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Abstract

This thesis describes the heating rate of a small liquid droplet in a develop-

ing boundary layer wherein the boundary layer thickness scales with the droplet

radius. Surface tension modifies the nature of thermal and hydrodynamic bound-

ary layer development, and consequently the droplet heating rate. A physical and

mathematical description precedes a reduction of the complete problem to droplet

heat transfer in an analogy to Stokes’ first problem, which is numerically solved

by means of the Lagrangian volume of fluid methodology.

For Reynolds numbers of order one, the dispersed phase Prandtl number sig-

nificantly influences the droplet heating rate only in the transient period when the

thermal boundary layer first reaches the droplet surface. As the dispersed phase

Prandtl number increases, so does the duration of the transient. At later times,

when the the droplet becomes fully engulfed by the boundary layer, the heating

rate becomes a function of only the constant heat flux boundary condition. This

characteristic holds for all Péclet and Weber numbers, but the spatial behavior of

the droplet differs for small and large Péclet and Weber numbers.

Simulation results allow for the development of a predictive tool for the boiling

entry length of dilute systems in channel flow. The tool relies on an assumption

of temperature equivalency between the droplet and the thermal boundary layer

evaluated in absence of the dispersed phase, which is supported by the computa-

tional results. Solutions for plug and fully developed flow do not differ appreciably,

suggesting a precise description of the fluid mechanics is not necessary for an ap-

proximation of the boiling entry length. Future experimental work is required to

validate the predictive models derived in this thesis.
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Chapter 1

Introduction

1.1 Background

Continued improvement of high power density electronic components requires the

development of new thermal management strategies. Many approaches have been

proposed, but some of the most promising have been directed toward two-phase

convective heat transfer in microchannels. Though it remains an area of consid-

erable promise, transition to film boiling presents a significant disadvantage of

single fluid boiling in channels.

After achieving the critical heat flux, any additional thermal energy transfer

to the fluid results in the development of an interstitial gas layer that separates

the liquid bulk from the heated surface (Thome, 2006). Surface drying promotes

rapid elevation of surface temperatures, and potential component malfunction

(burnout). The use of a multifluid coolant may reduce or eliminate the risk of

burnout.

Implementation of dilute emulsion coolants, rather than single component liq-

uids, has been proposed to extend the temperature range of nucleate boiling

1
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(Roesle and Kulacki, 2010). If the dispersed phase occupies a small percent-

age of the emulsion by volume, and has a lower boiling point than the continuous

phase, the system may benefit from boiling induced mixing and enhanced heat

transfer at temperatures well below the boiling point of the continuous phase.

Unfortunately, the sparse literature on flow boiling of dilute emulsions has left

many questions unaddressed, including that of the boiling entry length, defined

as the distance a droplet must travel along a heated surface before boiling.

Prior to boiling, the dispersed phase temperature must increase from the in-

let sub-cooled state. Motivation for exploring the heating rate comes from two

sources: multifluid heat exchanger design requires knowledge of the boiling entry

length, and the interaction of a droplet and a developing boundary layer is an

under explored, fundamental problem.

Many researchers have studied droplet heat transfer, but prior studies have

not addressed the condition where significant temperature and velocity gradients

exist across a small droplet without making assumptions about the droplet ther-

mal diffusivity. In the multifluid microchannel application, droplets do not differ

significantly in temperature from the surrounding fluid, but the influence of strong

surface tension in the boundary layer may have unforeseen effects on the heating

rate. Interactions between the developing boundary layer and the droplet, as a

function of deformation and phase dependent properties, cannot be approached

with a presently available droplet heat transfer model.

Available heat transfer models prudently apply to many droplet heat transfer

problems, but the present literature does not provide a fundamental understanding

of small droplet heat transfer in developing boundary layers. The present work

seeks to fill this void in the literature, after which the heating rate of a dilute

emulsion droplet in a microchannel may be fundamentally described and may serve



3

as an important design tool. The analysis may additionally be used to determine

which dynamics must be included in computation of droplet heat transfer.

1.2 Literature review

An understanding of microchannel fluid dynamics and droplet heat transfer are

prerequisites for an informed discussion of this research topic. Reviews of these

two fields appear in the following sections.

1.2.1 Microchannel fundamentals

Microchannels have been shown to dissipate energy at a much greater rate than

their larger scale counterparts because of reductions in thermal resistance associ-

ated with small characteristic lengths and thin boundary layers (Tuckerman and

Pease, 1981). The terminology “microchannel” refers generally to small cross-

section heat exchangers, typically falling between tens and hundreds of microme-

ters in characteristic dimension. A precise definition has not been widely accepted,

in part because of different behaviors observed in single and two-phase channels

(Thome, 2006).

Provided the fluid remains a liquid, the continuum assumption applies and

the Navier-Stokes equations govern the system (Kandlikar et al., 2013). Flow

characteristics and behaviors observed at the macroscopic scale therefore apply

to liquid phase microchannels. After boiling and introduction of the gas phase,

instabilities, blow-back, noncontinuum, and slip events become dominant (Kan-

dlikar et al., 2013; Thome, 2006). These behaviors present some of the greatest

challenges in two-phase microchannel research, and would be alleviated by the

successful implementation of a dilute emulsion coolant.
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The Navier-Stokes equations govern continuum liquids, but this does not make

microchannel dynamics easily predictable. Fluid motion depends strongly on ini-

tial and boundary conditions, and control of boundary conditions becomes chal-

lenging at small length scales; small idealizations may result in significant be-

havioral change. Experimental evidence emphasizes the importance of initial and

boundary conditions to predicting microchannel dynamics, but also suggests some

useful characteristic behaviors.

Campagnolo et al. (2012) present a measurement of the fully developed mi-

crochannel velocity profile. It falls within uncertainty of the Poiseuille velocity

profile in a pipe, which asserts a similarity between the fully-developed velocity

profiles in macroscopic and microscopic internal flows. Extrapolating the fully-

developed similarity to a similarity in the development region requires analytical

or experimental support.

The non-linear advection terms present in the Navier-Stokes equations com-

plicate an analytical description of the velocity profile in the entrance region of

channels and ducts. Two prominent solution approaches have been integral tech-

niques and linearization of the momentum equation (Sparrow et al., 1964), but

these approaches do not provide a closed-form solution, precluding a basic qual-

itative discussion. Moreover, analytical simplifications and numerical solutions

can depart significantly from reality, making empiricism preferable.

Ahmad and Hassan (2010) present a study of the development length in mi-

crochannels. Their measurements display a significant flow separation region at

the microchannel inlet – precisely the region of interest. It should be understood,

therefore, that the velocity profile at the inlet of a microchannel not only depends

on Reynolds number and microchannel geometry, but also strongly on the inlet

velocity profile.
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These few examples show the flow behavior in microchannels to depend greatly

on the implementation and the precision of boundary condition control. Knowing

this sensitivity, it would be imprudent to assume an inlet velocity profile in a

numerical approach, and to suggest the resultant flow evolution to describe the

inlet region of a general microchannel. For the purposes of the present study,

an approach must be developed that informs the physics in question without

over constraining the applicability of the results. More importantly, the general

behaviors described here may change with the introduction of droplets.

1.2.2 Droplet heat transfer

Droplet studies have been conducted continuously for centuries, and hundreds

(if not thousands) of researchers have studied various droplet behaviors. This

review serves only to give the reader a flavor of the field, and to impart a general

understanding of the work that have been performed in the past. Special care has

been taken to select studies with particular similarity to the present effort, and

thus the studies included here relate to the spatial distributions of temperatures

in droplets undergoing heat transfer, and to droplet heat transfer modeling. For

a more complete review of the field, the unfamiliar reader may refer to one of the

many books on the topic, such as Michaelides (2006, 2013).

Spatially resolved heat transfer to droplets

Spatially resolved studies of droplet heat transfer inform model development, pro-

vide physical understanding of heat transfer mechanisms, and determine which

factors dominantly and negligibly influence droplet behavior. Of concern to this

study are trends in transient and spatial temperature variation, the influence of

temperature dependent properties, and the dependency of heat transfer on droplet
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deformation.

Heat transfer to a droplet depends on droplet geometry, which is determined

by the competition between viscous shear and the Laplace pressure in shear flows.

With the inclusion of a temperature gradient, the Marangoni effect (defined later

in this section) may also become important.

Dai et al. (2002) numerically explore the modification of internal droplet tem-

perature distributions as a function of droplet oscillations. Their study predicts

deformation to enhance heat transfer due to increased surface area and the pro-

motion of mixing. Results of cases with droplet Biot numbers of 0.1 and 0.25,

coupled with deformations of 0%, 13%, and 35% are presented. Deformation has

been defined as the distance between the center of mass and the most distant sur-

face, normalized by the radius of a sphere of equivalent mass. The results show

internal temperature distributions to be effectively independent of deformation

at Bi = 0.1, and a weak function of deformation at Bi = 0.25. Departure from

the non-deformed temperature distribution increases with increasing oscillation

magnitude, but is insignificant in all cases presented.

A similar study performed by Hader and Jog (1998) with forced convection

examines heat transfer to a droplet suspended in an immiscible fluid under the

influence of an electric field that generates oblate and prolate deformations. The

study includes cases where internal droplet heat transfer comprises the primary

resistance (internal case, or high Biot number case), as well as the inverse (external

case, or low Biot number). For the internal case, numerical results show the

external Nusselt number to increase with Péclet number for all deformation types,

and for the Nusselt number to become independent of Péclet number at high Péclet

numbers. As the Péclet number increases, prolate deformations display greater

Nusselt numbers than oblate deformations (Figure 1.1(a), where the cross-stream
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(a) High Biot number droplet heat
transfer

(b) Low Biot number droplet heat
transfer

Figure 1.1. Convective heat transfer to deformed droplets at high and low Biot
numbers (Hader and Jog, 1998).

and streamwise axes are given by a and b, respectively). For the external case,

shown in Figure 1.1(b), droplet deformation negligibly modifies heat transfer. At

low relative velocity between phases, droplet deformation negligibly affects the

Nusselt number for both deformation types, whereas the Nusselt number has a

strong dependency on droplet geometry at high relative velocities for the high

Biot number case.

