Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

ECOLOGICAL
INDICATORS

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Ecological Indicators 10 (2010) 968-979

Contents lists available at ScienceDirect

Ecological Indicators

journal homepage: www.elsevier.com/locate/ecolind

Development of a macrophyte-based index of biotic integrity for
Minnesota lakes

Marcus W. Beck?®*, Lorin K. Hatch?, Bruce VondracekP®, Ray D. Valley ¢

a Conservation Biology Graduate Program, 187 McNeal Hall, 1985 Buford Avenue, St. Paul, MN 55108, USA
b US Geological Survey, Minnesota Cooperative Fish and Wildlife Research Unit!, 1980 Folwell Ave, St. Paul, MN 55108, USA
¢ Minnesota Department of Natural Resources, Division of Fish and Wildlife, 1200 Warner Road, St. Paul, MN 55106, USA

ARTICLE INFO ABSTRACT

Article history:

Received 22 November 2009

Received in revised form 7 February 2010
Accepted 14 February 2010

Traditional approaches for managing aquatic resources have often failed to account for effects of anthro-
pogenic disturbances on biota that are not directly reflected by chemical and physical proxies of
environmental condition. The index of biotic integrity (IBI) is a potentially effective assessment method
to integrate ecological, functional, and structural aspects of aquatic systems. A macrophyte-based IBI was
developed for Minnesota lakes to assess the ability of aquatic plant communities to indicate environmen-

5 tal condition. The index was developed using quantitative point intercept vegetation surveys for 97 lakes
Aquatic macrophytes . . . L. ..
Biological assessment that represer}t a rf‘inge qf limnological and watfershed characteristics. We followed an appro.ach similar
IBI to that used in Wisconsin to develop the aquatic macrophyte community index (AMCI). Regional adap-
tation of the AMCI required the identification of species representative of macrophyte communities in
Minnesota. Metrics and scaling methods were also substantially modified to produce a more empirically
robust index. Regression analyses indicated that IBI scores reflected statewide differences in lake trophic
state (R?=0.57, F=130.3, df=1, 95, p<0.005), agricultural (R?=0.51, F=83.0, df=1, 79, p<0.005), urban
(R?=0.22,F=23.0,df=1,79, p<0.005), and forested land uses (R*=0.51, F=84.7,df=1, 79, p<0.005), and
county population density (R?>=0.14, F=16.6, df=1, 95, p<0.005). Variance partitioning analyses using
multiple regression models indicated a unique response of the IBI to human-induced stress separate from
a response to natural lake characteristics. The IBI was minimally affected by differences in sample point
density as indicated by Monte Carlo analyses of reduced sampling effort. Our analysis indicates that a
macrophyte IBI calibrated for Minnesota lakes could be useful for identifying differences in environmental
condition attributed to human-induced stress gradients.
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1. Introduction ods. Initially proposed in the 1980s for stream bioassessment, an
index of biotic integrity (IBI) for fish was designed to integrate

The development of reliable methods to restore and main- ecological, functional, and structural aspects of aquatic systems

tain the chemical, physical, and biological integrity of surface
waters has been a primary objective of resource managers since
the passage of the 1972 Clean Water Act (CWA) by the United
States Congress (33USC1251). The inability of traditional chem-
ical and effluent-based standards to fulfill requirements of the
CWA established a need for environmental agencies to develop
timely and effective biological assessment (bioassessment) meth-
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and is considered sufficient for fulfilling the biological integrity
requirement of the CWA (Karr, 1981, 1991; Fausch et al., 1984).
Successful applications in streams and flexibility of the original
framework have prompted researchers to examine applicability
of the IBI for ecological assessment of lakes (see Beck and Hatch,
20009).

Different biological communities have been proposed for the
development of lake IBIs including fish (Minns et al., 1994;
Jennings et al.,, 1999; McDonough and Hickman, 1999; Thoma,
1999; Whittier, 1999; Drake and Pereira, 2002; Drake and Valley,
2005), macroinvertebrates (Lewis et al., 2001; Blocksom et al.,
2002), and plankton (Kane et al., 2009). In addition, macrophyte-
based IBIs have received attention (Nichols et al., 2000; Rothrock et
al.,, 2008) as aquatic plants offer several advantages for bioassess-
ment including immobility, ease of identification, ease of sampling,
and relationships with lake fisheries (Clayton and Edwards, 2006;
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Cross and Mclnerny, 2006; Beck and Hatch, 2009). Aquatic plants
also respond to environmental changes within ecologically rele-
vant timeframes, which may provide early warning indications of
system resilience that inhibits regime shifts (Scheffer et al., 1998;
Genkai-Cato and Carpenter, 2005; Valley and Drake, 2007). Alter-
natively, an aquatic plant IBI could be a useful tool for monitoring
restoration efforts as seed banks retained in sediment are a viable
source for species recolonization that respond to environmental
condition (Jurik et al., 1994).

