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Abstract: This paper presents an approach to non-cooperative aircraft identification that
uses non-linear filtering to fuse target kinematic state measurements and target signature
measurements.  This is applicable to sensors whose signature measurements are sensitive
to the sensor-target orientation such as high range resolution radar, synthetic aperture
radar, ladar and electo-optical imagers.  Fusion is achieved by constructing the joint
density for the target’s kinematic state and its class, conditioned on the data.  The
marginal density for the target class is obtained by integrating out the kinematic variables
in this joint density, enabling target recognition.  This process is inherently non-Gaussian
due to non-linear target dynamics and the presence of multiple modes in the signature
densities.  To model these non-linearities the time evolution of the joint density between
measurements is determined by solving the Fokker-Planck equation using the Alternating
Direction Implicit method, a fast finite difference partial differential equation solver.  As
measurements become available, they are used to update the joint kinematic/class density
using Bayes rule and densities derived from physical sensor models.  This preserves the
non-Gaussian features of the joint density including feedback between aspect, kinematics
and class.  In a test problem fusing simulated position measurements with high range
resolution radar signatures this reduces time-to-classify compared with a Maximum
Likelihood Classifier that does not use the position measurements.

Keywords: Non-linear filtering, automatic target recognition, joint tracking and
recognition, high range resolution radar

1. Introduction

The goal of Non-Cooperative Target Identification (NCTI) is to estimate target class of an
object (e.g. F-16 or A-10) given a set of measurements.  Many types of sensors have been
proposed for NCTI applications including imaging sensors and High Range Resolution
Radar (HRR), both of which are sensitive to the aspect angle of the target relative to the
sensor. For many types of targets, especially airborne ones, target motion is strongly
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correlated with target orientation (also referred to as target pose or aspect).  For this
reason signature measurements also contain information concerning the target’s
kinematic states such as position, velocity, bank and pitch angles.  For example, if an
aircraft is turning, it is usually banked. A turn is said to be coordinated if the target bank
angle is such that the sum of the centrifugal force and gravity always presses the pilot
straight down into her seat.  In this case the bank angle is determined by the speed and
turn rate. The goal of this paper is to exploit this correlation to improve the performance
of NCTI systems.

Although the method proposed here is applicable to any sensor whose signatures are
aspect-dependent, this paper will focus on applications to HRR.  Recent overviews of
HRR based NCTI include [Smith, Mitchell1, Zyweck].  HRR uses broad-bandwidth
linear frequency modulation or step frequency waveforms to measure range profiles
(“signatures”) of targets.  Prototype systems tested against airborne targets have sub-
meter resolution [Wehner, Berman].  In HRR systems the range profile is a list of
scattering intensities as a function of range.  This intensity is related to the cross-range-
integrated scattering cross-section of the target at that range cell.  Since the scattering into
a particular range cell comes from many points of the target, it is sensitive to the
orientation angle from which the target is observed.   [Iny] have examined the variation of
HRR data with target pose, stores and articulation and suggest that good performance can
be achieved using a few signatures per square degree of solid angle, although this also
depends on the center frequency of the RADAR system.  With one signature per solid-
angle degree, on the order of 104  signatures per class are required, suggesting that large
computational and storage resources are required for good NCTI.  The range- and pose-
dependence of the range profile statistics are nonlinear.   For example, there may be
multiple target classes and/or target aspects that fit a particular range profile.  For such
range profiles, the posterior probability for target pose conditioned on the profile is multi-
modal.

The classical approach to target ID with HRR is to use a quadratic classifier [Fukunaga]
based on synthetic or measured signature templates for a target-set over a large collection
of poses [Mitchell-1, Iny, Smith]. Due to noise and the multimodel nature of the data,
observations from several different poses must be used to classify targets reliably. As
discussed in [Libby], this approach only uses the HRR data to estimate the target pose.
One problem with this approach is that the maximum likelihood may be obtained by a
physically unrealizable sequence of pose angles (e.g. a sequence of poses flipping
between  0  and 180 degrees is not penalized), leading to misclassification of the target.
On the other hand, if target class is known, then the HRR signatures contain useful
information about target pose such as heading and bank angle, which can be used to infer
kinematic quantities such as velocity and turn rate.

