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Abstract

This dissertation aims at establishing optimal power allocation/control schemes to

achieve maximal system utilities in a multi-carrier communication system, such as a

digital subscriber line system and open spectrum wireless network. In such a system,

users share tones to enhance the efficiency of spectrum usage due to its scarcity.

However, this brings the system’s intrinsic problem of inter-user interference, which

has a crucial impact on communication quality. Therefore, the goal is to eliminate or

diminish the impact of interference on the achievable data rate, which is a conventional

measure of a user’s communication quality. Based on the users’ achievable data rates,

system utility is defined. Hence, the goal comes to finding power allocation that

can maximize the system utilities. According to different system requirements, we

consider three system utilities: the weighted sum rate, “user capacity” and harmonic

mean rate. For each utility function, we develop an efficient algorithm designed

according to the features of the corresponding utility function.

Spectral Spectrum Balancing (SSB) aims to maximize the first goal (weighted

sum rate). The algorithm partitions the N tones into three sections and efficiently

determines the tones that lie in each section. Appropriate signalling structure is

imposed on each section: The first section where the tones for which the crosstalk

coefficients are small uses iterative water filling signalling method, the second section

consists of tones with intermediate crosstalk coefficients and uses a delicate method

to identify the user pairs that should share tones and Lagrangian method to allocate

the power, and the third section where users suffer large crosstalk coefficients uses a

dual FDMA algorithm.

While weighted sum rate is a popular measure of system utilities, we introduce

“user capacity”, which is a more practical goal of commercial service provider’s. “User

capacity” denotes the maximum number of users that can be supported by the sys-
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tem, provided that each user is guaranteed a data rate that lies within a prescribed

range. However, allocating power directly to approach this capacity can be quite

cumbersome because it involves solving an integer programming problem which is

NP-hard. In order to circumvent this difficulty, an alternate approach is proposed

that is based on exploiting the fairness and per-tone convexity of the harmonic mean-

rate objective. Thus an iterative scheme is proposed to approximate the harmonic

mean rate objective function based on its Taylor expansion. We further exploit its

convex lower bound, the dual form of which can be decomposed into several con-

vex problems decoupled across tones. We show by broad simulation results that the

algorithms we develop serve their purposes and outperform existing counterparts.

We further consider the case when a malicious jammer is presents in the system,

where the jammer’s goal is to minimize the total sum of the rates communicated over

the network. Each user, on the other hand, allocates its power across the N tones

so as to maximize the total sum rate that he/she can achieve, while treating the

interference of other users and the jammer’s signal as additive Gaussian noise. For

this non-cooperative game, we propose a generalized version of the existing iterative

water-filling algorithm whereby the users and a jammer update their power allocations

in a greedy manner. We study the existence of a Nash equilibrium in this non-

cooperative game as well as conditions under which the generalized iterative water-

filling algorithm converges to a Nash equilibrium of the game.
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Chapter 1

Introduction

This PhD dissertation focuses on resource allocation in multi-user communication

systems. Our motivation is that the cost of communication hardware resources ac-

counts for a significant portion of the cost of a communication system in practice;

efficient use of resources is important to improve system profits. The resources that

are most important in practice are power, time slots, and frequency bandwidth. Op-

timal/near optimal power allocation algorithms designed in PhD dissertation under

various system requirements significantly improve system performance and efficiency.

Additionally, the behaviors of the users in allocating power are also studied from a

game theoretic perspective.

1.1 Multi-User Communication Systems and Dy-

namic Spectrum Management

Digital subscriber lines (DSL), frequency-sharing wireless networks, and broadcast-

ing TV channels are some real-life examples of the types of multi-user communication

systems considered. They have several distinct characteristics as opposed to tradi-
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tional systems with fixed resource assignment, such as mobile communication systems.

First, there are multiple pairs of users requesting resources from the system. Each

user pair is comprised of a transmitter with limited power budget and its designated

receiver wishing to receive information from the transmitter. One can think of a

room full of guests, where each of individuals wants to talk to another particular

individual. Second, users have full access to all communication resources (e.g. time

and spectrum) so as to enhance the efficiency of the system resource usage. Return-

ing to the party example, all conversations desire to take place simultaneously. The

advantage is that everyone can talk throughout whole party instead of waiting for a

segment of time. However, this sharing nature of the system results in interference

among users that significantly decreases the system’s performance. Using the previ-

ous example, the party may be so loud that no conversation can be clearly heard.

Therefore, controlling users’ power when sharing resources is crucial in the multiuser

communication environment because users transmission power has critical influence

on the overall communication quality.

Conventionally, communication quality is evaluated by the signal to interference

and noise ratio (SINR) or signal transmission rate, both of which are directly related

to the users’ power. Intuitively speaking, when users are sharing channels, the trans-

mission power of one user affects other users’ SINRs or transmission rates. More

precisely, the SINR and signal transmission rate of one user increase when transmis-

sion power of this user increases and it decreases when those of other users increase.

So raising one user’s power increases the communication quality of this user and si-

multaneously decreases communication quality of other users. In an analogy of the

party analogy, raising one’s voice can make ones conversation clearer but may disrupt

others’ conversations. Therefore, in order to use resources most efficiently and main-

tain transmission quality in a network, system designers need to carefully balance
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power among users. That is, system designers manage users’ power and provide users

in the network with satisfying quality of communication. Therefore a power control

scheme is needed to serve this purpose and control the power used by each user in

the network.

Recently, power allocation has drawn a vast range of research interests in the

context of Dynamic Spectrum Management (DSM). Dynamic spectrum management

is a set of techniques that manages users in a way that they can efficiently share

a common spectrum in communication systems. The research and development of

DSM is widely based on optimization theory and game theory. Historically, a fixed

bandwidth is assigned to each specific service and results in inefficient utilization

of the spectrum. With the help of DSM, the spectrum is shared by users, which

significantly increases the spectrum’s efficiency without sacrificing communication

quality. DSM can be used in DSL by continuously monitoring the interference among

users and dynamically allocating users’ power across frequency to reduce or eliminate

the interference. The use of DSM in DSL is important because DSL systems are

broadly used for domestic internet service and significant interference exists because

DSL phone lines are closely bound together. Other than DSL, another potential use

of DSM is on open spectrum communication system which permits any device to send

signals across a certain spectrum range (unlicensed bands) without permission. This

system scheme facilitates mobility and efficiency, and offers an attractive solution to

the under-utilized traditional licensed bands. However, it requires spectrum sharing

and causes interference. A common scenario in open spectrum systems is that new

wireless devices (or secondary users) are able to recognize and access idle spectrum

(currently not used by primary users). Therefore, secondary users should comply

with regulations so as not to disrupt the communication of primary users. One

example is the unused TV broadcast channels, which are also called white spaces.
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Recently, the Federal Communication Commission (FCC) has approved the use of

unlicensed devices to operate on the empty analog TV channels in anticipation of the

transition to digital TV. While this potentially provides users with more access to

cheap spectrum, it also gives rise to interference caused by spectrum sharing among

these unlicensed devices. Therefore, strict interference regulation is required in order

to guarantee the quality of service provided by the unlicensed devices as well as the

licensed TV broadcasters. DSM is an effective tool that providers can utilize to handle

the interference regulation.

In the context of DSM, system requirements are usually formulated into objective

functions of optimization problems with power constraints such as total power con-

straints and spectrum mask constraint. For example, in [1], [2] and [3], the weighted

sum rate of the system is considered as the objective of optimization. Optimization

techniques are utilized to solve the problems in an efficient way with relative low

complexity. The utilization of game theory in DSM originates from the fact that the

users’ competitive behaviors can be effectively modeled by a non-cooperative game

with the users’ optimization objective as the payoff function in the game [4]. The

game theoretic point of view on this traditional signal processing problem gives rise

to many interesting aspects of the problems. In [5], [6], [7] and other numerous other

studies, a variety of games based on the model proposed in [4] and the properties

of their Nash equilibria are studied. In a typical game-theoretic formulation, each

user is a player in the game and maximizes its own utility, which is usually its data

rate. The users compete with each other and adjust its power allocation given the

knowledge of other users’ power. The data rate function is concave for the user when

the others’ power is fixed. So there is usually a Nash equilibrium in the game and

the Nash equilibrium is unique under certain conditions. A more interesting case in

the game is a system with the presence of a jammer. The disruption caused by the
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jammer arises the questions on not only the games and Nash equilibira but also on

the stability of the system and the jammer’s damage to the system. We have included

a thorough study on this topic in Chapter 5.

1.2 Power Allocation and Interference Reduction

This research emphasizes power allocation over system spectrum since spectrum is

a scarce and valuable resource that is currently under utilized due to conventional

static tone-assignment policies. In FCC Policy Task Force Report, it is stated that

”... portions of the radio spectrum are not in use for significant periods of time” and

”... typical channel occupancy was less than 15%...”. This inherent drawback of static

tone-assignment has been a fundamental reason behind utilization of DSM in DSL

systems and the emergence of unlicensed open-spectrum communication systems [8,9].

In these systems the spectrum is typically partitioned into N narrowband orthogonal

tones and all users are allowed to use all the tones simultaneously. In comparison

with the fixed tone-assignment policies, this setup offers significantly greater freedom

in utilizing the spectrum. However, this freedom comes at the expense of a number

of challenges that ought to be taken into consideration by the system designer. In

particular, the inherent spectral overlap in these systems gives rise to so-called multi-

user interference, which is a limiting factor for multi-user communication systems.

Therefore, one of the major challenges in designing such a system is to manage users’

power in a way so that users can achieve satisfying functionality and cause limited

interference to other users.

In order to determine the power that each user allocates to the N tones, the system

is typically managed by a system designer that has information about the channels

and users’ power. In a typical scenario, each user has a limited power budget and
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the system designer wishes to determine the power that each user ought to allocate

to each tone in order for the system to achieve the maximum system utilities [10]

(such as individual users’ rates, weighted sum rates, harmonic mean rates, min rate

utilities), the choice of which is tailored to specific system requirements. We study

maximum sum rate and harmonic mean rate. The reason for choosing these two

utilities is, briefly speaking, that they accommodate maximum system throughput

and user fairness, which are the most common system requirements.

1.3 Sum Rate Optimization

The problem of finding power-allocations that maximize the sum-rate was shown

in [11] to be NP-hard. This problem can be solved exactly using the optimal spec-

trum balancing (OSB) algorithm developed in [2]. However, the computational cost

of this algorithm is quite prohibitive, which makes it suitable only for systems with

small numbers of users and tones. A less complex algorithm that can be used for

more practical systems is the so-called autonomous spectrum balancing (ASB) algo-

rithm [3]. This algorithm provides an approximate solution to the power allocation

problem and requires side information that may be difficult to acquire. Both the OSB

and the ASB algorithms share common drawbacks. For instance, neither algorithm

can be readily tailored to optimize alternative design objectives, nor to incorporate

other design constraints. Moreover, neither algorithm takes fairness into considera-

tion. In particular, both OSB and ASB tend to allocate power in such a way that

favors stronger users over weaker ones. There are other popular decentralized algo-

rithms that locally maximize rate objectives such as IWFA [4] and SCALE [12], with

which we will compare our proposed algorithms in the simulation section.

We first develop a computationally efficient algorithm for approaching the maxi-
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mum sum-rate of DSL systems based on its spectral features. Unlike currently avail-

able algorithms, the proposed algorithm partitions the tones into sections and imposes

a signalling structure on each section. This signalling structure facilitates the opti-

mization of the power allocations in each section. We begin by recalling a result

from [13]. This result implies that if the crosstalk coefficients between users exceed

a certain threshold on some tones, then these tones ought to be operated in a fre-

quency division multiple access (FDMA) mode in order to approach the maximum

sum-rate of the DSL system. That is, none of these tones ought to be occupied by

more than one user. We also note that if the crosstalk coefficients between users are

close to zero on some tones, then, from a sum-rate perspective, it may be beneficial

for the users to share these tones. These observations suggest that, in a general DSL

system, one can use the crosstalk coefficients to partition the tones into sections and

utilize a different optimization technique on each section. In particular, we propose to

partition the tones into three sections, where the membership of a tone in one of the

sections depends on whether crosstalk coefficients on this tone lie below, in between

or above two thresholds. In this disseratation, we determine these thresholds by us-

ing a quasi-bisection optimization technique for relaxing the (somewhat stringent)

thresholds provided in [13].

Assuming that each user allocates a certain power budget to each section of tones,

we deploy an optimization algorithm that is suitable for maximizing the sum-rate for

the signalling structure in each section. In particular, for the section in which the

users suffer strong cross-talks, we use the FDMA sum-rate maximization algorithm

developed in [13]. This algorithm is computationally efficient due to the fact that

it exploits the FDMA structure to decouple the Lagrange dual formulation across

tones. Now, for the section in which the crosstalk coefficients are close to zero, we

use the classical iterative water-filling algorithm (IWFA) [4]. In each iteration of this

7



algorithm, each user updates its power allocation so as to water-fill [14] on the noise-

plus-interference levels observed in the previous iteration. Finally, we consider the

section of tones in which the crosstalk coefficients assume intermediate values that

are neither large enough to operate the tones in an FDMA mode nor small enough to

operate the tones in an IWFA mode. In this section, we propose using the Lagrange

dual algorithm described in [15] along with a scheme that refines the partition of the

users. This algorithm iteratively updates the primal and the dual variables using

a standard gradient ascent algorithm. As we will see, the fact that this algorithm

generates the dual solutions as well as the primal ones can be very useful for our

power allocation algorithm. Finally, we develop a greedy technique for determining

the power that each user allocates to each of the three sections. In particular, in each

iteration of this technique, a sensitivity analysis is used to determine the section of

tones that yields the highest sum-rate gain for a given power increment. This sensi-

tivity analysis utilizes the Lagrange dual variables which are readily obtained from

the algorithms deployed in the three sections; viz., the FDMA sum-rate maximization

algorithm, the IWFA algorithm and the Lagrange dual algorithm.

1.4 User Capacity and Harmonic Mean Objective

In the second part of the research of power allocation, we direct our attention to the

problem of maximizing the number of users that can be accommodated by a system

where users are categorized into groups according to the quality-of-service that they

purchase from the system provider. The reason for considering this utility function

is that the more users a system accommodates the more revenue it brings. However,

this design objective is integer-valued and hence generally difficult to handle directly.

As an alternative, we consider a design problem in which we maximize the harmonic
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mean of the users’ rates.

The objective of maximizing harmonic mean rate possesses two desirable features:

first, from the users’ perspective, this objective is known to be fairer than maximizing

the sum-rate [11]; second, for single-tone systems, maximizing this objective can be

cast as a convex optimization problem for which the global solution can be obtained

efficiently. The first feature renders the harmonic mean a natural design objective

for maximizing the number of users. This is because for one to be able to compare

the number of users that can be supported by two systems, one ought to guarantee

that the users obtain the same service in both systems. The second feature, on the

other hand, enables us to design an efficient algorithm that exploits the per-tone

convexity to provide power allocations that yield relatively high harmonic mean-

rates. In particular, we begin by providing a lower bound on the harmonic mean-

rate, which results in a per-user per-tone harmonic mean formulation. Using the dual

form, we decompose the problem of maximizing the lower bound into several convex

optimization problems. These problems are not coupled across tones, and hence

result in low design complexity. This feature renders this algorithm attractive for

practical application in systems with a large number of users and tones. Furthermore,

in developing this algorithm we show how to incorporate different quality-of-service

levels. With the quality-of-service guaranteed, we run an outer (quasi-bisection)

algorithm for maximizing the number of users. In particular, for every number of

users (with associated crosstalk coefficients), we solve a feasibility problem which

serves as an indicator to whether this number of users can be supported by the

system with the prescribed quality-of-service levels.

In contrast to solving harmonic mean function per-user per-tone previously de-

scribed, we advance our research by considering the problem of maximizing the regular

per user harmonic mean function over all tones; this is known to obtain fairer data
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rates to users while allowing the system designer to provide the quality of service

guaranteed to system users. Nonetheless, the harmonic mean rate objective func-

tion is NP-hard in general. Therefore we should resort to an efficient approximation

algorithm to solve this problem for practical use. We utilize the first order Taylor

expansion as well as its convex lower bound. Based on the Taylor expansion, we make

a connection between the weighted sum rate and the per-user harmonic mean, and

draw insights based on the solution of harmonic mean to assist us to design a novel

algorithm. This algorithm exploits the per-tone convexity to optimize the originally

non-decomposable and computationally expensive harmonic mean objective function

and provide power allocation strategies that yield close to optimal harmonic mean

rate.

