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On Efficiency of Methods of Simulated Moments 

and Maximum Simulated Likelihood Estimation of Discrete Response Models 

by 

Lung-Fei Lee* 

1. Introduction 

McFadden [1989] has proposed a method of simulated moments for the estimation of discrete 

response models. The method of simulated moments uses Monte Carlo draws from some specific 

distributions to construct (asymptotically) unbiased estimates of conditional choice probabilities. 

The method of simulated moments avoids computation of complicated multivariate probability 

functions and is computationally tractable even for models with many choice alternatives. Mc-

Fadden's method is different from the method of Monte Carlo integration in Lerman and Manski 

[1981]. Lerman and Manski [1981] has emphasized on the accuracy of estimating conditional re-

sponse probabilities for each observation. Lerman and Manski [1981] has found out that a large 

number of Monte Carlo draws is required to provide accurate approximation to multivariate probit 

probabilities. McFadden's simulated method of moments has emphasized on the estimation of 

unknown parameters. The number of Monte Carlo draws to construct unbiased conditional choice 

probabilities for each individual observation does not need to be large. For each sample obser-

vation, only a fixed number of independent Monte Carlo draws is needed. McFadden [1989] has 

proposed several approaches to construct the (asymptotically) unbiased estimates of conditional 

choice probabilities. His estimators are all consistent and asymptotically normal. Since the number 

of draws for each observation is fixed and independent with sample size, the estimators derived 

* I appreciate having financial support from NSF under grant no. SES-8809939 and SES-9010516 
and computing grant support from the Minnesota Supercomputer Institute for my research. I would 
like to thank Hide Ichimuara, Michael Keane, Steven Stem and Scott Thompson for their useful 
comments. Amy J .L. Lee has provided valuable assistance on the simulation study in this article. 
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from the method of simulated moments are statistically less efficient than the classical method of 

moment estimator. Empirical applications of the method of simulated moments can be found, for 

examples, in Pakes [1986], Haijivassiliou and McFadden [1987] and Keane [1989]. 

In this article, we will consider the method of simulated moments based on smooth moment 

simulators. We point out that, given the same Monte Carlo draws, it is possible to improve 

asymptotic efficiency of estimators by slightly modifying the method of simulated moments of 

McFadden [1989]. Monte Carlo draws for each observation are exchangeable across observation and 

hence all of them can be used to construct unbiased estimates of conditional choice probabilities for 

each observation. These estimates are computationally more expensive as they involve many more 

terms for summation. But these simulated moments have smaller errors than the ones based on 

a smaller number of Monte Carlo draws. Thus if we used these unbiased estimates in the method 

of simulated moments, there might be statistical efficiency gain. However, potential efficiency 

gain might not be realized as the simulated moments are now dependent across observations. In 

this article, we will investigate the efficiency issue. Based on V-statistics theory, we show that 

the modified estimator is indeed asymptotically more efficient than the corresponding estimator 

in McFadden [1989] inspite of dependency. In addition to the method of simulated moments, we 

will consider also a simulated likelihood estimation method. This method provides an alternative 

estimation method without restricting ourself to the estimation of only moment equations but yet 

it will use the same number of Monte Carlo draws as in the method of simulated moments. Our 

modified method of simulated moments and simulated likelihood method can also be regarded as 

generalization of Pakes' simulation methods in Pakes [1986] to disaggregated data with smooth 

simulators 1. 

1 For aggregated data, since sample frequencies are sufficient statistics, our modified method 
of moment, McFadden's method and Pakes' method of moment will all coincide. In a time series 
content, simulated method of moment estimation similar to Pakes [1986] but with smooth simulated 
moments can be found in Lee and Ingram [1989]. 
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This article is organized as follo\Ys. In Section 2, we present the modified method of simu­

lated moments. Asymptotic properties and relative efficiency of the modified moment estimator 

will be investigated in Section 3. Section 4 presents a simulated likelihood estimation method. 

Its asymptotic properties are investigated. Section 5 will investigate an adding up property for 

moment simulators. This property has an interesting implication on the asymptotic distribution 

of the simulated likelihood estimation. In Section 6, we clarify the efficiency issue of dependently 

simulated moments versus independently simulated moments. Some Monte Carlo results on the 

finite sample performance of the proposed estimators are reported in Section 7. Conclusions are 

drawn in Section 8. Useful propositons for our anlysis are collected in an appendix. 
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2. Methods of Simulated Moments for Estimation of Discrete Response Models 

McFadden [1989] has proposed a method of simulated moments for estimation of discrete 

response models. A typical discrete response model is a model with several choice alternatives. 

Let C = {I,· .. , L} be a set of mutually exclusive and exhaustive alternatives. For each alternative 

1 E C, the associated value is 

(2.1) 

where a is a vector of individual weights distributed randomly in the population and XI is a vector 

of measured attributes of alterntive I. Response j is observed if Uj 2: UI for all 1 E C. Assume that 

the distribution of a is known except for a vector of parameters 9 of dimension k. Let X denote 

the vector consisting of all' distinct explanatory variables in Xl,' •• , XL. Define 

and let 91( v19, x) denote the density function of VI conditional on x. The response probability 

P( 119, x) for alternative 1 is 

P(/19,x) = 1 91(vI9,x)dv. 
vSO 

(2.2) 

Let d/i denote a response indicator for individual i, equal to one for the observed response, zero 

otherwise. The conventional method of moments estimation is 

min( D - P( 9»'W'W( D - P( 9» , (2.3) 

where D-P(9) is the nL vectorofresiduals d/i-P(/19,Xi) stacked by observation and by alternative 

within observation and W is a matrix of instruments of rank K 2: k. The method of simulated 

moments of McFadden [1989] avoids the computation of P(9) by replacing it with a simulator f(9) 

that is (asymptotically) conditionally unbiased, given W and d, independent across observations 

and "well behaved" in 9. McFadden's method of simulated moments is 

min(D - f(9»'W'W(D - f(9». , (2.4) 

4 



Both the articles of McFadden [1989Land Pakes and Pollard [1989] provide powerful asymptotic 

techniques which establish consistency and asymptotic distribution for a broad class of simulators 

which include both smooth and nonsmooth simulators. Consider, for example, the smooth simula-

tors in McFadden [1989] based on importance simulation technique 2. Let ,..( v) be a density chosen 

for the simulation that has the negative orthant as its support. Let 

h,(v,z,9) = { 
m(v!',z) 0 

"Y( v) , v < , 
o otherwise. 

(2.5) 

Then, (2.2) can be rewritten as 

P(lIO, x) = J h,( v, x, 9)')'( v)dv. (2.6) 

The density ,..( v) is usually chosen so that hi is dominated by a function H independent of 9 

with J H,..dv finite. Averaging h,(v,x,9) for an observation, using one or more Monte Carlo 

draws from ,..( v) that are taken independently across observations and fixed for different 9 gives a 

smooth unbiased estimator of P(lIO,x). Suppose there are r Monte Carlo draws from ,..(v) for an 

observation. Let v}i), j = 1,···, r be the draws for observation i. Define 

Conditional on Xi, 

E(f,(O,Xi)lxi) = J h,(v,x;,O),),(v)dv 

= P(lIO,xi) 

(2.7) 

and hence f,(9, Xi) is an conditionally unbiased simulator. McFadden's estimator 8M of 0 is derived 

from 

mineD - f(O»'W'W(D - f(O» , (2.8) 

2 Importance simulation technique has useful applications in Bayesian inference in econometrics. 
For such applications, see, for example, Geweke [1989]. 
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where 1(8) = (f'(8,xt},···,I'(8,xn»' and j'(8,x,) = (!t(8,x,),···,!L(8,x,» stacked with the 

simulated moments in (2.7). 