Several macrophyte-based IBIs developed in recent years have
particular importance for the management of temperate lakes.
Nichols et al. (2000) described the aquatic macrophyte community
index (AMCI) developed for Wisconsin as a multipurpose, mul-
timetric tool for assessing the biological quality of aquatic plant
communities. Seven metrics derived from transect data estab-
lished the foundation of the AMCI: maximum depth of plant
growth; percentage of the littoral area vegetated; Simpson’s diver-
sity index; relative frequency of submersed, exotic, and sensitive
species; and taxa richness. However, metrics were chosen a pri-
ori based on hypothesized relationships to disturbance. As such,
the metric selection process lacked rigorous statistical evalua-
tion and an interpretation of the influence of each metric on
the index was not conducted. Regardless, AMCI scores indicated
significant differences in water quality trends related to human-
induced stress affecting lake productivity among Wisconsin
ecoregions.

More recently, Rothrock et al. (2008) developed a plant index
of biotic integrity (PIBI) to assess ecological condition of littoral
areas of Indiana lakes. Metrics and PIBI scores were examined
against measures of habitat quality, land use, and management cat-
egories that described the degree of anthropogenic influence on
a lake (e.g., recreational, industrial, restoration, etc.). PIBI scores
responded to a gradient of human-induced stress indicated by
explanatory variables. However, a primary disadvantage of the
approach used by Rothrock et al. (2008) was reliance on qualitative
data that may not be as robust as more quantitative approaches to
index development. For example, Rothrock et al. (2008) described
the PIBI sampling method as a qualitative, non-exhaustive cen-
sus to rapidly assess biological diversity and relative abundance
of macrophyte communities. Furthermore, PIBI scores were evalu-
ated against best professional judgment rankings of site condition
and a modified qualitative habitat evaluation index. The develop-
ment of anindex that produces repeatable results may require more
quantitative methods for verifying metric and index response to
human-induced stress.

In Minnesota, aquatic resource managers have realized the need
for developing biological indicators that can signal problems in
water quality and fish habitat before regime shift thresholds are
crossed (Scheffer et al,, 1998; Valley and Drake, 2007). Our goal
was to develop a macrophyte-based IBI to examine the ability of
aquatic plants to discriminate between lakes of differing environ-
mental condition in Minnesota. Our objectives were to (1) utilize
spatially explicit point intercept vegetation surveys that provided
quantitative information of macrophyte coverage, (2) provide an
empirical interpretation of metric and IBI response to hypothesized
explanatory variables representing anthropogenic and natural lake
characteristics, and (3) evaluate index sensitivity to individual
metrics and sampling effort. The AMCI developed in Wisconsin
provided a conceptual basis for index development (Nichols et
al., 2000). However, our approach provides an empirical examina-
tion of IBI response to statewide gradients of lake characteristics,
which may not be apparent using a regional approach (Moyle, 1945,
1956). Validation of a macrophyte IBI will provide managers with
a framework to address impacts on Minnesota lakes, with poten-
tial implications for the management of temperate lakes in other
midwestern states.

2. Methods
2.1. Data sources

Lakes were chosen that included the same lake classes (Schupp,
1992) used to develop the Minnesota fish-based lake IBI (Drake
and Pereira, 2002; Drake and Valley, 2005) to facilitate use of both
indices for lake monitoring. The Minnesota Department of Nat-
ural Resources (DNR) lake classification scheme (Schupp, 1992)
established 44 different lake classes based on combinations of nine
limnological and morphometric characteristics that explain 78.7%
of the variance among lakes: surface area, volume, area:shoreline
ratio, maximum depth, percent littoral surface area, secchi trans-
parency, total alkalinity, shoreline development index (Wetzel,
2001), and growing season length. Nineteen lake classes were rep-
resented in the dataset, with 63% of lakes from five classes. As such,
lakes represented in the dataset captured several statewide gradi-
ents of natural lake characteristics. Lakes were located in the North
Central Hardwood Forests (NCHF, n=43), Northern Glaciated Plains
(NGP, n=6), Northern Lakes and Forests (NLF, n=38), and Western
Cornbelt Plains (WCP, n=10) level Ill ecoregions (Omernik, 1987)
(Fig. 1).

