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Comparing Linear Parameter-Varying Gain-Scheduled
Control Techniques for Active Flutter Suppression

Jeffrey M. Barker* and Gary J. Balas'
University of Minnesota, Minneapolis, Minnesota 55455

Two linear parameter-varying gain-scheduled controllers for active flutter suppression of the NASA Langley
Research Center’s Benchmark Active Control Technology (BACT) wing section are presented and compared to
a previously presented gain-scheduled controller. The BACT wing section changes significantly as a function of
Mach and dynamic pressure. The two linear parameter-varying (LPV) gain-scheduled controllers incorporate
these changes as well as bounds on the rate of change of Mach and dynamic pressure. The inclusion of rate
bounds in the design process allows for improved performance over a larger range of operating conditions than
previously achieved by a linear fractional transformation gain-scheduled controller. The LPV controllers differ
in that one primarily reduces coupling between the trailing-edge flap and the pitch and plunge modes, whereas
the second optimizes wind gust attenuation. Closed-loop stability and improved performance are demonstrated
via time simulations in which both Mach and dynamic pressure are allowed to vary in the presence of a Dryden

wind-gust disturbance.

Nomenclature
A,B,C,D = state-spacerepresentationof a system
F,, F = upper and lower linear fractional transformations

identity matrix
Kipr = linear fractional transformation (LFT) controller

Klipy = linear parameter-varying (LPV) controller 1
K2 pv = LPV controller2
M = Mach number
N = constant 2 X2 block matrix
P = parameter-dependentplant
q = dynamic pressure, kPa
u = control signal
y = measured plant variables
A = uncertainty model
[ = normalized variation in Mach
&; = normalized variation in dynamic pressure
u = structured singular value
Subscripts
act = actuator
d = disturbance
in = input (to plant) multiplicative
K = controller parameter
n = noise
p = performance
I. Introduction

LUTTER is a dynamic instability resulting from the coupling
of aerodynamic, elastic, and inertial forces that can result in
sudden mechanical failure of an aircraft wing during flight. The
phemomena was noticed as early as 1916 by German aeronauti-
cal engineers' and characterized by Theodorsen in 19352 Because
of the severity of the potential problem, todays aircraft typically
operate in a region well below the flutter boundary.
As new lightweight materials are incorporated into aircraft de-
signs in efforts to save money and increase performance, active
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flutter suppression will become important. The NASA Langley Re-
search Center’s Benchmark Active Control Technology (BACT)
programwas developedspecifically to addressthe flutter problem >*
A description of the BACT model and aerodynamic data are given
in Ref. 4. The BACT model has been used to design and test many
types of flutter suppression control strategies including adaptive
neural control,>® general predictive control,’ robust passification,?
robust multivariable control,” and optimal control.!°

This paper focuses on the design and comparison of linear
parameter-varying (LPV) gain-scheduled controllers with a pre-
viously presented'' linear fractional transformation (LFT) gain-
scheduled controller. Gain-scheduled LPV control is a natural ex-
tension of H. control for systems that vary smoothly as a function
of the chosen scheduling parameters. LPV theory offers advantages
over classical gain-scheduledcontrol in that the resulting LPV con-
trollers are automatically gain scheduled, and no ad hoc methods of
gain-schedulingare needed. Additionally, LPV gain-scheduledcon-
trol theory offers robustness guarantees that more traditional meth-
ods of gain scheduling cannot supply. Finally, LPV gain-scheduled
control theory also has the advantage of explicitly incorporating
bounds on the rate of change of the scheduling parameters. These
rate bounds allow the design of less conservative controllers than
those obtainablethrough gain-scheduledLFT control. For the BACT
model, theoretical models at various dynamic pressures and Mach
numbers were developed that correspond well to experiments at the
same operating conditions. Thus, it is natural to choose to schedule
an LPV controller on Mach and dynamic pressure. The LPV gain-
scheduled controllers presented have a designed operating range
over the entire range of linear models considered, from Mach 0.5 to
0.82 and dynamic pressures from 3.59 to 10.77 kPa. The previously
described gain-scheduledLFT controllaw has arestrictedoperating
range (Mach 0.5-0.82 and 6.5-10.77 kPa) and displays compara-
tively poor performanceoutsidethat operatingrange. Comparisonof
the controllers performance and a discussion of the apparent merits
and deficiencies of LPV and LFT gain-scheduled control will form
the bulk of the paper.