The total number of Monte Carlo draws from ,.(v) is nr. Instead of dividing the nr random 

draws into n independent groups with r draws in each group, it seems possible to use all the nr 

draws to construct simulated moments for each observation. Define 

1 nr 

In,I(8,xd = ;; 2: hi(Vj,x,,8). 
j=1 

(2.9) 

The simulator In,,(8,xd is apparently unbiased and has smaller variance than 1,(8,x,) in (2.7) for 

the estimation of the reponse probability P(l18, xd. With these simulated moments, a possible 

modification of McFadden's simulated method of moments can be 

mineD -In(8))'W'W(D - In(8» 
S 

(2.10) 

where 1~(8) = (f~(8,xd,···,/~(8,xn» and 1~(8,xd = (fn,1(8,xd,···,/n,L(8,x,» from (2.9). 

Since the number of random draws used in (2.9) is proportional to the sample size n, In,I(8,x,) is 

a consistent estimate of the response probability P(118,x,). The simulated moment formulation in 

(2.9) captures the idea of simulated frequency in Lerman and Manski [1981]. However, the number 

of draws in Lerman and Manski [1981] has no specific relation with sample size and the draws may 

not even be fixed as 8 varies. The estimation method in (2.10) differs from McFadden's method 

only in the formulation of simulated moment. The Monte Carlo draws and sample observations 

provide the same data base for estimation. The computation of In,1 in (2.9) will involve summation 

of much more terms than the computation of II in (2.7). However, In" is a more efficient estimate 

than I,. The reduction of variance in In" might provide more efficient estimate for 8. On the 

other hand, this modified method of simulated moments violates an "independence" condition in 

McFadden's formulation in that fn,I(9,z,) are statistically dependent across observations as the 

simulated moments In,,(8,x,) for each i contain the same set ofrandom numbers. Such"dependence 
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might render the estimator to be less efficient. The relative efficiency of these estimators will be 

investigated in subsequent sections. 
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3. Asymptotic Properties and Relative Efficiency 

To simplify notation, let us consider the case that r = 1, Le., one Monte Carlo draw for each 

observation. For observation i, let di = (diI,' .. , diL )' be the vector of choice indicators and Wi a 

K x L matrix of instrumental variables. Furthermore, let h( v,x, 9) = (hI( v, x, 9)"", hL( v, x, 9»'. 

To justify our asymptotic analysis, the following regularity conditions are assumed for our model: 

ASSUMPTION 1. 

1. The sample observations (di, Xi, Wi), i = 1,,,,, n are LLd. 

2. The parameter space e is a compact covex subset of a k dimensional Euclidean space and the 

true parameter vector 90 is in the interior of e. 

3. The choice probability vector P(9,x) is twice continuously differentiable in 9. 

4. P(9, x) and its first and second order derivatives in 9 are dominated by a vector of integrable 

functions G(x) which is independent with 9 such that E(lwG(x)1) < 00. 

5. The second moments of the instrumental variables in w exist and are finite. 

ASSUMPTION 2. 

1. The matrix of instruments W has rank K ~ k. 

2. E( w 8Pb~~ ,z) ) has full rank. 

3. E[w(P(90 ,x) - P(9,x»] = 0 only at 9 = 90 , 

ASSUMPTION 3. 

1. The random vector 11 is simulated independently with x and w. 

2. The simulated moment function h(v,x,9) is continuously twice differentiable in 9. 

3. h(v,x,9) is a conditionally unbiased estimator of the choice probabi~ty P(9,x) conditional on 

x and w, for each 9 in e. 

4. h( v, x, 9) and its first and second order derivatives in 9 are dominated by a vector of integrable 

functions H(v,x) which is independent with 9 such that E(lwH(v,x)1) < 00. 
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5. The second moment of wh(v,x,90 ) exists and is finite. 

The regularty conditions in Assumption 1 are basic regularity conditons for the discrete choice 

model. Assumption 2 are rank conditions and identification condition for 90 , These conditions 

are standard conditons for estimation with the conventional method of moments. Assumption 

3 are regularity conditions for the simulation design. Detailed discussion on such design can 

be found in McFadden [1989]. The domination conditions in Assumptions 1 and 3 guarantee 

that Lebesgue dominated convergence (LDe) theorem can be applied to interchange limiting, 

differentiation and integration operations. The domination conditions are also needed for uniform 

laws oflarge numbers to apply. The existence of second moments in Assumptions 1 and 3 are needed 

for central limit theorems to apply. Unbiased moment simulators are assumed in Assumption 3(3). 

This assumption can be relaxed to include appropriate asymptotically unbiased moment simulators 

with proper modification of our subsequent analysis 3. 

lin 
-W(D - fn(9» = - L wi(di - fn(9, Xi» 
n n i=1 

1 n n 

= 2" L L wi(di - h(Vj, Xi,9» 
n i=1 j=1 

(3.1) 

is a V-statistic (Serfling [1980]). Under our regularity conditions, the uniform law oflarge numbers 

for V-statistics in Proposition 1 of Appendix implies that 

1 n n 

2" L L wi(di - h(Vj,Xi,9» 2... E[w(P(90 ,x) - P(9, x»] 
n. . 

1=1 J=1 

uniformly in 9 e 9, where P(9,x) = (P(119,x), .. ·,P(LI9,x»'. Hence 

~(D - fn(9»'W'W(D - fn(9» 2...IIE[w(P(90 ,x) - P(9,x»1112 

n 

(3.2) 

(3.3) 

3 Asymptotic analysis with smoothing parameters can follow the analysis of semi parametric 
estimation in Ichimura and Lee [1988] and Lee [1989]. 

9 



uniformly in 9 E 9. Since P(9,x) is continuous in 9 by Assumption 1, the LDC theorem implies that 

E( wP(9, x)) is continuous in 9. Under the identification condition that E[w(P(90 ,x)- P(9, x»] = 0 

only at 9 = 90 in Assumption 2, the estimator Btl derived from (2.10) is consistent. 

By a Taylor series expansion, 

0= 8f~~tl)W'W(D - fn(Btl» 

= 8f~~0)W'W(D _ fn(90)) - {8f;9)w,w8';9~9) (3.4) 

-[8;:~~~) W'W(D - fn(9)), ... , 8;:~~:)W'W(D - fn(9»] }(Btl - ( 0 ) 

where 9 lies between 90 and Btl. Since 

and 

E (
8h(v,x,9)1 ) = 8E(h(v,x,9)lx) 

89' x,w 8fJ1 

_ 8P(9,x) 
- 89' 