The dataset for IBI development (n=97) was compiled from
pointintercept surveys conducted by the Minnesota DNR. The point
intercept method establishes a grid of sampling pointsin the littoral
zone and provides quantitative, spatially explicit data that offer
more areal coverage than traditional transect methods (Madsen,
1999; Cheruvelil and Soranno, 2008). A double-sided rake was used
ateach sampling point to gather species presence/absence informa-
tion. Depth at each sample site was recorded using a survey rod. A
minimum of 0.7 points per littoral acre was considered adequate
for capturing 80% of total species richness (C. Tomcko and R.D. Val-
ley, unpublished data). Additionally, three lakes (Christmas, Jane,
and Square) were sampled at approximately 3.25 points per lit-
toral acre to examine the effect of sampling effort on IBI scores.
Mean sampling density for lakes in the development dataset was
0.94 points per littoral acre, corresponding to approximately 85% of
total species richness. Surveys were conducted from 2001 to 2008,
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Fig. 1. Location of lakes used for IBI development. Level Il ecoregion borders are
indicated (Omernik, 1987).
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Table 1

Species list, C values, tolerance classifications (C< 3 tolerant, C> 7 intolerant, C=0 introduced), and submersed species used to develop TOLR, SENS, and SUBM metrics (edited
for brevity). C values are described in Milburn et al. (2007). T = tolerant, I = intolerant/sensitive, and S = submersed.

Scientific name Common name Cvalue Tolerance Submersed
Acorus calamus Sweet Flag 0 T

Bidens beckii Water Marigold 8 [ S
Butomus umbellatus Flowering Rush 0 T

Ceratophyllum demersum Coontail 2 T S
Cyperus esculentus Chufa Sedge 0 T

Elodea canadensis Canada Waterweed 4 S
Heteranthera dubia Water Stargrass 6 S
Hippuris vulgaris Marestail 9 1 S
Iris pseudacorus Yellow Flag Iris 0 T

Isoetes spp.? Quillwort spp. - 1 S
Lythrum salicaria Purple Loosestrife 0 T

Myriophyllum sibiricum Northern Water Milfoil 7 S
Myriophyllum spicatum Eurasian Water Milfoil 0 T S
Najas flexilis Bushy Pondweed 5 S
Najas gracillima Northern Naiad 10 1 S
Najas guadalupensis Southern Naiad 8 I S
Najas marina Spiny Naiad 4 S
Nelumbo lutea Yellow Lotus 8 1

Phalaris arundinacea Reed Canary Grass 0 T

Potamogeton amplifolius Large-leaf pondweed 7 S
Potamogeton crispus Curly-leaf Pondweed 0 T S
Potamogeton filiformis Thread-leaf pondweed 8 I S
Potamogeton foliosus Leafy Pondweed 6 S
Potamogeton friesii Fries Pondweed 8 [ S
Potamogeton gramineus Variable-leaf pondweed 7 S
Potamogeton illinoensis Illinois Pondweed 6 S
Potamogeton natans Floating-leaf Pondweed 5 S
Potamogeton nodosus River Pondweed 6 S
Potamogeton pectinatus Sago Pondweed 3 S
Potamogeton praelongus White-stem Pondweed 7 S
Potamogeton pusillus Small Pondweed 7 S
Potamogeton richardsonii Claspingleaf Pondweed 5 S
Potamogeton robbinsii Fern Pondweed 8 I S
Potamogeton zosteriformis Flat-stem Pondweed 6 S
Ranunculus spp.? Buttercup spp. = S
Rumex maritimus Golden Dock 1 T

Sagittaria cristata Arrowhead 8 1

Typha angustifolia Narrow-leaved Cattail 0 T

Typha latifolia Broad-leaved Cattail 2 T

Utricularia cornuta Horned Bladderwort 10 1 S
Utricularia gibba Humped Bladderwort 9 1 S
Utricularia intermedia Flat-leaf Bladderwort 8 [ S
Utricularia minor Bladderwort 8 1 S
Utricularia purpurea Purple-flower Bladderwort 10 1 S
Utricularia resupinata Lavender-flower Bladderwort 10 1 S
Vallisneria americana Wild Celery 6 S
Zizania spp. Wild Rice 8 1

2 All Cvalues greater than 7.
b All C values less than 8 and greater than 2.

with the earliest seasonal survey on 2 June 2003 and the latest on
24 September 2002. Surveys were conducted in all months of the
growing season with 32% in June, 29% in July, 33% in August, and 6%
in September. Two lakes devoid of vegetation were removed from
the dataset.

2.2. Adaptation and modification of the AMCI

Three metrics that assess the relative frequency of different
species required the identification of sensitive, tolerant, and sub-
mersed species (SENS, TOLR, and SUBM metrics, respectively) for
regional adaptation of the AMCI to Minnesota lakes (Table 1). A cat-
alog of Minnesota aquatic plants enabled identification of species
used for these three metrics (Milburn et al., 2007). Coefficients
of conservatism (C values) were used as indications of species
tolerance to human-induced stress. The C value is the estimated
probability that a plant is likely to occur in a lake believed to be rel-
atively unaltered from pre-settlement conditions (Nichols, 1999).
Sensitive species were defined as having C values greater than 7,

whereas tolerant species were defined as having C values less than
3. Introduced species were also considered tolerant (C value of 0).
Submersed species were generally defined as rooted in sediment
with the majority of foliage beneath the water surface (Lacoul and
Freedman, 2006). Relative frequency was calculated as the pro-
portion of individual species frequencies for a given metric (e.g.,
species frequencies for sensitive macrophytes) to the summation
of all species frequencies. Individual species frequencies were cal-
culated as the number of points with a species divided by all points
containing plants.