In practice HRR is often one of several modes available on a multimode radar system. To
identify an object, the sensor can dwell on the target for a brief time, interleaving HRR
pulse trains with other types of wave-forms optimized to measure the target's azimuth,
elevation and radial velocity, which we refer to as kinematic measurements.  In this case
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the data stream consists of a mixture of nearly simultaneous signature and kinematic
measurements.   The theoretically optimal approach is to process the signature and
kinematic data in a fully integrated  estimator based on the joint density for the target
class and kinematic state.   This joint density can capture correlation information between
class and kinematics, enhancing their mutual estimation. This is difficult to implement
due to the difficulty of constructing this joint density.  As a result, most systems perform
kinematic state estimation first and then use the kinematic state estimate to aid target
identification.

Several authors have suggested methods to improve tracking by exploiting the correlation
between aircraft orientation and target acceleration [Kendrick, Andrisani, O’Sullivan,
Miller]. Other researchers have developed systems that improve classification
performance by using some type of kinematic information. Although they do not use
kinematic measurements, [Le Chevalier, Mieras] utilize kinematic constraints in their
classifiers by penalizing or excluding unrealistically large pose changes between signature
measurements.  Both [Libby] and [O'Sullivan] have proposed classification schemes to
combine kinematic measurements with HRR and [Rozovski] use a similar strategy with
electo-optical measurements.

For example, [Libby] extend the estimation approach of [Larson] to exploit aspect
information for NCTI in an uncoupled feed-forward fashion as shown in Figure 1 a .
Given Bayesian assumptions, the theoretically optimal approach to classification is to
compute the posterior probability p T Y( | )  for target class T given a set of measurements
Y. Then the minimum-probability-of-error classifier is obtained by selecting the class T to
maximize p T Y( | ) .  [Libby] approximately solve this maximization problem by first using
an extended Kalman filter and fixed-lag smoother to estimate the target trajectory from
the kinematic measurements alone.  Then they construct a jointly Gaussian pose sequence
likelihood from this estimated trajectory, assuming that the target’s turns are coordinated.
Assuming statistical independence,  [Libby] combine this pose sequence likelihood with
the HRR measurement likelihood. Dynamic programming is then used to obtain the pose
sequence that approximately maximizes the combined kinematic and HRR measurement
likelihood. The class with the highest total signature/kinematic likelihood is selected as
the class estimate, approximating the joint maximum likelihood classifier.  In [Libby] the
information flow goes from the kinematic estimation to the range profile classifier, as
shown in Figure 1a, but there is no information flow from the HRR measurements back to
the kinematic estimator.

In contrast to [Libby], [O’Sullivan] propose a batch algorithm that incorporates two-way
coupling of kinematic and signature data elements.  This closes the loop between
classification, pose estimation, and tracking yielding a single unified system, illustrated in
Figure 2b. [O’Sullivan] use a batch calculation scheme based on stochastic methods
(somewhat similar to simulated annealing) known as a jump-diffusion process [Miller].
This approach is very appealing.  One of the main motivations of this current work is to
explore the feasibility of capturing this coupling in a recursive filtering scheme.
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It is important to note that for NCTI, the kinematic states of the target are of no interest:
they are purely nuisance variables.  However, an intermediate step in both [Libby] and
[O’Sullivan] uses maximum likelihood methods (dynamic programming and stochastic
simulation) to estimate the kinematic states of the target. There is a very different
alternative approach that avoids this intermediate step.  This is to work directly with the
target's conditional probability density [Ho, Sorensen, Jazwinski, Daum, Rozovski].
Since the target dynamics are Markov, the time-evolution of the target density is first
order so it can be computed  recursively.   This is in marked contrast to the maximum
likelihood or the conditional expectation for the state, which can only be computed
recursively under restrictive assumptions on both target dynamics and measurement
statistics.  Shifting attention to the conditional density obviates the need for any type of
multiple scan processing while modeling the intrinsically non-linear relationship between
target signatures, kinematic states and target classes.  If efficient methods can be found to
compute the target's conditional density, then real-time recursive algorithms can be
constructed that couple the kinematic and signature information into a single filter as
shown in Figure 2b.  Several methods have been proposed to evaluate the relevant
densities including spectral methods [Rozovsky], approximations based on separation of
variables [Daum], and convolution methods [Kouritzin, Kastella].

For problems with continuum target dynamics and discrete measurements, propagation of
the conditional density can be accomplished by solving a Fokker-Plank Equation (FPE).
Recently, [Zatezalo] examined several finite difference methods for solving a model FPE
typical of tracking applications. The four solvers studied were: the Alternating Direction
Implicit (ADI) scheme [Strikwerda]; the method of fractional steps [Yanenko]; an Euler
explicit scheme [Strikwerda]; and a multigrid scheme [McCormick].  For this problem
ADI and the method of fractional steps were found to be about two orders of magnitude
more efficient than the Euler explicit and multigrid schemes.  Motivated by this result,
this paper explores the applicability of ADI for joint tracking and recognition
applications.