This paper is presented in the following seven sections. Sec-
tion Il describesthe BACT facility, the wing sectiontestbed, and the
linear, time-invariant (LTT) models derived at specific Mach num-
bers and dynamic pressures. In Sec. 111, a short description of LFT
gain-scheduledtheory and the previously presented LFT controller
is given. Section IV presents the control theory associated with
LPV gain-scheduled control. Control design and synthesis of the
LPV gain-scheduled controllers are presented in Sec. V. In Sec. VI,
the LPV control laws are analyzed and simulated, and a summary
of the LFT gain-scheduled controller’s performance is given. The
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Table 1 Flight conditions of LTI models

Mach Dynamic pressure, kPa

050 359 479 584 632 7.18 838 9.58* 10.77%
0.70 359 479 599 @ 6.51 6.99° 838 958 10.77°
0.78 359 479 599 675 7.22* 838 9.58* 10.77%
082 359 479 599 6.84 7.33* 838 9.58* 10.77*
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Fig. 1 Full- and reduced-order transfer function models from TE
flap and wind gust to TE and LE accelerometers at § = 8.38 kPa and
Mach =0.7.

stability and performance of all three gain-scheduledcontrollersare
evaluatedover varying M and . These results and the relative merits
of LPV and LFT gain-scheduled control are discussed in Sec. VII.
The final section summarizes the results and presents conclusions.

II. BACT Model

The BACT model is an element of NASA Langley Research Cen-
ter’s Benchmark Models Program,® which consists of several mod-
els used to investigate aeroelastic effects and acquire experimental
data for the validation of the computational fluid dynamic code. An
overview of the BACT program, a description of the wind-tunnel
model, and a summary of results are given in Ref. 4.

The experimentally validated theoretical LTI models used
(Table 1) operate at four Mach numbers and range in dynamic pres-
sure from 3.59 to 10.77 kPa. These LTI models have one control
input (the trailing-edge flap) and leading- and trailing-edgeacceler-
ation measurements. The LTI models have 14 states: 4 to represent
the pitch and plunge dynamics, 6 states that characterize unsteady
aerodynamics, 2 states for the actuator dynamics, and the final 2
states are a second-order Dryden turbulence model.

Bode plots of the BACT theoretical LTI models indicate that they
are primarily functions of the six states representing pitch, plunge,
and actuator dynamics. The model states due to unsteady aerody-
namics have a small contribution to the overall system response as
do the gust model states. Figure 1 shows representative magnitude
plots for the full- (14th-) order and residualized- (6th-) order LTI
systems. Such a residualization leaves the state order intact, which
is essential to the applicationof LPV gain-scheduledcontrol theory.
The reduced-ordersystems appear to represent the physical dynam-
ics of the BACT wing quite well. The relatively small effect of
the unsteady aerodynamics is not surprising because the wing was
designed so that the aerodynamic instabilities would be relatively
benign. This attribute makes it easier to build in safety mechanisms
to the wing section."”

The 32 LTI models used in this study (Table 1), thus, have six
states, two states correspondingto each of pitch, plunge,and actuator
dynamics. The models have two inputs and two outputs. The inputs
are the command to the trailing-edge flap actuator and the input to
the Dryden gust model. The outputs are leading- and trailing-edge
acceleration measurements.
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III. LFT Gain-Scheduled Control

A gain-scheduled LFT control law for active flutter supression
of the BACT wing was presented previously.!! A brief summary
of gain-scheduled LFT control theory and the resulting controller
is presented to allow for a more meaningful comparison between
the previousresults and the performance attained by the LPV gain-
scheduled controllers.

The central idea of gain-scheduled LFT control is that an open-
loop plant can often be represented as a linear fractional transfor-
mation of a nominal plant and physical parameters that vary within
known bounds. If these parameters can be measured in real time, a
controller can be synthesized that schedules as a function of these
parameters. The gain-scheduled LFT framework as applied to the
BACT model requires that the open-loop plant models for the oper-
ating range of interest be reformulated as a single open-loop model
that varies as an LFT in the parameters § and M. These uncertain
parameters are then separated out from the constant terms of the
open-loop plant resulting in the interconnection structure show in
Fig. 2. In Ref. 11, four copies of the parameter g and two copies of
the parameter M were necessary to represent adequately the vari-
ations of the model as a function of Mach number and dynamic
pressure. A simple LFT is used to transform Fig. 2 into the standard
p-synthesis form, such that the nominal plant model is represented
by an interconnection of a constant system with a block diagonal
uncertainty matrix whose parameters vary between —1 and 1.

