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a b s t r a c t

Traditional approaches for managing aquatic resources have often failed to account for effects of anthro-
pogenic disturbances on biota that are not directly reflected by chemical and physical proxies of
environmental condition. The index of biotic integrity (IBI) is a potentially effective assessment method
to integrate ecological, functional, and structural aspects of aquatic systems. A macrophyte-based IBI was
developed for Minnesota lakes to assess the ability of aquatic plant communities to indicate environmen-
tal condition. The index was developed using quantitative point intercept vegetation surveys for 97 lakes
that represent a range of limnological and watershed characteristics. We followed an approach similar
to that used in Wisconsin to develop the aquatic macrophyte community index (AMCI). Regional adap-
tation of the AMCI required the identification of species representative of macrophyte communities in
Minnesota. Metrics and scaling methods were also substantially modified to produce a more empirically
robust index. Regression analyses indicated that IBI scores reflected statewide differences in lake trophic
state (R2 = 0.57, F = 130.3, df = 1, 95, p < 0.005), agricultural (R2 = 0.51, F = 83.0, df = 1, 79, p < 0.005), urban
(R2 = 0.22, F = 23.0, df = 1, 79, p < 0.005), and forested land uses (R2 = 0.51, F = 84.7, df = 1, 79, p < 0.005), and
county population density (R2 = 0.14, F = 16.6, df = 1, 95, p < 0.005). Variance partitioning analyses using
multiple regression models indicated a unique response of the IBI to human-induced stress separate from
a response to natural lake characteristics. The IBI was minimally affected by differences in sample point
density as indicated by Monte Carlo analyses of reduced sampling effort. Our analysis indicates that a
macrophyte IBI calibrated for Minnesota lakes could be useful for identifying differences in environmental
condition attributed to human-induced stress gradients.

© 2010 Elsevier Ltd. All rights reserved.

1. Introduction

The development of reliable methods to restore and main-
tain the chemical, physical, and biological integrity of surface
waters has been a primary objective of resource managers since
the passage of the 1972 Clean Water Act (CWA) by the United
States Congress (33USC1251). The inability of traditional chem-
ical and effluent-based standards to fulfill requirements of the
CWA established a need for environmental agencies to develop
timely and effective biological assessment (bioassessment) meth-
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ods. Initially proposed in the 1980s for stream bioassessment, an
index of biotic integrity (IBI) for fish was designed to integrate
ecological, functional, and structural aspects of aquatic systems
and is considered sufficient for fulfilling the biological integrity
requirement of the CWA (Karr, 1981, 1991; Fausch et al., 1984).
Successful applications in streams and flexibility of the original
framework have prompted researchers to examine applicability
of the IBI for ecological assessment of lakes (see Beck and Hatch,
2009).

Different biological communities have been proposed for the
development of lake IBIs including fish (Minns et al., 1994;
Jennings et al., 1999; McDonough and Hickman, 1999; Thoma,
1999; Whittier, 1999; Drake and Pereira, 2002; Drake and Valley,
2005), macroinvertebrates (Lewis et al., 2001; Blocksom et al.,
2002), and plankton (Kane et al., 2009). In addition, macrophyte-
based IBIs have received attention (Nichols et al., 2000; Rothrock et
al., 2008) as aquatic plants offer several advantages for bioassess-
ment including immobility, ease of identification, ease of sampling,
and relationships with lake fisheries (Clayton and Edwards, 2006;
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Cross and McInerny, 2006; Beck and Hatch, 2009). Aquatic plants
also respond to environmental changes within ecologically rele-
vant timeframes, which may provide early warning indications of
system resilience that inhibits regime shifts (Scheffer et al., 1998;
Genkai-Cato and Carpenter, 2005; Valley and Drake, 2007). Alter-
natively, an aquatic plant IBI could be a useful tool for monitoring
restoration efforts as seed banks retained in sediment are a viable
source for species recolonization that respond to environmental
condition (Jurik et al., 1994).

Several macrophyte-based IBIs developed in recent years have
particular importance for the management of temperate lakes.
Nichols et al. (2000) described the aquatic macrophyte community
index (AMCI) developed for Wisconsin as a multipurpose, mul-
timetric tool for assessing the biological quality of aquatic plant
communities. Seven metrics derived from transect data estab-
lished the foundation of the AMCI: maximum depth of plant
growth; percentage of the littoral area vegetated; Simpson’s diver-
sity index; relative frequency of submersed, exotic, and sensitive
species; and taxa richness. However, metrics were chosen a pri-
ori based on hypothesized relationships to disturbance. As such,
the metric selection process lacked rigorous statistical evalua-
tion and an interpretation of the influence of each metric on
the index was not conducted. Regardless, AMCI scores indicated
significant differences in water quality trends related to human-
induced stress affecting lake productivity among Wisconsin
ecoregions.

More recently, Rothrock et al. (2008) developed a plant index
of biotic integrity (PIBI) to assess ecological condition of littoral
areas of Indiana lakes. Metrics and PIBI scores were examined
against measures of habitat quality, land use, and management cat-
egories that described the degree of anthropogenic influence on
a lake (e.g., recreational, industrial, restoration, etc.). PIBI scores
responded to a gradient of human-induced stress indicated by
explanatory variables. However, a primary disadvantage of the
approach used by Rothrock et al. (2008) was reliance on qualitative
data that may not be as robust as more quantitative approaches to
index development. For example, Rothrock et al. (2008) described
the PIBI sampling method as a qualitative, non-exhaustive cen-
sus to rapidly assess biological diversity and relative abundance
of macrophyte communities. Furthermore, PIBI scores were evalu-
ated against best professional judgment rankings of site condition
and a modified qualitative habitat evaluation index. The develop-
ment of an index that produces repeatable results may require more
quantitative methods for verifying metric and index response to
human-induced stress.

In Minnesota, aquatic resource managers have realized the need
for developing biological indicators that can signal problems in
water quality and fish habitat before regime shift thresholds are
crossed (Scheffer et al., 1998; Valley and Drake, 2007). Our goal
was to develop a macrophyte-based IBI to examine the ability of
aquatic plants to discriminate between lakes of differing environ-
mental condition in Minnesota. Our objectives were to (1) utilize
spatially explicit point intercept vegetation surveys that provided
quantitative information of macrophyte coverage, (2) provide an
empirical interpretation of metric and IBI response to hypothesized
explanatory variables representing anthropogenic and natural lake
characteristics, and (3) evaluate index sensitivity to individual
metrics and sampling effort. The AMCI developed in Wisconsin
provided a conceptual basis for index development (Nichols et
al., 2000). However, our approach provides an empirical examina-
tion of IBI response to statewide gradients of lake characteristics,
which may not be apparent using a regional approach (Moyle, 1945,
1956). Validation of a macrophyte IBI will provide managers with
a framework to address impacts on Minnesota lakes, with poten-
tial implications for the management of temperate lakes in other
midwestern states.

