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Abstract

This dissertation is a collection of two essays that deal with sponsored search auctions.

Chapter 1 investigates and evaluates the performance of different types of sponsored

search auction mechanisms. For the two popular sponsored search auctions—the General-

ized First Price (GFP) auction and the Generalized Second Price (GSP) auction—current

consensus in both the industry and academia is that the GSP auction is more stable and

more efficient than the GFP auction. Specifically, in the GSP auction, bidders are less

likely to “game the system”, meaning that an individual bidder will change his bid less

frequently; his bid range will be smaller; and a bidder with a higher value will be more

likely to win a higher and better slot. This paper examines this prevailing belief using a

Regression Discontinuity Design (RDD) approach and finds that after bidders switch to the

GSP auction, they actually bid 36% more frequently and increase their daily bid range by

$1.31. To compare efficiency differences, this paper constructs an efficiency index and shows

that the GSP auction mechanism is at least 4% more efficient.

Chapter 2 examines how different automated bidding strategies impact advertisers’ bid-

ding performances. It backtests and simulates the following simple strategies: targeting

specific position (Position Targeting), monitoring the cost per purchase ( Cost-per-Purchase

Bidding), setting a constant bid (Constant Bidding), and monitoring the return of invest-

ment (ROI strategy). The simulation shows that advertisers’ optimal strategies are de-

pending on their budget, value per click and the degree of market competition. Keeping

other variables controlled, when the advertiser’s budget is small, her optimal strategy will

be Constant Bidding; as her budget increases and passes certain critical value, ROI Bidding

or CPP Bidding will become her optimal choice; as advertiser’s value per click increases,

Targeting Position 1 will become more and more attractive; as the market become more

competitive, the performance of ROI Bidding is converging to that of Targeting Position 1.
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Chapter 1

Comparing Different Yahoo Sponsored Search

Auctions: A Regression Discontinuity Design

Approach

1.1 Introduction

The sponsored search auction has played an indispensable role in the success of search

engine giants like Yahoo! and Google. For example, Yahoo!’s first half-year revenue in 2008

was $3.62 billion and at least 50% of that revenue came from the sponsored search auction.1

For Google, its first half-year revenue in 2008 was $10.55 billion with 97% of this revenue

generated by the sponsored search auctions.2 Actually, the sponsored search auction is not

only crucial to search engine companies, but it is also “vital to the success of many other

small business” such as bid management software firms, bidding campaign consulting firms,

and key word selecting firms, etc. (See Jansen and Mullen (2008).)

The sponsored search auction is a pricing mechanism which helps search engine compa-

nies sell navigation services to advertisers. When addressing search requests, search engines

display both the search results and advertisers’ web links, which are called sponsored links.

These sponsored links attempt to navigate potential customers to specific product web sites.

Because this targeting of potential costumers has proven effective, advertisers are willing
1See Yahoo! Quarterly Report on Form 10-Q to SEC for the quarter ended June 30, 2008 and Borgers

et al. (2007).
2See Google Inc Quarterly Report on Form 10-Q to SEC for the quarter ended June 30, 2008 and Borgers

et al. (2007).
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to pay in order to obtain an ideal placement for their web link on a search result page.

Search engine companies invented the sponsored search auction to sell these sponsored link

placements.

The sponsored search auction was first introduced in 1998 by Goto for Yahoo!. Since

then, search engine designers have upgraded the mechanism several times. The purpose

of replacing an old sponsored search auction with a new one is “to bring more stability

to the auction bidding, increase profits, and help reduce strategic bidding”. (See Jansen

and Mullen (2008).) One of the major transformations the sponsored search auction has

undergone was Yahoo!’s switch from the Generalized First Price (GFP) auction to the

Generalized Second Price (GSP) auction.3 This auction rule change, which took place on

June 26, 2002, is generally believed to have been a success by both the industry and academia

in the sense that “superior designs” have replaced the “inefficient market institutions”. (See

Edelman, Ostrovsky and Schwarz (2008) and Jansen and Mullen (2008).) The GSP auction

is believed to be more efficient because while using it, bidders will be less likely to “game

the system”. This means that an individual bidder will change his bid less frequently and

that his bid range will be smaller; moreover, a bidder with a higher value will be more likely

to win a higher and better position with a higher amount of clicks.

Correctly understanding and evaluating how different sponsored search auctions perform

is important for both economists and the search engine industry. Having the correct answers

will not only affect the multibillion dollar revenue of search engine companies, but it will also

help develop more superior sponsored search auctions in the future. This paper examines

the prevailing belief that the GSP auction is superior to the GFP auction using bid data

collected from Yahoo! sponsored search auctions in 1000 markets from between June 15,

2002 and June 14, 2003.

Yahoo!’s auction rule change on June 26, 2002 provides an opportunity to compare the

performances of the two auction mechanisms in a treatment effect framework. Specifically,

all the bidders after June 26, 2002 would face a treatment of the GSP auction. Thus, esti-
3During 2002, the Yahoo! sponsored search auction was managed by a company named Overture, which

later was acquired by Yahoo!. Without causing confusion, this paper does not distinguish these two names
and will always use Yahoo! sponsored search auction.
Under the new auction rule, bidders could choose either the GFP auction or the GSP auction to submit
their bids.
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mating the performance differences of the two auction systems will be turned into identify-

ing the average treatment effect. However, in the standard treatment effect framework, the

identification usually depends on strong assumptions on the comparison group and control

group. This paper avoids this challenge by using a Regression Discontinuity Design (RDD)

approach, which enables us to maintain relatively simple and reasonable assumptions to

obtain identification.

Recently, there has been a renaissance of the RDD method to estimate the treatment ef-

fect. RDD is a special case of treatment effect analysis, usually applied under circumstances

where the treatment probability function displays a sharp and observable discontinuity jump

at some cutoff point of an observable variable called selection variable. Hahn et al. (2001)

and Lee (2008) established the identification conditions for RDD, and now RDD has been

broadly applied to estimate the treatment effect in many economic contexts. Van der

Klaauw (2002) estimates the effect of financial aid offers on college enrollment through a

RDD approach by exploiting the discontinuity in the financial aid assignment rule. Angrist

and Lavy (1999) observed that in the Israeli public school system, the Maimonides’ rule of

“maximum class of 40” generated an exogenous source of variation in the classes, and the

author used this variation to estimate the class size effect on scholastic achievement. Lee

(2008) applies RDD to estimate incumbency advantage in U.S. House elections by exploit-

ing the fact that candidates receive the treatment of winning the election when the vote

share is bigger than 1
2 . Chen and Van der Klaauw (2008) use RDD to estimate the work

disincentive effects of the disability insurance program. This paper extends the application

of RDD to the Yahoo! sponsored search auction.

Contrary to conventional wisdom, the estimation results show that the bidding behavior

under the GSP auction was less stable than thought. The daily frequency with which an

individual bidder changed his bid increased by 6.8 times, representing a 36% increase. In

addition, the daily bid range of each bidder increased by $1.31. Plus, the daily maximum

value of the bids submitted by each individual bidder increased by 55 cents. All the above

estimates suggest that the GSP auction did not reduce the “strategic bidding behaviors”

as believed by most economists and developers in the industry.

These findings have important implications for the current sponsored search auction the-
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ory literature. Recent theories on the GSP auction, including Edelman et al. (2008), Varian

(2006) and Athey and Ellison (2007), are basically based on a static game theory structure.

Edelman et al. (2008) and Varian (2006) argue that this game framework “describes the ba-

sic properties of the prices observed in Google’s ad auction reasonably accurately.” However,

Google is not using a pure GSP auction analyzed by the theories, and the above evidence

actually shows that the bidding behaviors in the GSP auction are even more volatile and

more aggressive than those under the GFP auction. This may suggest that our theoreti-

cal understanding about bidding behavior and equilibrium properties under the sponsored

search auction from a stable framework, which also provided the guidance for the latter

sponsored search auction upgrade, might not be well founded.

This paper also estimates the efficiency improvement, which the GSP auction brought

to the auction market by replacing the GFP auction, as suggested by the literature. To

measure efficiency, I first construct an index measure based on the following idea: a more

efficient auction system should help the bidder with the higher value obtain the higher

slot more often. If the auction is fully efficient, bidders with higher values should always

dominate the bidders with lower values, and we should observe that the probability that

higher value advertisement rank higher than always be 1. The less efficient the mechanism

is, the smaller this probability will be. Therefore, this relative ranking between two bidders

can be used as an index to measure the efficiency of the auction mechanism.

The challenge of identifying the efficiency improvement is that bidders’ true values were

unobservable. However, we observe the following facts. If the new system can improve the

bidding efficiency, on average, the probability index bigger than 1
2 in the old system will be

even bigger than 1
2 in the new auction system; and a probability index smaller than 1

2 in

the old system will be even smaller than 1
2 in the new system. Based on these observations,

we propose an estimation strategy and find that the new auction mechanism is at least 4%

more efficient. In other words, the GSP auction system gives the advertiser with a higher

value a 4% better chance to obtain a higher slot.

This paper contributes to the sponsored search auction literature in two aspects. First,

in the past there was no empirical analysis to compare and evaluate the performances

of different sponsored search auctions. In past literature, the comparison between the
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two popular auctions—the GFP auction and the GSP auction—was illustrated purely by

hypothetical examples, which will be discussed in detail in section 1.3. This paper, however,

provides solid empirical evidence contradicting the current beliefs about the comparison

between the GFP auction and GSP auction.

Second, this research constructs an efficiency index and it is also the first to empirically

evaluate the efficiency improvement of the GSP auction. Understanding and evaluating how

efficiently the auction system allocates link placements is both an important and challenging

question, especially when each bidder’s true value in the auction is unobservable. This paper

turns measuring efficiency into comparing the relative ranking between two bidders and is

the first to identify the efficiency improvement brought by the GSP auction.

The paper is organized as follows. Section 1.2 introduces the Yahoo! sponsored search

auction. Section 1.3 briefly surveys the sponsored search auction literature and especially

examines the conventional wisdom about the performance of the GFP auction and GSP

auction. Section 1.5 sets up the RDD model. Section 1.4 introduces the data and presents

the simple statistics and OLS regression results. Section 1.6 presents the RDD estimation

results. Section 1.7 constructs an efficiency index and evaluates efficiency improvement of

the GSP auction over the GFP auction. Section 1.8 concludes.

1.2 Yahoo! Sponsored Search Auction

In the search engine industry, there are three key players: the advertisers, the search engines

and the potential customers. Search engines navigate potential customers to advertisers’

product web sites by displaying their web links when potential customers conduct keyword

search requests. These advertisers’ links are called sponsored links. Sponsored links distin-

guish themselves from the organic (non-sponsored) web search results by whether or not a

fee is paid to the search engine company.

Figure 1.1 shows an example of sponsored links for the key word “refinance”. When

someone uses Yahoo! to search for information about “refinance”, the search engine will

display search results along with sponsored links, which are circled in Figure 1.1. Usually

around 10 sponsored links, located on the top and on the right of each page, will be displayed.
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Advertisers are interested in buying these link slots for their product web sites because

they may target the potential customers more efficiently. In 1998, Goto first introduced the

sponsored search auction in the search engine industry to sell these link slots.4

The sponsored search auction is a multi-object dynamic auction in which each individual

advertiser bids for the ideal slot for his web site. Sponsored search auctions usually have

the following common features. First, all the link slots are auctioned at the same time.

As shown in Figure 1.1, there were at least 12 sponsored link slots being auctioned at that

time. Second, the auction is dynamic with an infinite time horizon. Each bidder can change

or withdraw his bid at any time, which will be immediately reflected in the slot placement.

Third, all search engines share a common payment rule: pay per click (PPC), which means

that whenever there is a click on the sponsored link, the bidder will pay Yahoo! once. And

lastly, in Yahoo!’s sponsored search auction, all the information, including bids and slot

placement, is public information, which can be observed by all the bidders directly.

In keeping with the keyword search for Figure 1.2 “Refinance”, shows all bidders’ bids

and slot allocation information as it was captured by a free public web site.5 The bid range

is from $16.13 to $7.49 and each bidder’s position is determined solely by his bid. As can

been seen, “LendingTree” had the highest bid; therefore, this advertisement was placed at

the highest slot as shown in Figure 1.1.

Designing efficient auction rules regarding how the advertisers pay the search engine and

how the search engine allocates the link slots among the advertisers is a key challenge faced

by the search engine designers because the decision to adopt different forms of sponsored

search auctions has an important impact on the success of search engine companies. In

the past 6 years, Yahoo! upgraded its sponsored search auction several times hoping to

find a better auction mechanism to bring more stable bidding behaviors and higher auction

revenue.

Before June 26, 2002, a bidder in the Yahoo! sponsored search auction paid Yahoo!

his bid multiplied by the number of the clicks on his web site. For example, if a bidder

bid $3 and his web site received 3000 clicks, the bidder would have to pay Yahoo! $9,000.
4Goto was later renamed to Overture and acquired by Yahoo! in late 2003.
5The free bid check website is http://keyword.secretstohighprofit.com/default.aspx. Figure 1.1 and

Figure 1.2 were captured at the same time on March 28, 2007.
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The literature calls this type of sponsored search auction “Generalized First Price (GFP)

Auction” to distinguish it from the standard first price auction.

On June 26, 2002, Yahoo! upgraded its Generalized First Price (GFP) Auction to

a Generalized Second Price (GSP) Auction. In this new auction system, the web site

placement was still determined solely by a bidder’s bid, but each bidder, instead of paying

his own bid per click, only had to pay 0.01 more than the next highest bid below his. For

example, if two bidders bid $0.4 and $0.6, respectively, in the old bidding system, the winner

would pay $0.6 per click received; however, in the GSP auction system, he would be charged

at a rate of $0.41.

