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Abstract 
 

Many improvements have been made in developing better prefetchers. Improvements in 

prefetching usually starts by coming up with a new heuristic. The static threshold values 

for prefetching modules might become obsolete in near future. Given the huge amount of 

hardware performance counters we can examine, we would like to find out if it is 

possible to derive a heuristic by applying machine learning to the data we routinely 

monitor. We propose an adaptive solution that can be implemented by monitoring the 

performance of system at run-time.  

 

Machine learning makes system smarter by enabling it with ability to make decisions. So 

for future complex problem instead of running lot of experiments to figure out optimal 

heuristic for a hardware prefetcher we can have the data speak for itself, and the machine 

will choose a heuristic that is good for it. We will train the system to create predictive 

models that will predict prefetch options at run-time.  
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Chapter 1 Introduction 
 

The first single chip microprocessor was invented in 1970s. Since then there has been 

tremendous growth in field of microprocessors. With every generation, the processor 

performance is improving. Each new processor generation tries to tackle and overcome 

different bottleneck components. In the earlier decades the processor performance was 

underwent rapid growth compared to memory performance. This resulted in a huge 

performance gap between processor and memory. Fig 1-1 describes the trend in 

performance boost over years for processor and memory.  

 

 

Figure 1-1 Performance gap between process and memory over years [1] 

 

Current generation processors take only couple to cycles to execute an operation but the 

memory access takes tens of cycles; thereby degrading the performance. Thus the system 

speed will still be limited because of memory. For years, research has being conducted to 

match memory speed to processor speed. There are many techniques working in the 

background to minimize this memory latency. Prefetcher is one such technique that is a 

very promising alternative to bridge the gap between processor and memory 

performance. 
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Prefetching works in the background to ensure that memory does not become a 

bottleneck parameter. A prefetcher preloads the data accurately and timely before the 

data is requested by the program. This reduces or completely eliminates the memory 

latency for demand requests. Prefetching does not require the program to have seen the 

data, so it can eliminate the compulsory cache misses. Thus reducing miss rate and miss 

latency. Most of the prefetchers initiate a prefetch request when they see a demand miss 

in cache. Along with the address requested, the prefetched data is also brought into the 

cache. These prefetch requests are brought into the cache with a lower priority, so that 

preference is given to demand requests. Over years many prefetching approaches and 

heuristics have been proposed and implemented. The present lot of prefetching 

algorithms track or profile the access pattern of the program to make best possible 

decision for prefetching data/instruction. The main objective of prefetching is to correctly 

predict the access stream of the program and bring the data closer to CPU before it is 

requested by the program. As we know that the phase of the workload keeps on changing 

we cannot use the same prefetch option throughout the course of the workload. With 

access pattern profiling or by establishing the miss pattern we can predict the access 

stream of workload and issue prefetchers accordingly.  

This thesis presents a new approach for prefetching data/instruction into cache. 

Primary contribution of this thesis is to eliminate the need to have fixed heuristics for 

prefetchers. It uses machine learning techniques to decide heuristics for prefetchers on 

interval basis. Based on the hardware counters it decides the heuristics for prefetchers. 

These counters are usually collected on interval basis. Hence the prefetcher heuristics can 

be different during different intervals. Machine learning techniques are very effective in 

making the system smarter and they enable the system with decision making capability. 

My efforts have been along the same line. With all the performance counters collected at 

every interval, we train the system using these counters to make better prefetch decision 

on its own. 
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Chapter 2 Related Work 
 

As described in previous chapter prefetching is an important concept which helps bridge 

the gap between processor and memory. This chapter covers basics of prefetching 

technique, conventional prefetchers, and some current prefetching algorithms proposed.   

A good prefetcher needs to take into account few things as described in paper [2]. 

Prefetcher module should predict the access pattern of the program correctly otherwise it 

will bring in lot of useless data which the program might not use. This will result in 

wastage of expensive resources like memory bandwidth, cache or prefetch buffer, energy 

consumption etc. This phenomenon is called cache pollution. Hence the prefetcher 

module needs to accurately predict the data that the program might request in the near 

future.  

Along with accurate prefetching, the initiated prefetch requests should be timely.  

If the data is prefetched too early then it might not be used before it is evicted from the 

cache. Also if the prefetch request is issued late then it might not hide the entire memory 

latency. The data needs to be present in the cache before the processor issues the memory 

request.  The timeliness of the prefetcher can be improved by making the prefetcher 

aggressive i.e. prefetching data far ahead in the program’s access stream. Prefetching at 

software level employs machine learning techniques to figure out when to start 

prefetching and from where.  

The prefetch requests could be stored in cache or in separate prefetch buffer. If it 

is stored in cache then due to cache pollution we may lose some demand data. If prefetch 

buffer is used then there would be some design considerations like size of buffer, 

placement of buffer in memory hierarchy and the coherency in the buffer which needs to 

be taken care of. Thus implementation of it will be difficult.  

The destination where the prefetched data is stored also makes a difference. If 

data is brought directly into is L1 cache from memory, cache pollution will have a greater 

impact on performance due to its smaller capacity. At L1-L2 cache boundary we can 

have a highly accurate conservative prefetcher and an aggressive prefetcher on last level 

cache. 
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 The state of the prefetched data is also important, i.e. whether to treat prefetch 

blocks as demand blocks or not? With LRU policy the prefetched data will be placed at 

the MRU position. It can also be placed at the LRU position if we have some idea about 

the accuracy of prefetcher. For higher accuracy prefetches we can place them in MRU 

position and for less accurate prefetches we can put them in LRU position. Prefetched 

data placed at LRU position can minimize the effect of cache pollution. The paper [10] 

explains some of the concepts of LRU and MRU policy 

 

2.1 Different types of prefetching technique  

Prefetching can be done either at software level or hardware level. Software prefetches 

are inserted in the code by programmer or compiler. Hardware prefetches are issued 

when you see a demand miss in cache and data is prefetched based on the heuristic of the 

hardware prefetcher.  

