estimation of error of the obtained average (Appendix C).

3.2.2 Metropolis algorithm

In practice, a transition from one state (old state denoted by ‘o’) to another state (new

state denoted by ‘n’) happens in two steps: a new state of the system is proposed and

the proposed state is accepted or rejected according to certain probability. Let A be the

event where a new state of the system is proposed and B be the event where the proposed

state is accepted. Adopting notations of probability theory, the transition event can

be denoted by A ∩ B and the rule for the conditional probability says P (A ∩ B) =

P (B|A)P (A), where P (B|A) is the conditional probability that event B happens given

that event A happens. That is, if G(o → n) is the probability of suggesting or generating

state n given the system is in state o and A(o → n) is the probability of accepting the

proposed transition,

wo→n = G(o → n)A(o → n) . (3.15)

Assuming G(o → n) is known, there are many choices for the acceptance probability

A(o → n) that satisfy Eq. (3.13). The most commonly used one is the Metropolis

function [40]

A(o → n) = min

{

1,
P eq

n G(n → o)

P eq
o G(o → n)

}

(3.16)

Using a property of the Metropolis function (min{1, x} = x(min{1, 1
x}) for x > 0),
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it can be shown that Eq. (3.16) satisfies the detailed balance condition, i.e.

P eq
o wo→n = P eq

o G(o → n)A(o → n)

= P eq
o G(o → n)min

{

1,
P eq

n G(n → o)

P eq
o G(o → n)

}

= P eq
o G(o → n)

P eq
n G(n → o)

P eq
o G(o → n)

min

{

1,
P eq

o G(o → n)

P eq
n G(n → o)

}

= P eq
n G(n → o)min

{

1,
P eq

o G(o → n)

P eq
n G(n → o)

}

= P eq
n wn→o (3.17)

As long as the equilibrium probability distribution is known and the probability of

generating a trial configuration can be calculated, Eq. (3.16) can be used to ensure that

the detailed balance condition is satisfied.

3.3 Semi grand canonical ensemble

Semi grand ensemble [13] for symmetric polymer blends (same chain length and statis-

tical segment length) is a statical ensemble in which the total number of polymers in

the system is conserved, but the type of a chain is allowed to change. This ensemble has

the advantage over both canonical and grand canonical ensembles when one wants to

simulate a phase separation of the model blend or composition fluctuations. In canon-

ical ensemble, it occurs through diffusive motion of chains and it becomes very slow

near the critical point. In grand canonical ensemble in which the numbers of both types

of chains are fluctuating, a move creating a chain in a dense system has a very small

chance to be accepted because it would violate the excluded volume constraint most of

the time.

3.3.1 Derivation

The semi grand ensemble is derived from first considering grand canonical ensemble

in which both the total number of chains and the number of chains of each type can

change [41, 38]. Let MA, MB, and Mt be the numbers of A chains, B chains, and the

total number of chains, i.e. Mt = MA + MB. Also let N = NA = NB be the degree of

polymerization for the chains. The configurational part of the grand canonical partition
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function for the system is given by,

LG =

∫

dMA

∫

dMB

∫

dEeβN(MAµA+MBµB)e−βEΓ(MA, MB, E) , (3.18)

in which E is the total potential energy, µA, µB are monomer chemical potentials of

the two species, and Γ(MA, MB, E) is a density of states. The semi-grand ensemble is

constructed by constraining the system in the part of configuration space where Mt is

fixed. Let M be the difference in the numbers of chains, M ≡ MA − MB. Then,

MA =
Mt + M

2
(3.19)

MB =
Mt − M

2
(3.20)

MAµA + MBµB =
Mt

2
(µA + µB) +

M

2
(µA − µB) (3.21)

In this constrained space, the grand canonical partition function is reduced to a semi

grand partition function defined as,

LSG ≡
∫ Mt

−Mt

dMeβ NM∆µ
2

∫

dEe−βEΓ̃(M, E) . (3.22)

In Eq. (3.22) we defined

∆µ ≡ µA − µB , (3.23)

Γ̃(M, E) ≡
∫

dMA

∫

dMBδ(Mt − MA − MB)δ(M − (MA − MB))Γ(MA, MB, E) ,

(3.24)

where δ(x) is the Dirac delta function. A formal relation between LG and LSG is

LG =

∫

dMte
βN

NMt(µA+µB)

2 LSG . (3.25)

An alternative way of defining the semi grand canonical ensemble is to use the

number of A chains MA as an argument (instead of M) of the density of states. In this

case, the ensemble is defined as a sum of canonical ensembles with MA ranging from 0

to Mt, i.e.

LSG ≡
∫ Mt

0
dMA eβNMA∆µ

∫

dEe−βEΓ̃(2MA − Mt, E)

=

Mt
∑

MA=0

eβµMAZ(MA, β) (3.26)
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Figure 3.1: In a semi grand canonical move, a chain molecule switches its type from A
to B or vice versa, depending on its original type

where Z(MA, β) is the canonical partition function with a fixed number of A chains and

µ ≡ N∆µ is the chemical potential difference between an A chain and a B chain.

3.3.2 Type switching MC move

For a MC simulation in the semi grand ensemble, there is a move where a chain is

picked up randomly and tried for its type change, in addition to usual trial moves for

configurational change (Fig. 3.1). One can derive the acceptance probability for such a

move by recalling the probability of the system being in a microstate with MA chains

of type A and MB chains of type B is

P eq ∝ 1

MA!MB!
eβ NM∆µ

2 e−βU , (3.27)

where U instead of E was used to emphasize that it is configurational energy. Consider

a trial move to change a randomly picked A chain to a B chain. In the new state of

the system, the numbers of A and B chains will be MA − 1 and MB + 1, respectively.
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Therefore,

G(o → n) =
MA

Mt
(3.28)

G(n → o) =
MB + 1

Mt
(3.29)

To obtain the acceptance probability for this transition, the factors appearing in the

Metropolis function (Eq. (3.16)) need to be calculated:

P eq
n G(n → o) =

1

(MA − 1)!(MB + 1)!
e

βN(MA−MB−2)∆µ

2 e−βUn
MB + 1

Mt
, (3.30)

P eq
o G(o → n) =

1

MA!MB!
e

βN(MA−MB)∆µ

2 e−βUo
MA

Mt
, (3.31)

in which Uo and Un denote old and new values of U . Substituting above equations into

Eq. (3.16), the acceptance probability for the A → B identity switch is obtained as,

A(o → n) = min
{

1, e−β[(Un−Uo)+N∆µ]
}

. (3.32)

Similar considerations for the B → A identity switch move yields

A(o → n) = min
{

1, e−β[(Un−Uo)−N∆µ]
}

. (3.33)

Eqs. (3.32) and (3.33) can be combined in the following form, which is also applicable

to the usual canonical moves,

A(o → n) = min
{

1, e−β[(Un−Uo)−N∆µ(Mn−Mo)/2]
}

, (3.34)

in which Mn and Mo are new and old values of M , respectively.

3.3.3 S(q → 0) measurement

Assuming effective incompressibility of a blend, S(q) (Eq. (2.5)) can be expressed as,

S(q) =
1

4
[S̃AA(q) + S̃BB(q) − S̃AB(q) − S̃BA(q)]

=
1

4V
〈|δc̃A(q) − δc̃B(q)|2〉, (3.35)

where δci(r) ≡ ci(r)−〈ci(r)〉 and δc̃i(q) =
∫

dr eiq·rδci(r). To evaluate S(0), one needs

δc̃i(q = 0) which can be expressed as,

δc̃i(q = 0) =

∫

dr δci(r)

= NMi − N〈Mi〉 (3.36)
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Using Eqs. (3.35) and (3.36), S(0) can be expressed in terms of the variance in the

number of chains of type A as

S(0) =
N2

4V
〈|MA − MB − (〈MA〉 − 〈MB〉)|2〉

=
N2

V
〈(MA − 〈MA〉)2〉 . (3.37)

The second line of Eq. (3.37) follows from the fact that in this ensemble Mt = MA+MB

is constant.

3.4 Hybrid Monte Carlo

In hybrid Monte Carlo (HMC) method [40, 42], a trial configuration is constructed by

numerically solving equations of motions of the system, just as in a regular molecular

dynamics (MD) simulation. The most attractive feature about this method is that the

trial configuration of the system is one which is energetically favorable: it is the most

natural configuration of the system which follows realistic dynamics.

Consider a system of N particles described by a classical Hamiltonian,

H(r,p) =
N
∑

i=1

p2
i

2m
+ U(r) , (3.38)

where U(r) is the total potential energy of the system and r and p denote the positions

and momenta of the N particles collectively. To generate a trial configuration in a HMC

move, Hamilton’s equations are integrated using some discretization scheme ĝ(δt) where

δt is a size of time step. That is, the equations of motion

dri

dt
=

∂H

∂pi
(3.39)

dpi

dt
= −∂H

∂ri
(3.40)

are solved numerically for i = 1, · · · , N . Denoting the new positions and momenta by

r′ and p′ respectively, we can write symbolically

(r′,p′) = ĝ(δt)(r,p). (3.41)
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Because r′ is determined by current values of r and p, the probability G(r → r′) is

equal to G(p) of generating momenta of particles in the system. At the beginning of

the HMC move, momenta are drawn from Gaussian probability distribution

G(p) = N exp(−β
N
∑

i=1

p2
i

2m
)

= N exp(−βK(p)) (3.42)

where N is a normalization constant and we defined K to denote kinetic energy. Substi-

tuting this probability into the Metropolis function (Eq. 3.16), we obtain the following

acceptance criterion for a suggested move

A(r → r′) = min

{

1,
P eq

n G(n → o)

P eq
o G(o → n)

}

= min

{

1,
Q−1 exp(−βU(r′))N exp(−βK(p′))
Q−1 exp(−βU(r))N exp(−βK(p))

}

= min
{

1, exp(−β[H(r′,p′) − H(r,p)])
}

, (3.43)

where Q is the partition function 1
N !h3N

∫

dr dpe−βH(r,p) and h is the Planck constant.

If the numerical integration scheme ĝ(δt) conserves the total energy H, all trial moves

will be accepted. In practice, however, it is not the case and some will be rejected.

The acceptance rate of a trial of HMC tends to decrease as the number of particles

in the system increases. This is because of the numerical inaccuracy introduced by

solving equations of motion gets large with the number of particles in the system.

Similarly, a large number of integration steps tends to decrease the acceptance rate as

well. Two important constraints about the integration scheme ĝ(δt) is that it has to be

time reversible and preserve phase space area [40]. A simple integration method that

satisfies the conditions is the velocity Verlet algorithm [35].

3.5 Configurational-bias Monte Carlo (CBMC)

The basic idea of CBMC was first introduced by Rosenbluth and Rosenbluth to sam-

ple equilibrium polymer chain conformations [43]. The goal was to grow a new chain

molecule in a dense environment where there already exist many other chains. A confor-

mation generated randomly would almost always violate the excluded volume constraint.
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To get around the problem, they devised an algorithm that generates energetically fa-

vorable trial conformations, therefore applying a bias in the generation of configurations.

This bias would have to be corrected in a later stage. Generating a biased configuration

that has some sort of advantage whose benefits exceed the complexity introduced in the

algorithm is the spirit behind any type of configuration-biased MC sampling scheme.

This class of algorithms takes advantage of the freedom in the way a trial configura-

tion is generated. Because the number of possible ways is virtually unlimited, one can

devise a clever way to create a trial move that either has a high probability of being

accepted or accelerates the exploration of the configuration space by the system. This

type of moves is especially useful in simulations of long polymer chains because their

equilibration times scale as N3 for N > Ne where Ne is an entanglement length [4].

There are many such moves proposed for simulations of polymers. For the simula-

tions presented in this thesis, three types of CBMC moves were implemented, namely

slithering snake type move, single rebridging, and double rebridging move.

3.5.1 Slithering snake move (Reptation)

In the reptation move [44], a new configuration of a linear chain along its own path is

generated by removing a randomly chosen end monomer and attaching it to the other

end. Implementation of the move consists of the following steps.

1. Pick a chain at random.

2. Choose one of the two ends at random. The monomer of the chosen end will be

removed and attached to the other end.

3. At the end where the monomer from the other end will be attached, generate

a number of trial bond vectors according to a probability proportional to the

Boltzmann factor associated with the bond potential energy.

4. Choose one of trial bonds according to a probability proportional to the Boltzmann

factor associated with external (or non-bonded) potential energy of the attached

monomer if it were to be positioned at proposed trial positions.

5. Repeat previous steps for the reverse move using the old configuration as the

chosen one.
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Figure 3.2: In reptation move, a chain molecule moves along its own path

6. Accept the new configuration of the chain according to Metropolis rule.

To calculate the acceptance probability of this move, we first calculate the probability

of generating the new configuration chosen at the end of step 4. The probabilities

associated with step 1 and 2 are 1
Mt

and 1
2 , respectively, and Mt is the total number of

chains in the system. In step 3, assume k trial bonds are generated according to the

Boltzmann weight associated with bond potential energy vbond(b). Then, the probability

density of generating a particular bond is given by

Pbond(b) =
e−βvbond(b)

∫

db′e−βvbond(b′)
= Cbond e−βvbond(b) (3.44)

At step 4, one of the k candidates for the bond (b1, · · ·bk) will be chosen according

to the probability proportional to the Boltzmann factor associated with non-bonded

potential energy of them. If candidate i (1 ≤ i ≤ k) is chosen, the probability of the

event is,

Pext(bi) =
e−βvext(bi)

W (o → n)
, (3.45)
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where vext(bi) is the non-bonded potential energy associated with the new position of

the regrown end monomer and we defined a quantity called ‘Rosenbluth weight’ as,

W (o → n) ≡
k
∑

j=1

e−βvext(bj). (3.46)

Combining all the probabilities in the above steps, the generation probability G(o →
n) is determined to be

G(o → n) =

(

1

Mt

)(

1

2

)

Cbond e−βvbond(bi)
e−βvext(bi)

W (o → n)
(3.47)

To compute the generation probability of the reverse move G(n → o), one pretends

that the new configuration has been accepted and repeat the steps used in the calculation

of G(o → n). However, for this case, only k − 1 trial bonds (b′
1, · · ·b′

k−1) need to be

generated and there is no decision making because the old configuration is already

known. Denoting the original bond vector by bo,

G(n → o) =

(

1

Mt

)(

1

2

)

Cbond e−βvbond(bo) e
−βvext(bo)

W (n → o)
, (3.48)

where

W (n → o) ≡ e−βvext(bo) +
k−1
∑

j=1

e−βvext(b′

j). (3.49)

The change in the total potential energy is caused only by this monomer being

removed from one end and attached to the other end. Therefore,

Un − Uo = (vbond(bi) + vext(bi)) − (vbond(bo) + vext(bo)) (3.50)

Assuming the simulation is done in canonical or semi grand canonical ensemble,

P eq
n G(n → o)

P eq
o G(o → n)

= e−β(Un−Uo)
e−βvbond(bo) e−βvext(bo)

W (n→o)

e−βvbond(bi) e−βvext(bi)

W (o→n)

=
W (o → n)

W (n → o)
(3.51)

Finally, the acceptance probability for this move is

A(o → n) = min

{

1,
W (o → n)

W (n → o)

}

. (3.52)
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3.5.2 Rebridging Monte Carlo

In this type of move, a part of a chain is erased and regrown within itself (single

rebridging) [45,46] or parts of two chains are erased and regrown to form a new pair of

chains in which the connectivity of the original chains are altered (double rebridging)

[47,48,49]. In fact, a single rebridging algorithm is an important part of a corresponding

double rebridging algorithm. Although there is no limit for the number of segments or

monomers to be regrown in principle, we implemented a move that involves erasing only

one monomer and regrowing it in both types of moves because of its simplicity.

For single rebridging, we implement a continuum version of the crank-shaft move [50]

where an erased monomer is put back near a circle formed by the loci of points which

are equidistant from two adjacent monomers. The distance was chosen to be one that

minimize the bare bond potential energy.

For double rebridging, we adopt the scheme proposed by Banaszak and de Pablo [49]

and implement it with our version of the single rebridging move. In our implementation

of the scheme, a chain is chosen at random and the rest of the chains of the same type

are scanned for a potential bridging sites. One can bias these processes in any possible

way that will enhance the chance for the move to be accepted.

Trimer single rebridging

During a trimer single rebridging move, a chain is picked randomly and a monomer,

which is not one of two end monomers, is chosen. The monomer is erased from the chain

and regrown at a new position. A bridge in the following will refer to the three monomers

involved in this type of move (those labelled 0, 1, and 2 in Fig. 3.3). Implementation

steps of the move are as follows:

1. Pick a chain at random and decide which end to call the head of the chain also

randomly.

2. Pick a non-end monomer from the chosen chain (labeled as 1 in Fig. 3.3) at

random and remove it.

3. Generate trial positions according to a probability proportional to e−βvbond . To

enhance the chance of success, apply a bias to restrict the new positions around
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Figure 3.3: In a single rebridging move, two bonds connected to a monomer marked as
1 are erased and regrown.

a circle formed by rotation of two joined bond vectors from the adjacent two

monomers (similar to a crank-shaft move).

4. Choose one of the trial positions according to a probability proportional to the

Boltzmann factor associated with external interaction energy.

5. Accept the proposed new position of the monomer according to the Metropolis

rule.

Calculation of the acceptance probability would be similar to the one for the repta-

tion move, which showed all the essential features in CBMC moves. The probabilities

associated with the first two steps are 1
Mt

, 1
2 , and 1

N−2 . As before, k trial positions are

generated with probabilities proportional to e−βvbond . For this move, however, we apply

a bias additionally. The probability of generating a particular bond b directed from

monomer 2 to monomer 1 is

Pbond(b) = Cnorm e−βvbond(b) e−β
κθ
2

(θ−θ0)2 , (3.53)
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Figure 3.4: Monomer 1 is erased and regrown from monomer 2. The new bond vector
from monomer 2 to new position of monomer 1 is denoted by bi and the new bond
vector from monomer 1 to monomer 0 is denoted by bi

0

where a normalization constant Cnorm is given by

C−1
norm =

∫

db′e−βvbond(b′)e−β
κθ
2

(θ′−θ0)2 . (3.54)

κθ is an elastic constant obtained by Taylor expanding the bare potential energy as-

sociated the bond between monomer 1 and 0 about the energy minimum for which

θ = θ0 [51]. At step 4, one of k trial bonds (b1, · · ·bk) is chosen with a probability for

choosing bond i (1 ≤ i ≤ k) being,

Pclosure(bi) =
e−β[vext(bi)+vbond(bi

0)]

W (o → n)
, (3.55)

where bi
0 is the bond vector from trial position i to monomer 0. The Rosenbluth weight

W (o → n) for the move is given by

W (o → n) =
k
∑

j=1

e−β[vext(bj)+vbond(bj
0)] . (3.56)
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Combining all the probabilities so far, the probability of generating new configuration

(say, bi was chosen) is

G(o → n) =
1

2

(

1

Mt

)(

1

N − 2

)

Cnorm e−βvbond(bi)e−β
κθ
2

(θi−θ0)2

× e−β[vext(bi)+vbond(bi
0)]

W (o → n)
. (3.57)

G(n → o) is calculated the same way as G(o → n) except that k − 1 trial posi-

tions (b′
1, · · ·b′

k−1) are generated and there is no decision making. Again, denoting the

original bond vector from 2 to 1 by bo,

G(n → o) =
1

2

(

1

Mt

)(

1

N − 2

)

Cnorm e−βvbond(bo)e−β
κθ
2

(θo−θ0)2

× e−β[vext(bo)+vbond(bo
0)]

W (n → o)
, (3.58)

in which

W (n → o) = e−β[vext(bo)+vbond(bo
0)] +

k−1
∑

j=1

e−β[vext(b′

j)+vbond(b′j
0 )] . (3.59)

Assuming canonical or semi grand canonical probability distributions,

A(o → n) = min

{

1,
W (o → n)eβ

κθ
2

(θi−θ0)2

W (n → o)eβ
κθ
2

(θo−θ0)2

}

. (3.60)

A point worth mentioning about Eq. (3.60) is that the normalization constants Cnorm

for both forward (o → n) and reverse (n → o) moves were the same, therefore they can-

cel out in the acceptance probability. This is because Cnorm depends on the positions

of two monomers 0 and 2 by construction. When this bridging scheme is applied to

trimer double rebridging in the next section, there is no such cancellation and normal-

ization constants associated with each bridge will show up explicitly in the acceptance

probability.

Trimer double rebridging

For this move, a chain is picked randomly and a non-end monomer is chosen at random.

Next, all the chains of the same type as the chosen one are scanned to find a potential
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Figure 3.5: In a double rebridging move, a monomer from each is erased and regrown to
be connected to the other chain, resulting in a dramatic change of chain configurations.

bridging partner based on a distance criterion. The rest of steps are similar to those of

a single rebridging move, except that a bridge is now constructed from one chain to the

other.

The implementation steps are,

1. Pick a chain at random and decide which end to call the head of the chain with

equal probabilities.

2. Pick a non-end monomer from the chosen chain (labeled as 1 in Fig. 3.5).

3. Examine the chains of the same type for a potential bridging partner. For each

chain examined, also pick a head monomer at random. To preserve chain archi-

tecture, monomers at the same position as the one in the chosen chain at step 1

are considered.

4. After scanning all the chains of the same type to identify a potential bridging site,

pick one at random and construct two bridges: one from monomer 2 of i chain to
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monomer 0 of j chain and the other from monomer 2 of j chain to monomer 0 of

i chain.

5. Accept the proposed new configuration according to the Metropolis rule.

Calculation of the acceptance probability for this move needs some care because the

normalization constants of the probability distributions of choosing a bond with bias

are distinct for each bridge.