Consider a parameter-dependent plant modeled as an LFT of a
time-varying block diagonal matrix A(¢) and a three input/three
output LTI plant P. The parameter dependence of the system is due
entirely to the time-varying A matrix A(¢). For this flutter problem,

the A(t) block is
[aon o
A= [ 0 5M(t)lj

It is assumed that A(¢) takes values in a known set A, A(¢) can be
measured in real time, and A(¢) varies between —1 and 1.

The LFT parameter-dependent controller is restricted to have
a structure similar to that of the plant. By interconnecting the
parameter-dependent plant and controller, the closed-loop system
appears as a finite-dimensional LTI system subjected to the time-
varying perturbation A(t). The perturbationhas a structure consist-
ing of two parts: the physical parameters that affect the plant and the
measured parameters that are used by the controller. In the develop-
ment of the theory, the measured parameters are assumed to match
exactly the physical parameters and are measured in real time. '

The control objective is to design the controller Kjgr such that
for all allowable perturbations A(¢) € A the parameter-dependent
closed-loop system is internally exponentially stable with small in-
duced £, norm from disturbancesto errors, including measurement
noise and bounds on control authority. The small-gain theorem can
be employed to bound (conservatively) the stability of the system
and the induced £, norm of the disturbance to error channels of
the parameter-dependent closed-loop system. Because the pertur-
bations A () have special repeated and block diagonal sturcture, the
conservatism of the small-gain theorem may be reduced via input/
output similarity scalings. These scaling matrices are restricted
to be constant diagonal matrices so that they will commute with
the repeated structure of the perturbation. The main result of this
formulation is that existence of a controller satisfying the scaled
small-gain bound can be expressed exactly as the feasibility of a
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finite-dimensionalaffine matrix inequality'* (AMI). Because of the
convexity of the AMI, this problem can be computed numerically.
The details of gain-scheduled LFT control theory are covered in
detail elsewhere !> 13

The gain-scheduled LFT control law previously presented has an
operating range from 6.5 to 10.77 kPa and from Mach 0.5 to 0.82.
The controller improves performance in comparison to the open-
loop system and a p-synthesis controller designed for the same
open-loop plant.!!

IV. LPV Gain-Scheduled Control

A brief overview of LPV gain-scheduled control theory is given.
Consider an nth-order LPV system, whose dynamics evolve as

x(t)
e (1)
e (1)
y(@)
Alp(1)] Biulp(t)] Bulp(M)] Blp(1)] x(t)
_ Ciilp(1)] 0 0 0 d(t)
~ | Culp®)] 0 0 1, dy (1)
Colp(1)] 0 I, 0 u(t)

)]

where p(t) is piecewise continuous in a known compact set P and
[6] < v (Ref. 16). The LPV gain-scheduled controller will depend
explicitly on the parameters p(¢) and guarantee that stability and
performance requirements are met for all allowable trajectories of
p(t) in some known, bounded set. Performance is measured via the
induced £, norm of a quadratically stable LPV system G with zero
initial conditions, defined as

IGIl = sup sup Letl, 2)

ol 2olldll
dety

Thus, the quadratic LPV y -performance problem is to find an LPV
controller of the form

xx()| _ [Aklp()] Bk[pm]} [xm)}
u(t) Cxlp()] Dxlp(O]] | (1)
that minimizes the closed-loop £, norm of the LPV system. If there
exists a controller such that the closed-loop system is quadratically
stable and the induced £, norm from d to e, as defined in Eq. (2), is
less than ¥, then the quadratic LPV y -performance problemis solv-
able. The existence of a controller that solves the LPV problem can

be expressed as the feasibility of the set of linear matrix inequalities
(LMIs):

~ R Y
Y(p)AT(p) + A(p)Y(p) = ) i(w—_

, op;
Cu(p)Y(p)
Bl (p)