 

2.1.1 Software Prefetching 

Instruction Set Architecture provides some prefetching instructions. Software prefetching 

utilizes this feature. In software prefetching the programmer or the compiler inserts these 

prefetch instructions. It is programmer's responsibility to add these prefetch instructions 

to improve the performance of program. Paper [3] talks about software controlled data 

prefetching. Software prefetching works well for programs that exhibit regular access 

pattern. But it takes up some execution bandwidth of the system. With software 

prefetching it is difficult to predict timeliness of prefetch request. The compiler does not 

have feedback about the latency of memory accesses. So where to insert the prefetch 

instruction becomes an important decision. The prefetch instructions can be inserted for 

every load access but that will increase the memory and execution bandwidth 

consumption. With software prefetching we can have profiler to profile the code and 

determine the loads which are likely to miss. But this profiled input data set might not be 

representative. It is difficult to do software based prefetching on pointer based data 

structure, but with compiler optimizations and for regular access patterns software 

prefetching is very beneficial.  
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2.1.2. Execution based prefetcher 

This type of prefetching could be implemented in software or hardware. This approach 

uses a separate thread to prefetch data for the main program. This thread can be 

dynamically generated by software or hardware. Run-ahead execution can be thought of 

execution based prefetcher [9]. A very simple example of this type of prefetcher can be a 

main program which has a helper thread or prefetch thread inserted in between the code. 

This thread comprises of instructions which are necessary to predict the address required 

for prefetcher. When the main program reaches this instruction of launching the helper 

thread or prefetch thread, it will execute the helper thread and helper thread will quickly 

compute the address required for prefetch before the main program reaches the point 

where it is going to generate cache miss for that data. 

 

2.1.3 Hardware Prefetching  

Hardware prefetcher operates in the background without programmer’s intervention. It is 

triggered when cache miss occurs. Based on the heuristics provided to the hardware 

prefetcher it will prefetch cache lines. Some of the hardware prefetchers monitors the 

subsequent cache misses and prefetch data based on the stride pattern exhibited by the 

program. It is micro-architect’s responsibility to design a prefetching algorithm which 

will accurately and timely generate the prefetch requests. Some of the conventional 

hardware prefetchers and heuristics are mentioned below.  

 

2.1.3.1 Next ‘N’ Line prefetchers: 

It is the simplest form of hardware prefetching. It always prefetches next ‘N’ lines after 

demand misses. It assumes that the program exhibits spatial and temporal locality. So if 

the program is making a request for address 'A' then in future it will request for address 

closer to A. The value of N will determine the aggressiveness of the prefetcher. The term 

aggressiveness is described in the section 2.2.2. For workloads exhibiting irregular 

patterns this prefetching scheme might not work and result in performance degradation 

rather than improvement [4]. 
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2.1.3.2. Stream Prefetchers: 

A stream prefetcher unlike next line prefetcher is a confirmation-based prefetcher. A miss 

at address A will not result in prefetch request. This address will be recorded. The stream 

prefetcher will now begin to monitor if the program is making a request for address at 

some offset from A. Let us say that the program then sees a memory request A+1. It will 

still not issue prefetch request as there is not enough evidence that this is the true stream.  

Only after A+2 is seen, the stream is fully confirmed and prefetching will start. For 

regular access pattern the stream prefetcher works better but for shorter streams it does 

not work well due to the wait required to confirm the stream. Also for irregular access 

patterns like indirect array accesses, linked data structures, multiple regular stride, 

random patterns correlation based prefetchers, content directed prefetcher, pre 

computation or execution based prefetchers [5, 6, 7] works well instead of stream 

prefetcher. 

 

2.2 Performance metrics that can be used to evaluate goodness of a prefetcher 

Prefetcher impacts performance of the system. A prefetcher can improve the performance 

by huge margin or it can even degrade the performance. The metrics listed below helps us 

understand if a prefetcher is going to improve the performance or not.  

 

2.2.1 Prefetch Accuracy 

It is a measure of how accurately the prefetcher can predict the access stream of the 

program. Highly accurate prefetchers completely capture the access pattern of the 

program. Access pattern of the program can be predicted by looking at the previous 

access stream. It is defined as out of the total prefetches issued, number of prefetches 

used by the program. This ratio should be close to 1. 

 

2.2.2 Aggressiveness of Prefetcher 

Aggressiveness of the prefetcher means how far ahead your prefetcher can issue 

prefetches. The prefetch distance will determine the aggressiveness of the prefetcher. 

Aggressive prefetcher will prefetch lines which are far ahead from the current demand 
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miss. This can result in lower accuracy due to two reasons. First, it is difficult to predict 

accesses far ahead in the program. Second, for an aggressive prefetcher the data might be 

brought into cache too early and it might get evicted before it is used. So we need a trade-

off between aggressiveness of prefetcher and its accuracy. If the prefetcher is not 

aggressive enough then the prefetch requests might be on its way to cache. Hence we 

might not be able to hide the entire memory latency.  

 

2.2.3 Coverage  

Coverage of a prefetcher means out of the total number of compulsory or demand cache 

misses, number of cache misses eliminated by the prefetcher. For higher coverage you 

need an accurate prefetcher which will predict the addresses correctly also you need an 

aggressive prefetcher so that the data is already present in the cache.   

 

2.2.4 Timeliness of Prefetcher 

Timeliness of Prefetcher is defined as, out of the total used prefetched lines number of 

prefetches present in the cache before the compulsory miss occurred. For a timely 

prefetcher you need an aggressive prefetcher so that it will always stay ahead in the 

processor’s access stream.  

 

2.2.5 Cache Pollution 

To accommodate the prefetched data in cache the eviction policy knocks out some of the 

data from the cache. If these prefetches are inaccurate we are knocking out data from 

cache to make space for this useless data. It might be evicting out some useful stuff to 

accommodate this data that might not be referenced. This is called as cache pollution. 

Aggressive prefetchers bring data to cache by looking far ahead in the access stream but 

due to early prefetch it causes cache pollution.  

 

2.3 Current Prefetching Algorithms 

Recent hardware prefetching algorithms try to monitor access pattern of the program. 

They also try to monitor the effect of it on actual hardware. If the prefetching scheme is 

hampering the performance of the system then it will either detach the prefetching model 
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or it will alter the prefetching scheme to tune it to benefit the access pattern. Listed below 

are the two modern prefetching algorithms considered. Feedback directed prefetching [8] 

and Sandbox prefetching [23].  

 

2.3.1 Feedback Directed Prefetching [8] 

Aggressive prefetchers look far ahead in the program access stream. If we choose an 

aggressive prefetcher we have to compromise on accuracy. We need to fine tune the 

prefetching aggressiveness based on the access stream and performance of that 

prefetcher. Figure 2-1 shows the effect of aggressive prefetcher on SPECcpu workloads. 

Ammp and applu workload’s performance degrades with aggressive prefetchers whereas 

rest of the workloads show increase in IPC value [8]. Hence based on the premise of the 

paper [8] we need to tune the aggressiveness of the prefetcher based on its effect on 

performance. 