2. Methods

2.1. Data sources

Lakes were chosen that included the same lake classes (Schupp,
1992) used to develop the Minnesota fish-based lake IBI (Drake
and Pereira, 2002; Drake and Valley, 2005) to facilitate use of both
indices for lake monitoring. The Minnesota Department of Nat-
ural Resources (DNR) lake classification scheme (Schupp, 1992)
established 44 different lake classes based on combinations of nine
limnological and morphometric characteristics that explain 78.7%
of the variance among lakes: surface area, volume, area:shoreline
ratio, maximum depth, percent littoral surface area, secchi trans-
parency, total alkalinity, shoreline development index (Wetzel,
2001), and growing season length. Nineteen lake classes were rep-
resented in the dataset, with 63% of lakes from five classes. As such,
lakes represented in the dataset captured several statewide gradi-
ents of natural lake characteristics. Lakes were located in the North
Central Hardwood Forests (NCHF, n = 43), Northern Glaciated Plains
(NGP, n = 6), Northern Lakes and Forests (NLF, n = 38), and Western
Cornbelt Plains (WCP, n = 10) level III ecoregions (Omernik, 1987)
(Fig. 1).

The dataset for IBI development (n = 97) was compiled from
point intercept surveys conducted by the Minnesota DNR. The point
intercept method establishes a grid of sampling points in the littoral
zone and provides quantitative, spatially explicit data that offer
more areal coverage than traditional transect methods (Madsen,
1999; Cheruvelil and Soranno, 2008). A double-sided rake was used
at each sampling point to gather species presence/absence informa-
tion. Depth at each sample site was recorded using a survey rod. A
minimum of 0.7 points per littoral acre was considered adequate
for capturing 80% of total species richness (C. Tomcko and R.D. Val-
ley, unpublished data). Additionally, three lakes (Christmas, Jane,
and Square) were sampled at approximately 3.25 points per lit-
toral acre to examine the effect of sampling effort on IBI scores.
Mean sampling density for lakes in the development dataset was
0.94 points per littoral acre, corresponding to approximately 85% of
total species richness. Surveys were conducted from 2001 to 2008,

Fig. 1. Location of lakes used for IBI development. Level III ecoregion borders are
indicated (Omernik, 1987).
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Table 1
Species list, C values, tolerance classifications (C < 3 tolerant, C > 7 intolerant, C = 0 introduced), and submersed species used to develop TOLR, SENS, and SUBM metrics (edited
for brevity). C values are described in Milburn et al. (2007). T = tolerant, I = intolerant/sensitive, and S = submersed.

Scientific name Common name C value Tolerance Submersed

Acorus calamus Sweet Flag 0 T
Bidens beckii Water Marigold 8 I S
Butomus umbellatus Flowering Rush 0 T
Ceratophyllum demersum Coontail 2 T S
Cyperus esculentus Chufa Sedge 0 T
Elodea canadensis Canada Waterweed 4 S
Heteranthera dubia Water Stargrass 6 S
Hippuris vulgaris Marestail 9 I S
Iris pseudacorus Yellow Flag Iris 0 T
Isoetes spp.a Quillwort spp. – I S
Lythrum salicaria Purple Loosestrife 0 T
Myriophyllum sibiricum Northern Water Milfoil 7 S
Myriophyllum spicatum Eurasian Water Milfoil 0 T S
Najas flexilis Bushy Pondweed 5 S
Najas gracillima Northern Naiad 10 I S
Najas guadalupensis Southern Naiad 8 I S
Najas marina Spiny Naiad 4 S
Nelumbo lutea Yellow Lotus 8 I
Phalaris arundinacea Reed Canary Grass 0 T
Potamogeton amplifolius Large-leaf pondweed 7 S
Potamogeton crispus Curly-leaf Pondweed 0 T S
Potamogeton filiformis Thread-leaf pondweed 8 I S
Potamogeton foliosus Leafy Pondweed 6 S
Potamogeton friesii Fries Pondweed 8 I S
Potamogeton gramineus Variable-leaf pondweed 7 S
Potamogeton illinoensis Illinois Pondweed 6 S
Potamogeton natans Floating-leaf Pondweed 5 S
Potamogeton nodosus River Pondweed 6 S
Potamogeton pectinatus Sago Pondweed 3 S
Potamogeton praelongus White-stem Pondweed 7 S
Potamogeton pusillus Small Pondweed 7 S
Potamogeton richardsonii Claspingleaf Pondweed 5 S
Potamogeton robbinsii Fern Pondweed 8 I S
Potamogeton zosteriformis Flat-stem Pondweed 6 S
Ranunculus spp.b Buttercup spp. – S
Rumex maritimus Golden Dock 1 T
Sagittaria cristata Arrowhead 8 I
Typha angustifolia Narrow-leaved Cattail 0 T
Typha latifolia Broad-leaved Cattail 2 T
Utricularia cornuta Horned Bladderwort 10 I S
Utricularia gibba Humped Bladderwort 9 I S
Utricularia intermedia Flat-leaf Bladderwort 8 I S
Utricularia minor Bladderwort 8 I S
Utricularia purpurea Purple-flower Bladderwort 10 I S
Utricularia resupinata Lavender-flower Bladderwort 10 I S
Vallisneria americana Wild Celery 6 S
Zizania spp. Wild Rice 8 I

a All C values greater than 7.
b All C values less than 8 and greater than 2.

with the earliest seasonal survey on 2 June 2003 and the latest on
24 September 2002. Surveys were conducted in all months of the
growing season with 32% in June, 29% in July, 33% in August, and 6%
in September. Two lakes devoid of vegetation were removed from
the dataset.

2.2. Adaptation and modification of the AMCI

Three metrics that assess the relative frequency of different
species required the identification of sensitive, tolerant, and sub-
mersed species (SENS, TOLR, and SUBM metrics, respectively) for
regional adaptation of the AMCI to Minnesota lakes (Table 1). A cat-
alog of Minnesota aquatic plants enabled identification of species
used for these three metrics (Milburn et al., 2007). Coefficients
of conservatism (C values) were used as indications of species
tolerance to human-induced stress. The C value is the estimated
probability that a plant is likely to occur in a lake believed to be rel-
atively unaltered from pre-settlement conditions (Nichols, 1999).
Sensitive species were defined as having C values greater than 7,

whereas tolerant species were defined as having C values less than
3. Introduced species were also considered tolerant (C value of 0).
Submersed species were generally defined as rooted in sediment
with the majority of foliage beneath the water surface (Lacoul and
Freedman, 2006). Relative frequency was calculated as the pro-
portion of individual species frequencies for a given metric (e.g.,
species frequencies for sensitive macrophytes) to the summation
of all species frequencies. Individual species frequencies were cal-
culated as the number of points with a species divided by all points
containing plants.

Several AMCI metrics were structurally modified to produce a
robust index (Table 2). Maximum depth of plant growth (MAXD)
was defined by Nichols et al. (2000) as the deepest sampling point
with vegetation. However, in Minnesota, vagrant sprigs of vegeta-
tion can occur well beyond the depth of most vegetation growth and
may not be detected in repeated surveys (M. Beck, personal obser-
vation). Accordingly, the metric was modified to equal depth where
95% of plant growth occurred within the basin. The percentage of
littoral zone vegetated metric (LITT) used the modified maximum
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Table 2
Metric abbreviations, descriptions, means (±95% confidence intervals), and ranges (n = 97).