the uniform law of large numbers for V-statistics implies that 

~~~ .8h(v;,Xi,9) ....!..E( 8P(9,x») 
2 L.J L.J WI 89' W 8fJ1 

n i=1 ;=1 

(3.5) 

(3.6) 

(3.7) 

uniformly in 9 E 9. Since E ( W 8PJ:::e») is continuous at 90 by the LDC theorem, and 9 is a 

consistent estimate of 90 , 

(3.8) 

Similarly, since 

(3.9) 

and 

E (82h(V, x,9)1 ) _ 82 P(9, x) 
89'89, x, w - 89'89, ' (3.10) 
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we have 

(3.11) 

which is finite. On the other hand, the asymptotic distribution of tn-W(D- In(60 )) can be derived 

from the central limit theorem for V-statistics in Serfling [1980] (see Proposition 2 in Appendix). 

Since 

the kernel associated with this V-statistic is 

where z = (w,x,d,v). The kernel t/J can be rewritten as 

Since 

and 

the central limit theorem for V-statistics implies that 

where 
ad = E{ [w(d - P(60 ,x» - E(w[h(v,x,60 ) - P(60 ,x)]lv)] 

. [w(d - P(60 ,x» - E(w[h(v,x,60 ) - P(60 ,x)Jlv)]'} 

= E{w(d - P(60 ,x»(d - P(60 ,x»'w'} 

+ E{ E(w[h(v,x,60 ) - P(60 , x)]lv)E(w[h(v,x, 6o) - P(60 ,x)]Iv)'}. 
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(3.15) 
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(3.17) 

(3.18) 



The latter equality in (3.18) follows because v is simulated independently with z and w. It follows 

from (3.4) and the above asymptotic results that 

(3.19) 

where 

Ed = {E(Wap~~'Z»'E(Wap~:'Z»}-1 

. E( ap(fJo,z»,O E( ap(fJo,Z»{E( ap(fJo,z»'E( ap(fJo,z»}-1 
w afJ' d w afJ' w afJ' W afJ' . 

(3.20) 

The asymptotic covariance matrix of the estimator 8d can be compared with the asymptotic 

covariance matrix of McFadden's estimator 8M. From McFadden [1989], we know that 

(3.21) 

where 

(3.22) 

and 
OM = E {wed - P(fJo,z»(d - P(fJo,z»'w'} 

(3.23) 
+ E{w[h(v,z,fJo) - P(fJo,z)][h(v,z,fJo) - P(fJo,z)]'w'}. 

By projection, 

E {E[w(h(v,z,fJo) - P(fJo,z»lv]E[w(h(v,z,fJo) - P(fJo,z»lv)'} 
(3.24) 

~ E {w(h(v,z,fJo) - P(fJo,z»(h(v, z,fJo ) - P(fJo·,z»'w'}. 

Hence, the estimator 8d from (2.10) is asymptotically efficient relative to McFadden's estimator 

8M form (2.8). 

The above analysis can be generalized to the case with r Monte Carlo draws for each obser-

vation. For each individual i, let vi,···, v~ be r draws. The results will follow by replacing the 
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function h(Vj,Zi,fJ) with ~ E:=t h(v!,zi,fJ) in the a.bove a.nalysis. For this general ca.se, the esti­

ma.tor 8d will be a.symptotica.lly N(fJo, ~Ed,r) where Ed,r is the ma.trix in (3.20) with Od repla.ced 

by the matrix Od,r: 

Od,r = E{w(d - P(fJo,z»(d - P(fJo,z»'w'} 

+!E {E[w(h(v,z,fJo) - P(fJo,z»lv]· E[w(h(v,z,fJo) - P(8o,z»lv]'}. 
r 

(3.25) 

The a.symptotic covaria.nce ma.trix of the correspo~ding McFa.dden's estima.tor will be ;EM,r where 

EM,r is the ma.trix in (3.22) with OM repla.ced by the ma.trix 

OM,r = E{w(d - P(8o, z»(d - P(8o,z»'w'} 

+ !E{w(h(v,z,8o) - P(8o,z»(h(v,z,9o) - P(8o,z»'w'}. 
r 

(3.26) 

Comparing (3.25) with (3.26), the estima.tor 8d is a.symptotica.lly efficient rela.tive to the estima.tor 

8M . 
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4. Maximum Simulated Likelihood Estimation 

In the method of simulated moments of McFadden [1989], the instrumental variables w are 

independent with the Monte Carlo draws for the simulated moments. As implied by the method of 

maximum likelihood for discrete reponse models, the optimal instrument vector is w = 8InP;~(J. ,x) • 

In McFadden's method, to approximate the optimal instrument with simulated moments, the 

random numbers used to compute 1(9) in (2.8) are independent of any simulation used in the 

construction of the instruments. Such design is needed in McFaddens' method to gua.ra.ntee tha.t 

the moment equations have zero mean. For our modified method, the simula.ted moments In(9,x) 

are consistent for each observation. Therefore it might be possible to use the same Monte Carlo 

dra.ws to compute both the simulated moments and the instrumental array. As the optimal moment 

equations a.re derived as the first order conditions for maximizing the likelihood function, it will be 

convenient to consider the likelihood method directly. In this section, we will analyze asymptotic 

properties of a maximum simulated likelihood method for the discrete choice model. 

The log likelihood function for our discrete choice model is 

n L 

£(9) = L L d/i In P(119, Xi). (4.1) 
i=1 /=1 

By replacing the response probabilities with simulated moments, we are working with a pseudo 

likelihood function. Without loss of generality, consider the simulated moments in (2.9) with r = 1. 

The log pseudo likelihood function is 

n L 

L(8) = LLdldn/n,/(8,Xi). (4.2) 
i=1 1=1 

This estimation method can be regarded as a generalization of the simulated maximum likelihood 

method in Pakes [1986] (see also Pakes and Pollard [1989]) to disaggregated data with smooth 

simulator. For aggregated data, because the exogenous variables vector X is constant across ob-

servation, In,l will simply be a simulated smooth probability estimator and -: ~?=1 d/i will be th~ 
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observed sample frequency for the al~ernative 14. This simulated likelihood approach may have 

computational advantage over the method of simulated moments in (2.10) when the number of 

choice alternatives L is large. For the method of simulated moments, for each observation, the 

simulated moments fn,,(8, Xi) need to be computed for all the alternatives I, 1 = 1,,,', L. For the 

simulated likelihood method, only the simulated moment corresponding to the chosen alternative 

needs to be computed for each observation. This estimation method will be of particular interest 

for estimation of panel data models where the total number of choice patterns over time can be 

quite large s. To justify our subsequent analysis, in addition to our assumptions 1 and 3, we assume 

that 

ASSUMPTION 4. 

1. The support X of X is a compact set. 

2. The choice probability vector P(8,x) is continuous in (8,x) E e x X. 

3. The conditional second moments of h(v,x,8o ) and 8h(~,;,9.) conditional on x exist and are 

uniformly bounded on X. 

ASSUMPTION 5. 

1. 80 is the unique minimizer of the function EeEf=1 P(l18o,x) In P(118, x)). 

2. The matrix E [I:f=l P(l1'8o , x) 810 Pb~9.,z-) 810 PJ~9. ,Z-)] is nonsingular. 

Assumption 4 guarantees that the choice probabilities P(118,x), 1 = 1, .. ·,L are strictly 

bounded away from zero on 9 x X which is needed to establish uniform convergence properties of 

the derivatives oflnfn,,(8,x) with 8. The moment conditions are also needed for similar purpose. 

4 In Pakes [1986], the proposed simulated moment estimator is a simple frequency estimator. 
S The difficulty of applying the method of simulated moments to panel data model has been 

pointed out in Keane [1989]. An possible alternative method of simulated moments have been 
suggested in Keane's article. McFadden [1989] has pointed out that for such models the use of 
simple frequency simulator instead of smooth simulator for the method of simulated moments may 
be more desirable. However, such method will involve nonsmooth function for minimization. 