Both Dai et al. (2002) and Hader and Jog (1998) cite the promotion of in-

ternal circulation as one of the heat transfer mechanisms of droplet deformation,

and experimental results presented by Wong and Lin (1992) verify the presence of

counter-rotating vortices inside droplets suspended in convective flows. The pa-

rameter space includes Reynolds numbers of approximately 17, 60, and 100. The

qualitative nature of the circulation, according to the data, appears independent
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Figure 1.2. Hill vortices in reacting droplets (Xu et al., 2008).

of external Reynolds number, but has strong dependency on droplet viscosity; liq-

uid droplets with lower viscosities experience greater heat transfer due to internal

circulation than higher viscosity liquids. This study also compares the experi-

mental results to three commonly used analytical models, namely the conduction

limit, the vortex, and the effective conductivity models, which appear in the next

section of this chapter.

Antar et al. (2000) present a finite difference study that explores convective

heat transfer to droplets. Their results suggest increasing either the external

Reynolds number or the exterior to interior viscosity ratio increases energy transfer

to the droplet. Both of these parameters essentially facilitate internal circulation,

and the mixing of energy and species.

Assuming a decoupling of the momentum and energy equations, the heat and

mass transfer analogy applies. Xu et al. (2008) experimentally examine mass

transfer across the interface of an aqueous NaOH droplet suspended in a channel

flow of n-butanol. Figure 1.2 displays the general mixing behavior, where the light

and dark colors indicate product and reactant, respectively. The lengths displayed

below the images indicate travel distance along the channel. As the travel distance

increases, the internal swirling motions facilitate the reaction. Departure from

spherical geometry appears minimal, as does the relative velocity between phases.

This suggests a dominance of surface tension over viscous forces, but the authors
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do not provide a discussion of the relevant dimensionless groups. Increases in flow

velocity result in increased mass transfer rates, but the authors do not propose a

mechanism. Boundary layers present in the internal flow promote this circulation,

and the general interaction of velocity gradients with droplets has been explored

by other researchers.

Dandy and Dwyer (1990) numerically treat the lift, drag and heat transfer

experienced by a particle suspended in shear flows of uniform temperature. Their

results suggest the heat transfer rate to be independent of the shear rate for

constant Reyonlds numbers. The free-steam velocity associated with the particle

centerline allows for determination of an average Nusselt number. More commonly

researchers have explored the case of droplets traveling through a continuous phase

with a well-defined velocity difference, rather than a droplet in shear.

To address concerns in the nuclear power industry, Huang and Ayyaswamy

(1987) numerically analyze heat and mass transfer to a single water droplet falling

under the influence of gravity with a horizontal velocity component. The re-

searchers examine the effects of droplet size, initial velocity, and initial trajectory

on the fall height required for thermal equilibrium. As expected, larger droplets

require greater fall heights to reach stable dimensionless bulk temperatures. Fall

heights also decrease with increasing horizontal velocity. Greater initial velocities

increase heat and mass transfer to the droplets, in agreement with the findings

of Dandy and Dwyer (1990). These studies assume uniform surface tension, but

this assumption does not always apply.

Temperature dependent surface tension phenomena is often referred to as

the thermocapillary effect, or the Marangoni effect. This behavior is important

in some applications because a surface tension gradient induces fluid motion in

droplets. Niazmand et al. (1994) numerically explore thermocapilary effects on
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droplet evaporation and heating. They suggest thermocapilary effects may be

assumed small when,

∆T << aρ∞U∞
2CD

(
∂σ

∂T

)−1

, (1.1)

or,

∆T << µ∞Re
2CD

(
4aρ∞

∂σ

∂T

)−1

. (1.2)

Savino and Fico (2004) couple numerical and experimental techniques to exam-

ine the effects of Marangoni convection on the internal temperature distribution

of a droplet suspended below a heated/cooled plate. Their findings show that

Marangoni convection increases with decreasing fluid viscosity. The results also

display a far more uniform temperature field in the cases with strong Marangoni

convection compared to cases with weak Marangoni convection.

Frackowiak et al. (2010) use direct numerical simulation (DNS) to exam-

ine a train of evaporating fuel droplets and notice a significant influence of the

Marangoni effect. At times, the Marangoni stress exceeds the viscous stress in

magnitude, which results in three counter-rotating vortices, departing from the

two vortex circulation mode displayed in Figure 1.2. Similarly, Raghuram et al.

(2012) present a study on the relative strength of Marangoni and forced convection

in an evaporating, multicomponent droplet suspended in cross flow. Marangoni

convection dominates at low free stream velocities (small particle Reynolds num-

bers) and forced convection dominates at high free stream velocities (high particle

Reynolds numbers). The relative influence of these two phenomena manifest in the

direction of internal circulation. Marangoni dominance associates with a change

in the sign of velocity at the droplet interface, whereas viscous dominance does

not.
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Droplet heat transfer models

Droplet heat transfer models allow for analytical approximations to complicated

problems and often reduce the numerical load of computational approaches. Fre-

quently used models appear in this section with reference to their assumptions,

accuracy, and ease of implementation.

Every model makes assumptions of varying physical and mathematical impli-

cation, resulting in varying accuracy and ease of use. Droplet heating models

may be partitioned into six general categories (Sazhin et al., 2006): isothermal

droplets (with application to boiling problems); spatially isothermal droplets (an

assumption of infinite thermal diffusivity); solid droplets with spatially and tem-

porally variable temperature (the conduction limit); conduction limit models that

implement an effective thermal conductivity in an attempt to account for the

thermal effects of convection; droplets with prescribed internal convection; and

fully-resolved Navier-Stokes solutions.

Application of the isothermal droplet model requires an understanding of the

lumped capacitance assumption. Moreover, a refined understanding of the lumped

capacitance assumption enriches one’s perspective on droplet heat transfer in gen-

eral, and lowers the risk of imprudent model selection. For this reason, the lumped

capacitance model (LCM) deserves treatment with an emphasis on dimensionality

to place the intricacies of the method on the forefront.

Transient temperature variation within a system depends on the rate of energy

addition at the system boundary and the rate of energy transfer away from the

boundary. Spatial temperature variation depends on the relative magnitude of

these two rates through the Biot number,

Bi =
hL0

k
, (1.3)
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T1 T2

T0T0

(a) (b)

Figure 1.3. Droplets exposed to (a) uniform and (b) variable temperature fields.

where L0 is a characteristic length, h is the boundary heat transfer coefficient,

and k is the thermal conductivity. Large Biot numbers denote spatially variable

temperature, while small Biot numbers denote spatially uniform temperature. In

the case of a small Biot number, the LCM provides considerable simplification.

The LCM enforces spatial uniformity of temperature within the domain it

applies. Its application has been accepted for cases where Bi << 1, and reduces

the thermal energy equation to a first-order, linear differential equation,

ρCp
∂T

∂t
= q′′As, (1.4)

which relates the change of thermal energy contained in a system (the l.h.s. of

Eqn. (1.4)) to the transfer of energy across the system boundary (the r.h.s. of Eqn.

(1.4)). Application of the LCM is a robust simplification in certain situations, but

comes with the cost of reduced dimensionality.
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Consider the problem domain in Figure 1.3(a), which depicts a droplet of tem-

perature T0 suspended in a quiescent fluid of temperature T1. The problem may

be described by a one-dimensional thermal resistance circuit because of spherical

symmetry and a uniform farfield temperature. If h−1 >> a/k (where a is the

droplet radius), the conduction resistance, a/k, may be neglected. With this as-

sumption, the temperature inside the droplet adheres to Newton’s Law of Cooling,

given by

T (t) = T1 − (T1 − T0)exp

(
−hAs
ρCp

t

)
. (1.5)

Errors resulting from this assumption become vanishingly small despite the re-

duction in dimensionality when the Biot condition is well satisfied, but the di-

mensional reduction does not always apply.

Suppose the temperature field depends on a spatial dimension, as in Figure

1.3(b). In this case, a low Biot number droplet maintains a uniform temper-

ature, but enforcing temperature continuity modifies the external temperature

field. With a variety of options, selection of a characteristic temperature differ-

ence becomes difficult for nontrivial geometries, and introduction of convection

further complicates the mathematics.

Michaelides and Feng (1994) present an analytical model used to quantify

heat transfer from a sphere in non-uniform velocity and temperature fields. Their

model includes, in part, an assumption of high thermal conductivity in the sphere

relative to that of the surrounding fluid. This model does not apply to the type of

problem addressed by this thesis, considering the high continuous phase thermal

diffusivity in heat transfer liquids (almost certainly comparable or greater than

the dispersed phase). Although the Michaelides and Feng (1994) solution accounts

for a spatially variable temperature field, most models have been designed for use

in a uniform farfield temperature.
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The conduction limit, the effective conductivity, the vortex, and the lumped

capacitance models traditionally require a spatially uniform external temperature

field. Applications of interest have historically satisfied this requirement, and the

assumption has been implemented because it allows for significant simplification.

With the implications of the LCM and uniform farfield temperatures in mind, an

elaboration on droplet heat transfer models may begin with the effective conduc-

tivity model.

Kronig and Brink (1951) first introduce the concept of effective diffusivity in

droplets. Their study presents rates of mass extraction from droplets suspended

in an immiscible liquid in stationary and moving conditions. When considering

the average rate of mass extraction, the results for the diffusion and diffusion

plus advection cases differ by a factor of 2.5, which allows for the construction of

an effective diffusivity. In prediction of mass extraction rates, the effective diffu-

sivity allows for the solution of the diffusion problem, rather than the combined

convection-diffusion problem.

Abramzon and Sirignano (1988) extend the effective thermal conductivity con-

cept by developing an empirical correlation for the experimental data of Johns and

Beckmann (1966), given by,

keff
k

= 1.86 + 0.86tanh [2.245log10 (PeL/30)] , (1.6)

where PeL is the Peclet number evaluated inside the droplet, k is the droplet

thermal conductivity, and keff is the effective thermal conductivity accounting

for internal circulation. Quality results require an accurate evaluation of PeL.