Feedback directed prefetching [8] reduces the negative performance and 

bandwidth impact of aggressive prefetching while preserving the large performance 

benefits provided by aggressive prefetching. It maintains performance counters like 

prefetch accuracy, prefetch latency and cache pollution which tracks the impact of 

different prefetch options. There are five levels of aggressiveness described in the paper 

[8] 

1. Very conservative prefetching - Prefetch distance 4 and prefetch degree 1 

2.  Conservative prefetching - Prefetch distance 8 and prefetch degree 1 

3. Mid-level prefetching - Prefetch distance 16 and prefetch degree 2 

4. Aggressive Prefetching - Prefetch degree 32 and prefetch degree 4  

5. Very aggressive prefetching - Prefetching Distance 64 and prefetch degree 4 

At the end of an interval these counters are computed. Using static threshold values and 

these performance counter values, aggressiveness of the prefetcher is calculated. Figure 

2-2 below shows the performance of FDP prefetcher.  
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Figure 2-1 Performance of various workloads with different prefetching aggressiveness [8] 

 

 

Figure 2-2 Performance of various workloads with various prefetching mechanism [8] 

 

2.3.2 Sandbox Prefetching Algorithm: 

Sandbox prefetcher [23] evaluates various prefetching options without affecting the 

actual cache contents. It has a storage structure which tracks the access stream of the 

workload. If a prefetching option has potential to benefit the performance then that 

particular prefetch option is turned on. It uses threshold approach to select the potentially 
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accurate prefetch option. Sandbox prefetcher improves performance by 47.6% compared 

to no prefetch and 18.7% compared to Feedback Directed Prefetch [8] and 1.4% 

compared to Access Map Pattern Matching Prefetcher [13].  

 Sandbox Prefetcher does extremely well in computing the accuracy of the 

prefetching options and detecting streams within the workload. But the only limitation is 

the static threshold. In the paper [23] the author has used a score of 512 to turn on 2 

highest scoring prefetchers, score of 768 to turn on three highest scoring prefetchers and 

a cut-off score of 256. The performance is sensitive to these score values.  

 I have replicated sandbox prefetching algorithm in which the score value used is 

the prefetch accuracy. The detailed implementation of sandbox prefetcher is in chapter 5. 

The graph shown below fig 2-3 is the performance (CPI) of various workloads with 

different threshold values (cut off scores).   

 

Figure 2-3 Performance of different workloads when subjected to different threshold value 

 

Figure 2-3 comprises of different workloads from desktop to server space. From 

the graph you can see that cactusADM and GemsFDTD do not have a lot of performance 
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improvement by tuning the threshold value. Whereas libquantum and mcf are greatly 

affected by threshold value selected. CactusADM has an MPKI of 14.25 and GemsFDTD 

has MPKI of 27.54. They have potential to benefit from prefetching but the threshold 

values might be too high from them. Libquantum on the other hand benefits from lower 

threshold value. Mcf has almost same performance for threshold of 0.6 and 0.5 but as you 

lower the threshold to 0.4 you see performance improvement. Some threshold value 

might benefit some workload but it might not benefit other workloads.  

 

2.4 Conclusion 

There are various other prefetching algorithms that we saw above which track the access 

stream of workload and choose prefetch option. But with every improvement the 

architect will be faced with the same problem of choosing the heuristic.  This thesis 

presents an approach which eliminates the need to fix heuristics. It lets the system decide 

for itself which prefetching options to choose.  
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Chapter 3 Experimental Setup 
In the previous chapter we discussed few of the latest prefetching algorithms. It is 

difficult to prove the performance impact of these prefetchers on actual hardware. We 

require sophisticated software tools to do performance prediction for these prefetching 

algorithms. There are various simulators like Rsim, Simics, Simple scalar, Asim etcetera 

which could be considered for performance prediction. I am using Simics: a full system 

simulator [11] for performance prediction. Simics runs unmodified firmware, operating 

system kernels, and device drivers.  

 

3.1 Simics: A full system simulation Platform [11]  

Simics tries to strike balance between accuracy and performance. It is designed to run 

unmodified operating systems like linux, solarsis, and windows XP etcetera. With this 

feature we can bring in workloads inside the Simics environment and observe the 

performance of these workloads on the underlying processor model integrated inside 

Simics. Simics simulates processor at instruction-set level, including the full supervisor 

state [11]. Currently Simics supports processor models for UltraSparc, Alpha, x86, x86-

64(hammer), PowerPC, IPF, MIPS and ARM [11]. Simics has no impact on the target 

software but the user has opportunity to modify the underlying hardware modules to test 

the performance of target systems on them. Figure 3-1 shows how it simulates various 

target systems based on different processor architectures. The architecture considered for 

the thesis is Nehalam x-86 IA processor model.  

One of the most important features of Simics is its determinism and repeatability. 

This deterministic behavior is achieved by the use of checkpoints which is explained in 

section 3.4.1. Simics supports various APIs which makes Simics favorable amongst 

various computer architects. Some of the features supported by Simics are listed below. 

 Fast CPU models: Memory stalling, Cache analysis, instruction trace output for 

post processing. Simics is modeled at instruction set level [12]. Each instruction is 

atomic and takes one cycle for execution.  
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 Simulation Infrastructure: Simics supports breakpoints and checkpoints, scripting, 

trace etcetera [12]. 

 

Figure 3-1 Simics simulation of target systems based on several processors architecture [11] 

 

3.2 Cache behavior modelling using Simics 

To evaluate the performance of prefetchers we need cache module to simulate the 

prefetching algorithm. Default workspace generated by Simics does not provide cache 

module. It uses its own memory system to obtain high speed simulation. We need to 

install cache modules into our workspace to model cache behavior. Simics comes with 

cache profiling and cache timing feature. It supports g-cache which is the standard cache 

model [14]. It handles one transaction at a time and all operations are performed in an in-

order fashion. The cache returns the sum of all the stall times reported for each cache 

level.  
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Simics 4.6 version was used as the simulation platform. It supports in order 

execution. Once this cache module is integrated all the memory requests issued by the 

processor will go through g-cache. The cache descriptions files also known as the 

configuration files for cache help us to define each cache object. These files specify some 

of the important cache parameters. Default cache description file is listed in the figure 3-2 

as shown below. 

 

Figure 3-2 Cache object description [14] 

 

Using these cache objects we can instantiate entire cache hierarchy. Figure 3-3 describes 

the cache hierarchy. It specifies sizes of each cache along with the latency values 

associated with each cache level. Simics module does not support memory module. 

