

Adaptive Cache Prefetching using Machine Learning and Monitoring Hardware
Performance Counters

A Thesis

SUBMITTED TO THE FACULTY OF

UNIVERSITY OF MINNESOTA

BY

Pranita Maldikar

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

MASTER OF SCIENCE

Adviser

David Lilja

June, 2014

© Pranita Maldikar 2014

ALL RIGHTS RESERVED

 i

Acknowledgements

I want to thank my adviser Prof. David Lilja for his support and immense faith he had in

me to allow me to do 11 month internship. I would like to thank Dr. Kingsum Chow and

Robert Scott in Intel Corporation for offering me the summer internship opportunity in

their group. I got to work on a very diverse and exciting project. I am sincerely thankful

for their insight, help and guidance throughout my internship duration. Due to the nature

of my project I got to stay with Intel Corporation for 11 months. During my internship I

got to meet many other talented interns. I will take this opportunity to thank my fellow

intern Manjunath Shevgoor for the constructive feedback. I would also like to thank

people from our team Khun Ban and Huijun Yan, at Intel Corporation.

Along with the people from my team I would like to extend my gratitude to people from

Intel Labs Chris Wilkerson, Dr. Zeshan Christi and Dr. Shei-lein Lu for the stimulating

discussions and their wonderful feedback.

I would like to thank my thesis committee: Prof. John Sartori and Prof. Pen-Chung Yew.

I thank my friends Harshal Chaudhari, Parth Chaudhari and Amogha Gundavaram for the

sleepless nights they spent talking to me and giving me moral support.

And last but not the least I would like to thank my family: my parents Prakash Maldikar

and Gitika Maldikar for giving me this opportunity to study at such a wonderful

university and to follow my dreams; and to my siblings Sonali Maldikar and Akshaj

Maldikar for being there for me always.

 ii

Dedication

I would like to dedicate my thesis to my parents Prakash and Gitika.

It’s because of them I got this opportunity.

 iii

Abstract

Many improvements have been made in developing better prefetchers. Improvements in

prefetching usually starts by coming up with a new heuristic. The static threshold values

for prefetching modules might become obsolete in near future. Given the huge amount of

hardware performance counters we can examine, we would like to find out if it is

possible to derive a heuristic by applying machine learning to the data we routinely

monitor. We propose an adaptive solution that can be implemented by monitoring the

performance of system at run-time.

Machine learning makes system smarter by enabling it with ability to make decisions. So

for future complex problem instead of running lot of experiments to figure out optimal

heuristic for a hardware prefetcher we can have the data speak for itself, and the machine

will choose a heuristic that is good for it. We will train the system to create predictive

models that will predict prefetch options at run-time.

 iv

Table of Contents

Acknowledgements .. i
Dedication ... ii
Abstract .. iii

Table of Contents ... iv
List of Tables ... vi
List of Figures ... vii

Chapter 1 Introduction .. 1
Chapter 2 Related Work.. 3

2.1 Different types of prefetching technique .. 4

2.1.1 Software Prefetching .. 4
2.1.2. Execution based prefetcher ... 5
2.1.3 Hardware Prefetching .. 5

2.1.3.1 Next ‘N’ Line prefetchers: .. 5
2.1.3.2. Stream Prefetchers: .. 6

2.2 Performance metrics that can be used to evaluate goodness of a prefetcher 6
2.2.1 Prefetch Accuracy .. 6
2.2.2 Aggressiveness of Prefetcher ... 6

2.2.3 Coverage .. 7

2.2.4 Timeliness of Prefetcher .. 7
2.2.5 Cache Pollution .. 7
2.3 Current Prefetching Algorithms .. 7

2.3.1 Feedback Directed Prefetching [8] .. 8
2.3.2 Sandbox Prefetching Algorithm: ... 9

2.4 Conclusion .. 11
Chapter 3 Experimental Setup .. 12

3.1 Simics: A full system simulation Platform [11] ... 12
3.2 Cache behavior modelling using Simics ... 13

3.3 Prefetching Feature ... 15
3.4 Moving workloads to Simics .. 16
3.4.1 Creating Images and Checkpoints of target system ... 16

3.5 Workloads ... 17
3.5.1 SPEC CPU2006 ... 17
3.5.2 SPEC JVM2008 ... 17
3.6 Working with Simics for data collection. ... 18

3.7 Conclusion .. 19
Chapter 4 Proposed Approach .. 20

4.1 Logistic Regression ... 21
4.2 Bootstrap Forest .. 21
4.3 Bootstrap Forest vs. Logistic Regression.. 22

 v

4.4 Intuitively why will machine learning approach work ... 23
4.4.1 Previous work done in this field .. 24
4.5 Conclusion .. 25

Chapter 5 Construction of Dataset .. 26
5.1 Data collection using Simics ... 26
5.1.1 Prefetch options ... 26
5.1.2 Sandbox Prefetcher .. 27
5.1.3 Working of Sandbox module in Simics ... 28

5.1.4 Injecting Prefetching Options .. 29
5.2 Bring the data in correct format for data analysis ... 30
5.3 Labelling data samples .. 30

5.4 Prefetchers used for comparison ... 32
Chapter 6 Prediction Models and Results ... 33

6.1 Building Model-I .. 33

6.1.1 Performance of Model-I ... 36
6.1.2 Limitation of this approach .. 37

6.2 Building Model-II ... 38
6.2.1 Performance of Model-II ... 40
6.2.2 Comparing Model-I and Model-II ... 40

Chapter 7 Limitation and Future Work ... 42
7.1 Limitation .. 42

7.2 Future Work .. 42
7.3 Alternative uses of this approach .. 43

Chapter 8 Bibliography ... 44

 vi

List of Tables
Table 3-1 Workloads run under SPEC CPU2006 [17] ... 17
Table 3-2 Workloads run under SPEC JVM2008 [18] ... 18
 Table 5-1 Different .. 26
Table 5-2 Evaluation statistics .. 28
Table 6-1 Prediction for Model - I .. 35