The most recent Yahoo! sponsored search auction upgrade took place in 2007. Before

May 2007, slot allocation was determined only by bidders’ bids. The bidder with higher

bids got higher link slots as shown in Figure 1.1 and Figure 1.2. After May 2007, Yahoo!

sponsored search auctions no longer determined slot allocation solely based on bidders’ bids,

but also by the quality of an advertiser’s web site. To do this, Yahoo! created a score system

to rank bidders’ links.

Even though this rule change of Yahoo! sponsored search auction in 2007 is also very

important and interesting, this paper keeps its focus on the Yahoo! sponsored search auction

upgrade which happened in 2002. When the GSP auction was introduced, bidders could

choose whether to submit their bid in the GFP auction system or in the original GSP

auction system, making the choice of the GSP auction endogenous.

This new 2002 auction rule had a dramatic change on bidding behavior. Figure 1.3

shows the sharp jump in the number of bidders submitting their bids through the new

GSP auction system. The y axis denotes the portion of the bidders who switched from

the GFP auction rule. The number jumped from zero to around 70% immediately after

June 26, 2002. After that, it remained steady at around 70%. This jump is actually the

identification source of the causal effect in the following regression discontinuity approach.

The probability function of whether a bidder receives a GSP auction treatment is en-

dogenous, instead of a function with a probability equal to one. The literature (See Jansen

and Mullen (2008)) does not distinguish this subtle difference, and actually no research has

analyzed how bidders bid when the GSP auction is endogenously chosen. In this paper, we

7



take this endogeneity into account and further details are addressed in section 1.5

1.3 Literature

Recent research on the sponsored search auction mainly focus on three perspectives. First,

economists are interested in providing a theoretical game foundation for this new auction

mechanism. Varian (2006) and Edelman et al. (2008) first introduced equilibrium concepts

for the GSP auctions based on the idea of “envy-free”, which assumes that in the equilibrium

no bidder would like to place a bid that would cause retaliation. All authors suggest that the

GSP auction can achieve efficient allocations. In a similar setup, Athey and Ellison (2007)

further introduce consumer search behavior into the model and analyze the implications for

reserve prices, product variety, etc.

Second, both economists and search engine developers are interested in the bidders’

overall advertising campaign performances taking the sponsored search auction as given.

Ghose and Yang (2007) propose a novel empirical model to quantify how different metrics

affect bidders’ advertising campaign performances. Rutz and Bucklin (2007) use hierarchical

Bayes binary choice model to estimate the keyword conversion rate and, based on the model,

propose better advertising campaign strategies.

Third, many other topics derived from the sponsored search auction are also attracting

economists’ attention. Goldfarb and Tucker (2008) investigate the relationship between

matching difficulty and bidding prices. They found evidence showing that the more difficult

it is to make a match between the firms and customers, the higher the bids in the sponsored

search auction. Animesh et al. (2005) study the relationship between an advertiser’s quality

and his bidding strategies and find evidence of significant adverse selection associated with

product uncertainty.

This research is an empirical work, which is closely related to the second group of the

literature. A bidder’s advertising campaign mainly consists of two parts. The first part is

how to place a bid to obtain a good placement, which is related to costs; the second part

is how to increase purchases to generate more revenue. This paper mainly focuses on the

cost side and asks the question: How will a specific type of sponsored search auction affect

8



advertisers’ bidding behaviors? Although studying the performance differences among dif-

ferent sponsored search auctions is an important question, from the perspectives of both the

search engine developers and advertising bidders, all of the current empirical research ana-

lyzes economic behavior under one specific sponsored search auction. None has conducted

any empirical comparisons among different sponsored auction mechanisms adopted in the

industry. This paper, to my knowledge, is the first empirical paper comparing the perfor-

mances of the GFP auction mechanism and the GSP auction mechanism, and providing

evidence that contradicts the current prevailing beliefs.

These results also have important implications for the current sponsored search auction

theory literature. The theory papers authored by Edelman et al. (2008), Varian (2006) and

Athey and Ellison (2007) are based on a static game theory structure that analyzes the

GSP auction. Edelman et al. (2008) and Varian (2006) argue that this game framework

“describes the basic properties of the prices observed in Google’s ad auction reasonably

accurately.” However, Google is not using a pure GSP auction analyzed by the theories;

Borgers et al. (2007) suggest that this static GSP auction model actually may have a

very poor explanation power on the real data collected from the Yahoo! sponsored search

auction. This paper also draws similar conclusion from another angle. If the evidence

shows that the bidding behaviors in the GSP auction are more volatile and more aggressive

than those in the GFP auction, it may suggest that our theoretical understanding about

the bidding behavior and equilibrium properties under the sponsored search auction from a

stable framework, which also provided the guidance for the latter sponsored search auction

upgrade, might not be well founded. The following subsections will introduce the current

prevailing belief about the GSP auction and the GFP auction, which is the hypothesis this

paper will test.

1.3.1 Conventional Wisdom on the GSP auction and the GFP auction

Currently theories mainly focus on the GSP auction in a static setting; in contrast, hardly

any formal theoretical analysis has been done on the GFP auction. The conventional wisdom

about the comparison of the two auctions was based mainly on concrete examples instead

of formal game theory setup. Edelman et al. (2008) proposed a simple example, which

9



the following literature frequently cited. (See Edelman and Ostrovsky (2006) and Jansen

and Mullen (2008).) In this subsection we also follow this example to illustrate the current

consensus and what it misses.

Example 1. Edelman et al. (2008): There are two slots for the links. The first slot receives

400 clicks per hour, and the second slot receives 100 clicks per hour. There are three adver-

tisers bidding to place their product. The value per click for the bidders are $5, $4 and $2.

Call these three bidders A, B, C respectively.

Edelman et al. (2008) use this example to illustrate the superiority of the GSP auction.

They show that in the GSP auction, the equilibrium bids of A, B, C will be $5, $4 and

$2 and that with these bids, efficient allocation is achieved. But in the GFP auction, the

equilibrium will not be stable. B will bid $2.01 instead of $4 and A will bid $2.02 instead of

$5. B will outbid A at $2.03 and the bids escalate until $4. B will pull his bid back to $2.01

and the bid escalation goes on again. These bidding behaviors will result in the sawtooth

pattern of a bidding war, which is well documented in the literature. (See Edelman and

Ostrovsky (2006) and Zhang (2005).) Based on this example, they argue that the GSP

auction is more efficient at allocating resources and more stable when it comes to bids with

the GFP auction.

The above argument ignored the dynamic bidding behavior in the GSP auction because

of the nature of the “envy-free” equilibrium concept proposed by Edelman et al. (2008)

and Varian (2006). The bid retaliation is assumed out of the equilibrium path, however, in

reality, the GSP auction does display a dynamic bidding pattern.

One famous example is “bid jamming”. Sponsored search auction experts frequently

suggest the use of a strategy called “bid jamming”. Bid jamming happens when advertiser

B bids 1 cent below his competitor, A, in an effort to drain up A’s budget. Of course, this

behavior will cause a back fire and A may drop his bid 1 cent below B’s. Then B might

further drop his and another kind of bidding war starts. This strategy was not made up by

economists. Indeed, it has already been programmed into auto bidding softwares and is a

strategy that is “actually widely-used”. ( See Ganchev et al. (2007).)

If we still take the above example, but allow bidders to use a bid jamming strategy,

the equilibrium picture will be totally changed. Suppose bidder C bids at $2. Suppose A
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adopts the bid jamming strategy and bids at $3.99. If Bidder B retaliates and submits his

bid at $3.98, then the bidding war starts. The bids will fall to $2 and then rise back up to

$4 again.

Now let us examine whether A and B have incentive to engage in this bidding war

when bid jamming strategy is available. If A and B just stick to the envy free equilibrium

strategies, A will receive 400 ∗ (5 − 4) = 400 profit and B will receive 100 ∗ (4 − 2) = 200

profit. If A and B engage in the bidding war and they split the highest slot half and

half, A will receive 0.5 ∗ 400 ∗ (5 − 3) + 0.5 ∗ 100 ∗ (5 − 2) = 550 while B will receive

0.5 ∗ 400 ∗ (4− 3) + 0.5 ∗ 100 ∗ (4− 2) = 300. Both of them will be better off.

The only loser will be the search engine. There will be efficiency loss because the high

value bidder does not get the higher position all the time. The loss will be the profit bidder

A should have received if A had been higher than B. Therefore, the total social loss will be

0.5 ∗ 400 ∗ (5− 4) = 200.

As illustrated in the above example, the bidding behavior in the GSP auction is not

necessarily more stable without further theoretical analysis. Actually, the dynamic bidding

is very complicated and dynamic equilibrium does not have to be unique. However, con-

structing a theory to formally compare the two auctions is not the purpose of this paper.

This research only attempts to examine the performance difference of the two auctions from

an empirical perspective.

In the following research, I will try to test the above conventional wisdom by estimating

how much more stable the bidding behaviors in the GSP auction are and how much more

efficient the GSP auction is. To be specific, if the above belief holds, we should have the

following hypothesis: Because the “second-price structure makes the market less susceptible

to gaming” (See Edelman et al. (2008)), on average, an individual bidder in the GSP auction

will change his bid less frequently and his bid range will be smaller. In addition, because

the GSP auction can more efficiently allocate the resources, the bidder with a higher value

will obtain the better slots more often.
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1.4 Data

Yahoo!’s research department provides a data set, which records all of the bids for the top

1000 keyword search by volume and all of the associated accounts for the time period from

June 15, 2002 through June 14, 2003.

Each observation in the data has 5 variables: bidder ID, bidder’s bid, the time when

the bid was submitted, auction market and a dummy variable indicating whether the bid

was placed under the GFP auction rule or under the GSP auction rule.

Table 1.1 shows the market statistics: the max bid, mean bid, minimum bid and the

standard deviation for the top 10 most clicked markets. Five cents is the minimum require-

ment for bidding. One striking observation is the value of the maximum bid. According to

this data set, some bidder is paying Yahoo! $100 for just one click through the sponsored

search.

Because this paper is using RDD to estimate the local average causal effect of the GSP

auction on the individual bidder, we also present the individual bidding statistics from June

15, 2002 through July 15, 2002 in Table 1.2. Table 1.2 provides the maximum value, mean

value, minimum value and the standard deviation for the following daily statistics:

• Bid frequency: the number of times that an individual bidder changes his bid each

day.

• Bid range: the difference of the maximum bid and the minimum bid of each bidder

on each day.

• The Maximum bid, 75 percentile bid, mean bid, median bid, and 25 percentile bid of

each bidder on each day.

Bid frequency and bid range measure the bidding stability of the auction system. The

maximum bid, 75 percentile bid, median bid, mean bid and the 25 percentile bid measure

the impact on the bid distribution of an individual bidder.

Table 1.2 shows how the mean values of the above statistics change after the launch of

the new auction. The mean values of both the daily bid frequency and the daily bid range

increase, which suggests that the new auction system is more unstable. The mean values

12



of the max bid and 75 percentile bid increase while the mean value of the 25 Percentile bid

decreases, which suggests that the bids are more dispersed.

It is impossible to plot the statistics because of the huge amount of data. To further

show the big picture of how the change of auction systems affects bidding behaviors, we run

a simple OLS regression first. In the OLS regression, we control for the market fixed effect

and weekday effect. We also control for bidders’ entry and exit by focusing on bidders who

submit bids both before and after the auction rule change.

The OLS regression examines the percentage change of the variable yi,m,t in the following

three months from July 2002 to September 2002.

log(yi,m,t) = µm +
3∑
j=1

αj · Ij(t) +
∑

d∈{T,W,Th,F,Sa,Su}

βd · I(t = d) + ui,m,t

yi,m,t is the statistic of interest for bidder i, market m at time t. um is the market fixed

effect. Ij(t) is an indicator function, showing whether the time t is in the jth month after

the policy change. Therefore, α1 measures the impact of the new auction system on the

market in the first month after the policy change. α2 measures the impact in the second

month after the policy change, and so on. βd is the weekday dummy for Tuesday through

Sunday.

Table 1.3 provides the estimation results, showing the impact of the new auction on

bidding behaviors after June 26, 2002. First, both the daily bidding frequency and the

daily bid range increase after the auction rule change. This result shows that the bidding

behavior is more unstable under the GSP auction in contrast to the prevalent belief which

suggests the opposite result.

Second, the individual daily bid distribution expends as the percentage changes of the

daily maximum bid, mean bid and median bid are bigger than that of the daily 25 percentile

bid.

However, the unobserved heterogeneities will make these OLS estimations biased, even

misleading. First, the OLS regression does not control for the competition brought by bid-

ders’ entry and exit in each market, which is also impossible to do. Less amount of bidders

might make the bidding behavior less aggressive. This may bring bias to the estimation of

13



the average daily bidding frequency and the daily bidding range.

Second, the OLS regression cannot control for the competition among search engines

markets. During that time period, around 2002, Google’s popularity was beginning to rise,

becoming more and more popular and grabbing more and more sponsored search market

shares. Bidders often had accounts in both search engines. The implication, thus, would be

that bidders might have been transferring more resources to Google accounts and paying

less attention to their Yahoo! searches. This might also have caused bidders to bid less

aggressively, which would affect our OLS estimation.

Moreover, the OLS regression cannot control for many unobserved variables, which play

an important role in the bidding strategies, such as bidders’ budget, the conversion rate of

purchases, and so on.