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Assumption 5 a.re identification and rank con<litions for the classical maximum likelihood estimation 

of discrete choice model. The identification condition can usually be justified with some other 

regularity conditions on choice probabilities via Jensen's inequality. 

Let 8L denote the maximum simulated likelihood estimator. The asymptotic properties of 

consistency and asymptotic normality depend crucially on asymptotic properties of the simulated 

moments. Since the support X of x and the pa.rameter space e of 9 a.re compact sets, the uniform 

law of large numbers in Amemiya [1985] implies that 

sup IIf,,(9,x) - P(9,x)1I ...!.... o. (4.3) 
8xX 

Since P(9, x) is bounded away from zero on e x X by Assumption 4, it follows from (4.3) that 

1 1 " L 
sup I-L(9) - - LLd,dnP(119,Xi)l...!.... o. 
8xX n n i=1 1=1 

(4.4) 

The uniform law of large numbers in Amemiya [1985] implies also that 

(4.5) 

Since ~L(9) converges in probability uniformly to the limit function E(E~=1 P(l190 , x) In P(119, x» 

on e and 90 is the unique minimizer of the limit function by Assumption 5, 8L is consistent. 

The estimator 8L satisfies the first order condition: 

(4.6) 

By a Taylor expansion, 

(4.7) 

where j lies between 6L and 90 • By the uniform law of la.rge numbers in Amemiya [1985], 

11
8f",I(9,x) _ 8P(119,x)ll...!.... 0 

:!~ 89 89 . 
(4.8) 
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and 

11
1J2fn,/(8,x) 82P(/18,x)11 p 

:~~ 8888' - 8888' -+ 0 (4.9) 

for all I = 1,··· ,L. It follows that 

8ln fn,/(8,x) _ 1 8fnA8, x) 
88 - fn,/(8,x) 88 

p 8ln P(/18, x) 
-+ 

( 4.10) 

88 
and 

82 In fnA 8, x) 1 82 fn,/( 8, x) 
= 8888' fn,t{8,x) 888fJ' 

p '82 InP(/18,x) 
-+ 

8888' 

1 8fn,t{8, x) 8fn,/(8, x) 
f~,,( 8 , x) 88 88' 

(4.11) 

uniformly in (8,x) E ex X. Since ~ I:?:.1 I:f::l dli8::8' InP(l180,x) converges in probability to 

E( d, 8::8' In P(l180, x» and 8 is a consistent estimate of 80 , (4.11) implies that 

! ~~d .82 Infn,/(8,xi) 2.. E{~d 82 InP(/180,x)} 
n ~ L....J It 8fJ8fJ' L....J 1 8fJ8fJ' . 

,=1 1=1 1=1 

It is well known that 

E{~d 82 InP(/lfJo,x)} = -E[~ P(/18 )8InP(llfJo,x)8InP(llfJo,x)] 
L....J 1 888fJ' L....J 0, x 8fJ 8fJ'· 
1=1 1=1 

( 4.12) 

(4.13) 

The first order term in (4.7) can be analyzed with Taylor series expansion. By a Taylor 

(4.14) 

where 

L = 2.... ~~d. 1 [8f n,/(80,Xi ) _ 8InP(/180,xi )f (8 .)] 
n t= L....J L....J It P(/18.) 8fJ 8fJ n,l 0, x, 

yn i=1 1=1 o,x, 
( 4.15) 

and 

R =_1 ~~d.[_~(8fn,/(80'Xi)_8P(/lfJo'Xi»)(f (fJ x·)-P(/lfJ x·» 
n .;n ~ L....J It j2 (i) 8fJ 88 n,l 0, 1 0, 1 

1=1 '=1 n,l 

1 8f n,/( i) 2] 
+ j~.t<i) 88 (fn,/(fJo,Xi) - P(/180,Xi» 

( 4.16) 
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where in,l(i) lies between fn,I(80,Zi) and P(1180,zi), and 8·J"a~(i) lies between 8 J·,'b:·,Zi) and 

8P(lb~·'Zi). Since P(80 ,z) is bounded away from zero on X, (4.3) implies that in,l(i) is bounded 

away from zero on X in probability. Hence 

IIRnll =Op(I)' In t t dIi1l8fn,'~:0'Zi) - 8P(l~;'Zi) 1I·lfn,t{80,Zi) - P(1180,zdl 
,=1 1=1 

1 n L 2 

+Op(I)· ynLLd,i\fn,,(80,Zi)-P(1180,zi)\' 
i=1 1=1 

( 4.17) 

Since X is compact, and var(h,(v,z,80)lz) and var(:,h,(v,z,80)lz), I = 1,"',L are uniformly 

bounded on X by Assumption 4, 

and 

1 
supE«(fn,I(80,z) - P(1180,z»2Iz) = - supvar(hl(v,z,80)lz) 
x n x 

1 
= 0(-) 

n 

E«
8f n ,I(80 ,z) 8P(1180,z»21) _ 1 (8h/(v,z,80)1 ) 

(4.18) 

sUx
P 88. - 88. z -;; suxpvar 88. z 

J J J (4.19) 

= O(.!.) 
n 

for each component 8j of 8. By Markov inequality and (4.18), 

(
In L 2 ) 

P yn ~t;tdlil!n,'(80'Zi) - P(1180,zi)1 > f: 

yn~ 2 
~ -f: L.J E(fn,I(80,z) - P(1180,z» 

1=1 (4.20) 

= yn tE {E[(fn,,(80,z) - P(1180,z»2Iz]} 
f: 1=1 

1 
= O(yn)' 

Similarly, for each component 8j of 8, by Markov and Cauchy inequalities 

P (_1 ~ ~ d '1 8fn,,(80,Zi) _ 8P(1180,zi)I'lf (8 .) _ P(118 ')1» ljiL.JL.J" 88. 88. n,1 o,Z, o,Z, f: 
V" i=1 1=1 J J 

L 
< yn ~ E(1 8fn,,(80,z) _ 8P(1180,z)I'lf (8 ) _ P(118 )1) 
- L.J 88. 88. n,1 o,Z o,z. 

f: 1=1 J J (4.21) 

< yn ~ {E(8 fn ,,(80,Z) _ 8P(1180,z»2 . E( ~ (8 ) _ P(118 »2} t 
- L.J 88. 88. In,1 o,Z o,Z 

f: 1=1 J J 

1 
= O(yn)' 
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Equations (4.17), (4.20) and (4.21) imply that Rn 2.... o. 

It remains to analyze the first two terms in (4.14). Define a kernel 

where Z = (x,d,v). We have 

_1 ~~d.olnP(1180,xi) L __ 1_~~~( .. ) 
~ ~ ~ " £:Ill + n - ~ ~ ~ 'I' Z" z) . 

y n . 1 1 uu ny n . 
,= =1 i=1 )=1 

( 4.23) 

The asymptotic distribution of (4.23) can be derived from the central limit theorem for V-statistics. 

As h,(Vj,Xi,80) is a conditional unbiased estimate of P(1180,xi), 

L 

E("'" ,)1,) - "'d .0InP(1180,xi) 
'l'\z" z) Z, - ~ " 08 

1=1 

and 
L 

E("" . ')1 .) - '" E {Ohl( Vi, x, ( 0 ) _ oln P(1180, x)h (. n)I'} 'I'\z)'z, Z, - ~ 08 08 1 V"X,Uo V, . 
1=1 

The central limit theorem for V-statistics implies that 

where 
L n =E['" P(118 )0InP(1180,x) 0InP(1180,x)] 

L ~ o,x 08 08' 
1=1 

(4.24) 

( 4.25) 

(4.26) 

L 
+ E{ LE[Ohl(~:,80) _ 0InP~~8o,x) h,(v,x,80)lv] (4.27) 

1=1 

L 
. LE[Ohl(~,80) _ 0Inp~80,x) h,(v,x,80)lv],}. 

1=1 . 

Finally, (4.7), (4.12), (4.14), (4.23) and (4.26) imply that 

(4.28) 
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where 

(4.29) 

and 

( 4.30) 

The classical maximum likelihood estimator from (4.1) is asymptotically efficient with asymptotic 

covariance matrix Em. Since 

L 
~ - ~ ~ E{ ,,",E[8h,(v,x,9o ) _ 8InP(l19o ,x)h ( 9 )1 ] 
~L-~m+~m L- 89 89 IV,X, ° v 

1=1 

L 
. ,,",E[8h,(v,x,9o ) _ 8InP(119o ,x)h ( 9 )1 ]'}~ 
L- 89 89 I v,x, 0 V ~m 
1=1 

(4.31) 

the maximum simulated likelihood estimator 6L is asymptotically inefficient as the second term in 

(4.31) does not vanish in general as sample size increases. This term reflects the error introduced 

in the simulated likelihood function. Comparing the asymptotic distribution of 6L in (4.28) with 

the asymptotic distribution of 6d with the optimal instrument Wi = 8InP~(:.'Zi) in (3.19) (as if 

it were completely observable), the difference appears only in the matrices nL and nd. With the 

optimal instrument, nd in (3.18) becomes 

( 4.32) 

Since 

(4.33) 
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the component Ef=l E(8h,(~,:,9.) - 8P(~:.,z)lv) may be interpreted as the additional error intra-

duced in the simulation of instruments. 

Generalization of the above analysis to the case with r Monte· Carlo draws for each ob­
• 

servation is straightforward. The results will follow by replacing the function h(vj,xj,8) with· 

~ E:=1 h(v!,xj,8) in the analysis. With r Monte Carlo draws for each observation, the estimator 

9L will be asymptotically N(8o, ~lh,r) where 

~ _ ~ !~ E{ ~E[8hl(v,x,8o) _ 8InP(118o,x)h ( 8 )1 ] 
':"L,r-.:..m+r':"m L..J 88 88 IV,X, ° v 

1=1 

. ~E[8hl(v,x,8o) _ 8InP(118o,x)h ( 8 )1 ]'}~ 
L..J 88 88 1 v,X, 0 V ':"m 

1=1 

(4.34) 
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5. Simulators with Adding Up Prope~y 

As we have pointed out in the previous section that the asymptotic covariance of the maximum 

simulated likelihood estimator ih from (4.1) differs from the asymptotic covariance ofthe modified • 
simulated moment estimator ;d with instruments Wi = BID ~(:.'Zj) in that an additional error 

component I:f=l E( Bhl(~:,8.) - BP(~:.,z) Iv) has been introduced. However, this additional error 