Metric Description Mean Range

MAXD Maximum depth of plant growth, 95% occurrence (m) 3.2 (2.9–3.5) 0.5–7.9
LITT Percentage of littoral vegetated 0.80 (0.75–0.85) 0–1
OVER Number of species with relative frequency over 10% 5.7 (4.9–6.4) 0–17
SUBMa Relative frequency of submersed species 0.35 (0.32–0.38) 0–0.59
SENS Relative frequency of sensitive species 0.05 (0.03–0.07) 0–0.59
TOLR Relative frequency of tolerant species 0.23 (0.18–0.27) 0–0.94
TAXA Number of native taxa 16.1 (14.2–18.1) 1–36

a Values represent transformed metric (� = 6.04).

depth of plant growth as the limit of littoral zone growth. The rel-
ative frequency of exotic species metric was modified to include
tolerant species to represent the relative contribution of major
plant species (e.g., Ceratophyllum demersum) that may indicate con-
ditions characterized by homogeneous species composition. The
Simpson’s diversity index metric was replaced with a metric that
quantified the number of species with relative frequency over 10%
(OVER). Although Simpson’s diversity offers a useful measure of
community composition, inclusion of an index within a larger
index may complicate the interpretation and communication of
information obtained from IBI scores. The modified metric pro-
vides an easily interpretable surrogate measure of diversity that
implicitly incorporates richness and evenness. Finally, number of
native taxa (TAXA) replaced the original species richness metric
that included introduced species. Introduced species were iden-
tified from Milburn et al. (2007) and removed from total species
richness for each lake.

2.3. Human-induced stress variables and lake characteristics

Landscape-level measures of human-induced stress (anthro-
pogenic variables) were quantified for each lake using ArcGIS
version 9.2 (ESRI, 2006) (Table 3). Carlson trophic state index
(TSI) (Carlson, 1977), percent cover of land use type in the water-
shed, and population density of the county in which a lake was
located (people/km2) were anthropogenic variables because of doc-
umented impacts on water quality (Roth et al., 1996; Egertson
et al., 2004; Danz et al., 2007). TSI provides a measure of lake
productivity by incorporating measures of water clarity (Secchi
disk measurements), total phosphorus (TP), and chlorophyll a (chl
a). TSI values were calculated using equations in Carlson (1977)
and lake water quality data obtained from the Minnesota Pollu-
tion Control Agency (PCA) (MNPCA, 2009). Percent cover for the
three land use variables were quantified for the immediate catch-
ment and all catchments upstream contributing surficial water to
each lake (defined as the watershed) (MNDNR, 2009). Land use
was obtained from 2001 National Land Cover Data (USGS, 2009)

and quantified for 81 lakes. Land use data could not be quanti-
fied without watershed delineations, which were unavailable for 16
lakes. County population densities were obtained from statewide
census data (MNDOA, 2000). Landscape-level anthropogenic vari-
ables represent stressors that primarily affect lake productivity. As
such, linear regression analyses indicated agricultural and urban
land use were positively related to TSI (R2 = 0.28, F = 31.6, df = 1,
79, p < 0.005; R2 = 0.11, F = 10.8, df = 1, 79, p < 0.005, respectively),
whereas forested land use was negatively related to TSI (R2 = 0.25,
F = 28.2, df = 1, 79, p < 0.005). Similarly, population density was
highly correlated with urban land use in the watershed (R2 = 0.28,
F = 32.2, df = 1, 79, p < 0.005).

Natural lake characteristics (natural variables) that affect bio-
logical community composition (Schupp, 1992) were quantified in
a GIS (ESRI, 2006) using data compiled from state agency databases
(MNDNR, 2009; MNPCA, 2009). Variables included surface area
(hectares), maximum depth (m), total alkalinity (mg/L CaCO3), per-
cent littoral surface area, shoreline development index (SDI), and
mean July temperature (Table 3). Data were available for most
lakes; however, alkalinity was available for only 63 lakes. Percent
littoral was defined as the proportion of lake surface area where
depth was less than 4.5 m. SDI was defined as the ratio of the length
of shoreline to the circumference of a circle with an area equal to
that of the lake (Wetzel, 2001) and is an indication of shoreline
complexity. Mean July temperature was used to examine regional
climate effects on macrophyte communities. Temperatures were
obtained from GIS shapefiles describing statewide climate data
from 1961 to 1990 (MNDNR, 2009). Spatial interpolation via kriging
(Burrough and McDonnell, 1998; ESRI, 2006) was used to predict
mean temperatures for each lake in the dataset.

2.4. Examination of metrics

All analyses were conducted with R statistical software version
2.9.0 (˛ = 0.05) (RDCT, 2009). Population density, agricultural, and
urban land use exhibited substantial deviations from normality and
were transformed prior to analysis using the Box–Cox method in

Table 3
Anthropogenic and natural characteristics describing study lakes (n = 97). Variables are not transformed. Anthropogenic variables represent watershed characteristics or
within-lake characteristics affected by watershed activities. Natural variables were identified from Schupp (1992) lake classifications. 95% confidence intervals are given in
parentheses. TSI = trophic state index (Carlson, 1977), SDI = shoreline development index (Wetzel, 2001).

Variable type Variable N Mean Range

Anthropogenic TSI 97 55.7 (53.1–58.3) 31.9–93.1
Population density (people/km2) 97 48.6 (23.3–73.9) 3.0–710.7
Agricultural land use (%) 81 17.5 (12.4–22.5) 0–87.6
Urban land use (%) 81 20.7 (13.9–27.5) 0–99.0
Forested land use (%) 81 46.3 (37.4–55.1) 0–99.8

Natural Alkalinity (mg/L CaCO3) 63 130.6 (119.4–141.8) 15.0–310.0
Area (acres) 97 537.2 (416.9–657.5) 45.3–4094.1
Littoral surface area (%) 91 66.1 (60.4–71.7) 14.4–100.0
Maximum depth (m) 97 10.6 (8.7–12.6) 1.2–49.7
SDI 96 1.82 (1.69–1.94) 1.03–3.83
Temperature (◦C) 97 21.1 (20.9–21.3) 18.3–22.8
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the following equation:

y� = y�−1

�(GM(y))�−1

where y� is the transformed variable, GM(y) is the geometric mean
of the non-transformed variable, and � is the maximum likeli-
hood estimate of the transformation parameter (� = −0.48, −4.79,
and −5.27 for population density, agricultural, and urban land
use, respectively) (Cook and Weisberg, 1999). Additionally, SUBM
was transformed (� = 6.04) as initial analyses indicated metric
behavior could be improved with transformation. Raw (unscaled)
metrics were examined for redundancy using Pearson’s correla-
tion coefficients to ensure metrics provided unique information.
Two metrics were considered highly correlated if the correlation
coefficient exceeded ±0.8 (Drake and Pereira, 2002). Pearson’s
correlation coefficients (˛ = 0.05) were used to examine metric
responses to anthropogenic and natural variables. Metrics were
considered robust indicators of environmental condition based on
predictable relationships with anthropogenic variables indepen-
dent of a response that may co-vary with natural variables (Allan,
2004).

All non-redundant metrics correlated with at least one anthro-
pogenic variable were retained for standardization to a common
scale. Continuous variable metric scaling (Minns et al., 1994) was
used instead of the discrete method proposed for AMCI metrics.
Continuous metric scaling allows for a greater range of scores,
avoids sequence gaps, and minimizes bias from Type I error (Fore
et al., 1994). Raw metric scores were assigned a minimum value of
zero and a maximum value of 10, using the following equation and
conditions (Minns et al., 1994):

Ms = A + B × Mr

If Mr < Mmin, then Ms = 0,
if Mr > Mmax, then Ms = 10.