. . X
AT(p)X(p) + X (p)A(p) + Z i(w a_p-> - 7Cy(p)Ca(p)  X(p)Bu(p) Cl(p)

i

Bl (p)X(p)
Ci(p)

where X (p) and Y (p) are continuously differentiable real matrix
functions such that X(p) > 0, Y(p) > 0, and
A(p) := A(p) = Bx(p)Cra(p), Bi(p) =[B11(p) B12(p)]

A(p) = A(p) — Bi(p)Calp). €] =[Cli(p) CL(p)]

If the conditions of the preceding LMIs are satisfied, then by
continuity and compactness, perturb X such that the LMIs still hold
and (X — Y~') > 0 uniformly on P. Then an n-dimensional strictly
proper controller that solves the feedback problem is defined as

Ax(p.p) = Alp) + 7' [ (P)X(P)L(p)B]y(p)
+Bi(p)B] (p)|Y ™ (p) + By(p)F(p)
+ 07 (P)X(P)L(P)Ca(p) — Q™' (P)H(p, p)

Bk (p) := =07 ()X (p)L(p)

Cx(p):=F(p)

where

Q(p) :=X(p) = Y(p)™'

F(p) = —[yB] (p)Y ™' (p) + Ci2(p)]

L(p) :== =[y X' (p)CL(p) + Bia(p)]

i

oy
H(p,p) = —[Al(p)Y“(p) + Y (p)Ar(p) + Z(p,-a—p_>

+y7'CH(P)Cr(p) + 77! Y“(p)B«p)BT(p)Y“(p)}
with

Ap(p) := A(p) + By(p)F(p)

Cii(p) i|

Cripy: [Clm + F7(p)

For more details on LPV synthesis results, the reader is referred
elsewhere.!”=20 The parameter p is assumed to be available in real
time, and hence, it is possible to constructan LPV controller whose
dynamics adjust according to variationsin p and maintain stability
and performance along all parameter trajectories.

This approach allows gain-scheduled controllers to be treated as
a single entity, with the gain scheduling achieved via the parameter-
dependent controller. This allows for a simple implementation of
the LPV controller, linear interpolation between the corresponding
parameter-dependent state-space controller matrices, provided the
parameter dependence is sufficiently smooth between gridpoints.
This approach has been successfully applied to the synthesis of

)—sz(p)BzT(p) Y(p)C\(p) Bi(p)

<0
=¥, 0

0 _yI"d_

X I
<o, p) I, } >0
=¥ 1y, 0 | L Y(p)

0 -y,

missile autopilots?!' controllers for turbofan engines,”? and flight

controllers >

V. LPV Control Design and Synthesis

The control design methodology is very similar to that of Hy
control design. Both LPV gain-scheduledcontrol laws are designed
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in Sec. V.A using the same block diagram and most of the same
weighting functions. As with the standard H,, control algorithms,
the resulting controllers have the same state order as the weighted
open-loop plants. Controller synthesis involves solutions of LMIs
and is discussed in Sec. V.B.

A. Control Design

The reduced six-state LFT plant (four aerodynamic states and
two actuator states) is used to design both LPV flutter suppression
controllers. This reduced plant has two inputs and two outputs. The
first input is flap position, in radians per second (the control input),
and the second is an input to the Drygden wind-gustmodel. The two
outputsare trailing-and leading-edgeaccelerationin centimetersper
second squared, and both are used for feedback control.

The block diagramin Fig. 3 is used in the synthesis of both of the
LPV gain-scheduled controllers. This diagram corresponds to the
integrationof performanceobjectivesand robust stability objectives
into a single control design framework. The stability objectives are
tostabilize the wing throughoutthe operatingregion and to be robust
to uncertainty in the modeling process and to errors introduced by
the model reduction process. These robustnessobjectives are incor-
porated via input multiplicative uncertainty. All 32 reduced-order
LTI models of the BACT wing are used in the control synthesisalgo-
rithm. Performance requirementsare formulated through the choice
of the weighting functions applied to the input and output signals
of the open-loop system. The objectiveis to achieve an induced £,
norm less than 1 with the resulting LPV controller. Thus, all ob-
jectives are scaled by weighting functions to be less than 1 when
achieved.

The leading- and trailing-edge accelerations are the primary per-
formance signals. A noise signalis added to the accelerationsignals
to corrupt the measurements. The flap command signal from the
controlleris also restricted to reflect the physical limitations on this
actuator. A weighted Dryden wind-gust disturbance signal allows
for unknown exogenous disturbancesto enter the system. All of the
elements of the block diagram, except for the disturbance weight,
are chosen to be the same for both LPV control laws. Thus, the
differencesin the control laws are entirely due to the differencesin
the choice of disturbance weights.