Sazhin et al. (2005) begin their discussion by contesting the application of infi-

nite thermal conductivity models (equivalent to the LCM) to numerical codes has

occurred simply because of computational efficiency; physical reasoning does not
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support the assumption in many instances. They follow this contention with the

development of an analytical model of droplet evaporation and heat transfer that

addresses internal heat conduction, external convection, radiation, and evapora-

tion. Their model, similar to many others, requires spherically symmetric heating

of the droplet. They find their model (after assuming a constant surface heat

transfer coefficient) to better balance accuracy and computational efficiency than

the fully discretized heat conduction equation, the infinite thermal conductivity

assumption, and an assumption of a parabolic temperature distribution.

Models that incorporate motion interior to the droplet add a layer of complex-

ity to the analysis. Moore (1962) and Harper and Moore (1968) present among

the first models for internal droplet motion suspended in a fluid of similar proper-

ties. Their analytical work allows for the calculation of internal circulation, which

differs slightly from that of a Hill vortex because of boundary layers generated by

unmatched shear stress at the interface. Prakash and Sirignano (1977) extend the

work of Harper and Moore (1968) to a liquid droplet in a gaseous environment.

More importantly, they discuss the heat transfer problem, and argue that their

results discount the use of a uniform temperature assumption.

Solution of the full Navier-Stokes equations provides the most complete and

accurate description of droplet behavior. As suggested by Sazhin et al. (2006),

the cost of this approach prohibits its use on a large scale. However, for the

generation of fundamental understanding, experimentation serves as perhaps the

only alternative.
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1.3 Scope of the present study

The problem at hand is the heating rate of an emulsion droplet in the near-wall

region of a laminar boundary layer, generally motivated by multifluid microchan-

nel applications. A direct solution of the entire physical problem would generate

numerous original contributions, but the variability of important parameters be-

tween different microchannels can be extreme. Instead, this thesis seeks to develop

an understanding of the near-wall droplet heat transfer regime in general, to in-

form the boiling entry length, and to lend perspective on near-wall dispersed phase

modeling.

Characteristic features of droplet heat transfer in boundary layers include dif-

ferences in Prandtl number between the continuous and dispersed phases, droplet

deformation and resultant modifications to the boundary layer profile, thermocap-

illary effects, and flow features associated with the Péclet number. Thermocapil-

lary effects are neglected here, but serve as a source of future work. Exhaustive

coverage of the remaining parameters cannot be performed in one effort, but the

general behaviors associated with each can be explored. This thesis describes

how the heating rate of a droplet depends on deformation and the continuous

to dispersed phase Prandtl number ratio at Péclet numbers appropriate for the

near-wall region in a microchannel. The results are used to inform the boiling

entry length and dispersed phase modeling in boundary layers.



Chapter 2

Analytical Formulation

Droplets adhere to the Navier-Stokes equations: conservation of mass, momen-

tum, and energy. The primary challenge in applying the Navier-Stokes equations

to droplets, and to multiphase systems in general, relates to the number and

complexity of the boundary conditions. The mathematical nature in which these

boundary conditions appear depends on the perspective of the governing equa-

tions. As a precursor to the development of a numerical approach, this chapter

presents an Eulerian formulation of the Navier-Stokes equations appropriate for

multiphase systems.

2.1 An Eulerian perspective on multiphase sys-

tems

Property variations in multiphase systems impede the development of Eulerian

governing equations. Consider the canonical Eulerian Navier-Stokes equations for

17
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incompressible fluids,

∇ · u = 0, (2.1)

∂(ρu)

∂t
+ u · ∇(ρu) = −∇p+∇ · (µ∇u) + F, (2.2)

∂(ρCpT )

∂t
+∇ · (ρCpTu) = ∇ · (k∇T ). (2.3)

Non-dimensionalization of these equations involves the introduction of character-

istic scales and the extraction of constants from derivative operators. Fluid prop-

erties must remain within derivative operators in multiphase systems because of

their discontinuous variation at interfaces. Interfacial tension accompanies prop-

erty discontinuities, introducing further spatio-temporal variability. These chal-

lenges require a general formulation that allows for spatial property variation and

at least two distinct phases.

Consider a domain that contains a continuous phase, c, and a dispersed phase,

d, that interact across an interface, Γ. The phase identifying function, ψ, provides

a spatially dependent, mathematical definition of phase,

ψ(x) =

0 if in c;

1 if in d.

(2.4)

For an analytical formulation, the Heaviside nature of ψ poses no issues, but

the discontinuity must be smoothed for a numerical approach. Considering this

to be an analytical formulation, the phase identifying function may be used to

mathematically inform the spatial variation of properties and interfacial momen-

tum sources.
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Fluid properties specific to c and d may be defined as a function of ψ,

Φ = Φc(1− ψ) + Φdψ, (2.5)

where Φ represents a fluid property, and subscripts c and d denote the phase-

specific property. Wherever the phase identifying function changes in magnitude

(on a line segment in two dimensions, or on a surface in three dimensions), an

interfacial tension force appears.

Interfacial tension acts normal to Γ due to phase discontinuity and is quantified

by,

Fst

∣∣∣∣
Γ

= −κσn̂, (2.6)

where κ is the radius of curvature of Γ, n̂ is the outward-directed normal, and

σ is the coefficient of interfacial tension. This force acts only at the interfacial

line or surface and equals zero elsewhere. Precise representation of σ requires

experimentation, but Antanow’s Law, given in Eqn. (2.7), provides an analytical

alternative (Berg, 2010). Here, σc,d is the interfacial tension coefficient of phases

c and d, and the terms on the r.h.s. are the mutually saturated surface tensions

of phases c and d.

σc,d =
∣∣σc(d) − σd(c)

∣∣ (2.7)

Using these new definitions, appropriate scaling factors may be selected,

t* =
tu0

L0

, x* =
x

L0

, T* =
T

T0

, P* =
P

ρ0u0
2
, (2.8)

where subscript naught refers to a characteristic variable chosen to scale a specific

problem. When the properties of the continuous and dispersed phases differ, they

cannot be completely absorbed by the traditional dimensionless numbers (such

as the Reynolds and Prandtl numbers). Instead, dimensionless properties must
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assume the color function as an argument,

Φ* = ψ +
Φc

Φd

(1− ψ) , (2.9)

where the dimensionless property equals one in the dispersed phase, ψ = 1, and

the ratio of the dimensional fluid properties in the continuous phase, ψ = 0.

Equation (2.9) implies the traditional dimensionless numbers must share control

of the system behavior with the dimensionless property ratios, which causes the

behavioral changes associated with phase interfaces in multiphase systems. This

topic appears once more in the next section for emphasis and clarity.

The Navier-Stokes equations may be reformulated in dimensionless variables

appropriate for an incompressible, multiphase system (omitting the asterisks),

∂ρ

∂t
= −∂(ρui)

∂xi
, (2.10)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
+
∂P

∂xi
=

1

Re

∂

∂xi

(
µ
∂ui
∂xj

)
+

ρ

Fr
− σκ

We
, (2.11)

∂(ρCpT )

∂t
+
∂(ρCpTui)

∂xi
=

1

RePr

∂

∂xi

(
k
∂T

∂xj

)
, (2.12)

where Re is the Reynolds number, Pr is the Prandtl number, Fr is the Froude

number (the ratio of kinetic energy to gravitational potential energy), and We is

the Weber number (the ratio of kinetic energy to surface tension). The fluid prop-

erties present in Eqns. (2.10-2.12) are defined as in Eqn. (2.9). The dimensionless
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numbers have been constructed with respect to the dispersed phase such that,

Re =
ρdu0L0

µd
, (2.13)

Fr =
u2

0

gL0

, (2.14)

We =
ρdu

2
0L0

σ
, (2.15)

Pr =
Cdµd
kd

. (2.16)

The importance of these dimensionless numbers and others that do not appear

in the governing equations to appropriately locate a problem in the parameter

space merits particular treatment.

2.2 Dimensionless variables, scaling, and prob-

lem formulation

Multiphase systems involve more dimensionless parameters than single phase sys-

tems to account for property variations and surface tension. The Reynolds and

Prandtl numbers appear, as they do in single phase problems, but the Freud num-

ber and the Weber number appear as well. Introducing gravitational forces would

over extend the present work, and are neglected by setting the Freud number

equal to infinity. A more significant parameter, although it does not appear in

the governing equations, is the Capillary number.

Defined as the ratio of viscous shear stress to the Laplace pressure, the Capil-

lary number describes the deformation and breakup of a droplet in shear flow (Li
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et al., 2000). With respect to flow variables,

Ca =
µcγ̇a

σ
, (2.17)

where µc is the kinematic viscosity of the continuous phase, γ̇ is the flow shear

rate, a is the droplet radius, and σ is, again, the interfacial tension coefficient.

Surface tension dominates and allows little deformation at low Capillary num-

bers. As the Capillary number increases, steady deformation occurs, and eventu-

ally the droplet experiences unsteady breakup at a critical Capillary number (Li

et al., 2000; Stone et al., 1986). Considering this behavior, it is expected that the

interaction of a droplet and a boundary layer depends on the Capillary number

magnitude. If this is the case, the Capillary number should be somehow related

to the governing equations, despite their formulation in terms of a characteristic

velocity rather than a characteristic shear rate.

The dominating flow characteristic in shear flows is not a mean velocity, but

rather a mean rate of shear. In these cases, the pertinent Reynolds number is the

shear Reynolds number,

Reγ̇ =
ρcγ̇a

2

µc
, (2.18)

where the appropriate length scale is the droplet radius, a. The Weber number

may be similarly redefined,

We =
ρdγ̇

2a3

σ
. (2.19)

The relation between the shear Reynolds number, the Weber number, and the

Capillary number is therefore (assuming a continuous to dispersed phase density

ratio of one)

Ca =
We

Reγ̇
. (2.20)
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For a droplet to remain relatively undeformed by a developing boundary layer,

We << Reγ̇. (2.21)

Significant deformation or breakup occurs if the Weber number exceeds the shear

Reynolds number. Rigorously, the critical Capillary number depends on multiple

factors including the Reynolds number and the continuous to dispersed phase vis-

cosity ratio (meaning it cannot be identified simply by the magnitude of We/Reγ),

but these dependencies are neglected here.