Inside trans-staller we can build DRAM structure. For my thesis I have used trans-staller 

to service memory request instead of DRAM. Due to trans-staller all the memory requests 

will have same latency value. Advantage of this implementation is memory design gets 

simplified with a disadvantage that we cannot model memory behavior.  

The functionality of Simics can be extended by user-written modules. We can 

introduce models like replacement policy, prefetcher etcetera in the cache module. After 

implementing the user-written modules we can integrate them here with cache. I have 

introduced prefetching feature in g-cache.  
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Figure 3-3 Cache hierarchy simulated in Simics 

 

3.3 Prefetching Feature 

The prefetching module can be attached to any cache level. A stream prefetcher is usually 

implemented on mid-level cache so that it can track the miss pattern. Aggressive 

prefetchers are usually attached to last level cache due to their inaccurate behavior. Last 

level cache have high capacity and hence inaccuracy due to aggressive prefetchers can be 

tolerated. The prefetching module is attached to mid-level (L2) cache. It is not 

compulsory to attach prefetcher module on L2. Prefetch activity is triggered by L2 cache 

miss. The number of lines prefetched into L2 and the offset of the prefetched line 

depends on the heuristics of the prefetch algorithm. The implementation of prefetch 

algorithm is described in Chapter 4.  
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3.4 Moving workloads to Simics 

To characterize the performance of underlying hardware we need to test it on various 

workloads. With Simics we can simulate the target system (unmodified binaries of 

operating system) and create checkpoints. The target system will be running the 

workload. A checkpoint has set of files which save the complete state of simulation. Thus 

for the target system at time ‘A’, if we create a checkpoint then, when the checkpoint is 

loaded the target system will start from the same time instant A. Thus to test the 

performance of the underlying processor model we need checkpoints of various 

workloads. To create these checkpoints of various workloads we first load the target 

system using Simics. Next we move workloads into the target system. After that we run 

the workloads and bring them to steady state. Once the workload reaches steady state we 

can create checkpoints. 

 

3.4.1 Creating Images and Checkpoints of target system  

The first step is to create the target system or load the target system. The target system 

could be an ubuntu system or red hat system or any other operating system. To move 

workloads into target system we first need to boot up the target system using Simics. 

Simics supports machine scripts which loads and configures the target system. In these 

scripts we can specify the location of the disk image which can be an iso image or craff 

image. We can also specify machine configuration like the number of processors, 

memory capacity etcetera. Second step is to connect the target system to the host 

computer. The host computer already has the benchmark downloaded. Once the 

connection between them is established transfer the benchmark files. On the target 

system we can now run the workload. Once the steady state is achieved we can create 

checkpoint point. After checkpoint is saved we can use this checkpoint to test the 

processor model.  
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3.5 Workloads 

Checkpoints used for performance analysis belong to SPECcpu2006, SPECjvm2008 and 

SPECjbb2005 benchmarks. I will be analyzing the performance impact of this new 

prefetching algorithm on these workloads.  

 

3.5.1 SPEC CPU2006 

CPU2006 is CPU intensive benchmark suite developed by SPEC. The workloads in 

SPECcpu2006 suite are CPU-intensive, stressing on processor’s memory subsystem and 

compiler [15]. The table below lists the workloads that I have used for my analysis.  

  

Table 3-1 Workloads run under SPEC CPU2006 [17] 

Workload SPECint/ 

SPECfp 

Workload Description 

Mcf SPECint Combinatorial Optimization 

Libquantum SPECint Physics: Quantum Computing 

Omnetpp SPECint Discrete Event Simulation 

Xalancbmk SPECint XML processing 

Milc SPECfp Physics: Quantum Chromodynamics 

Zeusmp SPECfp Physics / CFD 

cactusADM SPECfp Physics / General Relativity 

Soplex SPECfp Linear Programming Optimization 

GemsFDTD SPECfp Computational Electromagnetics 

Lbm SPECfp Fluid Dynamics 

Sphinx3 SPECfp Speech Recognition 

 

3.5.2 SPEC JVM2008 

SPECjvm2008 benchmark suite was designed to measure the performance of JRE (Java 

Runtime Environment. The workloads execute single application which focuses on 

measuring performance of hardware processor and memory subsystem [16]. The table 

below lists the workloads considered and the real workload applications they try to 

mimic.   
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Table 3-2 Workloads run under SPEC JVM2008 [18] 

Workload Workload Description 

Compiler Use openJDK front end compiler to compile a set of .java files 

Compress Data compression using Lempel-Ziv method 

Crypto-aes Encrypt and decrypt using AES and DES protocols 

Crypto-rsa Encrypt and decrypt using RSA protocol 

Cyrpto-signverify Sign and verify using different protocols 

Derby BigDecimal computation 

MPEGaudio It is floating point heavy and good test for mp3 decoding 

Scimark It has various subtests (fft, lu, sor, sparse) with two versions large and 

small 

Serial Serializes and deserializes primitives and objects using data from 

JBOSS 

Sunflow Tests graphics visualization 

XML-transform Exercises JRE’s implement of javax.xml.transform and associated 

APIs by applying style sheets to XML documents 

XML-validation Excercises JRE’s implementation of javax.xml.validation and 

associated APIs by validating XML instance documents 

 

3.6 Working with Simics for data collection. 

Once we have everything set up: prefetching algorithm integrated inside g-cache, cache 

description files, and checkpoints for different workloads we can move towards data 

collection. The output from the simulator looks like figure 3-4. 

Along with prefetcher there are other performance counters integrated in the 

cache module. Figure 3-4 lists all the performance counters. Read, write and I_Fetch 

counters count the total number of read request, write request and the instruction fetch 

request seen by the particular cache level. Cycles and Instr reports the total number of 

cycles taken for an interval and instr reports the total number of instructions executed 

during the interval. These counters are collected on interval basis. The interval selected is 

1 Million instructions. Each workload runs for total of 2 Billion instructions  
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Figure 3-4 Output from simulator 

  

3.7 Conclusion 

With checkpoints of different workloads, prefetcher algorithm implemented in g-cache 

and the machine script, data is collected for different workloads. The next chapter will 

talk about how we can play with the data and build prediction models which will then 

help us achieve the adaptive feature in prefetching algorithm.   
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Chapter 4 Proposed Approach 
We need a dynamic prefetching technique to select the heuristic for a prefetcher without 

the use of static threshold. With every step that we take forward the prefetchers are going 

to be more and more complex. Also the workloads will keep on changing and evolving. 