Multiplicative uncertainty, represented in the block diagram by
the weight Wi, and the uncertaintyset A;,, is used to capture model-
ing error at high frequency and uncertainty introduced by the model
reduction process. For this system, the multiplicative uncertainty
weight used is W;, =0.1(s/2 + 1)/(s/200 + 1), representing 10%
uncertaintyin the LPV model at low frequencies, 100% uncertainty
at20rad/s, and 1000% at high frequencies. The level of uncertainty
at high frequency ensures that the controllers will not amplify the
system dynamicsin this frequencyrange. This multiplicativeuncer-
tainty weight is held constant across the entire operating region.

One of the primary performance objectives for active flutter sup-
pression is to limit oscillations of the wing at the flutter frequen-
cies. This objective is captured via a constantdiagonal performance
weighting W,, which restricts the maximum magnitude of the dis-

turbance and actuator to acceleration transfer functions. First W,
is chosen to normalize the trailing-edge flap to acceleration output
channels (in centimeters per second squared per radian) to have a
peak value of approximatelyone. (Approximately,because the peak
values of the transfer functions from flap command to leading- and
trailing-edge acceleration vary as functions of § and M, whereas
W, is constantover the entire operating range.) These constants are
then multiplied by 2, asking that the peak magnitude be reduced to
half of its initial value. Thus, for both LPV control laws,

1/25000 0
W, =2
0 1/25000

is chosen. These constant weights, applied to the trailing- and
leading-edge acceleration output channels, request a reduction of
the maximum singular values from the trailing-edge flap input to
the acceleration outputs. Thus, these weights correspond to asking
for a decrease to 50% of the open-loop peak response at the nat-
ural frequencies for the stable plants and to similar magnitudes at
the flutter frequency for the open-loop unstable plants. Because the
basic performance problemis one of vibration attenuation, the con-
stant performance weight is all that is needed to suppress the peak
singular values. Additionally, by choosing a constant performance
weight, the order of the gain-scheduledLPV controllersis kept low.
(A first-order performance weight on each output channel would
add two states to the controller, for example.)

The trailing-edge flap used as the actuator has limits of 15 deg
or n/12 rad. As in the performance weight, the actuator weight
W =12/ is chosen to scale the largest allowable actuator com-
mand to *1. No rate limits are imposed on the actuator in this
control design formulation because the high-frequency gain of the
multiplicative uncertainty effectively limits the bandwidth of the
controller.

Sensor noise is added to the feedback signals to corrupt the mea-
surements and to satisfy the LPV control algorithm used for design.
The weight W, = diag[250, 250] was chosen so that the maximum
noise to signalratio is about 10% in the frequencyrange 10-50rad/s.

Disturbances are introduced through a weighted Dryden wind-
gust disturbance input. The disturbance weight is chosenas W, =1
for the first LPV gain-scheduledcontroller K 1; py and as W, = 1800
for the second gain-scheduledcontrol law, K2 py. The large dispar-
ity is due to the different design criteria reflected by the two LPV
designs. The open-loop transfer functions from flap to acceleration
are about 1800 times greater than the transfer functions from distur-
bance to acceleration. As a result, the choice W, = 1 correspondsto
a performancerequirementthat flap commands not excite the wing.
K2, py is designed asking that both flap commands and disturbance
inputs do not excite the wing. Thus, K 1;py attempts to stabilize
the system and to add damping to the flap-to-acceleration trans-
fer function whereas K2;py attempts to stabilize the system and to
add damping to both the flap-to-accelerationand the disturbance-
to-acceleration transfer functions. This suggests that K 1;py will
better attenuate the excitation of the wing due to flap dynamics,
whereas K2 py should provide more damping in the wind-gust-to-
acceleration channel.

Finally, rate of change bounds on parameter variation are chosen
for control synthesis. The bounds chosen are 0.3 kPa/s on 4 and
Mach 0.02/s on M. These rate of change bounds are slow enough
to have a significant effect on the resulting control laws.