1.5 Open Spectrum System and Jamming

As mentioned in previous sections, the system we consider allows multiple users to

access the shared spectrum simultaneously and freely. This feature renders these

systems susceptible to antagonistic behavior of potential jammers, who may be in-

terested in reducing the utility of the entire system.1 For example, a jammer may be

able to ‘listen’ to the users’ transmissions, and then subsequently updates its power

allocation across tones in order to reduce the total sum rate communicated over the

network. As such, the procedure of both the users and the jammer can be represented

as a non-cooperative game [16] in which players are interested in maximizing their

individual utilities in a selfish fashion. Since the impact of the jammer’s signal can be

deleterious to the overall system performance, our goal is to study Nash equilibrium

of this sum rate game and subsequently the jammer’s effect on the achievable system

1In this dissertation, the sum rate of each user across tones will be referred to as the utility of
the user, and the sum of utilities of all users will be referred to as the system utility.
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utility. We also wish to analyze the convergence behavior of a generalized version of

IWFA for this non-cooperative game in which users and the jammer sequentially up-

date their power allocations in a greedy manner to maximize their respective utilities.

The distributed nature of IWFA makes it an attractive power allocation strategy not

only in open wireless communications but also in multi-carrier communications such

as DSL.

Convergence analysis of the IWFA algorithm were developed in [5] and [11] for

synchronous systems and for asynchronous systems in [17] and [18]. While IWFA is

a popular decentralized power allocation algorithm that individual users may use to

locally maximize their rate objectives, other decentralized strategies were proposed

in [6, 19–21] for various utility functions in the jammer-free case. In the presence of

a jammer, single-user systems in which the jammer’s goal is to minimize the mutual

information of the ‘legitimate’ user were considered in [7] and [22]. The jammer’s

impact was also studied in [23] and [24] for multi-user single-tone communication

systems in which the users’ utilities are not directly related to rate maximization.

The remainder of the dissertation consists of five sections: In Section 2, we in-

troduce the multi-user communication system and formulation of the data rate and

system utilities. In Chapter 3, we study sum rate system utility and develop a power

allocation scheme based on structure feature of DSL system. Chapter 4 focuses on

harmonic mean rate utility and its advantages on user fairness as well as number of

users served in a system. In Chapter 5, we study the system with a jammer from the

game theoretical perspective based on [25]. Chapter 6 concludes this dissertation.
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Chapter 2

System Model and Problem

Statement

2.1 Multi-user Communication Systems

In this section we define the fundamental system model in this dissertation. The

system we consider is a multi-user communication system in which N tones are shared

by K users. Here a ’user’ refers to a transmitter and receiver pair that attempts to

communicate. (In a DSL system, a ‘user’ may refer to a central office (CO) or a

remote terminal (RT) that transmits data to a modem at the subscriber’s end.)

Let hn
jk be the complex channel gain between the transmitter of User j and the

receiver of User k on the n-th tone, where n ∈ N
△
= {1, . . . , N} and j, k ∈ K

△
=

{1, . . . , K}. In this notation hn
kk denotes the channel gain between the transmitter of

the k-th user and its intended receiver and αn
jk

△
= |hn

jk|
2/|hn

kk|
2 denotes the normalized

channel gain or crosstalk coefficients. Let sn
k be the power allocated by User k to

the n-th tone. Thus User k’s signal power and interference power can be written as

|hn
k,k|

2sn
k and

∑

j 6=k |h
n
j,k|

2sn
j , respectively (see Figure 2.1 for an illustration of signal

12



Figure 2.1: Interference Channel System

and interference power in a 2-user communication system). Assuming that each user

uses Gaussian signalling and that every user can only decode its intended messages,

the maximum rate that User k ∈ K can achieve on the n-th tone is given by [14]

Rn
k(sn

1 , . . . , s
n
K) = log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

)

, (2.1.1)

where σn
k

△
= N0/|hn

kk|
2 denotes the normalized noise variance observed by User k on

the n-th tone, and N0 is the variance of the background Gaussian noise. Now, the

total rate Rk of User k is given by
∑N

n=1 Rn
k(sn

1 , . . . , s
n
K), and it is the maximum rate

that can be reliably transmitted over the communication channel [14]. In the next

section, we will define our system utilites based on this achievable rate.

2.2 System Utilities

There are several commonly used choices of system utility functions based on the

achievable data rate defined in (3.1.1):

(i) Weighted sum of the rates of all tones and users:
∑K

k=1

∑N
n=1 Rn

k ;

13



(ii) Geometric mean of the rates of users’ individual rates:
(

∏K

k=1 Rk

)
1
K

;

(iii) Harmonic mean of the rates of users’ individual rates: K
(

∑K

k=1 (Rk)
−1
)−1

;

(iv) Minimum of the the rates of users’ individual rates: min1≤k≤K Rk.

In this dissertation, we focus on the utility function (i) and (iii). In addition

to the above utilities, we define a new utility function in this dissertation called

‘user capacity’, which is the maximum number of users a system can support with a

prescribed minimum rate. In Chapter 4, we provide details on how to interpret this

utility and solve optimization problems with this utility function as objective.

In the following, we will focus on sum rate utility, maximum number of users

utility and harmonic mean rate utility to accommodate different system requirements.

We aim to provide suitable utility functions and the corresponding algorithms for

specific system requirements. For example, sum rate utility is chosen when the system

designer requires maximum system throughput (Section 3), maximum number of users

utility is used when the system designer desires to serve as many users as possible with

the prescribed minimum rate (Chapter 4), and harmonic mean carefully balances both

aspects and provides weaker users fairer rates compared to sum rate and other utility

functions (Chapter 4). Furthermore, in Chapter 5, we study the behaviors of users

with individual rate utility. That is, each of the users has individual rate
∑N

n=1 Rn
k

as its utility function and aims at maximizing its utility selfishly. We also study this

case with the presence of a malicious jammer in terms of the system performance and

its stability.
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Chapter 3

Power Allocation for Sum Rate

Objective Function

3.1 System Model and Problem Formulation

Consider a DSL communication system (Figure 3.1 shows a DSL system topology),

in which N tones are shared by K users. Let hn
jk be the complex channel gain

between the transmitter of User j and the receiver of User k on the n-th tone, where

n ∈ N
△
= {1, . . . , N} and j, k ∈ K

△
= {1, . . . , K}. In this notation hn

kk denotes

the channel gain between the transmitter of the k-th user and its intended receiver.

Let the crosstalk coefficient from User j to User k on the n-th tone be denoted

by αn
jk

△
= |hn

jk|
2/|hn

kk|
2, and let sn

k be the power allocated by User k to the n-th tone.

Assuming that each user uses Gaussian signalling and that every user can only decode

its intended messages, the maximum rate that User k ∈ K can achieve on the n-th

tone is given by (see [14]).

Rn
k(sn

1 , . . . , s
n
K) = log

(

1 +
sn

k

Γ
(

σn
k +

∑

j 6=k αn
jks

n
j

)

)

, (3.1.1)
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Figure 3.1: A DSL System Topology

where σn
k

△
= N0/|hn

kk|
2 denotes the normalized noise variance observed by User k on

the n-th tone, N0 is the variance of the background Gaussian noise, and Γ is the

so-called capacity gap, which is typically used to account for the non-Gaussianity of

the signalling constellations used in practice [3].

Now, the system designer’s goal is to find the power allocation that maximizes

the over all sum-rate
∑K

k=1

∑N
n=1 Rn

k(sn
1 , . . . , s

n
K), provided that the total and per-

tone powers utilized by each user do not exceed certain thresholds. In addition,

the system designer may wish to enforce a bit-cap Bn
k in order to ensure that the

rates communicated on each tone can be supported by commercial modulators [2].

Using these constraints, it can be shown that the power allocation problem can be

16



formulated as

max
∑K

k=1

∑N

n=1R
n
k(sn

1 , . . . , s
n
K), (3.1.2a)

subject to
∑N

n=1s
n
k ≤ Pk, ∀ k, (3.1.2b)

0 ≤ sn
k ≤ Sn

max,k, ∀ k, n, (3.1.2c)

(

2Bn
k − 1

)−1
sn

k −
∑

j 6=kα
n
jks

n
j ≤ σn

k , ∀ k, n, (3.1.2d)

where Pk, Sn
max,k and Bn

k are the total power budget, the spectral mask and the

bit-cap of User k on the n-th tone, respectively. Note that (3.1.2) is not a convex

optimization problem even though the constraints (3.1.2b), (3.1.2c) and (3.1.2d). are

linear. The non-convexity of the problem comes from the fact that the objective

function is non-convex. We will further examine the properties of the optimization

problem and propose an efficient algorithm to solve this problem.

3.2 Problem Decomposition

Solving (3.1.2) directly is known to be NP-hard [26], which makes the task of finding

a global optimal solution rather formidable even for relatively small systems. As an

alternative, we propose to use inherent features of the optimal solution [1] in order

to decompose (3.1.2) into three subproblems that are relatively easy to solve. The

major reason that makes partitioning the problem into three subproblems possible is

that DSL system possesses a very special spectrum feature, that is, the cross-talks are

small when frequency is low and large when frequency is high. Figure 3.2 shows the

cross talks versus frequency, where ”1” presents low frequency area, ”2” represents

medium frequency area, and ”3” presents high frequency area. This relation between

frequency and cross-talks leads to our method of partitioning spectrum and treating
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Figure 3.2: DSL System Spectrum

low, medium and high frequency bands differently. In the next sections we will

describe our partitioning methodology.

3.2.1 FDMA-operated Tones

Let F ⊆ N be the set of tones for which

αn
jkα

n
kj ≥

1
4
− δ1, ∀ j 6= k ∈ K, (3.2.3)

where δ1 ∈ [0, 1
4
] is a designed parameter to be determined. Let PF ,k be the power

allocated by User k ∈ K to the tones in F . In order to understand the role of δ1,

we note that one of the key results in [1], implies that if δ1 = 0, then all the tones

in F must be operated in an FDMA mode in order for the maximum sum-rate to be

approached. However, since this condition is only sufficient, in some scenarios it may

be too stringent and higher sum-rates can be obtained if more tones are operated
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in an FDMA mode. Hence, by operating the tones in F in an FDMA mode, δ1 can

be regarded as a parameter for relaxing the condition in [1].1 For a given PF ,k, the

algorithm in [27] can be used to find power allocations that maximize the sum-rate

achieved on the tones in F . This algorithm exploits the FDMA structure to decouple

the power allocated across tones by assigning each tone to the user with the “so-

called” highest ‘shadow rate’. For a target precision of ǫ1, the complexity of this

algorithm can be shown to be O(K2 log2 ǫ1) [1].

3.2.2 IWFA-operated Tones

For this section, let W ⊆ N −F be the set of tones for which

αn
jkα

n
kj ≤ δ2, ∀ j 6= k ∈ K, (3.2.4)

where δ2 < 1
4
− δ1 is a parameter that plays a role similar to the one played by δ1

in (3.2.3). Let PW ,k be the power that User k ∈ K assigns the tones in W. Now, if

for the tones in W, αn
jk = αn

kj = 0, then δ2 can be set equal to zero. Since in this

case the users are completely decoupled, the maximum sum-rate can be achieved by

classic water-filling [14]. However, in practice it is rarely the case that the cross-talk

coefficients are exactly equal to zero, and W will contain those tones with small, but

positive, cross-talk coefficients that satisfy (3.2.4) with sufficiently small δ2. In this

case, the maximum sum-rate on W can be approached by using the iterative, instead

of the classic, water-filling algorithm (IWFA) [4]. The complexity of this algorithm is

O(KN log2 ǫ1). Similar to δ1, the value of δ2 should be adjusted in order to maximize

the sum-rate of the DSL system.

1Note that while (3.2.3) gives a sufficient FDMA optimality condition for any K ≥ 2, a tighter
condition can be used for K = 2; see [1].
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3.2.3 Tones with Unstructured Signalling

Finally, let M ⊆ N−(F
⋃

W) be the set of tones on which the crosstalk coefficients do

not satisfy either (3.2.3) or (3.2.4), and let PM,k be the power allocated by User k ∈

K to the tones in M. Since the crosstalk coefficients on M assume intermediate

values, the optimal signalling structure on M does not necessarily resemble any of the

standard signalling patterns. Hence, we settle for power allocations that are locally

sum-rate optimal. Such allocations can be found using the standard the primal-

dual updates algorithm described in [15]. Similar to IWFA, the complexity of this

algorithm is O(KN log2 ǫ1). In Section 3.5, we propose an advanced method to deal

with this case with the help of the approximate max-clique algorithm to pair up the

users that are compatible and solve the problem in a pairwise case.

3.3 Power Budget Partitioning

In the previous section a framework for partitioning the N tones into F ,W, and M

sections was presented. The powers allocated by any User k ∈ K to these sections are

PF ,k, PW ,k, and PM,k, respectively, where for (3.1.2b) to be satisfied, we must have2

PF ,k + PW ,k + PM,k = Pk. (3.3.5)

Our goal now is to find locally optimal PF ,k, PW ,k, and PM,k that enable the maximum

sum-rate of the DSL system to be approached. In order to do that, we begin by

introducing the following definitions. Let the k-th entry of ∆i
△
= [∆i,1 · · ·∆i,K ] be

an additional power by which User k increments PF ,k and PW ,k for i = 1 and 2,

respectively. With ∆i,k defined as such, satisfying the power constraint in (3.3.5),

2It can be seen that if each user occupies at least one tone in F the optimal solution of (3.1.2)
must satisfy (3.1.2b) with equality.
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implies that the decrement of PM,k is ∆3,k = −
∑2

i=1 ∆i,k. For given PF ,k, PW ,k,

and PM,k, let g1(∆1) be the (locally) optimal sum-rate on the F tones for a power

increment ∆1. That is, for every (sufficiently small) ∆1, g1(∆1) is the solution of

max
∑

n∈F

∑

k∈KRn
k , (3.3.6a)

subject to (3.1.2c) and (3.1.2d), ∀ n ∈ F , (3.3.6b)

∑

n∈Fsn
k − PF ,k = ∆1,k, ∀ k ∈ K. (3.3.6c)

Similarly, one can define g2(∆2) and g3(∆3) for the sum-rates on the W and M tones,

respectively. We note that, apart from the constraint in (3.3.5), the optimization

problems that correspond to the functions {gi(·)}3
i=1 are decoupled. Moreover, each

of these problems can be solved efficiently using the techniques outlined in Section 3.2.

For brevity, we will focus on g1(∆1), and the analysis for the other two functions

follows similar paths. Let us consider the Lagrange dual form of (3.3.6). For this

dual let k-th entry of λ1(∆1) ∈ R
K be the Lagrange dual variable that corresponds

to the k-th constraint in (3.3.6c). Now, using the sensitivity theorem in [15, Propo-

sition 3.2.2], we have

∇∆1g1(∆1) = −λ1(∆1). (3.3.7)

This implies that the k-th entry in λ1(∆1) can be used to quantify the increase in

the sum-rate of User k on F that corresponds to a power increment of ∆1,k. Using

a similar observation, the Lagrange dual vectors λi(∆i), i = 2, 3 can be used to

quantify the additional sum-rate that each user can obtain by increasing its power

budget by a small ∆i,k, i = 2, 3, on the W and M tones, respectively.

Now, for any initial power partition for which (3.3.5) is satisfied and power incre-

ment vectors {∆i}
3
i=1, a (local) maximum of total sum-rate that can be achieved on

the F , W and M tones is given by
∑3

i=1 gi(∆i), and the the sum-rate increase that
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corresponds to increment vectors ∆1 and ∆2 is

∇∆1

(

∑3
i=1gi(∆1)

)

= λ3 − λ1, and (3.3.8a)

∇∆2

(

∑3
i=1gi(∆2)

)

= λ3 − λ2, (3.3.8b)

respectively. Notice that in writing (3.3.8) we have used the fact that for the power

partitions perturbed by ∆i, i = 1, 2, 3, to satisfy (3.3.5),
∑3

i=1 ∆i = 0.

Using (3.3.8), we can now use a standard gradient ascent algorithm to find power

partitions that yields (locally) maximum total sum-rate. In order to do that, let the

k-th entry of P
(ν)
F , P

(ν)
W and P

(ν)
M ∈ R

K
+ , be the ν-th iterates of the power partitioning

of the k-th user on the F ,W and M tones, respectively, and let λ
(ν)
i , i = 1, 2, 3 be

the Lagrange dual vectors generated by the algorithms outlined in Section 3.2; viz,

FDMA power allocation algorithm described in [27], the IWFA algorithm [4], and the

primal-dual updates algorithm [15], respectively. The steepest ascent algorithm for

updating the power partitions can now be expressed as

P
(ν+1)
F = P

(ν)
F + µ1(λ3 − λ1), (3.3.9a)

P
(ν+1)
W = P

(ν)
W + µ2(λ3 − λ2), (3.3.9b)

P
(ν+1)
M = P− P

(ν+1)
F − P

(ν+1)
W , (3.3.9c)

where P ∈ R
K
+ is the vector of the power budgets of the K users in K, and µ1, µ2 > 0

are two (diminishing) stepsizes. Our Structured Spectrum Balancing (SSB) can be

summarized using the flow chart in Figure 3.3. As shown in this chart, the tone

allocation parameters δ1 and δ2 in (3.2.3) and (3.2.4) are determined using a two-

dimensional bisection search with convergence accuracy ǫ2. For the steepest ascent

algorithm, we used a convergence accuracy ǫ1. Using the complexity orders given in
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Figure 3.3: A Flow Chart of the SSB algorithm
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Section 3.2, and the exponential convergence of the bisection method, one can show

that the complexity of the SSB algorithm is O
(

NP (2KN + K2) log2 ǫ2 log2 ǫ1

)

, where

NP is the maximum number of iterations of the gradient ascent algorithm.