Table 6-2 Prediction for Model - II... 38

 vii

List of Figures
Figure 1-1 Performance gap between process and memory over years [1] 1
Figure 2-1 Performance of various workloads with different prefetching aggressiveness

[8] .. 9
Figure 2-2 Performance of various workloads with various prefetching mechanism [8] ... 9
Figure 2-3 Performance of different workloads when subjected to different threshold

value .. 10

Figure 3-1 Simics simulation of target systems based on several processors architecture

[11] .. 13

Figure 3-2 Cache object description [14].. 14
Figure 3-3 Cache hierarchy simulated in Simics .. 15
Figure 3-4 Output from simulator ... 19

Figure 4-1 Graph specifying relation between input variable and output [19] 21
Figure 4-2 Model specification for Bootstrap forest... 23

Figure 4-3 Model specification for Logistic Regression .. 24
Figure 4-4 Counters affected by prefetcher .. 25
Figure 5-1 Distribution of positive and negative samples with threhsold value of 0.25 .. 31

Figure 6-1 Propagation of instruction request in cache .. 33
Figure 6-2 Propagation of data request in cache ... 33

Figure 6-3 Distribution of training and validation dataset .. 34
Figure 6-4 Comparing performance of adaptive prefetching (Machine Learning) with

other prefetching techniques ... 36
Figure 6-5: Linear model for simulation cycle ... 37

Figure 6-6 Comparing performance of adaptive prefetching (Machine Learning) with

other prefetching techniques ... 40
Figure 6-7 Comparing both the models .. 41

Figure 7-1 Predictive Model in the socket .. 43

 1

Chapter 1 Introduction

The first single chip microprocessor was invented in 1970s. Since then there has been

tremendous growth in field of microprocessors. With every generation, the processor

performance is improving. Each new processor generation tries to tackle and overcome

different bottleneck components. In the earlier decades the processor performance was

underwent rapid growth compared to memory performance. This resulted in a huge

performance gap between processor and memory. Fig 1-1 describes the trend in

performance boost over years for processor and memory.

Figure 1-1 Performance gap between process and memory over years [1]

Current generation processors take only couple to cycles to execute an operation but the

memory access takes tens of cycles; thereby degrading the performance. Thus the system

speed will still be limited because of memory. For years, research has being conducted to

match memory speed to processor speed. There are many techniques working in the

background to minimize this memory latency. Prefetcher is one such technique that is a

very promising alternative to bridge the gap between processor and memory

performance.

 2

Prefetching works in the background to ensure that memory does not become a

bottleneck parameter. A prefetcher preloads the data accurately and timely before the

data is requested by the program. This reduces or completely eliminates the memory

latency for demand requests. Prefetching does not require the program to have seen the

data, so it can eliminate the compulsory cache misses. Thus reducing miss rate and miss

latency. Most of the prefetchers initiate a prefetch request when they see a demand miss

in cache. Along with the address requested, the prefetched data is also brought into the

cache. These prefetch requests are brought into the cache with a lower priority, so that

preference is given to demand requests. Over years many prefetching approaches and

heuristics have been proposed and implemented. The present lot of prefetching

algorithms track or profile the access pattern of the program to make best possible

decision for prefetching data/instruction. The main objective of prefetching is to correctly

predict the access stream of the program and bring the data closer to CPU before it is

requested by the program. As we know that the phase of the workload keeps on changing

we cannot use the same prefetch option throughout the course of the workload. With

access pattern profiling or by establishing the miss pattern we can predict the access

stream of workload and issue prefetchers accordingly.

This thesis presents a new approach for prefetching data/instruction into cache.

Primary contribution of this thesis is to eliminate the need to have fixed heuristics for

prefetchers. It uses machine learning techniques to decide heuristics for prefetchers on

interval basis. Based on the hardware counters it decides the heuristics for prefetchers.

These counters are usually collected on interval basis. Hence the prefetcher heuristics can

be different during different intervals. Machine learning techniques are very effective in

making the system smarter and they enable the system with decision making capability.

My efforts have been along the same line. With all the performance counters collected at

every interval, we train the system using these counters to make better prefetch decision

on its own.

 3

Chapter 2 Related Work

As described in previous chapter prefetching is an important concept which helps bridge

the gap between processor and memory. This chapter covers basics of prefetching

technique, conventional prefetchers, and some current prefetching algorithms proposed.

A good prefetcher needs to take into account few things as described in paper [2].

Prefetcher module should predict the access pattern of the program correctly otherwise it

will bring in lot of useless data which the program might not use. This will result in

wastage of expensive resources like memory bandwidth, cache or prefetch buffer, energy

consumption etc. This phenomenon is called cache pollution. Hence the prefetcher

module needs to accurately predict the data that the program might request in the near

future.

Along with accurate prefetching, the initiated prefetch requests should be timely.

If the data is prefetched too early then it might not be used before it is evicted from the

cache. Also if the prefetch request is issued late then it might not hide the entire memory

latency. The data needs to be present in the cache before the processor issues the memory

request. The timeliness of the prefetcher can be improved by making the prefetcher

aggressive i.e. prefetching data far ahead in the program’s access stream. Prefetching at

software level employs machine learning techniques to figure out when to start

prefetching and from where.

The prefetch requests could be stored in cache or in separate prefetch buffer. If it

is stored in cache then due to cache pollution we may lose some demand data. If prefetch

buffer is used then there would be some design considerations like size of buffer,

placement of buffer in memory hierarchy and the coherency in the buffer which needs to

be taken care of. Thus implementation of it will be difficult.

The destination where the prefetched data is stored also makes a difference. If

data is brought directly into is L1 cache from memory, cache pollution will have a greater

impact on performance due to its smaller capacity. At L1-L2 cache boundary we can

have a highly accurate conservative prefetcher and an aggressive prefetcher on last level

cache.