Several AMCI metrics were structurally modified to produce a
robust index (Table 2). Maximum depth of plant growth (MAXD)
was defined by Nichols et al. (2000) as the deepest sampling point
with vegetation. However, in Minnesota, vagrant sprigs of vegeta-
tion can occur well beyond the depth of most vegetation growth and
may not be detected in repeated surveys (M. Beck, personal obser-
vation). Accordingly, the metric was modified to equal depth where
95% of plant growth occurred within the basin. The percentage of
littoral zone vegetated metric (LITT) used the modified maximum
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Table 2

Metric abbreviations, descriptions, means (+95% confidence intervals), and ranges (n=97).
Metric Description Mean Range
MAXD Maximum depth of plant growth, 95% occurrence (m) 3.2(2.9-3.5) 0.5-7.9
LITT Percentage of littoral vegetated 0.80 (0.75-0.85) 0-1
OVER Number of species with relative frequency over 10% 5.7 (4.9-6.4) 0-17
SUBM? Relative frequency of submersed species 0.35(0.32-0.38) 0-0.59
SENS Relative frequency of sensitive species 0.05 (0.03-0.07) 0-0.59
TOLR Relative frequency of tolerant species 0.23 (0.18-0.27) 0-0.94
TAXA Number of native taxa 16.1(14.2-18.1) 1-36

2 Values represent transformed metric (A =6.04).

depth of plant growth as the limit of littoral zone growth. The rel-
ative frequency of exotic species metric was modified to include
tolerant species to represent the relative contribution of major
plant species (e.g., Ceratophyllum demersum) that may indicate con-
ditions characterized by homogeneous species composition. The
Simpson’s diversity index metric was replaced with a metric that
quantified the number of species with relative frequency over 10%
(OVER). Although Simpson’s diversity offers a useful measure of
community composition, inclusion of an index within a larger
index may complicate the interpretation and communication of
information obtained from IBI scores. The modified metric pro-
vides an easily interpretable surrogate measure of diversity that
implicitly incorporates richness and evenness. Finally, number of
native taxa (TAXA) replaced the original species richness metric
that included introduced species. Introduced species were iden-
tified from Milburn et al. (2007) and removed from total species
richness for each lake.

2.3. Human-induced stress variables and lake characteristics

Landscape-level measures of human-induced stress (anthro-
pogenic variables) were quantified for each lake using ArcGIS
version 9.2 (ESRI, 2006) (Table 3). Carlson trophic state index
(TSI) (Carlson, 1977), percent cover of land use type in the water-
shed, and population density of the county in which a lake was
located (people/km?2) were anthropogenic variables because of doc-
umented impacts on water quality (Roth et al., 1996; Egertson
et al., 2004; Danz et al., 2007). TSI provides a measure of lake
productivity by incorporating measures of water clarity (Secchi
disk measurements), total phosphorus (TP), and chlorophyll a (chl
a). TSI values were calculated using equations in Carlson (1977)
and lake water quality data obtained from the Minnesota Pollu-
tion Control Agency (PCA) (MNPCA, 2009). Percent cover for the
three land use variables were quantified for the immediate catch-
ment and all catchments upstream contributing surficial water to
each lake (defined as the watershed) (MNDNR, 2009). Land use
was obtained from 2001 National Land Cover Data (USGS, 2009)

Table 3

and quantified for 81 lakes. Land use data could not be quanti-
fied without watershed delineations, which were unavailable for 16
lakes. County population densities were obtained from statewide
census data (MNDOA, 2000). Landscape-level anthropogenic vari-
ables represent stressors that primarily affect lake productivity. As
such, linear regression analyses indicated agricultural and urban
land use were positively related to TSI (R?2=0.28, F=31.6, df=1,
79, p<0.005; R2=0.11, F=10.8, df=1, 79, p<0.005, respectively),
whereas forested land use was negatively related to TSI (R? =0.25,
F=28.2, df=1, 79, p<0.005). Similarly, population density was
highly correlated with urban land use in the watershed (R? =0.28,
F=32.2,df=1, 79, p<0.005).

Natural lake characteristics (natural variables) that affect bio-
logical community composition (Schupp, 1992) were quantified in
a GIS (ESRI, 2006) using data compiled from state agency databases
(MNDNR, 2009; MNPCA, 2009). Variables included surface area
(hectares), maximum depth (m), total alkalinity (mg/L CaCO3), per-
cent littoral surface area, shoreline development index (SDI), and
mean July temperature (Table 3). Data were available for most
lakes; however, alkalinity was available for only 63 lakes. Percent
littoral was defined as the proportion of lake surface area where
depth was less than 4.5 m. SDI was defined as the ratio of the length
of shoreline to the circumference of a circle with an area equal to
that of the lake (Wetzel, 2001) and is an indication of shoreline
complexity. Mean July temperature was used to examine regional
climate effects on macrophyte communities. Temperatures were
obtained from GIS shapefiles describing statewide climate data
from 1961 to 1990 (MNDNR, 2009). Spatial interpolation via kriging
(Burrough and McDonnell, 1998; ESRI, 2006) was used to predict
mean temperatures for each lake in the dataset.