It is worth mentioning that since the power partitioning problem is not convex,

the performance of the algorithm in (3.3.9) depends, in general, on the initial power

partitions, P
(0)
F , P

(0)
W and P

(0)
M . In order to generate ‘good’ initial partitions, we begin

by assuming that αn
jk is zero for all n ∈ N and j 6= k ∈ K. In this case the optimum

power allocation is given by the classic water-filling technique. Denoting the power

allocated by User k to the n-th tone by sn,0
k , we choose the k-th entries of the initial

power partitions to be P
(0)
F ,k =

∑

n∈F sn,0
k , P

(0)
W ,k =

∑

n∈W sn,0
k , and P

(0)
M,k = Pk −

P
(0)
F ,k −P

(0)
W ,k. Our extensive numerical experiments have shown that this initialization

procedure typically results in sum-rates that are close to the optimal ones achieved

by the significantly more complex OSB algorithm.

3.4 Numerical Results for SSB

In this section we compare the sum-rate and the power spectral density (PSD) ob-

tained by OSB, IWFA and SCALE with the sum-rate and PSD obtained by the

proposed SSB. Due to the prohibitive computational complexity of OSB, we restrict

our attention in this example to a 2-user scenario and a 256-tone DSL system. The

crosstalk coefficients and spectral masks of this system were generated using a prac-

tical DSL simulator.3 In particular, we simulated a scenario with one 5 km Central

Office (CO) line and one 5 km Remote Terminal (RT) line, where the distance be-

tween the CO and the RT was taken to be 2.5 km. The overall power budget of both

users was set at 20 dBm, the capacity gap, Γ, at 15, the background noise variance

3This simulator was provided by R. Cendrillon of Huawei Tech. Co. Ltd.
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at -140 dBm/Hz, and the bit-cap at 15 bits per tone.

For this scenario, IWFA and SCALE achieve relatively low sum-rates of about

5.82 and 5.84 Mbps, respectively, whereas OSB achieves an ‘optimal’ rate of about

7.62 Mbps. On the other hand, the proposed SSB algorithm achieves a sum-rate of

about 7.60 Mbps, which is only slightly less than the sum-rate achieved by OSB.

Figure 3.4 shows the powers allocated by the four algorithms, and as can be seen

from this figure, the power allocations of SSB resemble, to a large extent, those of

OSB. However, these allocations vary quite significantly from the power allocations

of both IWFA and SCALE.

A key advantage of SSB is that it exploits the structure of optimal power allo-

cations to avoid the exhaustive search and the discretization that underlie the OSB

algorithm. In order to provide a rough comparison between the computational com-

plexity of OSB and SSB, we measured the Matlab running time of both algorithms

for the current 2-user example. For OSB this time was about 530 seconds, whereas for

SSB this time was only 22 seconds.4 This running time difference becomes more dra-

matic for systems with more users because the proposed SSB relies on polynomial-time

algorithms that are significantly more efficient than the exhaustive search of OSB.

3.5 SSB with Pairwise Tone Assignment

3.5.1 Pairwise Tone Assignment

In previous section, we devised an algorithm based on [28] which states that when the

normalized channel gain coefficients αn
jk’s satisfy certain conditions users should not

share tones. Loosely speaking, when the channel gain coefficients are high - that is,

interference between users is strong - it is more beneficial to dedicate each tone to only

4The corresponding running times of IWFA and SCALE are 1 and 15 seconds, respectively.
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(b) IWFA and SCALE PSD of RT
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(c) OSB and SSB PSD of CO
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Figure 3.4: A PSD Comparison for IWFA, SCALE, OSB and SSB
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one user. We utilize this theorem to assist in power allocation for the service provider

in tone section M. As described in the previous SSB, we partition the spectrum

into three sections where the middle section is the section where not all the users

can satisfy the conditions in either (3.2.3) or (3.2.4). This partitioning provides

coarse partitioning on the tones and performs satisfactorily when this middle section

is small. However, in the case where the middle section is large, i.e. the number of

tones where not all the users can satisfy the conditions in either (3.2.3) or (3.2.4) is

large, we should devise a scheme to refine this section. Therefore, a finer partitioning

method is needed in order to enhance the performance of SSB. We propose to utilize

the (3.2.3) pairwise in the middle section and refine the tone partitioning in this

section, that is, further refine the assignment of tones to a certain subset of users.

Specifically, for each tone n, we check the compatibility between users using (3.2.3).

When (3.2.3) is satisfied for a user pair, say User j and User k, we consider these two

users to be non-compatible; otherwise they can share this tone n.

We check (3.2.3) for every pair of users and determine the compatibility of these

user pairs. With this knowledge of user compatibility, we run a max-clique algorithm

on this set to select the largest set of compatible users (i.e. every pair of users in this

set is compatible) and pre-assign tone n to these users. Then we solve the middle part

of (3.1.2) only for this subset of users instead for all users. For a pair of users that

satisfy (3.2.3), the theorem in [28] states that the interference among two users can

be so detrimental that the system is worse off in term of system utilities when this

tone is assigned to both users. This leads us to conclude that there is an advantage

of tone pre-assignment using (3.2.3), that is, the separation of reciprocally damaging

users can facilitate the algorithm to achieve the optimal tone assignment. We proceed

to describe how to utilize an approximate max-clique algorithm to realize this tone

pre-assignment.
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We define

cn
jk := αn

jkα
n
kj (3.5.10)

as the compatibility factor between User j and User k in tone n. A search algorithm

will be run on each tone to derive a set of compatible users on tone n which is defined

as

Kn := {k|cn
jk <

1

4
− δ2, ∀j ∈ Kn}. (3.5.11)

After obtaining Kn for all n ∈ N , we solve the tones with unstructured signalling

on users Kn instead of all K users as proposed in Section 3.2.3.

3.5.2 Numerical Results

As another example, we compare the sum-rate of our proposed SSB under pairwise

tone partitioning with that of IWFA, gradient search, and SCALE in a 6-user sce-

nario.5 For this example we use similar parameters to those used in the previous

example, and we generate the crosstalk coefficients using the same DSL simulator,

but for 2 co-located CO’s and 4 Rt’s. The lengths of the CO lines were chosen to be 5

and 4 km and those of the RT lines were chosen to be 5, 5, 4, and 4 km, respectively.

The distance between the CO’s and the RT’s was chosen to be 0.2, 0.2, 3 and 3 km,

respectively. For this scenario, IWFA, gradient search, and SCALE could achieve

sum-rates of only 13.0 Mbps, 13.1 Mbps, and 14.1 Mbps, respectively, whereas SSB

could achieve a sum-rate of 16.7 Mbps.

5The computational complexity of OSB has made it rather difficult for us to provide a sum-rate
comparison for this example.
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Chapter 4

Power Allocation for Harmonic

Mean Objective

4.1 Maximizing “User Capacity” with Per-tone

Harmonic Mean Approximation

Consider the situation in which the service provider wishes to maximize the number

of users that the DSL system can support. For the service provider to do that, it

may maximize the sum rate of all users, which is given by
∑K

k=1

∑N
n=1 Rn

k(sn
1 , . . . , s

n
K)

(Section 3). However, such an approach may result in power allocations that favor

strong users over weaker ones. As an alternative, the service provider may consider

a more balanced approach in which the objective is to maximize a weighted sum

rate,
∑K

k=1 wk

∑N
n=1 Rn

k(sn
1 , . . . , s

n
K) where the weights, {wk}K

k=1 are assigned in such

a way that favors weak users over stronger ones. The drawback of this approach

is that the way in which the weights should be assigned depends on the channel

gains and the power budget in a non-linear fashion. Therefore, in this section, we

consider maximization of the number of users that can be accommodated by the
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DSL system. The users belong to different categories depending on the QoS that

they purchase from the system provider. This design objective is integer-valued and

hence generally difficult to handle directly. As an alternative, we consider a design

problem in which we maximize the (weighted) harmonic mean of the users’ rates.

This objective possesses two desirable features: first, from the users’ perspective, this

objective is known to be fairer than maximizing the sum-rate [10]; second, for single-

tone systems, maximizing this objective can be cast as a convex optimization problem

for which the global solution can be obtained efficiently. The first feature renders the

harmonic mean a natural design objective for maximizing the number of users. This

is because for one to be able to compare the number of users that can be supported

by two systems, one should guarantee that the users obtain the same service in both

systems. The second feature, on the other hand, enables us to design an efficient

algorithm that exploits the per-tone convexity to provide power allocations that yield

relatively high harmonic mean-rates. The harmonic mean-rate can be written as

H(s0, s1, · · · , sK) =

( K
∑

k=1

(

N
∑

n=1

Rn
k

)−1
)−1

. (4.1.1)

Now, in order to find the power allocations that maximize this objective, we ought

to solve the following optimization problem:

min 1/H(s1, · · · , sK), (4.1.2a)

subject to
N
∑

n=1

sn
k ≤ Pk, ∀ k, (4.1.2b)

0 ≤ sn
k ≤ Sn

max,k, ∀ k, (4.1.2c)

where in (4.1.2a), we have used the fact that maximizing H(s1, · · · , sK) is equiv-

alent to minimizing 1/H(s1, · · · , sK). We have also used sk to denote the vector
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[s1
k, · · · , sN

k ]T , Pk to denote the total power budget of User k, and Sn
max,k to denote the

maximum signal power that User k can allocate to the n-th tone. In order for (5.0.3a)

not to be redundant, we assume that Pk ≤
∑N

n=1 Sn
max,k. Although it is desirable from

the service provider perspective to be able to solve (4.1.2), for N > 1 this problem is

known to be NP-hard [10], and hence difficult to solve in a computationally-efficient

manner. As an alternative, in the next section we derive an upper bound on the ob-

jective in (4.1.2a). Unlike the original problem in (4.1.2), this upper bound is convex

and hence can be minimized using highly efficient numerical techniques.

4.1.1 Harmonic Mean Reformulation

It is stated in [10] that when there is only one tone in the network (i.e. N = 1),

(4.1.2a) is a convex optimization problem after transformation. Inspired by this

claim, we derive an upper bound for the objective function of (4.1.2a) by using the

convexity of the function f(x) = 1
x

and Jensen’s inequality. Specifically,

HUB(s0, s1, · · · , sK) =

K
∑

k=1

N
∑

n=1

(Rn
k)−1

≥
K
∑

k=1

(

N
∑

n=1

Rn
k

)−1

.

Note that HUB not only is an upper bound on the harmonic mean defined as H but

also can be interpreted as the inverse of the harmonic mean of the per tone rates

of users while H is the harmonic mean of the rates of users. Furthermore, as will

be shown later, by using HUB as the objective function, the optimization problem

becomes convex. Another benefit of using HUB is that the optimization problem can

be decomposed across tones via its dual form, which enables us to use efficient convex

optimization techniques to solve the problem and achieve the goal of accommodating
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users with certain prescribed rate ranges. By employing the upper bound of H , we

consider the following optimization problem:

min HUB(s1, · · · , sK), (4.1.3)

s.t.
N
∑

n=1

sn
k ≤ Pk, ∀ k,

0 ≤ sn
k ≤ Sn

max,k, ∀ k, ∀ n.

We proceed to show that (4.1.3) is a convex optimization problem. Consider the

following transformation [10]:

tnk =

(

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

))−1

; (4.1.4)

yn
k = log sn

k . (4.1.5)

(4.1.3) can be rewritten as

min

K
∑

k=1

N
∑

n=1

tnk , (4.1.6)

s.t. yn
k ≤ log(Sn

max,k), tnk ≥ 0, ∀ k, ∀ n,

N
∑

n=1

2yn
k ≤ Pk, ∀ k,

log

(

σn
k 2(−yn

k
) +
∑

j 6=k

αn
jk2

(yn
j −yn

k
)

)

+ log(2
1

tn
k − 1) ≤ 0, ∀ k, ∀ n.

Using the observation in [10], it can be directly derived that (4.1.6) is convex,

and hence, for small-to-moderate numbers of users and tones, it can be solved using

an efficient convex optimization algorithm [15]. Even though (4.1.3) is convex, it is
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coupled across tones. The computational complexity is still prohibitive for real-time

power allocation when the number of tones is high. Fortunately, the problem can

be decomposed into several per-tone convex optimization problems in its dual form,

hence we can solve it in a more efficient fashion. The dual problem of (4.1.3) can be

written as follows

d(λ) = min
0≤sn

k
≤Sn

max,k
, ∀ n, ∀ k





K
∑

k=1

N
∑

n=1

(

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

))−1

+
K
∑

k=1

λk

N
∑

n=1

sn
k





−
K
∑

k=1

λkPk,

=

N
∑

n=1

min
0≤sn

k
≤Sn

max,k
, ∀ n, ∀ k





K
∑

k=1

(

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

))−1

+

K
∑

k=1

λks
n
k





−
K
∑

k=1

λkPk. (4.1.7)

It is worthwhile to point out that the optimization in (4.1.7) can be solved on a

per-tone basis due to the dual decomposition of the original problem. To solve the

minimization in (4.1.7), we need to solve the following minimization problem for each

n:

min

K
∑

k=1

(

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

))−1

+

K
∑

k=1

λks
n
k (4.1.8)

s.t. 0 ≤ sn
k ≤ Sn

max,k, ∀ k.

Under the above transformation, the equivalent optimization problem of (4.1.8)

after transformation for each n is
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min

K
∑

k=1

tnk +

K
∑

k=1

λk2
yn

k (4.1.9)

s.t. yn
k ≤ log(Sn

max,k), tnk ≥ 0, ∀ k,

log

(

σn
k 2(−yn

k
) +
∑

j 6=k

αn
jk2

(yn
j −yn

k
)

)

+ log(2
1

tn
k − 1) ≤ 0, ∀ k.

Compare (4.1.6) and (4.1.9), we conclude that the above optimization problem

is also convex and can be solved by existing convex optimization techniques such as

interior point method.

4.1.2 QoS: Max Rate and Min Rate Constraints

From a viewpoint of a DSL service provider, the targets of system design are to

maximize the system capacity and enhance users’ satisfaction level. However, there

is usually a trade-off between these two goals. Therefore, to have control over the

trade-off as well as to facilitate an agreement on the quality of provided DSL service

between users and system providers, we propose to impose a rate range constraint

that consists of a maximum rate and a minimum rate in the optimization problem

(4.1.3). A maximum rate constraint is to suppress the power used by stronger users in

a network on one hand and to encourage users to subscribe to higher end service when

needed. A minimum rate constraint can ensure that the users achieve rates that have

been contracted, which can be viewed as a mean for a service provider to guarantee

quality-of-service. That fact that the maximum and the minimum rate comprise the

prescribed rate range that a user and a system provider negotiate is essential in a

commercial DSL service contract since users and system providers usually should

agree on rates that are bilaterally beneficial. If we denote the low and high endpoints
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by Rmin and Rmax, respectively, the rate range over which User k ∈ K operates can

be expressed as the set of rates that satisfy the following constraints:

N
∑

n=1

Rn
k ≤ Rmax,k

N
∑

n=1

Rn
k ≥ Rmin,k

Considering these two constraints, (4.1.3) can be rewritten as

min
s

K
∑

k=1

N
∑

n=1

(

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

))−1

(4.1.10)

s.t. 0 ≤ sn
k ≤ Sn

max,k, ∀ n, ∀ k

N
∑

n=1

sn
k ≤ Pk, ∀ k

N
∑

n=1

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

)

≤ Rmax,k ∀ k,

N
∑

n=1

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

)

≥ Rmin,k ∀ k,

where Rmax,k and Rmin,k are the maximum rate and minimum rate respectively that

the service provider agrees to provide to User k, respectively. By imposing this

maximum rate constraint so as to suppress the inter-user interference, the system can

accommodate more users as desired while the min rate constraint serves to ensure

QoS. While we can cast the maximum rate constraint into a convex function as part

of the objective function which will be shown below, the minimum rate constraint

cannot be transformed in a similar fashion. However, we can find a lower bound of the

left hand side of the minimum rate constraint that is convex under the transformation

in (4.1.4) and (4.1.5). Hence, we start by rewriting the left hand side of the minimum
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rate constraint as the following:

N
∑

n=1

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

)

=

N
∑

n=1

(

log

(

σn
k +

K
∑

j=1

αn
jks

n
j

)

− log

(

σn
k +

∑

j 6=k

αn
jks

n
j

))

. (4.1.11)

We have

log

(

σn
k +

K
∑

j=1

αn
jks

n
j

)

(4.1.12)

= log

(

1 +

K
∑

j=1

αn
jk

)

+ log

(

σn
k

1 +
∑

i α
n
ik

+

K
∑

j=1

αn
jk

1 +
∑

i α
n
ik

sn
j

)

≥ log

(

1 +
K
∑

j=1

αn
jk

)

+
1

1 +
∑

i α
n
ik

log σn
k +

K
∑

j=1

αn
jk

1 +
∑

i α
n
ik

log sn
j .