can vanish if I:f=l h,( v, x, ( 0 ) = 1. Functions h, with this property imply that the simulators 

fn,I(9,x) from (2.9) have an adding up property that I:f=l fn.,(9,x) = 1. This adding up property 

is intuitively desirable as fn.,(9, x) are estimates of probabilities. Eventhought this adding up 

property does not seem to play an explicit role in McFadden's method of simulated moments, 

it has an important implication for our method of simulated likelihood estimation. Maximum 

simulated likelihood estimators derived from simulators with adding up property have the same 

limiting distribution of the estimator derived from the modified method of simulated moments 

with instruments Wi = BID ~(:. ,Zj) as if they were completely observable. Simulated moment 

estimators with adding up property have been introduced in McFadden [1989] and Stern [1987]. 

Stern's simulated moment estimator is appealing for models with error components. 

Simulators derived from the importance sampling technique, in general, may not have the 

adding up property since h, is simply ratios of densities. Adding up property can always be 

satisfied by normalizing the orignial simulators. Adding up property is satisfied for the normalized 

moment simulators fn.,(9,x)/I:f=lfn,I(9,x). This suggests the maximum simulated likelihood 

estimation with the following function : 

(5.1) 

Let 8L be the maximum simulated likelihood estimator derived from (5.1). Consistency of 8L is 

apparent from arguments in the previous section. Asymptotic distribution of 8L remains to be 
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investigated. By a Taylor expansion, -

'-(8 -9 )=_ !" "d.tJ Infn,I(9,Xi)_ n.L.j=1fn,j{9,Xi) 
{ 

n (L 2 - ()21 ~L -) }-1 
yn LOn ~ L..J h a9a9' a9a9' 

1=1 1=1 

. _1 t (t d/i aln fnA90, Xi) _ aln I:7=1 fn,j(90, Xi)) . 
..;n i=1 1=1 a9 a9 

It follows from (4.11) that 

a 2 ln I:f-1 fn,I(9,x) 2.. a 2 ln I:f-1 P(119,x) 
a9a9' a9a9' 

=0 

uniformly in (9,x) E 0 x X. Hence 

The remaining term in (5.2) can be analyzed with a similar expansion in (4.14) and (4.23): 

_1 t (tdlialnfn,,(90,Xi) _ OlnI:7=1fn,j(90 ,Xi)) 

..;n i=1 1=1 a9 a9 
1 n n 

= n En ~ ~ 4>( Zi, Zj) + 0,(1) 
y" 1=1 )=1 

where 

It is apparent that 

and 
L 

(
,M )1) ,,{alnp(1190,Xi) 1 } E 'I'\Zj, Zi Zi = - L..J E a9 h,( Vi, X, 90) Vi • 

1=1 

Therefore 
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(5.6) 

(5.7) 



where l:m is the matrix in (4.30) and Od is the matrix in (4.32). This estimator has the same 

limiting distribution as the estimator derived from the modified method of simulated momemts 

with instruments Wi = BIn P~~'. ,Zi) as if they were completely observable. Adding up property has 

indeed an interesting implication on the asymptotic property of our simulated likelihood estimators. 
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6. Dependent and Independent Simulated Moments 

The estimator Bd derived from the method of simulated moments with In,,(IJ,Xi) in (2.9) is 

not asymptotically efficient relative to the conventional method of moment estimator Be derived 

from (2.3). The conventional moment estimator is asymptotically normal and 

(6.1) 

where 

E, = {E (w{JP~;.,z»)' E (w{JP~,Z») }-1 
. E ( lJP(lJo,X»)'n E ( lJP(lJo,x») {E ( lJP(IJO,x»)'E ( lJP(lJo, x») }-l 

w lJlJ' e W lJlJ' W lJlJ' W lJlJ' 

(6.2) 

and 

ne = E{w(d - P(lJo,x»(d - P(lJo,x)'w'} 

(see McFadden [1989]). The estimator Bd is not asymptotically efficient because the second term 

of nd in (3.18) (or in (3.25) with r draws) does not vanish asymptotically. The loss of efficiency is 

due to dependency of In(lJ, Xi) across observation. 

To clarify this issue, consider a different simulator constructed with n independent Monte 

Carlo draws for each observation. The total number of random draws from 'Y( v) is n2 • Let 

V~i), j = 1",., n be the n draws for observation i. Define 

(6.3) 

Let 8[ denote the estimator derived from 

min(D - I:(IJ»'W'W(D - I:(IJ». , - (6.4) 
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Since 

(6.5) 

the uniform law of large numbers in Proposition 3 of the appendix implies that 

1 11 
-W(D - f~(8)) --+ E[w(P(80,z) - P(8,z))) 
n 

(6.6) 

uniformly in 8 E 9. Under the identification condition. of Assumption 2, (h is consistent. Similarly, 

Proposition 3 implies that for any consistent estimate j of 8o • 

(6.7) 

and 

(6.8) 

On the other hand, the central limit theorem in Proposition 4 of the appendixJmplies that 

)nW(D - f~(80)) ~ N(O, E[w(d - P(80,z))(d - P(80,z))'w')). (6.9) 

Hence, it follows from a Taylor series expansion similar to (3.4) that 

(6.10) 

The estimator 6[ is asymptotically efficient as the conventional moment estimator 6e • This esti-

mator 6[ is asymptotically efficient relative to 6,j. However, the efficiency gain is obtained at the 

expense of taking much larger number of Monte Carlo draws. 

Similar conclusions hold for the maximum simulated likelihood estimation with the simulated 

moments in (6.3). Proposition 4 implies that the corresponding term similar to Ln in (4.15) will 

now converge in distribution to zero and hence converge in probability to zero. The corresponding 

simul~ted likelihood estimator is asymptotically efficient. 
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7. Some Monie Carlo Simulations 

In this section, we report some limited Monte Carlo results on the finite sample performance 

of our estimators. We have experimented with two discrete choice models. The first model is a 

binary choice model and the second model is a dynamic discrete choice panel data model. 

The binary choice model in the simulation is specified as 

y* = lit + 1hz + € (7.1) 

where y* is a latent dependent variable which sign determines the observed indicator d as d = 1 

if y* > 0 and d = 0, otherwise. The disturbance € is generated by a standard normal variable 

N(O, 1). The exogenous variable z is a truncated normal N(O, 1) variable with support on· 

[-2, 2]. The true parameters in the simulation are /31 = 0 and /32 = 1. This model is a simple 

probit model. As the model can easily be estimated by the classical maximum likelihood method, 

the probit MLE provides the ideal estimator in comparison with estimators derived from methods 

of simulated moments. Throught the experiment, simulated moments are derived from importance 

sampling technique. Random numbers for the construction of simulated moments are drawn from 

the standard exponential distribution. The exponential distribution is desirable for models with 

normal disturbances because it satisfies easily the domination condition in Assumption 3. 

Table 1 reports the finite sample performance of the probit MLE, the maximum simulated 

likelihood estimates (MSL) and the maximum simulated likelihood estimates based on normalized 

simulated moments (Normalized MSL). Data of various sample sizes, namely 25, 50, 100 and 200, 

are considered. Conjugate gradient routine in Press et al [1986], pp.305-306, is used to implement 

the maximum simulated likelihood estimation. Table 1 reports summary statistics of mean (Mean), 

standard deviation (SD) and root mean square error (RMSE) of estimates based on 200 repetitions 