The remainder of this paper is organized as follows.  Section 2  presents algorithmic
details Nonlinear Filtering for Joint Tracking and Recognition (NLFJTR) used to fuse
kinematic measurements and signature measurements for NCTI.  As in most filters there
are two parts to the algorithm: a) prediction of the effect of deterministic and random
target motion on the target probability distribution and b) modification of the distribution
with measurements as they become available.  The target motion is characterized by the
Ito stochastic differential equation [Jazwinski].  The Ito equation determines the dynamic
evolution for the target class / state density with a slight modification to account for the
target class, given by a partial differential equation called the Fokker-Planck equation
(FPE).  In this work the target dynamics are modeled as motion in a 2D plane with a
randomly varying turn rate, leading to a 5-dimensional target state representation.  The
resulting Fokker-Planck equation is discretized and solved on a 5-dimensional grid using
the D’Yakonov finite difference scheme, which is a specific instance of a large class of
methods called Alternating Direction Implicit (ADI) schemes [Strikwerda].  One useful
feature of ADI is that the computation required to evaluate one time update of the scheme
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is proportional to the number of nodes in the grid used to represent the solution. The  FPE
for filtering problems of this type usually has variables with first order derivatives but no
second order derivatives.  When this occurs, the FPE is said to be “degenerate” and
requires special boundary conditions [Friedman].  In order to minimize the size of the
required grid, it is spatially translated to maintain the target location near the grid center.
A physical model for the measurement density is required in order to update the target
density with measurements.  We present a simple scattering center model for HRR
signatures [Smith] with additive noise and model position measurements with Gaussian
error.  For evaluation and comparison we also developed a Maximum Likelihood
Classifier (MLC) which in this case reduces to a Guassian classifier.

Following the method section, we present simulation results using NLFJTR and the MLC
in Section 3.  When the signature noise is very low, both classifiers provide similar
classification performance.  As the signature noise increases, the performance of the MLC
degrades much more quickly than NLFJTR classifier.  At intermediate values of signature
noise NLFJTR provides reliable classification more quickly than the MLC.  At high
values of signature noise the MLC is unable to classify the target after 20 scans while
NLFJTR classifies with high reliability, illustrating the utility of the kinematic
measurements for NCTI.  Section 4 discusses these results and suggests directions for
future research.

2. Continuous-Discrete Filtering for Joint Tracking and Recognition

Our objective is to classify an airborne target from a sequence of measurements yk  made
at discrete times tk .  In general these measurements can be HRR profiles, range-Doppler
measurements, imaging measurements or some combination thereof.  The target is  a
member of some target class Tc , c C= 1, ,� . Some of the measurements yk  are
sufficiently class-dependent in some way to enable classification.  The target dynamics
are described by the Ito stochastic differential equation [Jazwinski] for the time-
dependent target state x t

d t dt t d t tt t t tx f x G x= + ≥( , ) ( , ) ,β 0 (1)

where x t and f are n -vectors, G is an n r× matrix function and { , }β t t t≥ 0  is an r -

vector Brownian motion process with E d d t dtt t{ } ( )β βT = Q .  In general f  and G depend
upon the target class but this dependence is not made explicit here.

The observations up to time τ  are denoted

Y tl lτ τ= ≤{ : }y . (2)

Using this notation, the Bayes-optimal classifier can be constructed from the joint
conditional probability density p T Yt c t( , | )x .  Given the normalized joint density, the class
probability is
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p T Y d p T Yc t t t c t( | ) ( , | )= ∫ x x . (3)

Then the minimum error classifier is [Fukunaga]

�

argmax ( | )T p T Yc T c tc
= .  (4)

The minimum mean square error target state estimate 
�

x t  is [Jazwinski]

�

( , | )x x x xt t t c t t
c

p T Y d= ∫∑ . (5)

Between observations the evolution of the conditional density is determined by the target
dynamics as characterized by the Ito equation.  As shown in [Jaz], the time evolution of
the joint density between measurements is the solution to the Fokker-Planck equation
(FPE)

∂
∂
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( , | ) ( ),x = ≤ < +1 , (6)
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with initial condition given by p t Yk tk
( , | )x .