The inequality in (4.1.12) is due to the convexity of − log. Consequently, we have

the following inequality that is readily derived from (4.1.12):

N
∑

n=1

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

)

(4.1.13)

≥
N
∑

n=1

(

log

(

1 +
K
∑

j=1

αn
jk

)

+
1

1 +
∑

i α
n
ik

log σn
k +

K
∑

j=1

αn
jk

1 +
∑

i α
n
ik

log sn
j

− log

(

σn
k +

∑

j 6=k

αn
jks

n
j

))

. (4.1.14)

Note that it can be seen that for sn
k ’s that make the right hand side of (4.1.13)

greater than Rmin,k we have
∑N

n=1 log
(

1 +
sn
k

σn
k
+

P

j 6=k αn
jk

sn
j

)

≥ Rmin,k. Therefore, we
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consider the following optimization problem:

min
K
∑

k=1

N
∑

n=1

(

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

))−1

(4.1.15)

s.t. 0 ≤ sn
k ≤ Sn

max,k, ∀ k, ∀ n,

N
∑

n=1

sn
k ≤ Pk, ∀ k,

N
∑

n=1

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

)

≤ Rmax,k ∀ k,

N
∑

n=1

(

− log

(

1 +
K
∑

j=1

αn
jk

)

−
1

1 +
∑

i α
n
ik

log σn
k

−
K
∑

j=1

αn
jk

1 +
∑

i α
n
ik

log sn
j + log

(

σn
k +

∑

j 6=k

αn
jks

n
j

))

≤ −Rmin,k ∀ k.

From (4.1.15), the dual function can be written as

d(λ) := −
K
∑

k=1

λkPk −
K
∑

k=1

µkRmax,k

+
K
∑

k=1

ςk

(

Rmin,k +
N
∑

n=1

(

− log

(

1 +
K
∑

j=1

αn
jk

)

−
1

1 +
∑

i α
n
ik

log σn
k

))

+
N
∑

n=1

min
0≤sn

k
≤Sn

max,k
, ∀ n, ∀ k





K
∑

k=1

(

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

))−1

+

K
∑

k=1

λks
n
k +

K
∑

k=1

µk log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

)

+
K
∑

k=1

ςk

(

−
K
∑

j=1

αn
jk

1 +
∑

i α
n
ik

log sn
j + log

(

σn
k +

∑

j 6=k

αn
jks

n
j

))]

. (4.1.16)

Hence, for each n, the minimization problem becomes the following:
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min

K
∑

k=1

(

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

))−1

+

K
∑

k=1

λks
n
k +

K
∑

k=1

µk log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

)

+
K
∑

k=1

ςk

(

−
K
∑

j=1

αn
jk

1 +
∑

i α
n
ik

log sn
j + log

(

σn
k +

∑

j 6=k

αn
jks

n
j

))

(4.1.17)

s.t. 0 ≤ sn
k ≤ Sn

max,k, ∀ k.

Note that µk and ςk’s are non-negative. We apply the transformation (4.1.4) and

(4.1.5) and obtain the following

min
K
∑

k=1

(

tnk + µk(t
n
k)−1

)

+
K
∑

k=1

λk2
yn

k

+

K
∑

k=1

ςk

(

−
K
∑

j=1

αn
jk

1 +
∑

i α
n
ik

yn
j + log

(

σn
k +

∑

j 6=k

αn
jk2

yn
j

))

(4.1.18)

s.t. yn
k ≤ log(Sn

max,k), tnk ≥ 0, ∀ k,

log

(

σn
k 2(−yn

k
) +
∑

j 6=k

αn
jk2

(yn
j −yn

k
)

)

+ log(2
1

tn
k − 1) ≤ 0, ∀ k.

It can also be verified that (4.1.18) is a convex optimization problem. We can

solve (4.1.18) in a similar fashion to the way we solved (4.1.3).

So far we have derived the dual form of (4.1.3) under which the problem decom-

poses into a series of per-tone optimization problems (4.1.9). We further transform

(4.1.9) to its convex form (4.1.18). We will complete this section by summarizing the

algorithm to solve (4.1.3).
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4.1.3 Per-tone Harmonic Mean Rate Optimization Algo-

rithm

The procedure of solving (4.1.3) consists of two loops. The outer loop is a Lagrange

dual update procedure [15] while the inner loop is to solve (4.1.18) for each tone for

each k ∈ K. This procedure, per-tone Harmonic Mean Rate Optimization (HMRO),

can be described in detail as follows:

• Step 0: Initialize primal variables {sn,0
k } and dual variables {µ0

k, λ0
k, ς0

k}.

• Step 1: Inner loop ν: For each n, solve for

s(ν) =
N
∑

n=1

argmin0≤sn
k
≤Sn

max,k
, ∀ n, ∀ k

K
∑

k=1

(

log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

))−1

+

K
∑

k=1

λks
n
k +

K
∑

k=1

µk log

(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j

)

+
K
∑

k=1

ςk

(

−
K
∑

j=1

αn
jk

1 +
∑

i α
n
ik

log sn
j + log

(

σn
k +

∑

j 6=k

αn
jks

n
j

))

by the following steps:

– Step 1.1: Initialize

tn,ν
k =

(

log

(

1 +
sn,ν−1

k

σn
k +

∑

j 6=k αn
jks

n,ν−1
j

))−1

;

yn,ν
k = log sn,ν−1

k .
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– Step 1.2: Solve for tn,ν
k , yn,ν

k using interior point method [29]:

min
t
n,ν

k
,y

n,ν

k
∀k∈K

∑

k∈K

(

tn,ν
k + µk(t

n,ν
k )−1

)

+
∑

k∈K

λk2
y

n,ν

k

+
∑

k∈K

ςk

(

−
K
∑

j=1

αn
jk

1 +
∑

i α
n
ik

yn,ν
j + log

(

σn
k +

∑

j 6=k

αn
jk2

y
n,ν
j

))

s.t. yn,ν
k ≤ log(Sn

max,k), tnk ≥ 0, ∀ k ∈ K,

log

(

σn
k 2(−y

n,ν

k
) +
∑

j 6=k

αn
jk2

(yn,ν
j −y

n,ν

k
)

)

+ log(2
1

t
n,ν
k − 1) ≤ 0, ∀ k ∈ K.

– Step 1.3: Let sn,ν
k = 2y

n,ν

k , ∀k ∈ K.

• Step 2: For all k and n, calculate

Rn,ν
k = log

(

1 +
sn,ν

k

σn
k +

∑

j 6=k αn
jks

n,ν
j

)

.

• Step 3: Apply steepest decent on dual variables

λν
k =λν−1

k + βν
λ(

K
∑

k=1

sn,ν
k − Pk),

µν
k =µν−1

k + βν
µ(

N
∑

n=1

Rn,ν
k − Rmax,k),

ςν
k =ςν−1

k + βν
ς (Rmin,k −

N
∑

n=1

Rn,ν
k ),

where βν
λ, βν

µ and βν
ς are the step sizes for the λ, β and ς, respectively. For a

discussion on the choices of step size, one can refer to [15] and [28].

• Step 4: Go to Step 1 until the optimality condition is satisfied.

Since (4.1.15) is convex, the proposed algorithm converges to a fixed point of the

problem, which hence is a minimizer of (4.1.15) due to its convexity. Furthermore,
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from (4.1.13) we know that any minimizer of (4.1.15) is feasible for (4.1.10).

4.1.4 Simulation Results

Simulation Case 1:

In this example, we compare the performance of HMRO, SSB (Section 3, [30]), SCALE

[12], and IWFA [4] 1 in terms of the achieved harmonic mean and the number of users

in prescribed rate range for a six user DSL communication system with two hundred

and fifty-six tones. For this system, the cross-talk coefficients, the noise variances and

spectrum masks were generated by a DSL simulation program2. The system model

consists of two CO lines and four RT lines, the topology of which are shown in Fig. 4.1.

Other system parameters are set as follows: noise variance is -140 dBm/Hz, power

budget is 20 dBm, and bit-cap is 15 bits for all users. We have two groups of users:

one subscribes to basic service and the other consists of high-end users. We let User 1

and User 2 be in first group and User 3, User 4, User 5 and User 6 be in the second

group. The two groups of users have prescribed rate ranges of (0.5, 2)(Mbps) and

(2, 10)(Mbps) corresponding to the basic service rate range and high-end residential

rate range, respectively. As a consequence, we set Rmax = [2, 2, 10, 10, 10, 10](Mbps)

and Rmin = [0.5, 0.5, 2, 2, 2, 2](Mbps). Furthermore, we examine four sets of weights

for SSB, SCALE and IWFA that are numbered as Case 1 to Case 4 in Table 4.1 since

the objective of these three algorithms are weighted sum-rate. It is worthwhile to

point out that we do not consider weights for HMRO since harmonic mean objective

”automatically” provides relatively fair rates to all users and the max and min rate

constraints enable the system to provide contracted rate range without adjusting the

1Due to the high complexity of OSB and unknown data of ASB, we do not run simulation on
OSB and ASB.

2The program is provided by Raphael Cendrillon of Huawei Technologies Co. Ltd.
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Figure 4.1: A 6 User DSL System Topology

weights on users.

The programs were coded in MATLAB 7.0 and the computational time for HMRO,

SSB, SCALE and IWFA to run one of the six users case is 65 sec, 85 seconds, 47

seconds and 10 seconds. Figure 4.3, Figure 4.4 and Figure 4.5 are the individual rates

achieved by the users. It is shown in Figure 4.3, Figure 4.4 and Figure 4.5 that among

the four methods, HMRO is the only method that can fulfill the desired rate range

Case Number Weights
Case 1 [0.2, 0.1, 0.2, 0.2, 0.2, 0.1]
Case 2 [0.1, 0.2, 0.2, 0.2, 0.2, 0.1]
Case 3 [0.2, 0.1, 0.2, 0.2, 0.1, 0.2]
Case 4 [0.1, 0.2, 0.2, 0.2, 0.1, 0.2]

Table 4.1: Weights for 6 Users Cases
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Figure 4.2: Harmonic Mean Rate Achieved by HMRO, SSB, SCALE and IWFA in 6
User Case

for all users in both groups. SSB, SCALE and IWFA can only guarantee service for

the group of basic service subscribers. Table 4.2 lists the number of users that can

supported by the four algorithms according to Figure 4.3, Figure 4.4 and Figure 4.5.

As can see from Table 4.2, HMRO can achieve the targeted rate range for users

at all weight cases while SSB, SCALE and IWFA fail to fulfill the rate requirement

in any cases. In fact, this can be viewed as an advantage of HMRO that it does
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Figure 4.3: User 1 and User 2 Rate in 6 User Case
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Figure 4.4: User 3 and User 4 Rate in 6 User Case
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Figure 4.5: User 5 and User 6 Rate in 6 User Case

Number of users Case 1 Case 2 Case 3 Case 4
HMRO 6 6 6 6

SSB 3 3 3 3
SCALE 2 2 2 2
IWFA 2 2 2 2

Table 4.2: Number of Users in Prescribed Rate Range in 6 User Cases
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not require the service provider to blindly adjust weights but change the max and

min rate constraints when the service requirement changes. This gives the service

provider a better control over the quality of service by a guarantee of achieving users’

prescribed rates.

Simulation Case 2:

In this example we consider a DSL communication system with 256 tones. Assuming

that there are seven users that we wish to accommodate in the DSL system, the

crosstalk coefficients and the noise parameters of these users were generated using

a practical DSL simulator 1. The system model consists of 2 Central Office (CO)

and 5 Remote Terminal (RT) lines, and all users are assumed to have identical power

budgets. The lengths of the CO and RT lines are 5, 4, 3.5, 3.5, 3, 3 and 3 km,

respectively, and the distances from the 5 RTs to the COs are set to be 0.3, 0.5, 0.5, 3

and 3 km, respectively. The background noise variance is assumed to be N0 = −140

dBm/Hz and the capacity gap is set to be 15 dB. The users are divided into basic

and high-end service groups. The basic service group consists of Users 1 and 2 with

Rmin,k = 0.5 Mbps and Rmax,k = 2 Mbps, k = 1, 2, and the high-end service group

consists of Users 3 to 7 with Rmin,k = 2 Mbps and Rmax,k = 12 Mbps, k = 3, . . . , 7.

Using these parameters, in Figure 4.6 we compare the number of users supported

by SCALE and IWFA and the number of users supported by the proposed HMRO

algorithm. From this figure it can be seen that for the considered range of power

budgets, both SCALE and IWFA support fewer users than the proposed HMRO.

For instance, SCALE can only support 4 users (Users 1 and 5 to 7) throughout

the entire range of the considered power budgets. However, IWFA exhibits a more

interesting behavior. At an input power of 11 dBm, IWFA supports up to 6 users,

but as the power increases, IWFA tends to favor stronger users (Users 6 and 7 in the
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Figure 4.6: Number of Users Supported by HMRO, SCALE,IWFA

current example) over weaker ones. This tendency eventually incurs a decrease in

the number of users that the system can support. Finally, we consider the number of

users that can be supported by the proposed HMRO. For an input power of 11 dBm,

similar to IWFA, this algorithm supports 6 users. However, by increasing the power

budget, HMRO manages to accommodate all 7 users in the system. This performance

advantage follows from the inherent fairness of the harmonic mean objective and the

versatility with which the system designer can control the QoS of different classes of

users.

Finally, we compare the complexity of SCALE and IWFA with that of HMRO.

Denoting the tolerance by ǫ, the complexity of IWFA and SCALE can be shown

to be O(KN log2 ǫ) and O(KNL log2 ǫ), where L is the number of SCALE updates

( [31]), whereas the complexity of HMRO is O(KNlog2ǫ). As a rough comparison, the

average Matlab running times of the IWFA and SCALE for the scenario considered

in this example are about 1 and 15 seconds, respectively, whereas that of HMRO is

about 26 seconds. Hence, it can be seen that the computational complexity of HMRO

is comparable to that of IWFA and SCALE, but it can support significantly more
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users than either of the other algorithms.

4.2 Solving Harmonic Mean Objective via Decom-

position and Convexification

As stated in the previous section, a traditional objective is to maximize the total

achievable data rate of the system (i.e., the sum of users’ data rate =
∑K

k=1 Rk,

[30], [32] and [1]). However, in this case some users may have dominant achievable

data rates while others suffer from low achievable data rates. This is not desirable

in practice from a service provider’s perspective because it cannot guarantee ser-

vice subscribers (i.e., the system users) promised data rates, hence the absence of

QoS. Alternatively, other utility functions are considered such as weighted sum rate,

proportional fairness, minimum rate utility function or the harmonic mean utility

function [10]. Among these objective functions, the harmonic mean utility function is

more practical. The reasoning is two folds: no requirement for additional weight as-

signment and fairness to all users [11] [33]. Furthermore, when compared to sum rate

objective, harmonic mean rate objective guarantees a larger minimum rate among

the users. Figure 4.7 illustrates a 2 user case, where the red dot and blue dot indicate

the sum rate and harmonic mean rate maximum, respectively. It is obvious that blue

dot has a larger minimum rate between R1 and R2 than the red dot.

The harmonic mean rate can be written as K

(

∑K

k=1

(

∑N

n=1 Rn
k

)−1
)−1

. Con-

sidering each user’s available power budget and spectrum mask, the harmonic mean
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Figure 4.7: Minimum Rate Comparison between Harmonic Mean Rate Objective and
Sum Rate Objective in a 2 User Case
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maximization problem can be written as:

min
{sn

1 ,...,sn
K
}N

n=1

K
∑

k=1

(
N
∑

n=1

Rn
k)−1 (4.2.19)

s.t.

N
∑

n=1

sn
k ≤ Pk, ∀k

0 ≤ sn
k ≤ Sn

k,max, ∀k ∀n

where in the objective function we use the fact that maximizing harmonic mean rate

is equivalent to minimizing its inverse. We also use Pk to denote the kth user’s power

constraint as a transmitter while Sn
k,max denotes the maximum signal power that

user k can allocate to the n-th tone. Note that we assume that
∑N

n=1 Sn
k,max ≥ Pk

in order for the power constraint not to be redundant. When compared (4.1.3),

(4.2.19) is fundamentally different in the sense that (4.2.19) is per user harmonic

mean and (4.1.3) is per tone per user harmonic mean. Furthermore, (4.2.19) cannot

be transformed into a convex problem.