B. Controller Synthesis

Both LPV gain-scheduled controllers were synthesized using an
algorithmthat returns LTI controllersat each of 32 interpolated grid-
points. These gridpointsare taken at the four Mach values of Table 1
and dynamic pressures 3.59, 4.79, 5.99, 6.51, 7.18, 8.38, 9.58, and
10.77 kPa. These dynamic pressures are chosen to make a rectan-
gular grid for the LPV control design process. The LTI models in
this grid were determined via linear interpolationin ¢ between the
two nearest existing LTI models. When g and M fall between the
interpolated gridpoints, a point by point linear interpolation among
the four nearest controllers provides the appropriate control law for
that point in the design space. Both K 1;py and K2, py stabilize the
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open-loop plant over the full range of Mach numbers (0.5-0.82)
and dynamic pressures (3.59-10.77 kPa). The LPV gain-scheduled
controllers are synthesized using a formulation of the induced £,
problemas alinearobjectiveminimization.'® The tworesultingLPV
controllers have the same number of states as the weighted open-
loop system. Thus, the controllers are of seventh order (sixth-order
nominal plant and a first-order model uncertainty weight) and have
y levels of about 1.1 for K 1;py and about 1.6 for K2, py.

VI. Results

The primary objectives were to improve the disturbance rejec-
tion characteristics of the wing and to increase the range of oper-
ating conditions at which the wing is stable. Several performance
characteristics are considered in examining the success of the LPV
gain-scheduledcontrollers at meeting these goals and in comparing
their success to that of the previously presented gain-scheduledLFT
controller. First, the stability and performance of the closed-loop
system is examined using the full-order LTI single-point models
and the point controllers obtained by specifying constant dynamic
pressure and Mach. For example, the closed-loop system at a given
Mach number and dynamic pressure was formed by the full-order
(14-state) LTI model at Mach 0.7 and 10.77 kPa closed with K 11 py,
K?2;py, and Kypr operating at the same Mach and §. Second, the
Bode plots of the open- and closed-loop systems are compared. Fi-
nally, time simulations of the closed-loop response of the wing as
Mach and dynamic pressure vary are used to examine the distur-
bance rejection characteristicsover the full operating range, as well
as to demonstrate reasonable actuator usage.

The structure of the LPV problem guarantees stability at the grid-
points providing that a feasible solution to the problem-specific
LMIs is found. As long as the model reduction does not introduce
significant changes in the open-loop transfer functions, it is reason-
able to expect that the LPV controller at a given operating point
will stabilize the full-order open-loop model at the same operat-
ing point. For this flutter problem, the difference between the full-
and reduced-order models is small, and both LPV gain-scheduled
controllers do stabilize the full-order systems throughout the oper-
ating range (Mach from 0.5 to 0.82 and g from 3.59 to 10.77 kPa).
However, the dynamics of the resulting open-loop systems closed
with K 1;py and K?2;py are significantly different, and, thus, merit
comment.

Figure 4 shows Bode plots at Mach 0.7 and 9.58 kPa (represen-
tative plots) for disturbanceto trailing-edge accelerationfor K 1; py
and K2;py. Clearly, K2;py achieves higher damping (0.17 com-
pared to 0.05, for this example) of the flutter mode and has greater
high-frequency gain and phase margins than K 1;py. K1y py, how-
ever, rejects both high- and low-frequency disturbance inputs sig-
nificantly better than K?2;py and has better low-frequency stability
margins. Figure 5 shows typical closed-loop Bode plots of the actu-
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ator to trailing-edge accelerations. Here, both closed-loop systems
show significant increases in damping compared to the open-loop
systems, but again the system closed with K 1;py appears to give
better nominal performance (less coupling to acceleration) at the
resonant frequencies of the wing. Thus, Figs. 4 and 5 show a dis-
tincttradeoffbetween stability and performance. If the linear models
are believed to be highly accurate, K 1; py would most likely be the
preferred LPV gain-scheduled controller. If, however, the models
are less well known at and above the flutter frequency, K2;py is
likely to be a more appropriate choice of control law. These results
are directly correlated to the choice of the weight on the Dryden
disturbance input in the control design process. K2;py, designed
with a large weight on the input disturbance, appears to increase
the damping of the flutter mode in the disturbance-to-accekration
channels. K1 py, designed with a small input disturbance weight,
focuses on the coupling between the trailing-edge flap and wing
acceleration.