2.4. Examination of metrics

All analyses were conducted with R statistical software version
2.9.0 (¢ =0.05) (RDCT, 2009). Population density, agricultural, and
urban land use exhibited substantial deviations from normality and
were transformed prior to analysis using the Box—Cox method in

Anthropogenic and natural characteristics describing study lakes (n=97). Variables are not transformed. Anthropogenic variables represent watershed characteristics or
within-lake characteristics affected by watershed activities. Natural variables were identified from Schupp (1992) lake classifications. 95% confidence intervals are given in
parentheses. TSI =trophic state index (Carlson, 1977), SDI = shoreline development index (Wetzel, 2001).

Variable type Variable N Mean Range

Anthropogenic TSI 97 55.7 (53.1-58.3) 31.9-93.1
Population density (people/km?) 97 48.6 (23.3-73.9) 3.0-710.7
Agricultural land use (%) 81 17.5(12.4-22.5) 0-87.6
Urban land use (%) 81 20.7 (13.9-27.5) 0-99.0
Forested land use (%) 81 46.3 (37.4-55.1) 0-99.8

Natural Alkalinity (mg/L CaCOs) 63 130.6 (119.4-141.8) 15.0-310.0
Area (acres) 97 537.2 (416.9-657.5) 45.3-4094.1
Littoral surface area (%) 91 66.1 (60.4-71.7) 14.4-100.0
Maximum depth (m) 97 10.6 (8.7-12.6) 1.2-49.7
SDI 96 1.82(1.69-1.94) 1.03-3.83
Temperature (°C) 97 21.1(20.9-21.3) 18.3-22.8
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the following equation:
i yrl
MGM(y))*!

where y* is the transformed variable, GM(y) is the geometric mean
of the non-transformed variable, and A is the maximum likeli-
hood estimate of the transformation parameter (A = —0.48, —4.79,
and —5.27 for population density, agricultural, and urban land
use, respectively) (Cook and Weisberg, 1999). Additionally, SUBM
was transformed (A=6.04) as initial analyses indicated metric
behavior could be improved with transformation. Raw (unscaled)
metrics were examined for redundancy using Pearson’s correla-
tion coefficients to ensure metrics provided unique information.
Two metrics were considered highly correlated if the correlation
coefficient exceeded +0.8 (Drake and Pereira, 2002). Pearson’s
correlation coefficients («=0.05) were used to examine metric
responses to anthropogenic and natural variables. Metrics were
considered robust indicators of environmental condition based on
predictable relationships with anthropogenic variables indepen-
dent of a response that may co-vary with natural variables (Allan,
2004).

All non-redundant metrics correlated with at least one anthro-
pogenic variable were retained for standardization to a common
scale. Continuous variable metric scaling (Minns et al., 1994) was
used instead of the discrete method proposed for AMCI metrics.
Continuous metric scaling allows for a greater range of scores,
avoids sequence gaps, and minimizes bias from Type I error (Fore
et al., 1994). Raw metric scores were assigned a minimum value of
zero and a maximum value of 10, using the following equation and
conditions (Minns et al., 1994):

Ms =A+B x M,
If My < Mpin, thenM; = 0,
if My > Mmax, then M = 10.

The standardized metric (M) was calculated from the raw metric
(My) using a linear function with intercept (A) and slope (B). My,
and Mpqx define thresholds for values of Ms. For metrics positively
related to biotic integrity, M,,;; was equal to the minimum value
of M; and Mpqx was equal to the 95th percentile value of M;. For
metrics negatively related to biotic integrity, M,,;; was equal to the
maximum value of M; and Mygx was equal to the 5th percentile
value of M.

2.5. IBI evaluation

Total IBI scores were obtained from the summation of standard-
ized metric scores for each lake and then converted to a 0-100
scale by multiplying the sum by 10/Np,, where Ny, is the number
of metrics (Minns et al., 1994). Total IBI scores were compared
to anthropogenic and natural variables (Section 2.3) using linear
regression models («=0.05) (RDCT, 2009).