We assumed that the conditional density p Tk t ck
( | , )y x  for measurement yk  given target

class Tc  and target state x tk
was known.  Further, we assumed that any measurement

noise was white.  Then given a new observation yk , the updated conditional density
p t Yk tk
( , | )x  is obtained from the predicted density p t Yk tk

( , | )x
−1

 using Bayes’ rule:

p T Y
p T p T Y

p T p T Y d
t c t

k t c t c t

k t c t c t t
c

k k

k k k

k k k k

( , | )
( | , ) ( , | )

( | , ) ( , | )
x

y x x

y x x x
=

′ ′ ′
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−′ ′
′
∫∑

1

1

.  (8)

2.1 The Target Motion Model
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In this study we assumed that the target motion was restricted to motion in a horizontal
plane.  For fixed-wing aircraft executing constant altitude coordinated turns the bank
angle θ  is determined by the turn rate ω  and speed s  by

( )θ ω= atan s g/ (9)

where g  is the acceleration due to gravity.  A simple model was selected to incorporate
variable turn-rate and planar motion using the 5-dimensional state

( )x = x x y y,
�

, ,
�

,ω T
(10)

with

( )f x( )
�

,
�

,
�

,
	

,= −x y y xω ω 0
T
. (11)

The velocity/turn-rate coupling in the 2nd and 4th components of f is explicitly non-
linear.  The target model was driven by a 3-dimensional Brownian noise process

( )β β β βω
t t
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t
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The resulting FPE (Eq. (6)) was found to be
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2.2 The D’Yakonov Finite Difference Scheme

We used the D’Yakonov finite difference scheme to solve Eq. (14) numerically.   Space
and time were discretized on a uniform grid with time resolution ∆t and spatial resolution
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∆ ∆ ∆ ∆ ∆ ∆x = ( ,
�

, ,
�

, )x x y y ω T .  In this subsection p  denotes a continuum solution to the
FPE while q  denotes a function defined on the grid that approximates p .   Defining the
sub-operators
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the FPE can be written as

∂
∂
p

t
A pi

i

= ∑ (16)

where ( )p tx,  is a continuum solution to the FPE subject to an appropriate boundary

condition. Discretizing in time but not in space,  we abbreviate  p p tk
k= ( , )x .  The

Crank-Nicholson scheme [Strickwerda, Press] for the FPE is obtained by using a Taylor
series in time for p t tk( , / )x + ∆ 2 , leading to

( )p p

t
A p A p O t

k k

i
i

k
i

i

k
+

+− = + +∑ ∑
1

1 21

2

1

2∆
∆( ) .  (17)

Rearranging terms leads to

( )1
2

1
2

1 3−





= +





+∑ ∑+∆ ∆ ∆t
A p

t
A p O ti

i

k
i

i

k ( ) . (18)

In principal, this expression can be solved for pk+1 by inverting the operator

1 2− ∑( / )∆t Aii
, but direct inversion is computationally expensive.  An expression that

is equivalent to ( )O t( )∆ 3  but much simpler to invert is obtained by using the operator

identity
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(The operator order must be preserved on both sides of the equality for non-commuting
operators such as A3  and A4 ).  Rearranging Eq. (19)  leads to

( )1
2

1
2 2

2
3± = ±





− 





+∑ ∏ ∑
<

∆ ∆ ∆ ∆t
A

t
A

t
A A O ti

i
i

i
i j

i j

( ) . (20)

so Eq. (18) yields
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Further, because ( )p p O tk k+ − =1 ∆ ,
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If Ai∆x  is an ( )O ( )∆x 2  discretization of Ai , then
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and the grid function q  defined by
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approximates p  to ( ) ( )O t O t∆ ∆ ∆( ) ( )x 2 3+ .

To propagate the density, we must solve Eq. (24) for q k +1.  Let N A  denote the number of
sub-operators in the FPE.  Then the D’Yakonov [Strikwerda] scheme for Eq. (24) is
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q qk k+ +=1 1~ (25c)

where ~ /q k i N A+  are intermediate results.  The essential point to note is that each factor

( )1 2− ∆ ∆tAi x /   can be inverted separately, simplifying the calculation.

To discretize the Ai ,  we abbreviate q k t x x x y y qx( , ,
�

, ,
�

, )∆ ∆± = ±ω 1  with similar
definitions for q qx

� , ,± ±1 1
� ω .  We chose central differencing for the spatial derivatives,

obtaining
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With this discretization, each operator ( )1 2− ( / )∆ ∆t Ai x  to be inverted is tridiagonal. We

inverted these operators using Thomas’s algorithm [Strikwerda] which has O N( )
complexity so that the total complexity of Eq. (25a-c) was O N( ) .