Use of static thresholds might limit the performance improvement in long run. Hence we 

need dynamically adjusting values to tune the prefetching schemes. There are various 

ways in which we can achieve this dynamic behavior. One way to do it is, to train the 

system to make decision about prefetching options. Machine learning has proved to be 

effective in many fields. With machine learning once the system is trained, it can make 

decisions for itself. Cache performance is very susceptible to the prefetching options 

selected; hence we can use this correlation to predict the prefetching options. 

 Machine learning is a statistical method which makes the system smarter and 

gives it capability to make decision. The smart engine that makes decision is called 

model. There are two approaches that can be taken to make the system smarter. 

1) Throw in bunch of data and the system will group data with similar behavior. This 

is known as unsupervised learning. 

2) We can teach the system by feeding it with labelled dataset and telling it that for 

x, y, z attributes the response seen is ‘A’. This is known as supervised learning. 

For our problem we need to teach the system to pick up correct prefetching options by 

looking at cache performance data. Hence the approach used is supervised learning. With 

large enough dataset we can randomly divide it into training and test. With the training 

dataset we can teach the system to pick up correct response. The test dataset is then used 

to test the system’s ability to make correct decision.  

There are various supervised learning algorithm which will work great, but 

choosing the algorithm is a tough decision as you need to take into account the dataset. 

The response that needs to be predicted is prefetch option that takes either ‘0’ or ‘1’ 

value. That is why the algorithms considered are classification algorithms.  
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4.1 Logistic Regression 

Logistic regression assumes nonlinear relationship between inputs and output. Logistic 

regression estimates the probability of the response variable.  

 

Figure 4-1 Graph specifying relation between input variable and output [19] 

 

Logistic regression uses the maximum likelihood approach to estimate model parameters. 

With maximum likelihood approach the algorithm will give us the probability of the 

observed zeros and ones in the data set. Logistic regression just like linear regression 

supports multiple attributes and we can use interaction between the attributes to improve 

the prediction accuracy of the model.  

 Logistic regression uses one model to predict the response. With cross validation 

we can increase our confidence in the model. Cross validation is nothing but creating new 

splits in the dataset to select multiple training, validation and test set so that we are more 

confident about our model. Logistic regression works very well for some datasets. But 

sometime we need more accurate models. Cache statistics are very susceptible to prefetch 

option and change in one prefetching option can modify the performance drastically 

which might look like a random behavior to the model. Hence building just one model to 

predict the prefetching option might not be an optimal solution. 

 

4.2 Bootstrap Forest 

This classification approach uses multiple models to predict the response. The word 

‘forest’ in Bootstrap Forest algorithm suggests that it has multiple models. This algorithm 

creates multiple trees forming a forest. These trees are decision trees. Each decision tree 

is a model which makes a prediction. This algorithm creates multiple models (decision 
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trees) that learn from the subset of the learning dataset. Each model is given a smaller 

portion of the learning dataset. Finally when all the models learn from the datasets given 

to them we can then test the working of this forest. The validation data set is used to test 

the ability of the algorithm to make correct decision. With validation dataset each tree 

will take one sample from it and make a prediction. Once all the trees are done making 

prediction for that sample the algorithms takes a vote or averages the prediction make by 

all the trees. Thus in this algorithm with multiple models making the decision we get a 

pretty good overall model.   

 

4.3 Bootstrap Forest vs. Logistic Regression 

Prediction models need to accurate enough so that they can predict the prefetch options. 

For building these models we need to consider distribution of dataset and the algorithm 

implemented by the prediction model. For some datasets simple models work whereas for 

others we need complex models to get accurate results. Logistic regression as described 

in section 4.1 uses a single model to make prediction but Bootstrap model as described in 

section 4.2 uses multiple models to make prediction. To test the accuracy of model we 

can use confusion matrix. Confusion matrix gives us a prediction table that tells how the 

model classifies the samples. It gives us the misclassification ratio. Misclassification ratio 

will tell us the percentage of samples those were wrongly classified. Misclassification 

ratio should be low for accurate models. Figure 4.3 and figure 4.4 shows the confusion 

matrix for Logistic regression and Bootstrap forest algorithm. Based on the 

misclassification ratio I decided to go with Bootstrap forest approach. 
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Figure 4-2 Model specification for Bootstrap forest 

 

4.4 Intuitively why will machine learning approach work  

With machine learning we will teach the system to decide which prefetch option to 

choose. The dataset used to train the model is generalized. Generalized dataset comprises 

samples from all possible workloads. If the dataset has seen some samples of all different 

kinds of workload then our dataset is generalized. The dataset collected tries to look at as 

many workloads as possible. Each sample contains cache statistics along with prefetch 

options selected. With this generalized dataset we can train our model which can then 

make prefetch prediction.  Once we train our model with this dataset it will have seen 

some samples of different workloads. Thus at run-time this model will monitor the cache 

performance counters on interval basis and by looking at the cache statistics it can predict 

prefetch options. This approach thus eliminates the need for static approach and gives us 

adaptive tuning of the prefetching options.   
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Figure 4-3 Model specification for Logistic Regression 

 

 

4.4.1 Previous work done in this field 

Paper [20] talks about how to use machine learning to predict near optimal prefetch 

configuration out of the four BIOS prefetch option. This paper focuses on selecting one 

of the best prefetch configurations out of the available prefetchers: Data Prefetch Logic, 

Adjacent Cache Line, Data Cache Unit, and Instruction Pointer based prefetcher.  These 

prefetchers have effect on various performance counters of cache which is specified in 
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table 2. This paper uses various machine learning techniques to map these counters to the 

prefetchers selected. This framework achieves performance improvement within 1% of 

the best configuration [20]. 

 

Figure 4-4 Counters affected by prefetcher 

 

4.5 Conclusion 

This chapter talks about how machine learning can be used to predict prefetch options. 

Next two chapters will talk about the implementation of this adaptive approach and the 

results.  
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Chapter 5 Construction of Dataset 
In the previous chapter we discussed different machine learning algorithms that can be 

used for prediction. Bootstrap forest algorithm was selected as the machine learning 

algorithm due to its low misclassification ratio. This chapter will cover data collection, 

data processing after collecting data from Simics and building prediction models using 

the dataset.  

 

5.1 Data collection using Simics 

We want to predict prefetch options by looking at cache counters. For that we need to 

inject different prefetch options and monitor the cache performance counters. The most 

challenging task here is injecting the prefetch options. Before injecting the prefetch 

options we need to decide the prefetching options.  