for each case. The first column block reports the probit MLE. The second and third column blocks 

report the MSL estimates with one Monte Carlo draw (r=l) and two Monte Carlo draws (r=2) for 
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each observation respectively. The estimate_s of th~ Normalized MSL reported in the last column 

block are based on r=1. Comparing the estimates with the true parameters, all the estimates of the 

intercept term f31 have rather small biases. The biases of the estimates of f32 are more severe but 

are decreasing as sample size increases. The standard errors of all the estimates are also decreasing 

as sample size increases. For the estimation of the intercept term, there are not much substantial 

differences across the different estimators. However, except for the very small sample of size 25, 

there is a ranking across the different estimators of the regression coefficient f32. In most cases, the 

probit MLE have the smallest biases and variances. The second best estimation procedure is the 

Normalized MSL and the worse one is the MSL with r=1. As expected, MSL estimates with more 

random draws (r=2) are better than MSL estimates with one random draw (r=1). The interesting 

observation from this simulation is that the Normalized SML performs even better than the MSL 

procedure with r=2. It performs also favourably in comparison with the probit MLE estimates. As 

a measure of relative efficiency (RE) of a simulation estimator in comparison with the probit MLE, 

we can consider the ratio of the RMSE of a probit estimator over the RMSE of the corresponding 

simulation estimator. For the sample size 100, the RE of the MSL (r=1) of f32 is about 69%. It 

increases to 75% for the MSL with r=2. For the sample size 200, the efficiency of the MSL (r=1) 

is only 62% and the efficiency of the MSL (r=2) is 72%. With both sample sizes, the efficiency 

of the Normalized MSL is 97%. It is interesting to note that for very small sample of size 25 the 

several simulation estimators may perform well as the probit MLE. 

Table 2 reports simulation results on estimates derived from various methods of simulated 

moments. For the simple binary choice model, natural instrumental variables are Wi = (1,x;). 

With these instruments, McFadden's estimator from (2.8) can be derived from the solution of the 

equations: 

n 

L wHdi - h(9,Xi)) = O. (7.2) 
i=1 
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Estimators for the modified method of simulated moments can be derived with the proper simulated 

moment of P{118, x) replacing 11 in (7.2). Table 2 reports the estimates from McFadden's method 

of simulated moments (McFadden's SM), the modified method with dependent simulated moments 

(SM with dep. moments) as well as the method with independent simulated moments (SM with 

indep. moments). Probit MLE are again the ideal estimates for comparison. For McFadden's 

method, we have experimented with simulated moments based on different numbers of draws, 

namely r=l, 10 and 50. As expected, as sample size increases from 100 to 200, biases and variances 

of the various SM estimators decrease. As the number of draws T increases, the variances of 

McFadden's SM estimator as well as their corresponding RMSE decrease. With one random draw 

for each observation, i.e., r=l, the relative efficiency of McFadden's SM estimator for /32 with 

sample size 100 is only 21% and it increases to 24% with sample size 200. The relative efficiency 

of the SM estimator of /32 based on dependent moment is 72% with sample size 100 and it is 63% 

with sample size 200. Relative efficiency of McFadden's SM estimator increases as the number of 

draws T increases. The SM estimator based on dependent moments with T = 1 is still more efficient 

than McFadden's SM estimator with T = 10. On the other hand with T = 50, McFadden's SM 

estimator becomes much more efficient. The SM estimtor based on independent moments with 

T = N is compared favourably with the probit MLE. Comparing the estimates across Tables 1 and 

2, the MSL with r=1 and the SM with dependent moments are compatible. The Normalized MSL 

is compatible with the SM estimator with independent moments. 

In Table 3, we report some Monte Carlo results on the estimation of a dynamic discrete choice 

panel data model. The model is specified as follows: 

(7.3) 

and 

Uit = PUi,t-I + lit, i = 1,··· ,n; t = 1,· .. , T (7.4) 

29 



where di •t is the observa.ble dichotomous in~ca.tor of the la.tent varia.ble 'it. The disturbances fit 

are LLd normal N(O,ul). In order to normalize the variance of u to be unity, q2 is set to equal to 

1 - p2. To ca.pture possible correla.tion of the regressor Xit over time, Xit is specified to possess ~ 

error component structure: 

(7.5) 

where Zit a.re LLd. trunca.ted normal N(O, 1) varia.bles with support [-2, 2] and Wi are independent 

uniform varia.tes with support on [-!, !]. The variance of x is a.bout 1 and its correla.tion coefficient 

over time is a.bout 0.5. To start the dynamic process, the initial condition is specified as di.O = 0 

for all i. The true para.meters in the model a.re f3 = 1.0, .x = 0.2 a.nd p = 0.4. With T time 

periods, the product of T independent univaria.te standard exponential densities is chosen as the 

T-dimensional multivaria.te importance sampling density for this model. Ta.ble 3 reports MSL 

estima.tes with dependent moments and MSL estima.tes with independent moments. The estima.tes 

tend to underestima.te the regression coefficient f3 and the serial correla.tion coefficient p but tend 

to overestima.te the dyna.mic coefficient .x of this model. As sample size increases, the biases of 

the MSL tend to decrease a.nd their variances and RMSE decrease monotonically. With a.dding up 

property, the Normalized MSL estima.tes ha.ve smaller biases as well as smaller varia.nces tha.n the 

MSL estima.tes with the same sample size. The biases of the Normalized MSL for the regression 

coefficient f3 is remarkly small. The MSL with independent moments do not necessarily ha.ve smaller 

biases as compared with the MSL with dependent moments, however their variances a.re smaller. 

The MSL with independent moments ha.ve smaller RMSE than the MSL with dependent moments 

for the da.ta. with the sa.me sample size. The RMSE of the MSL with independent moments are also 

smaller than the RMSE ofthe Normalized MSL except for the estima.tion of p. The a.bove estima.tes 

are derived for panel da.ta. with 4 time periods. With longer panel T=6, the MSL estimates have 

smaller variances but la.rger biases than the corresponding MSL estima.tes with shorter panel T=4. 
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For panel data with T periods and N _cross sectional units, the total number of sample points is 

NT. We might expect that for longer panels the variances of the estimates would decrease as the 

sample sizes have increased. However, the number of different choice patterns in longer panels is 

much larger than the number of choice patterns in shorter panels. For T=4, the total number 

of choice patterns for the binary choice dynamic model is 16 but the number increases to 64 for 

T=6. With many choice alternatives, the choice probabilities are in general more difficult to be 