 4

 The state of the prefetched data is also important, i.e. whether to treat prefetch

blocks as demand blocks or not? With LRU policy the prefetched data will be placed at

the MRU position. It can also be placed at the LRU position if we have some idea about

the accuracy of prefetcher. For higher accuracy prefetches we can place them in MRU

position and for less accurate prefetches we can put them in LRU position. Prefetched

data placed at LRU position can minimize the effect of cache pollution. The paper [10]

explains some of the concepts of LRU and MRU policy

2.1 Different types of prefetching technique

Prefetching can be done either at software level or hardware level. Software prefetches

are inserted in the code by programmer or compiler. Hardware prefetches are issued

when you see a demand miss in cache and data is prefetched based on the heuristic of the

hardware prefetcher.

2.1.1 Software Prefetching

Instruction Set Architecture provides some prefetching instructions. Software prefetching

utilizes this feature. In software prefetching the programmer or the compiler inserts these

prefetch instructions. It is programmer's responsibility to add these prefetch instructions

to improve the performance of program. Paper [3] talks about software controlled data

prefetching. Software prefetching works well for programs that exhibit regular access

pattern. But it takes up some execution bandwidth of the system. With software

prefetching it is difficult to predict timeliness of prefetch request. The compiler does not

have feedback about the latency of memory accesses. So where to insert the prefetch

instruction becomes an important decision. The prefetch instructions can be inserted for

every load access but that will increase the memory and execution bandwidth

consumption. With software prefetching we can have profiler to profile the code and

determine the loads which are likely to miss. But this profiled input data set might not be

representative. It is difficult to do software based prefetching on pointer based data

structure, but with compiler optimizations and for regular access patterns software

prefetching is very beneficial.

 5

2.1.2. Execution based prefetcher

This type of prefetching could be implemented in software or hardware. This approach

uses a separate thread to prefetch data for the main program. This thread can be

dynamically generated by software or hardware. Run-ahead execution can be thought of

execution based prefetcher [9]. A very simple example of this type of prefetcher can be a

main program which has a helper thread or prefetch thread inserted in between the code.

This thread comprises of instructions which are necessary to predict the address required

for prefetcher. When the main program reaches this instruction of launching the helper

thread or prefetch thread, it will execute the helper thread and helper thread will quickly

compute the address required for prefetch before the main program reaches the point

where it is going to generate cache miss for that data.

2.1.3 Hardware Prefetching

Hardware prefetcher operates in the background without programmer’s intervention. It is

triggered when cache miss occurs. Based on the heuristics provided to the hardware

prefetcher it will prefetch cache lines. Some of the hardware prefetchers monitors the

subsequent cache misses and prefetch data based on the stride pattern exhibited by the

program. It is micro-architect’s responsibility to design a prefetching algorithm which

will accurately and timely generate the prefetch requests. Some of the conventional

hardware prefetchers and heuristics are mentioned below.

2.1.3.1 Next ‘N’ Line prefetchers:

It is the simplest form of hardware prefetching. It always prefetches next ‘N’ lines after

demand misses. It assumes that the program exhibits spatial and temporal locality. So if

the program is making a request for address 'A' then in future it will request for address

closer to A. The value of N will determine the aggressiveness of the prefetcher. The term

aggressiveness is described in the section 2.2.2. For workloads exhibiting irregular

patterns this prefetching scheme might not work and result in performance degradation

rather than improvement [4].

 6

2.1.3.2. Stream Prefetchers:

A stream prefetcher unlike next line prefetcher is a confirmation-based prefetcher. A miss

at address A will not result in prefetch request. This address will be recorded. The stream

prefetcher will now begin to monitor if the program is making a request for address at

some offset from A. Let us say that the program then sees a memory request A+1. It will

still not issue prefetch request as there is not enough evidence that this is the true stream.

Only after A+2 is seen, the stream is fully confirmed and prefetching will start. For

regular access pattern the stream prefetcher works better but for shorter streams it does

not work well due to the wait required to confirm the stream. Also for irregular access

patterns like indirect array accesses, linked data structures, multiple regular stride,

random patterns correlation based prefetchers, content directed prefetcher, pre

computation or execution based prefetchers [5, 6, 7] works well instead of stream

prefetcher.

2.2 Performance metrics that can be used to evaluate goodness of a prefetcher

Prefetcher impacts performance of the system. A prefetcher can improve the performance

by huge margin or it can even degrade the performance. The metrics listed below helps us

understand if a prefetcher is going to improve the performance or not.

2.2.1 Prefetch Accuracy

It is a measure of how accurately the prefetcher can predict the access stream of the

program. Highly accurate prefetchers completely capture the access pattern of the

program. Access pattern of the program can be predicted by looking at the previous

access stream. It is defined as out of the total prefetches issued, number of prefetches

used by the program. This ratio should be close to 1.

2.2.2 Aggressiveness of Prefetcher

Aggressiveness of the prefetcher means how far ahead your prefetcher can issue

prefetches. The prefetch distance will determine the aggressiveness of the prefetcher.

Aggressive prefetcher will prefetch lines which are far ahead from the current demand

 7

miss. This can result in lower accuracy due to two reasons. First, it is difficult to predict

accesses far ahead in the program. Second, for an aggressive prefetcher the data might be

brought into cache too early and it might get evicted before it is used. So we need a trade-

off between aggressiveness of prefetcher and its accuracy. If the prefetcher is not

aggressive enough then the prefetch requests might be on its way to cache. Hence we

might not be able to hide the entire memory latency.

2.2.3 Coverage

Coverage of a prefetcher means out of the total number of compulsory or demand cache

misses, number of cache misses eliminated by the prefetcher. For higher coverage you

need an accurate prefetcher which will predict the addresses correctly also you need an

aggressive prefetcher so that the data is already present in the cache.

2.2.4 Timeliness of Prefetcher

Timeliness of Prefetcher is defined as, out of the total used prefetched lines number of

prefetches present in the cache before the compulsory miss occurred. For a timely

prefetcher you need an aggressive prefetcher so that it will always stay ahead in the

processor’s access stream.