 

5.1.1 Prefetch options  

Prefetch option is a combination of prefetch degree and prefetch stride. We need to look 

at various prefetch options. Table 5-1 shows different prefetch options those are being 

evaluated.  

     Table 5-1 Different  

         Prefetch options 

Sr. 

No 

Pf 

degree 

Pf 

stride 

1 1 1 

2 1 2 

3 1 4 

4 1 8 

5 1 -1 

6 1 -2 

7 1 -4 

8 1 -8 

9 2 1 

Prefetch degree: It is number of lines the 

prefetching scheme is going to fetch. Prefetch 

degree of 1 means it will prefetch single cache 

line. Prefetch degree of 4 means it will prefetch 

4 cache lines.  

 

Prefetch stride: It is offset which gets added to 

the address which results in demand miss. So if 

the program wants to bring cache line A due to 

demand miss then prefetch stride of 1 will 

prefetch line A+1. A prefetch stride of 2 will 

prefetch address A+2  
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10 4 1 

11 8 1 

12 2 -1 

13 4 -1 

14 8 -1 

15 64 1 

16 64 2 

17 64 4 

18 64 8 

19 64 -1 

20 64 -2 

21 64 -4 

22 64 -8 

 

The selection criteria for choosing prefetching options depend on the score value. By 

changing this score value we can control the selection of prefetch options. The next 

section will talk about how we use sandbox to inject prefetch options.  

 

5.1.2 Sandbox Prefetcher 

Sandbox prefetcher evaluates all the schemes integrated within it safely without polluting 

the contents of cache. Sandbox module keeps track of all the memory references made to 

cache level on which it is attached. Inside sandbox we deal with addresses and not the 

actual data content. Sandbox module has an array structure which records all the 

addresses requested by the program as well as the addresses prefetched based on the 

evaluation of prefetching schemes within sandbox. Sandbox keeps evaluating these 

prefetching schemes in the background, while the actual prefetching happening. 

Evaluation window is given to sandbox and after the evaluation window is finished 

sandbox gives us the performance of all the prefetching schemes integrated within it 

which helps us make decision at run-time. This evaluation window is kept smaller so that 

we can capture the changes in the workload behavior. For every interval sandbox will be 

We can inject prefetch options on interval basis. For 

each interval we inject prefetch options let it run for 1 

Million instruction and then collect the cache statistics. 

But deciding which prefetch options to apply is a 

difficult task. Unless all the possible combination of 

prefetch options are tested we cannot say which prefetch 

options will benefit the workload. 22 different prefetch 

options are considered. Therefore considering all 

combination 2222 is not feasible. One of the smart ways 

to inject prefetch options is by using Sandbox prefetcher 

[23]. Sandbox prefetcher evaluates different prefetch 

options integrated within it and selects the prefetcher 

with good enough accuracy.   
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evaluating all the prefetching schemes. After evaluation is done, in the next interval we 

will turn on the prefetching schemes which Sandbox module has selected. For the next 

interval sandbox module will be cleared and reset so that it will again keep tracking the 

memory accesses and the performance of the prefetching. Thus sandbox module 

evaluates the prefetching schemes by looking at the access pattern of the workload to 

make decision at run-time. The assumption made here is, evaluation window is small 

enough to capture changes in access pattern of the workload and the access pattern will 

not change drastically. Table 5-2 shows the evaluation statistics. The score value is 

nothing but the prefetch accuracy. This score value is shown immediately next to the 

prefetching scheme. Based on the threshold value (0.4 in this case) the appropriate 

prefetch options are turned on (in this case scheme 1 and scheme 5).  

Table 5-2 Evaluation statistics 

 

 

5.1.3 Working of Sandbox module in Simics 

Sandbox prefetching module is attached to L2 cache level. It will track all the memory 

requests made to L2. Whenever a program makes a request it is first processed by L1 

cache. If the address is not in L1 the request is forwarded to L2 cache. Before the request 

is serviced by L2 cache that address is put in the sandbox module. Inside sandbox 

module, that address is recorded in an array. The prefetch/demand field for that address is 

marked as demand field i.e. 0 as it was a demand request. For that address depending on 

the prefetching scheme under evaluation, prefetched address is calculated and stored. For 
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the prefetched address we mark the field as prefetch field i.e. 1. We do this for all 

prefetching schemes until we finish the evaluation duration. Along with this 

prefetch/demand field we have bunch of other counters shown in the table 5-2. Each 

counter is described below.  

1. Prefetch add: This counter keeps records of how many addresses were put in the 

sandbox module as a result of prefetching.  

2. Prefetch hits: This counter keeps track of number of addresses used out of the 

addresses put in the sandbox because of prefetch.  

3. Demand hits: This counter keeps track of number of addresses used out of the 

addresses put in sandbox because of demand request. 

4. Demand add: It records number of addresses put in the sandbox module as a result 

of demand request. 

Once the evaluation is completed score/prefetch accuracy for each prefetch option is 

calculated. Once this evaluation phase is over we need to select prefetch option. As we 

cannot evaluate all the 222 combinations we randomly inject prefetching options  

 

5.1.4 Injecting Prefetching Options 

A threshold value can be used for turning on prefetching options at random. For a higher 

threshold value we will be turning on conservative prefetching options, but for a lower 

threshold value we will be turning on aggressive prefetching options. Hence random 

selection of threshold will give us more coverage. This random selection of threshold is 

done on interval basis. Therefore for every interval we select a new threshold value 

randomly. As each workload is run for total of 2 Billion instructions per workload we get 

around 2000 samples. Total we are considering 31 different workloads therefore we have 

a total of 62000 samples. This gives us a reasonable coverage. 

 With this dataset we can now start moving towards building prediction models. 

The first step towards building the prediction model is to bring the data in correct format 

so that we can apply machine learning techniques. The next section will talk about how to 

bring data in correct format. 
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5.2 Bring the data in correct format for data analysis 

The data collected from Simics comprise of cache objects reporting its statistics after 

every 1M instructions. The workload is let to run for a total of 2 billion instructions. 

Based on Hadley Wickham’s [21] paper on tidy data we need to rearrange the data 

collected from Simics. In Simics the output is reported on interval basis. After 1M 

instructions each cache objects reports its statistics. So for every interval we have 4 rows 

of data. But based on the tidy data concept each row should represent one observation. 