The relative contribution of environmental and anthropogenic
variables to IBI scores was examined using a variance partitioning
analysis that examined coefficients of determination from different
regression models (Legendre and Legendre, 1998; Irz et al., 2008).
Three multiple regression models (MLR) were developed to explain
IBI scores using anthropogenic variables, natural variables, and
combined variables («=0.05) (RDCT, 2009). Principal component
analyses were conducted prior to the development of MLR mod-
els to reduce data dimensionality and remove collinearity among
explanatory variables. Principal component axes were extracted
from correlation matrices (McCune and Grace, 2002; RDCT, 2009)
for anthropogenic (Ant1 and Ant2), natural (Nat1, Nat2, and Nat3),
and combined variables (All1, All2, All3, and All4). The component
axes included in each regression model explained at least 75% of the

cumulative proportion of variance among the separate explanatory
variables. MLR models were developed from each group of principal
component axes and then evaluated using Akaike’s information cri-
terion (AIC) likelihood estimates in a backward stepwise algorithm
for parameter selection (Akaike, 1973). The summation of R? values
for the separate natural and anthropogenic MLR models minus the
R? value from the combined model provided an indication of rel-
ative importance of each variable type, as well as which model(s)
better described the relationship of variables to index scores. A neg-
ative value implies that the combined MLR model better explained
the variation in scores than the separate MLR models (Legendre and
Legendre, 1998).

A comparison of the IBI between ecoregions examined geo-
graphic differences in index scores. Mean IBI scores for each
ecoregion were compared using standard methods for analysis of
variance (ANOVA), followed by a post hoc Tukey multiple com-
parison test to identify individual ecoregion differences («=0.05)
(RDCT, 2009). Lakes in the NGP and WCP ecoregions were combined
for analysis due to small sample sizes. Both ecoregions had similar
land use practices.

2.6. IBI sensitivity and effects of sampling effort

A sensitivity analysis to examine the relative contribution of
each metric to overall IBI scores was conducted for the entire
dataset and for each ecoregion (Minns et al., 1994). Sensitivity of
the IBI to each metric was calculated as the variance of the differ-
ences between the original IBI scores and recalculated IBI scores
after metric removal. A higher variance suggested that the IBI was
sensitive to a particular metric. The ratio of the variance of the dif-
ferences within each ecoregion to the total variance indicated IBI
sensitivity on an ecoregional basis. Metrics with ratios greater than
the median for all metrics were considered potentially informative.

Christmas, Jane, and Square lakes located in the NCHF ecoregion
were sampled at 3.14, 3.28, and 3.28 points per littoral acre, respec-
tively, to evaluate the effects of sampling effort on IBI score. These
lakes were chosen for analysis because they contain diverse plant
communities, thereby increasing statistical power of the analysis.
Christmas and Jane lakes were sampled during the summer of 2008,
and Square Lake was sampled during the summer of 2006. Monte
Carlo simulations were used to calculate IBI scores at 10% incre-
ments of sampling effort from 90% to 10% effort (RDCT, 2009). Using
a stratified-random approach to prevent the elimination of large
areas of a sampling grid, each lake was separated into four regions
of approximate equal area for selection of sample points. For each
level of sampling effort, survey points were randomly selected
using 500 iterations. A mean IBI score and 95% confidence interval
was calculated for each level of sampling effort. A one-way t-test
of means («=0.05) was used to determine significant differences
of IBI scores at 10% and 90% sampling effort for each lake (RDCT,
2009). Lastly, an examination of the relationship between species
richness and sampling effort using rarefaction curves (Gotelli and
Colwell, 2001) evaluated IBI response to changes in sampling effort.

3. Results
3.1. Metric response

No correlation coefficients between metrics exceeded 4-0.8, thus
each metric contributed unique information to the IBI. However,
OVER and TAXA exhibited the highest positive correlation (p=0.62,
df=95, p<0.005). TOLR and TAXA exhibited the highest negative
correlation (p=-0.28, df=95, p<0.05).

All metrics were significantly correlated with at least one
anthropogenic variable (Table 4a). Metrics positively related to
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Table 4a
Pearson’s correlation coefficients between the seven IBI metrics and anthropogenic
variables. o =0.05; ns = not significant; TSI =trophic state index (Carlson, 1977).

Table 5
Coefficients and raw metric values used for scaling. A= intercept, B=slope, M, =raw
metric, and M = standardized metric.

Metric TSI People/km? Ag Urban Forest
MAXD -0.69" —0.08ns -0.40" —0.08ns 0.23
LITT —-0.58" —0.12m -0.47" -0.17" 037"
OVER -0.62" -0.18"s -0.53" -0.36" 0.55"
SUBM 0.00" 0.18m 0.21m 0.23 -0.28"
SENS -0.23" -0.19"s -0.42" -0.29 0.40”
TOLR 0.18ns 045" 0.26° 032" —-0.43"
TAXA -0.71" -0.34" -0.58" —-0.43" 0.61"
" p<0.05.

" p<0.005.

Table 4b

Pearson’s correlation coefficients between the seven IBI metrics and natural vari-
ables. «=0.05; ns=not significant; SDI=shoreline development index (Wetzel,
2001).