Although solving (4.2.19) is preferable, it is easy to verify that the harmonic mean

objective function is non-convex and it has been shown that this problem is NP-hard

for the case N > 1 [10]. Hence there is not a computationally efficient algorithm

to solve for global optimum of (4.2.19). The difficulties stem from two aspects: the

objective function is not convex and it is not dual-decomposable over tones due to

the inverse of Rn
k , which raises higher computational complexity compared to the sum

rate mean objective function. Besides, in real system set-ups, N and K are usually

so large that brute force algorithms are not feasible for practical use. In order to

circumvent these difficulties, in the next section we utilize Taylor expansion of the

objective function in (4.2.19) and derive its lower bound, based on which we develop

a novel algorithm that solves the problem efficiently.
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4.2.1 Taylor Expansion Based Iterative Algorithm:

Taylor Expansion of the Harmonic Mean Rate

The harmonic mean objective function is not decomposable over tones which leads to

the problem of computational intractability. As an alternative, we resort to an itera-

tive algorithm via first order Taylor expansion of Rk at the current power allocation

at each iteration which yields the following expansion:

(R̃
(i)
k )−1 =

1

R
(i)
k

−
1

(R
(i)
k )2

(Rk − R
(i)
k ), (4.2.20)

where (R̃
(i)
k )−1 is the first order Taylor expansion of (Rk)

−1 at R
(i)
k and R

(i)
k is the value

of Rk at the ith iteration. Denote
{

s
n(i)
k

}

are the set of resulting power allocation of

user k at the i-th iteration. Then R
(i)
k is equal to

R
(i)
k =

N
∑

n=1

R
n(i)
k

=

N
∑

n=1

log(1 +
s

n(i)
k

σn
k +

∑

ℓ 6=k

αn
ℓks

n(i)
ℓ

). (4.2.21)

From (4.2.20), it is easy to notice that minimizing
∑K

k=1(R̃
(i)
k )−1 is equivalent to

maximizing
∑K

k=1
Rk

(R
(i)
k

)2
at the i-th iteration. In other words, at iteration i we solve

the following optimization problem based on the above analysis:

max
{s

n(i+1)
k

}

K
∑

k=1

(R
(i)
k )−2

N
∑

n=1

R
n,(i+1)
k (4.2.22)

s.t.
N
∑

n=1

s
n(i+1)
k ≤ Pk, ∀k

0 ≤ s
n(i+1)
k ≤ Sn

k,max, ∀k ∀n,
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where R
n(i+1)
k is in the form of (4.2.21). It is interesting to observe that the objective

of (4.2.22) is a weighted sum rate function with weights that are inverse of squared

user rates of the previous iteration. Therefore, for each user, the larger the data rate

in the previous iteration, the less weight it receives in the current iteration, hence the

algorithm yields a lower data rate for this user. As a result, the algorithm favors the

users with lower data rates (i.e., higher weights) at each iteration. This mechanism

suggests an iterative weight adjustment scheme for the algorithm which implicitly

achieves the goal of relatively fair rates among the users. The objective function

in (4.2.22) combines weighted sum rate with special data rate weights and has high

complexity. In the next part, we introduce a lower bound for the weighted sum rate

that allows us to solve the problem in a computationally effective manner and we will

explain the overall scheme.

The Iterative Algorithm

The objective in (4.2.22) is non-concave and NP-hard. In attempting to efficient

algorithms to solve (4.2.22), we derive a lower bound for this objective function.

This lower bound is obtained via concavity of the logarithm function and Jensen’s

Inequality as follows:

Rn
k ≥ log(1 +

K
∑

j=1

αn
jk) +

σn
k

1 +
∑K

i=1 αn
ik

+

K
∑

j=1

αn
jk log sn

j

1 +
∑K

i=1 αn
ik

− log(σn
k +

∑

j 6=k

αn
jks

n
j )

△
= Rn

LB,k (4.2.23)

Therefore, at each iteration, instead of solving (4.2.22) we can simply solve the
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following optimization problem:

min
{s

n(i+1)
k

}

K
∑

k=1

(R
(i)
k )−2

N
∑

n=1

[

log(σn
k +

∑

j 6=k

αn
jks

n(i+1)
j )

−
K
∑

j=1

αn
jk log s

n(i+1)
j

1 +
∑K

i=1 αn
ik

]

(4.2.24)

s.t.

N
∑

n=1

s
n(i+1)
k ≤ Pk, ∀k;

0 ≤ s
n(i+1)
k ≤ Sn

k,max, ∀k ∀n.

At first glance, it may seem difficult to solve (4.2.24). As a matter of fact, (4.2.24)

is convex under the transformation yn
k = log sn

k ( [11]) and (4.2.24) can be reformulated

as the following problem:

min
{y

n(i+1)
k

}

K
∑

k=1

(R
(i)
k )−2

N
∑

n=1

[

log(σn
k +

∑

j 6=k

αn
jk exp(y

n(i+1)
j ))

−
K
∑

j=1

αn
jky

n(i+1)
j

1 +
∑K

i=1 αn
ik

]

(4.2.25)

s.t.

N
∑

n=1

exp(y
n(i+1)
k ) ≤ Pk, ∀k

y
n(i+1)
k ≤ log Sn

k,max, ∀k ∀n.

Note that the above transformation not only convexifies the objective function,

but also implicitly implies the constraints (0 ≤ sn
k) which yield less computation

on projection thus a faster algorithm. Furthermore, (4.2.25) is decomposable in the

sense that in order to calculate the gradient of the objective function, we need only the

partial derivatives
∂Rn

LB,k

∂sm
j

. Obviously, this needs less computational time compared

to calculating the partial derivatives
∂(R−1

k
)

∂sm
j

in (4.2.19). Moreover, (4.2.25) can be

decomposed into N independent subproblems in its dual form. To further illustrate
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this idea, we let λk be the Lagrange multiplier associated to the total power constraint

and the Lagrange function is

L(s, λ)

=

K
∑

k=1

(R
(i)
k )−2

N
∑

n=1



log(σn
k +

∑

j 6=k

αn
jks

n(i+1)
j )

−
K
∑

j=1

αn
jk log s

n(i+1)
j

1 +
∑K

i=1 αn
ik



+

K
∑

k=1

λk

(

N
∑

n=1

exp(y
n(i+1)
k ) − Pk

)

=

K
∑

k=1







N
∑

n=1



(R
(i)
k )−2



log(σn
k +

∑

j 6=k

αn
jks

n(i+1)
j )

−
K
∑

j=1

αn
jk log s

n(i+1)
j

1 +
∑K

i=1 αn
ik

+ λk exp(y
n(i+1)
k )







− λkPk







. (4.2.26)

From (4.2.26), one can see for fixed λk’s that L(s, λ) is not coupled over tones,

and hence each subproblem in the sum term is independent. Furthermore, each

subproblem is convex and can be evaluated with efficient optimization techniques.

This is the major advantage of our algorithm. Now, the overall proposed algorithm

can be stated as the following:

Step 1 Initialize s
n,(0)
k by water-filling for each user;

Step 2 At iteration i, solve (4.2.25) via dual optimization algorithms to obtain the

{yn,(i)
k }’s which gives {sn,(i)

k }’s, with which we calculate the R
(i)
k ’s and update

(4.2.25);

Step 3 If the increase in the original harmonic mean objective function is more than

the tolerance level ε, go back to Step 2, otherwise stop.
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4.2.2 Discussions

In this section, we address two important issues regarding the accuracy and practi-

cality of the proposed algorithm. In the development of the algorithm, (4.2.22) and

(4.2.25) are obtained through two approximations. However these two approxima-

tions are only tight under certain conditions – roughly speaking, that the achievable

rates are large. We further discuss the usefulness of both approximations by explain-

ing cases when system parameters are relatively small. Moreover, we offer insights

on solving the subproblems arising from solving (4.2.25) and provide techniques to

overcome them in a computationally efficient manner.

Accuracy of the approximations:

Using the Lagrange form for the remainder term in Taylor expansion, R−1
k can be

written as

R−1
k = (R

(i)
k )−1 − (R

(i)
k )−2(Rk − R

(i)
k ) + ξ−3(Rk − R

(i)
k )2

where ξ is a real number between Rk and R
(i)
k . It is easy to see that when ξ is

large the third term in the above equation is small. Therefore, the approximation

of R−1
k using the first two terms of the Taylor expansion in the proposed algorithm

can be tight when Rk and R
(i)
k are large, hence ξ−3 is small. On the other hand, the

bound in (4.2.23) is obtained by using Jensen’s inequality and it is tight when one

of the weights in Jensen’s inequality dominates all the other weights. In translation

to our case, the inequality is tight when αn
jk’s (j 6= k) are small compared to αn

kk,

which has the value 1 as it is normalized. Therefore, the second bound is tight when

the cross-talk coefficients are small. This condition coincides the one for the first

approximation to be tight that Rk’s are large. Here we use the fact that Rk increases

as the cross-talk coefficients decrease. In summary, two inequalities are generally
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tight under the conditions that cross-talk coefficients are small and Rk’s are large.

Under these conditions, the resulting solutions can be close to optimum.

Solving the subproblem:

In the proposed algorithm, (4.2.25) is evaluated iteratively as a subproblem at each

iteration. To solve this problem, we utilize its dual problem (4.2.26) and optimize

the Lagrangian function to update primal/dual variables simultaneously for certain

number of steps as it is in Lagrangian method [15]. However, convergence is not

guaranteed for this method. Fortunately, for our problem, this method converges

in few steps (less than ten) in most cases. Therefore, we do seven update steps to

optimize the Lagrangian at each iteration and then the objective function is updated

by re-evaluating the R
(i)
k according to the first order Taylor expansion of the objective

function. It is worth mentioning that the dual problem also decouples the problem

across tones. Hence this method allows us to use cheap computational methods to

solve this difficult problem.

4.2.3 Numerical Results

In this section, the performance of the proposed algorithm is compared with the per-

formance of the traditional IWFA algorithm. In the simulations, we consider the case

where there are three users sharing 64 tones to communicate in a system with inter-

ference channels. The crosstalk coefficients are generated uniformly in the interval of

[0 , 0.3] and the noise is randomly generated according to the Gaussian distribution

with a zero mean and unit variance. In order to make the users dissimilar (to check

the user fairness issue), the cross-talk coefficients are generated in the interval [0 , 0.9]

for User 2. The input signal power constraint is set to 15 dB. All users are assumed

to have the same power budget constraint Pk and spectrum mask Smax.
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Using the above parameters, Figure 4.8 shows the convergence of the proposed al-

gorithm and makes a comparison in term of harmonic mean achieved by the proposed

algorithm and the levels achieved by traditional IWFA and SCALE over iteration.

Note that our algorithm and IWFA have the same initialization. However, since there

are a lot of oscillations at the first steps of IWFA and SCALE, only the resulting level

of harmonic mean for IWFA and SCALE are plotted.

Figure 4.9 presents a comparison between the achievable data rate for the min-

imum rate user (minimum rate utility function [10]) of the proposed algorithm and

that achieved by using IWFA as a function of different power constraints (Pk=14, 17,

and 20 dB) for the input signal. As one can see, the performance of the worst user is

much better in the proposed algorithm than under the other methods.
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Chapter 5

Multi-user Communication

Systems in the Presence of a

Jammer and the Generalized

Iterative Water-Filling Algorithm

In this section, we consider a similar communication with the presence of a jammer,

denoted as User 0. Suppose that User k ∈ K, (k 6= 0) is interested in maximizing its

own sum-rate, so its utility is given by

Uk(s0, s1, · · · , sK) =

N
∑

n=1

Rn
k(sn

1 , . . . , s
n
K) =

N
∑

n=1

log
(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j + αn

0ks
n
0

)

,

(5.0.1)

while the utility of the jammer is

U0(s0, s1, · · · , sK) = −
K
∑

k=1

Uk = −
K
∑

k=1

N
∑

n=1

log
(

1 +
sn

k

σn
k +

∑

j 6=k αn
jks

n
j + αn

0ks
n
0

)

,

(5.0.2)
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where we use sk to denote the vector [s1
k, · · · , sN

k ]T .

Given a limited power budget, and a maximum power constraint on each tone, the

goal of User k, is to maximize Uk; that is, User k wishes to choose sn
k , n = 1, . . . , N

to solve the following optimization problem,

max Uk(s0, s1, · · · , sK),

subject to
N
∑

n=1

sn
k ≤ Pk, (5.0.3a)

0 ≤ sn
k ≤ Sn

max,k, (5.0.3b)

where, Pk denotes the total power budget of User k, Sn
max,k denotes the maximum

signal power that User k can use on the n-th tone, and in order for (5.0.3a) not to

be redundant, we assume that Pk ≤
∑N

n=1 Sn
max,k. We will denote the feasible set of

User k as Pk; that is,

Pk
△
=
{

sk = [s1
k, · · · , sN

k ]T |
N
∑

n=1

sn
k ≤ Pk, 0 ≤ sn

k ≤ Sn
max,k

}

. (5.0.4)

Since individual users do not collaborate among themselves nor do they collaborate

with the jammer, and since all users and the jammer selfishly maximize their own

utilities, this communication scenario can be modelled as a non-cooperative game [16].

In this game individual users and the jammer are non-cooperative players, and the

power allocations of any User k, including the jammer, that lie in Pk (cf., (5.0.4))

represent the set of admissible strategies of this user. A Nash equilibrium of this

game [16] is a tuple of power strategies {s∗k}
K
k=0, such that for any k ∈ {0} ∪ K

Uk(s
∗
0, s

∗
1, · · · , s∗k−1, s

∗
k, s

∗
k+1, · · · , s∗K) ≥ Uk(s

∗
0, s

∗
1, · · · , s∗k−1, sk, s

∗
k+1, · · · , s∗K), ∀sk ∈ Pk.

(5.0.5)
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In other words, a Nash equilibrium of the game is a locally optimal strategy for each

player such that no player has an incentive to unilaterally change [16]. In the next

section, we will show that, for this game, a Nash equilibrium always exists. Moreover,

we will propose a decentralized algorithm for updating the jammer’s and the users’

power allocations. By analyzing the convergence of this algorithm, we also derive

sufficient conditions under which the Nash equilibrium is unique.

5.1 Existence and Uniqueness of a Nash Equilib-

rium

Since, for every k = 1, · · · , K, Uk(s0, s1, · · · , sk−1, •, sk+1, sK) is a continuously con-

cave function, and so is U0(•, s1, · · · , sK), and since each Pk is a compact convex set,

it follows readily from [34, Proposition 2.2.9] that a Nash equilibrium exists. Such

an equilibrium can be found using a standard fixed-point algorithm, an instance of

which is given in the next section.

5.1.1 A Generalized Iterative Water-Filling Algo-

rithm (GIWFA)—Synchronous Version

A simple distributed algorithm for the users and the jammer to update their power

allocation is the following generalized iterative water-filling algorithm (GIWFA). Let

sn,ν
k be the power allocation of User k on the n-th tone at iteration ν, and sν

k be the

vector [s1,ν
k , · · · , sN,ν

k ]T . For the time being consider synchronous operation, whereby

the users update their power allocations sequentially. Assume, without loss of gener-

ality, that the users are ordered so that User 1 updates its power allocation first then

User 2 and so on, and that the jammer (User 0) updates its power allocation last.
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Hence, in each iteration User k ∈ K updates its power allocations in order to solve

sν+1
k =

[

sν+1
k + ∇sk

Uk(s
ν
0, s

ν+1
1 , · · · , sν+1

k−1, sk, s
ν
k+1, · · · , sν

K)
∣

∣

∣

sk=s
ν+1
k

]

Pk

, (5.1.6)

whereas the jammer solves

sν+1
0 =

[

sν+1
0 + ∇s0U0(s0, s

ν+1
1 , · · · , sν+1

K )
∣

∣

∣

s0=s
ν+1
0

]

P0

, (5.1.7)

where we use [·]Pk
to denote the projection operator onto the polyhedron defined

in (5.0.4). That is, for any vector x ∈ R
N

[x]Pk
= arg min

y∈Pk

‖y − x‖. (5.1.8)

Using (5.0.1) and (5.0.2), we can compute the gradients ∇sk
Uk explicitly. In

particular, the n-th entry of ∇sk
Uk for k ∈ {0} ∪ K, [∇sk

Uk]n, can be expressed as

[

∇sk
Uk(s

ν
0 , s

ν+1
1 , · · · , sν+1

k−1, sk, s
ν
k+1, · · · , sν

K)
∣

∣

∣

sk=s
ν+1
k

]

n

=
1

σn
k +

∑k

j=1 αn
jks

n,ν+1
j +

∑K

j=k+1 αn
jks

n,ν
j + αn

0ks
n,ν
0

, ∀k ∈ K,

(5.1.9)
[

∇s0U0(s0, s
ν+1
1 , · · · , sν+1

K )
∣

∣

∣

s0=s
ν+1
0

]

n

=
K
∑

k=1

αn
0ks

n,ν+1
k

(
∑K

j=1, j 6=k αn
jks

n,ν+1
k + σn

k + αn
0ks

n,ν
0 )(

∑K
j=1 αn

jks
n,ν+1
k + σn

k + αn
0ks

n,ν
0 )

,

(5.1.10)

where, in (5.1.9) and (5.1.10), we have used that αn
kk = 1 for all k ∈ K.