The standardized metric (Ms) was calculated from the raw metric
(Mr) using a linear function with intercept (A) and slope (B). Mmin
and Mmax define thresholds for values of Ms. For metrics positively
related to biotic integrity, Mmin was equal to the minimum value
of Mr and Mmax was equal to the 95th percentile value of Mr. For
metrics negatively related to biotic integrity, Mmin was equal to the
maximum value of Mr and Mmax was equal to the 5th percentile
value of Mr.

2.5. IBI evaluation

Total IBI scores were obtained from the summation of standard-
ized metric scores for each lake and then converted to a 0–100
scale by multiplying the sum by 10/Nm, where Nm is the number
of metrics (Minns et al., 1994). Total IBI scores were compared
to anthropogenic and natural variables (Section 2.3) using linear
regression models (˛ = 0.05) (RDCT, 2009).

The relative contribution of environmental and anthropogenic
variables to IBI scores was examined using a variance partitioning
analysis that examined coefficients of determination from different
regression models (Legendre and Legendre, 1998; Irz et al., 2008).
Three multiple regression models (MLR) were developed to explain
IBI scores using anthropogenic variables, natural variables, and
combined variables (˛ = 0.05) (RDCT, 2009). Principal component
analyses were conducted prior to the development of MLR mod-
els to reduce data dimensionality and remove collinearity among
explanatory variables. Principal component axes were extracted
from correlation matrices (McCune and Grace, 2002; RDCT, 2009)
for anthropogenic (Ant1 and Ant2), natural (Nat1, Nat2, and Nat3),
and combined variables (All1, All2, All3, and All4). The component
axes included in each regression model explained at least 75% of the

cumulative proportion of variance among the separate explanatory
variables. MLR models were developed from each group of principal
component axes and then evaluated using Akaike’s information cri-
terion (AIC) likelihood estimates in a backward stepwise algorithm
for parameter selection (Akaike, 1973). The summation of R2 values
for the separate natural and anthropogenic MLR models minus the
R2 value from the combined model provided an indication of rel-
ative importance of each variable type, as well as which model(s)
better described the relationship of variables to index scores. A neg-
ative value implies that the combined MLR model better explained
the variation in scores than the separate MLR models (Legendre and
Legendre, 1998).

A comparison of the IBI between ecoregions examined geo-
graphic differences in index scores. Mean IBI scores for each
ecoregion were compared using standard methods for analysis of
variance (ANOVA), followed by a post hoc Tukey multiple com-
parison test to identify individual ecoregion differences (˛ = 0.05)
(RDCT, 2009). Lakes in the NGP and WCP ecoregions were combined
for analysis due to small sample sizes. Both ecoregions had similar
land use practices.

2.6. IBI sensitivity and effects of sampling effort

A sensitivity analysis to examine the relative contribution of
each metric to overall IBI scores was conducted for the entire
dataset and for each ecoregion (Minns et al., 1994). Sensitivity of
the IBI to each metric was calculated as the variance of the differ-
ences between the original IBI scores and recalculated IBI scores
after metric removal. A higher variance suggested that the IBI was
sensitive to a particular metric. The ratio of the variance of the dif-
ferences within each ecoregion to the total variance indicated IBI
sensitivity on an ecoregional basis. Metrics with ratios greater than
the median for all metrics were considered potentially informative.

Christmas, Jane, and Square lakes located in the NCHF ecoregion
were sampled at 3.14, 3.28, and 3.28 points per littoral acre, respec-
tively, to evaluate the effects of sampling effort on IBI score. These
lakes were chosen for analysis because they contain diverse plant
communities, thereby increasing statistical power of the analysis.
Christmas and Jane lakes were sampled during the summer of 2008,
and Square Lake was sampled during the summer of 2006. Monte
Carlo simulations were used to calculate IBI scores at 10% incre-
ments of sampling effort from 90% to 10% effort (RDCT, 2009). Using
a stratified-random approach to prevent the elimination of large
areas of a sampling grid, each lake was separated into four regions
of approximate equal area for selection of sample points. For each
level of sampling effort, survey points were randomly selected
using 500 iterations. A mean IBI score and 95% confidence interval
was calculated for each level of sampling effort. A one-way t-test
of means (˛ = 0.05) was used to determine significant differences
of IBI scores at 10% and 90% sampling effort for each lake (RDCT,
2009). Lastly, an examination of the relationship between species
richness and sampling effort using rarefaction curves (Gotelli and
Colwell, 2001) evaluated IBI response to changes in sampling effort.

3. Results

3.1. Metric response

No correlation coefficients between metrics exceeded ±0.8, thus
each metric contributed unique information to the IBI. However,
OVER and TAXA exhibited the highest positive correlation (� = 0.62,
df = 95, p < 0.005). TOLR and TAXA exhibited the highest negative
correlation (� = −0.28, df = 95, p < 0.05).

All metrics were significantly correlated with at least one
anthropogenic variable (Table 4a). Metrics positively related to
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Table 4a
Pearson’s correlation coefficients between the seven IBI metrics and anthropogenic
variables. ˛ = 0.05; ns = not significant; TSI = trophic state index (Carlson, 1977).

Metric TSI People/km2 Ag Urban Forest

MAXD −0.69** −0.08ns −0.40** −0.08ns 0.23*

LITT −0.58** −0.12ns −0.47** −0.17ns 0.37**

OVER −0.62** −0.18ns −0.53** −0.36** 0.55**

SUBM 0.00ns 0.18ns 0.21ns 0.23* −0.28*

SENS −0.23* −0.19ns −0.42** −0.29* 0.40**

TOLR 0.18ns 0.45** 0.26* 0.32** −0.43**

TAXA −0.71** −0.34** −0.58** −0.43** 0.61**

* p < 0.05.
** p < 0.005.

Table 4b
Pearson’s correlation coefficients between the seven IBI metrics and natural vari-
ables. ˛ = 0.05; ns = not significant; SDI = shoreline development index (Wetzel,
2001).

Metric Area Maximum
depth

Alkalinity % Littoral SDI Temperature

MAXD 0.11ns 0.50** −0.16ns −0.32** 0.13ns −0.28*

LITT 0.02ns 0.27* −0.22ns −0.02ns 0.02ns −0.29**

OVER −0.08ns 0.35** −0.15ns −0.17ns 0.11ns −0.48**

SUBM −0.02ns 0.04ns −0.04ns −0.01ns −0.05ns 0.25*

SENS 0.04ns 0.03ns −0.45** 0.16ns 0.04ns −0.36**

TOLR −0.17ns −0.06ns −0.03ns −0.02ns 0.00ns 0.38**

TAXA 0.32** 0.53** −0.38** −0.33** 0.34** −0.65**

* p < 0.05.
** p < 0.005.

biotic integrity (MAXD, LITT, OVER, SENS, and TAXA) were neg-
atively related to anthropogenic variables indicating increased
human-induced stress. Likewise, metrics negatively related to
biotic integrity (SUBM and TOLR) were positively related to anthro-
pogenic variables indicating increased disturbance. Correlations of
metrics with forested land use in the watershed were inversely
related to metric correlations with other disturbance variables.
The number of significant relationships between IBI metrics and
anthropogenic variables also varied. SUBM exhibited only two sig-
nificant correlations, whereas TAXA was significantly related with
every anthropogenic variable.