Finally, the OLS regression does not control for the portion of bidders adopting the GSP

auction, which might result in a lower estimation of the effects.

The bottom line here is that although the above regressions present the big picture of the

bidding behavior change and suggest that the GSP auction does not bring stability to the

system, the story is not convincing as there are so many unobserved variables which might

plague the estimation. Therefore, to identify the true average effect, in the following section

we use a RDD approach to avoid the above impacts of the unobserved heterogeneities.

1.5 Model

The basic idea behind the RDD model is to exploit the sharp jump shown in Figure 1.3

to identify the treatment effect of the GSP auction, which is the performance difference

between the two auction systems.

Let yi(xi, t) denote the statistics of interest for individual i at time t. xi is a variable

vector including all other characteristics such as market dummy, and weekday dummy.

After June 26, 2002, under Yahoo!’s new auction rules, each bidder could choose either

the GFP auction or the GSP auction to submit his bids. Let yi(S, xi, t) denote the statistics

when the bidder is submitting the bid through the GSP auction; if the bid is submitted

through the GFP auction, the statistics will be denoted by yi(F, xi, t).
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Then the statistics yi can further be rewritten as

yi(xi, t) = yi(S, xi, t)Ii(GSP) + yi(F, xi, t)Ii(GFP)

= β(xi, t) + αi(xi, t) · Ii(GSP) + ui(xi, t) (1.1)

where

yi(F, xi, t) = E[yi(F, xi, t)] + ui(xi, t)

= β(xi, t) + ui(xi, t)

and αi(xi, t) = yi(S, xi, t)− yi(F, xi, t). I(GSP) is the indicator function of whether the

bidder is choosing the GSP auction and I(GFP) is the indicator function of whether the

bidder is choosing the GFP auction. E[αi(xi, t)] is the average treatment effect, which is

what we want to estimate.

Because the choice of the GSP auction is endogenous, the new auction system will be a

combination of both the GFP auction and the GSP auction. It is interesting to notice that

choosing the GSP auction would dominate the choice of the GFP auction because of the

lower payment while maintaining the same slot. However, from the data, we observe that

a big portion of the bidders still choose the GFP auction, which suggests that unobserved

heterogeneity was playing an important role. Besides, this new auction is a very complicated

game system and no theory has been conducted on it yet. Therefore, to simply the problem,

we make the following assumption about bidder behaviors before and after the auction rule

change.

Assumption 1. (Behavioral Assumption): Bidders submit bids either in a pure GFP

auction system or a pure GSP auction system.

The above assumption simplifies auction bidding behavior in this extreme complicated

environment and enables us to identify the average treatment effect [αi(xi, t)]. When the

literature discusses this part of the history of the sponsored search auction, it usually ignores

this endogeneity of the GSP auction choice. (See Jansen and Mullen (2008).) If we also

maintain the same assumption that every bidder was submitting as if he was in a GSP action,
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the probability of receiving treatment of the GSP auction will jump to 1 for everyone. This

assumption will even simplify the estimation. We will leave this no endogeneity case to

the estimation section, and in the following, we will allow the endogeneity of the auction

choices.

Assumption 2. (Continuity Assumption): E[yi(S, xi, t)|t] and E[yi(F, xi, t)|t] are con-

tinuous in t at t̄. t̄ is the beginning time when the new auction was launched.

This continuity assumption assumes that the bidding statistics near the critical value

are continuous. In other words, bidders would have continued to behave as they would

have before the auction rule change as if there had been no auction switch. Therefore,

any bidding behavior change will be attributed to the treatment, or the launch of the GSP

auction.

It is worth emphasizing that I(GSP) is an endogenous variable which is affected by the

unobserved heterogeneity. The GSP auction should dominate the GFP auction, because

without changing the slot placement, choosing the GSP auction makes the bidder pay less

than choosing the GFP auction. However, data shows that not all bidders chose the GSP

auction after the auction upgrade. Whether bidders choose the GSP auction or the GFP

auction was determined by their stochastic process, which is not observed by economists.

However, the following proposition shows that we can still have the identification.

Proposition 1. Under assumption 1 and 2,

E[αi(xi, t)|I(GSP ) = 1] =
limt↓t̄E[yi(xi, t)|t]− limt↑t̄E[yi(xi, t)|t]

limt↓t̄E[Ii(GSP )|t]

Proof. The proof follows Imbens and Angrist (1994).
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Pick two numbers t0 < t̄ < t1, we have

E[yi(xi, t)|t1]− E[yi(xi, t)|t0] (1.2)

= E[yi(S, xi, t)I(GSP, t) + yi(F, xi, t)I(GFP, t)|t = t1]

−E[yi(S, xi, t)I(GSP, t) + yi(F, xi, t)I(GFP, t)|t = t0]

= E[yi(S, xi, t1)I(GSP, t1) + yi(F, xi, t1)(1− I(GSP, t1))]

−E[yi(S, xi, t0)I(GSP, t0) + yi(F, xi, t0)(1− I(GSP, t0))]

By assumption 2 and equation 1.2, we will have

lim
t↓t̄

E[yi(xi, t)|t]− lim
t↑t̄

E[yi(xi, t)|t]

= lim
t↓t̄

E[yi(S, xi, t̄)I(GSP, t) + yi(F, xi, t̄)(1− I(GSP, t))]− yi(F, xi, t̄)

= lim
t↓t̄

E[Ii(GSP)(yi(S, xi, t)− yi(F, xi, t))]

= lim
t↓t̄

Pr[Ii(GSP) = 1] · lim
t↓t̄

E[yi(S, xi, t)− yi(F, xi, t)|I(GSP) = 1]

= lim
t↓t̄

Pr[Ii(GSP) = 1] · lim
t↓t̄

E[αi(xi, t) + ui(xi, t)|I(GSP ) = 1]

Therefore

E[αi(xi, t)|I(GSP ) = 1] =
limt↓t̄E[yi(xi, t)|t]− limt↑t̄E[yi(xi, t)|t]

limt↓t̄E[Ii(GSP )|t]
(1.3)

This proposition provides the foundation for the identification strategy. Because the

continuity assumption is addressing local properties, this proposition is also about the

local properties. It is also worthwhile pointing out that equation 1.3 does not identify the

average average causal effect E[αi(xi, t)] of the whole population. Instead, it identifies the

local average E[αi(xi, t)] of the bidders who chose to submit bids through the GSP auction,

making them a subgroup of the population.

Another thing worth pointing out is that in the traditional RDD theory, to have this

identification result, we must have both the above continuity assumption and the local

independence assumption. (See Hahn et al. (2001) and Van der Klaauw (2007).) This

17



proposition, however, only requires the continuity assumption. This is because the treat-

ment variable here is time, instead of a random variable which might be correlated with

the decision of treatment I(GSP). Therefore, although I(GSP) is endogenously affected

by unobserved heterogeneity, the identification assumption only requires the continuity as-

sumption.

Lastly, if we go back to the assumption that the the auction system was affecting all

the bidders in the markets in the same way, no matter what auction system they ap-

peared to choose and that each bidder was bidding as if they were in a pure GSP auction

system, then this assumption would rule out the endogeneity of the GSP auction and

limt↓t̄E[Ii(GSP )|t] = 1. Therefore, equation 1.3 will give an identification result for the

whole population. In the estimation section, this No GSP Auction Endogeneity case is also

estimated along with the case allowing bidders to endogenously choose the auction system.

1.6 RDD Estimation

The RDD estimation in this paper follows the standard nonparametric regressions. Imbens

(2007) and Van der Klaauw (2007) have very good surveys for the literature of RDD,

especially the estimation methods used in RDD.

The asymptotical boundary properties of the standard kernel estimator is not ideal

because of the poor convergence rate, as pointed out by Hahn et al. (2001) and Porter

(2003). Therefore, we consider the local linear regression method proposed by Fan and

Gijbels (1996).

Let αy and βy solve the following minimization problems for the numerator:

min
αyl,βyl,αyr,βyr

∑
i|t̄−h<ti<t̄

(yi − αyl − βyl · (ti − t̄)− δ ·Xi)2 +

∑
i|t̄<ti<t̄+h

(yi − αyr − βyr · (ti − t̄)− δ ·Xi)2

Here h is the bandwidth on either side of the discontinuity point. Xi is the covariate

vector, which in the estimation includes the market dummy variable and the weekday
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dummy variable.

For the denominator, let αp and βp solve

min
αp,βp

∑
i|t̄<ti<t̄+h

(Ii(GSP )− αp − βp · (ti − t̄))2

then the estimator for the average causal effect will be τ̂ = α̂yr−α̂yl

α̂p
.

To estimate the bidding behavior difference, we try 2 different bandwidths, 11 days and

6 days around the discontinuity point on June 26, 2002. We also consider the case assuming

the GSP auction choice to be endogenous, and no auction endogeneity case assuming every

bidder bidding under the GSP auction.

The bidding statistics examined here include the daily bid changing frequency, the daily

bid range, the daily maximum bid, 75 percentile bid, mean bid, median bid, 25 percentile

bid and the daily individual bidder payment. For the last statistics, because we can not

observe the click-through-rate on each bidder’s link, we simply assume every bidder received

one unit of clicks in every 15 minutes.

Lastly, we estimate the bidding behavior change using both the absolute value and the

log value of the statistics.

Table 1.4 shows the RDD estimation results, which are consistent with the OLS regres-

sion results shown in Table 1.3. Column 1 shows the individual daily bidding frequency

increased 6.8 times which represents a 36% increase. For each individual bidder, his bid

range also increased by 131 cents, or 85% in relative value. All suggest that the GSP auction

did not increase the stability of the system.

The estimation results also present how an individual bidder’s payment changed each

day after the new auction was launched. Table 1.4 shows that each bidder’s average daily

payment decreased by about 70%. One of the reasons that this number is so big might be

that we cannot observe the actually click through rates on each slot and have to calibrate

the numbers from Brooks (2005). This might bring bias to the magnitude of the estimation.

Table 1.4 also presents how an individual bidder’s bid distribution changed after the

launch of the GSP auction. Column (2) shows that the maximum bid and 75 percentile

bid tended to increase and the mean bid, median bid and the 25 percentile bid tended to
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decrease, which is also consistent with the increase of bid range.

Lastly, Figure 1.4 plots how each of the statistics evolves before and after June 26, 2002.

We fit the estimation results with a smooth function.

When Yahoo! launched the new auction system, they named the new bid “maximum

willingness to pay”, hoping bidders would simply bid their highest possible payment. They

hoped this would reduce the instability of the system and increase Yahoo!’s revenue. But

the above results suggest these goals were not achieved. Instead of reducing the strategic

behaviors, bidders submitted their bids in a bigger range and changed their bids at a higher

frequency. All this suggests that the bidders were actually taking advantage of the GSP

auction system and were more likely to “game the system”.

The above estimation provides the average effect across the markets. We also conduct

the RDD estimation of the individual daily bidding frequency change and daily bid range

for each market m. Figure 1.5 provides the histograms of the RDD estimation results. By

looking at the graph, we can see most of daily bidding frequency increase reside between 0

and 10 times. The mean and median are also between 0 and 10. Meanwhile, the histogram

of the daily bid range increase shows that in most of the markets bidders increase their daily

bid ranges and the mean and median value are around $1. All these results are consistent

with the previous RDD estimation results and suggest the robustness of the above RDD

estimation regarding the daily bidding frequency increase and the daily bid range increase.

We also estimate the average treatment effect of the no endogeneity case. Because in

this case, we assume that all the bidders receive the treatment of the GSP auction, as

discussed in section 1.5, the magnitude of the estimation must be smaller than in the case

which assumes that bidders could endogenously choose the auction system. The estimation

results are shown in the Table 1.5. It is worth noting, however, that the interpretation of

the results in this case would be a little bit different: the estimation results here are the

average effect of the whole population, instead of the local average effect of a subgroup of

the population as in the previous case.

One possible factor, which might have an impact on the above estimation, is the learning.

If bidders were testing and learning the new auction system, the estimation of the bidding

frequency difference may have biases. However, before Yahoo! launched the GSP auction
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in June, Google had already started its GSP auction in April. (See Jansen and Mullen

(2008).) Because serious advertisers would have accounts in both search engines’ sponsored

search auctions, it would, therefore be, reasonable to assume that learning was unnecessary

for the bidders when they had the Yahoo! GSP auction and did not play a role in the

bidding behavior.

Trying to interpret why the GSP auction is more unstable than the GFP auction is

dangerous here as this paper only provides evidence showing that the second price auction

structure does not make the bidders less susceptible to gaming and not why the bidding

behavior in the GSP auction is more volatile and aggressive. However, our conjecture is

that second price auction structure in the GSP auction makes the bidders pay less, and

therefore, the bidders have more resources to engage in strategic bidding behaviors. This

might contribute to the estimation results above.

1.7 Efficiency Comparison

1.7.1 Model Setup

In this section we want to answer the question of whether or not there was any efficiency

improvement under the GSP auction system, as claimed by the literature. To measure

efficiency, we first construct an index measure based on the ranking.

Suppose there are two bidders, A and B. A′s value per click is VA and B’s value per

click is VB. If the system is efficient and higher ranks receive more clicks, then Pr[A higher

than B] = 1. If the auction mechanism is less efficient, this probability will be smaller than

1; the less efficient the mechanism is, the smaller the probability should be.