As for the single trimer move, the probability associated with the first two steps is
1

Mt
× 1

2 × 1
N−2 . During the next step, all monomers of the same type located at the

same position as the picked one are examined and a chain is selected as a potential

bridging pair with a weighting factor which will bias the choice in a way that increases

the chance of success. Let us assume the label of the chosen chain is i. While scanning

all the chains of the same type, a weighting factor Wj for a specific chain j and a

normalization constant Z are recorded where

Wj(o → n) ≡ Psep(ri2,j0)Psep(rj2,i0) , (3.61)

Z(o → n) ≡
∑

k 6=i

Psep(ri2,k0)Psep(rk2,i0). (3.62)

Psep(r) is a probability density that might reflect the equilibrium distribution of distance

between two monomers bonded to a common monomer and ri2,j0 denotes the distance

between monomer 2 of i chain and monomer 0 of j chain, for example. When scanning

is completed, chain j is chosen with the probability

Pj(o → n) =
Wj(o → n)

Z(o → n)
(3.63)

Once a chain (labeled j) is chosen, a single bridge from monomer 2 of chain i to

monomer 0 of chain j is constructed as described in the previous section, producing the

associated Rosenbluth factor WA(o → n). The other bridge from monomer 2 of chain j

to monomer 0 of chain i will give another Rosenbluth factor WB(o → n). To calculate

the acceptance probability, let bA and bB be chosen trial bond vectors connecting

monomer 2 and monomer 1 in each bridge. bA
0 and bB

0 are vectors from monomer 1 to
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Figure 3.6: In a trimer double rebridging move, two single bridges are constructed: one
from monomer 2 of i chain to monomer 0 of j chain (indicated by A), the other from
monomer 2 of j chain to monomer 0 of i chain (indicated by B)

monomer 0 in each bridge. The probability of generating the new configuration is given

by

G(o → n) =

(

1

Mt

)(

1

2

)(

1

N − 2

)

Pj(o → n)

× Cbonde
−βvbond(bA)CθA

e−β
κθA

2
(θA−θA0)2 e−β[vext(bA)+vbond(bA

0 )]

WA(o → n)

× Cbonde
−βvbond(bB)CθB

e−β
κθB

2
(θB−θB0)2 e−β[vext(bB)+vbond(bB

0 )]

WB(o → n)
.

(3.64)

The normalization constants Cbond, CθA
, and CθB

are

C−1
bond =

∫

e−βvbond(b)b2db (3.65)

C−1
θA

=

∫ π

0
e−β

κθA
2

(θ−θA0)2 sin θdθ (3.66)

C−1
θB

=

∫ π

0
e−β

κθB
2

(θ−θB0)2 sin θdθ . (3.67)
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While Cbond is constant once the bond potential is given, CθA
6= CθB

in general because

configurations of bridge ends (monomers 0 and 2) will be different. Substituting Eq.

(3.64) and similar expression for the reverse move into the Metropolis function, the

acceptance probability is found to be

A(o → n) = min

{

1,
Pi(n → o)W̃A(o → n)W̃B(o → n)

Pj(o → n)W̃A′(n → o)W̃B′(n → o)

}

, (3.68)

where A′ and B′ denote the original chain configurations of i chain and j chain, respec-

tively. W̃A(o → n) is defined as,

W̃A(o → n) ≡ WA(o → n)

CθA
e−β

κθA
2

(θA−θA0)2
(3.69)

and similar definitions of W̃ ’s are given for other bridges B, A′, and B′.



Chapter 4

Perturbation theory and local

correlations in polymer liquids

4.1 Introduction

In dense polymer liquids, the immediate neighborhood of a monomer along a chain is

partly occupied by monomers from the same chain rather than monomers from other

chains. This local correlation in the spatial arrangement of monomers was not taken

into account properly in the original Flory-Huggins (FH) lattice theory of polymer

mixtures [1,2]. That is, in the original theory of binary AB blends, it was assumed that

a neighboring site of a monomer is occupied by a monomer of type i with a probability

φi, where φi is the volume fraction of monomers of type i (=A,B). This assumption is

called the random mixing approximation and it neglects the fact that a monomer in a

polymer molecule is connected to other monomers from the same chain, therefore likely

to be surrounded by them.

The random mixing approximation is known to overestimate the energy of mixing.

In simulations of a simple cubic lattice diluted with a modest density of vacancies,

Sariban and Binder [13, 14] found that the energy of mixing was roughly half that

predicted by an analogous approximation for a lattice with vacancies. In more recent

lattice Monte Carlo simulations of diblock copolymer melts on a diluted fcc lattice,

Matsen and coworkers [15,16] also considered a lattice mean-field (i.e., random mixing)

approximation for the order-disorder transition of symmetric diblocks, and found that

39



40

it predicts a transition temperature more than twice that observed in their simulations,

again indicating a large overestimation of the energy arising from AB pair interactions.

These studies indicate that a proper description of the correlation effect is needed for a

theory to describe correct thermodynamics of mixtures.

In this chapter, we develop a first order perturbation theory of a class of models of

structurally symmetric blends. The goal is to obtain a perturbative expansion of free

energy in powers of a small parameter α that is proportional to the difference between

A-B and A-A (or B-B) interaction energy. We find that the free energy of mixing per

monomer is given, to first order in α, by

∆f ≃ kBT

N

A,B
∑

i

φi lnφi + αz(N)φAφB + O(α2) , (4.1)

where N is the degree of polymerization of a polymer of type A or B and kBT is

thermal energy. For the case of a lattice model, z(N) in the above equation is found to

be proportional to the average number of inter-molecular neighbors, implying it takes

proper account of the correlation in the arrangement of monomers.

Several authors have previously proposed approximations that are either equivalent

or very closely related to the first order perturbation theory. Müller and Binder [52]

proposed a “modified Flory-Huggins” approximation for the free energy of mixing ∆f

of a simple lattice model where the lattice coordination number was replaced by an

average number of inter-molecular neighbors. In discussions of the results of continuum

bead-spring simulations of symmetric blends, Grest et al. [53] discussed a one fluid

approximation that is equivalent to the first order perturbation theory for a continuum

model. Escobedo and de Pablo [54] considered closely related approximation that differs

from the perturbation theory in the way that the first order coefficient of the free

energy expansion is calculated. Both Müller and Binder and Escobedo and de Pablo

showed that their proposed approximation can provide accurate predictions for the

critical temperature in simulations of symmetric binary blends. This appears to be a

natural consequence of the identification of their modified FH theories as a first order

perturbation theory.

In Sec. 4.3 of this chapter, we analyze the chain length dependence of the short dis-

tance behavior of the inter-molecular radial distribution function (RDF), and of related

quantities such as z(N). Our analysis starts from the (verifiable) assumption that, in a
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nearly incompressible liquid, the total RDF, including both intra- and inter-molecular

contributions, changes extremely little with changes in chain length N . The intra-

molecular correlation function must, however, change slightly with N , due to changes in

the number of chemically distant monomers from the same chain in the neighborhood of

any test monomer. This causes a systematic decrease in the depth of the inter-molecular

correlation function with decreasing N , and thus an increase in z(N), as chemically dis-

tant intra-molecular neighbors are simply replaced by inter-molecular neighbors in the

immediate environment of any test monomer. The relevant concentration of chemically

distant intra-molecular neighbors of any test monomer can be calculated using a simple

random walk model. Combining the model with the stated assumption, we find that

z(N) can be expressed as

z(N) = z∞[1 + βN̄−1/2] , (4.2)

where z∞ is a model dependent constant, N̄ ≡ Nb6/v2, b is the statistical segment

length, v is the volume per monomer, and β is a universal constant given by

β =

(

6

π

)3/2

= 2.64 (4.3)

for any structurally symmetric model. Previously, Müller and Binder [52] found that

the above functional form fits their z(N) values in bond fluctuation model simulations

very well but determined β empirically due to lack of a theoretical prediction.

Another question we address in this chapter is how to identify the FH interaction

parameter χ such that a meaningful comparison between coarse grained theories and

simulations can be made. Simulations of dense polymer liquids are providing increas-

ingly precise tests of the assumptions underlying self consistent field theory (SCFT).

Lattice Monte Carlo and continuum simulations of simple coarse-grained models have

been used to quantify slight deviations from the random walk model for polymer statis-

tics in melts and deviations from the RPA description of composition fluctuations in

both polymer blends [13,55,52,53] and block copolymer melts [56, 57,58,59,15].

In order to compare either simulation or experimental data to SCFT predictions

for multicomponent systems, however, one must somehow choose values for the SCF

interaction free energy ∆fint(φ, T ) and/or the FH interaction parameter χ relevant to

the RPA analysis of long-wavelength scattering [7]. Because the relationship between
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∆fint(φ, T ) and the underlying microscopic parameters is never known a priori, the

temperature and (sometimes) composition dependence of ∆fint or χ have thus far been

determined by fitting RPA predictions to the available measurements of composition

fluctuations, in the analysis of either experiment or simulations. The uncertainty intro-

duced by this fitting procedure becomes a potentially serious problem, however, when

one’s goal is to precisely quantify small deviations from RPA predictions, which is nec-

essary in order to test theories that predict corrections to SCFT. For this purpose, it

would be useful to have an independent way of unambiguously defining and accurately

calculating ∆fint for a simulation model using the microscopic information that is avail-

able in a simulation. Here, we propose a way of doing this for symmetric models, which

is based on an extrapolation of the perturbation theory to the limit of infinitely long

polymers.

4.2 Perturbation theory

In this section, we will consider a general class of structurally symmetric binary polymer

blends using a similar languages for lattice and continuum models. We consider a system

containing a total of Mt structurally identical chains, each containing N monomers, in

which φAMt are of type A and φBMt are of type B. Let α be a small parameter that

controls the magnitude of the difference between AB and AA interactions. The state

α = 0 is thus a ideal mixture of Mt physically indistinguishable chains, in which a

fraction φA can be chosen to be A chains at random.

We consider a class of lattice models in which double occupancy of lattice sites

is forbidden and monomers on neighboring sites of types i and j interact via a pair

potential vij(α) of the form

vij(α) = u + αbij . (4.4)

Here, u is the interaction between all neighboring monomers, α is a small parameter, and

bij is a symmetric matrix of dimensionless coefficients, with bAB = bBA. To maintain

the symmetry between the two species, we require that bAA = bBB. The value of the

parameter u is relevant if and only if the system contains vacancies, because changes in

u can then effect correlations in the one-component reference liquid.

We also consider a class of structurally symmetric continuum models. Consider a
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system of Mt chains of length N in a volume V , giving an overall monomer concentration

c = MtN/V or an average monomer volume v = 1/c. The total potential energy is the

sum of intra-molecular bonding potentials, which are assumed to be the same for A and

B chains, plus a sum of non-bonded pair potentials. The pair potential for monomers

of type i and j separated by a distance r is assumed to be of the form

vij(r) = u(r) + αbij(r) , (4.5)

with bAA(r) = bBB(r), where α has units of energy.

Let H(α) be the total potential energy of either model. The configurational part of

the partition function is given by

Z = Tr e−H(α)/kBT , (4.6)

where Tr denotes an integral over monomer positions for the continuum models or a sum

over all distinguishable micro-states in a lattice model. We will formulate a perturbation

theory for the free energy per monomer

f ≡ − kBT

MtN
lnZ. (4.7)

We define a quantity θ to be

θ(φ, α) ≡ ∂f

∂α
=

1

MtN

〈

∂H(α)

∂α

〉

(4.8)

To first order in α, the free energy per monomer is thus given by

f(φ, α) ≃ f0 +
kBT

N

∑

i

φi lnφi + αθ(φ, 0) + O(α2), (4.9)

in which f0 is the free energy per monomer of a corresponding one-component refer-

ence state, with α = 0, when all of the chains are treated as indistinguishable in the

calculation of entropy. The ideal free energy of mixing term accounts for the combina-

torial entropy associated with the random labelling of chains as A or B. The quantity

θ(φ, α = 0) is evaluated in the resulting ideal mixture.

In the simple case of a lattice model with vAA = u and vAB = u + α, θ is simply

equal to the total number of AB neighbor pairs in the system, divided by the total

number MtN of monomers.
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In a continuum model with bAA = bBB = 0, θ is given by the sum of values of bAB(r)

for all interacting AB monomer pairs, divided by MtN .

The composition dependence of θ within the ideal mixture can be determined by

simple combinatorical arguments. To show this, we consider lattice and continuum

models separately.

4.2.1 θ for lattice models

Let zc(N) be the average number of sites neighboring each monomer that are occupied by

monomers from a different chain, evaluated in the reference state α = 0 (i.e., the average

number of inter-molecular neighbors per monomer). Let wc(N) be the average number

of neighboring sites that are occupied by monomers from the same chain (the average

number of intra-molecular neighbors). Then, the average total number of occupied

neighbors yc(N) is given by

yc(N) = zc(N) + wc(N). (4.10)

In the absence of vacancies, yc(N) must equal the lattice coordination number. For the

case of lattice models, ∂H
∂α can be written as

∂H

∂α
=

1

2

MtN
∑

s=1

∑

<s′>

bt(s)t(s′), (4.11)

where t(s) denotes the type of monomer occupying site s and
∑

<s′> extends over the

sites around s that are within the interaction range. θ can be expressed as

θ(φ, 0) =

〈

1

MtN

1

2

MtN
∑

s=1

∑

<s′>

bt(s)t(s′)

〉

=
1

2

〈

∑

<s′>

bt(s=1)t(s′)

〉

=
1

2
wc(N)

A,B
∑

i

φibii +
1

2
zc(N)

A,B
∑

i,j

φiφjbij

=
1

2
yc(N)

(

φAbAA + φBbBB

)

+ zc(N)
(

bAB − bAA + bBB

2

)

φAφB

(4.12)

In Eq. (4.12), the average is calculated in the α = 0 state. As can be seen from the

functional form, the first term corresponds to the intra-molecular contribution and the
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second term comes from the inter- molecular interaction. The last line can be obtained

by using incompressibility condition φA + φB = 1. For symmetric blends, bAA = bBB

and

θ(φ, 0) =
1

2
y(N) + z(N)φAφB, (4.13)

where we defined

y(N) ≡ yc(N)bAA (4.14)

z(N) ≡ zc(N)(bAB − bAA). (4.15)

Now, Eq. (4.9) can be written as

f(φ, α) ≃ f0 +
1

2
αy(N) +

kBT

N

∑

i

φi lnφi + αz(N)φAφB + O(α2)

= f0 +
1

2
αy(N) + ∆f, (4.16)

where we defined the free energy of mixing per monomer as

∆f ≡ kBT

N

∑

i

φi lnφi + αz(N)φAφB + O(α2) (4.17)

To first order in α, ∆f is identical to the modified Flory-Huggins theory of Müller and

Binder. [52]

4.2.2 θ for continuum models

In a continuum model with a pair potential given by Eq. (4.5),

∂H

∂α
=

1

2

A,B
∑

i,j

∫

dr

∫

dr′ bij(r − r′)ci(r)cj(r
′) , (4.18)

in which ci(r) is a monomer density defined in Eq. (2.1). Therefore θ(φ, 0) can be

written as

θ(φ, 0) =
1

MtN

1

2

A,B
∑

i,j

∫

dr

∫

dr′ bij(r − r′)〈ci(r)cj(r
′)〉

=
v

2

A,B
∑

i,j

∫

dr〈ci(r)cj(0)〉bij(r) (4.19)
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where v = c−1 = V/MtN is the volume per monomer.

To discuss a perturbation theory for continuum models, it is useful to introduce some

notation for inter and intra-molecular correlations in the one component reference liquid,

with α = 0. Let ginter(r, s, N) denote the inter-molecular radial distribution function

(RDF) for a test monomer with monomer index s in a reference liquid containing chains

of length N , defined such that ginter(r, s, N) → 1 as r → ∞. The product cginter(r, s, N)

is thus the probability density (probability per volume) of finding any monomer from a

different chain separated by a vector r from such a test monomer. Let ω(r, s, N) be an

intra-molecular correlation function in this reference liquid, defined as the probability

density for finding any other monomer from the same chain separated by a vector r

from a test monomer with monomer index s. Let gtot(r, s, N) be the total RDF for a

test monomer with a specific monomer index s, defined so that

cgtot(r, s, N) = ω(r, s, N) + cginter(r, s, N) , (4.20)

and so that gtot(r, s, N) → 1 as r → ∞. In addition, ḡinter(r, N), ḡtot(r, N), and

ω̄(r, N) will be used to denote the averages of ginter(r, s, N), gtot(r, s, N), and ω(r, s, N),

respectively, with respect to s.

In an ideal mixture with α = 0, random labelling of a fraction φA of the chains as

A and the remainder as B yields

〈ci(r)cj(0)〉 = δijcω̄(r, N)φj + c2ḡinter(r, N)φiφj . (4.21)

Eq. (4.21) is obtained by noting that 〈ci(r)cj(0)〉 is the probability of finding a monomer

of type i at a position r, given there is a monomer of type j at r = 0. A monomer

at r can be only be inter-molecular neighbor if i 6= j. If i = j, it could be either

intra or inter-molecular neighbors. Because c is the probability of finding a monomer

at r = 0 and cḡinter(r, N) is the probability of finding an inter-molecular monomer in

a melt or α = 0 state given there is one at r = 0, the contribution to 〈ci(r)cj(0)〉 by

inter-molecular pair is cφiḡinter(r, N)cφj (the second term in Eq. (4.21)). By a similar

reasoning, the contribution from intra-monomer for i 6= j is ω̄(r, N)cφj , which is the

first term of Eq. (4.21).

Substituting Eq. (4.21) into Eq. (4.19) and after a little algebra using the relations
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φA + φB = 1 and cḡtot(r, N) = ω̄(r, N) + cḡinter(r, N), one gets

θ(φ, 0) =
c

2

∫

drḡtot(r, N)
(

bAA(r)φA + bBB(r)φB

)

+ c

∫

drḡinter(r, N)
(

bAB(r) − bAA(r) + bBB(r)

2

)

φAφB. (4.22)

For the case of bAA(r) = bBB(r), it reduces to Eq. (4.13) where y(N) and z(N) are

defined by

y(N) ≡ c

∫

drḡtot(r, N)bAA(r)

z(N) ≡ c

∫

drḡinter(r, N)(bAB(r) − bAA(r)) . (4.23)

In what follows, we will also consider the analogous quantities

y(s, N) ≡ c

∫

dr gtot(r, s, N)bAA(r)

z(s, N) ≡ c

∫

dr ginter(r, s, N)(bAB(r) − bAA(r)) , (4.24)

for a test monomer with a specific monomer index s, with 1 ≤ s ≤ N .

4.3 Dependence of local liquid structure on chain length

In this section, we consider how properties of a one-component melt that are sensitive

to short range correlations depend upon overall chain length N . Our reasoning applies

equally well to lattice and continuum models, but we will hereafter adopt a notation

appropriate to a continuum model. To proceed, we first consider how the intra-molecular

correlation function ω(r, s, N) depends upon s and N , and then consider how this

translates into a corresponding s- and N -dependence of ginter(r, s, N).

4.3.1 Intra-molecular distribution

Each monomer in a melt with α = 0 is surrounded by a concentration ω(r, s, N) of

other monomers from the same chain, in addition to a concentration cginter(r, s, N) of

monomers from other chains. If P (r, s′, s, N) denotes a probability density of finding a

monomer with index s′ separated by a vector r from a monomer s,

ω(r, s, N) ≡
∑

s′

P (r, s′, s, N). (4.25)
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Figure 4.1: Schematic view for the difference δω(r, s, N) between the intra-molecular
function ω∞(r) for an infinite chain and the corresponding correlation function ω(r, s, N)
for monomer s on a chain of length N . This difference is attributed to the contributions
to ω∞(r) of the monomers s ≤ 0 and s > N that are “missing” from the finite chain.
The concentration of these missing monomers near the test monomer (i.e., near r = 0)
can be estimated using a random walk model, if s is not too near either chain end.
As the chain length is decreased from ∞, chemically distant monomers from the same
chain are simply replaced by monomers from other chains, while leaving the total RDF
gtot(r, s, N) almost unchanged.

For small r, the concentration ω(r, s, N) is dominated by monomers for which |s′− s| is

small. As a result, for monomers that are far from either chain end, ω(r, s, N) depends

only weakly on chain length N and index s.

In the limit N → ∞, P (r, s, s′, N) approaches a function

P∞(r, s, s′) ≡ lim
N→∞

P (r, s, s′, N) (4.26)

that depends only on |s − s′|. For a monomer s which is not to close either chain end,

ω(r, s, N) also approaches a function

ω∞(r) ≡ lim
N→∞

ω(r, s = N/2, N) (4.27)

that is independent of s. The limiting process in Eq. (4.27) is such that two ends of a

chain grow simultaneously at the same temperature and density.
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For chains with a finite length, the difference δω(r, s, N) = ω∞(r) − ω(r, s, N) can

be estimated as follows. First we assume that for a sufficiently large N , a infinitely long

chain and a chain of length N have very similar conformational statistics, i.e.

P (r, s, s′, N) ≈ P∞(r, s, s′) (4.28)

for a sufficiently large N . This implies (Fig. 4.1)

δω(r, s, N) =
∞
∑

s′=−∞
P∞(r, s, s′) −

N
∑

s′=1

P (r, s, s′, N)

≈
0
∑

s′=−∞
P∞(r, s, s′) +

∞
∑

s′=N+1

P∞(r, s, s′). (4.29)

Because ∆s = |s′− s| ≫ 1 for the monomer s of interest to us, we may approximate

P∞(r, s, s′) by a Gaussian distribution for a continuous random walk

Pid(r, ∆s) =

(

3

2π∆sb2

)3/2

exp

(

− 3r2

2∆sb2

)

. (4.30)

In the same limit, we may also approximate sums over s′ by integrals to obtain an

analytic approximation for δωid(r, s, N). Here and hereafter, a subscript id (for “ideal”)

is used to indicate approximations obtained using this idealized continuous random-walk

chain model.

The effective coordination number z(s, N) is sensitive only to the distribution of

monomers that lie within the range of the pair potential from a test monomer. To

characterize how the self-concentration ω(r, s, N) within this small region depends upon

s and N , we consider the s- and N -dependence of the distribution δωid(r = 0, s, N) for

a random walk, evaluated at the position r = 0 of the test monomer. The random-walk

model yields a deviation

δωid(r = 0, s, N) =
0
∑

s′=−∞
Pid(r = 0, ∆s) +

∞
∑

s′=N+1

Pid(r = 0, ∆s)

≈
(

3

2πb2

)3/2




∞
∫

s−1

dt

(t + 1
2)3/2

+

∞
∫

N−s

dt

(t + 1
2)3/2





=

(

3

2π

)3/2 2

b3





1
√

s − 1
2

+
1

√

N − s + 1
2



 . (4.31)
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In approximating the discrete sums by integrals, we used

N
∑

s′=s

f(s′) ≈
∫ N

s−1
ds′f(s′ +

1

2
) (4.32)

to minimize the error.

The random walk approximation clearly breaks down for s near the chain ends, as

expected on physical grounds, since Eq. (4.31) predicts a 1/
√

s divergence at either

chain end.

In the next section, z(N) will be shown to depend upon on the average value

δω̄(r, N) ≡ 1

N

∑

s

δω(r, s, N) . (4.33)

Using the above random walk model for δω(r = 0, s, N) yields

δω̄id(r = 0, N) =
1

v

(

6

π

)3/2 1

N̄1/2
(4.34)

in which N̄ ≡ Nb6/v2. The quantity vδω̄id(r = 0, N) = (6/π)3/2N̄−1/2 is the cor-

responding volume fraction of the “missing” monomers in the vicinity of a randomly

chosen test monomer.