From (5.1.9) and (5.1.10) we observe that for User k ∈ K to update its power

allocation, it is sufficient to measure its own noise-plus-interference level on each
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tone, whereas for the jammer to update its power allocation, it needs, not only to

know the power transmitted by each user, but also to know the noise-plus-interference

level experienced by each user on every tone.

5.1.2 Convergence Analysis—Synchronous Version

We now present sufficient conditions under which this algorithm converges to the

unique Nash equilibrium of the game. Applying [35, Proposition 11.13] it can be seen

that a tuple of power strategies {s∗k}
K
k=0 achieves equilibrium if and only if

s∗k =
[

s∗k + θ∇sk
Uk(s

∗
0, s

∗
1, · · · , s∗k−1, sk, s

∗
k+1, · · · , s∗K)

∣

∣

∣

sk=s∗
k

]

Pk

, k ∈ K (5.1.11a)

s∗0 =
[

s∗0 + θ∇s0U0(s0, s
∗
1, · · · , s∗K)

∣

∣

∣

s0=s∗0

]

P0

, (5.1.11b)

for some θ > 0. Since our generalized iterative water-filling algorithm (5.1.6)–(5.1.7)

corresponds to setting θ = 1 in (5.1.11), then if this algorithm converges to a power

strategy {s∗k}
K
k=0, then it must be a Nash equilibrium of the game (5.0.5). We now

present sufficient conditions under which the generalized IWFA converges to a unique

Nash equilibrium. In particular, let

A =



















1 0 · · · 0

−α12 1 · · · 0

...
...

. . .
...

−α1K −α2K · · · 1



















, B =

























0 α21 α31 · · · αK1

0 0 α32 · · · αK2

...
...

...
. . .

...

0 0 0 · · · αK,K−1

0 0 0 · · · 0

























, and β =













α01

...

α0K













,

(5.1.12)

where we define αjk
△
=
∥

∥[α1
jk, · · · , αN

jk]
∥

∥

2
for all j ∈ {0} ∪ K, k ∈ K, j 6= k. Further-

more, for every k ∈ K, let Fk be a N ×NK block-diagonal matrix whose n-th 1×K
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diagonal block is fn
k . That is,

Fk
△
=



















f 1
k 0 · · · 0

0 f 2
k · · · 0

...
...

. . .
...

0 0 · · · fN
k



















, (5.1.13)

where the i-th entry of fn
k , [fn

k ]i, i = 1, . . . , K, be defined as follows.

[fn
k ]k =

(Sn
max,0)

2

(dn
min,k)

2(cn
min,k + Sn

max,0)
2

+

∑K

j=1, j 6=k αn
jkS

n
max,j

(
∑K

j=1, j 6=k αn
jkS

n
max,j + ηn

k )cn
min,kd

n
min,k

+
Sn

max,0

dn
min,k(c

n
min,k + Sn

max,0)

(

1

dn
min,k

+
1

cn
min,k

+
Sn

max,k

cn
min,k(α

n
0kc

n
min,k + Sn

max,k)

)

,

(5.1.14)

[fn
k ]i =

(Sn
max,k)

2dn
min,k + 2Sn

max,kc
n
min,k(α

n
0kc

n
min,k + Sn

max,k)

dn
min,k(c

n
min,k)

2(αn
0kc

n
min,k + Sn

max,k)
2

αn
ik

+
2Sn

max,0S
n
max,k

cn
min,k(α

n
0kc

n
min,k + Sn

max,k)d
n
min,k(c

n
min,k + Sn

max,0)
αn

ik, i 6= k, i ∈ K,

(5.1.15)

where

cn
min,k =

1

αn
0k

( K
∑

j=1, j 6=k

αn
jkη

n
j + σn

k

)

, (5.1.16)

dn
min,k = cn

min,k +
1

αn
0k

ηn
k , (5.1.17)

with ηn
k being a lower bound on sn,ν

k . That is, for every iteration ν, ηn
k ≤ sn,ν

k , ∀k ∈

K, n ∈ N . In Appendix A.2 we show that ηn
k is given by

ηn
k =

[ 1

N

(

Pk +

mk
∑

i=1

σ
πk(i)
k

)

+
( 1

N
− 1
)

K
∑

j=0, j 6=k

αn
jkS

n
max,j − σ

πk(n)
k

]+

, (5.1.18)
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where mk is the largest integer for which

(mk − 1)(σ
πk(j)
k +

K
∑

i=0, i6=k

α
πk(j)
ik S

πk(j)
max,i) ≤ Pk +

mk−1
∑

i=1

σ
(i)
k ,

is satisfied for all j ≤ mk. For each User k ∈ K we use σ
(i)
k to denote the noise

variance that satisfies σ
(i)
k ≤ σ

(i+1)
k , for all i = 1, . . . , N − 1. We also use πk(·) to

denote the tone permutation that satisfy

σ
πk(1)
k +

K
∑

j=0
j 6=k

α
πk(1)
jk S

πk(1)
max,j ≤ · · · ≤ σ

πk(N)
k +

K
∑

j=0, j 6=k

α
πk(N)
jk S

πk(N)
max,j .

Theorem 1 (Convergence of GIWFA) Suppose there exists a scalar τ ∈ (0, 1)

such that the following conditions are satisfied

(

1 +

∥

∥

∥

∑K
k=1 Fk

∥

∥

∥

2

2

(1 − τ)2

)

(‖A−1B‖2
2 + ‖A−1β‖2

2) < 1, (5.1.19)

max
n

K
∑

k=1

Sn
max,k(2c

n
min,k +

Sn
max,k

αn
0k

)

(cn
min,k)

2(cn
min,k +

Sn
max,k

αn
0k

)2
≤ τ + 1, (5.1.20)

min
n

K
∑

k=1

(

(αn
0k)

3ηn
k

(
∑K

j=1, j 6=k αn
jkS

n
max,j + αn

0kS
n
max,0 + σn

k

)2(∑K

j=1, j 6=k αn
jkS

n
max,j + ηn

k + αn
0kS

n
max,0 + σn

k

)

+
(αn

0k)
3ηn

k
(
∑K

j=1, j 6=k αn
jkS

n
max,j + αn

0kS
n
max,0 + σn

k

)(
∑K

j=1, j 6=k αn
jkS

n
max,j + ηn

k + αn
0kS

n
max,0 + σn

k

)2

)

≥ 1 − τ. (5.1.21)

Then the noncooperative game (5.0.5) has a unique Nash equilibrium, and the iterates

generated by the GIWFA algorithm converges to this unique equilibrium linearly.

Proof 1 Fix any equilibrium solution and any starting power allocation. We define

the error vector at each iteration to be the difference between the current power al-
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location and the power allocation at equilibrium. In Appendix A.1, we show that the

conditions (5.1.19)–(5.1.21) imply the error vectors converge to zero at a geometric

rate. Since the choice of equilibrium solution is arbitrary, it follows that the nonco-

operative game (5.0.5) has a unique Nash equilibrium.

Notice that the conditions (5.1.19)–(5.1.21) only depend on the power budget of

each user, its maximum allowable power on each tone and the cross-talk coefficients.

In many practical scenarios, these parameters, or a reasonably accurate estimate

thereof, may be known a priori to the system designer. Hence, these conditions

allow the system designer to study the impact of a potential jammer on the users’

utilities as well as the sum rate of the whole system. In Section 5.2 we will present

numerical results that show that for scenarios in which the conditions of Theorem 1

are met, the choice of both the users and the jammer converge. We also provide

instances showing that the violation of these conditions may cause the algorithm to

oscillate.

Observe that for any τ , the condition in (5.1.19) implies the standard IWFA

convergence conditions. In particular, for any such τ for which (5.1.19) holds, we

have

‖A−1B‖2 < 1. (5.1.22)

Condition (5.1.21) implies that

min
n

N
∑

k=1

sn,ν
k ≥ min

n

N
∑

k=1

ηn,ν
k > 0.

Thus if sn,∗
k ≡ lim

ν→∞
sn,ν

k , then

min
n

N
∑

k=1

sn,∗
k > 0.
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In words, this says that the Nash equilibrium computed by the GIWFA has the

property that every tone n is used by at least one user k. Another insight offered

by Theorem 1 is that if the jammer’s maximum signal power Sn
max,0 on tone n is

sufficiently large so that ηn
k = 0 for all k, then (5.1.21) cannot be satisfied and the

convergence of the GIWFA is in jeopardy.

5.1.3 Extension to Asynchronous GIWFA

In Sections 5.1.1 and 5.1.2 we considered the case in which the users and the jammer

update their power allocations sequentially in a predetermined order according to a

common clock. However, in many practical scenarios a common clock may not be

available for the users and the jammer to operate in such a synchronous fashion.

Moreover, even if such a clock is available, due to practical implementation issues,

either the users or the jammer may not have access to the most recent multi-user

interference. In this case an asynchronous version of the GIWFA algorithm may be

more desirable and more robust to implement than a synchronous one.

In a totally asynchronous scheme, the users and the jammer update their power

allocations at arbitrary time instants using possibly outdated multi-user interfer-

ence [18]. Under certain mild conditions a fundamental result in [18, Proposition 2.1]

ensures that the asynchronous scheme converges to a unique Nash equilibrium of the

game (5.0.5) if: 1) each user and the jammer update their power allocations at least

once within any sufficiently large, but finite, time interval, and 2) the iterates contract

with respect to some norm. This contraction condition is precisely the same as the

set of conditions given in Theorem 1; see also Appendix A.1.1 In other words, the

conditions given in Theorem 1 ensure convergence of both the synchronous and the

1For the asynchronous scheme the iteration indices ν and ν + 1 in Appendix A.1 ought to be
interpreted as the time instants within which each user and the jammer will have updated their
power allocations at least once.
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asynchronous versions of the GIWFA algorithm.

5.2 Numerical Results

In this section we provide a numerical example that illustrates the sufficiency of

the conditions given in Theorem 1 for the convergence of the decentralized GIWFA

algorithm. We also provide an example that shows that when the conditions in

Theorem 1 are violated the users and the jammer may fail to converge and the

behavior of the GIWFA becomes dependent on the initial point. For the numerical

examples in this section, the number of users, K = 4, and the number of tones

N = 10, and the maximum allowable power per tone is set to be constant across tones

for each user as well as for the jammer; i.e., we set Sn
max,k = Smax,k, n = 1, . . . , 10 for

k = 0, . . . , 4.

Example 1 In this example, the system parameters (i.e, αn
jk, σ

n
k , Pk, Smax, k, ∀ j 6=

k, k = 0, . . . , 4) are selected at random so as to satisfy the conditions in Theorem 1.

The users and the jammer update their power allocations using the GIWFA algorithm

described in Section 5.1.1. For this scenario, in Figures 5.1(a) and 5.1(b) we plot

the power allocations of Users 1 and 2 versus the iteration number for all the tones.

For the same scenario, in Figure 5.1(c) we plot the power allocations of the jammer

versus the iteration number. In each of the plots, three randomly chosen allocations

were used to initialize the fixed-point algorithm. Since the system parameters were

chosen to meet the conditions of Theorem 1, the algorithm converges to a unique

Nash equilibrium, irrespective of the initial power allocations. In order to quantify

the jammer’s impact on the overall system performance, the sum rate of all the users

over the ten tones is plotted versus the iteration number in Figure 5.1(d), where

Users 1 and 2 are Marked by ‘o’ and ‘△’, respectively, whereas the power allocations
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Figure 5.1: The Power Allocations of Users and Jammer

of the jammer is Marked by ‘�’. It is shown that the GIWFA iterates converge to a

unique Nash equilibrium irrespective of the initial power allocation.

Example 2 In this example, we retain the channel gains of the users as per Exam-

ple 1. (Since, in Example 1 the gains were selected to meet the conditions in Theo-

rem 1, these gains also meet the IWFA convergence condition (5.1.22). However, the

channel gains of the jammer are chosen such that the conditions in Theorem 1 are

violated. In this example, we consider two random instances of this scenario. For
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Figure 5.2: The Power Allocations of User 1 DO NOT Converge on Four Different
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the first instance, we show the power allocations of one of the users on some of the

tones. As can be seen from Figure 5.2, on these tones the user’s allocations do not

converge, and, in fact, they keep fluctuating. In the second instance of this example,

we initialize the GIWFA algorithm using three different randomly chosen power allo-

cations. In Figure 5.3 we plot the sum rate versus the iteration number in this case.

It can be seen that the sum rate fluctuates and no equilibrium is reached.
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Chapter 6

Conclusions and Open Questions

6.1 Conclusions

In this work, we studied a multiuser communication scenario in which K user pairs

share N orthogonal tones. We have proposed three dynamic power allocation algo-

rithms targeting weighted sum rate, user capacity and harmonic mean rate system

utilities, respectively.

SSB, which has the goal to maximize the weighted sum rate of the system, divides

the spectrum into three sets of tones F , NF IWFA and NFM, within each of which

it applies FDMA, IWFA and Lagrange dual algorithm, respectively. We showed

by simulation that SSB achieves a performance close to optimal with relative low

complexity.

In the second part of the dissertation, we defined user capacity which is the max-

imum number of users supported by the system and we designed an algorithm to

approach this capacity. Inspired by the observation that a harmonic mean objective

can provide fairness for users’ data rates, we indirectly achieved the goal of approach-

ing user capacity by maximizing the harmonic mean rate of the system. However, this
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optimization problem is non-convex when the number of tones is greater than one. To

overcome this non-convexity, we took advantage of the convexity feature of per-tone

harmonic mean and proposed a computationally-efficient algorithm. Furthermore, we

incorporated maximum and minimum rate constraints into the proposed algorithm

to achieve the rate ranges that users demand, thereby providing a convenient tool

for a service provider to guarantee quality-of-service. Furthermore, we studied the

harmonic mean rate objective function and proposed an iterative algorithm based

on the lower bound for the local Taylor expansion of the harmonic mean function.

A transformation of the variables is also provided for convexifing the subproblem.

By considering the dual problem, the subproblem is decomposed across the tones.

This decomposition makes the optimization algorithm much faster. The numerical

results also show improvements in the sense of user fairness and achievable data rate

compared to some well-known algorithms.

In the last part of the dissertation, we considered the system scenario where

there is a malicious jammer wishing to disrupt the communication of the users and

modeled the behaviors of the users and the jammer as a noncooperative game. We

derived sufficient conditions under which the iterates of both synchronous and totally

asynchronous decentralized GIWFA algorithms converge to a unique Nash equilib-

rium. Our theoretical analysis and numerical simulations show that the presence of a

strong jammer can not only reduce the total network throughout, but also cause an

otherwise convergent IWFA to oscillate.

6.2 Suggestions on Future Research

The study in this dissertation opens up the following research directions that merit

further investigation:
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• Performance analysis of the proposed algorithms

• Optimality conditions for FDMA signalling in harmonic mean objective

• Price setting for the resources and utilization of prices to facilitate the resource

management

6.2.1 Performance Analysis of the Proposed Algorithms

Convergence and Complexity Analysis on the Proposed Algorithms:

Further studies on the convergence and complexity of the proposed SSB and har-

monic mean optimization algorithm. The goal of SSB is to solve weighted sum rate

optimization problems which is are non-convex. The algorithm converges to a fixed

point of the optimization problem. However, due to the non-convex nature of the

problem, this fixed point may be a local maximum or saddle point. It is of system

designers interests to quantify what is the performance loss in terms of the weighted

sum-rate of the system since the ultimate goal is to maximize the system utility.

Recall that in designing the harmonic mean optimization algorithm, we convex-

ified the objective function and the minimum rate constraint so as to facilitate the

computation of the original problem. We utilized the upper bound of the harmonic

mean rate as the new objective function in the formulation and solved the reformu-

lated optimization problem by the harmonic mean optimization algorithm. This raises

the question of optimality of this reformulation –i.e., the harmonic mean achieved by

our algorithm compared to the true optimum.
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Optimality Conditions for Assigning Tones into Sets:

The proposed SSB algorithm categorizes available tones into three sets and partitions

available power budgets to be used by corresponding algorithms for these sets. The

criteria utilized to partition the tones are derived from the theorem proposed in [13].