An analysis of metric response to natural variables suggested
co-variation with anthropogenic variables (Table 4b). However,
correlations of metrics with natural variables were generally
weaker and less numerous than correlations with anthropogenic
variables, suggesting variation in response was more influenced
by the latter. Five metrics were negatively correlated with tem-
perature (p < 0.05), but SUBM and TOLR were positively correlated
(p < 0.05). Four metrics were positively correlated with maximum
lake depth (p < 0.05). Few metrics were correlated with lake sur-

Table 5
Coefficients and raw metric values used for scaling. A = intercept, B = slope, Mr = raw
metric, and Ms = standardized metric.

Metrics Metric coefficients Values of raw
metrics (Mr) where

A B Ms = 0 Ms = 10

MAXD −1.06 0.61 1.75 18.20
LITT 0 10.00 0 1.00
OVER 0 0.82 0 12.20
SUBMa 11.50 −19.39 1.00 0.50
SENS 0 42.95 0 0.23
TOLR 10.00 −10.61 0.94 0
TAXA −0.33 0.33 1.00 31.60

a Coefficients represent values for transformed metric (� = 6.04).

face area, alkalinity, percent littoral, and SDI. TAXA was the only
metric that was significantly correlated with every natural variable
(p < 0.005).

3.2. IBI response

Each metric was retained and standardized for calculation of
IBI scores (Table 5). Mean IBI score for all lakes was 52.6 (range
18.7–80.1). Linear regression indicated that IBI scores were asso-
ciated with several gradients of anthropogenic stress (Fig. 2). High
IBI scores indicated lakes with low internal productivity and less
anthropogenic stress originating in the watershed, whereas low IBI
scores indicated lakes with high internal productivity and more
anthropogenic stress originating in the watershed. IBI scores were
negatively related to TSI (R2 = 0.57, F = 130.3, df = 1, 95, p < 0.005),
population density (R2 = 0.14, F = 16.6, df = 1, 95, p < 0.005) and agri-
cultural (R2 = 0.51, F = 83.0, df = 1, 79, p < 0.005) and urban land use
(R2 = 0.22, F = 23.0, df = 1, 79, p < 0.005). IBI scores were positively
related to forested land use (R2 = 0.51, F = 84.7, df = 1, 79, p < 0.005).
Results of linear regression comparisons of IBI scores with natural
lake characteristics were also significant (Fig. 2). IBI scores were
positively related to maximum lake depth (R2 = 0.19, F = 22.8, df = 1,
95, p < 0.005) and SDI (R2 = 0.03, F = 4.0, df = 1, 94, p < 0.05). IBI scores
were negatively related to alkalinity (R2 = 0.08, F = 6.0, df = 1, 61,
p < 0.05) and temperature (R2 = 0.46, F = 82.9, df = 1, 95, p < 0.005).
IBI scores were not related to surface or littoral area.

Principal component analysis indicated the relative influence
of individual variables to cumulative variance among categories of
variables used to develop MLR models (Table 6). Ant1 and Ant2
explained 79% of the total variance among anthropogenic vari-
ables. Nat1, Nat2, and Nat3 explained 75% of the total variance
among natural variables. All1, All2, All3, and All4 explained 78% of
the variance among all explanatory variables. More importantly,
component axes illustrated many collinear relationships among

Table 6
Principal component axes and loadings describing anthropogenic, natural, and combined variables (all) used to develop multiple regression models for IBI scores. Cumulative
variance (%) explained by each category of component axes is shown below the axis title. TSI = Trophic state index (Carlson, 1977), SDI = shoreline development index (Wetzel,
2001).

Ant1 Ant2 Nat1 Nat2 Nat3 All1 All2 All3 All4
Variables 60 79 33 55 75 38 54 67 78

TSI −0.39 −0.47 – – – −0.34 −0.12 −0.33 0.13
People/km2 −0.39 0.52 – – – −0.34 0.22 0.25 0.34
Ag −0.43 −0.54 – – – −0.33 −0.34 −0.12 −0.21
Urban −0.45 0.46 – – – −0.35 0.00 0.25 0.26
Forest 0.55 0.00 – – – 0.45 0.13 −0.14 0.00

Area – – −0.51 0.23 0.44 0.11 −0.60 0.00 0.33
Maximum depth – – −0.51 0.21 −0.35 0.24 −0.25 0.57 0.16
Alkalinity – – 0.14 0.66 0.37 −0.16 −0.42 0.00 −0.55
% Littoral – – 0.32 −0.44 0.53 −0.14 0.26 −0.53 0.23
SDI – – −0.47 −0.21 0.50 0.19 −0.35 −0.29 0.52
Temperature – – 0.37 0.48 0.15 −0.43 0.00 0.19 0.00
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Fig. 2. IBI scores in relation to selected anthropogenic (left column) and natural variables (right column). Anthropogenic variables are trophic state index (TSI; Carlson,
1977), county population density (people/km2), and % forest land use. Natural variables are maximum lake depth (m), shoreline development index (SDI; Wetzel, 2001), and
alkalinity (mg/L, CaCO3). Least-squares regression lines are shown. Variables and coefficients of determination are shown in the top right corner of each graph. Variables are
not transformed, except population density (p > 0.05 for non-transformed correlation, � = −0.48). IBI scores decreased (p < 0.005) with TSI, population density, and alkalinity,
whereas IBI scores increased (p < 0.005) with % forest land use, maximum depth, and SDI.

variables (Table 6) not accounted for in individual linear regres-
sion models. A comparison of R2 values obtained from MLR models
explained the relative contribution of variable categories to IBI
response (Table 7) (Irz et al., 2008). The anthropogenic model indi-
cated IBI scores were significantly correlated with both Ant1 and
Ant2, which explained 72% of the variance in IBI scores (p < 0.005).
The natural model indicated IBI scores were significantly correlated
with Nat1, Nat2, and Nat3, which explained 33% of the variance in
IBI scores. The combined model indicated IBI scores were signif-
icantly correlated with only All1 and All2, which explained 67%
of the variance in IBI scores. The summation of R2 values from
the anthropogenic and natural models minus the R2 value from
the combined model was 38%, indicating the separate MLR models
individually explained the variation in IBI scores better than the
combined model (Legendre and Legendre, 1998). Thus, IBI scores
exhibited a unique response to human-induced stress indepen-
dent of response to lake characteristics, although natural variables
influenced the scores.

The NLF ecoregion had the highest mean IBI score (66.9; range
46.4–80.1), the NCHF ecoregion had a moderate mean IBI score
(46.0; range 22.5–77.8), and the NGP/WCP ecoregion had the low-
est mean IBI score (36.3; range 18.7–49.2). Mean IBI scores for each
ecoregion (NCHF, NGP/WCP, NLF) were significantly different for at
least two ecoregions (F = 48.3, df = 2, 94, p < 0.005). Tukey multiple

Table 7
Summary statistics for three multiple regression models describing IBI scores. Aster-
isks indicate significance of intercept and slope for variables within the model,
whereas p-value indicates significance of the entire model. ˛ = 0.05; AIC = Akaike’s
information criterion (Akaike, 1973).