Note that the integral with respect to s required to calculate ω̄id(r = 0, N) converges,

despite the divergence of Eq. (4.31) for the integrand at both chain ends. This reflects

the fact that the average with respect to s is dominated not by the contributions of a few

monomers near the chain ends, but by those of many interior monomers. As a result, our

use of a random walk model is sufficiently accurate to correctly calculate the prefactor

of the dominant O(N−1/2) contribution to δω(r = 0, s, N). Further corrections that

arise from the breakdown of the random walk model near both chain ends are expected

to yield subdominant contributions of O(N−1).

4.3.2 Inter-molecular distribution

The value of z(N) depends mostly on the behavior of the inter-molecular distribution

ginter(r, s, N) for small r, which is less than the range of the pair potential (see Eq.

(4.24)). Let us define the following limits of distribution functions:

g∞tot(r) ≡ lim
N→∞

gtot(r, s, N)

g∞inter(r) ≡ lim
N→∞

ginter(r, s, N). (4.35)
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We make the following assumptions about how the small r behavior of distribution

functions depends on chain length in a dense melt where the polymer coil size
√

Nb is

much larger than the range of the pair potential:

1. In an almost incompressible liquid, gtot(r, s, N) is almost independent of both s

and N , except for monomers very close to one of the chain ends. This is what

is meant when we say that the melt is effectively “incompressible”. This implies

that

gtot(r, s, N) ≃ g∞tot(r) , (4.36)

for all monomers except a few near the chain ends. For this to be true for all

N , however, the decrease in the intra-molecular self-concentration ω(r, s, N) with

decreasing N must be exactly compensated by an increase in cginter(r, s, N). This

implies

cginter(r, s, N) ≃ cg∞inter(r) + δω(r, s, N) , (4.37)

where δω(r, s, N) = ω∞(r) − ω(r, s, N).

Corrections to assumption (4.36) can arise, even for values of s that are far from

either chain end, from contributions to g∞tot(r, s, N) due to correlations between an

interior test monomer and an end monomer. The resulting end-effect corrections

(discussed in more detail in Sec. 4.3.3) are of order 1/N .

2. The spatial distribution around a test monomer of chemically distant monomers

from the same chain closely mimic the local distribution ginter of monomers from

other chains. We approximate it by the g∞inter(r) for a system of infinite chains.

This implies that δω(r, s, N) of the chemically distant “missing” monomers is of

the form

δω(r, s, N) ∝ g∞inter(r) (4.38)

for large N , values of s far from either chain end, and values r less than the range

of the potential.

3. The constant of proportionality in Eq. (4.38) depends on an overall concentration

of “missing” monomers over a region larger than the range of the potential. We

assume that an average concentration of missing monomers near a test monomer
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can be obtained by using the random-walk model for the return probability δω(r =

0, s, N). More precisely,

δω(r, s, N) ≃ δωid(0, s, N)g∞inter(r) (4.39)

under the same conditions that Eq. (4.38) applies.

Substituting Eq. (4.39) into Eq. (4.37), one obtains

ginter(r, s, N) ≃ g∞inter(r) [ 1 + vδωid(0, s, N) ] (4.40)

Using this approximation in Eq. (4.24) yields

z(s, N) ≃ z∞ [1 + vδωid(0, s, N)] , (4.41)

where ωid(0, s, N) is given by Eq. (4.31) and we defined

z∞ ≡ c

∫

dr g∞inter(r)(bAB(r) − bAA(r)) . (4.42)

Averaging with respect to s yields

z(N) ≃ z∞ [1 + vδω̄id(0, N)]

= z∞
[

1 +

(

6

π

)3/2 1

N̄1/2

]

, (4.43)

4.3.3 End effects

In addition to the dominant O(N−1/2) corrections to z(N) predicted above, we also

expect to find subdominant O(1/N) corrections to both y(N) and z(N) that arise from

the perturbation of the liquid structure near chain ends.

Consider the contribution of end effects to the total correlation function gtot(r, s, N),

and to the corresponding integral y(s, N). Let gtot(r, s, s
′, N) be a distribution func-

tion for pairs of monomers with specified monomer indices s and s′, defined so that

(c/N)gtot(r, s, s
′, N) is the probability per unit volume of finding any monomer with

index s′ separated by r from a test monomer with index s, and so that

cgtot(r, s, N) =
c

N

∑

s′

gtot(r, s, s
′, N) . (4.44)
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We assume that the deviation of gtot(r, s, s
′, N) from g∞tot(r) (Eq.(4.35)) is dominated by

pairs of (s, s′) where one of them is near one end of the chains and the other is somewhere

in the interior of the chain. Reflecting this assumption, we express gtot(r, s, s
′, N) as

gtot(r, s, s
′, N) = g∞tot(r) + δgend(r, s) + δgend(r, s

′) (4.45)

where δgend(r, s) is a deviation that is large only for s near 1 or N , and vanishes for

interior monomers. This functional form assumes that the correction δgend(r, s) that

arises from s near one of the chain ends is independent of s′ when s′ is an interior

monomer, and similarly for the correction δgend(r, s
′). This approximation captures

the dominant O(N−1) corrections to ḡtot(r, N), but ignores smaller O(N−2) corrections

arising from contributions in which both s and s′ are near chain ends. Substituting Eq.

(4.45) for gtot(r, s, s
′, N) in Eq. (4.44) yields

gtot(r, s, N) = g∞tot(r) + δgend(r, s) +
1

N
dend(r) (4.46)

where

dend(r) ≡
∑

s′

δgend(r, s
′) . (4.47)

The above approximation implies that for interior monomers, gtot(r, s) deviates from

g∞tot(r) by an amount that is proportional to 1/N but independent of s. As a result,

y(s, N) is expected to be of the form

y(s, N) ≃ y∞ +
δ

N
, (4.48)

for interior monomers for which δgend(r, s) ≈ 0. We also defined

y∞ ≡ c

∫

drg∞tot(r)bAA(r) (4.49)

δ ≡ c

∫

drdend(r)bAA(r) (4.50)

The 1/N correction to y(s, N) for interior monomers is the result of occasional close

contact between an interior test monomers and end monomers. It is further assumed

to be independent of the monomer index s of the interior test monomer. In addition,

we expect to see a much larger deviation (O(1)) from y∞ for the last few monomers at

either chain end.
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Similar reasoning suggests that the quantity z(s, N) for s far from either chain end

should also exhibit an O(1/N) contribution due to close contacts between the interior

test monomer and end monomers of other chains, in addition to the O(N−1/2) correction

described in Sec. 4.3.2. The same reasoning suggests that this O(1/N) correction for

interior monomers should be independent of s, implying a functional form

z(s, N) ≃ z∞ [ 1 + vδωid(0, s, N) ] +
γ

N
(4.51)

in which z∞ and γ are model-dependent parameters.

Finally, combining Eqs (4.43) and (4.48) yields

∂f

∂α

∣

∣

∣

∣

α=0

=
1

2
y(N) + z(N)φAφB

≃ 1

2
y∞ + z∞φAφB [1 + vδω̄id(0, N)] + O(N−1). (4.52)

4.4 Comparison to simulations

In this section, comparison of the theoretical predictions to both lattice and continuum

simulations are presented. The lattice model data were obtained from the published

results by Müller and Binder [52]. For continuum model, we conducted Monte Carlo

simulations using the model and methods described in Chapter 3.

4.4.1 Lattice simulation

Fig. 4.2 shows a comparison of theoretical predictions to the lattice Monte Carlo results

of Müller and Binder [52] for z(N) for two different variants of the bond fluctuation

model. In both variants of the model, a monomer occupies 8 sites within a cubic lattice,

from which other monomers are excluded. The volume fraction of occupied sites is 50%.

The top panel of Fig. 4.2 shows results for z(N) for chains of length N = 20, 40, 80, and

160 for a model in which each monomer interacts with monomers that are located at

any of 54 neighbors. The bottom panel shows results for a model where the number of

interacting neighbors is 6, instead. We have compared both sets of data to a prediction

z(N) ≃ z∞
[

1 + βN̄−1/2
]

+ γ′/N , (4.53)
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Figure 4.2: Lattice MC results of Müller and Binder [52] for z(N) (symbols) vs. N̄−1/2

for two different variants of the bond fluctuation model. The top panel shows results
for a model in which each site interacts with monomers located on any of 54 nearby
sites, while the bottom shows results for a model in which each site can interact with
only 6 neighboring sites. In each panel, the solid line is a best fit to Eq. (4.53), using
the predicted value of β = (6/π)3/2. This fit yields z∞ = 2.109 and γ′ = 0.588 for
the model with 54 neighbors and z∞ = 0.3134 and γ′ = 0.310 for the model with 6
neighbors. Dashed lines show the estimated asymptote z∞[1 + βN̄−1/2], with the same
value for z∞, in order to show the predicted asymptotic slope.
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in which β is equal to
(

6
π

)3/2
but z and γ′ are treated as adjustable parameters. The

γ′/N term is included to account both for the 1/N contribution to Eq. (4.51) for interior

monomers, and for contributions to the average over s arising from O(1) deviations from

z∞ for monomers near either chain end.

In the absence of a prediction for the coefficient β, Müller and Binder fit each of

these data sets to a function z(N) = z∞[1 + βfitN̄
−1/2], while treating both z∞ and

βfit as adjustable parameters. This yields best fit parameters βfit = 2.846 for z54 and

βfit = 3.330 for z6 slightly higher than the predicted value of 2.64. The quality of the

fit is approximately the same with either functional form.

Our predictions of a universal value for the asymptotic slope in these plots is consis-

tent with this data. Inclusion of the 1/N end correction is necessary to adequately fit

this data for modest values of N , however, particularly for the model with very short

range interactions.

4.4.2 Continuum simulation

In this section, the results of the Monte Carlo simulation of the bead-spring model is

presented. The simulation parameters of Eqs. (3.1) and (3.3) were ǫ = kBT , l = σ,

and κ = 400ǫσ−2 The simulated chains are of length N = 16, 32, 64, 128, and 256

at a fixed monomer concentration of c = 0.7σ−3. For these parameters, we obtain an

asymptotic statistical segment length b = 1.404σ (Fig. 4.3). The value was obtained by

fitting R2
g/N data to a renormalized one-loop theory predictions for the corrections for

Gaussian chain scaling [23].

All simulations use a cubic L × L × L simulation cell with periodic boundary con-

ditions (Table 4.1). The methods used to facilitate the sampling of configuration space

were hybrid Monte Carlo / molecular dynamics (MC/MD) [40], reptation [44], and

double-rebridging [60] moves.

Fig. 4.4 shows the distribution functions ḡtot(r, N) and ḡinter(r, N) in the one-

component liquid for the simulated systems. Results for ḡtot(r, N) for chains of different

length are indistinguishable at the scale of the main plot, but the correlation hole

in ḡinter(r, N) becomes visibly deeper with increasing N . The slight dependence of

ḡtot(r, N) on N is visible in the inset.
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Figure 4.4: Intermolecular and total radial distribution functions ḡinter(r, N) and
ḡtot(r, N) for the simulated systems. Results for ḡtot(r, N) for chains of different length
are indistinguishable in the main plot. Inset: ḡtot(r, N) in an expanded scale, in which
the slight dependence on N is visible.
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Inter-molecular coordination number: z(s, N) and z(N)

Our continuum model for blends was presented in Sec. 3.1.1. In terms of the language

of Sec. 4.2.2, bAA(r) = bBB(r) = 0, u(r) = ǫF (r), and bAB(r) = F (r). Also, the small

parameter α can be identified with ǫξ. Instead of calculating the integrals, z(s, N) and

z(N) were measured on the fly by calculating corresponding discrete sums.

Fig. 4.5 shows our results for z(N). To compare this data to theoretical predictions,

we have fit values of z(N) to Eq. (4.53). The fit for all chains agrees with the data to

within our statistical errors.

Fig. 4.6 shows a corresponding comparison of theoretical predictions to simulation

results for the quantity

zmid(N) ≡ 2

N

3N/4
∑

s=N/4+1

z(s, N) . (4.54)

This is the average of z(s, N) over the middle half of each chain. This quantity, unlike

the average z(N) over all monomers, excludes contributions from monomers very near

the chain ends. By using Eq. (4.51) for z(s, N), and approximating the sum over s in

Eq. (4.54) by an integral over N/4 < s < 3N/4, we obtain a predicted N -dependence

zmid(N) = z∞
[

1 + βmidN̄−1/2
]

+
γ

N
, (4.55)

in which

βmid ≡ (
√

3 − 1)

(

6

π

)3/2

≈ 1.932 . (4.56)

The approximation of a sum over s by an integral gives rise to errors of O(N−3/2), which

lie beyond the O(1/N) accuracy of Eq. (4.51) for the summand z(s, N). Because the

Table 4.1: Simulated models of melts

N Mt L
Rg

L

16 1176 29.955490 0.088
32 588 29.955490 0.108
64 294 29.955490 0.153
128 146 29.887407 0.217
256 144 37.483041 0.245
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Figure 4.5: Simulation results for z(N) (symbols) vs. N̄−1/2, compared to the prediction

of Eq. (4.53), using the predicted value of β = (6/π)3/2. A best fit to the data, shown
by the solid line, yields parameters z∞ = 0.2957 and γ′ = 0.3004. The dashed line is
the asymptotic line z∞[1+βN̄−1/2], with the same values for z∞ and β. Error bars are
shown, but are very small on this scale.
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Figure 4.6: Simulation results for zmid(N) (symbols) vs. N̄−1/2, compared to the

prediction of Eq. (4.55), using Eq. (4.56) for βmid. A best fit, shown by the solid
line, yields parameters z∞ = 0.2965 and γ = 0.2405. The dashed line is the asymptote
z∞[1 + βN̄−1/2].
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Figure 4.7: Simulation results for z(s, N) (symbols) vs. s, for s = 1, . . . , N/2 and chains
of length N =16,. . . ,256, compared to the prediction of Eq. (4.51) shown by dashed
lines. Values for the two parameters z∞ and γ were taken from the fit of zmid(N) shown
in Fig. 4.6.

sum over s that defines zmid(N) only includes interior monomers, for which we expect

Eq. (4.51) for z(s, N) to be valid, we may identify the constant γ in this fit with the

constant γ in Eq. (4.51). The prediction fits the data for all N = 16, . . . , 256 to within

the statistical errors. A fit of the same data to z∞[1 + βmid
fit N̄−1/2], in which βmid

fit is

treated as an adjustable parameter, yields a slightly worse fit, and a value βmid
fit = 2.4698

which is higher than the predicted value of βmid.

Fig. 4.7 shows our simulation results for z(s, N) for monomers s = 1, . . . , N/2.

Results for each chain length are compared to the predictions of Eq. (4.51), shown by

dashed lines. Values for the two parameters z∞ and γ have been taken from the fit of

zmid(N) shown in Fig. 4.6. Agreement between this data for z(s, N) and Eq. (4.51) is

excellent for all N , and for all s except values near the chain ends, for which all analytic

approximations are expected to fail.

Total coordination number: y(s, N) and y(N)

We have also considered a quantity

y(s, N) = c

∫

dr gtot(r, s, N)F (r) (4.57)
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that depends on the total RDF gtot. For the blend model considered here, for which

bAA(r), the quantity y(N) that appears in the perturbation theory actually vanishes. We

have nonetheless considered the quantity defined above as a way to test our assumptions

about the chain length dependence of ginter(r, s, N).

Fig. 4.8 shows our results for the average

ymid(N) ≡ 2

N

3N/4
∑

s=N/4+1

y(s, N) (4.58)

of the total coordination number y(s, N) over the middle half of each chain, and for

y(s, N) itself, respectively. Results for ymid(N) have been fit to a predicted form

ymid(N) = y∞+δ/N , which follows immediately from Eq. (4.48) for y(s, N) for interior

monomers. Note that the fractional deviations of ymid(N) from y∞ are much smaller

than those found for zmid(N): For the shortest chains, with N = 16, ymid(N) deviates

from y∞ by about 1%, whereas zmid(N) deviates from z∞ by roughly 30%.

In Fig. 4.9, we compare data for y(s, N) for all s and N to the functional form

predicted in Eq. (4.48) for interior monomers. Here, we have used the values of y∞ and

δ obtained from the fit shown in Fig. 4.8. This data clearly confirms that the small

deviations y(s, N) from y∞ for interior monomers are independent of s and proportional

to 1/N , as expected if the dominant corrections to y∞ arise from occasional contact of

interior monomers with end monomers. The inset to Fig. 4.9 shows the much larger

O(1) deviation of y(s, N) from y∞ for the last bead at each chain end.

4.5 SCFT and renormalized one-loop theory

There are good reasons to believe that a generalized form of SCFT becomes increasingly

accurate with increasing chain length, and is exact in the limit of infinitely long chains.

The strongest theoretical evidence for this hypothesis comes from investigation of cor-

rections to SCFT within the context of the renormalized one-loop theory (ROLT) [22],

as discussed below. The hypothesis that SCFT is asymptotically exact in the limit of

infinitely long chains is also consistent with the striking success of the Flory-Huggins

and (particularly) RPA theories in describing experimental data from mixtures of long

finite polymers.
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y∞ + δ/N , shown by the solid line, yields parameters y∞ = 4.0133 and δ = 0.4872.
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The ROLT yields a prediction for the free energy per monomer of the form

f = kBT
∑

i

φi

Ni
lnφi + fint(φ, T ) + f∗

1L , (4.59)

in which f∗
1L is a one-loop correction to generalized Flory-Huggins theory (Note that

f∗
1L was used to denote a contribution to the free energy per volume in Sec. 2.3). For

symmetric models of the type considered here, the predicted correction f∗
1L is a function

of the form

f∗
1L(φ, χeN, N) =

kBT

NN̄1/2
f̂∗
1 (φ, χeN) (4.60)

where f̂∗
1 is a dimensionless function of φ and χeN . Here, χe is an effective interaction

parameter that is related to ∆fint(φ, T ) by

χe ≡ − 1

2kBT

∂2∆fint

∂φ2
(4.61)

The SCF interaction free energy fint, which is required as an input to the theory, can

have an arbitrary composition dependence. To compare one-loop predictions to our

perturbation theory of symmetric mixtures, we must also allow fint to depend upon the

parameter α of the underlying microscopic model.

4.5.1 SCFT

Because the one-loop contribution f∗
1L is smaller than the entropy of mixing by a factor

of N−1/2, the SCF contribution fint may be identified by considering the limit N → ∞
of the true free energy f . Therefore, an expansion of fint to first order in α may be

obtained by simply taking the limit N → ∞ of the corresponding first order expansion

of f , which is given in Eq.(4.16). This yields

fint = f0 +
1

2
αy∞ + αz∞φAφB . (4.62)

An expression for the corresponding contribution ∆fint to the free energy of mixing is

given by

∆fint = αz∞φAφB . (4.63)

This result yields an expansion of effective SCF interaction parameter χe, to first order

in α, as

χe =
αz∞

kBT
. (4.64)
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The fact that this expansion for χe is independent of composition is a special feature

of the expansion of this class of symmetric models to first order in α: we do not expect

it to survive any generalization to structurally asymmetric models or to higher order

in α. Nothing rigorous can be said about the temperature dependence, even in this

first order expansion, because the expansion with respect to α has been carried out at

constant T , and z∞ thus has an unknown dependence on T . The coefficient z∞ would

be independent of T only in an athermal reference system, such as a lattice model with

no vacancies or a model of tangent hard spheres.

4.5.2 Renormalized one-loop theory

Both the ROLT for f and the simple perturbative expansion of f predict corrections to

the SCF free energy, as defined above, that are of order N̄−1/2. The ROLT is not equiv-

alent to first order perturbation theory because it predicts a correction f∗
1L(φ, χeN, N)

that is a nonlinear function of χeN and that exhibits singular behavior near the spin-

odal. We can test the consistency of the ROLT with the microscopic perturbation

theory, however, by considering the predictions of the one-loop theory for the derivative

θ = ∂f/∂α at α = 0, and comparing expressions for the O(N̄−1/2) contribution to this

coefficient.

The one-loop expression for θ ≡ ∂f/∂α at α = 0 can be expressed as a sum

∂f

∂α

∣

∣

∣

∣

α=0

=
∂fint

∂α

∣

∣

∣

∣

α=0

+
∂f∗

1L

∂α

∣

∣

∣

∣

α=0

. (4.65)

The SCF contribution is simply given by

∂fint

∂α

∣

∣

∣

∣

α=0

=
1

2
y∞ + z∞φAφB . (4.66)

The one-loop correction is of the form

∂f∗
1L

∂α

∣

∣

∣

∣

α=0

=
∂χe(φ, α)

∂α

∣

∣

∣

∣

α=0

∂f∗
1L(φ, χeN, N)

∂χe

∣

∣

∣

∣

χe=0

. (4.67)

It is straightforward to show, by using the functional form given in Eq. (4.60), that this

correction is proportional to N̄−1/2.

In the work by Qin and Morse [23], the first derivative of the one-loop correction

f∗
1L was calculated and given by

∂f∗
1L

∂χe

∣

∣

∣

∣

χe=0

= kBTvδω̄id(r = 0, N)φAφB . (4.68)
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Combining this with Eqs. (4.65-4.67) and Eq. (4.64) for χe yields

∂f

∂α

∣

∣

∣

∣

α=0

=
1

2
y∞ + z∞φAφB [1 + vδω̄id(r = 0, N)] . (4.69)

This is identical to the expression obtained in Sec.4.3 (Eq. (4.52)).

We thus conclude that the ROLT implicitly contains a correct description of the N

dependence of the correlation hole. This is enough to guarantee that the theory will

yield a very accurate description of corrections to SCFT in weakly non-ideal symmetric

blends, with χeN ≪ 1. This is confirmed by the work by Qin and Morse [23] where

they compared published data of bond fluctuation model to the ROLT prediction. In

Chapter 6 of this thesis, more extensive simulations of both a lattice and the continuum

model are conducted to test the theory.

4.6 Conclusions

A simple physical picture has been given for how intra and inter-molecular correlation

functions vary with chain length in a polymer melt. A theory based on this picture

is in excellent agreement with computer simulation results. The structure of a one-

component melt is related by perturbation theory to the free energy of mixing in cor-

responding structurally symmetric blends. The O(N−1/2) contribution to the depth of

the intra-molecular correlation hole in the melt of finite chains leads to a slightly higher

free energy of mixing in mixtures of shorter chains. This simply reflects the fact that

monomers on shorter chains are less strongly screened from contact with other chains.