2.2.5 Cache Pollution

To accommodate the prefetched data in cache the eviction policy knocks out some of the

data from the cache. If these prefetches are inaccurate we are knocking out data from

cache to make space for this useless data. It might be evicting out some useful stuff to

accommodate this data that might not be referenced. This is called as cache pollution.

Aggressive prefetchers bring data to cache by looking far ahead in the access stream but

due to early prefetch it causes cache pollution.

2.3 Current Prefetching Algorithms

Recent hardware prefetching algorithms try to monitor access pattern of the program.

They also try to monitor the effect of it on actual hardware. If the prefetching scheme is

hampering the performance of the system then it will either detach the prefetching model

 8

or it will alter the prefetching scheme to tune it to benefit the access pattern. Listed below

are the two modern prefetching algorithms considered. Feedback directed prefetching [8]

and Sandbox prefetching [23].

2.3.1 Feedback Directed Prefetching [8]

Aggressive prefetchers look far ahead in the program access stream. If we choose an

aggressive prefetcher we have to compromise on accuracy. We need to fine tune the

prefetching aggressiveness based on the access stream and performance of that

prefetcher. Figure 2-1 shows the effect of aggressive prefetcher on SPECcpu workloads.

Ammp and applu workload’s performance degrades with aggressive prefetchers whereas

rest of the workloads show increase in IPC value [8]. Hence based on the premise of the

paper [8] we need to tune the aggressiveness of the prefetcher based on its effect on

performance.

Feedback directed prefetching [8] reduces the negative performance and

bandwidth impact of aggressive prefetching while preserving the large performance

benefits provided by aggressive prefetching. It maintains performance counters like

prefetch accuracy, prefetch latency and cache pollution which tracks the impact of

different prefetch options. There are five levels of aggressiveness described in the paper

[8]

1. Very conservative prefetching - Prefetch distance 4 and prefetch degree 1

2. Conservative prefetching - Prefetch distance 8 and prefetch degree 1

3. Mid-level prefetching - Prefetch distance 16 and prefetch degree 2

4. Aggressive Prefetching - Prefetch degree 32 and prefetch degree 4

5. Very aggressive prefetching - Prefetching Distance 64 and prefetch degree 4

At the end of an interval these counters are computed. Using static threshold values and

these performance counter values, aggressiveness of the prefetcher is calculated. Figure

2-2 below shows the performance of FDP prefetcher.

 9

Figure 2-1 Performance of various workloads with different prefetching aggressiveness [8]

Figure 2-2 Performance of various workloads with various prefetching mechanism [8]

2.3.2 Sandbox Prefetching Algorithm:

Sandbox prefetcher [23] evaluates various prefetching options without affecting the

actual cache contents. It has a storage structure which tracks the access stream of the

workload. If a prefetching option has potential to benefit the performance then that

particular prefetch option is turned on. It uses threshold approach to select the potentially

 10

accurate prefetch option. Sandbox prefetcher improves performance by 47.6% compared

to no prefetch and 18.7% compared to Feedback Directed Prefetch [8] and 1.4%

compared to Access Map Pattern Matching Prefetcher [13].

 Sandbox Prefetcher does extremely well in computing the accuracy of the

prefetching options and detecting streams within the workload. But the only limitation is

the static threshold. In the paper [23] the author has used a score of 512 to turn on 2

highest scoring prefetchers, score of 768 to turn on three highest scoring prefetchers and

a cut-off score of 256. The performance is sensitive to these score values.

 I have replicated sandbox prefetching algorithm in which the score value used is

the prefetch accuracy. The detailed implementation of sandbox prefetcher is in chapter 5.

The graph shown below fig 2-3 is the performance (CPI) of various workloads with

different threshold values (cut off scores).

Figure 2-3 Performance of different workloads when subjected to different threshold value

Figure 2-3 comprises of different workloads from desktop to server space. From

the graph you can see that cactusADM and GemsFDTD do not have a lot of performance

 11

improvement by tuning the threshold value. Whereas libquantum and mcf are greatly

affected by threshold value selected. CactusADM has an MPKI of 14.25 and GemsFDTD

has MPKI of 27.54. They have potential to benefit from prefetching but the threshold

values might be too high from them. Libquantum on the other hand benefits from lower

threshold value. Mcf has almost same performance for threshold of 0.6 and 0.5 but as you

lower the threshold to 0.4 you see performance improvement. Some threshold value

might benefit some workload but it might not benefit other workloads.

2.4 Conclusion

There are various other prefetching algorithms that we saw above which track the access

stream of workload and choose prefetch option. But with every improvement the

architect will be faced with the same problem of choosing the heuristic. This thesis

presents an approach which eliminates the need to fix heuristics. It lets the system decide

for itself which prefetching options to choose.

 12

Chapter 3 Experimental Setup
In the previous chapter we discussed few of the latest prefetching algorithms. It is

difficult to prove the performance impact of these prefetchers on actual hardware. We

require sophisticated software tools to do performance prediction for these prefetching

algorithms. There are various simulators like Rsim, Simics, Simple scalar, Asim etcetera

which could be considered for performance prediction. I am using Simics: a full system

simulator [11] for performance prediction. Simics runs unmodified firmware, operating

system kernels, and device drivers.

3.1 Simics: A full system simulation Platform [11]

Simics tries to strike balance between accuracy and performance. It is designed to run

unmodified operating systems like linux, solarsis, and windows XP etcetera. With this

feature we can bring in workloads inside the Simics environment and observe the

performance of these workloads on the underlying processor model integrated inside

Simics. Simics simulates processor at instruction-set level, including the full supervisor

state [11]. Currently Simics supports processor models for UltraSparc, Alpha, x86, x86-

64(hammer), PowerPC, IPF, MIPS and ARM [11]. Simics has no impact on the target

software but the user has opportunity to modify the underlying hardware modules to test

the performance of target systems on them. Figure 3-1 shows how it simulates various

target systems based on different processor architectures. The architecture considered for

the thesis is Nehalam x-86 IA processor model.