Similar plots for the previously presented Kjpr are revealing.
Figure 6 shows that K| gy more closely resembles K 1;py in elimi-
nating the high-frequency flap-to-accelerationresonance. However,
the right-hand plots in Fig. 6 demonstrate that the disturbance to
trailing-edge (TE) acceleration channels are magnified except near
the open-loop flutter frequency. These results reflect that Ky pr was
designedwithoutconsiderationof the Dryden wind-gustdisturbance
effects. Redesigning with these effects included would likely result
in closed-loop transfer functions similar to those of K2 py.
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Table 2 Time simulation results for three gain-scheduled control laws

TE acceleration, LE acceleration, Flap deflection, Flap rate,
cm/s? cm/s? deg deg/s

Parameter RMS Peak RMS Peak RMS Peak RMS Peak

K1ipy 6.65 19.74 7.03 30.60 0.07 0.26 1.77 6.52

K21 py 9.27 29.30 9.37 33.61 0.07 0.27 2.37 11.91

Kipr 12.58 36.68 13.42 40.81 0.19 0.72 7.06 26.69
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Fig. 7 Time response of TE and LE acceleration to wind-gust input
for K1;,py and K2y py as M and g vary.
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Fig.8 Time response of TE flap deflection and rate to wind-gust input
for K1;,py and K2y py as M and g vary.

Time simulations of the three closed-loop systems subject to an
inputdistrubance while M and g vary linearly over 25 s from Mach
0.5t00.82 and from 3.59to 10.77 kPa are presented to show stability
and performance in the presence of wind gusts. The simulations are
of the LPV and LFT controllersclosed with a full- (14th-) order LPV
model of the BACT wing. The input disturbance is band-limited
(50-Hz) white noise to the Dryden wind-gust model. The constant
offset of the white noise input is chosen so that the resulting wind
gust has an average velocity of 2.54 cm/s. Note that the simulation
enters the open-loopunstable operating region at approximately 9 s.
Figure 7 shows theresulting TE and leading-edge(LE) accelerations
for the BACT wing with control laws K 1;py and K2;py. Figure 8
shows flap deflections and rates throughout the simulations for the
BACT model closed with K 1, py and K2y py. These results show that
K 1, py outperforms K 2; py while using less controlenergy. Figure 9

Fig.9 Timeresponse of TE and LE acceleration and control deflection
and rate to wind gust for Ky pr as M and g vary.

gives TE and LE accelerations and flap deflection and rate for the
BACT model closed with Kigr. Figures 7-9 demonstrate that Ky gy
achieves lower performance with larger and faster flap commands
than that obtained by the LPV gain-scheduled controllers. The rms
and peak TE and LE accelerations, flap deflections, and rates for
the simulations of the BACT model closed with K 1y py, K2, py, and
K pr are given in Table 2.

Examination of Table 2 and Figs. 7-9 reveal that in terms of
minimizing the effects of input wind gusts on the TE and LE accel-
eration with a minimum of control effort the LPV gain-scheduled
controllers outperformthe gain-scheduledLFT controller. All three
gain-scheduledcontrollersextend the flutter boundary to 10.77 kPa,
the maximum dynamic pressure of the LTI models; hence, all three
controllers can be considered successes. As a measurement of im-
provement of the LPV gain-scheduled control laws in comparison
to the LFT controllaw, using the performance of the gain-scheduled
LFT control law as a baseline is reasonable. K 1;py reduces peak
and rms TE acceleration and rms LE acceleration by just less than
50%, while reducing peak LE acceleration by about 25% in com-
parison to the performance achieved by Kypr. K2y py reduces peak
and rms TE and LE acceleration by about 20-30%. More dramatic
is actuator usage. For both K1;py and K2;py, rms and peak flap
deflections are 60% less than those of Kypr. Similarily, the K 1y py
flap rates are 75% lower than the K gy flap rate, whereas the K2 py
flap rates are 60% lower.

VII. Discussion

In this specific problem, LPV gain-scheduled control appears to
offer significant performance advantages over gain-scheduled LFT
control. Both LPV gain-scheduled controllers significantly reduce
the effects of wind gusts and require smaller and less rapid actua-
tion to achieve this improved performance. Although this cursory
comparison of the results is certainly useful in this specific case, a
more general discussion of the merits of these two different types
of gain-scheduled control laws and how they apply to this problem
is perhaps more important.