One can imagine the local shear Reyonolds number to be large near a boundary

and small far from the boundary. Similarly, the Weber number of a large droplet

exceeds that of a small droplet. Characteristic magnitudes for both of these

parameters must be chosen to identify where the problem in question falls within

the parameter space, which involves selecting characteristic properties, length,

and velocity scales.

Following the experimental precedence of Roesle and Kulacki (2012), a 10

µm diameter droplet of FC-72 is a candidate dispersed phase. The most rapidly

heating droplets would be those nearest the surface, and therefore the droplet

center should be considered a few droplet radii from the heated boundary. Flow

velocities may be approximately 10 cm/s in a microchannel or mini channel, which

serves as a reasonable characteristic velocity. The Weber and Reynolds numbers

for these scales are on the order

We = O(0.01)

and

Reγ̇ = O(1.0).
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As made clear by the preceding analysis, a vast parameter space of We and

Reγ̇ exists, not only across different microchannels and in different flow regimes,

but also within a single microchannel, depending on droplet size, constitution,

and location relative to the wall. Thus, the above Weber and Reynolds numbers

only serve as a references. Although selecting different values for these parameters

would influence deformation, the change in deformation alone would only mildly

modify heating rates (Dai et al., 2002), which depend more strongly on the Péclet

and Prandtl numbers.

In an effort to be rigorous, it must be made clear that the Péclet number, as

the product of Prandtl and Reynolds numbers, absorbs all variations in Prandtl

number. When formulating multiphase problems in a dimensionless sense, diffi-

culties arise as to which fluid properties and flow parameters serve as character-

istic. In the uncharacteristic phase, the normalized properties present in Eqns.

(2.10-2.12) become active (non-unity). These active properties in the multiphase

formulation introduce spatial variations that may dominate the perceived scaling.

One example is a dispersed phase with a high Prandtl number in a continuous

phase of low Prandtl number. In a non-dimensionalization with respect to the

dispersed phase, the global Péclet number may be small, but the effective Péclet

number in the continuous phase remains large, resulting in dramatically different

behavior within the different phases. It should be understood that referring to

the Péclet and Prandtl numbers independently makes reference to variation in the

uncharacteristic Prandtl or Péclet number.

As shown by the results of Hader and Jog (1998) (Figure 1.1), the Nusselt

number depends greatly on the Péclet number and the Biot number. Many of the

droplet heating models described in Chapter 1 require a low Biot number assump-

tion because it considerably simplifies the calculation. To explore the effects of the
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Biot and Péclet numbers in the flow regime at hand, the continuous phase Péclet

number assumes two values by setting the continuous phase Prandtl number, Prc,

equal to unity for all simulations, and modifying the Reynolds number from 1 to

5. For each continuous phase Péclet number, the dispersed phase Prandtl num-

ber, Prd, assumes magnitudes of 0.2, 1.0 and 5.0. This provides cases where

the continuous phase thermal diffusivity is high, equivalent, and low compared

to the dispersed phase thermal diffusivity, which are the high and low Biot num-

ber conditions. These permutations have been selected to provide insight on how

the present heat transfer regime may differ from that of traditional droplet heat

transfer (uniform far-field temperature and free-stream velocity). The domain

most appropriate to feasibly accomplish this task remains an important question.

2.3 Flow domain – initial and boundary condi-

tions

The environment of interest is a developing boundary layer and the nature of its

interaction with a droplet. As suggested in Chapter 1, an attempt to model a char-

acteristic microchannel boundary layer would fall short for a variety of reasons:

boundary layer development differs in round, square, and rectangular microchan-

nels (Sparrow et al., 1964); the velocity gradients near the channel inlet depend

strongly on the inlet flow profile (Kiya et al., 1972); and flow separation may

greatly modify behavior in the inlet region (Ahmad and Hassan, 2010). Knowing

the importance of these inconsistencies, the selected boundary layer must display

generality to inform behavior in the greatest number of applications.

Stokes’ first problem describes the development of a one-dimensional boundary

layer. This study benefits from a one-dimensional configuration because it most
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simply isolates the development of a boundary layer into a droplet, and it does not

include characteristics that are variable between different microchannel configura-

tions, such as separation or an accelerating free-stream. Classical boundary layer

theory suggests that gradients in the velocity-normal direction exceed those in

the streamwise direction by orders of magnitude, and neglecting variations in the

streamwise direction is therefore consistent with the problem physics. This feature

of Stokes’ first problem conveniently lends itself to the use of periodic boundary

conditions in the streamwise direction, which dramatically reduces computational

cost. Another difference between Stokes’ first problem and an internal boundary

layer are the boundary conditions in the velocity-normal directions.

The maximum velocity in an external flow is constant (for dP/dx = 0), whereas

the maximum velocity in an internal flow increases until the fully-developed con-

dition. This difference does not degrade the quality of results generated by an

external flow because the rate of change of maximum velocity differs from geom-

etry to geometry, and therefore solving the parallel plate problem would say no

more about the round tube case than the Stokesian boundary layer. Having estab-

lished Stokes’ first problem as a reasonable environment for this analysis, attention

may be directed to constructing numerically feasible boundary conditions.

Figure 2.1 shows the problem domain, the initial droplet location and size,

and the initial temperature and velocity fields,

T (y) = 1− tanh[1.5(y + 4.5)], (2.22)

and

u(y) = tanh[1.5(y + 4.5)]. (2.23)

All parameters appearing in Figure 2.1 are nondimensional.

Some obvious difference between the domain presented in Figure 2.1 and the
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Figure 2.1. Problem domain.

classical Stokes’ first problem include: diffusion of velocity from the free stream

to the surface, rather than from the surface to the free stream; a numerically

differentiable, rather than a discontinuous initial condition; and a finite, rather

than an infinite domain. The first difference has been implemented in reference to

the cooling application (fluid flowing over a surface, rather than a surface moving

under a fluid), while the second and third are numerical necessities. The profiles

have been chosen to smoothly transition the velocity from zero to one, and the

temperature from one to zero in the region between Surface 1 and the droplet. At
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Surface 1,
∂T

∂y

∣∣∣∣
y=−4.5

= −1.5, (2.24)

while the velocities satisfy the no-slip and no-penetration conditions. At Surface

2, the derivatives of all flow properties in the y direction equal zero, while periodic

boundary conditions govern Surfaces 3 and 4. The domain height and width have

been selected to minimize the influence of the boundary conditions on the droplet

dynamics.

Surface tension generates the Laplace pressure when a curved surface sepa-

rates the continuous and dispersed phases. For a static droplet, the pressure dif-

ference between the exterior and interior fluid may be calculated by considering

the droplet radius,

∆P =
σ

a
, (2.25)

in physical units, and in a dimensionless sense,

∆P ∗ =
1

We
, (2.26)

where the characteristic length is taken to be the droplet radius. Conversely,

density variations across an interface in incompressible systems do not depend on

the interface geometry. The precise initialization of density and pressure used to

for the present calculations appear after a presentation of the numerical technique.



Chapter 3

Numerical formulation

This chapter outlines the chosen methodology regarding interface tracking, the

numerical representation of fluid properties and surface tension, and the governing

equation formulation.

3.1 Interface tracking

Interface identification and propagation provides a significant challenge for mul-

tiphase numerical simulation. To date, two of the most popular interface identifi-

cation techniques are the volume of fluid (VOF) (Hirt and Nichols, 1981) and the

level set (LS) (Osher and Sethian, 1988). Both the VOF and LS belong to the

front capturing classification, a subset in the broad spectrum of phase identifica-

tion approaches. Multiple researchers have conducted substantial reviews of the

numerous techniques, but a review does not appear here; the curious reader may

refer to Morris (2000), Abgrall and Karni (2000), or Nourgaliev et al. (2004). In-

stead, this section outlines some of the shortcomings associated with the popular

LS and VOF methodologies, and presents a method which does not suffer from

29
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the same shortcomings.

The VOF method uses a color function, c, which equals 1 in one phase and

0 in the other phase, to generate an Eulerian phase identity. The color function

advances in time according to the advection equation,

∂c

∂t
+ u · ∇c = 0. (3.1)

The left-hand-side of Eqn. 3.1 is equivalent to the material derivative and equals

zero. This makes the color function a conserved quantity, and allows the VOF

method to conserve mass with respect to both phases – an important physical

consistency. However, advancing Eqn. (3.1) produces numerical diffusion and the

spatial smearing of the interface, which physically represents mutual diffusion of

the phases. Numerical diffusion non-physically changes the interface over time

and represents a significant disadvantage of the VOF method. The LS method

does not suffer from interface smearing.

Instead of advecting the color function (by means of Eqn. (3.1)), the LS method

uses a function to indicate the distance from any point to the interface, with the

distance positive in one phase and negative in the other. A change in sign of

the distance function identifies a phase transition. With the LS approach, the

interface remains sharp, but conservation of the signed-distance function does

not enforce mass conservation. It should be understood that both the LS and

VOF methods introduce significant non-physical behavior into the solution, which

amplifies greatly when applied on unstructured meshes.

The Lagrangian volume of fluid method (Liu, 2014; Liu et al., 2014) uses

Lagrangian phase-identifying particles to track fluid interfaces. By using a La-

grangian perspective, LVOF eliminates the diffusion and conservation issues as-

sociated with traditional VOF and LS, respectively. It may also be accurately
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implemented on unstructured meshes. The calculation approach originates from

smoothed particle hydrodynamics (SPH), and a basic understanding of SPH is a

necessary prerequisite to understanding LVOF.

3.1.1 Smoothed particle hydrodynamics

Smoothed particle hydrodynamics assumes that a function, f , may be approxi-

mated by a convolution of the function with a kernel,

〈f (x)〉 =

∫
Ω

f (x′)W (x− x′; re) dx
′, (3.2)

where W is the kernel (or weight) function, which is non-zero over an influence

radius, re (Randles and Libersky, 1996). Following the convolution operation,

〈f (x)〉 is considered the kernel representation of the function, f . Fidelity of the

kernel representation to the function itself strongly depends on the nature of the

kernel.