Therefore, this relative ranking between two bidders can be used as an index to measure

the efficiency of the auction mechanism. Based on this efficiency index, the idea behind

the identification is the following: If the system improves the bidding efficiency, it should

make the winner more likely to win and the loser more likely to lose. In other words, the

probability index bigger than 1
2 should be even bigger than 1

2 in the new auction system,

and the probability index smaller than 1
2 be even smaller than 1

2 in the new system.
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Given a unit of time, define λAB to be the portion of time that A ranks higher than B.6

If VA ≥ VB, because of the inefficiency of the GFP auction design or measurement error,

λAB should be smaller than 1. This difference will reflect the efficiency loss.

Assumption 3. If VA ≥ VB, then λAB = 1− α+ uAB with α < 1
2 .

Here α captures the efficiency loss caused by the GFP auction design and uAB can be

taken the measurement error, or a random shock. Assumption 3 also implies that in the

GFP auction, although the bidder with the low value might take advantage of the auction

design and sometimes dominate his competitor, this should not happen over 50% the time.

In other words, the bidder with the higher value should get the higher position more often.

Assumption 4. EuAB = 0 and uAB is iid. Its distribution function is denoted by F (u).

The literature claims that the GSP auction improves efficiency. Therefore, α will

decrease according to the prediction.

Assumption 5. Under the GSP auction, the observed frequency is

λAB = (1− α) + β + uAB

Therefore, the new function is

λAB = (1− α) + β ∗ I(GSP ) + uAB (1.4)

We can not observe VA or VB, therefore we do not know which is bigger if we just

randomly pick any bidders as A and B. The estimation of β̂ will be meaningless if we

simply regress the equation 1.4.

Therefore, the empirical question is how to estimate β. The following propositions show

the estimation strategy, which is discussed at the beginning of the section.

Proposition 2. Let N be the number of the observations. Define ηAB = max{λAB, 1 −

λAB}. Regress ηAB = γα+γβ ∗I(GSP )+uAB. Then the OLS result provides a lower bound

for β. That is limN→∞ γ̂βN = β∞ < β

6The unit of time can be an hour, a day, etc.
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Proof. : By OLS, it can be shown that

β∞ = E{max{(1− α) + β ∗ I(GSP ) + uAB, 1− ((1− α) + β ∗ I(GSP ) + uAB)}}

−E{max{(1− α) + uAB, 1− ((1− α) + uAB)}}

= (1− α) + β + 2
∫

(−u− (
1
2
− α+ β))I(u < −(

1
2
− α+ β))dF (u)

−((1− α) + 2
∫

(−u− (
1
2
− α))I(u < −(

1
2
− α))dF (u))

= β + 2
∫

(−u− (
1
2
− α+ β))I(u < −(

1
2
− α+ β))dF (u)

−2
∫

(−u− (
1
2
− α+ β))I(u < −(

1
2
− α))dF (u)

−2β
∫
I(u < −(

1
2
− α))dF (u)

= β − 2β
∫
I(u < −(

1
2
− α))dF (u)

+ 2
∫

(u+ (
1
2
− α+ β))I(−(

1
2
− α+ β) < u < −(

1
2
− α))dF (u)

Because I(−(1
2 − α+ β) < u < −(1

2 − α)) ≤ I(u < −(1
2 − α)) and u+ (1

2 − α+ β) ≤ β

when u < −(1
2 − α)

Therefore 2β
∫
I(u < −(1

2 − α))dF (u) > 2
∫

(u + (1
2 − α + β))I(−(1

2 − α + β) < u <

−(1
2 − α))dF (u)

Therefore β∞ < β

Proposition 3. Let N = N1 ∗ N2. Define ηAB, N1 = max{ΣλAB
N1

, 1 − ΣλAB
N1
}. Regress

ηAB, N1 = γα + γβ ∗ I(GSP ) + uAB. Then the OLS result provides a consistent estimate.

That is limN1,N2→∞ γ̂βN1,N2
= β∞ = β

Proof. : By OLS, it can be shown that

β∞ = lim
N1→∞

β + 2
∫

(−ΣuAB
N1

− (
1
2
− α+ β))I(

ΣuAB
N1

< −(
1
2
− α+ β))Π(dF (u))

−
∫

(−ΣuAB
N1

− (
1
2
− α))I(

ΣuAB
N1

< −(
1
2
− α))dF (u)
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As EuAB = 0 and uAB is iid, ΣuAB
N1
→ 0. And | − ΣuAB

N1
− (1

2 − α+ β) < 2, therefore

|
∫

(−ΣuAB
N1

− (
1
2
− α+ β))I(

ΣuAB
N1

< −(
1
2
− α+ β))Π(dF (u))|

≤ 2
∫
I(

ΣuAB
N1

< −(
1
2
− α+ β))Π(dF (u))

→ 0

Therefore β∞ = β.

1.7.2 Estimation

We first randomly pick an auction market and then select two bidders as A and B in this

market. From June 15, 2002 to July 21, 2002, we randomly choose 500 pairs. Second,

we calculate λAB for each day. Next, we define ηAB = max{λAB, 1 − λAB}. Then by the

above Propositions, the following regression will provide a lower bound for the efficiency

improvement:

ηAB = αAB + β ∗ I(GSP) + γday ∗Dday + uAB

Here we control for the pair fixed effect αAB, weekday effect γday.

We estimate the efficiency improvement for two cases. The first case includes all the

bidders, and the second case only includes active bidders who change their their bids at

least 400 times everyday. Table 6 shows the efficiency improvement brought by the launch

of the new auction. The value of β̂ suggests that after the new auction launched, the

bidder with the higher value was more likely to dominate the lower-value bidder and that

this probability increased by around 4%. β̂ is positive, therefore, it is consistent with the

literature that the GSP auction is more efficient than the GFP auction. But the magnitude

is not significantly large.

For active bidders, the estimation result is smaller, which means there is not much

change in the relative rankings after the launch of the GSP auction. This suggests that the

active bidders might still engage in strategic bidding behavior, which is consistent with the

results in the RDD section.
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1.8 Conclusion

The evolution of sponsored search auctions is an important and interesting phenomenon.

Having a deep understanding about different sponsored search auctions, especially the per-

formance differences, can help us design superior auctions in the future.

When Yahoo! launched the GSP auction, their purpose was to bring a more stable,

more profitable and more efficient auction. People in the industry and academia did expect

that the bidders would be less likely to “game the system” and that the new auction system

would bring Yahoo! more revenue. One important factor to note was that at that time,

Google, which was rising in popularity, was adopting the GSP auction, and that Yahoo!

wanted to copy Google’s success.

However, this paper provides solid evidence suggesting that under the new system,

instead of being more stable, bidders tended to update their bids more frequently, their

individual bid range tended to be bigger, and that Yahoo!’s revenue shrunk after the launch

of the GSP auction. This is in contrast with Google’s success. One of the key differences

between these two is that Google was not only using the GSP auction, but also a different

slot allocation rule. Google was using a score system created by itself, which depended on

both bidders’ bids and their web link qualities, to allocate the web link placements instead

of just their bids. This score system made the bid manipulation play a less important role

in determining a bidder’s rank. In other words, it was more difficult for an individual bidder

to manipulate his slot allocation just by frequently changing bids. Instead, in the Google

sponsored search auction the incentive for a bidder was to improve his product’s quality

in order to obtain higher position by improving his score. We conjecture this is the key

difference which makes Goolge more successful. In 2007, Yahoo! also adopted this score

system. This also suggests that the GSP auction may not be as superior as most of the

conventional wisdom believes, and that the score system probably plays a crucial role in

improving the GFP auction. These conjectures will be left to the future research.
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Table 1.1: Bid Statistics of the Top 10 Most Clicked Markets

Market Observations mean std dev min Max
1 2,286,978 13.66 1.67 0.05 49
2 3,075,005 7.95 1.40 0.05 41.13
3 46,706 5.57 1.73 0.05 11
4 6,344 22.01 10.43 0.05 100
5 1,477,566 14.48 1.19 0.05 33
6 46,980 4.98 1.38 0.05 22
7 7,198 21.62 6.34 0.05 100
8 7,493 18.30 7.37 0.05 100
9 15,724 5.33 3.62 0.05 21.01
10 6,764 23.32 8.44 0.05 100

Note: there are 18,634,347 bids collected from 1,000 markets in the sample.
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Table 1.2: Summary Statistics from June 15th to July 5th

Before June 25th Mean Stv Min Max
Bid Frequency 20.9 108 1 4,934
Bid Range 0.617 1.55 0 48.99
Max Bid 2.66 3.69 0.05 100
75 percentile bid 2.74 3.89 0.05 100
Median Bid 2.54 3.59 0.05 100
Mean Bid 2.52 3.55 0.05 100
25 Percentile bid 2.38 3.48 0.05 100
After June 25th Mean Stv Min Max
Bid Frequency 23.3 143 1 6,011
Bid Range 0.983 3.33 0 49.95
Max Bid 3.02 4.64 0.05 100
75 percentile bid 2.82 4.10 0.05 50
Median Bid 2.59 3.75 0.05 50
Mean Bid 2.56 3.62 0.05 42.8
25 Percentile bid 2.30 3.42 0.05 50
Note: there are 1,099,781 bids collected from 812 markets.
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Table 1.3: The Change of the Statistics in Three Months

α1 α2 α3

Bid Frequency 14.5% 28% 18.8%
(0.008) (0.009) (0.010)

Bid Range 14.0% 14.4% 15.2%
(0.013) (0.013) (0.014)

Max Bid 10.3% 12.7% 15.1%
(0.007) (0.007) (0.008)

75 percentile Bid 9.7% 12.1% 14.6%
(0.007) (0.007) (0.008)

Mean Bid 9.1% 10.9% 13.6%
(.007) (.007) (.008)

Median Bid 8.8% 10.8% 13.7%
(.007) (.007) (0.008)

25 percentile Bid 6.7% 8.2% 11.1%
(0.007) (0.008) (0.008)

Note: there are 5,877,945 bids collected from 833 markets.
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Table 1.4: RDD Estimation Results
h=11 h=6

Absolute Relative Absolute Relative
Bid Frequency 6.80 35.9% 6.09 50.9%

(10.62) (0.116) (11.78) (0.125)
Bid Range 1.313 85.1% 1.78 125%

(0.239) (0.118) (0.302) (0.149)
Daily Payment -21.76 -67.9% -22.1 -64.38%

(4.26) (3.22) (5.01) (0.086)
Max Bid 0.551 6.1% 0.840 17.3%

(0.281) (0.052) (0.329) (0.072)
75 percentile bid 0.09 -0.002% 0.233 9.8%

(0.256) (0.040) (0.340) (0.112)
Median Bid -0.209 -6.11% -0.164 0.98%

(0.282) (0.057) (0.307) (0.104)
Mean Bid -0.190 -4.03% -0.158 3.7%

(0.250) (0.047) (0.287) (0.061)
25 Percentile bid -0.537 -17.9% -0.609 -13.9%

(0.203) (0.071) (0.271) (0.080)
Treatment Probability Jump 0.542 0.505

(0.005) (0.006)
Notes: There are 1,099,781 bids collected from 812 markets. Absolute measures the ab-
solute value change; Relative measures the percentage change. h is the bandwidth taking
value of 11 days and 6 days respectively. To analyze payment, we normalize the click on
the first slot to one. The click declining rate follows the Brooks (2005). Therefore, the
relative change for the daily payment is more meaningful.
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Table 1.5: RDD Estimation Results: No Auction Endogeneity Case
h=11 h=6

Absolute Relative Absolute Relative
Bid Frequency 3.671 19.4% 3.110 26%

(2.031) (0.021) (2.284) (0.024)
Bid Range 0.709 46% 0.91 64%

(0.006) (0.006) (0.053) (0.039)
Daily Payment -11.40 -36.7% -11.28 -32.9%

(0.62) (1.42) (0.25) (0.030)
Max Bid 0.298 3.3% 0.430 9.0%

(0.051) (0.017) (0.066) (0.022)
75 percentile bid 0.049 -0.001% 0.119 5.0%

(0.046) (0.017) (0.061) (0.019)
Median Bid -0.113 -3.3% -0.084 0.5%

(0.042) (0.017) (0.048) (0.020)
Mean Bid -0.106 -2.2% -0.078 1.9%

(0.040) (0.017) (0.047) (0.019)
25 Percentile bid -0.287 -9.7% -0.309 -7.1%

(0.039) (0.019) (0.050) (0.021)
Notes: There are 1,099,781 bids collected from 812 markets. Absolute
measures the absolute value change; Relative measures the percentage
change. h is the bandwidth taking value of 11 days and 6 days respec-
tively. To analyze payment, we normalize the click on the first slot to
one. The click declining rate follows the Brooks (2005). Therefore, the
relative change for the daily payment is more meaningful.
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Table 6: Estimation Result of Relative Ranking Change
Active Bidders All Bidders

β 0.038 0.037
(0.0027) (0.0028)

N of Obs 15,316 15,343
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Figure 1.1: Sponsored Links for the Keyword ”Refinance”

Advertiser Sign In HelpYahoo!   My Yahoo!   Mail     Welcome, Guest [Sign In]

Answers
1 - 10 of about 40,100,000 for refinance - 0.42 sec. (About this page

Also try: refinance mortgage, auto refinance, home refinance More...

SPONSOR RESULTS 

SPONSOR RESULTS 

Refinance - Lendingtree
www.LendingTree.com - Refinance $200,000 for $667/Month. Refinance Offers, Qualify 
Online.

Bad Credit? Refi Today
www.FullSpectrumLending.com - Homeowner in debt? Need cash now? Fast home refi. 
Low payments. 