Perturbation theory may be used to estimate the SCF interaction free energy appropri-

ate for comparison of SCF theory to simulations, by identifying SCF theory with the

N → ∞ limit of the perturbation theory. If this prescription is used to identify SCF free

energy, the predictions of the one-loop theory for corrections to SCF theory is found

to be consistent with the perturbation theory presented here, insofar as both theories

give identical results for a O(N−1/2) correction to the apparent interaction parameter

in weakly non-ideal symmetric mixtures, with χN ≪ 1.



Chapter 5

Second order perturbation theory

of symmetric blends

5.1 Introduction

In this chapter, we construct a second order perturbation theory for the free energy

of structurally symmetric polymer blends. This builds directly upon the analysis of

first order perturbation theory given in Chapter 4. In both chapters, we consider a

class of models for mixtures containing two types of structurally identical polymers,

labelled 1 and 2, each containing N monomers, in which the Hamiltonian contains a

small parameter α that controls the degree of thermodynamic incompatibility. In this

chapter, we consider a class of models with a non-bonded pair interaction v12(r) between

monomers of types 1 and 2 of the form

v12(r, α) = u(r) + αb(r) (5.1)

in which u(r) = v11(r) = v22(r) is the interaction between chemically similar monomers.

In the limit α = 0, the liquid structure reduces to that of a dense one-component

melt. The use of perturbation theory is motivated in part by the observation that the

critical value of α beyond which a blend will phase separate is expected to decrease with

increasing chain length as 1/N , implying that this perturbation theory should provide

a description of the one-phase region that becomes more accurate as N increases.

The free energy of mixing per monomer ∆f in such a mixture can be expressed as

66
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a sum

∆f =
kBT

N

∑

i

φi lnφi + fex (5.2)

in which fex → 0 as α → 0. Expanding fex(φ1, α, N) to second order in α yields a sum

fex(φ1, α, N) ≃ ∂fex

∂α

∣

∣

∣

∣

α=0

α +
1

2

∂2fex

∂α2

∣

∣

∣

∣

α=0

α2 (5.3)

in which the coefficients ∂fex

∂α and ∂2fex

∂α2 are functions of composition φ1 and degree of

polymerization N . The usefulness of this perturbation theory arises from the fact that

these coefficients can be related to structural properties of the one-component state with

α = 0, which can be “measured” in simulations of this state.

In Chapter 4, we showed that the first order contribution has a composition depen-

dence of the form
∂fex

∂α

∣

∣

∣

∣

α=0

= z(N)φ1φ2 . (5.4)

The coefficient z(N) is an “effective coordination number” given by

z(N) = v−1

∫

dr ḡinter(r, N)b(r) (5.5)

where ḡinter(r, N) is the intermolecular radial distribution function in a one-component

(α = 0) reference liquid of chains of length N , and v is the volume per monomer. The

simple composition dependence given in Eq. (5.4) was obtained by a combinatorial ar-

gument that takes advantage of the fact that the relevant expectation value is evaluated

in a state in which identical chains are assigned to species 1 and 2 at random.

The first goal of the present chapter is to derive an analogous expression for the

second derivative ∂2fex/∂α2. This is accomplished in Sec. 5.2. There, we show that

this quantity has a composition dependence of the form

∂2fex

∂α2

∣

∣

∣

∣

α=0

=
−1

kBT
[ g(N)φ2

1φ
2
2 + h(N)φ1φ2 ] , (5.6)

and we give expressions for the coefficients h(N) and g(N) in a form suitable for eval-

uation in a simulation of a one-component melt.

The second goal of this chapter is to clarify the relationship between the N -dependence

of the coefficients g(N) and h(N) and the predictions of the renormalized loop expansion.
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The renormalized loop expansion is a coarse-grained theory that predicts an expression

for the excess free energy fex as an expansion in powers of N̄−1/2. Here,

N̄ ≡ Nb6/v2 (5.7)

where b is the statistical segment length of a hypothetical infinite chain and v is the

volume per monomer. The loop expansion of fex reduces in the limit N → ∞ to a form

consistent with self-consistent field (SCF) theory, which requires that fex depends only

upon φ1 and α. Let fint(φ1, α) denote this long chain, SCF limit of fex.

The loop expansion cannot predict the SCF excess free energy fint(φ1, α), but instead

requires an expression for this function as an input. We assume here that fint can be

approximated for specific simulation models by an expansion in powers of α analogous

to that given above for the true fex, of the form

fint(φ1, α) ≃ z∞φ1φ2α − 1

2kBT
[gintφ

2
1φ

2
2 + hintφ1φ2]α

2 , (5.8)

where z∞, gint, and hint are model-dependent SCF parameters. Starting from this repre-

sentation of fint, one can use the loop expansion to make testable predictions regarding

the N dependence of the coefficients z(N), g(N), and h(N), in which the correspond-

ing SCF parameters appear as parameters. By comparing simulation results for z(N),

g(N), and h(N) to these predictions, we hope to both test these such predictions and

(if they can be validated) determine values for the SCF parameters for specific models.

The relationship between the first order coefficients z(N) and z∞ was established in

Chapter 4. We found there that the one-loop theory predicts an N -dependence

z(N) = z∞[1 + β1N̄
−1/2] + O(N−1) , (5.9)

with a universal coefficient β1 = (6/π)3/2. We also verified that simulation results for

z(N) for two different simulation models were consistent with this prediction.

These results of Chapter 4 yield a simple prescription for estimating fint for any

structurally symmetric model as an expansion to first order in α: one must measure

z(N) in simulations of melts with several chain lengths, and fit the results to Eq. (5.9) to

obtain a value of z∞. The resulting estimate of fex(φ, α) can then be used as an input

to the theory when comparing one-loop predictions to simulation results in systems

with α 6= 0. simulations of both blends and diblock copolymer melts. For simulations of
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sufficiently long chains in the one-phase region, we expect this first order estimate of fint

to eventually become adequate, because the critical values of α falls as 1/N . For chain

lengths that we can easily simulate with a continuum bead-spring model, however, it

appears that this approximation is not quite sufficient to describe data near the critical

point of a blend or (particularly) the order-disorder transition of a diblock copolymer

melt.

The present analysis was thus motivated primarily by our desire for an analogous

prescription for calculating fint and the corresponding Flory-Huggins interaction pa-

rameter to second order in α. We have been only partially successful in this regard:

Unfortunately, we find that it is necessary to analytically calculate two-loop contribu-

tion to fex, which has not yet been attempted, in order to extract values for the second

order SCF coefficients gint and hint from such an analysis.

5.2 Second derivative of free energy

We consider a liquid of Mt structurally identical chain molecules of length N , labelled

a = 1, · · · , Mt in a box of fixed volume V . Among these are M1 homopolymers of type

1 and M2 of type 2, giving fractions φ1 = M1
Mt

and φ2 = M2
Mt

, respectively.

The potential energy is a sum of intra-molecular bonding energies, which are the

same for all chains, and a non-bonded pair interaction that contains a perturbation of

the form defined in Eq. (5.1). Note that we have chosen to use a slightly less general

form for the perturbation than that considered in Chapter 4, where we also allowed

a perturbation proportional to α to be added to the v11(r) and v22(r) components.

This restriction was made to simplify the analysis. The linear perturbation in the

Hamiltonian used here may be written as a product δH = αΘ, where

Θ =
∑

aǫ1

∑

bǫ2

∑

s,s′

b(Ra(s) − Rb(s
′)) . (5.10)

Here and hereafter,
∑

aǫi denotes a sum over the molecule indices of molecules that have

been assigned to type i, and Ra(s) is the position of monomer s of molecule a.

The first and second derivatives of free energy F = −kBT lnZ with respect to α are



70

given by

∂F

∂α

∣

∣

∣

∣

α=0

= 〈Θ〉 (5.11)

∂2F

∂α2

∣

∣

∣

∣

α=0

=
−1

kBT

(

〈Θ2〉 − 〈Θ〉2
)

. (5.12)

The required values of the average and variance of the extensive property Θ could, of

course, be obtained from a simulation of a mixture with α = 0 and a fixed composition,

in which the chains are arbitrarily divided into two species, by a procedure similar to

that used to measure, e.g., the average energy and heat capacity. The virtue of the

more elaborate analysis given below is that it allows one to predict values for these

quantities as functions of composition φ1 by analyzing the results of a single simulation

of a one-component melt.

5.2.1 Composition dependence

The reference state with α = 0 is an ideal mixture, in which the identification of

particular chains as members of species 1 or 2 is entirely random. In this state, the

composition dependence of both 〈Θ〉 and 〈Θ2〉 can be predicted by the combinatorial

reasoning. We proceed here by first obtaining exact expressions for these quantities in

a finite system, as functions of M1 and M2, and then evaluating the thermodynamic

limit.

For this purpose, it is convenient to express Θ as a sum

Θ =
∑

aǫ1

∑

bǫ2

Iab , (5.13)

where

Iab ≡
∑

s

∑

s′

b(Ra(s) − Rb(s
′)) (5.14)

is the contribution arising from interactions between molecules a and b, for a 6= b.

The average value 〈Θ〉 in a mixture with α = 0 is given by

〈Θ〉 =
M1M2

Mt(Mt − 1)
〈I〉 , (5.15)

where we have defined

I ≡
′

∑

a,b

Iab . (5.16)
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Here and hereafter, a
∑′

a,b denotes a double sum over all values of a, b = 1, . . . , Mt

in a liquid of unlabelled chains, excluding terms with a = b. Our reasoning is as

follows: the sum 〈I〉 =
∑′

a,b〈Iab〉 contains Mt(Mt − 1) statistically equivalent terms,

each representing the interaction of a particular pair of molecules. Of these, only the

M1M2 terms in which a belongs to species 1 and b to species 2 contribute to 〈Θ〉.
The quantity 〈Θ2〉 can be expressed as a sum

〈Θ2〉 =
∑

aǫ1

∑

bǫ2

∑

cǫ1

∑

dǫ2

〈IabIcd〉 . (5.17)

It is convenient to divide this into contributions

〈Θ2〉 = 〈Θ2〉4 + 〈Θ2〉3 + 〈Θ2〉2 (5.18)

in which 〈Θ2〉n is the contribution to the sum in Eq. (5.17) in which the indices a, b, c,

and d refer to n distinct molecules, with n = 2, 3, or 4. The four molecule contribution

〈Θ2〉4 is thus the sum of terms in the sum in Eq. (5.17) in which a 6= c, and b 6= d, so

that the molecules a, b, c and d are all distinct, with molecules a and c of type 1 and

molecules b and d of type 2. The three chain contribution 〈Θ2〉3 is given by the set of

terms with a = c and b 6= d or with b = d and a 6= c. These all involve three distinct

molecules, one of one type and two of the other. The two chain contribution 〈Θ2〉2 is

given by the sum of terms in which a = c and b = d, which involve only two molecules,

one of each type.

To calculate the composition dependence of each of these contributions to 〈Θ2〉 at

α = 0, it is useful to introduce the quantities

K4 =

′

∑

a,b,c,d

〈IabIcd〉 (5.19)

K3 =

′

∑

a,b,d

〈IabIad〉 (5.20)

K2 =

′

∑

a,b

〈I2
ab〉 . (5.21)

Here, we use a prime over a sum of several molecule indices, such as
∑′

a,b,c,d to indicate a

sum over all values 1, . . . , Mt of all indicated indices, while keeping only terms in which
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all of these index values (or molecules) are distinct. Straightforward combinatorial

reasoning yields

〈Θ2〉4 =
M1(M1 − 1)M2(M2 − 1)

Mt(Mt − 1)(Mt − 2)(Mt − 3)
K4 (5.22)

〈Θ2〉3 =
M1M2(M2 − 1) + M2M1(M1 − 1)

Mt(Mt − 1)(Mt − 2)
K3 (5.23)

〈Θ2〉2 =
M1M2

Mt(Mt − 1)
K2 (5.24)

The above expression for 〈Θ2〉4 can be obtained by noting that K4 is a sum over Mt(Mt−
1)(Mt − 2)(Mt − 3) statistically equivalent choices of values for a, b, c, and d, of which

M1(M1 − 1)M2(M2 − 1) contribute to the expression for 〈Θ2〉4, since we may make M1

choices for a among molecules of type 1, M1 − 1 choices for c, M2 choices for b, and

M2 − 1 choices for d. Similarly, K2 is a sum of Mt(Mt − 1) equivalent terms, of which

M1M2 contribute to 〈Θ2〉2. In the expression for 〈Θ2〉3, the first term in the numerator

represents the contribution of terms in which a is of type 1 and b and c are type 2, while

the second represents contributions in which a is of type 2. The above results can be

rewritten as functions of φ1 and φ2, by writing Mi as φiMt. After a bit of algebra, we

obtain:

〈Θ2〉4 =
M4

t (Mt − 4)!

Mt!

[

φ2
1φ

2
2 −

Mt − 1

M2
t

φ1φ2

]

K4 (5.25)

〈Θ2〉3 + 〈Θ2〉2 = φ1φ2
Mt

Mt − 1
[K3 + K2] (5.26)

〈Θ〉 = φ1φ2
Mt

Mt − 1
〈I〉 (5.27)

Combining all of these results, the variance in Θ can be written as a function of the

form

〈Θ2〉 − 〈Θ〉2 = Gφ2
1φ

2
2 + Hφ1φ2 , (5.28)

in which

G =
M4

t (Mt − 4)!

Mt!

[

K4 −
(Mt − 2)(Mt − 3)

Mt(Mt − 1)
〈I〉2

]

(5.29)

H =
Mt

Mt − 1

[

K3 + K2 −
(Mt − 1)

(Mt − 2)(Mt − 3)
K4

]

. (5.30)

These are exact relationships among quantities that are all defined for a system with a

finite number of chains.
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5.2.2 Thermodynamic limit

We are ultimately interested only in the thermodynamic limit, in which Mt → ∞ while

Mt/V is held fixed. To evaluate the behavior of the above expressions in this limit, we

must first understand how the quantities K2, K3, K4, 〈I〉 scale with Mt in this limit.

Note that Iab contains non-negligible contributions only from pairs of molecules a and

b that are near enough to one another to interact via the short range perturbation b(r).

This guarantees that molecules a and b in the definitions of K2 and 〈I〉, and molecules a,

b and d in the definition of K3, must all remain near one another as Mt → ∞. This, in

turn, guarantees that K2, K3, and 〈I〉 are all proportional to Mt, i.e., are all extensive.

The quantity K4, however, contains contribution from terms in which a remains near b

and c remains near d, but the pairs ab and cd are arbitrarily far from one another. These

distant pairs yield a dominant contribution K4 ∼ 〈I〉2. In order for the variance of Θ

to be extensive, as it must, the difference K4 −〈I〉2 must be extensive. Our simulations

confirm that this is the case.

By considering the limit Mt → ∞, while assuming the Mt dependence for K2, K3,

K4 and 〈I〉 described above, we obtain limiting values

G = K4 − 〈I〉2 +
4

Mt
〈I〉2 (5.31)

H = K3 + K2 −
1

Mt
〈I〉2 . (5.32)

The quantities G and H are both extensive. Note that the terms proportional to 〈I〉2/Mt

are extensive because 〈I〉 ∝ Mt.

The excess free energy per monomer can thus be expanded to second order in α as

a sum

fex ≃ z(N)φ1φ2α − 1

2kBT

[

g(N)φ2
1φ

2
2 + h(N)φ1φ2

]

α2 , (5.33)

in which we have defined intensive quantities

g(N) = G(N)/(MtN) (5.34)

h(N) = H(N)/(MtN) . (5.35)

The corresponding apparent interaction parameter

χa ≡ − 1

2kBT

∂2fex

∂φ2
1

, (5.36)
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which controls the magnitude of long wavelength composition fluctuations, is given by

an expression

χa(φ1, α) ≃ z(N)α

kBT
− 1

2
[ g(N)(6φ1φ2 − 1) + h(N) ]

(

α

kBT

)2

(5.37)

to the same order.

5.2.3 Alternative formulation

Eqs. (5.31) and (5.32) are not a convenient starting point for the design of an analy-

sis algorithm, because straightforward algorithms to calculate the 3 and (particularly)

4 chain cluster contributions K3 and K4 can become awkward. We now put these

expressions in a more computationally convenient form. Let

Ia ≡
∑

b 6=a

Iab , (5.38)

so that I =
∑

a Ia. The following identities relate the cluster functions K2, K3, and K4

to the quantities
∑′

a,b〈I2
ab〉,

∑

a〈I2
a〉 and 〈I2〉:

′

∑

a,b

〈I2
ab〉 = K2

∑

a

〈I2
a〉 =

∑

a

∑

b 6=a

∑

d6=a

〈IabIad〉

= K3 + K2 (5.39)

〈I2〉 =
∑

a

∑

c

∑

b 6=a

∑

d6=c

〈IabIcd〉

= K4 + 4K3 + 2K2 . (5.40)

Solving for K4 yields

K4 = 〈I2〉 − 4
∑

a

〈I2
a〉 + 2

′

∑

a,b

〈I2
ab〉 . (5.41)
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Using these identities, we obtain

G = 〈I2〉 − 4
∑

a

〈I2
a〉 + 2

′

∑

a,b

〈I2
ab〉 − 〈I〉2

+ 4〈I〉2/Mt (5.42)

H =
∑

a

〈I2
a〉 − 〈I〉2/Mt . (5.43)

This is the form we use to evaluate G and H in simulations.

The analysis algorithm that we use to calculate the quantities
∑′

a,b〈I2
ab〉,

∑

a〈I2
a〉,

〈I〉, and 〈I2〉 works as follows. For each microstate in a time sequence, loop over the

molecule index a, over all monomers within a, and over all inter-molecular neighbors

of these monomers. Within the code for processing one molecule, identify the molecule

b to which each neighboring monomer belongs, and accumulate an instantaneous value

of Iab for each molecule b 6= a that interacts with a via the perturbation b(r). Also

accumulate an instantaneous value for Ia. At the end of the code for one molecule a,

increment variables that accumulate ensemble averages of
∑′

a,b I2
ab and

∑

a I2
a , as well

as accumulators for the ensemble average and instantaneous value of I. Increment the

ensemble average of I2 outside the loop over molecules.

5.3 Relationship to renormalized loop expansion

In this section, we derive expressions for the quantities g(N) and h(N) as functions of

the parameters required as inputs to the renormalized loop expansion [26,22]. The form

of the renormalized loop expansion suggests that, for the class of symmetric models

considered here, fex is given by a function of the form

fex = fint(φ1, α) +
1

N
fend(φ1, α) +

kBT

N
f∗(φ1, χeN, N̄) (5.44)

Here, fint is a model-specific SCF free energy per monomer, and fend is an additional

excess free energy per chain due to end-group contributions. The effective interaction

parameter χe is defined by a derivative

χe ≡ − 1

2kBT

∂2fint

∂φ2
1

. (5.45)
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The quantity f∗ is a universal correction to the free energy per chain that can in principle

be predicted by the loop expansion, and that vanishes in the limit of very long chains.

The loop expansion yields an expression for f∗ as a sum

f∗(φ1, χeN, N̄) =

∞
∑

n=1

1

N̄n/2
f̂∗

n(φ1, χeN) (5.46)

in which n is an index for the number of loops. Thus far, only the one-loop contribution

f̂∗
1 has been calculated explicitly.

The first and second derivatives of fex with respect to α are

∂fex

∂α
=

∂fint

∂α
+

1

N

∂fend

∂α
+

∂χe

∂α
kBT

∂f∗

∂(χeN)
, (5.47)

∂2fex

∂α2
=

∂2fint

∂α2
+

1

N

∂2fend

∂α2

+ kBT
∂2χe

∂α2

∂f∗

∂(χeN)
+ kBTN

(

∂χe

∂α

)2 ∂2f∗

∂(χeN)2
(5.48)

The first and second derivatives fint are independent of N , as are the derivatives of fend.

The dominant N -dependence of the contributions arising from f∗ can be determined by

noting that the dominant contribution to f∗, the one-loop contribution, is order N̄−1/2.

This implies that the last term in Eq. (5.47) for ∂fex/∂α is of order N̄−1/2, as found in

Chapter 4. It also implies that the dominant contribution to ∂2fex/∂α2, which arises

from the last term in Eq. (5.48), will diverge as

∂2fex

∂α2
∼ N

N̄1/2
∼ N1/2 (5.49)

with increasing chain length.

In order for the composition dependence obtained from the loop expansion to match

that obtained by our exact analysis of first and second order perturbation theory, we

must assume that the expansion of each term in Eq. (5.44) yields a composition depen-

dence of the same functional form. In particular, we must require that fint has a Taylor

expansion of the form shown in Eq. (5.8). This yields a SCF interaction parameter

χe(φ1, α) ≃ z∞α

kBT
− 1

2
[gint(6φ1φ2 − 1) + hint]

(

α

kBT

)2

(5.50)

with a composition dependence analogous to that found in Eq. (5.37) for χa.
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For the same reason, we require that the end-group free energy fend must have the

analogous form

fend(φ1, α) ≃ zendφ1φ2α − 1

2kBT
[gendφ

2
1φ

2
2 + hendφ1φ2]α

2 (5.51)

in which zend, gend, and hend are another set of model dependent parameters.

5.3.1 One-loop theory

The leading order contribution to f∗ in powers of N̄−1/2 is given by the one loop

contribution, which yields a contribution of order 1/NN̄1/2 to fex. The contribution

arising from fend is of order 1/N2 for α less than a critical value of order 1/N , and so is

expected to be negligible by comparison. Here, we consider a one-loop approximation

for the free energy per monomer in which we neglect fend, giving

fex ≃ fint +
kBT

N
f∗ (5.52)

and approximate f∗ by the one-loop approximation f∗ ≃ N̄−1/2f̂∗
1 (φ1, χeN)

The one-loop contribution to the free energy per chain is given by an integral [23]

f∗ ≃ vN

2

∫ ∗ dq

(2π)3
ln (Ω1 + Ω2 − 2χevΩ1Ω2) (5.53)

where the symbol
∫ ∗

denotes the UV convergent part of a Fourier integral, and v =
V

MtN
= c−1 is a volume per monomer. Here, Ωi = cφiNfD(q2Nb2/6) is the intra-

molecular correlation function and fD(x) = 2(e−x − 1 + x)/x2 is the Debye function.