2.3 Boundary Conditions

In order to solve the discretized FPE numerically it must be restricted to a finite domain
leading to an initial-boundary value problem.  The finite grid domain consists of the
points (( ) ,( )

!

,( ) ,( )
"

,( ) )i i x j j x k k y l l y m m+ + + + +0 0 0 0 0∆ ∆ ∆ ∆ ∆ω T , i N x= 0, ,# ,
j N x= 0, , $% , k N y= 0, ,& , l N y= 0, , '( , m N= 0, ,) ω  where i m0 0, ,*  are offsets used

to translate the origin.  The total number of grid nodes is
( )( )( )( )( )+ +N N N N Nx x y y+ + + + +1 1 1 1 1ω  while the number of unknowns is

N N N N N Nx x y y= − − − − −( )( )( )( )( ), ,1 1 1 1 1ω .  Boundary conditions must be specified

on this hyper-cube to determine the solution to the FPE uniquely.  When the target has
been localized the density should be concentrated in some small region and then decay
exponentially far from this region.  We assumed that the grid was large enough that the
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density was small on its boundary.  With this motivation we used a homogenous Dirichlet
condition with the solution held at 0 on the boundary.

The FPE is a degenerate parabolic partial differential equation [Friedman] which means
that it does not have second order derivatives in all of its variables.  Specifically, there are
no x −  and y − diffusion terms in  Eq. (14)  and both A1  and A3  correspond to one-way
wave equation operators.  (For example A1  generates a wave that propagates solutions
along the x -axis with velocity 

-

x .)  For a first order operator of this sort the boundary
condition is only specified on the incoming boundary as determined by the sign of 

.

x .  As
a result, if boundary conditions are specified on all of the faces then the solution is over
determined.  We avoided this problem by only specifying a physical boundary condition
on the incoming x −  and y − faces.

Even though the physical boundary condition is only defined for incoming x  and y , the
discretization scheme Eq. (26 a,c) requires that the solution also be specified on the out-
going faces as well.  This requires so-called numerical boundary conditions.  A simple
boundary condition to implement is to extrapolate the solution at the out-going faces
[Strikwerda].  For example, in the region with 

/

x > 0, the face with i N x=  is an out-going

face.  On this face we specified q qN
k

N
k

x x

+
−

+=1
1

1 .  On the other hand, when 
0

x < 0, the out-

going face has i = 0 so q qk k
0

1
1

1+ += .  These numerical boundary conditions can be
incorporated into the Thomas tridiagonal solver without affecting its complexity.

2.4 Measurement Models

For this study we assumed that two distinct measurements types were available: HRR
measurements z which depend on target bank angle θ   and target heading ϕ ; and
position measurements zp xp ypz z= ( , ) which are Cartesian x y,  with additive zero-mean

white Gaussian errors of standard deviation σ p .  For simplicity both were assumed to be

made at the same instant so that each measurement in Eq. (2) consists of the pair
y z zk p k= ( , ) .

We used a scattering center model [Smith] for the HRR measurements.  In this type of
model the impulse-response function for target class Tc  is approximated by

r t A t tc cs cs
s

( ) ( )= −∑ δ , (27)

where Acs  is the scattering amplitude of the s -th scattering center in targets of class Tc .
The time delay tcs  is proportional to the range from the radar to the scattering center at
the time of  scattering.  Let xcs  denote the 3-dimensonal Cartesian coordinates of a
scattering center in the body frame of the target and R denote the vector from the radar to
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the body frame origin.  The rotation of the target from the body frame into the fixed frame
of the radar was take to be

Θ = −
−















cos sin

cos sin cos sin sin

sin sin sin cos cos

ϕ ϕ
θ ϕ θ ϕ θ

θ ϕ θ ϕ θ

0

. (28)

This is the Euler rotation matrix in the so-called x-convention with the pitch angle ψ = 0.
The 0-heading direction was taken to be along the x-axis.  With this definition the time
delay is

t
c ccs cs= +

2 2R

R
R xTΘ . (29)

The first term is a total offset determined by the nominal range to the target.  The second
term is the projection of the scatterers onto the sensor-target unit vector.  In HRR systems
the target range must be estimated in order to properly align the HRR signatures.  We
assumed that the target signatures are already aligned.  After digital sampling with range
resolution ∆R  the signature in range bin b  is

( )r A b Rc
b

cs cs
s

= −∑ II T
1

/R xΘ ∆ , (30)

where

II( ) =
    

 otherwise.
x

x1 1 2

0

, | | /

,

<

î

(31)

Noise was added to the signatures to produce HRR measurements z r nb c
b

c
b= +  where

n Nc
b

HRR~ ( , )0 σ .  We assumed that the noise contributions to each bin are uncorrelated

and white.  A single HRR measurement is the vector z = ( , , )z zB1
2

T .  Therefore, the
conditional density is

( )p T z rc b c
b

HRR
b

( | , , ) exp ( ) /zθ ϕ κ σ= − −∏ 2 22 (32)

where κ  is a constant that can be dropped.