Model

Anthropogenic Natural Combineda

Intercept 54.49** 53.01** 54.01**

Ant1 7.68** – –
Ant2 5.08** – –
Nat1 – −5.19** –
Nat2 – −4.78** –
Nat3 – −3.94* –
All1 – – 6.52**

All2 – – 2.87**

R2 0.72 0.33 0.67
F-Statistic 107.7 11.0 40.2
df 2,78 3,58 3,54
p-value <0.005 <0.005 <0.005
AIC 353.0 329.9 267.9

a Slopes for All3 and All4 were not significant.
* p < 0.05.

** p < 0.005.
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Fig. 3. Box-and-whisker plots of IBI scores for three ecoregions. Each box is bisected
by the median and represents the interquartile range (IQR) for IBI scores (25–75th
percentile). Outliers are present beyond whiskers (1.5 × IQR). NCHF = North Central
Hardwood Forests (n = 43), NGP/WCP = Northern Glaciated Plains/Western Cornbelt
Plains (n = 16), and NLF = Northern Lakes and Forests (n = 38).

comparisons indicated that IBI scores were significantly different
between each ecoregion (p < 0.05 for all comparisons) (Fig. 3).

3.3. IBI sensitivity and effects of sampling effort

Metric sensitivity analyses suggested the relative contribution
of each metric to IBI scores varied for all lakes and for each ecoregion
(Table 8). Mean variance of IBI score differences for all lakes was
14.02. The variance of differences in IBI scores when SUBM was
removed was the greatest (23.23), whereas the lowest variance was
observed when OVER was removed (7.98). The median variance
ratio for the NCHF ecoregion was 0.87, indicating LITT, SUBM, and
TOLR were potentially informative. The median variance ratio for
the NGP/WCP ecoregion was 0.59, indicating LITT, SUBM, and TOLR
were also potentially informative. The median variance ratio for the
NLF ecoregion was 0.84, indicating MAXD, OVER, and SENS were
potentially informative.

Sampling effort had a significant effect on IBI scores (Fig. 4). IBI
scores for Christmas, Jane, and Square lakes at 90% effort were sig-
nificantly greater than scores at 10% effort (p < 0.005 for all lakes).
For each increase in effort, the greatest increase in IBI scores was
between 10% and 20% effort (2.0% mean increase in score for all
lakes). Surprisingly, maximum IBI scores were not found at 100%

Table 8
Sensitivity analysis of IBI response to metric removal. Ratios of variances for
each ecoregion to total variance for all lakes are also shown. Metrics with vari-
ance ratios in bold italic are greater than the median ratio for all metrics in an
ecoregion and are potentially informative. NCHF = North Central Hardwood Forests,
NGP/WCP = Northern Glaciated Plains/Western Cornbelt Plains, and NLF = Northern
Lakes and Forests.

Metric Variance ratios Total variance

NCHF NGP/WCP NLF

MAXD 0.73 0.48 1.20 16.88
LITT 0.99 2.58 0.31 12.17
OVER 0.87 0.27 1.36 7.98
SUBM 0.96 1.82 0.47 23.23
SENS 0.76 0.11 1.67 14.77
TOLR 1.17 0.59 0.31 13.87
TAXA 0.79 0.59 0.84 9.26

Fig. 4. IBI scores at varying levels of sampling effort for Christmas, Jane, and
Square Lakes. Mean scores and 95% confidence intervals for each lake are shown
at 10% increments of sampling effort from 10% to 90%. IBI scores at 100% sam-
pling effort are indicated by dashed horizontal lines (Christmas = 69.20; Jane = 77.70;
Square = 66.43).

sampling effort. Jane and Square lakes indicated maximum scores
at 90% effort, whereas Christmas Lake had a maximum score at
60% effort. Individual metric response to changes in sampling effort
indicated that MAXD, SUBM, SENS, and TAXA generally increased
continually with increased sampling effort, whereas OVER, LITT,
and TOLR did not. Maximum values for the OVER metric were
observed at 10% effort for Christmas, Jane, and Square lakes. Max-
imum values for LITT were observed at 10% effort for Christmas
and Square lakes, and 40% effort for Jane Lake. Maximum values
for TOLR were observed at 80% effort for Christmas Lake, 50% effort
for Jane Lake, and 40% effort for Square Lake. Lastly, estimates of
species richness with increased sampling effort generally exhib-
ited an asymptotic relationship with richness at 100% effort (Fig. 5).
Christmas, Jane, and Square lakes exhibited maximum increase in
species richness estimates from 10% to 20% effort (17.3% mean
increase in estimates for all lakes), with estimates exhibiting dimin-
ished returns with additional effort.

Fig. 5. Estimates of species richness at varying levels of sampling effort for Jane,
Christmas, and Square Lakes. Mean richness estimates and 95% confidence inter-
vals for each lake are shown at 10% intervals of sampling effort from 10% to 90%.
Species richness at 100% sampling effort is indicated by dashed horizontal lines
(Christmas = 29; Jane = 31; Square = 24).
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4. Discussion

4.1. Evaluation of the macrophyte IBI

An IBI provides a biologically based multimetric index that
integrates ecological, functional, and structural aspects of aquatic
systems using metrics that reflect the quality of individual system
components (Karr, 1981, 1991; Fausch et al., 1984). Within this con-
text, the Minnesota macrophyte IBI integrates several components
of lake aquatic plant communities into seven metrics adapted from
the AMCI (Nichols et al., 2000) that respond predictably across a
gradient of human-induced stress. Karr et al. (1986) presented sev-
eral criteria to qualitatively evaluate the utility of IBIs for stream
fish communities. These criteria have subsequently been used for
development and validation of lake IBIs (Minns et al., 1994). The
following provides a discussion of six index development and val-
idation criteria applied to the Minnesota macrophyte IBI, with
suggestions for further refinement and validation.

i) The index is biological. All seven metrics of the IBI are related to a
structure or function of the macrophyte community. Therefore,
the index addresses the biological integrity requirement of the
CWA.

ii) Interpretable across many trophic levels or provides a connection
to other organisms not directly involved in monitoring. Many bio-
logical indices utilize trophic-specialist metrics that emphasize
response of specific biota to human-induced stress gradients.
For example, macroinvertebrate communities exhibit a decline
in abundance of trophic-specialist species (e.g., shredders, graz-
ers, etc.) with increasing disturbance (Kerans and Karr, 1994).
A disadvantage of macrophyte bioassessment is that aquatic
plants represent primary production and are not directly inter-
pretable across trophic levels. However, the macrophyte IBI
could provide a connection to fish communities that are not an
explicit component of the index. For example, the Minnesota
fish-based IBI exhibits significant correlations with floristic
quality of lake macrophyte communities (Drake and Valley,
2005). Furthermore, a preliminary comparison between the
macrophyte IBI we developed and the Minnesota fish IBI illus-
trated that scores are highly correlated (Beck, 2009).

iii) Sensitive to ecosystem status. Significant correlations with
landscape-level surrogates of environmental condition indi-
cated that IBI scores and individual metrics are sensitive to
watershed characteristics. Comparisons of indicator response
with measures of human-induced stress are an important
aspect of developing biological assessment methods that facili-
tate the identification of stressors affecting aquatic biota (Yoder
and Rankin, 1998; Novotny et al., 2005). However, watershed
characteristics and biological responses represent endpoints
within a causal network hierarchy of stressor–impairment rela-
tionships (Novotny et al., 2005). The propagation of stress
through multiple pathways and the specific response of biota
is complicated and not fully understood because (1) response
may co-vary with natural environmental characteristics, (2)
response may not be linear, (3) multiple scale-dependent mech-
anisms may exist, and (4) a temporal disjunct between current
and historical conditions may exist (Allan, 2004). As a result,
it is inappropriate to identify distal stressors, such as urban
or agricultural land use, as direct causation of low macro-
phyte IBI scores. Land use variables influence more proximal
stressors, such as turbidity and excess nutrients, which have a
direct impact on vegetation growth (Egertson et al., 2004). As
such, the identification of stressors adjacent to biological end-
points would be necessary for problem remediation, as in the
implementation of total maximum daily load (TMDL) programs
mandated by the CWA.