To calculate g(N) and h(N), we need the first and second derivatives of f∗ with

respect to χeN . The first derivative yields

∂f∗

∂(χeN)
= −v2

∫ ∗ dq

(2π)3
Ω1Ω2

(Ω1 + Ω2 − 2χevΩ1Ω2)
. (5.54)

Setting χe = 0 and isolating the UV convergent part of this UV divergent integral yields

the result found in Chapter 4:

∂f∗

∂(χeN)

∣

∣

∣

∣

χeN=0

=
β1

N̄1/2
φ1φ2 (5.55)

where β1 ≡ (6/π)3/2. Another derivative yields a UV convergent integral

∂2f∗

∂(χeN)2
=

−2v3

N

∫ ∗ dq

(2π)3
Ω2

1Ω
2
2

(Ω1 + Ω2 − 2χevΩ1Ω2)
2 (5.56)
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and

∂2f∗

∂(χeN)2

∣

∣

∣

∣

χeN=0

= −2vφ2
1φ

2
2

∫

dq

(2π)3
Nf2

D(q2Nb2/6)

= −φ2
1φ

2
2

N̄1/2

63/2

π2

∫ ∞

0
dx x2f2

D(x2)

= −β2φ
2
1φ

2
2

1

N̄1/2
, (5.57)

where

β2 =
16

15

(

6

π

)3/2

(7 − 4
√

2) ≃ 3.7814 (5.58)

By substituting these results into Eq. (5.48), we obtain an expression of the form given

in Eq. (5.6), with

g(N) ≃ (z∞)2β2
N

N̄1/2
+ gint (5.59)

h(N) ≃ hint (5.60)

We thus obtain a dominant contribution to g(N) that diverges as g(N) ∝ N1/2, but

a dominant contribution to h(N) that is independent of N . We show in what follows

that while the above expression for the prefactor of the N1/2 contribution is correct, the

N -independent contributions to g(N) and h(N) given above are incomplete, because

N -independent contributions can also arise from a two-loop contribution to the free

energy.

5.3.2 Beyond one-loop

The one loop theory contains only the first term in an infinite expansion of f∗ in powers

of N̄−1/2. Using the full loop expansion produces expansions of g(N) and h(N) in

powers of N̄−1/2, in which the dominant contribution to g(N) is the N1/2 divergence

found in Eq. (5.59).

Because second and higher-order contributions to the loop expansion have not yet

been calculated explicitly, we can only rely on very general arguments about their

dependence on φ1 and χeN . To say anything about the composition dependence of

∂fex/∂α and ∂2fex/∂α2, we require expressions for the composition dependence of the

first and second derivatives of the coefficients f̂∗
n(φ1, χeN) with respect to χeN . Both
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our analysis of second order perturbation theory, and the explicit results obtained for

the one-loop contribution, suggest that these derivatives be expressed as low order

polynomials in φ1φ2. We postulate that

∂f̂∗
n(φ1, χeN)

∂(χeN)

∣

∣

∣

∣

∣

χeN=0

= ẑ∗nφ1φ2 (5.61)

∂2f̂∗
n(φ1, χeN)

∂(χeN)2

∣

∣

∣

∣

∣

χeN=0

= −[ĝ∗nφ2
1φ

2
2 + ĥ∗

nφ1φ2] . (5.62)

For n = 1, we obtained ẑ∗1 = β1, ĝ∗1 = β2, and ĥ∗
1 = 0. It is straightforward to confirm

that substitution of these expressions into Eqs. (5.47) and (5.48), while using Eq. (5.50)

for the derivatives of χe, yields expressions for ∂f/∂α and ∂2f/∂α2 with the required

composition dependence. Furthermore, it can be shown that addition of terms of higher

order in φ1φ2 to either Eq. (5.61) or (5.62) would produce contributions to ∂fex/∂α and

∂2fex/∂α2 that are not consistent with the form required by the perturbation theory.

Eqs. (5.61) and (5.62) thus seem to represent the most general possible composition

dependence for these derivatives.

Using the above results to expand z(N) to O(1/N) yields an expansion of the form

that was used in Chapter 4 to fit simulation results for z(N). We find

z(N) ≃ z∞
[

1 +
β1√
N̄

]

+
γ′

N
+ O

(

1

N3/2

)

. (5.63)

where

γ′ = zend +
z∞ẑ∗2
c2b6

, (5.64)

where c2b6 = N̄/N . The value of the constants z∞ and γ′ can, of course, be determined

by fitting simulation data to the above form. We find, however, that γ′ contains both

a model-specific end-group contribution and a universal two-loop contribution. A value

for the end-group coefficient zend could be obtained only if we had an analytic result for

the ẑ∗2 of the two-loop contribution, which we (thus far) do not.

Expanding the coefficients g(N) and h(N) to O(N0)

g(N) ≈ (z∞)2β2
N

N̄1/2
+ A + O

(

1√
N

)

(5.65)

h(N) ≈ B + O
(

1√
N

)

, (5.66)
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where

A ≡ gint +
(z∞)2ĝ∗2

c2b6
(5.67)

B ≡ hint +
(z∞)2ĥ∗

2

c2b6
. (5.68)

The constants A and B can be estimated by fitting simulation data to a power series

in N̄1/2. An example of this procedure is given in the next section. Unambiguous

estimates for the SCF parameters gint and hint could be obtained from this fitting

procedure, however, only if we had analytic results for the coefficients ĝ∗2 and ĥ∗
2 of the

two-loop free energy.

5.4 Comparison to simulations

Hybrid Monte Carlo / Molecular Dynamics simulations of the bead-spring model (Sec-

tion 3.1.1) at α = 0 were performed to evaluate g(N) and h(N) for several chain

lengths. These simulations allow us to test predictions of the loop expansion regarding

the asymptotic dependence of these quantities on N for large N . In addition, simula-

tions of blends with α > 0 were conducted in semi-grand canonical ensemble to obtain

data for the variance of the overall composition, in order to test the range of validity of

a second order perturbation theory for the inverse structure factor S−1(q → 0).

All simulations used a L×L×L cubic box with periodic boundary conditions. Sim-

ulations were conducted at α = 0 for chains of lengths N = 16, 32, 64, 128, 170, and

256 (Table 5.1). Blend simulations, with α > 0, were conducted only for chain lengths

N =16, . . . , 128. As in the simulations reported in Chapter 4, the overall monomer

number concentration was kept at c = 0.7σ−3 and the parameters ǫ = kBT , l = σ, and

κ = 400kBTσ−2 were used. Thus, z∞ ≈ 0.2965 and b ≈ 1.404σ, as previously deter-

mined. All simulation used hybrid MC/MD, reptation, single rebridging, and double

rebridging MC moves as described in Chapter 3. Semi-grand canonical simulations of

blends also used a move that can change the type of a randomly chosen chain.

5.4.1 Analysis of melt simulations (α = 0)

In simulations of a one-component melt (α = 0), we evaluate the properties 〈I2〉,
∑

a〈I2
a〉,
∑′

a,b〈I2
ab〉, and 〈I〉, from which we calculate g(N) and h(N).
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In order to determine the box size needed to avoid significant finite size effects, we

first obtained data for several box sizes for chains of length N = 32. Figs. 5.1 and 5.2

show the resulting values of g and h as functions of the ratio Rg/L, where Rg is the

polymer radius of gyration. Much larger boxes are required to obtain accurate results

for the second order coefficients g(N) and h(N) than those required to obtain accurate

values of the first order coefficient z(N). Based on the results of this study, and the

assumption that the magnitude of deviation from the limit L → ∞ is a function of the

ratio Rg/L, for all chain lengths, we chose box dimensions L ≈ 10Rg for further study

of all chain lengths of interest.

Figures 5.3 and 5.4 show our results for g(N) and h(N) for N = 16, . . . , 256. Recall

that the loop expansion predicts an asymptotic behavior in which g(N) ∼ C
√

N , with

a predicted prefactor C, and h(N) approaches a constant in the limit N → ∞. Our

data appears to be consistent with both of these predictions, though the convergence

towards the asymptotic behavior with increasing N appears to be quite slow.

The dotted line in Fig. 5.3 is an estimate of the asymptote for g(N), of the

form C
√

N + A, in which the slope C is given by the theoretical predicted value

C = (z∞)2β2(cb
3)−1 = 0.1716. The apparent slope of the last few points appears

to be close to the predicted value. A value of A = −1.53 for the constant in this asymp-

tote was estimated somewhat crudely by fitting values of g(N) for the three longest

chains to an asymptotic form C
√

N + A + D/
√

N .

In Fig. 5.4, the values obtained for h(N) vary from 0.49 to 0.52, consistent with

the theoretical prediction of a constant value in the limit N → ∞. The dotted line is a

simple estimate of the asymptote that was obtained fitting values for the longest three

Table 5.1: Simulated models of melts and blends

N Mt L Rg/L

16 1176 29.955490 0.0883
32 588 29.955490 0.108
64 912 43.687674 0.105
128 1280 61.627417 0.105
170 1474 71.003996 0.105
256 1812 87.183314 0.105
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chains to B + E/
√

N , which yields B = 0.61.

Though our data for g(N) and h(N) appears to be consistent with an approach

towards the theoretically predicted asymptotic behavior, the data for our longest chains

remains somewhat far from our estimates of the asymptotes. It appears that even longer

chains would be needed to definitively test these predictions or (if they are confirmed)

to obtain very accurate estimates of the constants A and B.

5.4.2 Composition fluctuations in critical blends (α > 0)

The second order perturbation theory can also be used to calculate an inverse structure

factor in the limit of long wave length using the identity

S−1(0) ≡ lim
q→0

S−1(q) =
v

kBT

∂2∆f

∂φ2
1

, (5.69)

in which v = c−1 is a volume per monomer. For a critical blend (φ1 = 0.5), Eq. (5.69)

together with Eq. (5.2) yields

cNS−1(0)

2
= 2 − χa(φ1 = 0.5)N

= 2 − N
z(N)α

kBT
+

N

2

[

1

2
g(N) + h(N)

](

α

kBT

)2

, (5.70)

where χa(φ1, α) is given by Eq. (5.37). The coefficient of α2, 1
2g(N) + h(N), as a

function of N is plotted in Fig. 5.5.

The loop expansion prediction for the quantity can be obtained via Eqs. (5.65) and

(5.66), giving

1

2
g(N) + h(N) ≈ (z∞)2β2

2cb3

√
N +

(

1

2
A + B

)

+ O(
1√
N

) . (5.71)

As with g(N) and h(N), the simulation data seem to be consistent with the N scaling

predicted by the loop expansion, approaching the asymptote 0.0858
√

N − 0.153 as N

increases. The convergence towards asymptote seems slow as is expected because g(N)

and h(N) themselves showed slow convergence.

Semi-grand canonical simulations of critical blends with α 6= 0 were performed in

addition to measure

S(0) =
N2

V
〈δM2

1 〉 , (5.72)
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Figure 5.3: Plot of g(N) vs.
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N . The equation of the line of best fit is
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N . For the coefficient of
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data points is 0.608287 − 1.36763/
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Figure 5.5: Plot of 1
2g(N) + h(N) vs.

√
N . The equation of the line of best fit is

0.0858
√

N − 0.153 + 3.59/
√

N + 6.22/N . For the coefficient of
√

N term, the value
predicted by loop expansion (z∞)2β2(2cb3)−1 was used. The equation for the asymptote
is just 0.0858

√
N − 0.153.

where V is a volume of the system and δM1 ≡ M1 − 〈M1〉. The obtained data can be

directly compared against the predictions of the perturbation theory as functions of α

(Eq. (5.70)). The plots in Figure 5.6 show the accuracy of the second order perturbation

theory predictions. For N=64 and N=128, the agreement is good up to about 50% of

critical value of α (Appendix F). The agreement shown in the data for N=32 system

should be taken as an accident based on the observed trend of the predictions by the

perturbation theory, i.e. it deviates upward from the data for the shortest chain length

and downward for the longest chain.

5.5 Conclusions

In this chapter, a second order perturbation theory of polymer blends was developed

in an attempt to obtain the second order correction to the FH parameter χe. First,

we obtained microscopic expressions for the first and second derivatives of free energy

with respect to a small parameter α in canonical ensemble. This allowed us to obtain a

perturbative expansion of free energy of mixing ∆f up to second order in α.

Predictions for the N -dependence of the coefficients g(N) and h(N) of order α2
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Figure 5.6: Comparison of blend simulation data with the predictions of the first and
second order perturbation theories (Eq.(5.70)). Error bars for the data are shown but
smaller than the size of a symbol.
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were obtained by calculating these coefficients within the framework of the general loop

expansion of free energy. This theory predicts that the coefficient g(N) should diverge as√
N in the limit of long chains, with a known coefficient, but that h(N) should approach

a constant as N → ∞. The data obtained from continuum Monte Carlo simulations

were found to be consistent with this asymptotic behavior, although the longest chain

length (N = 256) appeared to remain somewhat far from the estimated asymptote.

Our study of second order perturbation theory was originally motivated by the hope

that, by examining the N dependence of the coefficients g(N) and h(N) in the expansion

of the total free energy, we could extract values for the coefficients gint and hint in the

corresponding expansion of the SCF interaction free energy. We found, however, that it

was impossible by this method to distinguish between the desired terms in an expansion

of the SCF free energy and contributions of a universal two-loop contribution to the

free energy that has not yet been calculated. To obtain precise results for the SCF

parameters gint and hint, it appears that we will need to first complete a theoretical

analysis of the two-loop free energy, and perhaps also obtain data for longer chains.

We also examined the range of values of α over which a perturbation theory remains

accurate, by comparing simulation data for S−1(0) at α > 0 to predictions obtained

from a second order perturbation theory in which the coefficients were measured in

simulations at α = 0. The expansion to second order in α was found to fit the data

rather well most of the way to the critical point.



Chapter 6

Simulation of composition

fluctuations in polymer blends

6.1 Introduction

The self consistent field theory (SCFT) for inhomogeneous polymer liquids, or the Flory-

Huggins (FH) theory which is the homogeneous limit of SCFT, is the standard theo-

retical framework for understanding the thermodynamics of polymeric liquids [11, 12].

It has been believed that these type of phenomenological theories become exact in the

limit of very long polymers [61, 62, 22]. The random phase approximation (RPA) for

composition fluctuations obtained by using SCFT to calculate the susceptibility of a

polymeric liquid is also supposed to become increasingly accurate in the limit N → ∞
where N denotes a degree of polymerization.

This belief is based mainly on two kinds of evidence, the first of which is the success

of FH theory and RPA theories in describing experimental data [8,63,64,65]. The other

basis of the belief comes from coarse grained theories of fluctuations that attempt to

correct SCFT [21,18,19,22] . In those theories, the fluctuation correction to SCFT free

energy is found to be of order 1/
√

N smaller than entropy of mixing, implying that

SCFT becomes exact in the hypothetical limit of infinitely long chain systems.

A natural question is then how one can identify deviations from the RPA for sys-

tems of chains of finite lengths and how well the theories of fluctuations describe the

deviations, which are supposed to be rather small. This is different from previously

88
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raised questions regarding the validity of the assumption of the RPA, i.e. the radius of

gyration remains unperturbed and one can use the unperturbed single chain structure

factor in the RPA [14, 66]. To quantify small deviations, however, one needs an accu-

rate estimate of the FH interaction parameter χ. Unfortunately, fitting experimental or

simulation data to the RPA expression to estimate χ makes this quantification difficult.

That is because in the procedure, the RPA is used to fit the outcome of experiments,

as opposed to predicting them and comparing with actual measurements. In Chapter

4, we proposed a way of estimating FH interaction parameter χ for a class of models

of symmetric polymer blends. The idea was to apply a thermodynamic perturbation

theory to the models and extrapolate the resulting free energy to the limit N → ∞.

The resulting free energy is then used to obtain the FH interaction parameter χ. The

perturbation theory was also shown to justify the reason why some modified FH theo-

ries [52,53,54], where the original lattice coordination number is replaced by an effective

coordination number, are more accurate than the original FH theory.

In this chapter, the results of extensive Monte Carlo (MC) simulations will be pre-

sented to test the predictions of a renormalized one-loop theory of blends [22, 23]. In

addition, two related problems will be investigated in some detail, the first of which is

the issue of how to find a correction to the estimation of the FH χ parameter proposed

in Chapter 4. There, we obtained an estimation of χ to first order in α which controlled

the incompatibility of two monomer species in blends. This problem was the main focus

of Chapter 5 and there, we found it was not possible without an analytic result of a

two-loop contribution to free energy. The approach to obtain a correction to second

order in α here is to utilize composition fluctuations data of model blends and try to fit

the data to the predictions of a general loop expansion [26, 22], of which the one-loop

contribution is the first term. The other problem concerns the universality of coarse

grained models of polymer [27,28] and a numerical test of the feasibility of the premise

will be attempted.

6.2 Background

We consider a system of volume V that contains M1 homopolymer chains of type 1

and M2 chains of type 2 at temperature T. In the simulations presented here, the two
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types of polymer are structurally identical, and contain the same number of monomers

per chain, N = N1 = N2. Let v = V
NMt

be the average volume per monomer, and

φi = Mi/Mt be the fraction of monomers (or chains) of type i, where Mt = M1 + M2 is

the total number of chains.

Correlations in polymer mixtures can be characterized by the structure factor

Sij(q) ≡
∫

dr 〈δci(r)δcj(0)〉eiq·r , (6.1)

where δci(r) ≡ ci(r) − 〈ci(r)〉 is a deviation in the concentration of monomers of type i

from its ensemble average at point r. In the idealized limit of effectively incompressible

mixture, the matrix Sij(q) may be characterized by a scalar function S(q) = S11(q) =

S22(q) = −S12(q) In the same limit, the low-wavenumber limit of the scalar S(q),

S(0) ≡ limq→0 S(q), is related to the free energy of mixing per monomer ∆f by the

identity

S−1(0) =
v

kBT

∂2∆f

∂φ2
1

, (6.2)

where the derivative with respect to φ1 is evaluated at fixed volume, fixed Mt, and fixed

temperature.

In the simulations presented here, we extract a value for S−1(0) from the fluctuations

in the overall number of chains of each type in semi-grand canonical ensemble, in which

Mt = M1 + M2 is held constant, but M1 and M2 can be changed by moves that can

change one type of chain into the other. In this ensemble, we may calculate Sij(0) =

V −1
∫

dr
∫

dr′〈δci(r)δcj(r
′)〉 by noting that

∫

drci(r) = MiN . This yields a correlation

function S(0) = S11(0) = S22(0) = −S12(0), for which

S(0) =
N2

V
〈δM2

1 〉 , (6.3)

where δM1 ≡ M1 − 〈M1〉. In this ensemble, this operational definition of S(0) actu-

ally satisfies Eq. (6.2) exactly in the thermodynamic limit, notwithstanding the slight

compressibility of any real liquid.

It is convenient to express the free energy of mixing per monomer ∆f as a sum

∆f = kBT
∑

i

φi

N
lnφi + fex , (6.4)
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where i =1 or 2 is a species index, and fex is an excess free energy per monomer. Using

this expression for ∆f in Eq. (6.2), we obtain

S−1(0) = v

[

1

Nφ1φ2
− 2χa

]

(6.5)

where χa is an “apparent” interaction parameter defined as

χa ≡ − 1

2kBT

∂2fex

∂φ2
1

. (6.6)

The simplest approximation for ∆f that we consider here is a generalized form of

FH theory [7]. This approximation assumes that fex for a given potential is equal to

some function

fex ≃ fint(φ1, T ) (6.7)

of composition and temperature alone, but that fex is independent of chain length N .

We refer to the postulated function fint(φ1, T ) in what follows as a self-consistent field

(SCF) interaction free energy. In this FH approximation, χa is approximated by an

“effective” interaction parameter

χe ≡ − 1

2kBT

∂2fint

∂φ2
1

(6.8)

that is also independent of chain length by assumption, but that can depend upon the

interaction potential, temperature, and composition.

6.2.1 Perturbation theory

In all simulations presented here, the two species of chain are structurally identical

chains of the same length, N1 = N2. A nonzero excess free energy exists only because

the non-bonded pair interaction between unlike monomers (1-2 pairs) differs from the

interaction between like monomers (1-1 and 2-2 pairs) by an amount proportional to a

small parameter α. The model that we use here is thus of exactly the type considered

in Chapters 4 and 5, in which we developed a perturbation theory for such models and

the excess free energy was expanded in powers of α at constant temperature. Here, as

in the perturbation theory, we use α as a control parameter, and simulate systems over

a range of values of α at a constant temperature. We then compare results obtained for

several chain lengths, and for two different polymer models.



92

The first order perturbation theory developed in Chapter 4 yields an expansion of

fex to first order in α of the form

fex ≃ αz(N)φ1φ2 + O(α2) . (6.9)

The quantity z(N) is a measure of the number of inter-molecular contacts per monomer

in a one-component reference liquid, with α = 0. This “effective coordination number”

depends slightly on chain length N , but approaches a model-dependent limiting value

z∞ in the limit N → ∞. We have predicted and confirmed by simulation that z(N)

varies with chain length as

z(N) ≃ z∞
(

1 +
β1√
N̄

)

+
γ′

N
, (6.10)

where β1 = (6/π)
3
2 is a universal constant, while z∞ and γ′ are model-dependent con-

stants, and N̄ = Nb6/v2 is an invariant degree of polymerization.

An expansion of χa(φ1, α) at fixed temperature to first order in α, using Eqs. (6.6)

and (6.9), is given by χa ≃ z(N)α/kBT + O(α2). We argued in Chapter 4 that, when

comparing results of simulations of such symmetric models to a generalized FH theory,

a corresponding first order approximation for the underlying SCF parameter χe(φ1, α)

could be obtained by simply taking the N → ∞ limit of this approximation for χa.

That is, we assume that χe(φ1, α) can also be approximated by an expansion in powers

of α, in which the first term is simply χe ≃ z∞α/kBT In what follows, we will use the

notation

χe1 ≡ z∞α

kBT
(6.11)

to refer to this simple first-order approximation for χe.

6.2.2 Renormalized loop expansion

The renormalized one-loop theory (ROLT) [22,23] is a coarse grained theory of polymeric

liquids that predicts small corrections to FH theory. It is based on an analysis of a

coarse-grained model with pairwise additive pair interactions. As in the perturbation

theory discussed above, the 1-2 pair interaction is assumed to differ from the 1-1 or 2-2

interaction by an amount that is controlled by a small parameter. In our presentation

of the coarse-grained model, this parameter was referred to as a “bare” interaction
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parameter, denoted by χ0. Unlike the perturbation theory, the validity of the one-loop

theory is not restricted to very small values of the control parameter χ0 or α.

Straightforward power counting arguments given in Refs. [26] and [22] strongly sug-

gest that the one-loop theory is only the first term within a systematic loop expansion

of corrections to SCFT, in which the magnitude of these corrections is controlled by a

small parameter N̄−1/2. The structure of the theory strongly suggests that the constant

temperature excess free energy per monomer fex(φ1, α, N) of symmetric blends of the

type considered here may be well approximated as a sum of the following form:

fex = fint(φ1, α) +
1

N
fend(φ1, α) +

kBT

N
f∗(φ1, χeN, N̄) . (6.12)

Here, fint is a model-dependent SCF free energy energy of the sort postulated in Eq.