One of the most important features of Simics is its determinism and repeatability.

This deterministic behavior is achieved by the use of checkpoints which is explained in

section 3.4.1. Simics supports various APIs which makes Simics favorable amongst

various computer architects. Some of the features supported by Simics are listed below.

 Fast CPU models: Memory stalling, Cache analysis, instruction trace output for

post processing. Simics is modeled at instruction set level [12]. Each instruction is

atomic and takes one cycle for execution.

 13

 Simulation Infrastructure: Simics supports breakpoints and checkpoints, scripting,

trace etcetera [12].

Figure 3-1 Simics simulation of target systems based on several processors architecture [11]

3.2 Cache behavior modelling using Simics

To evaluate the performance of prefetchers we need cache module to simulate the

prefetching algorithm. Default workspace generated by Simics does not provide cache

module. It uses its own memory system to obtain high speed simulation. We need to

install cache modules into our workspace to model cache behavior. Simics comes with

cache profiling and cache timing feature. It supports g-cache which is the standard cache

model [14]. It handles one transaction at a time and all operations are performed in an in-

order fashion. The cache returns the sum of all the stall times reported for each cache

level.

 14

Simics 4.6 version was used as the simulation platform. It supports in order

execution. Once this cache module is integrated all the memory requests issued by the

processor will go through g-cache. The cache descriptions files also known as the

configuration files for cache help us to define each cache object. These files specify some

of the important cache parameters. Default cache description file is listed in the figure 3-2

as shown below.

Figure 3-2 Cache object description [14]

Using these cache objects we can instantiate entire cache hierarchy. Figure 3-3 describes

the cache hierarchy. It specifies sizes of each cache along with the latency values

associated with each cache level. Simics module does not support memory module.

Inside trans-staller we can build DRAM structure. For my thesis I have used trans-staller

to service memory request instead of DRAM. Due to trans-staller all the memory requests

will have same latency value. Advantage of this implementation is memory design gets

simplified with a disadvantage that we cannot model memory behavior.

The functionality of Simics can be extended by user-written modules. We can

introduce models like replacement policy, prefetcher etcetera in the cache module. After

implementing the user-written modules we can integrate them here with cache. I have

introduced prefetching feature in g-cache.

 15

Figure 3-3 Cache hierarchy simulated in Simics

3.3 Prefetching Feature

The prefetching module can be attached to any cache level. A stream prefetcher is usually

implemented on mid-level cache so that it can track the miss pattern. Aggressive

prefetchers are usually attached to last level cache due to their inaccurate behavior. Last

level cache have high capacity and hence inaccuracy due to aggressive prefetchers can be

tolerated. The prefetching module is attached to mid-level (L2) cache. It is not

compulsory to attach prefetcher module on L2. Prefetch activity is triggered by L2 cache

miss. The number of lines prefetched into L2 and the offset of the prefetched line

depends on the heuristics of the prefetch algorithm. The implementation of prefetch

algorithm is described in Chapter 4.

 16

3.4 Moving workloads to Simics

To characterize the performance of underlying hardware we need to test it on various

workloads. With Simics we can simulate the target system (unmodified binaries of

operating system) and create checkpoints. The target system will be running the

workload. A checkpoint has set of files which save the complete state of simulation. Thus

for the target system at time ‘A’, if we create a checkpoint then, when the checkpoint is

loaded the target system will start from the same time instant A. Thus to test the

performance of the underlying processor model we need checkpoints of various

workloads. To create these checkpoints of various workloads we first load the target

system using Simics. Next we move workloads into the target system. After that we run

the workloads and bring them to steady state. Once the workload reaches steady state we

can create checkpoints.

3.4.1 Creating Images and Checkpoints of target system

The first step is to create the target system or load the target system. The target system

could be an ubuntu system or red hat system or any other operating system. To move

workloads into target system we first need to boot up the target system using Simics.

Simics supports machine scripts which loads and configures the target system. In these

scripts we can specify the location of the disk image which can be an iso image or craff

image. We can also specify machine configuration like the number of processors,

memory capacity etcetera. Second step is to connect the target system to the host

computer. The host computer already has the benchmark downloaded. Once the

connection between them is established transfer the benchmark files. On the target

system we can now run the workload. Once the steady state is achieved we can create

checkpoint point. After checkpoint is saved we can use this checkpoint to test the

processor model.

 17

3.5 Workloads

Checkpoints used for performance analysis belong to SPECcpu2006, SPECjvm2008 and

SPECjbb2005 benchmarks. I will be analyzing the performance impact of this new

prefetching algorithm on these workloads.

3.5.1 SPEC CPU2006

CPU2006 is CPU intensive benchmark suite developed by SPEC. The workloads in

SPECcpu2006 suite are CPU-intensive, stressing on processor’s memory subsystem and

compiler [15]. The table below lists the workloads that I have used for my analysis.

Table 3-1 Workloads run under SPEC CPU2006 [17]

Workload SPECint/

SPECfp

Workload Description

Mcf SPECint Combinatorial Optimization

Libquantum SPECint Physics: Quantum Computing

Omnetpp SPECint Discrete Event Simulation

Xalancbmk SPECint XML processing

Milc SPECfp Physics: Quantum Chromodynamics

Zeusmp SPECfp Physics / CFD

cactusADM SPECfp Physics / General Relativity

Soplex SPECfp Linear Programming Optimization

GemsFDTD SPECfp Computational Electromagnetics

Lbm SPECfp Fluid Dynamics

Sphinx3 SPECfp Speech Recognition

3.5.2 SPEC JVM2008

SPECjvm2008 benchmark suite was designed to measure the performance of JRE (Java

Runtime Environment. The workloads execute single application which focuses on

measuring performance of hardware processor and memory subsystem [16]. The table

below lists the workloads considered and the real workload applications they try to

mimic.