The kernel serves as an approximation of the Dirac delta function and may

assume any definition satisfying the series of conditions elaborated by Liu and

Liu (2010). These conditions effectively guarantee that the kernel approaches

the Dirac delta function as the influence radius approaches zero, resulting in a

vanishing error. Using the kernel representation of a function is favorable because

it allows for the kernel representation of derivatives.

For an appropriately defined kernel, application of the chain rule shows that

the gradient of f equals the product of f and the gradient of the kernel (Randles

and Libersky, 1996),

〈∇f (x)〉 =

∫
Ω

f (x′)∇W (x− x′; re) dx
′. (3.3)
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Special note should be taken that the kernel representation of the derivative de-

pends only on the derivative of the kernel, and not on the derivative of the func-

tion. This property is beneficial because ∇W often has an analytical expres-

sion, whereas the computation of ∇f requires numerical methods. Moreover, the

derivative of the kernel is not complicated by a discrete representation.

Discretely recasting the kernel representations of f and ∇f returns,

〈f (x)〉 =
N∑
j=1

Vjf (xj)W (x− xj; re) , (3.4)

and

〈∇f (x)〉 =
N∑
j=1

Vjf (xj)∇W (x− xj; re) , (3.5)

respectively, where Vj is the volume associated with the discrete element or par-

ticle, j. Discrete formulations lend themselves to numerical treatment, but also

have shortcomings.

Particle inconsistency in the kernel approximations arise in special cases, par-

ticularly for boundary particles (Liu and Liu, 2010). Generally, inconsistency in

the kernel itself may be used to mitigate inconsistency in the kernel representation

(Randles and Libersky, 1996),

〈f (x)〉 =

∑N
j=1 Vjf (xj)∇W (x− xj; re)∑N

j=1 Vj∇W (x− xj; re)
. (3.6)

Inconsistencies in derivative terms occur as well, but will not be corrected because

of high computational cost and low sensitivity of the desired information to spatial

derivatives (Liu et al., 2014). Therefore, Eqn. (3.6) may be used to calculate field

functions, while Eqn. (3.5) may be used to calculate their derivatives.
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With this formulation, the discrete set of particles, j, define f and its deriva-

tives by carrying the function value at points xj. The value of f at x depends on

the value of f assigned to particles within the influence radius, re, weighted by W ,

according to Eqn. (3.6). Equation (3.5) similarly defines the first derivative of the

function, and by repeated application and substitution, higher order derivatives

as well.

Traditionally, SPH has been used to solve complete physical problems in a

Lagrangian sense. The LVOF approach uses these concepts to identify the location

and geometry of fluid interfaces by applying SPH-inspired calculations to define

the volume of fluid variable used in classical VOF. This process involves seeding

the physical domain with phase-identifying particles. Properties calculated on (or

carried by) these particles are then projected onto an Eulerian mesh, upon which

the Navier-Stokes equations are solved by any standard approach.

The LVOF methodology has not appeared in the literature, but it will soon

appear in a paper by Liu et al. (2014). A general review must therefore appear

here, considering the unavailability of an external reference at present.1 Some

of the most intricate details are reserved for the forthcoming paper, but it is

necessary to address the general methodology and some important implementation

considerations.

3.1.2 Lagrangian volume of fluid

Consider a domain containing a single droplet and a uniform distribution of La-

grangian, phase-identifying particles, such that the inter-particle spacing is much

smaller than the droplet radius, and smaller than the Eulerian mesh spacing. A

1 The Ph.D. dissertation of Dr. Wanjiao Liu (Liu, 2014) is the origin of the method and serves

as the only available reference.
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(a) (b)

0 0.5 1

(a)

Figure 3.1. Lagrangian phase identities: (a) volume of fluid defined on particles;
(b) color function calculated on particles.

domain of this kind appears in Figure 3.1(a). Particles inside the droplet carry a

VOF value of 1, while the exterior particles carry a VOF value of 0. These intrinsic

particle VOF values do not change with time, and forever define the two phases.

The LVOF method seeks to characterize the droplet interface (location and shape)

by using the local variation in VOF. Necessary and sufficient characterization of

the interface includes identification of its normal and curvature.

Intuitively, the interface falls between two adjacent particles carrying different

VOF values, but defining the interface discontinuously would generate numerical

errors. For this reason, a new definition of the color function spreads the interface

(over a surface in two dimensions, or a volume in three dimensions),

ci =

∑N
j=1 ψjVjW (x− xj; re)∑N
j=1 VjW (x− xj; re)

, (3.7)

where ψj is the VOF of particle j (Liu et al., 2014). Rigorously, the color function
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is simply a discrete kernel approximation of the VOF field. The color function

corresponding to the VOF distribution in Figure 3.1(a) appears in Figure 3.1(b).

Because the color function approximates the VOF, the color function also

assumes a magnitude of 1 in the dispersed phase and 0 in the continuous phase.

Unlike the VOF, the color function presents a continuous gradient across the phase

interface of thickness equal to twice the influence radius, re. In the transition

region, the interface normal and color function gradient align (Morris, 2000),

n̂ =
∇c
|∇c|

, (3.8)

and Eqns. (3.5), (3.7), and (3.8) allow for calculation of the unit-normal vector,

n̂i =

∑N
j=1 ciVj∇W (x− xj; re)∣∣∣∑N
j=1 ciVj∇W (x− xj; re)

∣∣∣ . (3.9)

Finally, the interface curvature depends only on the unit interface normal,

κ = −∇ · n̂. (3.10)

Discretely,

κi =
N∑
j=1

∇W (|xj − xi|) · n̂iVj. (3.11)

Although the general approach may be clear, some important intricacies must

be considered: particle seeding, the weight function, the influence radius, and

treatment of particles that carry improper normal vectors.

The radial seeding used in Figures 3.1(a) and (b) has important significance.

When considering the influence radius and the weighting of particles, random or

cartesian initializations unnecessarily introduce error. Errors become small when

the particle resolution greatly exceeds the Eulerian mesh resolution and when the
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influence radius is large. However, best-practice requires a radial initialization,

assuming an influence radius of a few mesh spacings.

Following the methodology of Liu et al. (2014), the weight function of choice

assumes the form,

W (r) = A

e
−A r

re − e−A r < re

0 r ≥ re,

(3.12)

where

r = |xj − xi| . (3.13)

The coefficient A ensures that W satisfies all of the requirements of a proper

weight function. For a two-dimensional domain,

A =

(
2πr2

e

[
1

c2
−
(

1

c2
+

1

c
+

1

2

)
e−c
])−1

(3.14)

and

c = 0.01 (3.15)

satisfy the requirements.

This weight function has been adopted because other forms put too much

weight on nearby particles, complicating the calculation of curvature and by ex-

tension surface tension (Liu et al., 2014). The quality of the curvature calculation

also depends on the influence radius and the number of particles per Eulerian cell,

referred to as the particle number density, ρp.

The Lagrangian curvature field associated with a unit radius droplet appears

in Figures 3.2(a)-(d). Each of these figures displays a different configuration of

influence radius, re, and Lagrangian particle number density, ρp. The radius of

curvature carried by the particles should decrease as r−1 from the center of the

droplet and have no angular dependency. Figures 3.2(a)-(c) show the quality of the
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(a) (b)

(c) (d)

0.8 0.9 1 1.1 1.2

(a)

Figure 3.2. Curvature fields calculated with various re and ρp: (a) re = 2dx,
ρp = 2; (b) re = 3dx, ρp = 2; (c) re = 2dx, ρp = 10; (d) re = 3dx, ρp = 10.

curvature calculation to become poor if either the particle number density or the

influence radius becomes too small. Only with sufficiently high particle number

density and sufficiently large influence radius does the curvature become accurate,

as in Figure 3.2(d). Potential decreases in particle number density associated

with flow shear further increase the importance of maintaining sufficient particle

number densities. Numerical experimentation has shown particle number densities

of 20 and an influence radius of three mesh spacings to be sufficient for the present
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effort.

Improper curvature values may result despite a sufficient influence radius and

high particle number densities. Morris (2000) attributes this behavior to particles

that carry normal vectors that are too short to numerically resolve. To account

for these poorly defined normal vectors, a Heavyside filter has been implemented

so only particles carrying normal vectors greater than 0.01dx influence curvature.

The remaining question is how these geometric factors may be used to inform the

multiphase Navier-Stokes equations.

3.2 Fluid property and surface tension imple-

mentation

Fundamental to the communication between the particles and the Eulerian mesh

is a shared coordinate system. A particle seeded at some location, xi, carries

information relevant to the Eulerian mesh at the same location. Identifying all of

the particles within a Eulerian cell and averaging their properties allows for the

transfer of information from the Lagrangian particles to the Eulerian mesh. Sim-

ilarly, interpolation of velocities at Eulerian nodes to the position of Lagrangian

particles allows for the calculation of particle velocity, and the time integration of

particle location. Determination of fluid properties and surface tension requires

this communication.

A variable equivalent to the color function used in the VOF method can be

generated by transferring the averaged Lagrangian color function to the Eulerian

mesh. Fluid properties may then be defined with respect to this mean color func-

tion, ψc, in a way identical to Eqn. (2.5). For smooth (numerically differentiable)

initialization of fluid properties, a sufficiently large influence radius (three mesh
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(a) (b)

1 1.125 1.25
Figure 3.3. Pressure initializations: (a) discontinuous initialization based on the
mean volume of fluid; (b) smooth initialization based on the mean color function.

spacings for our purposes) must be used. Figure 3.3(a) presents an initial droplet

pressure field based on the mean volume of fluid, whereas Figure 3.3(b) presents

the initialization based on the mean color function. Initialization based on the

mean color function results in a smooth transition between the continuous and

dispersed phase pressures, whereas initialization based on the mean volume of

fluid does not. Expression of surface tension in the Eulerian sense also requires

communication between the Lagrangian and Eulerian domains.

Multiple approaches for simulation of surface tension are possible. One may

expect to use a continuum surface force (CSF) model, as in many historical simula-

tions (Brackbill et al., 1992), but the presence of the Lagrangian particles suggests

an SPH-based surface tension approach.