The sensitivity of IBI scores to each metric varied among
ecoregions. Additionally, a comparison of mean IBI scores
among ecoregions suggested that study lakes were affected
differently by disturbance gradients dependent on location,
although it is unclear whether a complete disturbance gradi-
ent is represented within each region. Regardless, considering
the applicability of specific metrics may be necessary for
producing a regionally specific index that maximizes sensitiv-
ity to ecosystem characteristics. For example, the index was
affected differently by species sensitive to anthropogenic stress
depending on ecoregion. Sensitive taxa were found in only one
lake in the NGP/WCP ecoregion group. As a result, IBI scores
were not greatly affected by the SENS metric. Conversely, lakes
within the NLF ecoregion were highly sensitive to changes of
the SENS metric. NLF lakes also had consistently higher IBI
scores than the NCHF and NGP/WCP ecoregions. For NGP/WCP
lakes, the definition of sensitivity could be reconsidered (e.g.,
decrease C value definition of sensitive) or regionally specific
IBI thresholds for reference conditions could be developed.
Alternatively, it is unclear if sensitive species defined for the
IBI were historically present in the NGP/WCP ecoregion. Devel-
oping species-specific metrics for each ecoregion rather than
a statewide application of relative frequency metrics may fur-
ther improve discriminatory ability of the IBI.

iv) Responsive over its range to intended uses. Use of the IBI will be
dependent on requirements of resources managers, which will
likely necessitate an analysis of statewide applicability of the
index. A quantitative analysis of IBI behavior within the range
of the 44 lake types in Minnesota compared to those in the
IBI development dataset will provide empirical information of
index range of applicability. As such, the index should be evalu-
ated in relation to an independently collected dataset not used
for IBI development, which includes additional lake classes and
ecoregions in Minnesota (Hughes et al., 1998; Drake and Valley,
2005).
Researchers outside of Minnesota interested in investigating
use of the macrophyte IBI we have developed should con-
sider several issues necessary for applying an index beyond
the range of intended use. First, development of a multimet-
ric index generally requires an extensive dataset (e.g., our IBI
used 8 years of data). Biological datasets maintained by state
and federal agencies as part of long-term monitoring pro-
grams could be used to facilitate index development. Second,
characterization of biological communities for metric devel-
opment requires regional understanding of aquatic ecology.
For example, three metrics required the identification of sen-
sitive, tolerant, and submersed species for regional adaption of
the AMCI to Minnesota lakes (Sections 2.2 and 4.2). Although
similar species are found in both states, species characteristics
necessary for metric development may vary on a regional basis
(Borman et al., 1997; Nichols et al., 2000). Third, cumulative
index scores should be validated across disturbance gradi-
ents (Beck and Hatch, 2009). Although our analysis indicates
the Minnesota macrophyte IBI is responsive to land use char-
acteristics within a watershed, this may not apply in other
regions. The response of biotic communities to anthropogenic
impacts varies spatially and temporally (Simon, 2003). Iden-
tifying disturbance measures that regionally influence biotic
communities and verifying the index reflects these impacts
is necessary (Danz et al., 2007; Wang et al., 2008). Lastly,
researchers should be familiar with the federal process for
listing impaired waters (CWA sec. 305, 33USC1315). Although
state governments have authority to develop bioassessment
programs, the U.S. Environmental Protection Agency is given
authority for approval of waters listed as impaired by each
state. This process requires state agencies to develop numeric
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biological criteria that rely on index scores for the development
of TMDL protocols (Gerritsen et al., 1998).

v) Reproducible and precise within the constraints of the data col-
lection procedure. Sampling effort has commonly affected the
development of lake IBIs, specifically the level of effort that
maximizes the ratio of information and associated cost (Ferraro
and Cole, 1992; Jennings et al., 1999; Whittier, 1999; Jones,
2008). Results of Monte Carlo simulations indicated a general
increase in IBI scores with sampling effort. However, IBI scores
were not maximized at 100% effort, unlike the relationship of
species richness with sampling effort. An examination of the
rarefaction curves (Gotelli and Colwell, 2001) helped explain
IBI behavior as a function of effort. Several metrics exhibited
relationships with sampling effort that were similar to species
richness estimates (e.g., TAXA and SENS), whereas others did
not (e.g., OVER, LITT and TOLR). Thus, the relationship of IBI
scores with sampling effort is likely caused by complex inter-
actions between metrics and is not completely explained by
rarefaction curves (Gotelli and Colwell, 2001). Regardless, IBI
scores did not change more than 5% with sampling effort, indi-
cating that the index is relatively robust against changes in point
density of surveys. As such, the sampling density of lakes used
to develop the index likely provided a precise indication of IBI
scores as related to effort.
Sampling method may also have a profound effect on repro-
ducibility and precision of a biological index (Clarke et al.,
2006a,b). Point intercept methods used to develop the Min-
nesota macrophyte IBI differed substantially from qualitative
methods used to develop the PIBI (Rothrock et al., 2008). The
point intercept method has been described as a rapid sampling
design that provides quantitative information about the spa-
tial distribution of macrophyte communities (Madsen, 1999).
Advantages offered by the point intercept method or methods
used to develop the PIBI are unclear, although both provide
sufficient information for calculating respective index scores.
A comparison of each method could indicate the practicality
of each approach as applied to the IBI. Previous analyses have
suggested that point intercept methods can provide maximum
benefit per unit of cost (Mikulyuk et al., in press), although the
benefits have not been specifically examined in relation to the
IBI.

vi) Variability of the measure should be low. IBI variability can origi-
nate from sampling, anthropogenic, or natural variability (Karr
et al., 1986). Sampling variability was examined using sampling
point density as a proxy in Monte Carlo simulations. However,
the precision of IBI scores across different sampling dates is
unclear and should be examined. Regardless, the IBI is likely
minimally affected by sample date because the original AMCI
did not exhibit substantial seasonal variability of scores (Nichols
et al., 2000).
An empirical interpretation of the effects of anthropogenic and
natural variability on metrics and IBI scores was conducted
using correlation, individual linear regression models, and
methods adapted from Legendre and Legendre (1998) and
Irz et al. (2008). The ability of an index to accurately reflect
anthropogenic variation among sites is reliant upon the ability
of each constituent metric to account for natural variability
(Smogor and Angermeier, 2001). Individual linear regres-
sion results suggested that maximum lake depth, alkalinity,
SDI, and temperature have a significant effect on IBI scores.
However, variable loadings within each principal component
axis indicated natural variables were highly correlated and
confounded with anthropogenic disturbance variables, such
as TSI and agricultural land use. The use of principal compo-
nent axes to develop multiple regression models provided
an examination of collinearity among explanatory variables.