 18

Table 3-2 Workloads run under SPEC JVM2008 [18]

Workload Workload Description

Compiler Use openJDK front end compiler to compile a set of .java files

Compress Data compression using Lempel-Ziv method

Crypto-aes Encrypt and decrypt using AES and DES protocols

Crypto-rsa Encrypt and decrypt using RSA protocol

Cyrpto-signverify Sign and verify using different protocols

Derby BigDecimal computation

MPEGaudio It is floating point heavy and good test for mp3 decoding

Scimark It has various subtests (fft, lu, sor, sparse) with two versions large and

small

Serial Serializes and deserializes primitives and objects using data from

JBOSS

Sunflow Tests graphics visualization

XML-transform Exercises JRE’s implement of javax.xml.transform and associated

APIs by applying style sheets to XML documents

XML-validation Excercises JRE’s implementation of javax.xml.validation and

associated APIs by validating XML instance documents

3.6 Working with Simics for data collection.

Once we have everything set up: prefetching algorithm integrated inside g-cache, cache

description files, and checkpoints for different workloads we can move towards data

collection. The output from the simulator looks like figure 3-4.

Along with prefetcher there are other performance counters integrated in the

cache module. Figure 3-4 lists all the performance counters. Read, write and I_Fetch

counters count the total number of read request, write request and the instruction fetch

request seen by the particular cache level. Cycles and Instr reports the total number of

cycles taken for an interval and instr reports the total number of instructions executed

during the interval. These counters are collected on interval basis. The interval selected is

1 Million instructions. Each workload runs for total of 2 Billion instructions

 19

Figure 3-4 Output from simulator

3.7 Conclusion

With checkpoints of different workloads, prefetcher algorithm implemented in g-cache

and the machine script, data is collected for different workloads. The next chapter will

talk about how we can play with the data and build prediction models which will then

help us achieve the adaptive feature in prefetching algorithm.

 20

Chapter 4 Proposed Approach
We need a dynamic prefetching technique to select the heuristic for a prefetcher without

the use of static threshold. With every step that we take forward the prefetchers are going

to be more and more complex. Also the workloads will keep on changing and evolving.

Use of static thresholds might limit the performance improvement in long run. Hence we

need dynamically adjusting values to tune the prefetching schemes. There are various

ways in which we can achieve this dynamic behavior. One way to do it is, to train the

system to make decision about prefetching options. Machine learning has proved to be

effective in many fields. With machine learning once the system is trained, it can make

decisions for itself. Cache performance is very susceptible to the prefetching options

selected; hence we can use this correlation to predict the prefetching options.

 Machine learning is a statistical method which makes the system smarter and

gives it capability to make decision. The smart engine that makes decision is called

model. There are two approaches that can be taken to make the system smarter.

1) Throw in bunch of data and the system will group data with similar behavior. This

is known as unsupervised learning.

2) We can teach the system by feeding it with labelled dataset and telling it that for

x, y, z attributes the response seen is ‘A’. This is known as supervised learning.

For our problem we need to teach the system to pick up correct prefetching options by

looking at cache performance data. Hence the approach used is supervised learning. With

large enough dataset we can randomly divide it into training and test. With the training

dataset we can teach the system to pick up correct response. The test dataset is then used

to test the system’s ability to make correct decision.

There are various supervised learning algorithm which will work great, but

choosing the algorithm is a tough decision as you need to take into account the dataset.

The response that needs to be predicted is prefetch option that takes either ‘0’ or ‘1’

value. That is why the algorithms considered are classification algorithms.

 21

4.1 Logistic Regression

Logistic regression assumes nonlinear relationship between inputs and output. Logistic

regression estimates the probability of the response variable.

Figure 4-1 Graph specifying relation between input variable and output [19]

Logistic regression uses the maximum likelihood approach to estimate model parameters.

With maximum likelihood approach the algorithm will give us the probability of the

observed zeros and ones in the data set. Logistic regression just like linear regression

supports multiple attributes and we can use interaction between the attributes to improve

the prediction accuracy of the model.

 Logistic regression uses one model to predict the response. With cross validation

we can increase our confidence in the model. Cross validation is nothing but creating new

splits in the dataset to select multiple training, validation and test set so that we are more

confident about our model. Logistic regression works very well for some datasets. But

sometime we need more accurate models. Cache statistics are very susceptible to prefetch

option and change in one prefetching option can modify the performance drastically

which might look like a random behavior to the model. Hence building just one model to

predict the prefetching option might not be an optimal solution.

4.2 Bootstrap Forest

This classification approach uses multiple models to predict the response. The word

‘forest’ in Bootstrap Forest algorithm suggests that it has multiple models. This algorithm

creates multiple trees forming a forest. These trees are decision trees. Each decision tree

is a model which makes a prediction. This algorithm creates multiple models (decision

 22

trees) that learn from the subset of the learning dataset. Each model is given a smaller

portion of the learning dataset. Finally when all the models learn from the datasets given

to them we can then test the working of this forest. The validation data set is used to test

the ability of the algorithm to make correct decision. With validation dataset each tree

will take one sample from it and make a prediction. Once all the trees are done making

prediction for that sample the algorithms takes a vote or averages the prediction make by

all the trees. Thus in this algorithm with multiple models making the decision we get a

pretty good overall model.

4.3 Bootstrap Forest vs. Logistic Regression

Prediction models need to accurate enough so that they can predict the prefetch options.

For building these models we need to consider distribution of dataset and the algorithm

implemented by the prediction model. For some datasets simple models work whereas for

others we need complex models to get accurate results. Logistic regression as described

in section 4.1 uses a single model to make prediction but Bootstrap model as described in

section 4.2 uses multiple models to make prediction. To test the accuracy of model we

can use confusion matrix. Confusion matrix gives us a prediction table that tells how the

model classifies the samples. It gives us the misclassification ratio. Misclassification ratio

will tell us the percentage of samples those were wrongly classified. Misclassification

ratio should be low for accurate models. Figure 4.3 and figure 4.4 shows the confusion

matrix for Logistic regression and Bootstrap forest algorithm. Based on the

misclassification ratio I decided to go with Bootstrap forest approach.