Hence instead of having 4 rows with 11 attributes for one observation we need to have 

one row with 44 attributes for one observation.  The first 11 attributes of a row 

correspond to attributes of L1-I cache 12 to 22 attributes correspond to L1-D cache 23 to 

33 correspond to L2 cache and lastly 34 to 44 correspond to L3 cache. But along with 

cache statistics we need prefetch options also. So after the 44 attributes we concatenate 

all the 22 prefetch options. These 22 prefetch options are represented in a bit vector 

format. Each bit corresponds to a prefetch option. A bit value of 1 means that particular 

prefetch option will be turned on and 0 means it will be turned off. The prediction models 

built are for each bit. So we have a total of 22 different prediction models predicting their 

individual prefetch bit. Thus each row comprises of 44 cache attributes and 22 prefetch 

options.  

 Once we have data arranged in the format that can be used in machine learning 

algorithm we have to move on towards labelling the dataset. As we are using supervised 

learning algorithm this is an important step and our results will be sensitive to labelling 

the dataset. 

 

5.3 Labelling data samples 

Each sample in the dataset comprises of performance counters collected on interval basis. 

For every sample we choose the threshold value randomly between 0.0 and 0.9. The next 

step is building the prediction model. For that we first need to label the data. Here the 

tricky part is we need to predict the prefetch option so our response is the prefetch option 

for each prefetching scheme. But not all the samples from the dataset have positive 

impact on the performance. We need to build a model based on the positive samples so 
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that the model will predict prefetching options having positive impact. For building the 

model if negative samples are used then the model might map some of the cache statistics 

to prefetching options which might degrade the performance.  

 Samples are labelled into positive and negative based on the performance impact. 

To decide if the prefetching option is beneficial or not we use the no prefetch cycle count 

as the baseline. If the current sample shows 25% improvement over the no prefetch 

option we have some confidence that the prefetching options selected were beneficial. It 

is unrealistic to collect no prefetch cycle count for 2000 samples for 2Billion instructions. 

And then again collect data by randomly selecting threshold. We assume that the 

workload will not change the phase for 2 billion instructions which is like 5ms real time. 

Hence we turn off prefetching for the first sample and use that cycle count as the baseline 

to label samples as positive or negative. After we have labelled data we can use the 

positive sample to create the prediction model i.e. use it as the training data set and the 

rest of the samples will be in test set. From the figure 5-1 we can see that 52% of the 

samples are used for creating the model. These samples are the positive samples. The rest 

48% samples are the negative samples which comprise of the test set.  

 

 

Figure 5-1 Distribution of positive and negative samples with threhsold value of 0.25 

 



   32 

 

5.4 Prefetchers used for comparison 

To verify how good this adaptive prefetching technique is I have used Sandbox 

prefetcher [23]. This prefetcher was published in HPCA 2014 and was amongst the best 

prefetcher paper. I have also compared this approach to a hypothetical prefetcher which 

eliminates all memory requests. I have called it zero memory latency concept. This 

hypothetical prefetcher will service all the demand access by fitting the entire data into 

cache so that we do not need to go to main memory. Comparison with this ideal scenario 

will let us know how much margin of improvement is still available for the prefetching 

algorithm.  

The next chapter will talk about how to use the dataset to build prediction model. 

It will walk through the results obtained by building models in different ways.  
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Chapter 6 Prediction Models and Results 
The last chapter provided a brief introduction to building prediction models. Based on the 

labelling criteria used we have the training and test set. The next step is to select the 

attributes that will affect the response. There is lot of data dependency among different 

performance counters. Before building the models we need to take care of dependency 

issues. Performance counters considered are the read and instruction fetch hit and miss 

counters at all cache level. A miss at L1 level is propagated to L2 level which then results 

to either hit or miss in L2 level. The figure 6-1 below explains this phenomenon.  

 

L1I0.IF

L1i0.IF_HIT

L1i0.IF
MISS

L2C0.IF

L2C0.IF_HIT
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L3C0.IF
MISS

 

Figure 6-1 Propagation of instruction request in cache 
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Figure 6-2 Propagation of data request in cache 

 

So for the attributes if we choose only the leaves we will eliminate the singularity and the 

data dependence problem.  

 

6.1 Building Model-I 

This model builds one prediction model per prefetch option. Thus for model-I we will 

have total of 22 prediction models. The simulation cycle count value is used to label 

samples as positive or negative. For a sample to be positive its performance for 1M 

instructions should be 25% better than the baseline. Baseline cycle count is obtained by 
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turning off prefetching at the start of workload. Assumption made in that is the phase of 

workload will not change by a huge margin and the first cycle will be somewhat 

representative. Using this baseline cycle and the cycles computed at run-time for every 

interval the samples are labelled as positive or negative. The leaves of the trees shown in 

figure 6-1 and 6-2 are used as attributes to create the model. Figure 6-3 shows the 

distribution and division of training and test set. The samples falling in level 0 used in 

training. They are the positive samples. From the figure 6-3 53% of the samples are used 

to build the model. The rest 47% of samples fall in level 1 which is used as test data set. 

There is no validation set as only 53% of samples are positive.  

Table 6-1 talks about the performance of all the prediction models on training 

data set. The classification algorithm used is the bootstrap method. The misclassification 

ratio should be low. Based on the values of misclassification rate we have pretty 

reasonable models.  

 

 

Figure 6-3 Distribution of training and validation dataset 
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Using JMP when the models are built, they will make predictions on all the samples. 

Once the predictions for all the samples are made, these predicted prefetch options are 

copied back in Simics environment. Ideal scenario would be to implement these 

prediction models in Simics. But due to complex nature of the model JMP is used to 

create these prediction models. As Simics is deterministic in nature we can map the 

predicted prefetch options to its corresponding interval. 

 

Table 6-1 Prediction for Model - I 

Training set : 35835 samples 

Prefetch 

Option 

Prefetch 

Degree 

Prefetch 

Stride 

Misclassification 

Ratio 

1 1 1 0.1272 

2 1 2 0.2428 

3 1 4 0.2140 

4 1 8 0.2088 

5 1 -1 0.1720 

6 1 -2 0.1680 

7 1 -4 0.1345 

8 1 -8 0.1164 

9 2 1 0.2699 

10 4 1 0.2177 

11 8 1 0.1764 

12 -2 1 0.1552 

13 -4 1 0.1300 

14 -8 1 0.1017 

15 64 1 0.0974 

16 64 2 0.0972 

17 64 4 0.0985 

18 64 8 0.1028 
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19 64 -1 0.0350 

20 64 -2 0.0357 

21 64 -4 0.0349 

22 64 -8 0.0345 

 

 

6.1.1 Performance of Model-I  

Once the predicted prefetch options are obtained from JMP, they are integrated in Simics. 