Implementation of the classifier requires the density transformation
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( )
( )p x y T p s T

s

x yc( |
3

,
4

, , ) ( | , , , )
, ,

5

,
6

,
z zω θ ϕ

∂ θ ϕ
∂ ω

= .  (33)

Using s x y= +7 72 2 , θ ω= atan( / )s g , ϕ = atan( )
8

/
9

y x ,

( )
( ) ( )

∂ θ ϕ
∂ ω ω

, ,
:

,
;

, /

s

x y g s g
=

+
1

1 2 2 2
(34)

so that

( )p x y T
p s T

g s g
c

c( |
<

,
=

, , )
( | , , , )

/
z

zω θ ϕ
ω

=
+1 2 2 2

.  (35)

Neglecting an irrelevant normalization factor, the measurement density required for the
measurement update Eq. (8) is

( ) ( )( )
( )

p T
s g

z x z y

z r

c xp yp p

b c
b

HRR
b

( | , )
/

exp ( ) ( ) /

exp ( ) /

y x =
+

− − + −

⋅ − −∏

1

1
2

2

2 2 2

2 2 2

2 2

ω
σ

σ
(36)

where rc
b  as a function of x is given by Eq. (30).

2.5 Grid Translation

To reduce the size of the grid required to represent the target joint density, the grid was
translated after each measurement to approximately maintain the target’s location near its
center.  After each measurement update the target position estimate (

>

,
?

)x yt t  was
evaluated using  Eq. (5) and the grid was shifted to center of the grid near this position.
This was achieved by placing the lower left corner of the spatial grid at ( , )i j0 0  where

[ ]i x x N x0 2= −
@

/ /∆ (37a)

[ ]j y y N y0 2= −
A

/ /∆ (37b)

and [ ]x  denotes rounding to the nearest integer.  This always translated the grid by an

integral multiple of ( )∆ ∆x y, .  Grid nodes outside the intersection of the translated and

un-translated grid were set to 0.

2.6 The Maximum Likelihood Classifier
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As a basis for comparison we implemented a Maximum Likelihood Classifier (MLC) for
target class without making use of pose information.  This classifier only used the HRR
measurements.  It was computed recursively using

p T Z
p T p T Z

p T p T Zc t

t c c t

t c c t
c

k

k k

k k

( | )
( | ) ( | )

( | ) ( | )
= −

−′ ′
′

∑
z

z
1

1

, (38)

where measurement ztk
is the HRR measurement only for time t k and Ztk −1

 denotes the

HRR measurement set prior to time t k  (no kinematic measurements are used).  The target
state x t  was treated as a nuisance variable [Smith] and integrated out for each scan using

p T d p Tk c t k t c( | ) ( | , )y x y x= ∫ .  (39)

3. Results

These algorithms for HRR signature modeling and classification were implemented in
C++ .  Scattering center models for two target types (F-16 and A-10 aircraft)  were
generated using between 15 and 20 scattering centers. The scattering amplitudes Acs  (c.f.
Eq. (27)) were assumed real with locations taken from [Janes].  Heuristic scattering
amplitudes were used and ranged in value from 0 to 4 units.  Typical signature with range
resolution ∆r =1 mare shown in Figure 2.  The targets are at bank angle ϕ = 0  and
rotated in heading θ  about the forward part of the aircraft, which is held fixed at range
bin 20.  The sensor is assumed to be far to the west of the target so the sensor-target unit

vector 
B

R  in Eq. (30) is the east unit vector.  The A-10 was modeled with the strongest
scattering from the engines and empennage near range bin 10 at θ = 0  and some
scattering from the wings.  The F-16 was modeled with the dominant scattering from the
empennage and the engine inlet near the forward part of the aircraft which is located at
range bin 16 at θ = 0 .  The signatures were pre-computed and stored.

For testing purposes a third target signature was also used, referred to as the ’A-10.1’.  The
A-10.1 was obtained by perturbing the position and amplitude of the A-10 signature by
adding Gaussian noise to it with a standard deviation of .1 m in each position component
and .1 units in amplitude.  HRR measurements were obtained from the signatures by
adding zero-mean Gaussian noise with standard deviation σHRR  to them.  Measurements
obtained from the signatures of Figure 2 with σHRR = 25.  are shown in Figure 3.