Nationpoint Home Loans
www.nationpoint.com - First time buyer specialists. 0% down loans with credit scores 620+. 

Refinance
Oregon.RateSlide.com - Rates Still Near Historic Lows. Get and Compare Your Rates Now. 

1. Mortgage and Loan Interest Rates at Yahoo! Real Estate

Quick Links: Mortgage Calculators - Mortgage Rates
realestate.yahoo.com/loans - More from this site

2. Mortgage, Refinance, and Home Equity Loans - GetSmart.com

Quick Links: Home Refinancing - Fixed Home Equity - Mortgage Quotes
www.getsmart.com - More from this site

3. Quicken Loans - Home loans, Refinancing, Interest-only options

Quick Links: Get Mortgage Rates - Compare Home Loans - Interest-Only Loans
www.quickenloans.com - More from this site

4. Real Estate Financing in the Yahoo! Directory

dir.yahoo.com/Business_and_Economy/.../Real_Estate/Financing - 16k - Cached - More from 
this site

5. Mortgage: Quotes, Rates, Loans & Refinance by National Mortgage

Category: Real Estate Financing > Brokerages
www.nationalmortgage.com - More from this site

6. E-Loan: Mortgage, Refinance, Home Equity, Auto Loans, Savings, CDs

Quick Links: Home Equity - Mortgage Refinance - Savings Accounts
www.eloan.com - More from this site

7. Mortgage Refinance and Home Loans - Ameriquest

Category: Real Estate Financing
www.ameriquestmortgage.com - More from this site

8. Home Loans - Equity, Refinance, Mortgage & Auto | LendingTree

Quick Links: Refinance Now - Fixed Home Equity - Mortgage Quotes
www.lendingtree.com - More from this site

9. Refinance Articles - Quicken Loans

www.quickenloans.com/refinance/articles/index.html - More from this site

10. Refinance Home Mortgage - Ditech.com

www.ditech.com/refinance/index.html - More from this site

Find up to date national mortgage interest rates for fixed rate mortgages, ARM adjustable rate 
mortgages and interest only mortgages at Yahoo! Real Estate

A service of LendingTree - Complete a short 2-minute form & get up to 5 free mortgage quotes 
- no obligation and no Social Security Number required. Bad Credit OK.

Quicken Loans - Get information, check rates, and learn about refinancing your current home 
loan. Compare mortgage options, apply online, get pre approved and close fast.

Browse through a long list of companies that offer home loans, refinancing, and ... Offers home 
refinance, secured debt consolidation, and other lending services. ...

Free mortgage quotes, calculators and guides, with unmatched customer service. ... Mortgages 
free mortgage quotes Home Loans Refinance credit calculator house loan ...

E-Loan offers home mortgage, refinance, home equity loans, lines of credit, auto and 
motorcycle loans, savings accounts and CDs with great rates online. No hidden fees.

Choose AmeriquestMortgage.com to find a great mortgage. Ameriquest provides home 
mortgage loans, mortgage refinancing, and debt consolidation services.

LendingTree - Your ARM could increase as much as 60%. Lock in a low rate now. $175,000 for 
$930/mo. 15 year Fixed. 1 simple form, get up to 4 custom offers in minutes.

Refinance Articles - Quicken Loans offers mortgages, home loans, refinance and home equity 
loans. Find information to help you make informed mortgage decisions.

Save on your monthly payments or use your equity to get cash out with the Ditech's home 
mortgage refinance products.

Also try: refinance mortgage, auto refinance, home refinance More...

Countrywide® Home Loans
www.Countrywide.com - Fast home refi, good credit or not. Countrywide®. 4 out of 5 
approved. 

Get up to $1,500 - Fast and Easy
payday-fastloan.com - No fax.No check.Payday loan.Personal loan.And many more. 

SPONSOR RESULTS

Countrywide® Home Loans
Fast home refi, good credit or not. 
Countrywide®. 4 out of 5 approved. 
www.Countrywide.com 

Get up to $1,500 - Fast and 
Easy
No fax.No check.Payday 
loan.Personal loan.And many 
more. 
payday-fastloan.com 

Refinance
Get the most out of your mortgage. 
Refinance with GMAC Mortgage. 
www.gmacmortgage.com 

Refinance with Ditech®
Get Low Fixed Rates, Lending 
Costs Quick Approval. Apply 
Online Now. 
www.ditech.com 

Wachovia Pick-a-Payment
Lower Payments, Increase Cash 
Flow. New from Wachovia. Learn 
More. 
www.Wachovia.com 

Refinance
Rates Still Near Historic Lows. No 
Lender Fee. Approval in Minutes. 
www.eloan.com/refinance 

Compare Refinance Quotes
Complete Our Easy Form & 
Receive Up To 4 Low Refinance
Quotes.
www.GuideToLenders.com/refinanc

Refinance Quotes - Save
$1000s Now
Refinance your mortgage loan 
before rates explode. Get matched 
here. 
www.usloanquotes.com 

See your message here...

1 2 3 4 5 6 7 8 9 10 Next

refinance Search
Web Images Video Local Shopping more

Search Results

Page 1 of 2refinance - Yahoo! Search Results

3/28/2007http://search.yahoo.com/search?p=refinance&fr=yfp-t-501&toggle=1&cop=mss&ei=UTF-8
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Figure 1.2: Bids and Rankings

Keyword: economics

Search

 
  Overture Keyword Suggestion  
  Overture Bids

gfedc

gfedcb

  
Welcome to the NEW Keyword 
Dynamo Tool. The only Tool 
where you can view Overture Bids 
for US Market. Due to it popularity 
and usage overture has blocked

 

 

  
View Bids  
  
 
 

 

 
 Type in a search term and we'll show you the Max Bids and listings for that term.

refinance

  
  Search Cancel

 

1. Refinance - Lendingtree 
$300,000 For Only $1,000/month. Refinance Today. Bad Credit Options. 
www.LendingTree.com 
(Advertiser's Max Bid: $16.13) 

2. Bad Credit? Refi Today 
Homeowner in debt? Need cash now? Fast home refi. Low payments. 
www.FullSpectrumLending.com 
(Advertiser's Max Bid: $12.53) 

3. Nationpoint Home Loans 
First time buyer specialists. 0% down loans with credit scores of 620+. 
www.nationpoint.com 
(Advertiser's Max Bid: $9.70) 

4. Refinance 
Rates Still Near Historic Lows. Get and Compare Your Rates Now. 
Oregon.RateSlide.com 
(Advertiser's Max Bid: $9.55) 

5. Countrywide® Home Loans 
Refi to combine 1st mortgage & debt. Low payments with a 40-year loan. 
www.Countrywide.com 
(Advertiser's Max Bid: $8.75) 

6. Get up to $1,500 - Fast and Easy 
No fax.No check.Payday loan.Personal loan.And many more. 
payday-fastloan.com 
(Advertiser's Max Bid: $8.42) 

7. Refinance 
Refinance and reduce your payments upto 60%. 
www.floridaslowestrates.com 
(Advertiser's Max Bid: $7.49) 

8. Refinance 
Get the most out of your mortgage. Refinance with GMAC Mortgage. 
www.gmacmortgage.com 

 

Page 1 of 1Keyword Dynamo - Overture Bids and Suggestion Tool

3/28/2007http://keyword.secretstohighprofit.com/default.aspx
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Figure 1.3: The Portion of bidders adopting the GSP auction
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Figure 1.4: The Statistics Before and After June 26, 2002
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Figure 1.5: The Histograms of the Daily Biding Frequency Increase and the Daily Bid
Range Increase across Markets
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Chapter 2

Backtesting Advertisers’ Automated Bidding

Strategies

2.1 Introduction

Each year, advertisers pay billions of dollars to search engines through sponsored search

auctions. Understanding the dynamic bidding behaviors in these auctions has become a

priority for both the search engines and advertisers, as well as for future auction design.

This research focuses on one important, but largely ignored, aspect: the automated bidding

behaviors in sponsored search auctions. Specifically, it examines how different automated

bidding strategies impact advertisers’ cost and revenue.

In sponsored search auctions, bidders pay for each click they receive and the auctions are

essentially an infinite time continuous bidding auction. (See Yuan (2008) and Jansen and

Mullen (2008).) These pay-per-click and continuous time bidding features make employing

automated bidding software an inevitable choice because advertisers face an important trade

off: On one hand, monitoring bidding campaigns is necessary to control cost and improve

revenues; on the other hand, it is too costly to hire professionals to monitor the bids all

the time, especially when there are many accounts to manage. Therefore search optimizing

marketing experts often recommend bid management software. Wilson (2006) says: “For-

tunately, there’s software that can assist you and save you a significant chunk of money in

the process.” He goes on to say: “Bid management software can often save 30 percent to

50 percent of your current level of ad purchases by maintaining your desired position, opti-
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mizing prices by reducing bid gaps.” Because automated bidding software is so commonly

adopted in sponsored search auctions, examining this practice seems indispensable in order

to understand the dynamic bidding behaviors of advertisers.

In this research, I investigate how different automated bidding strategies perform and

provide insight for advertisers about current bidding management and future automated

bidding software design.

I borrow methodology from the finance backtesting literature. In equity markets such

as stock markets and futures markets, traders also often use different technical trading

rules to manage and execute their orders. Backtesting refers to the research in which

people evaluate and optimize trading strategies or algorithms. In those papers, they try to

determine whether these simple trading rules can overthrow the efficient market hypothesis

and how profitable different trading strategies are. Classical backtesting papers include

Frankel and Froot (1990), Brock et al. (1992) and Blume et al. (1994) and et al. Part and

Irwin (2004) provides a comprehensive survey on the backtesting literature. I adopt similar

estimation methodology from this literature to compare the performance differences among

various popular automated bidding strategies used in the sponsored search auctions.

I use 1,000 Yahoo! sponsored keyword search auction data from a period of one year in

order to backtest different automated bidding strategies. I focus on the top ten bid positions

in each auction market and simulate bids with automated bidding strategies, which include

targeting specific position (Position Targeting), monitoring the cost per purchase ( Cost-

per-Purchase Bidding), setting a constant bid (Cost Bidding Targeting,) and monitoring

the return of investment (ROI strategy). Then I compare the bidding performances among

themselves and find that advertisers’ optimal strategies are depending on their budget, value

per click and the degree of market competition. Given the value per click and the degree

of market competition, when the advertiser’s budget is small, her optimal strategy will be

Constant Bidding; as her budget increases and passes certain critical value, ROI Bidding

or CPP Bidding will become her optimal choice. When controlling for the degree of market

competition and assuming advertiser’s budget is not binding, as her value per click increases,

Targeting Position 1 will become more and more attractive. If controlling advertiser’s

budget and value per click, as the market become more competitive, the performance of

38



ROI Bidding is converging to that of Targeting Position 1.

Because of the limitation of data availability and the complexity of dynamic bidding

there are few papers addressing the dynamic issues of sponsored search auctions. Zhang

(2005) proves the existence of bidding cycles in the Generalized First Price Auction and

studies the cyclical properties of advertisers’ bidding behaviors using Markov Switching re-

gression. Based on the idea of Bid Jamming, Yuan (2009) proves the Edgeworth bidding

cycles in the Generalized Second Price Auction. Cary et al. (2008) consider best-response

strategies in a repeated auction setup and studies the convergence and robustness prop-

erties of equilibrium. Yao and Mela (2009) obtain a unique data and apply the standard

dynamic game estimation methods to backup individual bidder’s parameters. However, to

my knowledge, none of the current research pays any attention to the role of automated

bidding software in advertisers’ bidding behaviors.

The contribution of this paper to the literature is twofold. First, it is the first research in

the literature to examine the role of automated bidding behaviors by borrowing the meth-

ods used in the finance backtesting literature. The paper provides insights for advertisers in

practical purposes. Advertisers can choose the most appropriate automated bidding strate-

gies based on their situations. Second, this paper also provides evidence suggesting that

constant bidding might not be an optimal strategy for advertisers. Actually, the optimal

bidding strategy seems to be determined by bidder’s budget, value per click and the de-

gree of competition. Edelman and Ostrovsky (2006), Edelman et al. (2008), Varian (2006),

Yao and Mela (2009) suggest that the bidding in the Generalized Second Price Auction

should be stable. However, sawtooth bidding pattern is also documented, (See Edelman

and Ostrovsky (2006).) and Yuan (2008), Yuan (2009) provide both empirical and theoret-

ical evidence suggesting the bidding in the Generalized Second Price Auction is not stable.

This paper further suggests that the stable bidding strategies might not be optimal under

a variety of conditions, which explains why we always observe volatile bidding in the GSP

auction.

The rest the paper is organized as such: section 2.2 introduces the estimating model and

methods, and discusses the automated bidding strategies; section 2.3 describes the data set

used in this backtesting research; section 2.4 shows the estimation results and section 2.5
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concludes.

2.2 Model

The whole research is based on bidding simulation. In this section, I will set up the model

to simulate advertisers’ bidding function, which will be used repeatedly later. First, I will

briefly introduce how sponsored search auctions work.1 Then I will setup the model.

2.2.1 Sponsored Search Auctions

Search engines use sponsored search auctions to sell link positions, or sponsored links, on

the search result page to advertisers. Figure 1.1 shows an example of sponsored links for

the key word “refinance”. When someone uses Yahoo! to search for information about

“refinance”, the search engine will display search results along with sponsored links, which

are circled in Figure 1.1. Usually around 10 sponsored links, located on the top and on the

right of each page, will be displayed.