 23

Figure 4-2 Model specification for Bootstrap forest

4.4 Intuitively why will machine learning approach work

With machine learning we will teach the system to decide which prefetch option to

choose. The dataset used to train the model is generalized. Generalized dataset comprises

samples from all possible workloads. If the dataset has seen some samples of all different

kinds of workload then our dataset is generalized. The dataset collected tries to look at as

many workloads as possible. Each sample contains cache statistics along with prefetch

options selected. With this generalized dataset we can train our model which can then

make prefetch prediction. Once we train our model with this dataset it will have seen

some samples of different workloads. Thus at run-time this model will monitor the cache

performance counters on interval basis and by looking at the cache statistics it can predict

prefetch options. This approach thus eliminates the need for static approach and gives us

adaptive tuning of the prefetching options.

 24

Figure 4-3 Model specification for Logistic Regression

4.4.1 Previous work done in this field

Paper [20] talks about how to use machine learning to predict near optimal prefetch

configuration out of the four BIOS prefetch option. This paper focuses on selecting one

of the best prefetch configurations out of the available prefetchers: Data Prefetch Logic,

Adjacent Cache Line, Data Cache Unit, and Instruction Pointer based prefetcher. These

prefetchers have effect on various performance counters of cache which is specified in

 25

table 2. This paper uses various machine learning techniques to map these counters to the

prefetchers selected. This framework achieves performance improvement within 1% of

the best configuration [20].

Figure 4-4 Counters affected by prefetcher

4.5 Conclusion

This chapter talks about how machine learning can be used to predict prefetch options.

Next two chapters will talk about the implementation of this adaptive approach and the

results.

 26

Chapter 5 Construction of Dataset
In the previous chapter we discussed different machine learning algorithms that can be

used for prediction. Bootstrap forest algorithm was selected as the machine learning

algorithm due to its low misclassification ratio. This chapter will cover data collection,

data processing after collecting data from Simics and building prediction models using

the dataset.

5.1 Data collection using Simics

We want to predict prefetch options by looking at cache counters. For that we need to

inject different prefetch options and monitor the cache performance counters. The most

challenging task here is injecting the prefetch options. Before injecting the prefetch

options we need to decide the prefetching options.

5.1.1 Prefetch options

Prefetch option is a combination of prefetch degree and prefetch stride. We need to look

at various prefetch options. Table 5-1 shows different prefetch options those are being

evaluated.

 Table 5-1 Different

 Prefetch options

Sr.

No

Pf

degree

Pf

stride

1 1 1

2 1 2

3 1 4

4 1 8

5 1 -1

6 1 -2

7 1 -4

8 1 -8

9 2 1

Prefetch degree: It is number of lines the

prefetching scheme is going to fetch. Prefetch

degree of 1 means it will prefetch single cache

line. Prefetch degree of 4 means it will prefetch

4 cache lines.

Prefetch stride: It is offset which gets added to

the address which results in demand miss. So if

the program wants to bring cache line A due to

demand miss then prefetch stride of 1 will

prefetch line A+1. A prefetch stride of 2 will

prefetch address A+2

 27

10 4 1

11 8 1

12 2 -1

13 4 -1

14 8 -1

15 64 1

16 64 2

17 64 4

18 64 8

19 64 -1

20 64 -2

21 64 -4

22 64 -8

The selection criteria for choosing prefetching options depend on the score value. By

changing this score value we can control the selection of prefetch options. The next

section will talk about how we use sandbox to inject prefetch options.

5.1.2 Sandbox Prefetcher

Sandbox prefetcher evaluates all the schemes integrated within it safely without polluting

the contents of cache. Sandbox module keeps track of all the memory references made to

cache level on which it is attached. Inside sandbox we deal with addresses and not the

actual data content. Sandbox module has an array structure which records all the

addresses requested by the program as well as the addresses prefetched based on the

evaluation of prefetching schemes within sandbox. Sandbox keeps evaluating these

prefetching schemes in the background, while the actual prefetching happening.

Evaluation window is given to sandbox and after the evaluation window is finished

sandbox gives us the performance of all the prefetching schemes integrated within it

which helps us make decision at run-time. This evaluation window is kept smaller so that

we can capture the changes in the workload behavior. For every interval sandbox will be

We can inject prefetch options on interval basis. For

each interval we inject prefetch options let it run for 1

Million instruction and then collect the cache statistics.

But deciding which prefetch options to apply is a

difficult task. Unless all the possible combination of

prefetch options are tested we cannot say which prefetch

options will benefit the workload. 22 different prefetch

options are considered. Therefore considering all

combination 2222 is not feasible. One of the smart ways

to inject prefetch options is by using Sandbox prefetcher

[23]. Sandbox prefetcher evaluates different prefetch

options integrated within it and selects the prefetcher

with good enough accuracy.

 28

evaluating all the prefetching schemes. After evaluation is done, in the next interval we

will turn on the prefetching schemes which Sandbox module has selected. For the next

interval sandbox module will be cleared and reset so that it will again keep tracking the

memory accesses and the performance of the prefetching. Thus sandbox module

evaluates the prefetching schemes by looking at the access pattern of the workload to

make decision at run-time. The assumption made here is, evaluation window is small

enough to capture changes in access pattern of the workload and the access pattern will

not change drastically. Table 5-2 shows the evaluation statistics. The score value is

nothing but the prefetch accuracy. This score value is shown immediately next to the

prefetching scheme. Based on the threshold value (0.4 in this case) the appropriate

prefetch options are turned on (in this case scheme 1 and scheme 5).