(6.7), which is assumed to be independent of N , and fend is a model-dependent free

energy per chain arising from end-group contributions. f∗ is a universal correction to

SCF free energy per chain that can, in principle, be predicted order by order in a loop

expansion as

f∗(φ1, χeN, N̄) =
∞
∑

n=1

1

N̄n/2
f̂∗

n(φ1, χeN) (6.13)

in which n is an index for the number of loops. Here, χe is a function of φ1 and α alone

that is related to fint by Eq. (6.8).

From our simulations, we can obtain a value for the apparent interaction parameter

χa defined in Eq. (6.6). The expression postulated above for the excess free energy

yields a corresponding expression for χa in symmetric blends at constant T of the form:

χa(φ1, α, N) = χe(φ1, α) +
δ(φ1, α)

N
+

1

N
χ∗(φ1, χeN, N̄) , (6.14)

where

δ ≡ − 1

2kBT

∂2fend

∂φ2
1

(6.15)

χ∗ ≡ −1

2

∂2f∗

∂φ2
1

. (6.16)

Our analysis of the loop expansion suggests the existence of an expansion of χ∗ of the

form

χ∗(φ1, χeN, N̄) =
∞
∑

n=1

1

N̄n/2
χ̂∗

n(φ1, χeN) , (6.17)
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where we have defined

χ̂∗
n(φ1, χeN) ≡ − 1

2kBT

∂2f̂∗
n

∂φ2
1

. (6.18)

Only the one-loop (n = 1) contribution to χ∗ has thus far been calculated [23].

In the remainder of this chapter, we attempt to test the extent to which the values

of S−1(0) and χa measured in simulations of symmetric models of polymer mixtures at

φ1 = 1/2 are consistent with the functional form postulated in Eq. (6.14).

6.2.3 Ordering in powers of N−1/2

As the first step in the analysis of our simulation results, we plot and compare results for
cNS−1(0)

2 or χaN at φ1 = 1/2 as functions of χe1N , where χe1 = z∞α/kBT . A simple

RPA theory with χe = χe1 predicts that results from different chain lengths should

collapse in this representation. To understand the sources of the slight dependence on

N , it is useful to expand contributions to χaN , expressed as a function of χe1N , as a

series in powers of N−1/2.

Here, we construct an expansion that retains all contributions to χaN of order N−1

or larger, or contributions to χa of order N−2 or larger. The starting point for this

analysis is an expansion of Eq. (6.14) in which we approximate χe and δ/N by Taylor

series in α, and approximate χ∗ by a loop expansion. To truncate the expansions of χe

and δ at the required order, we note that α ∼ 1/N at χeN ∼ 1, and that δ appears

multiplied by an explicit factor of 1/N in Eq. (6.14). To retain only contributions to

χe and δ/N of order N−2 or larger, we must thus approximate

χe(α) ≃ z∞α + z2α
2 (6.19)

δ(α) ≃ wα . (6.20)

The approximation for χe to second order in α will be referred to as χe2. Here and

hereafter, because we are interested only in analyzing data taken a fixed composition

φ1 = 1/2, we suppress the dependence of quantities such as z2(φ1) and w(φ2) upon

φ1, and treat them for this purpose as constants. Also we set kBT = 1 for notational

convenience. Note that an accurate value of the coefficient z∞ can be obtained for any

model of interest by the procedure discussed in Chapter 4, but that the coefficients

z2 and w are unknown. To approximate f∗ to O(N−1), we must retain the one and
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two-loop contributions to f∗, giving an approximation

χ∗ ≃ 1

N̄1/2
χ̂∗

1(χeN) +
1

N̄
χ̂∗

2(χeN) , (6.21)

in which χe is approximated by Eq. (6.19). Here, we have again suppressed all depen-

dence on φ1.

Using these approximations for χe, δ, and f∗, we can now order contributions to

χaN , for α of O(1/N), in powers of N−1/2. The dominant O(1) contribution to χaN

is given by χe1N . The one-loop contribution to f∗ yields a contribution to χaN of

O(N−1/2). The quadratic contribution z2α
2 to χe, the linear contribution wα to δ, and

the two loop contribution to f∗ yield contributions to χaN of order N−1.

The predicted ordering can be made more explicit by rewriting or approximating

each term in the expansion of χaN as an explicit function of χe1N = z∞αN . Expanding

the difference

Nδχ1 ≡ χaN − χe1N (6.22)

as a function of χe1 to O(N−1) yields

Nδχ1 ≃ 1√
N̄

χ̂∗
1(χe1N)

+
1

N

[

w

z∞
χe1N +

z2

(z∞)2
(χe1N)2

]

+
1

N̄
χ̂∗

2(χe1N) .

(6.23)

The terms on the right hand side of the second line were obtained by rewriting α as

χe1/z1 in the expansions of χe(α) and δ(α). Further corrections that arise from our

replacement of χe(α) by χe1 in χ̂∗
1 and χ̂∗

2 are of O(N−3/2) or smaller, and so can be

neglected to this order.

The above analysis suggests the following graphical construction. After collecting

data χa(α, N) for each model, for several different chain lengths, we plot values of the

quantity N̄1/2Nδχ1 for all N together as a function of χe1N . If the above theory is

correct, values of this quantity for different chain lengths should almost collapse in this

representation, and should approach the known function χ̂∗
1(χe1N) in the limit N → ∞,

with systematic differences that scale as N−1/2 for sufficiently long chains.
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6.2.4 Overview of analysis

In the remainder of this chapter, we test the consistency of our data with the above

analysis in three steps, which are presented in Secs. 6.4, 6.5, and 6.6, respectively.

The first step, which is presented in Sec. 6.4 is simply to plot results for N̄1/2Nδχ1

vs. χe1N for all chain lengths of both models, as described in Sec. 6.2.3.

The second step, presented in section 6.5, is an attempt to explicitly fit our results

for the bead-spring model for four different chain lengths to the model given in Eq.

(6.12). More precisely, we will use Eqs. (6.19) and (6.20) as approximations for χe(α)

and δ(α) while χ∗ will be approximated by Eq. (6.21). In this fit, we use the known

value z∞ and the theoretically predicted form of the one-loop correction χ̂∗
1(χeN), but

allow the coefficients z2, w and (notably) the entire function χ̂∗
2(χeN) to vary so as to

minimize the error of a simultaneous fit to data from several chain lengths.

In the final step of our analysis, we attempt to test directly whether our data for

two different models is consistent with any model of the form given in Eq. (6.12), which

postulates that the difference χaN − χeN − δ is a universal function of χeN and N̄ .

The procedure we have devised to test this, and the results, are discussed in Sec. 6.6.

6.3 Models and simulation methods

Monte Carlo simulations of both a continuum bead-spring model (BSM) and the bond

fluctuation lattice model (BFM) of polymer blends have been conducted. Both these

two models and the methods used to simulate them were described in Chapter 3 in

detail.

Four different chain lengths were studied for each model. All simulations for each

model were conducted at a single temperature over a range of values of a perturbation

theory parameter α. All simulations presented in this chapter were conducted in a

constant volume cubic unit cell with periodic boundary conditions, using a semi-grand

canonical ensemble with equal chemical potentials for both species, so that 〈φ1〉 = 1/2

on average. Also, Eq. (6.3) was used to calculate values of S−1(0).

The main quantity of interest for the purpose of testing the ROLT is S−1(0). There-

fore, its system size dependence was first investigated taking N = 32 as a representative

system. It was found that for the BSM, the finite size effect was negligible up to
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χe1N ≃ 1.8 when L ≈ 10Rg where Rg is a radius of gyration. For the BFM, it was

found that L ≈ 10Rg was large enough for χe1N . 1.7.

6.3.1 BSM

All of our simulations of the bead-spring model, we use the same potential energy pa-

rameters (ǫ = kBT , l = σ, and κ = 400ǫ/σ2) and the same total number concentration

(c = 0.7σ−3) as those used in our previous studies of the first and second order pertur-

bation theory for this model. We have simulated blends containing chains of lengths

N = 16, 32, 64, and 128. An effective coordination number of z∞ = 0.2965 and an

infinite chain statistical segment length b = 1.404σ were reported in Chapter 4.

For chain conformation sampling, we used a hybrid Monte Carlo/molecular dynamics

move, reptation, and a variant of configurational bias double rebridging move, as in our

previous simulations of melts with α = 0. To simulate blends, we introduced a semi-

grand canonical move that attempts to change the type of all of the monomers of a

randomly chosen chain.

The relative weight of the moves was such that 2 out of 5 attempted moves were

semi-grand moves, and the runs were designed so as to spend comparable amounts of

computer time on each of the other types of move.

6.3.2 BFM

For the BFM, the volume fraction of monomers of type i is given by φi = 8NMi/L3,

where L is measured in units of the unit cell length in the underlying simple cubic

lattice. The factor 8 is a result of the fact that in this model, each monomer occupies 8

corners of an elementary cube of this cubic lattice. We set the volume fraction of empty

sites φv at 0.5, which previous workers have argued corresponds to a dense melt [67].

The chain lengths chosen for simulations are N=10, 20, 39, and 78. continuum model.

For this model, we obtained the parameters z∞ and b from Refs. [34] and [68], giving

z∞ ≈ 4.2 and b ≈ 3.244.

We used a combination of random monomer displacements and reptation moves

to sample chain conformations, in addition to a move that can change the type of an

entire chain. Each MC sweep consisted of: 1 random displacement per monomer, 3
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reptation moves per chain, and 0.25 semi grand moves per chain. The code that we

used for simulations of the BFM was graciously provided by Dr. Marcus Müller at the

University of Göttingen.

6.4 Results

In this section, we present the results of measurements of S−1(0) using both models.

Here, all results are plotted vs. χe1N , where χe1 = z∞α is a first order approximation

for χe(α).

6.4.1 BSM

Fig. 6.1 shows the normalized inverse scattering intensity S−1(0) as a function of χe1N

for N = 16, 32, 64, and 128. As can be seen, the data gradually approaches the pre-

diction of the RPA with χa = χe as N increases. The predictions of a self-consistent

renormalized one-loop theory prediction is shown for N = 32 as a representative example

of the agreement between theory and simulation.

Fig. 6.1 also shows the extrapolated critical behavior of S(0) in an infinite system

near the critical point, as a series of dashed lines. Each of these lines represents an

approximation of the form S−1(0) = A[(χe1N)c − (χe1N)]γ , with γ = 1.24. The critical

parameter value (χe1N)c was obtained by a standard finite size scaling analysis [69]

similar to that of Deutsch and Binder [41], which is discussed in Appendix F. The

critical amplitude A for each chain length was estimated by adjusting it such that the

line goes through the data point closest to the critical point.

Figure 6.2 shows the corresponding results for the plot of
√

N̄N(χa −χe1) vs. χe1N

for the BSM. The solid line is the prediction of the one-loop theory. The fact that

data from different chain lengths nearly collapse in this representation confirms that

the dominant contribution to N(χa−χe1) is indeed proportional to 1/
√

N̄ . We see that

the one-loop theory also provides a reasonable approximation for χa−χe1 for this model.

The agreement is particularly good small values of χe1N , but a systematic deviations

from the one-loop theory are apparent at intermediate values of χe1N > 1, where the

data for the longest chain lengths falls above the one-loop theory.

As explained in Ref. [23], the fact that χa is slightly larger χe1 for relatively low
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Figure 6.1: Plot of cNS−1(0)
2 vs. χe1N for the BSM for four different chain lengths.

The line labelled RPA is 2 − χe1N , which is the RPA prediction for a system with
χe = χe1. In addition to simulation data, asymptotic critical behavior for each chain
length, extrapolated to an infinite system, is shown by a dotted line.
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Figure 6.2: Reduced plot of the deviation δχ1 from the RPA prediction, for the BSM
data that is also shown in Fig. 6.1
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values of χe1N is the result of a subtle dependence of the depth of the correlation hole

upon chain length. That is, for a system of finite chain, z(N) is larger than z∞ because

a monomer of a finite chain is more exposed to monomers from other chains than a

monomer of an infinitely long chain. Near the critical point, however, this correlation

hole effect gets cancelled by the effects of long-wavelength composition fluctuations,

which tend to reduce χa.

6.4.2 BFM

Figs. 6.3 and 6.4 shows corresponding data for cNS−1(0)
2 and

√
N̄Nδχ1, respectively,

for the bond fluctuation lattice model. In Fig. 6.4, data for four different chain lengths

collapse almost perfectly, indicating that Nδχ1 is almost exactly proportional to N̄−1/2.

As also found for the BSM, agreement with the one-loop theory is excellent for small

values of χe1N , and less so when χe1N > 1. In this representation, results of the BFM

are noticeably different from from those obtained with the BSM, and lie much further

from the one-loop prediction.

6.5 Testing the loop expansion

To test the loop expansion more quantitatively, we have fitted our data for the bead-

spring model simulations to the truncated expansion described in Sec. 6.2.3. We have

constructed a simultaneous fit of the data for four chain length N =16,32, 64, and

128 to the Eq. (6.14), while using Eqs. (6.19) and (6.20) for χe(α) and δ(α) and

expansion (6.21) for χ∗(χe(α)N). That is, we model the simulation data with the

following equation:

χaN ≃ χe2N + wα +
1

N̄1/2
χ̂∗

1(χe2N) +
1

N̄
χ̂∗

2(χe2N) (6.24)

where χe2 = z∞α + z2α
2. In this fit, we use the known value of z∞, but treat the

coefficients z2 and w as fitting coefficients. We also use the theoretical prediction for

the one-loop function χ̂∗
1(χeN), since this is known, but allow the unknown two-loop

contribution χ̂∗
2(χeN) to vary to fit the data. Specifically, we approximate χ̂∗

2(χeN) at
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φ1 = 1/2 by a power series

χ̂∗
2(χeN) =

kmax
∑

k=1

ak(χeN)k. (6.25)

in which the coefficients a1, . . . , akmax are treated as fitting coefficients. We have used

kmax = 7 because this was found to yield an adequate representation of the required

function. Despite the fact that we allow the entire function χ̂∗
2(χeN) to vary so as to

optimize the fit, the model still strongly constrains the data because: (1) we test the

ability of the theory to simultaneously fit data for several chain lengths while using

the same values for all parameters and, (2) the theory predicts both the dominant one-

loop correction to the simplest RPA and the N̄ -dependence of the smaller two-loop

correction.

Some information from our analyses of first and second order perturbation theory

has also been used to constrain the fit. We showed in Chapter 5 that the loop expansion

predicts first and second derivatives of χa(α) of the form (Eqs. (5.63) and (5.71))

∂χa

∂α

∣

∣

∣

∣

α=0

= z∞
(

1 +
(6/π)3/2

√
N̄

)

+
γ′

N
+ O(N−3/2)

− ∂2χa

∂α2

∣

∣

∣

∣

α=0

=
3.7814(z∞)2

2

N√
N̄

+ τ + O(N−1/2) . (6.26)

In the model we consider here, γ′ and τ are given by

γ′ = w +
z∞

c2b6
a1 (6.27)

τ = −2

(

z2 +
(z∞)2

c2b6
a2

)

(6.28)

where a1 and a2 are coefficients in expansion (6.25). In the previous two chapters, we

have fit data for the first and second derivatives of the free energy of this model to

corresponding functions of N , and thereby obtained values γ′ ≈ 0.3004 and τ ≈ −0.153.

We have fitted the data for blends subject to constraints imposed by Eqs. (6.27) and

(6.28). By this procedure, we constrain our fit to data for χa at α > 0 to be consistent

with our earlier analysis of first and second order perturbation theory coefficients for

this model.
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We have implemented a simple procedure (based on a random walk in parameter

space) to minimize the quantity

M ≡
∑

N

∑

α

([χaN ](α, N) − y(α, N ; z2, w, {ak}))2 , (6.29)

subject to constraints (6.27) and (6.28), where

[χaN ](α, N) ≡ 2 − cNS−1(0)

2
(6.30)

is value χaN measured in a simulation for a particular value of α and N , and where

y(α, N ; z2, w, {ak}) is the corresponding value predicted by the renormalized loop theory

(Eq. (6.24)). The double summation in Eq. (6.29) is over all N = 16, . . . , 128 and all

values of α at which S−1(0) was measured.

Interestingly, we found that it is possible to obtain a rather good fit of this model

to the BSM data, but that the parameters required to obtain a good fit are not unique:

It is possible to obtain almost equally good fits over a range of values of the parameter

z2 and w within which the optimized function χ̂∗
2(χeN) changes substantially. Figure

6.5 shows several different fits, each of which was obtained by constraining the value of

z2 and minimizing the figure of merit with respect to the other parameters. Table 6.1

shows the resulting values of the figure of merit M obtained by this procedure. Though

M does have a minimum, it varies rather little over a significant range of different

values of z2. Fig. (6.6) shows plots of the function χ̂∗
2(χeN) that were obtained by

this optimization procedure for different values of z2. Here, we see that the function χ̂∗
2

changes substantially over the same range of values of z2.

The fact that this fit is not unique means that it cannot be used to determine

precise values for the constants z2 and w. We believe that this is closely related to

Table 6.1: z2 vs. figure of merit (Eq.(6.29)) and true χ2

z2 Figure of merit true χ2

0.1974 0.245 1696
0.085 0.200 1217
0.05 0.189 1094

-0.439 0.239 2177
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Figure 6.7:
√

N̄(χaN − χe1N) vs. χe1 for the BSM. This representation of data and fit
shows the difference more clearly.

our conclusion in Chapter 5 that it will be impossible to determine values for these

quantities by examining the N dependence of data for the first and second derivatives

of the free energy with respect to α at α = 0 until we have an analytic prediction for the

two-loop correction. We suspect that the problem is that the fit is sensitive to the values

of the constants γ′ and τ that appear in Eqs. (6.27) and (6.28), but rather insensitive

to changes in w and a1 or z2 and a2 that leave γ′ and τ unchanged. As in our analysis of

second order perturbation theory, we conclude that we would need analytic prediction

of χ̂∗
2(χeN) to determine precise values of z2 and w.

Figs. 6.7 and 6.8 show two slightly different representations of the fit obtained using

z2 = 0.05. Both of these representations show differences between the fit and the data

more clearly than in Fig. (6.5). In Fig. (6.8), χe2 = z∞α + z2α
2 denotes the quadratic

approximation for χe(α) given in Eq. (6.19), using the chosen value of z2.

A similar fit of the data for the BFM model (not shown here) led to similar conclu-

sions. Because we have not analyzed second derivatives of the free energy for the BFM,

we did not impose constraint (6.28) in this fit.

We conclude that our simulation data are consistent with the proposed model, but

that a fit to this model does not yet allow us to determine accurate values for all of the

parameters in the model.
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Figure 6.8: using χe2N instead of χe1N

6.6 Testing universality

An implicit assumption behind the use of any coarse grained model of a polymer liquid

can be stated as follows: the behavior at length scales much larger than a monomer

scale is assumed to be universal, independent of many microscopic details.

Eq. (6.14) suggests that χaN can be expressed, for any model of a symmetric

polymer blend with φ1 = 1/2, as the sum of a universal function of χeN and N̄ plus a

non-universal end-group contribution δ that is different for different models. To simplify

the discussion, consider an idealized situation in which this end-group contribution can

be ignored, either because it is negligible, or because we find a way to approximately

correct for it. To further simplify matters, we restrict ourselves to the case of structurally

symmetric polymer blends with φ1 = 1/2. In this case, the loop expansion suggests we

could express χaN as a function

χaN = h(χeN, N̄) (6.31)

where

h(χeN, N̄) ≡ χeN + χ∗(χeN, N̄) . (6.32)

is a function that is believed to be the same for all such models, though the relationship

between the parameter χe and microscopic parameters is different in each model.
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When comparing values of χe in different models, we must remember that the def-

inition of χe is somewhat arbitrary, because one can always redefine a “monomer” by

grouping together two or more primary repeat units, while also redefining χe so as to

leave the product χeN unchanged. Furthermore, after a definition of a “monomer” is

chosen for each model, chains with the same value of N̄ generally have different values

of N in different models, because the ratio N̄/N = c2b6 differs in different models. To

avoid having to keep track of a dependence on both N̄ and N , it is useful to define a

quantity

χ̄e ≡ χeN/N̄ , (6.33)

such that χ̄eN̄ = χeN .

Consider a comparison of results from two models a and b, such as the BSM and

BFM, in which the free energy of mixing in model a is controlled by a microscopic

parameter Xa and in model b by a parameter Xb. Let χ̄e be given for models a and b

by functions Fa(Xa) and Fb(Xb), respectively, such that

χ̄e = Fa(Xa) = Fb(Xb) . (6.34)

For simplicity, we assume that Fa(Fa) and Fb(Xb) are monotonic functions, and denote

the inverse mappings by F−1
a and F−1

b , defined such that Xa = F−1
a ◦ Fa(Xa) and

Xb = F−1
b ◦ Fb(Xb). Here and hereafter, we use the symbol ◦ to denote functional

composition, so that Fa ◦ Fb(Xb) ≡ Fa(Fb(Xb)). We also define a mapping

Q(Xb) ≡ F−1
a ◦ Fb(Xb) (6.35)

that maps each value of the microscopic parameter Xb for model b onto a corresponding

value of microscopic parameter Xa for model a, such that Xa and Xb yield the same

value of χ̄e.

Imagine that we had data for χaN vs. Xa or Xb from simulations of both models for

several matched pairs of systems, such that each pair contains two systems simulated

with models a and b at the same value of N̄ , using different values of N . Eq. (6.31)

implies that the data from each such pair of systems would overlap in a plot of χaN

vs. χeN . Unfortunately, we cannot construct this plot unless we know the functions

Fa(Xa) and Fb(Xb) for both models, which we do not. Eq. (6.31) also implies, however,

that the data for χaN from a pair of simulations of models a and b with matched values
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of N̄ should overlap if both sets of data are plotted versus any variable M(χ̄e)N , where

M(χ̄e) is any mapping (i.e., function) of χ̄e. Consider, specifically, the plots obtained

by plotting both sets of data for χaN vs. the variable XaN . For model a, this simply

yields a plot of χaN vs. XaN . For model B, this yields a plot of χaN vs. Q(Xb)N ,

where Q is the mapping defined in Eq. (6.35).

This argument implies that, if χaN is indeed given by a universal function h(χeN, N̄),

in the sense discussed above, then it should be possible to construct a mapping Xa =

Q(Xb) such that, given data from pairs of systems with matched values of N̄ , each

plot of χaN vs. Q(Xb)N constructed using data from model b should overlap with a

corresponding plot of χaN vs. XaN using data from model a at the same value of N̄ .