The workloads are run with these predicted options and the overall performance of the 

workload is observed. Figure 6-4 shows the performance of adaptive prefetching 

approach over sandbox prefetcher [23]. The performance comparison is done using 

normalized CPI. It is normalized to no prefetch. Most of the time sandbox prefetcher 

works better than this adaptive prefetching technique. But the performance difference 

between the two is very less. Also the adaptive prefetching is always better than no 

prefetch. The performance of machine learning technique is within 5% of sandbox 

prefetcher.  

 

Figure 6-4 Comparing performance of adaptive prefetching (Machine Learning) with other 

prefetching techniques 
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6.1.2 Limitation of this approach 

The labeling of samples into positive negative depends on the value of baseline which is 

computed once at the start of the workload. What if this value is faulty? Also if the phase 

of the workload changes this baseline value might be too high or too low for that interval. 

Also what if the cycles computed by simulator is incorrect? Let us tackle each question 

independently. 

Most of the workload goes through various phases. Hence we need to collect 

baseline samples more frequently. For that we have another data set in which the 

prefetching option is triggered using random threshold but after every 100M instructions 

i.e. after every 100 samples we are turning off prefetching and that becomes our baseline 

for next 100 samples. Section 6.2 will talk about the model built with this dataset. 

 For simulation cycle, based on paper [22] we can do a quick check if the values 

are faulty or noisy. A simple linear regression for response as simulation cycle and 

factors as read and instruction fetch misses for each cache level gives a reasonable 

rsquare. As it is a simulator we would expect an rsquare close to 1. But due to some long 

latency instructions we have noise in the simulation cycle. Here in our case we got an 

rsquare of approximately 0.9 which is reasonable. There is some noise in the dataset but 

we can work with it and continue with using this metric for labelling samples.  

 

Figure 6-5: Linear model for simulation cycle 
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6.2 Building Model-II 

In the previous model the baseline samples for labelling the dataset was collected once 

per workload. But this one sample might not be representative for all the samples as the 

phase of the workload might change. For this model we frequently collect the baseline 

samples for labelling data. After every 100M instruction we turn off prefetching and 

collect these baseline samples. Rest of the things are same as compared to the previous 

model in section 6.1. 

Table shows the misclassification ratio for all the prediction models built for model-II. 

These models will now make performance prediction for all the samples. 

Table 6-2 Prediction for Model - II 

Training set : 35835 samples 

Prefetch 

Option 

Prefetch 

Degree 

Prefetch 

Stride 

Misclassification 

Ratio 

1 1 1 0.2748 

2 1 2 0.2542 

3 1 4 0.2289 

4 1 8 0.2250 

5 1 -1 0.2760 

6 1 -2 0.2525 

7 1 -4 0.2289 

8 1 -8 0.2247 

9 2 1 0.2943 

10 4 1 0.2797 

11 8 1 0.2462 

12 -2 1 0.2938 

13 -4 1 0.2797 

14 -8 1 0.2463 

15 64 1 0.2190 

16 64 2 0.2149 

17 64 4 0.2133 
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18 64 8 0.2205 

19 64 -1 0.2187 

20 64 -2 0.2145 

21 64 -4 0.2131 

22 64 -8 0.2194 
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6.2.1 Performance of Model-II 

 

 

 
 

Figure 6-6 Comparing performance of adaptive prefetching (Machine Learning) with other 

prefetching techniques 

 

This model does 2% better than sandbox for SPECjvm workloads and 1% better than 

sandbox for SPECcpu workloads. The reason why it is able to beat sandbox is, now the 

labelling of the samples is more meaningful. Earlier we had only one sample per 

workload. But this model looks at phase of workload every 100M instruction and then 

labels the samples into positive negative buckets.  

 

6.2.2 Comparing Model-I and Model-II 

The graph below compares of both the models. It is quite evident from the graph that 

model-2 works best. Just by labelling the data in a more representative way we can get 

good prediction.  
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Figure 6-7 Comparing both the models 

 

With this approach we can dynamically tune the prefetch options without any predefined 

heuristics. All that is needed is a good training dataset which has reasonable coverage of 

different workloads possible and various different prefetch options which benefit the 

workload.  
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Chapter 7  Limitation and Future Work 
In the last chapter we discussed various models built and the performance of those 

models. It works well with both SPECcpu and SPECjvm workloads. This chapter will 

cover the limitation and future work of this adaptive approach.  

 

7.1 Limitation 

1. The prefetch options predicted by the models are very sensitive to the way the 

models are labelled. Thus the performance of this prefetcher highly depends on 

this step of labelling samples into positive negative bucket 

2. The prediction models are built outside the simulator. Ideally speaking they 

should be built inside the simulator so that they can adaptively look at the 

hardware performance counters to predict the prefetch options. As we have 

models built outside the simulator the results obtained by this approach will be 

little different than what would be obtained when this model is implemented in 

hardware. 

3. The machine learning algorithm used is very complex and difficult to implement 

on actual hardware. It will be very expensive to build it. Hence we need a good 

alternative algorithm that can be cheaply implemented on hardware or simulator. 

4. The performance counters which are being monitored by the model to make 

prediction are very limited and biased. We need more counters which gives us 

some information about the stride and memory performance.  

 In spite of having so many limitations this approach still gives us a reasonable 

performance improvement. This may not be the best prefetching technique but with the 

results so far we have a good confidence in the direction we are heading towards. This 

technique will eliminate the need of selecting heuristics for prefetcher.  

 

7.2 Future Work 

If we go along this route the final product will look like figure 7-1. Figure 7-1 shows that 

every socket will have a predictive model that will decide the prefetch options at run-

time. On interval basis it will monitor the hardware performance counters like EMON 
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and decide the prefetch option. Once the model is built it doesn’t have to keep track of 

the access history. The model is built before the SKU is released.  

 
Figure 7-1 Predictive Model in the socket 

 

7.3 Alternative uses of this approach 

This approach need not be limited to only prefetching. It can be used in places where we 

need to have adaptive behavior without having fixed heuristics. For DRAM access the 

energy consumption is higher. We can use this kind of a smart engine or model to decide 

if we need to propagate the prefetch request to the main memory. It can be used in hybrid 

architecture to schedule tasks on different cores. We can use this technique wherever we 

need to have a dynamic behavior in the system 

 

Finally to conclude this project is all about integrating machine learning with hardware 

prefetching. With machine learning we can eliminate the need to fix heuristics for 

prefetching.  
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