However, there is no proof of the optimality of using these criteria to partition the

tones into different sets. Furthermore, the power budget should be added to the

criteria so as to improve the performance of the algorithm.

6.2.2 Sufficient Conditions for Harmonic Mean Function

[1] shows the optimality conditions for FDMA structured signalling for spectrum

management problems with sum rate objective functions. In Chapter 4 showed that

the harmonic mean objective function has the advantage of giving users fairer rates

and ensuring users’ quality of service. Therefore, it would be very intriguing to study

similar conditions under the harmonic mean objective function. The conditions can

facilitate solving of the problem using the algorithm developed here.

6.2.3 Price Setting for the Resources and Utilization of

Prices to Facilitate the Resource Management

In a free market mechanism, prices usually serve as a leverage to balance demands

and supplies as well as to indicate the relationship between them. In a multi-user

communication system as considered here, heterogeneous system users compete for

a common spectrum so as to satisfy their needs for communication, which creates

the demands for system resources. A system administrator or service provider aims

to devise a scheme to regulate users’ power allocation by utilizing prices. The sys-

tem administrator sets prices on the communication resources in such a way that
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system utility (e.g. revenue) is maximized. In the above mentioned scenario, the

non-cooperative users’ behaviors can be modeled as a non-cooperative game and a

system administrator’s optimization problem can be cast upon the Nash equilibrium

of this game. The existence of Nash equilibrium and an algorithm that finds a Nash

equilibrium are very interesting topics for future work.

6.3 Suggestions to Future Researchers

Throughout the course of my PhD program, I have acquired a significant amount of

knowledge of optimization methods and other valuable skills such as research method-

ology and presentation skills. The most important thing I have learned, which may

be useful to future researchers in this field, is that when dealing with optimization

problems in engineering it is usually not easy to solve them directly from a mathe-

matical point of view. However, with inspiration from the engineering interpretation

on the problem, approximations and bounds may help to reduce the complexity of

the problem while providing a good quality solution.
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Appendix A

Appendix

A.1 Proof of Theorem 1

Recall that we use sn,ν
k and sn,∗

k to denote the power allocated by User k ∈ {0}∪K to

the n-th tone at the ν-th iteration and at equilibrium, respectively. For the updates of

User k ∈ K, it was shown in [11] that each iteration of the IWFA algorithm in (5.1.6)

is equivalent to solving the following fixed-point equation.
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, (A.1)
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where in (A.1) we have used that αn
kk = 1 for all n ∈ N , and [·]P̂k

to denote the

projection onto the polyhedron

P̂k =
{

(s1
k, · · · , sN

k )|0 ≤ sn
k ≤ Sn

max,k, n = 1, . . . , N,
N
∑

n=1

sn
k = Pk

}

. (A.2)

Note that, in contrast with the polyhedron in (5.0.4), in the polyhedron in (A.2), the

power constraint is satisfied with equality.

Now, in a similar fashion, the jammer can update its power in order to solve
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, (A.3)

where the set P̂0 is defined in a fashion similar to (A.2).

Let sn,∗
k be the power allocation at equilibrium of User k ∈ K, at tone n ∈ N .

Furthermore, let

tn,ν
k = sn,ν

k − sn,∗
k , ∀k ∈ K, and rn,ν = sn,ν

0 − sn,∗
0 . (A.4)

At equilibrium we have
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and
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We now subtract (A.5) from (A.1), and (A.6) from (A.3). Using the non-expansiveness

property of the projection operator [11], one can write
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where in (A.7) we have used tνk and rν to denote the vectors [t1,ν
k , · · · , tN,ν

k ]T and

[r1,ν , · · · , rN,ν]T , respectively, and αjk to denote
∥

∥[α1
jk, · · · , αN

jk]
∥

∥

2
.

Using a technique similar to the one in [11] we can express the inequalities in (A.7)

for all users simultaneously in the following matrix form.
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where
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(A.9)

where the inequality in (A.8) is to be interpreted element-wise. Notice that A is a

non-singular Z matrix with (entry-wise) non-negative inverse. The matrix B and the

vector β are also non-negative. Hence using [36, Property 2.5.3.18], we have that (A.8)

imply that
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If we use tν to denote the vector

[

‖tν1‖ · · · ‖tνK‖

]T

, then (A.10) implies that
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We now turn our attention to the jammer’s updates; cf. (A.3). In order to simplify
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our exposition, we will use the following notation.
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. (A.13)

Using a technique similar to the one used for the users’ updates and employing the

non-expansiveness property of the projection operator, we use (A.3) to write
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Using partial fraction expansion, the n-th entry of the vector on the right hand

side of (A.14) can be written as
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Let Υν be an N × N diagonal matrix with the n-th diagonal entry given by
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Furthermore, let γν
k be an N -dimensional vector whose n-th entry is given by
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Now, (A.14) can be bounded as follows
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In order to analyze the matrix Υν and the vectors {γν
k}, we will need a lower bound

on sn,ν
k . In Appendix A.2 we provide a lower bound ηn

k such that 0 ≤ ηn
k ≤ sn,ν

k , for

all iterations ν, k ∈ K, n ∈ N . Using this value of ηn
k , we can readily derive a

lower bound on cn,ν
k . In particular, if we let cn

min,k denote this bound, then it follows

from (A.12) that

cn,ν
k = 1

αn
0k

K
∑

j=1, j 6=k

αn
jks

n,ν
j +

σn
k

αn
0k

≥
1

αn
0k

( K
∑

j=1, j 6=k

αn
jkη

n
j + σn

k

)

△
= cn

min,k. (A.19)

Similarly, a lower bound on dn,ν
k can be derived from (A.13)

dn
min,k

△
= cn

min,k +
1

αn
0k

ηn
k . (A.20)

Now that we have a lower bound on sn,ν
k , cn,ν

k and dn,ν
k , we can proceed to analyze
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γn,ν
k in (A.17). From (A.17), our goal is to bound {γn,ν

k } as a linear combination

of |tn,ν
j |Kj=1. This requires some detailed computation which we present below. By

definition, we have

γn,ν
k =

|sn,∗
k (cn,ν

k + sn,∗
0 )(dn,ν

k + sn,∗
0 ) − sn,ν

k (cn,∗
k + sn,∗

0 )(dn,∗
k + sn,∗

0 )|

(cn,∗
k + sn,∗

0 )(dn,∗
k + sn,∗

0 )(cn,ν
k + sn,∗

0 )(dn,ν
k + sn,∗

0 )

≤
(sn,∗

0 )2|sn,∗
k − sn,ν

k | + sn,∗
0

∣

∣sn,∗
k (cn,ν

k + dn,ν
k ) − sn,ν

k (cn,∗
k + dn,∗

k )
∣

∣

(cn,∗
k + sn,∗

0 )(dn,∗
k + sn,∗

0 )(cn,ν
k + sn,∗

0 )(dn,ν
k + sn,∗

0 )

+

∣

∣sn,∗
k cn,ν

k dn,ν
k − sn,ν

k cn,∗
k dn,∗

k

∣

∣

(cn,∗
k + sn,∗

0 )(dn,∗
k + sn,∗

0 )(cn,ν
k + sn,∗

0 )(dn,ν
k + sn,∗

0 )

≤
(sn,∗

0 )2|sn,∗
k − sn,ν

k |

dn,ν
k dn,∗

k (cn,∗
k + sn,∗

0 )(cn,ν
k + sn,∗

0 )
+

sn,∗
0

∣

∣sn,∗
k (cn,ν

k + dn,ν
k ) − sn,ν

k (cn,∗
k + dn,∗

k )
∣

∣

cn,∗
k dn,∗

k dn,ν
k (cn,ν

k + sn,∗
0 )

+

∣

∣sn,∗
k cn,ν

k dn,ν
k − sn,ν

k cn,∗
k dn,∗

k

∣

∣

(cn,∗
k + sn,∗

0 )(dn,∗
k + sn,∗

0 )(cn,ν
k + sn,∗

0 )(dn,ν
k + sn,∗

0 )

(A.21)

≤
(Sn

max,0)
2|sn,∗

k − sn,ν
k |

dn,ν
k dn,∗

k (cn,∗
k + Sn

max,0)(c
n,ν
k + Sn

max,0)
+

Sn
max,0

∣

∣sn,∗
k (cn,ν

k + dn,ν
k ) − sn,ν

k (cn,∗
k + dn,∗

k )
∣

∣

cn,∗
k dn,∗

k dn,ν
k (cn,ν

k + Sn
max,0)

+

∣

∣sn,∗
k cn,ν

k dn,ν
k − sn,ν

k cn,∗
k dn,∗

k

∣

∣

(cn,∗
k + sn,∗

0 )(dn,∗
k + sn,∗

0 )(cn,ν
k + sn,∗

0 )(dn,ν
k + sn,∗

0 )

(A.22)

≤
(Sn

max,0)
2|tn,ν

k |

(dn
min,k)

2(cn
min,k + Sn

max,0)
2

+
Sn

max,0

∣

∣sn,∗
k (cn,ν

k + dn,ν
k ) − sn,ν

k (cn,∗
k + dn,∗

k )
∣

∣

cn,∗
k dn,∗

k dn,ν
k (cn,ν

k + Sn
max,0)

+

∣

∣sn,∗
k cn,ν

k dn,ν
k − sn,ν

k cn,∗
k dn,∗

k

∣

∣

cn,∗
k dn,∗

k cn,ν
k dn,ν

k

,

(A.23)

where in (A.22) we have used the fact that both the first and the second term of (A.21)

are monotone increasing in sn,∗
0 .

Next we bound the third and second term in (A.23) separately. Let an,ν
k denote
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the third term of (A.23). Then, using the definition of dn,ν
k in (A.13), we obtain

an,ν
k =

∣

∣sn,∗
k cn,ν

k dn,ν
k − sn,ν

k cn,∗
k dn,∗

k

∣

∣

cn,∗
k dn,∗

k cn,ν
k dn,ν

k

=

∣

∣sn,∗
k cn,ν

k (cn,ν
k +

s
n,ν

k

αn
0k

) − sn,ν
k cn,∗

k (cn,∗
k +

s
n,∗
k

αn
0k

)
∣

∣

cn,∗
k dn,∗

k cn,ν
k dn,ν

k

=

∣

∣

s
n,∗
k

s
n,ν

k

αn
0k

(cn,ν
k − cn,∗

k ) + sn,∗
k (cn,ν

k )2 − sn,ν
k (cn,∗

k )2
∣

∣

cn,∗
k dn,∗

k cn,ν
k dn,ν

k

≤

s
n,∗
k

s
n,ν

k

αn
0k

|cn,ν
k − cn,∗

k | + |sn,∗
k (cn,ν

k )2 − (sn,∗
k + tn,ν

k )(cn,∗
k )2|

cn,∗
k dn,∗

k cn,ν
k dn,ν

k

≤

s
n,∗
k

s
n,ν

k

αn
0k

|cn,ν
k − cn,∗

k | + sn,∗
k |(cn,ν

k )2 − (cn,∗
k )2| + |tn,ν

k |(cn,∗
k )2

cn,∗
k dn,∗

k cn,ν
k dn,ν

k

=
sn,∗

k sn,ν
k |cn,ν

k − cn,∗
k |

αn
0kc

n,∗
k cn,ν

k (cn,∗
k +

s
n,∗
k

αn
0k

)(cn,ν
k +

s
n,ν

k

αn
0k

)
+

sn,∗
k (cn,ν

k + cn,∗
k )|cn,ν

k − cn,∗
k |

cn,∗
k cn,ν

k (cn,∗
k +

s
n,∗
k

αn
0k

)dn,ν
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|tn,ν

k |cn,∗
k
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k cn,ν

k dn,ν
k

(A.24)

≤
(Sn

max,k)
2|cn,ν

k − cn,∗
k |

αn
0k(c

n
min,k)

2(cn
min,k +

Sn
max,k

αn
0k

)2
+

Sn
max,k(c

n,ν
k + cn,∗

k )|cn,ν
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k cn,ν

k dn,ν
k

(A.25)

=
(Sn

max,k)
2|cn,ν

k − cn,∗
k |

αn
0k(c

n
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2(cn
min,k +

Sn
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αn
0k
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k |
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k

≤
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αn
0k(c
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k |
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n
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n
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αn
0k

)
+

|tn,ν
k |cn,∗

k

(cn,∗
k +

s
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αn
0k

)cn
min,kd

n
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(A.26)

≤

(

(Sn
max,k)

2

(αn
0k)

2(cn
min,k)
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min,k +

Sn
max,k

αn
0k
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+
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n
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n
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max,k

αn
0k
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j=1, j 6=k
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jkS
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jkS
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(A.27)

≤
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n
min,k(α

n
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n
min,k + Sn
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n
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n
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n
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|tn,ν
k |,

(A.28)
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where in (A.25), we have used the fact that the first term in (A.24) is monotonically

increasing in both sn,∗
k and sn,ν

k , and that the second term in (A.24) is monotonically

increasing in sn,∗
k . Similarly, in (A.27) we have used the fact that in (A.26), the last

term is monotonically increasing in cn,∗
k .
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We now consider the second term in (A.23). Denoting this term by bn,ν
k , we have,

bn,ν
k =

Sn
max,0|s

n,∗
k (cn,ν

k + dn,ν
k ) − sn,ν

k (cn,∗
k + dn,∗
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∣
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∣

∣
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(A.29)
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)
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(A.31)

where in (A.30), we have used that the first term in (A.29) is monotonically increasing

in sn,∗
k .

Using the bounds on an,ν
k and bn,ν

k in (A.28) and (A.31), respectively, the scalar γn,ν
k
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in (A.23) can be now bounded by a linear combination of {|tn,ν
j |}K

j=1. In particular,

let fn
k be a 1 × K row vector whose entries are defined as,

[fn
k ]k =

(Sn
max,0)

2

(dn
min,k)

2(cn
min,k + Sn

max,0)
2

+

∑K

j=1, j 6=k αn
jkS

n
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(
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jkS

n
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k )cn
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n
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(A.32)

[fn
k ]i =

(Sn
max,k)

2dn
min,k + 2Sn

max,kc
n
min,k(α

n
0kc

n
min,k + Sn

max,k)

dn
min,k(c

n
min,k)

2(αn
0kc

n
min,k + Sn

max,k)
2

αn
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+
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max,0S
n
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min,k(α

n
0kc

n
min,k + Sn

max,k)d
n
min,k(c

n
min,k + Sn

max,0)
αn

ik, i 6= k,

(A.33)

and let

tn,ν = [|tn,ν
1 |, · · · , |tn,ν

K |]T . (A.34)

Using (A.32) and (A.33), γn,ν
k can be now bounded by

γn,ν
k ≤ fn

k tn,ν . (A.35)

Hence, the vector γν
k can be element-wise bounded by the product of an N ×

NK block-diagonal matrix, Fk and a KN × 1 vector whose entries are |tn,ν
j |, n =

1, . . . , N, k = 1, . . . , K. In particular, we define

Fk
△
=



















f 1
k 0 · · · 0

0 f 2
k · · · 0

...
...

. . .
...

0 0 · · · fN
k



















, (A.36)
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and write

γν
k ≤ Fkt

ν , (A.37)

where tν is defined as

tν
△
=













t1,ν

...

tN,ν













. (A.38)

Substituting from (A.37) into (A.18), we obtain

‖rν‖ ≤ (1 − ‖Υν‖2)
−1
∥

∥

∥

K
∑

k=1

Fk

∥

∥

∥

2
‖tν‖. (A.39)

Now using (A.11), we have

‖rν‖ ≤ (1 − ‖Υν‖2)
−1
∥

∥

∥

K
∑

k=1

Fk

∥

∥

∥

2

[

‖A−1B‖2 ‖A−1β‖

]







‖tν−1‖

‖rν−1‖






. (A.40)

Writing (A.39) along with (A.11) in a vector form yields







‖tν‖
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


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



1 0
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∥
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∥
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









‖tν−1‖
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




,

(A.41)

where the inequality is to be interpreted element-wise. A sufficient condition for

convergence is to have

∥

∥

∥

∥

∥

∥

∥







1 0

0 (1 − ‖Υν‖2)
−1
∥

∥

∥

∑K
k=1 Fk

∥

∥

∥

2













‖A−1B‖2 ‖A−1β‖

‖A−1B‖2 ‖A−1β‖







∥

∥

∥

∥

∥

∥

∥

2

< 1. (A.42)

In Appendix A.3, we show that the condition in (A.42) is equivalent to the condition
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that
(

1 + (1 − ‖Υν‖2)
−2
∥

∥

∥

K
∑

k=1

Fk

∥

∥

∥

2

2

)

(

‖A−1B‖2 + ‖A−1β‖
)

< 1. (A.43)

Now, ‖Υν‖2 is the only iteration-dependent entry in (A.43). Observe that the left

hand side of (A.43) is a monotone increasing function of ‖Υν‖2. Hence, for (A.43) to

hold, it is sufficient to have

‖Υν‖2 ≤ τ, (A.44)

where τ is an iteration-independent constant, that satisfies

(

1 + (1 − τ)−2
∥

∥

∥

K
∑

k=1

Fk

∥

∥

∥

2

2

)

(

‖A−1B‖2 + ‖A−1β‖
)

< 1 (A.45)

We now consider the diagonal matrix Υν ; cf. (A.16). The spectral norm of this

matrix is given by the maximum absolute value of its diagonal entries. Hence, in

order to satisfy (A.44), we must have

max
n

(

1 −
K
∑

k=1

(

αn
0k

(cn,ν
k + sn,∗

0 )(cn,ν
k + sn,∗

0 + rn,ν)
−

αn
0k

(dn,ν
k + sn,∗

0 )(dn,ν
k + sn,∗

0 + rn,ν)

)

)

≤ τ,

(A.46)

min
n
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−
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0 )(dn,ν
k + sn,∗

0 + rn,ν)

)

)

≥ −τ.