estimated. These features might explain the above Monte Carlo findings. Anyhow, in terms of 

RMSE, longer panel data is still preferable to short panel data. 

The above Monte Carlo simulations are performed by a Cray-XMP machine in Minnesota 

Supercomputer Institute. While different machines have different functions and computing speed, 

it may still be worthy to report the CPU times in computing some of the estimates. For the 

estimation ofthe panel data model with N =100 and T=4, it took 204.44 seconds of CPU to compute 

the 200 MSL estimates with dependent moments reported in Table 3; 398.83 seconds to compute 

the MSL estimates with independent moments and 2441.73 seconds to compute the Normalized 

MSL estimates 6. These computing times do not include time cost to draw random numbers for the 

construction of simulated moments. The computational cost ofthe MSL with independent moments 

is about 2 times more in this case because it involves the computation of N2 different numbers 

of importance sampling density functions instead of just N different importance densities for the 

case with dependent moments. The CPU time cost of the 200 Normalized MSL estimates is almost 

12 times more expensive than the computation of the MSL estimates with dependent moments. 

For the MSL estimates with dependent moments, only a single choice probability needs to be 

computed for each cross sectional unit while for the Normalized MSL, all 2T choice probabilities 

need to be computed for normalization purpose as adding up property does not hold for the 

6 Starting initial estimates for iteration are set at (0,0,0). We have experimented with initial 
estimates set at the true parameter vector. Convergence with the latter estimates are only sightly 
faster. 
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original simulators. With 200 cross sectional units, the CPU time for the computation of 200 

MSL estimates with dependent moments increases to 646.01 seconds which is about 3 times more 

than the computation of the MSL with 100 units. McFadden's methods of simulated moments use 

independent moments and therefore are similar in the MSL estimation with independent moments 

in this aspect. The number of random draws r in McFadden's method does not need to tie with 

sample size. With M=50, the computation time of 200 MSL estimates with independent moments 

for the model with N=100 and T=4 is 220.21 seconds and it reduces to 148.30 seconds when 

M=30. In this example, the computation cost with M=50 is larger than the cost of the MSL with 

dependent moments but its cost is 27.5% less when M=30 7. 

7 We note that the computational cost of McFadden's method of simulated moments depends 
on the number of moments used in the estimation. For the above comparison, it corresponds 
essentially to the use of a single moment equation. 
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Table 1. 

Binary Choice Model: Maximum Simulated Likelihood and Probit Estimates 

True parameters: i31 = 0, i32 = 1 

Probit MLE MSL (r=l) MSL (r=2) Normalized MSL 

N Mean SD RMSE Mean SD RMSE RE ~ean SD RMSE RE Mean SD RMSE RE 

25 i31 0.0134 .3098 .3038 0.0072 .2970 .2911 1.04 0.0171 .3281 .3219 .94 0.0138 .3188 .3127 .97 
i32 1.2449 .6956 .7242 1.1809.7342 .7418 .98 1.2230 .7211 .7409 .98 1.2519 .6780 .7105 1.02 

50 i31 -0.0020 .2276 .2253 -0.0089 .2402 .2380 .. 95 -0.0003 .2313 .2290 .98 0.0039 .2263 .2241 1.01 
i32 1.0928 .3889 .3960 1.1341 .5609 .5712 .69 1.0844 .4525 .4558 .87 1.0992 .3967 .4050 .98 

100 i31 -0.0150 .1400 .1401 -0.0144 .1400 .1400 1.00 -0.0136 .1419 .1418 .99 -0.0142 .1401 .1401 1.00 
i32 1.0338 .2134 .2150 1.0443 .3099 .3115 .69 1.0470 .2846 .2870 .75 1.0371 .2189 .2209 .97 

200 i31 -0.0001 .0993 .0991 -0.0010 .1021 .1018 .97 0.0004 .1020 .1017 .97 0.0006 .0999 .0997 .99 
i32 1.0069 .1469 .1467 1.0254 .2356 .2364 .62 1.0186 .2035 .2038 .72 1.0080 .1509 .1507 .97 

Table 2. 

Binary Choice Model: Methods of Simulated Moments and Probit MLE 

True parameters: i31 = 0, i32 = 1 

Sample Size N=100 Sample Size N =200 

Method Mean SD RMSE RE Mean SD RMSE RE 

Probit ML i31 -0.0150 .1400 .1401 1.00 -0.0001 .0993 .0991 1.00 
i32 1.0338 .2134 .2150 1.00 1.0069 .1469 .1467 1.00 

McFadden's SM r=l i31 -0.0218 .2019 .2021 .69 0.0014 .1582 .1578 .63 
i32 1.1565 1.0319 1.0386 .21 1.0917 .6177 .6229 .24 

r=10 i31 -0.0116 .1831 .1826 .77 0.0120 .1352 .1354 .73 
f32 1.0635 .4104 .4133 .52 1.0575 .3172 .3216 .46 

r=50 i31 -0.0128 .1451 .1449 .97 0.0003 .1023 .1020 .97 
i32 1.0377 .2367 .2385 .90 1.0078 .1586 .1584 .93 

SM with indep. moments r=N i31 -0.0163 .1393 .1396 1.00 -0.0010 .0990 .0988 1.00 
i32 1.0345 .2207 .. 2223 .97 1.0061 .1487 .1485 .99 

SM with dep. moments r=l i31 0.0098 .1779 .1773 .79 0.0088 .1203 .1203 .82 
i32 1.0339 .2980 .2984 .72 1.0248 .2319 .2326 .63 
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Table 3. 

Panel Data Model and Maximum Simulated Likelihood Estimation 

True parameters: f3 = 1, ~ = 0.2, p = 0.4 

Method T N r f3 ~ p 

Mean SD RMSE Mean SD RMSE Mean SD RMSE 

MSL(dep. moments) 4 50 1 .9147 .1948 .2109 .2715 .2680 .2748 .2757 .2478 .2750 

4 100 1 .9436 .1521 .1615 .2460 .1955 .1999 .3138 .1853 .2035 

4 200 1 .9687 .1158 .1197 .2496 .1333 .1419 .3243 .1263 .1470 

Normalized MSL 4 100 1 1.0006 .1185 .1179 .2229 .1645 .1653 .3549 .1469 .1530 

MSL(indep. moments) 4 100 N .9481 .0875 .1014 .2548 .1404 .1501 .2751 .1182 .1716 

MSL(dep. moments) 6 100 1 .9009 .1124 .1494 .2463 .1435 .1501 .2591 .1307 .1917 
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8. Conclusion 

In this article, we have considered a modified method of simulated moments for the estimation 

of discrete choice models. Similar to McFadden's method of simulated moments, excessive number 

of Monte Carlo draws are unnecessary for the simulation estimator of the parameters in the model 

to be consistent asymptotically normal. As in McFadden's simulation design, for each observation, 

only one or a few random numbers from a specific distribution will be drawn. It differs from 

McFadden's method only in the way of constructing simulated moments with the generated random 

numbers. As the random draws are exchangeable across observation, all of them can be used 

in the construction of simulated moments for each observation. Such simulated moments will 

involve summation of much more terms than McFadden's simulated moments. The computational 

cost will be more expensive but the simulation estimator of the parameters is asymptotically 

efficient relative to McFadden's estimator. This design can easily be adapted to other estimation 

methods without restricting our attention to the selection of moment equations. One of such other 

methods that have been considered in this article is a maximum simulated likelihood method. 

The maximum simulated likelihood estimator is shown to be consistent asymptotically normal. 

Adding up property of probability simulator plays an interesting role in the maximum simulated 

likelihood estimation. With adding up property, the maximum simulated likelihood estimator is 

asymptotically equivalent to the estimator derived from the modified method of simulated moments 