Surface tension has been calculated in an SPH environment by Morris (2000),



40

where the interparticle force due to surface tension is given by

(Fst)i = −σκini. (3.16)

The individual particle forces are, once again, volume averaged and transferred

to the Eulerian mesh for time advancement. Instead of appearing as a surface

force, the surface tension becomes a volume force (in three dimensions). This is

a general concept associated with the CSF model but it has been implemented

from an SPH perspective. For this implementation to present accurate dynamics,

the volume over which the surface tension appears must be small compared to the

volume of the droplet. The surface tension volume force appears as a source term

in the Eulerian solver.

3.3 Eulerian solver

The Eulerian solver has been provided by the Computational Transport Phenom-

ena Laboratory at the University of Minnesota. It implements a second order

accurate in time, fourth order accurate in space, explicit MacCormack method

(Hoffmann and Chiang, 1989) to solve the conservative form of the compress-

ible Navier-Stokes equations given by Eqns. (3.17-3.22), where all variables are

nondimensional.

∂U

∂t
+
∂E

∂x
+
∂F

∂y
= H (3.17)
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U =


ρ

ρu

ρv

T

 (3.18)

E =


ρu

ρu2 + P − τxx
ρuv − τxy

uT − 1
RePr

∂T
∂x

 (3.19)

F =


ρv

ρuv − τxy
ρv2 + P − τyy
vT − 1

RePr
∂T
∂y

 (3.20)

H = − 1

We

∑N
i=1 κini.Vi∑N

i=1 Vi
(3.21)

τij =
1

Re

 2
3

(
2∂u
∂x
− ∂v

∂y

) (
∂u
∂y

+ ∂v
∂x

)
(
∂u
∂y

+ ∂v
∂x

)
2
3

(
2∂v
∂y
− ∂u

∂x

)
 . (3.22)

The energy equation has been neglected by setting the temperature uniformly

equal to one (isothermal). A passive scalar temperature, T , has been introduced to

decouple the momentum and energy equations to better emulate an incompressible

system. Modification of the equation of state is also necessary.

A stiffened equation of state is required to approximate an incompressible

system. Simple stiffened equations simply use a stiffening pressure, Ps, to reduce

the percent change in density associated with a given change in pressure (Abgrall
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and Karni, 2000),

P = ρRT − Ps. (3.23)

This simplistic approach does not allow for control of the sound speed, and achiev-

ing a stable time step may be difficult. Instead, a Taits equation of state will be

used (Sirotkin and Yoh, 2012),

P = ρ0
c2
s

γ

[(
ρ

ρ0

)γ
− 1

]
, (3.24)

which allows for control of the speed of sound, cs. For the purposes of this study,

the parameters are selected such that

ρ0
c2
s

γ
= 50.0

and

γ = 2.0.

The same equation of state may be used for both phases, allowing Eqn. (3.24) to

apply throughout the domain.

The dimensionless density field may be initialized by considering Eqns. (3.24)

and (2.26). After proper scaling, the initialization of density becomes

ρ = (1− ψc) +

√(
1

50We
+ 1

)
(ψc), (3.25)

with the characteristic length taken as the droplet radius.

Initialization of pressure, and all successive pressure calculations, may be per-

formed by means of Eqn. (3.24). When properly non-dimensionalized,

P = 50(ρ2 − 1). (3.26)
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This formulation readily implements phase dependent properties and effectively

decouples the energy and momentum equations.

3.4 Calculation of interfacial flux

Accurate calculation of interfacial fluxes requires a delicate compromise between

interface thickness and accurate numerical differentiation. Properties change dis-

continuously across phase interfaces in the macroscopic physical world, but solving

the physics from this perspective requires a jump condition at the interface most

simply applied in a fully Lagrangian formulation. The LVOF method incorporates

an interface of finite thickness across which properties vary and surface tension

appears. The thickness of this region requires careful consideration.

The numerical derivatives of properties near the interface become inaccurate

as the interface thickness approaches zero. Meanwhile, if the interface thickness

becomes significant relative to the interfacial characteristic length, the physics

become poorly represented. The nature of property variation also influences the

accuracy of the flux calculation; potential error in flux calculation does not sig-

nificantly influence the solution if properties do not vary appreciably across the

interface. Significant pressure and density variations may occur across the inter-

face of a low Weber number droplet, and therefore an exploration of this behavior

is appropriate prior to result generation. These errors may be explored by con-

sidering the uniform advection of a droplet and observing the change in particle

number density near the interface. Ideally, the particle number density should

remain constant, but errors in interfacial fluxes promote variation.

Figure 3.4(a) and (b) display the particle number density in a domain with

uniform velocity and a single low Weber number droplet (We = 0.125). In Figure
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(a) (b)

0 1 2 3 4
Figure 3.4. Particle number density variations due to inaccurate evaluation of
interfacial flux: (a) re = 2dx; (b) re = 4dx.

3.4(a), re = 2dx, and in Figure 3.4(b), re = 4dx, and in both images the droplet

has traveled three times its diameter. Numerical differentiation of density and

pressure becomes inaccurate when the influence radius is too small (Figure 3.4(a)),

resulting in particle number density variations near the interface. Conversely,

flux calculations become more accurate and the particle density remains nearly

constant with a thicker interface, as in Figure 3.4(b). The results in Figure 3.4

have been produced with a continuous to dispersed phase density ratio of 0.735,

which naturally follows from the global equation of state and the low Weber

number. This density ratio is significant and undesirable for the present efforts,

and the percent error associated with flux calculations is significant. The equation

of state must be used to reduce the density ratio and reduce flux errors (which

results in the stiffened parameters described in Section 3.3).

Figure 3.5(a) shows the default equation of state with an influence radius
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(a) (b)

0 1 2 3 4
Figure 3.5. Improvement of interfacial flux evaluation by stiffening the equation
of state at re = 3dx: (a) default equation of state; (b) stiffened equation of state.

of 3dx, while Figure 3.5(b) shows the stiffened equation of state with the same

influence radius. Reducing the property variation to less than five percent greatly

increases the accuracy of the calculation, as evidenced by the uniform particle

number density maintained in Figure 3.5(b). All future calculations utilize the

stiffened equation of state.

Having developed a general understanding of the method, a sample problem

serves as proof of the validity of the method, as well as adherence of the computer

code to the method.

3.5 Verification

Validation of the method and solver is performed by observing the oscillation

period of a We = 1 droplet (Liu et al., 2014). The analytical period of oscillation
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Figure 3.6. Oscillations of droplet kinetic energy, Kp, observed in the transition
from elliptical to circular shape.

for an inviscid, initially elliptical droplet is tp = 3.63 (normalized by the capillary

time scale), and the oscillation period of droplet kinetic energy, Kd, is half the

droplet oscillation period. The droplet kinetic energy presented in Figure 3.6

shows the calibrated oscillation period to be tp = 3.6 when Re = 25, a close

match to the analytical tp = 3.63. Additionally, good convergence is observed

for the ρp = 12 and ρp = 28 cases, suggesting ρp = 12 to be a sufficient particle

number density.

The computations presented in the following chapter have been generated on

a 256×192 mesh (43 nodes across the droplet). Increasing the mesh resolution by

25% to 320 × 240 (53 nodes across the droplet) results in less than 0.5% change

in volume averaged droplet temperature for Re = 5 and We = 0.5, run until

t = 5. The small change suggests that the 256× 192 grid is sufficient for the low

Reynolds numbers explored here.



Chapter 4

Results

In an effort to reduce the full problem to its simpler components, results appear

in a series of sections of increasing physical complexity. Results for conduction

heat transfer appear first, followed by the hydrodynamic problem, and finally the

fully coupled thermal and hydrodynamic problem.

4.1 Conduction heat transfer

Spatial variations in Prandtl number produce regions of relatively high and low

thermal resistance, and modify the temperature field compared to the uniform

Prandtl number case. A basic exploration of this behavior must be performed

prior to solving the fully coupled problem to isolate behaviors attributable to

property variation alone. The conduction problem serves as a suitable platform

for this exploration.

The initial temperature field defined by Eqn. (2.22) appears in Figure 4.1(a).

Setting the continuous phase Prandtl number and Reynolds number equal to one

and the temperature gradient at the lower boundary equal to −1.5 produces a

47
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(a)

Figure 4.1. Conductive temperature (T ) fields: (a) t = 0; (b) Prd = 1, t = 5; (c)
Prd = 5, t = 5; (d) Prd = 0.2, t = 5.

constant heat flux boundary condition. Temperature fields at t = 5 for Prd equal

to 1, 5, and 0.2 appear in in Figues 4.1(b)-(d), respectively.

Figure 4.1(b) displays the simplest case, with the Prandtl number globally

set equal to one (hereafter referred to as the uniform case). The phase interface,

identified by the black circle, does not modify the one-dimensional thermal bound-

ary layer evolution, as expected. This case has been presented simply to inform

temperature variations attributable to surface tension induced vorticity in later
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Figure 4.2. Volume averaged droplet temperature as a function of Prd in a con-
ductive environment.

sections. More interesting results appear in Figures 4.1(c) and (d), which present

the high and low Biot number cases, respectively.

In adherence to the general assumption of noninteractive dispersed phases in

dilute systems (Michaelides, 2006), perturbations to the thermal boundary layer

only propagate a few radii from the droplet surface. Variations in thermal resis-

tance near the constant heat flux boundary generate local temperature plateaus

in the case of low Prandtl number droplets and depressions in the case of high

Prandtl number droplets. The maximum temperature in the high Biot number

droplet (T ∼ 3) significantly exceeds that of the low Biot number droplet (T

∼ 2), partially because of the difference in Prandtl number, but also because of

the difference in local maximum temperature due to the surface proximity. The

higher maximum temperature in the high Biot number case has clear significance

in boiling applications, but the volume averaged temperature is also important,
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Figure 4.3. High resolution temperature (T ) contours (same color scale as Figure
4.1). Prd = 0.2.

and appears as a function of time in Figure 4.2.

Despite a lower maximum temperature, the low Biot number droplet always

presents a greater volume averaged temperature, Tv, which roughly equals that of

the uniform Prandtl number case. The small difference between the two, particu-

larly prominent at early times, is believed to be caused by the nonuniform initial

droplet temperature (the initial volume averaged droplet temperature is approx-

imately 0.013, rather than 0.0). At t = 5, the difference between the Prd = 0.2

and Prd = 1 cases is 0.8%, which may be attributable to the averaging method,

the interface thickness, or mild under-resolution. The general heating tendencies

may be qualitatively understood by observing Figures 4.1(b)-(d).