Metric  Area Maximum Alkalinity % Littoral SDI Temperature
depth

MAXD  0.11™ 0.50" —0.16" -0.32" 0.13™ —0.28"
LITT 0.02" 027" —0.220s —0.02"s 0.02" —0.29"
OVER -0.08™ 0.35" —0.15" -0.17ns 0.11™ —0.48"
SUBM  -0.02" 0.04" —0.04"s -0.01"s —0.05" 0.25
SENS 0.04"  0.03" —0.45" 0.16" 0.04™ —0.36"
TOLR  -0.17" —0.06" —0.03"s —0.02"s 0.00" 038"
TAXA 032" 053" -0.38" -0.33" 0.34" -0.65"
" p<0.05.

" p<0.005.

biotic integrity (MAXD, LITT, OVER, SENS, and TAXA) were neg-
atively related to anthropogenic variables indicating increased
human-induced stress. Likewise, metrics negatively related to
biotic integrity (SUBM and TOLR) were positively related to anthro-
pogenic variables indicating increased disturbance. Correlations of
metrics with forested land use in the watershed were inversely
related to metric correlations with other disturbance variables.
The number of significant relationships between IBI metrics and
anthropogenic variables also varied. SUBM exhibited only two sig-
nificant correlations, whereas TAXA was significantly related with
every anthropogenic variable.

An analysis of metric response to natural variables suggested
co-variation with anthropogenic variables (Table 4b). However,
correlations of metrics with natural variables were generally
weaker and less numerous than correlations with anthropogenic
variables, suggesting variation in response was more influenced
by the latter. Five metrics were negatively correlated with tem-
perature (p <0.05), but SUBM and TOLR were positively correlated
(p<0.05). Four metrics were positively correlated with maximum
lake depth (p<0.05). Few metrics were correlated with lake sur-

Table 6

Metrics Metric coefficients Values of raw
metrics (M;) where
A B M;=0 M;=10

MAXD -1.06 0.61 1.75 18.20
LITT 0 10.00 0 1.00
OVER 0 0.82 0 12.20
SUBM? 11.50 -19.39 1.00 0.50
SENS 0 42.95 0 0.23
TOLR 10.00 -10.61 0.94 0
TAXA -0.33 0.33 1.00 31.60

2 Coefficients represent values for transformed metric (A =6.04).

face area, alkalinity, percent littoral, and SDI. TAXA was the only
metric that was significantly correlated with every natural variable
(p<0.005).

3.2. IBl response

Each metric was retained and standardized for calculation of
IBI scores (Table 5). Mean IBI score for all lakes was 52.6 (range
18.7-80.1). Linear regression indicated that IBI scores were asso-
ciated with several gradients of anthropogenic stress (Fig. 2). High
IBI scores indicated lakes with low internal productivity and less
anthropogenic stress originating in the watershed, whereas low IBI
scores indicated lakes with high internal productivity and more
anthropogenic stress originating in the watershed. IBI scores were
negatively related to TSI (R2=0.57, F=130.3, df=1, 95, p<0.005),
population density (R2=0.14, F=16.6, df=1, 95, p<0.005) and agri-
cultural (R2=0.51, F=83.0, df=1, 79, p<0.005) and urban land use
(R2=0.22, F=23.0, df=1, 79, p<0.005). IBI scores were positively
related to forested land use (R2=0.51, F=84.7,df=1, 79, p<0.005).
Results of linear regression comparisons of IBI scores with natural
lake characteristics were also significant (Fig. 2). IBI scores were
positively related to maximum lake depth (R2=0.19, F=22.8,df=1,
95,p<0.005)and SDI(R2=0.03, F=4.0,df=1,94, p<0.05). IBI scores
were negatively related to alkalinity (R*=0.08, F=6.0, df=1, 61,
p<0.05) and temperature (R?2=0.46, F=82.9, df=1, 95, p<0.005).
IBI scores were not related to surface or littoral area.

Principal component analysis indicated the relative influence
of individual variables to cumulative variance among categories of
variables used to develop MLR models (Table 6). Antl and Ant2
explained 79% of the total variance among anthropogenic vari-
ables. Nat1, Nat2, and Nat3 explained 75% of the total variance
among natural variables. All1, All2, All3, and All4 explained 78% of
the variance among all explanatory variables. More importantly,
component axes illustrated many collinear relationships among

Principal component axes and loadings describing anthropogenic, natural, and combined variables (all) used to develop multiple regression models for IBI scores. Cumulative
variance (%) explained by each category of component axes is shown below the axis title. TSI =Trophic state index (Carlson, 1977), SDI = shoreline development index (Wetzel,