Sponsored search auctions are multi-object dynamic auctions in which all the link slots

are auctioned at the same time. As shown in Figure 1.1, there were at least 12 sponsored

link slots being auctioned at that time. Second, the auctions are dynamic with an infinite

time horizon. Each bidder can change or withdraw his bid at any time, which will be

immediately reflected in the slot placement. Third, all search engines share a common

payment rule: pay per click (PPC), which means that whenever there is a click on the

sponsored link, the bidder will pay Yahoo! once. And lastly, in Yahoo!’s sponsored search

auction, all the information, including bids and slot placement, is public information, which

can be observed by all the bidders directly.

2.2.2 Model Setup

Here, I will setup the model to describe the bidding path. I focus on a repeated auction

game with infinite time periods. Suppose in the auction, there are N sponsored search

positions. Let bn,t denote the bidding price at the position n in period t. Let ct denote the

1For details, please refer to Yuan (2008) and Jansen and Mullen (2008).
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clicks received by the top position. Assume the click declining rate is δn,t such that the

clicks received by position n will be

cn,t = ctδn,t

and of course δ1 = 1.

The cost for advertisers may take different values under different sponsored search auc-

tion systems.2 In the generalized first price auction, each advertiser will pay at his own bid

and therefore the total cost for him to stay at position n at period twill be

bn,tcn,t = bn,tctδn,t

In the generalized second price auction, each advertiser will pay at the next highest bid to

his. Therefore the total cost will be

bn+1,tcn,t = bn+1,tctδn,t

For simplicity, the simulation in this paper will only focus on the generalized second price

auction system.

I am interested in how the bids at all N sponsored search positions interact among each

other in each period. I use Bt to denote the bid vector at all links in period t,

Bt =



b1,t

b2,t

.

.

bN,t


and assume this bid vector is determined by the following function in each period:

Bt+1 = f(Xt, Xt−1, ...., X0)
2For details, please refer to Yuan (2008) and Jansen and Mullen (2008).
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here Xt is the vector including all the variables in period t which may impact advertisers’

bidding behaviors in period t+ 1.

f(X) is a general function guiding advertisers’ bidding behavior. The following as-

sumptions will help simplify the function and make the simulation manageable.

Assumption 6. Bt+1 is determined solely by Xt. That is, Bt+1 = f(Xt).

This assumes that the bidding function f(X) is solely based on the information of the

nearest period and history does not play a role in the decision making. This assumption is

complying with most of the current theory papers on dynamic sponsored search auctions,

such as Zhang (2005), Yuan (2009) and Cary et al. (2008), and empirical paper such as Yao

and Mela (2009). The Perfect Markov Equilibrium model is one special case of this setup.

Assumption 7. Bt+1 is determined by Bt. That is, Xt = Bt.

This assumption is even stronger than the previous one. It says that the bids in

each period can fully capture the information based on which advertisers are making bid

decision. That is each advertiser’s own heterogenous information is not playing a role in

the determination of the bid function in the auction. The heterogeneity among different

key word auction markets, such as the difference of click through rates, will also not show

up in the bid function. This assumption, bids being solely determined by bids, is also

complying with most of the current dynamic sponsored search auction theories including

Zhang (2005), Yuan (2009) and Cary et al. (2008). Plus, this assumption has also been well

established in the repeated game theories: Maskin and Tirole (1988b) analyze a repeated

game model and find a Markov perfect equilibrium, in which an agent’s price move in any

period depends only on other agent’s current price. In sponsored search auctions, it is

definitely more realistic to include more heterogeneity among bidders and markets instead

of leaving them in the error terms. But given the data limitation in this paper, this issue is

left to future exploration.

Based on the above two assumptions and 18 million bids collected from 1,000 keyword

auctions, I can backup the bidding function f(X )̇ and further use it the simulate the auc-

tions. To backup f(X), I use nonparametric polynomials.
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Based on assumption 6 and assumption 7, the bids in each period can be written as

Bt+1 =



b1,t+1

b2,t+1

.

.

bN,t+1


= f(Bt)

I use polynomials to estimate the above function and write the estimation function as

such:

log(Bt+1) =
∑

AiB
i
t + ε

The data and simulation will be addressed in details in the following section.

2.2.3 Further Discussion

Equilibrium Path One issue related to the simulation based on the above estimation is

the off-equilibrium path estimation. Data only shows the equilibrium path and the above

model only allows me to estimate the equilibrium bid function. When I arbitrarily input

a bidding strategy while simulating bids using the above bid function, I implicitly assume

other bidders still employ their original bidding strategies. This is also a common issue

faced by the finance backtesting literature.

To handle this, I not only estimate the bid function based on all 1,000 keyword markets,

but I also generate the simulation based on only the thick market, where there are more

active bidders frequently updating their bids. In practice, when there are more active

bidders competing for the sponsored links, an extra bidder will be less likely to have a big

impact on the bidding path. Therefore, the estimated bid functions from thick markets are

more robust than off-equilibrium strategy shock.

Identification In later sections I will use polynomials to estimate the bid function.

The main estimation purpose is to help simulate the bidding path. Therefore, I do not have

to maintain other strong assumptions to identify the exact bidding function. As long as

the estimated function matches with the data, the simulated bids will be good enough to
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represent what is actually generated.

2.3 Data

I obtain a bid data set from Yahoo!’s research department. The data records all of the bids

for the top 1000 keyword searches by volume and all of the associated accounts for the time

period from June 15, 2002 through June 14, 2003.

Each observation in the data has 5 variables: bidder ID, bidder’s bid, the time when

the bid was submitted, auction market, and a dummy variable indicating whether the bid

was placed under the GFP auction rule or under the GSP auction rule.

Table 1.1 shows the statistics of the 10 auction markets selling the top 10 most clicked

keywords from June 15, 2002 to June 14, 2003. Five cents is the minimum requirement for

bidding. One striking observation is the value of the maximum bid. According to this data

set, in some cases, bidders are paying Yahoo! $100 for just one click through the sponsored

search. The bottom line of what Table 1.1 shows is that sponsored search advertising is

really a serious business and advertisers are willing to pay thousands of dollars for just one

click.

Table 2.1 presents possible evidence of automated bidding behaviors. The first row of

the table shows the simple statistics of the times each bidder changes his bid on each day.

On average, among all bidders and all markets, each bidder changes a bid 15 times on each

day; the maximum number is 17,867, which is definitely the result of automated bidding.

The lower part of the table gives us some ideas about the portion of bids submitted by

automated bidding software. If updating bids 40 times each day implies the employment

of automated bidding, then more than 53% of bids are submitted by bidding robots. If

the threshold increases to 100 times, then about 44% of bids are. If someone changes his

bid over 500 times on each day, which is probably a case of automated bidding, then the

portion will be around 30%. To summarize, Table 2.1 reveals that a significant portion

of bids are submitted through automated bidding software, which suggests the importance

and necessity of current research.

The following section will simulate the bids in each market. Table 1.1 shows the statistics

44



of the bids on the top ten sponsored link positions in each market. The mean value of the

top bid in each market is $3.6 and the maximum bid is over $9,000. As the position moves

down, the bids also decline as shown by the mean bid on each position. The mean value

of the bid on the tenth position is 12 cents, which is significantly smaller than that on the

top position. The following section will simulate the bidding based on the above data. The

simulation will especially focuses on the bids on the top ten positions and the bids lower

than tenth position will be ignored.

2.4 Simulation

This section will first estimate the bidding function on the top ten position and then simulate

the bidding flow. Then I will examine the cost benefit performance of different automated

bidding strategies. However, as discussed in section 1.5, different positions will receive

different clicks, which I cannot observe. Therefore, I first calibrate the click declining rate:

δn.

2.4.1 Calibration and Benchmark

I normalize the clicks received by the top position to be one. Table 2.3 contains the click

declining rate of Yahoo! sponsored search auction. (See Brooks (2005).) The second highest

position receives about 77.7 percent of clicks as the top position does, on average. The clicks

received by tenth position dramatically decreases to 8% as compared to the top position.

The following simulation will apply this table repeatedly. One implicit assumption is that

the declining rates are the same across markets and time line.

Based on Table 2.3, I can calculate the benchmark cost benefit relation. That is, I can

reveal how costly it is to obtain different levels of clicks.

Figure 2.1 shows the relation between the total cost and clicks of each bidder on each

day. I normalize the number of clicks received by the top position on each day to be one

click. After the normalization, one needs to notice that the highest number of clicks an

advertiser can receive is one. The interpretation of figure 2.1 is that in order to get one

click on each day, on average, bidders have to pay around $2.5. To get 0.5 clicks, bidders
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need to pay around 75 cents.

There are several issues worth mentioning. First, to maintain the top position, on

average, bidders need to pay $2.5. Table 2.2 shows that the average bid for the top position

is $3.6. This difference comes from the fact that it is a second price auction. Second, the

payment is the total payment. Therefore, a higher amount of clicks implies a higher cost.

To measure the effective cost, I look at the slope of the curve, which is the cost per click.

The curve has an increasing derivative, suggesting that the cost per click is increasing when

bidders are bidding for a higher position.

Figure 2.2 shows the benchmark relation between the cost per click and the clicks re-

ceived. If a bidder wants to maintain the top position, the unit cost for each click received

is around $2.5. However, if he receives half of the maximum clicks, the unit cost will drop

to around $1.6.

Table 2.4 records the same information as Figure 2.1. Figure 2.1, Figure 2.2 and Table

2.4 present the benchmark cost click relationship.

2.4.2 Automated Bidding Strategies

Different automated bidding management softwares may incorporate different bidding rules.

More sophisticated rules are may achieve better performances. Kitts and Leblanc (2004)

and Sandler (2006) list some popular but simple rules:

CPP (Cost per Purchase) based bidding: This rule will move the bid up or down

based on the CPP of individual keywords, which is determined by the clicks and the portion

of clicks turning into purchase (Conversion Rate).

ROI (Return Of Investment) based bidding: This rule will move the bid up or

down based on the ROI of individual keywords, which is determined by the number of clicks,

conversion rates and profits per purchase.

Bid Jamming: Bid Jamming happens when you bid 1 penny less than your competitor.

This forces your competitor to pay a higher cost per click. Bid Jamming is more of a

temporary strategy than a long term strategy because competitor’s response is expected.

However, this response may vary in different situations and from current data, I cannot

identify the response function of Bid Jamming. Because it is too bidder-specific, I will skip
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simulating Bid Jamming.

Relative Positions: This rule allows your listing to always be a certain number of

positions above a particular competitor. Relative Position is also a bidder specific strategy

depending on keyword, clicks and advertisers. The data in this paper has over 10,000

bidders and choosing which bidder as target is a challenging task. Therefore, I will also

skip simulating this strategy.

Parameter-Based Rules: This rule makes adjustments to keyword bids based on pa-

rameters like: starting time, ending time, setting up a constant bid or targeting a particular

position.

In this paper, I will simulate the following strategies:

Position targeting:

Targeting Position 1: always maintain at the top position

Targeting Position 2: always maintain at the second highest position

Targeting Position 3: always maintain at the third highest position

Constant Bidding:

Before I choose the constant bids, several numbers are worth mentioning. First, the

mean value of the bids in top position is $3.59. Second, Yao and Mela (2009) estimate

the mean value per click in sponsored search auctions to be 24 cents. However assuming a

constant bid for all the markets might skew the difference among the markets and provide

biased estimation results. Therefore, in the simulation, I assume a different constant bid

for different market. I take the following four bid values for each market: the 90 percentile

value of all bids in the market, the 75 percentile bid, the 50 percentile bid and 25 percentile

bid. These values are different across markets and take into account the value difference

among the markets.

Cost-per-Purchase Based Bidding:

This strategy monitors the cost per purchase of choosing position 1 or 2 or 3 and picks

the strategy for each period which was the winning strategy in the last one. I assume the

conversion rate to be 1%. (See Yao and Mela (2009).) This strategy is trying to mimic

bidding behaviors in reality. The algorithm is the following:
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Step 1: calculate the cost per purchase of the following three bidding strategies in period

t− 1: taking position 1, taking position 2 and taking position 3.

Step 2: choose the winning strategy in period t− 1 to guide the bidding behavior in t.

Step 3: repeat above steps.

Return of Investment Based Bidding:

This strategy monitors the returns rate of choosing position 1 or 2 or 3 and picks the

strategy for each period which was the winning strategy in the last one. The algorithm is

the following:

Step 1: calculate the ROI of the following three bidding strategies in period t− 1: taking

position 1, taking position 2 and taking position 3.

Step 2: choose the winning strategy in period t− 1 to guide the bidding behavior in t.

Step 3: repeat above steps.

The first point I want to emphasize is that the simulation is normalized because of the

lack of click information in each market. The assumption behind is that there is only one

click at the top position in each market. By the Table 2.2, the second position receives 0.77

clicks, and so on. Therefore, advertiser’s net profit and cost are both normalized results

under the above assumption.

The value per click is the key variable both guiding the bidding behavior and evaluating

the performance of different strategies. The simulation needs to calibrate the value per

click. Different markets may have different levels of value per click. To have an unbiased

simulation, I should assume different value per click for different markets. Therefore, I take

the following four values for each market: the 90th percentile value of the bids on the top

three positions, the 70th percentile bid, the 50th percentile bid and the 110th percentile

bid.3 The idea behind the above calibration is borrowed from Tilman Borgers and Petricek

(2006). To estimate the value per click, they assume that bidders’ bids do not exceed their

true values. Therefore, the bids provide a lower bound for the value per click. With the

data available to me in this paper, it is impossible to provide a good estimate. Therefore,

I follow the above idea and take the four upper level percentile values to approximate the

value per click in each market.
3The 110th percentile is calculated using the 90th percentile value multiplied by factor 1.1/0.9.
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The next issue related to simulation is how to compare the performances. Advertisers

usually have multiple accounts for different keyword markets and search engines. If they

have sufficient funds and are less likely subject to budget constraint, their goal may simply

be to maximize the total profit. However, if they face a tight budget and several keyword

markets are sharing the same fund pool, they may try to improve the efficiency of each

dollar spent, which is the earning cost ratio. These two indicators are the earning and

margin rate in the sponsored search auction. Therefore, I compare the performances using

both the indicators: the gross earning and return of investment (ROI).