In the high Biot number droplet, the temperature distribution displays a con-

cave shape due to bulk energy transfer in the positive y direction. This bias
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Figure 4.4. Droplet temperature variance normalized by Tv.

generates a volume averaged temperature that temporally lags that of the uni-

form Prandtl number and low Biot number cases, which display zero curvature

in their (internal) temperature distributions. A high resolution image of the low

Biot number case appears in Figure 4.3 (the contour labels have been omitted

for clarity), where the internal droplet temperature distribution displays a one-

dimensional character. Low Biot number droplets display this characteristic be-

cause any build up of thermal energy quickly transfers to a different surface of

lower temperature, resulting in a net zero departure from the uniform Prandtl

number case with respect to volume averaged temperature.

Differences between high and low Biot number droplet temperature distribu-

tions arise quantitatively in the droplet temperature variance normalized by the
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Figure 4.5. Temperature (T ) contours for FC-72 (Pr ∼ 12.0) in water (Pr ∼ 7.0).

volume averaged droplet temperature,

s2
T =

∑N
j=1(ViψiTi − ViψiTv)2∑N

j=1 ViψiTv
, (4.1)

which appears in Figure 4.4. All of the cases present a local maximum that results

from the development of the droplet temperature distribution. As the dispersed

phase Prandtl number increases, the time required to achieve the droplet tem-

perature distribution increases, and therefore the time at which the maximum

occurs increases with increasing Prandtl number. The non-zero y intercept indi-

cates the non-uniform initial droplet temperature. As expected, the normalized

temperature variance associated with the low Biot number droplet is an order of

magnitude less than that of the high Biot number droplet. Convective mixing

may accentuate these discrepancies.

A final observation is the presence of a transient heating regime, followed
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Figure 4.6. Instantaneous vorticity (ω) profiles for Re = 1.0 and We = 0.5 at:
(a) t = 0; (b) t = 1; (c) t = 3; (c) t = 7.

by a steady heating rate which appears independent of dispersed phase Prandtl

number. At a given time, the volume average temperature of a high Prandtl

number dispersed phase is lower than that of a low Prandtl number dispersed

phase, but the heating rates are equivalent. This may be perceived as the high

Prandtl number droplet requiring a larger average temperature difference with the

continuous phase to generate the same mean heating rate, which it achieves by an

elongation of the transient heating regime. The Prandtl number ratios presented
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here are fairly extreme, and a more realistic scenario reflecting FC-72 in water

appears in Figure 4.5.

The Prandtl number ratio of FC-72 to water is near unity, resulting in little

deformation of the boundary layer, which evolves at a slower rate than the previous

cases because of the increase in continuous phase Prandtl number from 1.0 to 7.0.

Introduction of convection may change some of these behaviors, suggesting it

prudent to explore the nature of fluid motion independently of heat transfer.

4.2 Isolated hydrodynamic case

Low Weber number droplets tend to retain a near circular shape despite flow

shear. In a boundary layer, this rigidity allows communication between relatively

high and low velocity fluid and disrupts normal boundary layer development.

Understanding this behavior prior to solving the full problem allows for general

prediction of convective behaviors with the addition of heat transfer.

The vorticity field of a boundary layer at different times appears in Figure

4.6, where We = 0.5 and Re = 1.0. The droplet is nearly ridged, and it has

been determined that further decreasing the Weber number has little influence on

the solution. Early development of the boundary layer appears in Figure 4.6(b),

where the droplet retains a near-circular shape and disrupts the boundary layer

development. Similar to the conduction problem, the region of disruption remains

relatively localized near t = 0. Eventually, near t = 7, the disruption region

grows in size due to diffusion and the continuous reduction of velocity gradients.

Disturbances propagate greater distances near the wall, which may result from

low velocities and a lack of momentum in the near-wall region.

Increasing the Reynolds number to 5 has an expected influence on the solution,
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Figure 4.7. Instantaneous vorticity (ω) profiles for Re = 5.0 and We = 0.5 at:
(a) t = 0; (b) t = 1; (c) t = 3; (c) t = 10.

as shown in Figure 4.7; the boundary layer develops more slowly in time, allowing

advection to assume a more significant role. The vorticity generated inside the

droplet serves as a mixing mechanism and a primary source of convection in the

presence of heat transfer.

Relative velocity between fluid at the top and bottom of the droplet generates

a clockwise spinning motion observable in the vertical velocity component shown

in Figure 4.8(a). The rotation rate is roughly an order of magnitude less than
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Figure 4.8. Velocity components for Re = 5.0 and We = 1.5: (a) vertical compo-
nent, v; (b) horizontal component, u.

the gross advection speed, and therefore does not obviously present itself in the

horizontal velocity component in Figure 4.8(b). Rotation is expected to have little

influence on the droplet heating rate at the low Reynolds numbers explored here,

but would become a significant mixing mechanism at large Reynolds numbers.

In the large Reynolds number regime where diffusion does not quickly smooth

gradients, droplet rolling constitutes a mode of internal droplet circulation notably

different from that observed in droplets placed in cross flow. Instead of two

counter-rotating vortices inside the droplet, the droplet itself rotates relative to

the continuos fluid, and a boundary layer structure appears to maintain velocity

continuity.

Figures 4.8 and 4.9 show the tendency for increased deformation at increasing

Weber numbers. In Figure 4.8 the Weber number is 1.5, and the droplet slightly

departs from a circular shape. Further increasing the Weber number to 3, as in

Figure 4.9(a), allows the droplet to obtain an oblong shape, and the We = 5

case in Figure 4.9(b) shows even more deformation and inclination. Displacement
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Figure 4.9. Interface deformation observed in the vorticity (ω) field at Re = 5
and: (a) We = 3; (b) We = 5.

of the droplet from the bottom surface due to the Magnus force does appear to

a significant degree in any of the cases presented because of the short duration

and the slow rotation rate compared to the characteristic velocity. Observation

of significant Magnus force requires longer run times.

Measurable displacement due to the Magnus force appears in Figure 4.10,

where the droplet location appears at times t = 0 and t = 20. Initially, the

distance between the droplet and the wall (measured from the bottom of the

droplet to the wall) is 1.0, but increases to 1.17, amounting to a 17% increase in

wall/droplet separation distance. The droplet continues to rise in time, provided

the continued presence of shear. With the introduction of heat transfer, this

separation serves to distance the droplet from the heated surface, and is expected

to reduce droplet heating rates.
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Figure 4.10. Displacement of the droplet from the lower surface by the Magnus
force at Re = 5 and We = 0.5. Blue and red indicate the continuous and dispersed
phases at t = 0, respectively. The dashed line denotes the phase interface at
t = 20.

4.3 Coupled thermal/hydrodynamic case

To begin once more with the simplest case, the uniform Prandtl number condition

(Pr = 1 in both phases) appears in Figure 4.11(a) for Re = 1 and Figure 4.11(b)

for Re = 5. The vorticity generated by the droplet produces a clockwise swirling

of the internal temperature distribution that is more prominent in the Re = 5

case, but does not appear to have a profound influence in the low Péclet number

regime in general. A qualitative comparison of Figures 4.11 and 4.1(a) suggests

the heating rate to be relatively unaffected by the inclusion of convection, and

similar conclusions may be drawn about the high and low Biot number cases at

Re = 1, appearing in Figure 4.12(a) and (b). Quantitatively, volume averaged

temperature differences between the conduction and conduction plus convection
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Figure 4.11. Temperature (T ) fields for Prd = 1 and: (a) Re = 1, t = 5; (b)
Re = 5, t = 10.

cases have been deemed negligible (< 1%) for Re = 1, provided the Magnus force

does not separate the droplet from the heated surface. Eventually, the Magnus

force separates the droplet from the surface, and this heating similarity no longer

applies.

Convective behavior is most prominent in the high Biot number droplet at

Re = 5 (Figure 4.12(c)), where relatively cool fluid visibly travels from the top

of the droplet along its leading surface because of droplet rolling. This internal

convection cannot be observed in the low Biot number droplet for either Reynolds

number because of high diffusivity (small Péclet numbers), but all cases present

an asymmetric exterior temperature profile.

Although the droplet heating rates for conduction and convection cases are the

same for early times, the droplet eventually displaces from the heated surface due

to the Magnus force, as observed in Figure 4.10. Figure 4.13 shows the volume

averaged temperature for the conduction, We = 0.5, and We = 5.0 cases at
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Figure 4.12. High and low Biot number temperature (T ) fields: (a) Prd = 5,
Re = 1, t = 5; (b) Prd = 0.2, Re = 1, t = 5; (C) Prd = 5, Re = 5, t = 10; (d)
Prd = 0.2, Re = 5, t = 10.

Re = 5. A clear reduction in heating rate for the convective cases due to increased

droplet/surface displacement occurs as time progresses. The more ridged droplet

(We = 0.5) heats more quickly than the deformable droplet (We = 5.0), but the

difference is small, and an obvious explanation does not present itself (it could be,

perhaps, attributable to the difference in location of the droplet center of mass,

or to small differences in mixing). In general, the volume averaged heating rate

does not depend strongly on deformation, in agreement with Dai et al. (2002).
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Figure 4.13. Influence of the Magnus force on droplet heating. Re = 5.



Chapter 5

Discussion

The results presented in Chapter 4 inspire a method for predicting the boiling

entry length and physically inform dispersed phase modeling in Euler-Lagrange

simulation of droplets in channel flow. This chapter expounds upon both of these

topics.

5.1 The boiling entry length

The approach used to to generate the results in Chapter 4 does not allow for

a robust prediction of the boiling entry length for real applications, but rather

provides a means to observe the heating process, which allows for an informed

simplification of the problem. A useful prediction of the boiling entry length may

be constructed by coupling observations garnered from the simulations with the

experimental results of Roesle (2010).