2001).
Ant1 Ant2 Nat1 Nat2 Nat3 Alll All2 All3 All4

Variables 60 79 33 55 75 38 54 67 78

TSI -0.39 -0.47 - - - -0.34 -0.12 -0.33 0.13
People/km? -0.39 0.52 - - - -0.34 0.22 0.25 0.34
Ag -0.43 -0.54 - - - -0.33 -0.34 -0.12 -0.21
Urban -0.45 0.46 - - - -0.35 0.00 0.25 0.26
Forest 0.55 0.00 - - - 0.45 0.13 -0.14 0.00
Area - - -0.51 0.23 0.44 0.11 —-0.60 0.00 0.33
Maximum depth - - -0.51 0.21 -0.35 0.24 -0.25 0.57 0.16
Alkalinity - - 0.14 0.66 0.37 -0.16 -0.42 0.00 -0.55
% Littoral - - 0.32 -0.44 0.53 -0.14 0.26 -0.53 0.23
SDI - - -0.47 -0.21 0.50 0.19 -0.35 -0.29 0.52
Temperature - - 0.37 0.48 0.15 -0.43 0.00 0.19 0.00
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Fig. 2. IBI scores in relation to selected anthropogenic (left column) and natural variables (right column). Anthropogenic variables are trophic state index (TSI; Carlson,
1977), county population density (people/km?), and % forest land use. Natural variables are maximum lake depth (m), shoreline development index (SDI; Wetzel, 2001), and
alkalinity (mg/L, CaCOs). Least-squares regression lines are shown. Variables and coefficients of determination are shown in the top right corner of each graph. Variables are
not transformed, except population density (p >0.05 for non-transformed correlation, A = —0.48). IBI scores decreased (p <0.005) with TSI, population density, and alkalinity,
whereas IBI scores increased (p <0.005) with % forest land use, maximum depth, and SDI.

variables (Table 6) not accounted for in individual linear regres-
sion models. A comparison of R? values obtained from MLR models
explained the relative contribution of variable categories to IBI
response (Table 7) (Irz et al., 2008). The anthropogenic model indi-
cated IBI scores were significantly correlated with both Ant1 and
Ant2, which explained 72% of the variance in IBI scores (p < 0.005).
The natural model indicated IBI scores were significantly correlated
with Nat1, Nat2, and Nat3, which explained 33% of the variance in
IBI scores. The combined model indicated IBI scores were signif-
icantly correlated with only All1 and All2, which explained 67%
of the variance in IBI scores. The summation of R? values from
the anthropogenic and natural models minus the R? value from
the combined model was 38%, indicating the separate MLR models
individually explained the variation in IBI scores better than the
combined model (Legendre and Legendre, 1998). Thus, IBI scores
exhibited a unique response to human-induced stress indepen-
dent of response to lake characteristics, although natural variables
influenced the scores.

The NLF ecoregion had the highest mean IBI score (66.9; range
46.4-80.1), the NCHF ecoregion had a moderate mean IBI score
(46.0; range 22.5-77.8), and the NGP/WCP ecoregion had the low-
est mean IBI score (36.3; range 18.7-49.2). Mean IBI scores for each
ecoregion (NCHF, NGP/WCP, NLF) were significantly different for at
least two ecoregions (F=48.3, df=2, 94, p<0.005). Tukey multiple

Table 7

Summary statistics for three multiple regression models describing IBI scores. Aster-
isks indicate significance of intercept and slope for variables within the model,
whereas p-value indicates significance of the entire model. o =0.05; AIC = Akaike’s
information criterion (Akaike, 1973).

Model

Anthropogenic Natural Combined?
Intercept 54.49" 53.01" 54.01"
Ant1 7.68" - -
Ant2 5.08" = =
Nat1 = 519" _
Nat2 - -4.78" -
Nat3 - -3.94 -
Alll - - 6.52"
All2 - - 2.87"
R? 0.72 0.33 0.67
F-Statistic 107.7 11.0 40.2
df 2,78 3,58 3,54
p-value <0.005 <0.005 <0.005
AIC 353.0 329.9 267.9
2 Slopes for All3 and All4 were not significant.
" p<0.05.
* p<0.005.



M.W. Beck et al. / Ecological Indicators 10 (2010) 968-979 975

% - D —
| B
l :
S | |
= 1
1
1
(=3 | !
N ) !
o PR —
=
Q
Q [
@ e R
—
o ) |
|
g ] !
1
2 | !
: —
—
S
Q °
I I I
NLF NCHF NGP/WCP

Fig. 3. Box-and-whisker plots of IBI scores for three ecoregions. Each box is bisected
by the median and represents the interquartile range (IQR) for IBI scores (25-75th
percentile). Outliers are present beyond whiskers (1.5 x IQR). NCHF = North Central
Hardwood Forests (n=43), NGP/WCP = Northern Glaciated Plains/Western Cornbelt
Plains (n=16), and NLF = Northern Lakes and Forests (n=38).

comparisons indicated that IBI scores were significantly different
between each ecoregion (p < 0.05 for all comparisons) (Fig. 3).

3.3. IBI sensitivity and effects of sampling effort

Metric sensitivity analyses suggested the relative contribution
of each metric to IBI scores varied for 