The D’Yakonav scheme Eq. (25a-c) with homogeneous boundary conditions was used for
a grid with N Nx y= = 8 ,  and N N Nx y

C C= = =ω 12.  The grid resolution was

∆ ∆x y= =100 m , ∆ ∆
D D

x y= = 25 m / s and ∆ω =.0245 rad / s.  The plant noise values

were σ σE E/ / . /x y s2 2 32 2 001= =  m2  and σω
2 32 00001/ . /=  rad2 s .  The total number of
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unknowns was N = 62 219, .  On this grid the full filter required between 1 and 5 seconds
per update on a single-processor engineering workstation.

Figure 4 shows the average classification probability versus time for this 3-class test
problem (A-10, A-10.1, F-16) obtained over 100 trials each for σHRR = 2 25 3, . ,   using the
NLFJTR classifier (upper curves) and the MLC.  The true target class was the A-10 with
speed 100 m/s and turn rate ω =.098 rad / s (1g  acceleration).  The sensor update rate
was 1 Hz.  The Cartesian position measurements were obtained by adding zero-mean

Gaussian noise to the target position with standard deviation σ p = ≈100 12 289/ . m  m .

The NLF was initialized with the target position and velocity localized to a single
resolution cell.  No prior turn rate information was assumed and its initial density was
taken as uniform.  In all cases NLFJTR yielded a high correct classification probability
sooner than the MLC.  The target state estimates obtained from Eq. (5) for the σHRR = 25.
case are shown in Figure 5.  This shows the time dependence of the true and estimated
position, velocity and turn rate,  averaged over 100 trials.  Over this trial set the RMS
position error was 31 m, the RMS velocity error was 19.5 m/sec, and the RMS turn rate
error was .032 rad/s.

4. Discussion

The classification probability results using Nonlinear Filtering for Joint Tracking and
Recognition (NLFJTR) and the Maximum Likelihood Classifier (MLC) shown in Figure
4 demonstrate that performance can be improved by using kinematic and signature
measurements in single recursive filter.  Identical data models were used for both
classifiers so the difference between them can be attributed to NLFJTR’s fusion of
position measurements with High Range Resolution Radar (HRR) measurements
allowing it to estimate target pose while the MLC assumed pose to be independent from
scan to scan and only derived pose information from the HRR data itself.

The main objective of this work has been to demonstrate the feasibility and utility of
using NLF methods for recursive joint tracking and recognition.  The D’Yakonov ADI
scheme used here to solve the Fokker-Plank Equation (FPE) Eq. (14) is one of many
related schemes that can be used for NLF applications.  One possible draw-back is that

while the D’Yakonov scheme is ( )O t∆ 2  accurate in time, it is non-dissipative
[Strikwerda].  This means that there is no damping of high-frequency errors in the FPE
solution and small errors can persist over time.  An alternative approach that address this
issue would be to take the implicit Euler scheme as the starting point for solving the FPE.
Even though the implicit Euler scheme is ( )O t∆  accurate and more time steps may be
required for solution to a given level of accuracy, its dissipative damping of high-
frequency error components may outweigh this disadvantage.  On the other hand, NLF
applications differ from conventional partial differential equation problems in that the
solution is periodically modified by the Bayes’ rule update Eq. (8) which has a stabilizing

effect.  Dissipative  schemes with ( )O t∆ 2  accuracy can also be constructed, although
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they are more complicated which may cause implementation difficulties on domains of
dimension 4, 5, and higher as required for NLFJTR.

A similar issue related to the dissipativity of the solution scheme is the discretization
scheme used for the first order spatial derivatives.  We chose to use central differencing

for Ai∆x  Eq. (26a,c) which is ( )O ∆x2  accurate.  However, for non-smooth initial data, so-
called up-wind differencing schemes can perform better [Press, Strikweda].
Unfortunately, in its simplest form the up-wind scheme is only ( )O ∆x  accurate.  Again,

while ( )O ∆x2  accurate up-wind schemes exist, they complicate filter implementation.