This statement is not trivial because it requires that the same mapping Q(Xb) collapse

the data for all values of N̄ . One could thus imagine choosing Q(Xb) so as to perfectly

overlap data obtained from one pair of systems with matched values of N̄ , and then test

the consistency with Eq. (6.31) by determining how well the resulting mapping collapses

the data obtained from several other matched pairs with other values of N̄ . Note that

this test cannot, by itself, tell us anything about how the postulated function h(χeN, N̄)

depends upon χeN and N̄ . It simply tests whether data from two different models is

compatible or incompatible with the hypothesized existence of such a function.

As already noted, Eq. (6.31) ignores end-group contributions to χaN , which are

given by model-dependent function δ(α). If we allow for such contributions, Eq. (6.14)

predicts only that the difference

χaN − δ(α) = h(χeN, N̄) (6.36)

is given by a universal function h. Ideally, we would thus like to be able to construct

approximations for δ(α) for two models of interest, and then apply the analysis described

above to the difference χaN − δ. If we assume that δ can be approximated to the

required accuracy by Eq. (6.20), then we only need a value for the coefficient w for each

model. We showed in Chapters 4 and 5 that one can estimate the related coefficient

γ′, given in Eq. (6.27), by fitting the N -dependence of z(N), but that it is impossible

to infer a value for w from this fit without a theoretical prediction for the coefficient

a1 ≡ ∂χ̂∗
2/∂(χeN)|χeN=0.

In order to compensate for non-universal end-group effects as much as possible,
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however, we have chosen to consider a quantity

U ≡ χaN − γ′α . (6.37)

To evaluate this quantity, a value of γ′ must be determined from a fit of the N -

dependence of z(N) for each model of interest. By using the expansion of χaN to

O(N−1), and Eq. (6.27) for γ′, it is straightforward to show that U may be approxi-

mated to the same order by a sum

U ≃ χeN +
χ̂∗

1(χeN)√
N̄

+
1

N̄

[

χ̂∗
2(χeN) − χeN

∂χ̂∗
2

∂(χeN)

∣

∣

∣

∣

χeN=0

]

+ · · · . (6.38)

In this the expansion, the subtraction of γ′α has removed all dependence on the model-

dependent coefficient w. To this order, the only difference between the expansions of U

and χaN − δ is the second term in the last line of Eq. (6.38). Unlike w, this new term

is universal function of χeN and N̄ . We thus conclude that U can be approximated to

this order by a universal function

U ≃ h(χeN, N̄) − χeN

N̄

∂χ̂∗
2

∂(χeN)

∣

∣

∣

∣

χeN=0

(6.39)

of χeN and N̄ , albeit a slightly different one than the function h(χeN, N̄) = χaN − δ

in which we were originally interested. Finally, we note that the above test of the

universality of the data obtained from two models can be applied to any quantity that

we expect to be a universal function of χeN and N̄ , and so can just as well be applied

to U as to χaN − δ.

We apply the above ideas to our data as follows. We take U as the universal quantity

of interest, take the BSM as model a and BFM as model b and attempt to find a mapping

Q that, as nearly as possible, collapses data for U from both models at equal values

of N̄ . For this purpose, we use control parameters Xa and Xb given by the linear

approximations for χe in these two models, so that Xa ≡ χBSM
e1 and Xb ≡ χBFM

e1 . We

approximate mapping Xa = Q(Xb) by a low order polynomial

Q(Xb) =
Nb

Na

kmax
∑

k=1

CkX
k
b (6.40)
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with C1 = 1, using kmax = 2 or 3. The coefficients C2 and (sometimes) C3 are treated as

fitting parameters. The prefactor of Nb/Na is the ratio of the degrees of polymerization

for chains of model b (BFM) and a (BSM) with the same value of N̄ . We include this

prefactor and set C1 = 1 as a matter of convention, to guarantee that NaQ(Xb) = NbXb

at low values of α, so that corresponding states yield corresponding values of χe1N . We

determine optimal values Ck for k > 1 by minimizing the quantity

∑

N̄

∑

Xb

[

Ub(Xb, N̄) − Ua(Q(Xb), N̄)
]2

, (6.41)

where Ub(Xb, N̄) represents a value of U evaluated with model b at specified values of

Xb and N̄ , and similarly for Ua(Xa, N̄). Because the values of N̄ and Xa used in the

BSM simulations do not match those used in the BFM simulations, we have used the fit

to our BSM data that was developed in Sec. 6.5, with z2 = 0.05, to interpolate values

of χaN to chain lengths and values of Xa that corresponding to the values of N̄ and

Fb for which data was taken in the BFM simulations (these correspond to interpolated

chain lengths N = 12.13, 24.26, 47.30, and 94.61 in the BSM). The sum over values of

N̄ and Xb is thus a sum over values for which we took data for the BFM.

As with plots of χaN , differences between the models can be seen most easily by

plotting values of the difference U − χe1N rather than U . Figure 6.9 shows values for

U − χe1N for both models, in which the discrete data points are results obtained for

the BFM (model b) and the lines are a fit to the data for the BSM (model a), where the

data for the BSM is plotted at the same set of values of N̄ as those for which data was

taken for the BFM. Figs. 6.10 and 6.11 show the results of our attempt to collapse the

results for the BFM (model b) and BSM (model a) plotted vs. the variable XaN used

for BSM in Fig. 6.9. Fig. 6.10 was obtained using a quadratic fit to Q(Xb) (kmax = 2),

for which we obtain an optimal value C2 = 1.895. Fig. 6.11 was obtained using a cubic

fit (kmax = 2), for which we obtain C2 = 1.479 and C3 = 5.399. Both plots show values

of U − XaNa vs. XaNa, in which we have used values of Xa = Q(Xb) to plot the BFM

data on this scale.

The cubic polynomial approximation for Q(Xb) yields an extremely good data col-

lapse. This analysis thus confirms that it is possible to describe the data for U from

both models in terms of a single universal function of two variables χeN and N̄ .
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Figure 6.9: Plots of U −χe1N vs. χe1N for both models, before any attempt to collapse
the data. Lines represent the results of the fit to the data for the BSM interpolated to
values of N that correspond to the values of N̄ at which data was taken for the BFM.

0 0.5 1 1.5

χ
e1

BSM
 N

 BSM

0

0.1

0.2

U
 -

 χ
e1

B
SM

 N
 B

SM

BSM, N=12.13 interpolated 
BSM, N=24.26 interpolated
BSM, N=47.31 interpolated
BSM, N=94.61 interpolated
BFM, N=10
BFM, N=20
BFM, N=39
BFM, N=78

Figure 6.10: Values of U − XaNa vs. XaNa for both models, in which values of Xa for
the BFM (discrete points) are given by the mapping Xa = Q(Xb), using a quadratic
approximation for Q(Xb) (kmax = 2).
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Figure 6.11: Values of U − XaNa vs. XaNa for both models, in which values of Xa

for the BFM (discrete points) are given by the mapping Xa = Q(Xb), using a cubic
polynomial approximation for Q(Xb) (kmax = 3).

6.7 Conclusions

In this chapter, there were three main goals we attempted to achieve. The first was

a quantitative test of the prediction of the renormalized one-loop theory (ROLT) for

blends. To reduce ambiguity in comparison, an accurate FH interaction parameter χ

(denoted by χe) was needed and obtained by taking the limit N → ∞ of a perturbative

expansion of free energy of blends. This allowed χe to be expressed as a series in powers

of small parameter α proportional to the incompatibility between two monomer species.

For the comparison between the theory and simulations, first we used the leading

order term only, defined as χe1 = z∞α. By measuring collective composition fluctuations

characterized by S−1(q → 0) using two coarse grained models of polymers, it was found

that the ROLT of blends accurately describes the correlation effects for relatively small

values of χe1N . For larger χe1N , it was shown that a non-universal end effect and

non-linear terms in the expansion of χe start to affect the data as well as higher order

loop contributions.

Next, knowing the importance of the non-linear terms in χe for large values of α,

we sought to obtain the next order correction z2α
2 to χe. In Chapter 5, we found

that it was not possible without knowing both first and second derivative of two-loop
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contribution to free energy, f̂∗
2 (χeN), at χeN = 0. Instead, composition fluctuation

data were utilized and a simple data fitting was tried to match them with a prediction

involving z2, an end-group contribution, and the two-loop contribution χ̂∗
2, all of which

were unknown and treated as fitting parameters. We found that the posed optimization

problem had multiple solutions that fit the data almost equally well. We were thus able

to confirm that the data for the BSM appears to consistent with the known predictions

of the loop expansion, but unable to refine the first-order perturbation theory estimates

of the SCF free energy and interaction parameter that we gave in Chapter 4.

Finally, we conducted a test on the universality of the two coarse grained models

of polymer chosen for the study. We showed that for a quantity which is a function of

χeN and N̄ (in other words, a physical property of the blend at the length scale similar

or lager than a polymer), it should be possible that data of one model can be put on

top of those of the other by an appropriate transformation of a microscopic parameter

of the former. We tested this idea taking BSM as a reference model and attempted to

bring BFM data onto BSM data, taking U (Eq. (6.37)) as a target universal function.

A single mapping was able to collapse data for four different chain lengths. We were

thereby able to show the data for these two models are at least compatible with the

existence of a universal theory for corrections to the RPA of the form postulated here.

All the analyses conducted suggest that the renormalized loop theory of correlation

is consistent with simulation data of coarse grained models. Also, the two models

used in this study did exhibit consistency in their collective composition fluctuation,

supporting the universality assumption of coarse grained models in scales similar or

larger than chain dimension.



Chapter 7

Summary

The main findings in this thesis were presented in Chapters 4, 5, and 6.

In Chapter 4, we developed a perturbation theory of symmetric blends to first order

in a small parameter α that controls the incompatibility between two monomer species.

We considered a class of lattice and continuum models and for both, we found the

free energy of mixing can be written in the original Flory-Huggins (FH) form except

that a lattice coordination number was replaced by an effective coordination number

z(N), which properly accounts for local liquid structure. A simple random walk model

for an effective incompressible melt predicted that for a finite N , z(N) is larger than

z(N → ∞) by a fractional amount of order O(N−1/2). This model was found to fit

simulation data very well. Lastly, we proposed a way to obtain the FH parameter χ by

extrapolating the perturbation theory to the limit N → ∞.

In Chapter 5, the perturbation theory of previous chapter was extended to second

order in α. The main motivation was to obtain an accurate estimation of the FH

parameter χ to second order in α. Microscopic expression for the second derivative

of free energy per monomer was derived, providing a way to measure the quantity

in a simulation. Next a general loop expansion was used to predict the chain length

dependence of the second derivative. It allowed us to identify the parameters that are

required to obtain the second order correction to the FH parameter χ. The results of

a bead-spring model simulation agreed with the prediction of the loop expansion for N

dependence. However, it was not possible to obtain the parameters due to lack of an

analytical prediction for a two loop contribution to free energy.
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There were three goals in Chapter 6. First, using the prescription to obtain the

FH parameter χ proposed in Chapter 4, we compared the predictions of a renormalized

one loop theory to simulations of two coarse grained models of symmetric blends at the

critical composition. We found the theory accurately describe collective composition

fluctuations and quantitative agreement between theory and simulations was good for

relatively small values of χN . Second, we attempted to obtain the second order correc-

tion to the FH parameter χ by utilizing the composition fluctuation data. We tried to

fit the data using the prediction of the loop expansion and found that they are consis-

tent with the theory. However, this method was unable to find a unique solution to the

problem. Lastly, we conducted a simple test on the universality assumption of coarse

grained models. Properties of polymer liquids at length scale much larger than a size

of monomer should not be so sensitive to the microscopic details of a given model. We

showed that for such quantities, one can bring data from two different models together

by a mapping procedure. The mapping was attempted using a lattice model and a

continuum model and we obtained results which supported the hypothesis.
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Appendix A

One loop approximation for

correlation free energy

There are at least two ways to derive the one loop free energy [22, 26]. The first one

is the Edwards auxiliary field formalism where the partition function of the system

is transformed into a functional integral over complex chemical potential field and its

fluctuation around the saddle point value is approximated by a Gaussian distribution.

The other is through a fictitious charging process where the interaction between polymer

chains are turned on gradually, which will be described in this section.

We start with the interaction energy of the same form as Eq. (2.7), but introduce a

charging parameter η that takes a value between 0 and 1, i.e.

Uint =
η

2

∑

i,j

∫

dr

∫

dr′ Uij(r − r′)ci(r)cj(r
′) . (A.1)

With some intra chain potential energy Uchain, the configurational part of the partition

function is given by

Z =

∫

dΓ e−β(Uchain+Uint) , (A.2)

where
∫

dΓ is an integral over distinct micro-states and the Helmholtz free energy of
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the system is βF = − lnZ. Taking a derivative of F with respect to η, one gets

∂F

∂η
= −β−1 1

Z

∂Z

∂η

=
1

Z

∫

dΓe−β(Uchain+Uint)
∂Uint

∂η

=
〈∂Uint

∂η

〉

=
1

2

∑

i,j

∫

dr

∫

dr′ Uij(r − r′)〈ci(r)cj(r
′)〉. (A.3)

For a homogeneous liquid, the number density can be written as ci(r) = ci + δci(r).

Therefore,

∂F

∂η
=

1

2

∑

i,j

∫

dr

∫

dr′ Uij(r − r′)
[

cicj + 〈δci(r)δcj(r
′)〉
]

=
V

2

∑

i,j

Ūijcicj +
1

2

∑

i,j

∫

dr

∫

dr′ Uij(r − r′)Sij(r − r′) , (A.4)

where we defined Ūij ≡
∫

drUij(r). Using the inverse Fourier transforms of Uij(r) =
∫ dq

(2π)3
e−iq·r Ũij(q) and Sij(r) =

∫ dq
(2π)3

e−iq·r S̃ij(q), the second term of Eq. (A.4)

can be rewritten

V

2

∑

i,j

∫

dr Uij(r)Sij(r)

=
V

2

∑

i,j

∫

dq

(2π)3
Ũij(q)

∫

dq′

(2π)3
S̃ij(q

′)
∫

dr e−i(q+q′)·r

=
V

2

∑

i,j

∫

dq

(2π)3
Ũij(q)

∫

dq′ S̃ij(q
′)δ(q + q′)

=
V

2

∑

i,j

∫

q

Ũij(q)S̃ij(q; η).

(A.5)

The first line of the above equation results from the translational invariance of the

system and in the last line, η was used as an extra argument for S̃ij(q; η) to indicate the

quantity depends on it. Also
∫

q
was introduced as a short hand notation for

∫ dq
(2π)3

.

Integrating both sides of Eq. (A.4) with respect to η from 0 to 1 yields

F (η = 1) − F (η = 0)

=
V

2

∑

i,j

Ūijcicj +
V

2

∫

q

∫ 1

0
dη Tr

[

Ũ(q)S̃(q; η)
]

,
(A.6)
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where F (η = 1) is the free energy of the fully interacting chains and F (η = 0) is the

free energy of the corresponding non interacting chains. One loop approximation for

correlation free energy (Eq. (2.37)) is obtained by using the RPA for the structure factor

(Eq. (2.26)) with the Gaussian random walk model for the single chain statistics. Then,

S̃(0) = Ω̃ where Ω̃ was defined by its matrix elements Eq. (2.38) and the integration

over η can be carried out as follows.

∫ 1

0
dη Tr

[

Ũ(q)S̃(q; η)
]

=

∫ 1

0
dη Tr

[

Ũ(Ω̃−1 + ηŨ)−1
]

=

∫ 1

0
dη Tr

[

Ũ(I + ηΩ̃Ũ)−1Ω̃
]

=

∫ 1

0
dη Tr

[

(I + ηΩ̃Ũ)−1Ω̃Ũ
]

=

∫ 1

0
dη

∂

∂η
ln
[

det
∣

∣I + ηΩ̃Ũ
∣

∣

]

= ln
[

det
∣

∣I + Ω̃Ũ
∣

∣

]

(A.7)

In the above derivation, a property of matrix valued functions was used, i.e. if Y = Y(η)

is a square matrix valued function,

∂

∂η
ln
[

det|Y|
]

= Tr
[

Y−1∂Y

∂η

]

(A.8)

Substituting Eq. (A.7) in Eq.(A.6), the free energy per volume f = F/V becomes

f =
F

V
=

1

2

∑

i,j

Ūijcicj +
1

2

∫

q

ln
[

det
∣

∣I + Ω̃Ũ
∣

∣

]

(A.9)

besides the trivial Flory-Huggins ideal entropy of mixing term fid (Eq. (2.35)) and free

energy density of non interacting chains. The first and the second term are identified

with Eq. (2.36) and Eq. (2.37), respectively.



Appendix B

Detailed balance and convergence

toward equilibrium

Here, we establish the fact that the detailed balance condition will drive Pl(t = 0) to

P eq
l . The discussion presented is based on the work by Young [70]. As a measure of

convergence, let us define a quantity G(t)

G(t) ≡
∑

l

1

P eq
l

(Pl(t) − P eq
l )2

=
∑

l

1

P eq
l

[P 2
l (t) − 2Pl(t)P

eq
l + (P eq

l )2]

=
∑

l

P 2
l (t)

P eq
l

− 1 > 0 (B.1)

The difference between G(t + 1) and G(t) can be written as,

∆G ≡ G(t + 1) − G(t)

=
∑

l

P 2
l (t + 1)

P eq
l

−
∑

l

P 2
l (t)

P eq
l

=
∑

l,m,n

[

wm→lwn→l
PmPn

P eq
l

]

−
∑

l

P 2
l

P eq
l

. (B.2)

In the last line, the time argument has been suppressed and Eq. (3.11) was used for

Pl(t + 1). Furthermore, using detailed balance condition Eq. (3.13),
∑

l,m,n

[

wm→lwn→l
PmPn

P eq
l

]

=
∑

l,m,n

[

wl→mwl→nP eq
l

PmPn

P eq
m P eq

n

]

(B.3)
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∑

m

P 2
m

P eq
m

=
∑

l,m

wm→l
P 2

m

P eq
m

=
∑

l,m

wl→mP eq
l

(

Pm

P eq
m

)2

=
∑

l,m,n

wl→mwl→nP eq
l

(

Pm

P eq
m

)2

=
1

2

∑

l,m,n

wl→mwl→nP eq
l

(

Pm

P eq
m

)2

+
1

2

∑

l,m,n

wl→mwl→nP eq
l

(

Pn

P eq
n

)2

(B.4)

Combining Eq. (B.3) and Eq. (B.4) to write ∆G gives us

∆G = −1

2

∑

l,m,n

wl→mwl→nP eq
l

(

Pm

P eq
m

− Pn

P eq
n

)2

< 0. (B.5)

This demonstrates that Pl(t) will approach P eq
l arbitrarily close as time progresses. One

necessary condition which is usually not addressed explicitly is ergodicity assumption

that the system at hand should be able to visit all the states given sufficient amount of

time.



Appendix C

Calculation of error in observable

In the course of a simulation, instantaneous values of a system property such as energy

per monomer or an order parameter are recorded at a fixed interval. At the end of

the simulation, the data are used to estimate the true mean value of the observable by

forming an arithmetic average. To be precise, assume we record values of a quantity y

at some interval to form a sequence {y(1), y(2), · · · , y(Ns)} (Ns observations in total).

The unbiased estimator of true mean 〈y〉 is the sample mean

ȳ ≡ 1

Ns

Ns
∑

i=1

y(i). (C.1)

One would be interested in knowing the uncertainty or error in this estimated value.

As a measure of the error, we will take 〈(δȳ)2〉 where δȳ ≡ ȳ − 〈y〉. Then,

〈(δȳ)2〉 = 〈ȳ2〉 − 〈y〉2

=
1

N2
s

Ns
∑

i,j=1

〈y(i)y(j)〉 − 〈y〉2

=
1

N2
s

Ns
∑

i,j=1

[〈y(i)y(j)〉 − 〈y〉2] (C.2)
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If y is a stationary process, 〈y(i)y(j)〉 = 〈y(i − j)y(0)〉 and

〈(δȳ)2〉 =
1

N2
s

Ns
∑

i,j=1

[〈y(i − j)y(0)〉 − 〈y〉2]

=
1

N2
s

Ns
∑

i,j=1

F (i − j), (C.3)

in which we defined F (τ) ≡ 〈y(τ)y(0)〉 − 〈y〉2, which is an even function of τ . The

double sum of F (i − j) can be expressed as

Ns
∑

i,j=1

F (i − j) =

Ns−1
∑

τ=−Ns+1

F (τ)n(τ)

= NsF (0) + 2

Ns−1
∑

τ=1

F (τ)n(τ), (C.4)

where n(τ) = Ns−τ is the multiplicity of F (τ). Now we make an assumption that F (τ)

goes to 0 fast such that we can set

Ns−1
∑

τ=1

F (τ)(Ns − τ) ≈ Ns

Ns−1
∑

τ=1

F (τ) (C.5)

Combining Eqs (C.3), (C.4) and (C.5), we obtain

〈(δȳ)2〉 ≈ 1

N2
s

[

NsF (0) + 2Ns

Ns−1
∑

τ=1

F (τ)

]

=
F (0)

Ns

[

1 + 2

Ns−1
∑

τ=1

F (τ)

F (0)

]

. (C.6)

F (0) is the true variance 〈y2〉 − 〈y〉2 and its unbiased estimator is known to be Ns

Ns−1σ2
y

where σ2
y = y2 − ȳ2 is the sample variance. The final expression for the error becomes

〈(δȳ)2〉 ≈
σ2

y

Ns − 1

[

1 + 2

Ns−1
∑

τ=1

F (τ)

F (0)

]

(C.7)

In practice, F (τ)
F (0) is also replaced by a normalized autocorrelation function measured

during a simulation. Eq. (C.7) reduces to the well known expression σ2
y/(Ns − 1) in

case all measured y’s are statistically independent. The reported error or uncertainty

is ±
√

〈(δȳ)2〉. The derived expressions are also consistent with the result obtained by

Müller-Krumbhaar and Binder [71].



Appendix D

Second order perturbation theory

in other ensembles

In this appendix, we present an alternative derivation of the second order perturbation

theory. Here we construct a second order perturbation theory in a semi-grand ensemble,

and then recover results for a canonical ensemble. The advantage of considering a

semigrand ensemble is that probability arguments are particularly simple in a semigrand

ensemble with α = 0, since each molecule can be either type 1 or 2 at random. The

disadvantage is that the second derivative with respect to α turns out to be different in

semi-grand and canonical ensembles, forcing us to go through a second step to obtain

the desired result for canonical ensemble.

Let Zs and Zc represent the semi-grand and canonical partition functions, respec-

tively, for a system with a total of Mt molecules. They are related by the following

relation (Eq. (3.26) of Section 3.3)

Zs(µ, α) =

Mt
∑

M1=0

eµM1Zc(M1, α) , (D.1)

where µ is the chemical potential difference between a chain of type 1 and a chain of

type 2.