The primary advantages of the LPV gain-scheduled control
methodology for this flutter example are the direct use of a grid of
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LTI models for LPV control design and the straightforward manner
in which rate bounds on the time-varying parameters may be in-
corporated into the problem formulation. Another advantage of the
LPV gain-scheduled control design method for this specific prob-
lem is the existence of LTI models in which the entries of the A,
B, C, and D matrices vary smoothly as a function of § and M. In
other problems, including identified models of real systems, ensur-
ing such smooth variance in the A, B, C, and D matrices’ entries
is not as simple and often requires extra time be taken to set the
systems up in the same manner.

To investigate further the importance of rate bounds on parameter
variations to this specific problem, LPV control designs with very
large rate bounds were attempted. These LPV designs were unable
to stabilize the entire range (Table 1) of LTI models of the BACT
wing. This shows that gain-scheduled LFT control’s inability to in-
corporaterate bounds into the problem is a significant drawback for
this flutter problem and that no gain-scheduledLFT controllercould
be synthesized over the entire 32 model operating range. For other
problems, where the parameters under consideration can change
very quickly, this inability to incorporaterate bounds is not a factor.
One example of this situation would be creating a gain-scheduled
LFT control law for a missile cruising at constant Mach, using o
and S as the scheduling parameters. Because the missile can change
its angle of attack very quickly, introducing rate bounds into the
problem may result in little or no improvement in performance.

LFT gain-scheduled control also has strong points. For flutter
control of an airplane, accurate open-loop models above the flutter
boundary are difficult to obtain and likely have large uncertainties.
This type of problem may be more realistically approached in an
LFT framework, where general trends of certain states or modes
may be known, but not exact LTI models. For example, it may be
known that a complex conjugate pole pair moves into the right half-
plane while its natural frequencyincreases slowly. Such information
can be used to formulate easily an LFT model of a problem, where
a grid of LTI models may be difficult to generate.

Some of the drawbacks associated with the gain-scheduled LFT
method as applied here could be eliminated. There are methods for
reducingthe conservatismof gain-scheduledLFT controlby switch-
ing from complex to real parameter variation >+23 Also, because the
gain-scheduledLFT control has exactly the same structureas p syn-
thesis, a form of gain-scheduled DK iteration with constant scaling
matrices is possible, likely resulting in improved performance.

Finally, the testing and simulations were done using the full-
order LTI models, and the full-order LPV model consisting of the
32 interpolated gridpoints discussed in Sec. V.B. These are very
similar to the models on which the LPV gain-scheduled control
laws were based, differing only by the error introduced through the
model-reduction process. The gain-scheduled LFT control design
was based on an LFT model of the system that did not exactly match
the LTI models.?® This further demonstrates that designing an LFT
open-loop plant interconnection when high-quality LTI models are
available will often be less effective than direct use of the grid of
models via LPV gain-scheduled control.

VIII. Conclusions

Recently developed gain-scheduled control techniques in which
the control laws are explicit functions of the scheduling parame-
ters reduce design time when compared to ad hoc gain-scheduled
control laws while yielding larger operating ranges (or improved
performance over that range) in comparison to fixed-point control
designs.

Rate-bounded LPV gain-scheduled control methods are used to
design two gain-scheduledcontrollersfor the entire range of models
of the BACT wing. Both LPV controllers achieve increased perfor-
mance (as measured by limiting TE and LE acceleration due to
wind gusts) with smaller control surface deflections and rates com-
pared to the gain-scheduled LFT controller. All three control laws
discussed extend the flutter boundary to (past) the maximum g con-
sidered, 10.77 kPa. This represents a 60% increase in the flutter
boundary as measured by dynamic pressure. In addition, the LPV
gain-scheduled controllers significantly outperform the previously
presented gain-scheduled LFT controller.

This specific flutter problem is formulated in a way that is read-
ily adaptable to LPV gain-scheduled control techniques. The ad-
vantages and performance improvements achieved via LPV gain-
scheduled control in comparison to gain-scheduledLFT control are
not indicative of a general result, but do point out some significant
considerations. In cases where scheduling parameters may be ex-
pected to vary relatively slowly, such as this flutter example, LPV
methodology has an advantage through easy incorporation of rate
bounds into the problem structure. In cases where the scheduling
parameters change on a much faster timescale, the improvements
obtainable by introduction of rate bounds can be insignificant.
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