In measurements of dilute emulsion pool boiling (FC-72 in water), Roesle finds

significant superheat is required to incite boiling. The saturation temperature of

FC-72 is 56◦C, but Figure 5.1 shows pool boiling not only requires approximately
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Figure 5.1. Heat transfer from a wire in pool boiling of a dilute FC-72 in water
emulsion (Roesle, 2010).

50◦C of super heat, but also depends on the farfield temperature.1 Another notable

feature of Figure 5.1 is the significant promotion of heat transfer at the onset of

dispersed phase boiling. Harnessing this advantage for use in applications would

be simplified by a method for predicting the boiling entry length; the results

presented in Chapter 4 allow for the development of a first-level prediction tool.

Despite the intricacies of the cases described in Chapter 4, the temperature

within the droplets does not depart significantly from the temperature of the

boundary layer had the droplet been absent. Indeed the temperature distribu-

tions of each droplet may be different, but in a first analysis one may consider

the boundary layer temperature without the droplet as a good prediction of the

1 Figure 5.1 appears here without modification from the original source. The equation numbers,

which reference standard fit equations, should be ignored, as they do not pertain to this thesis.
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droplet temperature, particularly for dilute systems with dispersed to continuous

phase Prandtl number ratios near one. The highly diffusive liquid/liquid near-

wall region explored in this analysis allows for the temperature equivalency that

is not observed in liquid/gas systems with high variability in Prandtl number

and significant relative velocities (such as the problems historically solved with

droplet heat transfer models). Changes in Prandtl number ratio, Reynolds num-

ber (provided the Reynolds number remains small), and Weber number do not

significantly degrade the quality of the temperature equivalency assumption. As

the Weber number increases and the Prandtl number ratio approaches unity, the

quality of the assumption improves.

Coupling the assumption of droplet/continuous fluid temperature equality

with known superheat requirements allows for prediction of the boiling entry

length in microchannels with known temperature distributions. Superheat re-

quirements for pool boiling have been presented, but the presence of nucleation

sites in channel flow may eliminate a superheat requirement altogether. Future

work must justify this claim. For now, a solution is sought to correlate a temper-

ature rise (relative to the inlet temperature) to a travel distance along the heated

surface.

The classical advection/diffusion problem in a tube provides a reasonable

medium to demonstrate a solution based on the dispersed/continuous phase tem-

perature equality assumption. One solution may be constructed by imposing

a fully developed velocity profile and a constant surface heat flux; the former

justified by the presence of an unheated starting length associated with trans-

porting the fluid from a reservoir to the heated surface, and the latter justified

by the nature of steady state electronic component heat dissipation with negli-

gible end effects. Granted, real application does not identically satisfy either of
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these assumptions, but this prediction of the boiling entry length serves to inform

component design from a first level perspective.

Proper nondimensionalization of channel flow requires scaling both the stream-

wise and crosstream features to the same magnitude. The appropriate length scale

for the axial direction accounts for diffusion,

z∗ = 4 (z/D) /RePr, (5.1)

where z is the axial displacement from the heated inlet, and D is the dimensional

tube diameter. The radial direction scales by the tube radius. With these scalings,

Tw − T0

qwR/k
= 2z∗ +

11

24
+
∞∑
n=1

Cnexp
(
−λ2

nz
∗/2
)
R1n(1), (5.2)

where Cn are the expansion constants , λ2
n are the eigenvalues, and R1n(1) are

eigenfunctions, which may be retrieved from Burmeister (1993). The wall tem-

perature rise, Tw − T0, corresponds to the temperature rise of the most rapidly

heated droplets as a function of z∗, assuming temperature continuity and the pres-

ence of droplets very near the wall. A parametric solution to Eqn. 5.2 is sought

to describe z∗ as a function of qwR/k, to account for thermal boundary condition

variations, as well as the temperature rise, Tw−T0, to absorb the saturation tem-

perature and the inlet coolant temperature. Reasonable ranges and magnitudes

for these parameters follow from considering the fluid properties of water, the heat

fluxes achieved in microchannels (10−100 W/cm2), and microchannel dimensions

(50− 500 µm in hydraulic diameter). The solution of Eqn. 5.2 encompassing this

parameter space appears in Figure 5.2.

Knowing the inlet and saturation temperatures, Figure 5.2 may be used either

to select the Reynolds number required to achieve a desired boiling entry length,
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Figure 5.2. Boiling entry length in a round tube for fully developed flow and
constant wall heat flux.

or to predict the boiling entry length associated with a given Reynolds number.

The required travel distance, z, decreases with decreasing temperature rise and

decreasing Péclet number for a fixed heating parameter. These relations are rea-

sonable because lower Péclet numbers associate with dominant diffusion, and a

greater temperature rise requires longer residency and increased travel.

As observed in the results of Chapter 4, a linear heating regime follows a non-

linear heating regime of duration controlled by the heating parameter, qwR/k.

This behavior presents itself in Eqn. (5.2) by virtue of the decaying exponential,

which leaves only the constant and linear terms after its decay. Physically the be-

havior follows from the thickening of the boundary layer, which occurs differently

for different geometries and boundary conditions.
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Figure 5.3. Boiling entry length for (a) fully developed and (b) plug flow in a
round tube with constant heat flux.

A solution similar to that presented in Figure 5.2 can be generated for nu-

merous cases: constant wall temperature, spatially variable wall temperature, a

developing hydrodynamic boundary layer, and many more. The plug flow solu-

tion solution in a pipe with constant wall heat flux, accompanied by the fully

developed solution (Figure 5.2), may be used to bound the range of boiling entry

lengths realized by different hydrodynamic behaviors, and is given by,

Tw − T0

qwR/k
= 2z′ +

1

4
− 2

∞∑
n=1

exp (−λ2
nz
′)

λ2
n

. (5.3)

The parametric solution of Eqn. (5.3) appears in Figure 5.3, along with the cor-

responding solutions from Figure 5.2. The plug flow solution requires a greater
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travel distance to achieve the same temperature rise, but in reality the travel

distance falls somewhere between the two solutions presented in Figure 5.3. Per-

cent errors in the boiling entry length attributable to improperly prescribing a

hydrodynamic condition decrease with increasing temperature rise.

The most accurate solution for a given problem clearly depends on which

conditions best emulate reality, but any analytical solution will present errors as-

sociated with the transient nature of the boiling front, axial heat conduction in the

wall, and other sources of error. Further exploration of these behaviors is required

to develop more refined approximations of the boiling entry length. Regardless

of future improvement, the fundamental assumption (continuous/dispersed phase

temperature equality) used to develop Figures 5.2 and 5.3 is well supported by the

simulation results of Chapter 4, and their ease of use make them valuable tools.

5.2 Implications for droplet heat transfer in bound-

ary layers

Performing an Euler-Lagrange simulation of a dilute system requires decisions

regarding which aspects of the problem physics to include in the dispersed phase

modeling. The results presented in Chapter 4 provide insight into which aspects

should be considered when modeling dilute systems in a microchannel.

In one-way coupled Euler-Lagrange calculations, the continuous phase evolu-

tion does not depend on the dispersed phase, but the dispersed phase entirely

depends on the continuous phase. The results presented in this thesis generally

support this type of approach for droplet boundary layer flows, as the droplet

influence does not propagate far from the droplet surface. One feature of this

coupling deemed entirely necessary based on the present results is inclusion of
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the Magnus force, which significantly influences the heating rate of droplets in

shear, as shown in Figure 4.13. If the Magnus force is neglected, droplet heating

will be accurate for early times, but will over-predict the heating rate and droplet

temperature as time progresses.

Though the droplets may be small, the high temperature gradients present in

the near-wall region of a microchannel defy the thermally lumped assumption,

except for cases when the dispersed phase Prandtl number is small compared

to the continuous phase Prandtl number. Typically, the continuous phase has

a greater thermal diffusivity than the dispersed phase (as in the case of FC-72

in water). This relation generally applies because the selection of a dispersed

phase depends primarily on its boiling point, while the selection of a continuous

phase depends primarily on its robustness as a heat transfer fluid. Regardless,

a good approximation of the droplet temperature may be obtained by taking

the continuous phase temperature at the droplet center, assuming the droplet

is absent. In a one way coupled Euler-Lagrange simulation, this assumption is

natural because the droplet has already been assumed absent. For increased

accuracy, the conduction problem may be solved within the droplet, as in the

effective conductivity model. As suggested by the results in Chapter 4, the full

Navier-Stokes solution in the droplet differs to a small degree from the conduction

problem for small Péclet numbers.

5.3 Conclusions and future work

Simulation of near-wall droplet heating has been performed by means of the La-

grangian volume of fluid interface capturing methodology. An approach for pre-

dicting the boiling entry length has been developed, and the simulation results
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provide general modeling perspective for near-wall droplet heating.

In the highly viscous near-wall region, internal circulation typically associ-

ated with droplet heat transfer is nearly absent. As the Péclet number increases,

droplet rolling caused by the velocity difference at the upper and lower surfaces

of the droplet becomes more prominent. In the low Reynolds number near-wall

regime, this rolling does not significantly influence the droplet heating rate, nor

does the droplet presence significantly modify the boundary layer development

for Prandtl number ratios near one. For other Prandtl number ratios, the tem-

perature field closely adheres to the conductive field for small Reynolds numbers.

Lastly, droplet deformation reduces perturbations to boundary layer development

compared to the case of rigid droplets, making low Weber number droplets the

most influential in boundary layer development.

Prior to applying the results of this analysis to design, a few areas of future

work must be addressed, while others may simply require consideration:

• An experiment must be performed to validate the predicted boiling entry

lengths presented in Figures 5.2 and 5.3.

• Although Chapter 4 encompasses the expected Péclet number range for the

most rapidly heated droplets in a microchannel, it is desirable to expand

the parameter space to greater Péclet numbers. The greater Péclet number

range is required to describe the boiling of larger droplets in larger channels.

• Droplet-droplet interactions have been neglected in this analysis by invok-

ing the dilute assumption, but an exploration of these interactions would

further inform Euler-Lagrange modeling. It would be important for these

interactions to be studied in a three-dimensional, spatially developing envi-

ronment.
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• The dynamics associated with droplet-wall collisions should be described in

the context of the boiling entry length.
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