with optimum instruments suggested from the classical maximum likelihood method as if they were 

completely observable. The maximum simulated likelihood method may be of particular interest for 

panel data models where the total number of choice patterns over time can be large. These proposed 

estimation methods can also be regarded as generalizations of the simulation estimation methods 

in Pakes [1986] (Pakes and Pollard [1989]) to dis aggregated data. It differs from the Monte Carlo 

integration approach in Lerman and Manski [1981] in two important aspects. As in McFadden's 
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approach, our estimation method has emphasized on estimation of unknown parameters instead 

of choice probabilities and the total number of Monte Carlo draws does not need to be excessive 

large. As the number of random draws for each observation is fixed, the derived estimators are in 

general not statistically efficient. Statistical efficient estimators can be derived only at the expense 

of much more Monte Carlo draws. Our estimation methods will be useful if excessive number of 

Monte Carlo draws is impractical or undesirable. 

In the article, we have considered only smooth simulators. Statistical analysis with such 

simulators is much simpler than nonsmooth simulators. However, with the recent development 

of empirical process theory in Pakes and Pollard [1989] for simulators and U-statistics empirical 

process theory in Nolan and Pollard [1987,1988], we expect that our method could be generalized to 

cover nonsmooth estimators. Such possible generalization will be investigated in separate articles. 

We expect also that our methods can be generalized to the estimation of limited dependent variable 

models. 
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Appendix 

Proposition 1. (A Uniform Law of Large Numbers for V-statistics) 

Let {Yi} be a random sample. Let g(Yil' Yi2' (J) be a measurable function of (Yi p Yi2) for each 

(J E 9, which is a compact subset of a Euclidean space, and is a continuous function of (J E 9 for 

uniformly in (J E 9. 

PROOF: A law of large number for U-statistics is available in Serfling ([1980], p.206). It states 

that for any kernel h, if Elh(Yb Y2)1 < 00, the associated U-statistic Un with kernel h will converge 

in probability to E(h(yt, Y2». The V-statistic Vn with kernel his dosedly related to the U-statistic 

Un. If Elh(YipYi2)1 < 00 for 1 ~ it,i2 ~ 2, then ElUn - Vnl = O(~) (see Serfling [1980], p.206). 

Hence Vn will converge in probability to E(h(Yb Y2» also. With this law of large numbers for 

V-statistics, the uniform convergence property in the proposition can be proved with exactly the 

same argument in Amemiya ([1985], Theorem 4.2.1). 

Q.E.D. 

Proposition 2. (A Central Limit Theorem for V-statistics) 

Let {Yi} be a random sample and g(Yill Yi2) be a measurable vector value function of (YiI' Yi2) 

with zero mean. Suppose that Elg(Yi ll Yi 2 )12 < 00 for all 1 ~ ill i2 ~ 2. Then 

where 

PR.OOF: This central limit theorem can be found in Serfling [1980], p.192 and p.206. 

Q.E.D. 
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Proposition 3. Suppose {vy)} are iradependently and identically distributed sequences of 

random variables. {Xi} is a sequence of i.i.d. random variables which (Ire independent with v~i), 

for all i,j. Let g(v,x,8) be a measurable function of (v,x) for each 8 E e, which is a compact 

subset of a Euclidean space, and is a continuous function of 8 E e for each (v, x). Suppose that 

ESUPBee Ig(v,x,8)12 < 00, then 

1 ~~ (i) 11 2' L- L-g(Vj ,xi,8) -+ E(g(v,x,8» 
n . 1 . 1 

1= J= 

uniformly in 8 E e. 

PROOF: For any square integrable function h( v, x), by independence, 

Since h(v,x) is square integrable, it follows that var(E[h(v,x)lx]) and E{var(h(v,x)lx)} are all 

finite. Let Zn = :- 2:j=1 h( vj, x). The variance of Zn is 

1 n 
var(zn) = E(- Lh(vj,x) - E(h(v,x)lx»2 + E(E(h(v,x)lx) - E(h(v,x»)2 

n j=1 (A.1) 
1 

= -E{var(h(v,x)lx)} + var(E[h(v,x)lx]). 
n 

It follows that by Chebyshev's ineqality 

With this law of large numbers, the uniform convergence property in this proposition follows from 

the argument in Amemiya ([1985], Theorem 4.2.1). 

Q.E.D. 

Proposition 4. Suppose {v~ i)} are independently and identically distributed sequences of 

random variables. {Xi} is a sequence of i.i.d. random variables which are independent with v~i), 

for all i,j. Let g(v,x) be a measurable function. Suppose that there exists a square integrable 
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function h( x) such that Ig( v, x) I :5 h(~) for all v, then 

1 n 1 n. D 
..;n ~;; ~g(v~,>,xd - E(g(v,x)) - N(O,var(E[g(v,x)lx])). 

PROOF: Denote Zni = ~ ~j=l g( vy>, Xi). Under our independency assumptions, Znl,···, Znn 

are mutually independent. E(Zni) = E(g(v,x)) = I-' is a constant. The variance of Zni 

1 
var(Zni) = -E{var(g(v, x)lx)} + var(E[g(v,x)lx)) 

n 

is a constant independent ofi, which converges to var(E[g(v,x)lx)). Since the sequence 

is a double array sequence, a central limit theorem of double array will be needed. The central 

limit theorem of double array in Chung [1974] can be applied if Lindeberg condition is satisfied, 

i.e., for any £ > 0, 

where 0-; is the variance of Zni. Let (n X X, v X ~) be the common probability space that (v, x) 

lives on. Denote fn(w,x) = (~~j=l g(Vj(w),x) - 1-')2. It follows that 

E[I((zni - 1-')2 > mo-!)(Zni - 1-')2] 

= I fn(w,x)dv(w)d~(x) JA. 
(A.2) 

where An = {(w,x)I(~ ~j=l g(Vj(w),x) - 1-')2 > mo-;}. Lindeberg condition will be satisfied if 

(A.2) converges to zero. By Chebyshev's inequality 

=-
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which converges to zero. For each X, the strong law of large numbers for LLd. variables implies 

that ~ L:j=1 g(Vj,x)~' E(g(v,x)lx). Hence fn(w, x) -+ f(x) = (E(g(v,x)lx) -1')2, a.e.[11 X e] on 

n x X. The following lemma completes the proof. 

Q.E.D. 

The following lemma generalizes the familiar result for an integrable function (see, e.g. Royden 

[1963], Chapter 4, Proposition 13) to a sequence of integrable functions. 

Lemma 5. Suppose that fn(x) is a sequence of nonnegative integrable functions with measure 

II. [flimn_ oo fn(x) = f(x) a.e.[II], and there exists an integrable function h(x) such that I/n(x)1 ::; 

h(x) for all x, then for any f > 0, there exist 6 > 0 and no such that for all measurable subset A 

with II(A) < 6, fA fn(x)dll(X) < f for all n ~ no. 

PROOF: Suppose not, there exists an f > 0 such that for any 6 > 0 and n, one can find A 

and mn with II(A) < 6, but fAfm.(x)dll(x) ~ f. In particular, there exist An with II(An) < 2~ 

and fA. fm.(x)dll(X) ~ f. Let 9n(X) = fm.(x)IA.(x). The functions gn(x) converge weakly to 0 

0000 00 00 00
1 

II( n U Ai) ::; II( U Ai) ::; L II(Ai) ~ L 2i 
n=1 i=n i=n i=n i=n 

converges to zero as n goes to 00, gn(x) -+ 0, a.e. Let hn(x) = fm. (x)-gn(x) = fm. (x)[l-IA. (x)]. 

{hn} is a sequence of nonnegative functions. Furthermore, hn(x) -+ f(x) a.e. By Fatous's lemma 

and LDC theorem, 

j f(x)dll(x) ~ lin~~f j hn(x)dll(X) 

~ lim jfm.(X)dll(x) -liminfj9n(x)dll(X) n-oo n-oo 

= j f(x)dll(x) -liminf f fm. (x)dll(x) 
n-oo JA. 

::; j f(x)dll(x) - f 

which is a contradiction. 

Q.E.D. 
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