The last issue here is that I simulate the bidding by assuming that bidding robots do

not face budget constrain in the simulation. Therefore, the net profit here is the maximum

possible net profit an automated strategy can achieve. The budget, of course, plays an

important role and affect the net profit and further the choice of bidding strategy. I will

discuss this after I present the simulation result table.

2.4.3 Results

Given value per click, I simulate each strategy in each market. There are 911 results for

each of the nine automated bidding strategies.4 With these simulating results, I run the

following regression to estimate the performance differences among different strategies.

log(ym,s) = µm +
∑

αs · Is +
∑

βs · Is · x(m) + um,s

Here ym,s is the dependent variable, including profit and return of investment of each

strategy s in market m. µm is the market fixed effect. Is is the indicator function of

strategy. Therefore, αs captures the performance of different automated bidding strategies

in terms of either net profit or return of investment. x(m) is a variable depending on market.

In the regression, x(m) is the monthly bidding frequency of each market, which measures

the market competition. βs is another coefficient of interest, which tells us how different

automated strategies perform in different competition environment.

Table 2.5 records the simple statistics such as mean value and standard deviation of net

profits and ROIs from the simulations. For example, the first column shows that if the value
4I eliminate the auction markets with no more than 2 bidders showing up in each month.
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per click is the 110 percentile value, the budget is never binding and the top position receives

one click, then Targeting Position1 will obtain $3.34 while the ROI Bidding strategy can

only get $3.01. On the other hand, the return of investment rate of Targeting Position 1 is

only 1.67, while that of ROI Bidding is 10.94. It means if a bidder takes Targeting Position

1 strategy, each dollar she spends will bring her $1.67, while ROI Bidding will bring her

$10.94. The first impression by comparing the rows across the table is that the earning and

ROI are both increasing as the value per click increases.

Table 2.7 through Table 2.10 records the estimation results when I control for market

fixed effect and the degree of market competition. I use the number of bids submitted in

each month in each auction market to measure the degree of competition. I also take the

return value of Targeting Position 1 as the base value. Therefore, all the coefficients in the

tables describe the performance difference as compared to the strategy of Targeting Position

1.

In the first column of Table 2.7 records the estimation results of the regression without

including the market competitiveness. It shows that ROI bidding or CPP Bidding makes

around 30 cents less in profit than Targeting Position 1 does. The profit from Constant

Bidding at b = 25% is even 1 dollar less than that of Targeting Position 1. All the numbers

in the first column show that when advertiser’s value per click is the 110th percentile value

of the bids on the top 3 positions, Targeting Position 1 can generate the highest amount of

profit. This result is robust when I include the market competitiveness in the regression,

which is shown in the second column. The coefficients on the strategy indicators are not

changing significantly. The negative but significant coefficients on the market competitive-

ness show that if the market becomes more competitive, the profit each strategy generates

will drop.

The third column and fourth column record the regression results on the return of

investment. In the third column, it shows that the return of investment of ROI Bidding

and CPP Bidding is 8.9 bigger than that of Targeting Position 1. It means for the same

one dollar, ROI Bidding or CPP Bidding can generate $8.9 more than Targeting Position 1.

This result is also robust when I include the market competitiveness in the regression, which

is shown in the fourth column. The significant coefficients on the market competitiveness
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are negative, which suggests that the market competition will have a negative impact on

advertisers’ markups.

Table 2.8 shows the regression results when the value per click is assumed to be the

90th percentile value of the bids on the top 3 positions. The results show that the profit

generated by ROI Bidding or CPP Bidding is higher than that of Targeting Position 1. The

difference is 8 cents but significant. This result is also robust to the inclusion of market

competitiveness in the regression. Market competitiveness still have the same impact on

the profits and ROIs.

Table 2.9 shows the results when I assume the value per click to be the 70th percentile

value of the bids on the top 3 positions. The first column represents a totally different

results: almost all of the strategies generate higher profit than Targeting Position 1. This

result is both significant and robust when market competitiveness is included in the regres-

sion. The third column and fourth column still show that Targeting Position 1 is the most

costly strategy in terms of return of investment. Table 2.10 records the results when the

value per click is the 50th percentile value. The first column shows that ROI Bidding or

CPP Bidding generates the highest profit, while Constant Bidding at b = 25% generates

the highest return of investment.

Advertiser’s Budget The first result revealed is that the optimal strategy is also

depending on bidder’s budget. Table 2.10 records the estimation result when the value per

click is 50th percentile value of the bids on top 3 positions. In terms of profit, ROI position

is generating 74 more cents than Targeting Position 1 if there is enough funds for the bidder.

In terms of return of investment, ROI bidding is also 3.65 higher than Targeting Position

1. All the estimated results are significant and robust if I also control for the degree of

competition in each market. When I compare the performance between Constant Bidding

with 25% and ROI Bidding, Table 2.10 shows that ROI Bidding can get more profit than

Constant Bidding with 25% if there is enough money for the bidder, yet Constant Bidding

with 25% is dominating ROI Bidding in terms of return rate with 9.61 vs 3.65. It suggests

ROI Bidding is costing more money and bidder’s budget might influence the choice of the

optimal bidding strategy. Figure 2.6 illustrates this idea.

Figure 2.6 shows the optimal bidding strategy as well as the corresponding net profit
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when the bidder faces different level of budget with the top position receiving 1 click. The

graph shows that although ROI Bidding can generate 5 cents more than Constant Bidding

with 25%, it also costs more. Therefore, when the budget is smaller than 98/3.74 cents,

she does not have enough money to implement ROI Bidding and Constant Bidding with

25% is her optimal strategy. If her budget is bigger than 98/3.74 cents, she will choose ROI

Bidding.

Figure 2.3 through Figure 2.5 shows similar results: the optimal automated bidding

strategy is changing as advertiser’s budget increases. However, Figure 2.3 shows a little

bit different result: the Targeting Position 1 strategy becomes the optimal choice when

her budget is big enough. This illustrates the next idea I will elaborate in the following:

advertisers’ value per click is also affecting the choice of the optimal strategy.

Value per Click The second result by comparing the rows across Table 2.7 through

Table 2.10 is that the optimal strategy is depending on the value per click. When the value

per click is small, Targeting Position 1 is always dominated by other strategies. For instance,

Table 2.10 shows that the ROI Bidding brings $0.75 higher profit than the Targeting Position

1. However, as value per click increases, Targeting Position 1 is gaining more than other

strategies and when the value per click is 110th percentile value of the bids at the top 3

positions, Targeting Position 1 will bring the highest amount of net profit among all the

automated strategies. This is consistent with the following intuition that if a bidder really

values each click, or his value per click is very hight, he will always target the top position

to obtain the maximum number of clicks.

The Degree of Market Competition Table 2.7 through Table 2.10 also reveals

the impact on the choice of optimal strategy through another dimension: the degree of

competition. When I use the number of bids submitted in each auction in each month

as a measure of competition and include it in the regression, the results show that the

competition has a negative impact on bidders’ profit as well as the return of investment.

The more competitive the less profit and more costly for bidders. The regression also

reveals that the coefficients of CPP Bidding and ROI are significantly smaller than those of

Targeting Position 1 when value per click is small. This shows that CPP Bidding and ROI

Bidding suffer the most when there are more competitions or more frequent bid submission.
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This means, if I control for the value per click and assume that the bidder has enough funds,

as long as the market is competitive enough, the performance of the ROI Bidding or CPP

Bidding will converge to that of Targeting Position 1. This result may come from the fact

that CPP bidding and ROI bidding are essentially tracking the top bidders and keeping up

with bidding for the best positions. As most of the bids of each market come from the top

positions, market competitiveness increasing essentially means that the bidders on the top

positions will more frequently submit their bids. If the bidders on the top positions are all

engaging in price competition, then ROI Bidding and CPP Bidding will not have any edge

comparing with Targeting Position 1 and therefore, will converge to Targeting Position 1.

The above results show that there are no clear cut answers for which strategies should

be uniformly chosen for advertisers. Yet there are still some lessons I can draw and suggest.

It depends on bidder’s value per click, budget and the degree of the competition. The

implication of this result is important: First, none of the literature deals with the situation in

which advertiser’s budget plays a role. All the previous literature implicitly assume bidders

have enough money to support their bidding behaviors. However, in practice, bidders do

have binding budget and the above results show that binding budget does affect the choice

of optimal bidding strategy. Above results provide some insights for us to understand the

role of advertiser’s budget in sponsored search auctions.

Second, the literature suggests stable bidding equilibrium in the Generalized Second

Price sponsored search auctions. (See Edelman and Ostrovsky (2006), Edelman et al. (2008),

Varian (2006), Yao and Mela (2009).) However, sawtooth bidding patterns have also been

documented, (See Edelman and Ostrovsky (2006).) and Yuan (2008), Yuan (2009) provide

both empirical and theoretical evidence suggesting the bidding in the Generalized Second

Price Auction is not stable. The above results suggest that constant bidding is clearly

always the best choice. This sheds light on our understanding of why we always observe

volatile bidding cycles in practice in sponsored search auctions.

2.4.4 Discussion

There are several issues worth discussing here. First, the above estimation relies on one im-

portant assumption: competitive bidders are bidding on the equilibrium path. This might
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bring bias for cost estimation. For instance, the competing bidders might practice bid jam-

ming, which is not considered in the simulation but highly possible in practice. The bottom

line is that the competition in practice may pull the performance down. Therefore, the

above might overestimate the performance. However, I mainly focus on the performances

within the simulated strategies themselves and this bias on all these estimation will be

canceled out when I compare them.

Second, the cost-per-purchase strategy only targets the top three positions, which means

that it has a greater implication for bidders competing at the top level. In practice, top

bidders are contributing more revenue in sponsored search auctions because of the expo-

nential declining click rate and bid price; therefore, this strategy sheds more light on our

understanding of the role of automated bidding behaviors in sponsored search auctions than

strategies targeting lower ranks.

Another issue is the unobserved parameters guiding bidding behaviors. The above

bidding rules only rely on the bids, and, in practice, bidders are not only monitoring bids but

also other covariates. This paper cannot simulate in this dimension. Although this paper

uses data with a large number of observations which might help solve this unobserved

heterogeneity problem, the more precise simulation and estimation will be left to the future

when more data is available.

2.5 Conclusion

In this research, I investigate how different automated bidding strategies perform and pro-

vide insight for advertisers’ bidding management and future automated bidding software

design. In sponsored search auctions automated bidding robots are inevitable choices be-

cause advertisers face an important trade off: On one hand, monitoring bidding campaigns

is necessary to control cost and improve revenue; on the other hand, it is too costly to

hire professionals to monitor bids all the time, especially when there are many accounts to

manage. I provide practical insights for advertisers who use automated bidding software to

manage their bids in sponsored search auctions.

Specifically, I examine the following simple strategies: targeting specific position (Po-
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sition Targeting), monitoring the cost per purchase ( Cost-per-Purchase Bidding), setting

a constant bid (Constant Bidding), and monitoring the return of investment (ROI strat-

egy). The simulation results show that advertisers’ optimal strategies are depending on

their budget, value per click and the degree of market competition. Given the value per

click and the degree of market competition, when the advertiser’s budget is small, her op-

timal strategy will be Constant Bidding; as her budget increases and passes certain critical

value, ROI Bidding or CPP Bidding will become her optimal choice. When controlling for

the degree of market competition and assuming advertiser’s budget is not binding, as her

value per click increases, Targeting Position 1 will become more and more attractive. If

controlling advertiser’s budget and value per click, as the market become more competitive,

the performance of ROI Bidding is converging to that of Targeting Position 1.

The current research is constrained by the availability of the data. I can only observe

bids and bidders’ identity. Many other unavailable but important variables such as bidders’

budget and search keywords for the auction do play an important role in advertisers’ bidding

decisions. Incorporating these variables in simulation will provide more interesting and

convincing results. This is left for future research.
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Table 2.1: The Average Bidding Frequency on Each Day

Mean Sd Max Min
14.9 128 17,867 1

Threshold Portion of Automated Bids
40 53.3%
100 44.6%
200 38.8%
500 28.1%

Table 2.2: Statistics of the Bids on the Top Ten Positions

Mean SD Max Min
Position 1 3.59 2.43 9,150 0.02
Position 2 2.55 1.85 2,750 0.02
Position 3 1.90 1.57 80.7 0.02
Position 4 1.34 1.27 79.75 0.02
Position 5 0.90 0.97 78.54 0.01
Position 6 0.60 0.74 56.02 0.01
Position 7 0.40 0.56 46.99 0.01
Position 8 0.27 0.43 40.0 0.01
Position 9 0.18 0.32 36.9 0.01
Position 10 0.12 0.24 35.7 0.01
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Table 2.3: The Yahoo Click Declining Rates

Position CTR
1 100%
2 77.7%
3 58.8%
4 41.8%
5 30.2%
6 24.0%
7 18.0%
8 14.1%
9 9.0%
10 7.8%
Data Source: Brooks (2005).