Another topic for further study is the boundary conditions used for the FPE.  The turn-rate
estimate in Figure 5c was consistently biased low.  This may be due to the loss of
probability through the ω -faces of the grid.  We used the homogeneous Dirichlet
conditions on all boundaries, which assumes that the discrete finite domain used for the
numerical solution is large enough that the true FPE solution is nearly zero on its
boundary.  One alternative would have been to use Neumann conditions requiring 0
probability flux across the boundaries.  However, in either case there is some
perturbation of the density near the boundary analogous to the probability distortion
caused by gating in conventional trackers.  It may be better to use some lower order
scheme to approximate the solution on the boundary.  A simple way to do this would be
to approximate the density on the boundary using an extended Kalman filter, then use the
numerical FPE solver with the resulting inhomogenous boundary condition.  This is a
Gaussian boundary approximation but does not lead to a Gaussian interior solution when
the initial condition is non-Gaussian.  A more sophisticated method would be to use
multiple resolution grids.  With this approach the grid for the region of interest is
embedded in a larger, coarser grid [Schaffer].  The solution on the coarse grid is obtained
using the numerical solver and then the boundary condition for the fine grid is obtained
from the coarse grid solution.  The fine grid problem is then solved with the resulting
inhomogenous boundary condition.

The grid translation scheme used here was simple to implement but greatly reduced the
computation required for this problem since it allowed a much smaller grid to be used.
We only translated the grid in the spatial components, but translation in velocity can also
be performed with a slight modification to the FPE solver.  It may also be useful to scale
the grid, based, say, on estimated standard deviation of the solution as obtained from the
2nd moment evaluations.  This would allow a much smaller grid to be used although it
may require more careful treatment of the boundary conditions along the lines noted
above.

Data modeling is a critical issue for applying NLFJTR algorithms to more realistic
problems.  Physics-based signature modeling is currently a very high investment area,
although there are those within the ATR community that regard physical modeling of
HRR signature models as fundamentally unfeasible.  The data model used in this
algorithm study is quite crude but this approach can incorporate higher fidelity models
without modification.  This can include signature probability densities obtained from high
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fidelity models, estimated from actual target observations or from scaled model data
taken in anechoic chambers.  For this test problem we calculated the signature density
directly as a function of the range profile but computation may be simplified by using
some form of dimensionality reduction by projecting the range profiles onto an optimized
space of lower dimensionally.  For example, [Zyweck] use linear discriminants obtained
using statistical cluster analysis techniques while [Mitchell-2] use nonlinear statistical
features.  We employed a deterministic signature model in this work but can incorporate
the conditionally Gaussian models suggested in the work of [Jacobs].  Also, even though
we chose to model the signature noise as Gaussian, this is not a requirement of the
algorithm.  Based on physical arguments the true distribution should be Rician [Mitchell-
1], or at least have a Rician component which is easily accommodated within this
algorithm.  The critical requirement for using these signature modeling alternatives in
NLFJTR is that a probability to observe a signature given target class and kinematic state
analogous to Eq. (32) can be represented to some level of accuracy.

Acknowledgment: The authors benefited from discussions with A. Friedman, N. Krilov,
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Information flow in uncoupled NCTI  algor ithms for  HRRR
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Information flow in coupled NCTI  algor ithms

Nonlinear Filter
for Joint
Kinematic /
Target Class
Estimation

Kinematic
measurements

Target Class
Probability  Estimator

Joint Kinematic /
Class Distribution

Target
Class

HRR
measurements

a)

b)

Figure 1 -- Information Flows in NCTI  Uncoupled algorithms (a) first extract target
orientation information from kinematic measurements and then combine it with HRR
measurements to determine target class.  Coupled algorithms (b) combine HRR
measurements with kinematic data in a single filter to compute the joint kinematic / class
density allowing 2-way feedback between kinematics and HRR signatures.  Target class
probability is obtained as a marginal distribution from the joint density.
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a)

b)

c)

d)

Figure 2 - Simulated HRR signatures  for the A-10 (a, b) and the F-16 (c, d).  The targets are at 0 bank
angle, range bin is plotted across the page and heading angle varies form 0 to 1800.
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a)

b)

c)

d)

Figure 3 - Simulated HRR measurements obtained from the signatures of Figure 2 by adding Gaussian noise
with variance σHRR = 25. .
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a)

b)

c)

Figure 4 – Average classification probability Pc  versus sample time plotted across the page using Joint

Tracking and Recognition (upper curves) and using a Maximum Likelihood Classifier with measurement
noise σHRR = 2(a) σHRR = 25.  (b), and σHRR = 3 (c), averaged over 100 Monte Carlo trials.
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a)

b)

c)

Figure 5 – True target state (smooth curves) and state estimates obtained using Joint Tracking and
Recognition with signature measurement noiseσHRR = 25. for position (a), velocity (b) and turn rate (c).