Although our analysis suggested a unique response of the IBI to
anthropogenic variables, methods for metric normalization to
account for natural variability (Fausch et al., 1984; Schulz et al.,
1999; Smogor and Angermeier, 1999; Norton et al., 2000) may
produce an IBI that maximizes signal-to-noise response ratios
and minimizes undesirable variability. Methods to account
for species-area relationships (MacArthur and Wilson, 1967)
are commonly used to normalize IBI metrics by stream order
(Fausch et al., 1984) or lake surface area (Schulz et al., 1999).
Normalizing metrics by natural variables that exhibited the
strongest correlations with overall index scores could improve
discriminatory ability of a Minnesota macrophyte IBI.
An alternative approach for reducing index variability
attributed to natural characteristics is to adopt regionally
specific reference conditions. As such, many studies have
focused on the development and application of an IBI for
a specific ecoregion (Miller et al., 1988; Gerritsen et al.,
1998; Beck and Hatch, 2009). Although useful for eventual
implementation of an index, developing a regionally specific
IBI was not an objective of this study. Our approach differed
in that metrics and IBI scores were examined on a statewide
basis, prior to investigating metric and index behavior in
individual ecoregions. The intent was to identify information
relevant for further index development and validation, rather
than propose a final IBI. For example, statewide regression
analyses considering all lakes in the dataset indicated a need
to control for lake depth to improve discriminatory ability of
the IBI. An analysis of index response limited to ecoregions
may have prevented the identification of this information as
many gradients, such as lake depth, are not as pronounced on
a regional basis (Moyle, 1945, 1956). Further work developing
the Minnesota macrophyte IBI will likely be facilitated by the
information obtained from statewide analyses.

4.2. Comparison with the AMCI

Several important similarities and differences between the Min-
nesota macrophyte IBI and the AMCI should be identified. Both IBIs
exhibit significant relationships with measures of human-induced
stress, which suggests they are robust indicators of lake quality for
respective regions in Wisconsin and Minnesota. The primary dif-
ference between the macrophyte IBI and the AMCI was the use of
an empirical approach to ensure each metric of the Minnesota IBI
was appropriate for index development and to examine properties
of the IBI (described in Sections 2.4, 2.5 and 2.6). Regional and scal-
ing modifications of the AMCI were also considered necessary for
IBI development in Minnesota. The remainder of this subsection
describes the rationale for the modifications of the AMCI used to
develop the Minnesota macrophyte IBI.

Nichols et al. (2000) suggested that potentially different sensi-
tive and exotic species should be identified for regional adaptation
of the AMCI outside of Wisconsin. As such, careful consideration
of species for relative frequency metrics provided an adequate
approach for regional adaptation to Minnesota. Additionally, the
definition of sensitivity may affect discriminatory ability of an
index, particularly for aquatic plants that integrate several envi-
ronmental characteristics (Lacoul and Freedman, 2006). C values
used in this study were determined by professional judgment and
considered species substrate preference, turbidity tolerance, root-
ing strength, primary reproductive means, and tolerance to water
drawdown (Nichols, 1999; Milburn et al., 2007). Despite a degree of
subjectivity, C values were assumed to provide accurate indications
of sensitivity. Comparisons between floristic quality assessments
using C values and those using empirically derived indications of
tolerance have found that comparable results are obtained with
both measures (Mushet et al., 2002).
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Nichols et al. (2000) further suggested that metric scaling for
calculating IBI scores is a subjective process open to interpretation.
Indeed, the relationship of a metric, and by extension IBI scores,
to human-induced stress is largely dependent on the assumptions
used to scale metrics (Smogor and Angermeier, 1999). For exam-
ple, the SUBM metric of the original AMCI was scaled such that
raw values between 75% and 85% were considered ideal for water
quality and received a 10, with scores decreasing above and below
these values. Although the subjective scaling used to develop the
AMCI produced a discriminatory index, scaling describing maxi-
mum or minimum thresholds was not used to develop Minnesota
IBI metrics.

The direction of metric scaling used for the Minnesota IBI was
determined a posteriori with correlation coefficients of metric val-
ues and anthropogenic variables, unlike methods used for the AMCI.
Correlation coefficients indicated that all metrics of the Minnesota
IBI responded similarly to human-induced stress as AMCI metrics,
with the exception of the SUBM metric which exhibited a positive
relationship with stress. The SUBM metric in our study was corre-
lated with the TOLR metric (� = 0.32, df = 95, p < 0.005), suggesting
that lakes with lower biotic integrity have increased submersed
species with greater tolerances for stress. Lakes with low IBI scores
often had low species richness and extremely dense beds of inva-
sive or highly tolerant submersed species such as Eurasian milfoil
(Myriophyllum spicatum), curly-leaf pondweed (Potamogeton cris-
pus), or coontail (Ceratophyllum demersum).

A comparison of the AMCI and Minnesota macrophyte IBI illus-
trates the use of alternative methods for index development.
Discussions of differing methods and appropriate uses are preva-
lent in the literature (e.g., Karr, 1991; Gerritsen et al., 1998).
Lack of consensus and little standardization of methods for index
development has resulted in a proliferation of IBIs and rapid
bioassessment protocols in the United States that are limited to
specific geographic regions or habitats (Plafkin et al., 1989; Beck
and Hatch, 2009). The development of regionally based indices has
likely been caused by two reasons. First, the influence of natu-
ral variability on index response can be minimized by controlling
factors that naturally affect composition of biotic communities,
e.g., developing indices for lakes with similar geophysical and
chemical characteristics (Drake and Pereira, 2002). This limitation
imposes constraints on the types of systems for which an index
may be applicable. Second, institutional and social constraints may
limit the use of indices that are ecologically valid across politi-
cal boundaries (Hughes et al., 2000; Moog and Chovanec, 2000).
These two issues suggest that indices applicable on a larger scale
should be developed as a more efficient means to fulfill require-
ments of the CWA. Whittier et al. (2007) illustrated an approach
for the development of large-scale IBIs to assess the condition
of streams and rivers in 12 western U.S. states. The approach
is useful if large consistently collected databases are available
(e.g., coordinated state and federal efforts), reference sites are dis-
tributed across a wide range of system types and sizes, an index
is calibrated for natural characteristics, and an efficient process
is used for selecting candidate metrics. Careful consideration of
these factors could enable the development of large-scale IBIs
and prevent inconsistencies that promote proliferation of region-
ally based indices. Through state and federal cooperation between
natural resource agencies, the Minnesota macrophyte IBI could
be combined with similar indices for use on a larger geographic
range.

4.3. Conclusions

The Minnesota macrophyte IBI provides an approach for
bioassessment that enables the identification of unique informa-
tion about environmental condition. The IBI also provides resource

managers with a framework for fulfilling the biological integrity
requirement of the CWA. Understanding the intricacies of accu-
rate bioassessment will improve the initial index developed in this
study and produce a tool for understanding land use and climate
change impacts on lacustrine environments in both Minnesota and
other regions of the midwest United States.
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