(A.47)

We begin by considering the condition in (A.47). This condition can be written as

max
n

K
∑

k=1

(

αn
0k

(cn,ν
k + sn,∗

0 )(cn,ν
k + sn,∗

0 + rn,ν)
−

αn
0k

(dn,ν
k + sn,∗

0 )(dn,ν
k + sn,∗

0 + rn,ν)

)

≤ τ + 1.

(A.48)

Let χ1 denote the term on the left hand side of (A.48). We first note that each term

in the summand is a monotonically decreasing function of rn,ν. Since sn,∗
0 + rn,ν =
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sn,ν
0 ≥ 0, χ1 can be bounded as follows.

χ1 ≤ max
n

K
∑

k=1

(

αn
0k

(cn,ν
k + sn,∗

0 )cn,ν
k

−
αn

0k

(dn,ν
k + sn,∗

0 )dn,ν
k

)

= max
n

K
∑

k=1

αn
0k

(dn,ν
k )2 − (cn,ν

k )2 + sn,∗
0 (dn,ν

k − cn,ν
k )

(cn,ν
k + sn,∗

0 )cn,ν
k (dn,ν

k + sn,∗
0 )dn,ν

k

= max
n

K
∑

k=1

sn,ν
k (2cn,ν

k + sn,∗
0 +

s
n,ν

k

αn
0k

)

(cn,ν
k + sn,∗

0 )cn,ν
k (cn,ν

k + sn,∗
0 +

s
n,ν

k

αn
0k

)(cn,ν
k +

s
n,ν

k

αn
0k

)
. (A.49)

One can check that each term in the summand in (A.49) is a monotonically decreasing

function of sn,ν
k . Hence, we have

χ1 ≤ max
n

K
∑

k=1

Sn
max,k(2c

n,ν
k + sn,∗

0 +
Sn

max,k

αn
0k

)

(cn,ν
k + sn,∗

0 )cn,ν
k (cn,ν

k + sn,∗
0 +

Sn
max,k

αn
0k

)(cn,ν
k +

Sn
max,k

αn
0k

)
. (A.50)

Similarly, each term in the summand in (A.50) is a monotonically decreasing function

of cn,ν
k . Hence,

χ1 ≤ max
n

K
∑

k=1

Sn
max,k(2c

n
min,k + sn,∗

0 +
Sn

max,k

αn
0k

)

(cn
min,k + sn,∗

0 )cn
min,k(c

n
min,k + sn,∗

0 +
Sn

max,k

αn
0k

)(cn
min,k +

Sn
max,k

αn
0k

)
. (A.51)

Finally, one can check that each term in the summand in (A.51) is a monotonically

decreasing function of sn,∗
0 . Therefore, we can write

χ1 ≤ max
n

K
∑

k=1

Sn
max,k(2c

n
min,k +

Sn
max,k

αn
0k

)

(cn
min,k)

2(cn
min,k +

Sn
max,k

αn
0k

)2
.

Therefore, a sufficient condition for (A.47) to be satisfied is

max
n

K
∑

k=1

Sn
max,k(2c

n
min,k +

Sn
max,k

αn
0k

)

(cn
min,k)

2(cn
min,k +

Sn
max,k

αn
0k

)2
≤ τ + 1. (A.52)
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We now proceed to provide a sufficient condition for (A.46) to be satisfied at all

iterations. This condition can be written as

χ2 = min
n

K
∑

k=1

(

αn
0k

(cn,ν
k + sn,∗

0 )(cn,ν
k + sn,∗

0 + rn,ν)
−

αn
0k

(dn,ν
k + sn,∗

0 )(dn,ν
k + sn,∗

0 + rn,ν)

)

≥ 1−τ.

(A.53)

Noting that each term in the summand is monotonically decreasing in rn,ν , we have

χ2 ≥ min
n

K
∑

k=1

(

αn
0k

(cn,ν
k + sn,∗

0 )(cn,ν
k + Sn

max,0)
−

αn
0k

(dn,ν
k + sn,∗

0 )(dn,ν
k + Sn

max,0)

)

= min
n

K
∑

k=1

αn
0k

(cn,ν
k + sn,∗

0 )
( s

n,ν

k

αn
0k

)

+
s
n,ν

k

αn
0k

(cn,ν
k + Sn

max,0 +
s
n,ν

k

αn
0k

)

(cn,ν
k + sn,∗

0 )(cn,ν
k + Sn

max,0)(d
n,ν
k + sn,∗

0 )(dn,ν
k + Sn

max,0)

= min
n

K
∑

k=1

sn,ν
k

(cn,ν
k + Sn

max,0)(d
n,ν
k + Sn

max,0)

(

1

cn,ν
k + sn,∗

0

+
1

dn,ν
k + sn,∗

0

)

(A.54)

≥ min
n

K
∑

k=1

sn,ν
k

(cn,ν
k + Sn

max,0)(d
n,ν
k + Sn

max,0)

(

1

cn,ν
k + Sn

max,0

+
1

dn,ν
k + Sn

max,0

)

, (A.55)

≥ min
n

K
∑

k=1

(

(αn
0k)

3sn,ν
k

(
∑K

j=1, j 6=k αn
jkS

n
max,j + αn

0kS
n
max,0 + σn

k

)2

1
(
∑K

j=1, j 6=k αn
jkS

n
max,j + sn,ν

k + αn
0kS

n
max,0 + σn

k

)

+
(αn

0k)
3sn,ν

k
(
∑K

j=1, j 6=k αn
jkS

n
max,j + αn

0kS
n
max,0 + σn

k

)(
∑K

j=1, j 6=k αn
jkS

n
max,j + sn,ν

k + αn
0kS

n
max,0 + σn

k

)2

)

,

(A.56)

where (A.55) follows from observing that each term in the summand in (A.54) is

monotonically decreasing in sn,∗
0 . Since (A.56) is a monotone increasing function of
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sn,ν
k , we can use the lower bound ηn

k ≤ sn,ν
k (cf. (A.74)) to write

χ2 ≥ min
n

K
∑

k=1

(

(αn
0k)

3ηn
k

(
∑K

j=1, j 6=k αn
jkS

n
max,j + αn

0kS
n
max,0 + σn

k

)2

1
(
∑K

j=1, j 6=k αn
jkS

n
max,j + ηn

k + αn
0kS

n
max,0 + σn

k

)

+
(αn

0k)
3ηn

k
(
∑K

j=1, j 6=k αn
jkS

n
max,j + αn

0kS
n
max,0 + σn

k

)(
∑K

j=1, j 6=k αn
jkS

n
max,j + ηn

k + αn
0kS

n
max,0 + σn

k

)2

)

.

(A.57)

Now, a sufficient condition for (A.53) to be satisfied is to have

min
n

K
∑

k=1

(

(αn
0k)

3ηn
k

(
∑K

j=1, j 6=k αn
jkS

n
max,j + αn

0kS
n
max,0 + σn

k

)2(∑K

j=1, j 6=k αn
jkS

n
max,j + ηn

k + αn
0kS

n
max,0 + σn

k

)

+
(αn

0k)
3ηn

k
(
∑K

j=1, j 6=k αn
jkS

n
max,j + αn

0kS
n
max,0 + σn

k

)(
∑K

j=1, j 6=k αn
jkS

n
max,j + ηn

k + αn
0kS

n
max,0 + σn

k

)2

)

≥ 1 − τ. (A.58)

In summary, if conditions (A.45), (A.52), and (A.58) are simultaneously satisfied,

the GIWFA iterations are guaranteed to converge to a unique Nash equilibrium point

for the non-cooperative game (5.0.5). This completes the proof of Theorem 1.

A.2 A lower bound on sn,ν
k

Denote the interference level observed by User k ∈ K on the n-th tone at the ν-th

iteration by In,ν
k , where

In,ν
k =

k−1
∑

j=1

αn
jks

n,ν
j +

K
∑

j=k+1

αn
jks

n,ν−1
j + αn

0ks
n,ν−1
0 . (A.59)
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Since

sn,ν
k ≤ Sn

max,k, ∀n ∈ N (A.60)

an upper bound on In,ν
k can be expressed as

In,ν
k ≤ In

max,k =
K
∑

j=0, j 6=k

αn
jkS

n
max,j. (A.61)

For every k ∈ K, let the permutation πk(·) be defined such that

σ
πk(1)
k + I

πk(1)
max,k ≤ σ

πk(2)
k + I

πk(2)
max,k ≤ · · · ≤ σ

πk(N)
k + I

πk(N)
max,k . (A.62)

Before we proceed with our analysis, we provide a brief discussion regarding the

IWFA algorithm. If we denote the water-level by µν
k. Now, at each iteration, one

can categorize the N tones into three classes; tones on which User k allocates power

Sn
max,k, tones on which User k performs standard water-filling, and tones on which

User k puts no power. While the power allocated by User k on the first class of tones

is not affected by the increase in water-level, if that exceeds a certain level, the power

allocated on the remaining tones can only increase if µν
k increases. Furthermore, we

note that the constraints in (A.60) serve to increase to the water-level. In other words,

if the constraints in (A.60) were not enforced, the water-level would decrease in order

to bring the power level in the respective tones up to the water-level. Since in this

section we are considering a lower bound on sn,ν
k , a worst-case scenario would be to

assume that none of the constraints in (A.60) is active. In this case we have

s
πk(n),ν
k = [µν

k − (I
πk(n),ν
k + σ

πk(n)
k )]+, ∀n ∈ N , (A.63)

where [·]+ denotes the projection onto the non-negative real line.
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Assuming, for simplicity of exposition, that at the ν-th iteration the noise plus

interference assumes distinct values on each tone, it is possible to identify N water-

level intervals. In particular, the water-level within a certain interval would only

cover a certain subset of tones. Let the number of tones covered by water at the

ν-th iteration be mν
k and let these tones be denoted by π̂k(1), . . . , π̂k(m

ν
k), where,

unlike (A.62), π̂k(·) is an iteration-dependent permutation of tones such that

σ
π̂k(1)
k + I

π̂k(1),ν
k ≤ σ

π̂k(2)
k + I

π̂k(2),ν
k ≤ · · · ≤ σ

π̂k(N)
k + I

π̂k(N),ν
k . (A.64)

Our goal is to find a lower bound on mν
k, and to identify the tones that

User k ∈ K is guaranteed to activate at every iteration of the GIWFA. For the

tones π̂k(1), . . . , π̂k(m
ν
k), the term inside the square brackets (A.63) is non-negative,

and this term is strictly negative for all remaining tones. Using this notation, we can

express the water level explicitly as

µν
k =

1

mν
k

(

Pk +

mν
k

∑

i=1

(I
π̂k(i),ν
k + σ

π̂k(i)
k )

)

. (A.65)

Substituting from (A.65) into (A.63), and noting that the choice of mν
k is such the

term inside the square brackets (A.63) is non-negative for all j for which

πk(j) ∈ {π̂k(1), . . . , π̂k(m
ν
k)}. (A.66)

s
πk(j),ν
k =

1

mν
k

(

Pk +

mν
k

∑

i=1

(I
π̂k(i),ν
k + σ

π̂k(i)
k )

)

− (I
πk(j),ν
k + σ

πk(j)
k ),

∀j for which (A.66) holds, (A.67)
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Observe that if for the πk(j)-th tone (A.66) does not hold, then the definition of mν
k

implies that s
πk(j),ν
k = 0, and this tone is not used by User k at the νth iteration, and

hence is not in the set of interest.

Let mk ∈ {1, . . . , N} be the desired lower bound on mν
k. Furthermore, let σ

(i)
k

denote the noise variance of User k ∈ K that satisfies σ
(i)
k ≤ σ

(i+1)
k for i = 1, . . . , N−1.

We will show that if mk is defined to be the largest integer for which

(mk − 1)(σ
πk(j)
k + I

πk(j)
max,k) ≤ Pk +

mk−1
∑

i=1

σ
(i)
k , (A.68)

is satisfied for all j ≤ mk, then mk ≤ mν
k, ∀ν. Since mk satisfies (A.68), then mk also

satisfies

(mk − 1)(σ
πk(j)
k + I

πk(j),ν
k ) ≤ Pk +

mk
∑

i=1

π̂k(i)6=πk(j)

(σ
π̂k(i)
k + I

π̂k(i),ν
k ), (A.69)

where π̂k(·) is the permutation of tones defined in (A.64). This is because the right

hand side of (A.69) is at least as great as the right hand side of (A.68) and the left

hand side is less than or equal to the left hand side of (A.68).

Now, (A.69) is equivalent to writing

1

mk

(

Pk +

mk
∑

i=1

(I
π̂k(i),ν
k + σ

π̂k(i)
k )

)

− (I
πk(j),ν
k + σ

πk(j)
k ) ≥ 0. (A.70)

We now compare (A.70) with (A.67). Since by definition, mν
k is the largest integer

for which the right hand side of (A.67) is greater than or equal to zero, we conclude

that mk is less than or equal to mν
k. However, from (A.68), we note that the definition

of mk does not depend on the iterations. Hence, from (A.68), we know that the tones

πk(1), . . . , πk(mk) are going to be activated by User k in each iteration.
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Using the fact that mk is a lower bound on the number of tones that are going to

be activated, we can write a lower bound on the water level, µν
k at the ν-th iteration.

In particular, using (A.65) and (A.66), it is easy to see that

µν
k ≥

1

N

(

Pk +

mk
∑

i=1

(σ
πk(i)
k + I

πk(i),ν
k )

)

. (A.71)

Now, substituting from (A.71) into (A.63), we have

s
πk(n),ν
k ≥

[ 1

N

(

Pk +

mk
∑

i=1

σ
πk(i)
k

)

−
(

1 −
1

N

)

I
πk(n),ν
k − σ

πk(n)
k

]+

, ∀n ∈ N , (A.72)

≥
[ 1

N

(

Pk +

mk
∑

i=1

σ
πk(i)
k

)

−
(

1 −
1

N

)

I
πk(n)
max,k − σ

πk(n)
k

]+

, ∀n ∈ N , (A.73)

=
[ 1

N

(

Pk +

mk
∑

i=1

σ
πk(i)
k

)

−
(

1 −
1

N

)

K
∑

j=0, j 6=k

α
πk(n)
jk S

πk(n)
max,j − σ

πk(n)
k

]+

, ∀n ∈ N .

(A.74)

Finally, we define ηn
k as

ηn
k

△
=
[ 1

N

(

Pk +

mk
∑

i=1

σ
πk(i)
k

)

+
( 1

N
− 1
)

K
∑

j=0, j 6=k

αn
jkS

n
max,j − σn

k

]+

, (A.75)

where mk is the largest integer for which (A.68) is satisfied, and the tone permutations

πk(·) are defined in (A.62) for all k ∈ K. Hence, from (A.74) we have that ηn
k is an

iteration-independent lower bound on sn,ν
k .

A.3 Proving the equivalence of (A.42) and (A.43)

In order to show that the condition in (A.42) is equivalent to that in (A.43), we notice

that the 2 × 2 matrix on the right hand side of (A.42) is rank 1. Let us denote this
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matrix by Z; i.e.,

Z =







1 0

0 (1 − ‖Υν‖2)
−1‖

∑K

k=1 Fk‖2













‖A−1B‖2 ‖A−1β‖

‖A−1B‖2 ‖A−1β‖






. (A.76)

The condition in (A.42) is equivalent to ‖ZZT‖2 < 1. However, because Z is rank 1,

then ZZT is also rank 1, and we have

‖ZZT‖2 = Tr(ZZT ) =
(

1 + (1 − ‖Υν‖2)
−2‖

K
∑

k=1

Fk‖
2
2

)

(‖A−1B‖2
2 + ‖A−1β‖2) < 1,

(A.77)

which is the condition given in (A.43).
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