Our immediate goal is to develop expressions for the first and second derivatives of

free energy F = − lnZ with respect to α in the limit α = 0 in both ensembles. Eqs.

(5.11) and (5.12) hold in either ensemble, if Z is interpreted as the appropriate partition
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function, where derivatives of Zs and expectation values are evaluated at constant µ in

semi-grand ensemble, while derivatives of Zc and expectation values are evaluated at

constant M1 in canonical ensemble.

D.1 Semi grand canonical ensemble

When working in semi-grand ensemble at α = 0, we can take advantage of the fact in

this case that each molecule may be chosen to be of type 1 or 2 at random, independently

of choices made for others. The quantity Θ may be expressed in this ensemble as a sum

Θ =
1

2

′
∑

a,b

Iab(fa1fb2 + fa2fb1)

=
1

2

′
∑

a,b

Iabf̄12(a, b) , (D.2)

where we have defined

f̄12(a, b) ≡ fa1fb2 + fa2fb1 (D.3)

for a 6= b, and where fai is a boolean variable that is 1 if molecule a is of type i and

zero otherwise. The prime on the top of a summation symbol means that the sum is

taken over all the molecules whose indices are distinct, e.g. over all a 6= b, including

both a > b and a < b. To evaluate averages in semi-grand ensemble at α = 0, we

simply assume that variable fai for molecule a is chosen to be 1 with probability φi and

0 with probability 1−φi. That is, we substitute φi for either fai or fbi at the end of any

calculation. Note also that the boolean variable satisfies faifaj = δijfai. In the limit

α → 0 of interest, we therefore obtain

〈Θ〉 =
1

2

′
∑

a,b

〈Iab(fa1fb2 + fa2fb1)〉

=
′
∑

a,b

〈Iab〉φ1φ2 . (D.4)

For 〈Θ2〉, we have

〈Θ2〉 =
1

4

′
∑

a,b

′
∑

c,d

〈IabIcd〉f̄12(a, b)f̄12(c, d) (D.5)
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The terms in Eq. (D.5) can be divided into three categories, i.e. terms with all the

indices distinct, terms with three out of four distinct and the rest. The result is

〈Θ2〉 =
1

4

′
∑

a,b,c,d

〈IabIcd〉f̄12(a, b)f12(c, d)

+ 4 × 1

4

′
∑

a,b,d

〈IabIad〉f12(a, b)f12(a, d)

+ 2 × 1

4

′
∑

a,b

〈I2
ab〉 [f12(a, b)]2 (D.6)

The factor 4 in the second line is because there are four possibilities for choosing three

distinctive indices, i.e. a = c which is shown and a = d, b = c, and b = d. The factor

2 in the third line comes from two possibilities, i.e. a = c, b = d which is shown and

a = d, b = c. Using faifaj = δijfai and setting fai = fbi = φi for random labelling

yields,

〈Θ2〉 =
′
∑

a,b,c,d

〈IabIcd〉(φ1φ2)
2

+





′
∑

a,b,d

〈IabIad〉 +
′
∑

a,b

〈I2
ab〉



φ1φ2 .

(D.7)

The term multiplied by φ1φ2 in Eq. (D.7) can be written as,

′
∑

a,b,d

〈IabIad〉 +
′
∑

a,b

〈I2
ab〉 =

∑

a

∑

b 6=a

∑

d6=a

〈IabIad〉

=
∑

a

〈I2
a〉 , (D.8)

where we defined

Ia ≡
∑

b 6=a

Iab . (D.9)

Using the following identity,

〈I2〉 =
′
∑

a,b

′
∑

c,d

〈IabIcd〉

=
′
∑

a,b,c,d

〈IabIcd〉 + 4
′
∑

a,b,d

〈IabIad〉 + 2
′
∑

a,b

〈I2
ab〉 (D.10)
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∑′

a,b,c,d〈IabIcd〉 can be written as,

′
∑

a,b,c,d

〈IabIcd〉

= 〈I2〉 − 4

′
∑

a,b,d

〈IabIad〉 − 2

′
∑

a,b

〈I2
ab〉

= 〈I2〉 − 4





′
∑

a,b,d

〈IabIad〉 +
′
∑

a,b

〈I2
ab〉



+ 2
′
∑

a,b

〈I2
ab〉

= 〈I2〉 − 4
∑

a

〈I2
a〉 + 2

′
∑

a,b

〈I2
ab〉. (D.11)

Substituting Eq. (D.8) and Eq. (D.11) into Eq. (D.7) yields the desired expression for

〈Θ2〉. Combining all the results, the variance in Θ can be written as

〈Θ2〉 − 〈Θ〉2 = Gsφ
2
1φ

2
2 + Hsφ1φ2 , (D.12)

where we have defined

Gs ≡ 〈I2〉 − 4
∑

a

〈I2
a〉 + 2

′
∑

a,b

〈I2
ab〉 − 〈I〉2 (D.13)

Hs ≡
∑

a

〈I2
a〉 (D.14)

I ≡
∑

a

Ia =
′
∑

a,b

Iab. (D.15)

The subscript of s is used to denote semi-grand ensemble, because we find that the

variance of Θ has the same form, but with different coefficients, in semi-grand and

canonical ensemble.

D.2 Canonical ensemble via Legendre transformation

The simplest way to obtain corresponding results for the derivatives of the canonical

free energy − lnZc is to calculate lnZc from lnZs by Legendre transformation [72]. For

a sufficiently large system

lnZc(M1, α) = lnZs(µ, α) − µM1 (D.16)
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where (in semi-grand ensemble) M1 denotes 〈M1〉. These quantities obey the usual

identities

M1 =
∂ lnZs(µ, α)

∂µ

µ = −∂ lnZc(M1, α)

∂M1
. (D.17)

Taking a derivative of both sides of Eq. (D.16) with respect to α yields

∂ lnZc

∂α

∣

∣

∣

∣

M1

=
∂[lnZs(µ, α) − µM1]

∂α

∣

∣

∣

∣

M1

=
∂ lnZs

∂α

∣

∣

∣

∣

µ

+
∂ lnZs

∂µ

∣

∣

∣

∣

α

∂µ

∂α

∣

∣

∣

∣

M1

− ∂µ

∂α

∣

∣

∣

∣

M1

M1

=
∂ lnZs

∂α

∣

∣

∣

∣

µ

. (D.18)

Thus, the same result for first derivatives is obtained in either ensemble. Taking a

derivative with respect to α again yields

∂2 lnZc

∂α2

∣

∣

∣

∣

M1

=
∂2 lnZs

∂α2

∣

∣

∣

∣

µ

+
∂2 lnZs(µ, α)

∂α∂µ

∂µ

∂α

∣

∣

∣

∣

M1

=
∂2 lnZs

∂α2

∣

∣

∣

∣

µ

+
∂M1

∂α

∣

∣

∣

∣

µ

∂µ

∂α

∣

∣

∣

∣

M1

(D.19)

The first term on the right hand side of Eq. (D.19) calculated at α = 0 is the quantity

that we evaluated in semi-grand ensemble. To evaluate the additional terms, we may

use the 1st order perturbative expansion of the canonical free energy:

− lnZc = Mt

∑

i

φi lnφi + αMtNz(N)φ1φ2 + O(α2) (D.20)

, where

z(N) ≡ 〈I〉/(MtN) (D.21)

is the effective coordination number. Taking a derivative with respect to M1 at fixed

Mt yields the equation of state

µ = ln(φ1/φ2) + αNz(N)(φ2 − φ1) + O(α2) . (D.22)

Differentiating with respect to α at fixed M1 (or fixed φ1) yields

∂µ

∂α

∣

∣

∣

∣

M1

= Nz(N)(φ2 − φ1) . (D.23)
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Implicit differentiation of Eq. (D.22) with respect to α at fixed µ yields

0 =

[

1

φ1
+

1

φ2

]

∂φ1

∂α

∣

∣

∣

∣

µ

+ Nz(N)(φ2 − φ1) , (D.24)

or

∂M1

∂α

∣

∣

∣

∣

µ

= Mt
∂φ1

∂α

∣

∣

∣

∣

µ

= −MtNz(N)(φ2 − φ1)φ1φ2 , (D.25)

where ∂M1
∂α

∣

∣

∣

µ
is understood to be the value of the derivative calculated at α = 0.

Combining results, using an identity (φ1 − φ2)
2 = 1 − 4φ1φ2, yields

1

MtN

∂2 lnZc

∂α2

∣

∣

∣

∣

M1

=
1

MtN

∂2 lnZs

∂α2

∣

∣

∣

∣

µ

+ Nz2(N)φ1φ2(4φ1φ2 − 1) (D.26)

for the corresponding intensive property. It is worth noting that the correction term

qualitatively changes the result, since the correction increases linearly with N for N ≫ 1,

while the quantity on the left hand side increases as
√

N for large N , which will be shown

in Sec. 5.3

The final result for second order perturbation theory in canonical ensemble is thus

∂2 lnZc

∂α2

∣

∣

∣

∣

M1

= Gcφ
2
1φ

2
2 + Hcφ1φ2 (D.27)

where

Gc ≡ 〈I2〉 − 4
∑

a

〈I2
a〉 + 2

′
∑

a,b

〈I2
ab〉 − 〈I〉2

+ 4〈I〉2/Mt (D.28)

Hc ≡
∑

a

〈I2
a〉 − 〈I〉2/Mt . (D.29)

These results agree with those obtained in Chapter 5 by working directly in canonical

ensemble.

Figure D.1 shows how differently the second derivative of free energy behaves as

a function of composition of species 1 in the two ensembles. The curve for canonical

ensemble (red line) was obtained by using Eqs. (D.28) and (D.29) in Eq. (D.27). On
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Figure D.1: Plot of 〈Θ2〉−〈Θ〉2
MN vs. φ1.

the other hand, Eqs. (D.13) and (D.14) together with Eq. (D.12) yield the curve for

semi grand canonical ensemble (blue line). To check the validity of the derivations given

for G(N) and H(N), additional direct measurements in canonical ensemble were done,

which are shown as circles with error bars smaller than the size of a symbol.



Appendix E

Histogram reweighting method

Histogram reweighting method [73, 74, 41] allows one to extrapolate the simulation re-

sults obtained at a specific value of parameter such as temperature to nearby parameter

values. The basic idea is to construct an approximate density of states of the model from

raw simulation data. If a simulation done at only one parameter is used, the method

is called single histogram method. On the other hand, in multi histogram reweighting

method, multiple simulations done at different parameters are combined to give more

accurate estimation of the density of states of model.

E.1 Single histogram reweighting method

In the semi grand canonical ensemble discussed in Sec. 3.3, the partition function was

defined as (Eq. (3.22)),

LSG(β,∆µ) ≡
∫ Mt

−Mt

dM

∫

dEeβ NM∆µ
2 e−βEΓ̃(M, E).

The probability density of the system having energy E and order parameter M is given

by

Pβ,∆µ(E, M) = L−1
SG eβ NM∆µ

2 e−βEΓ̃(M, E) (E.1)

It is possible, however, to obtain an estimate of the probability during a simulation by

making a histogram Hβ,∆µ(E, M). Let N be the total number of pairs E, M observed.

Then, we can approximate Eq. (E.1) with Hβ,∆µ(E, M)/N , or

Γ̃(M, E) ≈ N−1Hβ,∆µ(E, M)LSG(β,∆µ)e−β NM∆µ
2 eβE (E.2)
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A density of states is a quantity independent of simulation parameters β and ∆µ.

Therefore, estimated Γ̃(M, E) can be used to approximate a partition function and a

probability distribution at some parameters other than the ones at which the simulation

was done.

To apply the method to a problem where a chemical mismatch parameter ξ is in the

pair potential energy as in the model we study, it needs to be modified slightly from

its original form [53]. The total potential energy of the model polymer blend can be

written as

E = Ubond + Unonbond

= Ubond +
AA
∑

i<j

vAA(rij) +
BB
∑

i<j

vBB(rij) +
AB
∑

i<j

vAB(rij)

= Ubond +

AA,BB
∑

i<j

ǫF (rij) +
AB
∑

i<j

ǫ(1 + ξ)F (rij)

= E0 + ξΘ (E.3)

where
∑AA

i<j , for example, is a sum over all A monomer pairs without double counting.

Also two quantities were defined in the last line as

E0 ≡ Ubond + ǫ

AA,AB,BB
∑

i<j

F (rij), (E.4)

Θ ≡ ǫ
AB
∑

i<j

F (rij). (E.5)

The semi grand partition function can be written as

LSG(β,∆µ, ξ) ≡
∫ Mt

−Mt

dM

∫

dE0

∫

dΘ eβ NM∆µ
2 e−β(E0+ξΘ)Γ̃(M, E0, Θ) (E.6)

To extrapolate to nearby (β′, ∆µ′, ξ′), a histogram Hβ,∆µ,ξ(M, E0, Θ) has to be con-

structed during a simulation. The approximate density of states is given by

Γ̃(M, E0, Θ) ≈ N−1Hβ,∆µ,ξ(M, E0, Θ)LSG(β,∆µ, ξ)e−β NM∆µ
2 eβ(E0+ξΘ), (E.7)

where N is again the total number of observed triplets (M, E0, Θ). In the following,

subscript (β,∆µ, ξ) will be omitted and prime will be used to imply quantities at param-

eters (β′, ∆µ′, ξ′) for notational simplicity. With Eq. (E.7), the semi grand canonical
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partition function at (β′, ∆µ′, ξ′) can be expressed as

L′
SG ≈ N−1LSG

∫

dM

∫

dE0

∫

dΘ H(M, E0, Θ)

× e(β′∆µ′−β∆µ)NM
2

−(β−β′)E0−(β′ξ′−βξ)Θ. (E.8)

The probability density of (M, E0, Θ) with the new parameters is

P ′(M, E0, Θ) ≈ H(M, E0, Θ)e(β′∆µ′−β∆µ)NM
2

−(β−β′)E0−(β′ξ′−βξ)Θ

∫

dM
∫

dE0

∫

dΘ H(M, E0, Θ)e(β′∆µ′−β∆µ)NM
2

−(β−β′)E0−(β′ξ′−βξ)Θ
.

(E.9)

Note that the unknown LSG was canceled out because it was present both on the

numerator and the denominator.

For the study conducted in this thesis where models of symmetric blend are simulated

at a fixed temperature, we can further simplify the results because ∆µ = 0 and β = β′.

That is,

P ′(M, E0, Θ) ≈ H(M, E0, Θ)e−β(ξ′−ξ)Θ

∫

dM
∫

dE0

∫

dΘ H(M, E0, Θ)e−β(ξ′−ξ)Θ
. (E.10)

Defining H(M, Θ) ≡
∫

dE0 H(M, E0, Θ), we finally obtain

P ′(M, Θ) =

∫

dE0P
′(M, E0, Θ)

≈ H(M, Θ)e−β(ξ′−ξ)Θ

∫

dM
∫

dΘ H(M, Θ)e−β(ξ′−ξ)Θ
. (E.11)

The main use of this method is to obtain the ensemble average of the order parameter

M as a smooth function of ξ, especially near the critical point. Because ξ is coupled to

the quantity Θ, however, it is necessary to keep complete two dimensional histogram of

(M, Θ).

E.2 Multiple histogram reweighting method

The basic idea in using multiple histograms is to get the best estimate of the density

of states by combining them with proper weights. Since E0 of the reference state with
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ξ = 0 is irrelevant in formulating the method, we can rewrite Eq. (E.6) as

LSG(β,∆µ, ξ) ≡
∫

dM

∫

dE0

∫

dΘ eβ NM∆µ
2 e−β(E0+ξΘ)Γ̃(M, E0, Θ)

=

∫

dM

∫

dΘ eβ NM∆µ
2 e−βξΘΓ̃(M, Θ), (E.12)

with Γ̃(M, Θ) ≡
∫

dE0Γ̃(M, E0, Θ). The density of states as a function of M and Θ

can be related to the histogram H(M, Θ) using the approximation

N−1H(M, Θ) ≈ L−1
SG eβ NM∆µ

2 e−βξΘΓ̃(M, Θ)

or,

Γ̃(M, Θ) ≈ N−1LSG e−β NM∆µ
2 eβξΘH(M, Θ) (E.13)

Now imagine multiple simulations are done at s different sets of parameters (βi, ∆µi, ξi)

with i = 1, 2, · · · , s. Each simulation will yield its own approximate density of states

Γ̃i(M, Θ) = N−1
i Li e−βi

NM∆µi
2 eβiξiΘHi(M, Θ). (E.14)

The natural next step would be to combine all of the estimates to form the best estimate

of the density of states as

Γ̃(M, Θ) ≈
s
∑

i=1

wi(M, Θ)Γ̃i(M, Θ) (E.15)

It turns out that one can find out wi(M, Θ) by minimizing an error in Γ̃(M, Θ) caused

by errors in Hi(M, Θ) [75,41] to get

wi(M, Θ) =
(1 + 2τi)

−1Hi(M, Θ)Γ̃−1
i (M, Θ)

∑s
i=1(1 + 2τi)−1Hi(M, Θ)Γ̃−1

i (M, Θ)
, (E.16)

where τi is the autocorrelation time of both M and Θ during a simulation with ith set of

parameters. In practice, the results do not depend severely on them [41]. Substituting

the optimal weights wi(M, Θ) into Eq. (E.15) yields the best estimate of the density of

states

Γ̃(M, Θ) ≈
∑s

i=1(1 + 2τi)
−1Hi(M, Θ)

∑s
i=1(1 + 2τi)−1Hi(M, Θ)Γ̃−1

i (M, Θ)

=
X(M, Θ)

Y (M, Θ)
(E.17)
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Figure E.1: The probability density of the normalized order parameter m = M
Mt

at
various values of ξ. The simulated blend was a system with Mt = 456 and N = 64 at
〈MA

Mt
〉 = 0.5. Four histograms were generated at ξ = 0.107, 0.108, 0.109, and 0.110 while

ξc ≈ 0.109

With this, the partition function (Eq. (E.12)) and the probability density P (M, Θ)

with any set of parameter (β,∆µ, ξ) can be obtained. Figure E.1 shows an example of

such a plot where four histograms at ξ = 0.107, 0.108, 0.109 and 0.110 were combined

to estimate the density of states while β = 1 and ∆µ = 0. However, one last step

before using Eq. (E.17) is to determine Li’s self consistently because they are needed in

the calculation of Y (M, Θ) =
∑s

i=1(1 + 2τi)
−1Hi(M, Θ)Γ̃−1

i (M, Θ). This can be done

iteratively by first assigning an initial guess value for each L(0)
i to construct Γ̃(0)(M, Θ).

Then we can compute partition functions using Eq. (E.12), yielding L(1)
i , which will be

different from L(0)
i in general. This step is repeated until all Li for i = 1, 2, · · · , s are

converged. The initial values are taken to be Ni for each i and the rate of convergence

is high , usually within a hundred iterations.



Appendix F

Critical point of model polymer

blend

To estimate the critical points of model blends in the thermodynamic limit (infinitely

large system) from simulations done in finite systems, the finite size scaling (FSS)

analysis techniques [69] were used together with the multiple histogram reweighting

method described in Appendix E.2. The development of the multi-histogram reweight-

ing method made the FSS technique very reliable in characterizing critical behavior of

models of polymers and other statistical systems. Here, a brief description of the FSS

analysis relevant to the work in this thesis is presented based on the extensive review

by Deutsch [41]. Then, the results of the FSS analysis to determine the critical points

of the continuum bead-spring model used in this thesis will be presented.

F.1 Finite size scaling theory

Let t ≡ T−Tc

Tc
, µ ≡ ∆µ−∆µc and m ≡ MA−MB

MA+MB
, which is a normalized order parameter.

If L is the linear dimension of the simulation cell, FSS theory ansatz of the form of

order parameter distribution is given by

P (t(L), µ(L), m(L), L) = LvP̃ (Lut, Ld−vµ, Lvm) . (F.1)

Note that on the right hand side of Eq. (F.1), the system size dependence has been

separated explicitly in the factor Lv and P̃ does not depend on L by itself, but through

140
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combinations of L and other parameters. The exponents u and v are defined by the

following relations.

u ≡ d

γ + 2β
(F.2)

v ≡ βd

γ + 2β
, (F.3)

where d is a dimensionality, β is the critical exponent for the order parameter, and γ is

the critical exponent for its susceptibility in the scaling region, i.e.

m = B̂|t|β (F.4)

χ = Ĉ±|t|−γ , (F.5)

with critical amplitudes B̂ and Ĉ±. Conventional critical exponents such as α (exponent

for specific heat) can be expressed in terms of u and v.

α = 2 − d

u
, β =

v

u
, γ =

d − 2v

u
(F.6)

Because of the form of Eq. (F.1), moments of the order parameter m takes the following

form:

〈mk〉L = L−kvm̃k(L
ut, Ld−vµ) , (F.7)

where mk is given by

mk(L
ut, Ld−vµ) ≡

∫

dxxkP̃ (Lut, Ld−vµ, x). (F.8)

F.2 Determination of critical point

The form of Eq. (F.7) can be taken advantage of in the determination of critical

temperature or in the case of study in this thesis, critical value of α. One can form a

ratio of some powers of the moments of the order parameter such that system size L

cancels out. That is, if one chooses two pairs of integers (i, j) and (l, k) that satisfy

ij = lk, then

U lk
ij ≡ 〈ml〉kL

〈mi〉jL
=

[ml(L
ut, Ld−vµ)]k

[mi(Lut, Ld−vµ)]j
(F.9)

If a system with a linear dimension L is at the critical point where t = 0 and µ = 0, the

value of the ratio would be independent of the system size, given by [ml(0,0)]k

[mi(0,0)]j
. For the
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case of symmetric blends, ∆µc = 0 because of AB symmetry, and all the simulations

in this thesis were conducted at µ = 0. Therefore, if there are multiple simulation

systems with different sizes, one can determine the critical temperature or critical α by

measuring the ratios for those systems as functions of α and identify a point where all

data curves intersect with each other. In Figs. F.1a ∼ F.1d, U21
12 = 〈m2〉

〈|m|〉2 are plotted

as functions of α for four different chain lengths of the BSM. The use of 〈|m|〉 instead

of 〈m〉 is necessary to introduce spontaneous symmetry breaking [41], i.e. for a finite

system, the odd moments of the order parameter remain at 0 after phase separation, in

contrast to the behavior of a corresponding infinitely large system.
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Figure F.1: Plot of U21
12 vs. α for N=16, 32, 64, and 128 of the BSM. The critical value

αc for each chain length was determined graphically by identifying a point where curves
obtained from three different sizes of the system intersect.
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