Table 2.4: The Benchmark: Average Daily Cost Table

Clicks Average Total Cost
1 $2.52

0.9 $2.16
0.8 $1.71
0.7 $1.42
0.6 $1.11
0.5 $0.84
0.4 $0.56
0.3 $0.40
0.2 $0.21
0.1 $0.08

Note: N = 18,634,347. I normalize
the total clicks on the hight position
to be 1. The click declining rate fol-
lows the Brooks (2005).
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Table 2.5: Simple Statistics: Mean and Standard Deviation

v = 110% v = 90% v = 70% v = 50% *
Profit ROI Profit ROI Profit ROI Profit ROI

Position Targeting
Targeting Position 1 3.34 1.67 2.28 1.19 0.98 0.51 0.24 0.14

Std. Dev. 4.28 1.66 2.94 1.35 1.05 0.36 0.45 0.25
Targeting Position 2 3.07 3.64 2.25 2.79 1.24 1.56 0.66 0.91

Std. Dev. 3.61 4.35 2.62 3.56 1.15 1.67 0.62 1.20
Targeting Position 3 2.64 8.64 2.01 6.89 1.25 4.32 0.82 2.94

Std. Dev. 3.09 13.28 2.34 10.87 1.23 7.04 0.82 5.47
Constant Bidding

b = 90% ** 3.05 1.64 2.10 1.16 0.94 0.50 0.28 0.13
Std. Dev. 4.01 1.32 2.85 1.08 1.05 0.26 0.40 0.16
b = 75% 2.98 2.55 2.19 1.91 1.20 0.99 0.64 0.49

Std. Dev. 3.98 1.97 2.95 1.61 1.34 0.52 0.72 0.27
b = 50% 2.69 6.12 2.10 4.83 1.33 3.04 0.91 1.97

Std. Dev. 3.87 5.15 2.99 4.21 1.58 2.40 1.08 1.46
b = 25% 2.28 22.95 2.01 18.60 1.26 13.14 0.94 9.64

Std. Dev. 3.55 20.74 2.34 16.97 1.69 12.02 1.30 9.01
Cost per Purchase Bidding

3.06 10.58 2.36 8.47 1.49 5.32 0.99 3.67
Std. Dev. 3.53 15.91 2.71 13.01 1.44 8.07 0.98 6.08

ROI Bidding
3.01 10.94 2.32 8.60 1.47 5.41 0.98 3.74

Std. Dev. 3.47 16.45 2.66 13.46 1.43 8.46 0.99 5.45
Note: N = 18,634,347. I normalize the total clicks on the hight position to be 1. The click declining rate
follows the Brooks (2005).
* The percentage here means advertisers’ value per click is assumed to be the corresponding percentile value
of the bids on the top 3 positions.
** The percentage here means advertisers take the constant bid at the corresponding percentile value of the
bids in the market.

Table 2.6: Simple Statistics of Average Monthly Bids

Max Min Mean Std. Dev. Starting Month Ending Month
146,021 216 1,607 6,195 2002.08 2003.06

Note: There are 911 markets. .
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Table 2.7: The Performance Comparison: v = 110%

Profit Return of Investment
Position Targeting
Targeting Position 2 -0.26 -0.23 1.96 2.01

(0.03) (0.03) (0.46) (0.48)
Targeting Position 3 -0.70 -0.64 6.96 7.08

(0.03) (0.03) (0.46) (0.48)
Constant Bidding

b = 90% ** -0.28 -0.29 -0.028 -0.03
(0.03) (0.03) (0.46) (0.88)

b = 75% -0.35 -0.33 0.87 0.35
(0.03) (0.03) (0.46) (0.48)

b = 50% -0.64 -0.57 4.44 4.50
(0.03) (0.03) (0.46) (0.48)

b = 25% -1.06 -0.94 21.28 21.61
(0.03) (0.03) (0.46) (0.48)

Cost per Purchase Bidding -0.27 -0.20 8.90 9.08
(0.03) (0.03) (0.46) (0.48)

ROI Bidding -0.32 -0.25 9.06 9.22
(0.03) (0.03) (0.46) (0.48)

Position Targeting
ITP1 ∗monthly bids −3.1× 10−6 2.55× 10−5

(4.22× 10−6) (5.89× 10−5)
ITP2 ∗monthly bids −24× 10−6 −0.29× 10−5

(4.22× 10−6) (5.89× 10−5)
ITP3 ∗monthly bids −40× 10−6 −4.32× 10−5

(4.22× 10−6) (5.89× 10−5)
Constant Bidding
Ib=90% ∗monthly bids −1.7× 10−6 3.14× 10−5

(4.22× 10−6) (5.89× 10−5)
Ib=75% ∗monthly bids −17× 10−6 2.35× 10−5

(4.22× 10−6) (−1.61× 10−5)
Ib=50% ∗monthly bids −49× 10−6 −0.44× 10−5

(4.22× 10−6) (5.89× 10−5)
Ib=25% ∗monthly bids −80× 10−6 −17.7× 10−5

(4.22× 10−6) (5.89× 10−5)
Icpp ∗monthly bids −43× 10−6 −8.55× 10−5

(4.22× 10−6) (5.89× 10−5)
IROI ∗monthly bids −46× 10−6 −7.92× 10−5

(4.22× 10−6) (5.89× 10−5)
R2 0.94 0.97 0.50 0.56

Note: The percentage in the title means advertisers’ value per click is assumed to be the
corresponding percentile value of the bids on the top 3 positions.
** The percentage here means advertisers take the constant bid at the corresponding
percentile value of the bids in the market.
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Table 2.8: The Performance Comparison: v = 90%

Profit Return of Investment
Position Targeting
Targeting Position 2 -0.03 -0.01 1.60 1.64

(0.02) (0.02) (0.37) (0.39)
Targeting Position 3 -0.26 -0.23 5.70 5.79

(0.020) (0.02) (0.37) (0.39)
Constant Bidding

b = 90% ** -0.17 -0.19 -0.023 -0.031
(0.02) (0.02) (0.37) (0.39)

b = 75% -0.09 0.18 0.71 0.72
(0.02) (0.02) (0.37) (0.39)

b = 50% -0.18 -0.16 3.64 3.69
(0.02) (0.02) (0.37) (0.39)

b = 25% -0.44 -0.38 17.41 17.67
(0.02) (0.02) (0.37) (0.39)

Cost per Purchase Bidding 0.08 0.11 7.28 7.43
(0.02) (0.02) (0.37) (0.39)

ROI Bidding 0.05 0.08 7.41 7.55
(0.02) (0.02) (0.37) (0.39)

Position Targeting
ITP1 ∗monthly bids −20× 10−6 2.09× 10−5

(3.13× 10−6) (4.82× 10−5)
ITP2 ∗monthly bids −30× 10−6 −0.23× 10−5

(3.13× 10−6) (4.82× 10−5)
ITP3 ∗monthly bids −37× 10−6 −3.45× 10−5

(3.136× 10−6) (4.82× 10−5)
Constant Bidding
Ib=90% ∗monthly bids −9.8× 10−6 2.58× 10−5

(3.13× 10−6) (4.82× 10−5)
Ib=75% ∗monthly bids −15× 10−6 1.89× 10−5

(3.13× 10−6) (4.82× 10−5)
Ib=50% ∗monthly bids −34× 10−6 −1.31× 10−5

(3.136× 10−6) (4.82× 10−5)
Ib=25% ∗monthly bids −56× 10−6 −14.5× 10−5

(3.13× 10−6) (4.82× 10−5)
Icpp ∗monthly bids −40× 10−6 −7.1× 10−5

(3.13× 10−6) (4.824× 10−5)
IROI ∗monthly bids −41× 10−6 −6.48× 10−5

(3.13× 10−6) (4.82× 10−5)
R2 0.94 0.97 0.54 0.56

Note: The percentage in the title means advertisers’ value per click is assumed to be the
corresponding percentile value of the bids on the top 3 positions.
** The percentage here means advertisers take the constant bid at the corresponding
percentile value of the bids in the market.
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Table 2.9: The Performance Comparison: v = 70%

Profit Return of Investment
Position Targeting
Targeting Position 2 0.25 0.26 1.04 1.07

(0.02) (0.02) (0.26) (0.27)
Targeting Position 3 0.27 0.27 3.80 3.86

(0.020) (0.02) (0.26) (0.27)
Constant Bidding

b = 90% ** -0.04 -0.06 -0.01 -0.02
(0.02) (0.02) (0.26) (0.27)

b = 75% 0.21 0.18 0.48 0.48
(0.02) (0.02) (0.26) (0.27)

b = 50% 0.34 0.23 2.53 2.57
(0.02) (0.02) (0.26) (0.27)

b = 25% 0.27 0.27 12.62 12.80
(0.02) (0.002) (0.26) (0.27)

Cost per Purchase Bidding 0.50 0.51 4.80 4.89
(0.02) (0.02) (0.26) (0.27)

ROI Bidding 0.48 0.49 4.89 4.98
(0.02) (0.02) (0.26) (0.27)

Position Targeting
ITP1 ∗monthly bids −20× 10−6 1.29× 10−5

(2.36× 10−6) (3.31× 10−5)
ITP2 ∗monthly bids −22× 10−6 −0.19× 10−5

(2.36× 10−6) (3.31× 10−5)
ITP3 ∗monthly bids −23× 10−6 2.05× 10−5

(2.36× 10−6) (3.31× 10−5)
Constant Bidding
Ib=90% ∗monthly bids −3.4× 10−6 1.67× 10−5

(2.36× 10−6) (3.31× 10−5)
Ib=75% ∗monthly bids −0.6× 10−6 1.30× 10−5

(2.36× 10−6) (3.31× 10−5)
Ib=50% ∗monthly bids −9.2× 10−6 −0.79× 10−5

(2.36× 10−6) (3.31× 10−5)
Ib=25% ∗monthly bids −24× 10−6 −10× 10−5

(2.36× 10−6) (3.31× 10−5)
Icpp ∗monthly bids −25× 10−6 −4.29× 10−5

(2.36× 10−6) (3.31× 10−5)
IROI ∗monthly bids −26× 10−6 −3.91× 10−5

(2.36× 10−6) (3.31× 10−5)
R2 0.92 0.88 0.45 0.48

Note: The percentage in the title means advertisers’ value per click is assumed to be the
corresponding percentile value of the bids on the top 3 positions.
** The percentage here means advertisers take the constant bid at the corresponding
percentile value of the bids in the market.
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Table 2.10: The Performance Comparison: v = 50%

Profit Return of Investment
Position Targeting
Targeting Position 2 0.42 0.41 0.76 0.78

(0.02) (0.02) (0.019) (0.02)
Targeting Position 3 0.58 0.56 2.80 2.83

(0.020) (0.02) (0.019) (0.02)
Constant Bidding

b = 90% ** 0.03 0.002 -0.01 -0.01
(0.02) (0.02) (0.019) (0.02)

b = 75% 0.39 0.35 0.34 0.35
(0.02) (0.02) (0.019) (0.02)

b = 50% 0.67 0.62 1.84 1.85
(0.02) (0.02) (0.019) (0.02)

b = 25% 0.70 0.66 9.45 9.61
(0.02) (0.02) (0.019) (0.02)

Cost per Purchase Bidding 0.75 0.74 3.5 3.58
(0.02) (0.02) (0.019) (0.02)

ROI Bidding 0.74 0.73 3.6 3.65
(0.02) (0.02) (0.019) (0.02)

Position Targeting
ITP1 ∗monthly bids −2.57× 10−6 0.76× 10−5

(2.36× 10−6) (2.34× 10−5)
ITP2 ∗monthly bids 1.38× 10−6 −0.30× 10−5

(2.38× 10−6) (2.34× 10−5)
ITP3 ∗monthly bids −6.32× 10−6 −1.45× 10−5

(2.38× 10−6) (2.34× 10−5)
Constant Bidding
Ib=90% ∗monthly bids −19× 10−6 1.05× 10−5

(2.38× 10−6) (2.34× 10−5)
Ib=75% ∗monthly bids −27× 10−6 0.85× 10−5

(2.38× 10−6) (2.34× 10−5)
Ib=50% ∗monthly bids −27× 10−6 −0.44× 10−5

(2.38× 10−6) (2.34× 10−5)
Ib=25% ∗monthly bids −17× 10−6 −6.7× 10−5

(2.38× 10−6) (2.34× 10−5)
Icpp ∗monthly bids −40.1× 10−6 −3.1× 10−5

(2.38× 10−6) (2.34× 10−5)
IROI ∗monthly bids −30.8× 10−6 −2.8× 10−5

(2.38× 10−6) (2.34× 10−5)
R2 0.79 0.88 0.54 0.56

Note: The percentage in the title means advertisers’ value per click is assumed to be the
corresponding percentile value of the bids on the top 3 positions.
** The percentage here means advertisers take the constant bid at the corresponding
percentile value of the bids in the market.
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Figure 2.1: Benchmark: Total Cost vs Clicks
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Figure 2.2: Benchmark: Unit Cost vs Clicks
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Figure 2.3: Optimal Strategy, Profit and Budget: v=110%

Note: The click on the top position is normalized to be one.
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Figure 2.4: Optimal Strategy, Profit and Budget: v=90%

Note: The click on the top position is normalized to be one.
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Figure 2.5: Optimal Strategy, Profit and Budget: v=70%

Note: The click on the top position is normalized to be one.
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Figure 2.6: Optimal Strategy, Profit and Budget: v=50%

Note: The click on the top position is normalized to be one.
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