Table 5-2 Evaluation statistics

5.1.3 Working of Sandbox module in Simics

Sandbox prefetching module is attached to L2 cache level. It will track all the memory

requests made to L2. Whenever a program makes a request it is first processed by L1

cache. If the address is not in L1 the request is forwarded to L2 cache. Before the request

is serviced by L2 cache that address is put in the sandbox module. Inside sandbox

module, that address is recorded in an array. The prefetch/demand field for that address is

marked as demand field i.e. 0 as it was a demand request. For that address depending on

the prefetching scheme under evaluation, prefetched address is calculated and stored. For

 29

the prefetched address we mark the field as prefetch field i.e. 1. We do this for all

prefetching schemes until we finish the evaluation duration. Along with this

prefetch/demand field we have bunch of other counters shown in the table 5-2. Each

counter is described below.

1. Prefetch add: This counter keeps records of how many addresses were put in the

sandbox module as a result of prefetching.

2. Prefetch hits: This counter keeps track of number of addresses used out of the

addresses put in the sandbox because of prefetch.

3. Demand hits: This counter keeps track of number of addresses used out of the

addresses put in sandbox because of demand request.

4. Demand add: It records number of addresses put in the sandbox module as a result

of demand request.

Once the evaluation is completed score/prefetch accuracy for each prefetch option is

calculated. Once this evaluation phase is over we need to select prefetch option. As we

cannot evaluate all the 222 combinations we randomly inject prefetching options

5.1.4 Injecting Prefetching Options

A threshold value can be used for turning on prefetching options at random. For a higher

threshold value we will be turning on conservative prefetching options, but for a lower

threshold value we will be turning on aggressive prefetching options. Hence random

selection of threshold will give us more coverage. This random selection of threshold is

done on interval basis. Therefore for every interval we select a new threshold value

randomly. As each workload is run for total of 2 Billion instructions per workload we get

around 2000 samples. Total we are considering 31 different workloads therefore we have

a total of 62000 samples. This gives us a reasonable coverage.

 With this dataset we can now start moving towards building prediction models.

The first step towards building the prediction model is to bring the data in correct format

so that we can apply machine learning techniques. The next section will talk about how to

bring data in correct format.

 30

5.2 Bring the data in correct format for data analysis

The data collected from Simics comprise of cache objects reporting its statistics after

every 1M instructions. The workload is let to run for a total of 2 billion instructions.

Based on Hadley Wickham’s [21] paper on tidy data we need to rearrange the data

collected from Simics. In Simics the output is reported on interval basis. After 1M

instructions each cache objects reports its statistics. So for every interval we have 4 rows

of data. But based on the tidy data concept each row should represent one observation.

Hence instead of having 4 rows with 11 attributes for one observation we need to have

one row with 44 attributes for one observation. The first 11 attributes of a row

correspond to attributes of L1-I cache 12 to 22 attributes correspond to L1-D cache 23 to

33 correspond to L2 cache and lastly 34 to 44 correspond to L3 cache. But along with

cache statistics we need prefetch options also. So after the 44 attributes we concatenate

all the 22 prefetch options. These 22 prefetch options are represented in a bit vector

format. Each bit corresponds to a prefetch option. A bit value of 1 means that particular

prefetch option will be turned on and 0 means it will be turned off. The prediction models

built are for each bit. So we have a total of 22 different prediction models predicting their

individual prefetch bit. Thus each row comprises of 44 cache attributes and 22 prefetch

options.

 Once we have data arranged in the format that can be used in machine learning

algorithm we have to move on towards labelling the dataset. As we are using supervised

learning algorithm this is an important step and our results will be sensitive to labelling

the dataset.

5.3 Labelling data samples

Each sample in the dataset comprises of performance counters collected on interval basis.

For every sample we choose the threshold value randomly between 0.0 and 0.9. The next

step is building the prediction model. For that we first need to label the data. Here the

tricky part is we need to predict the prefetch option so our response is the prefetch option

for each prefetching scheme. But not all the samples from the dataset have positive

impact on the performance. We need to build a model based on the positive samples so

 31

that the model will predict prefetching options having positive impact. For building the

model if negative samples are used then the model might map some of the cache statistics

to prefetching options which might degrade the performance.

 Samples are labelled into positive and negative based on the performance impact.

To decide if the prefetching option is beneficial or not we use the no prefetch cycle count

as the baseline. If the current sample shows 25% improvement over the no prefetch

option we have some confidence that the prefetching options selected were beneficial. It

is unrealistic to collect no prefetch cycle count for 2000 samples for 2Billion instructions.

And then again collect data by randomly selecting threshold. We assume that the

workload will not change the phase for 2 billion instructions which is like 5ms real time.

Hence we turn off prefetching for the first sample and use that cycle count as the baseline

to label samples as positive or negative. After we have labelled data we can use the

positive sample to create the prediction model i.e. use it as the training data set and the

rest of the samples will be in test set. From the figure 5-1 we can see that 52% of the

samples are used for creating the model. These samples are the positive samples. The rest

48% samples are the negative samples which comprise of the test set.

Figure 5-1 Distribution of positive and negative samples with threhsold value of 0.25

 32

5.4 Prefetchers used for comparison

To verify how good this adaptive prefetching technique is I have used Sandbox

prefetcher [23]. This prefetcher was published in HPCA 2014 and was amongst the best

prefetcher paper. I have also compared this approach to a hypothetical prefetcher which

eliminates all memory requests. I have called it zero memory latency concept. This

hypothetical prefetcher will service all the demand access by fitting the entire data into

cache so that we do not need to go to main memory. Comparison with this ideal scenario

will let us know how much margin of improvement is still available for the prefetching

algorithm.

The next chapter will talk about how to use the dataset to build prediction model.

It will walk through the results obtained by building models in different ways.

 33

Chapter 6 Prediction Models and Results
The last chapter provided a brief introduction to building prediction models. Based on the

labelling criteria used we have the training and test set. The next step is to select the

attributes that will affect the response. There is lot of data dependency among different

performance counters. Before building the models we need to take care of dependency

issues. Performance counters considered are the read and instruction fetch hit and miss

counters at all cache level. A miss at L1 level is propagated to L2 level which then results

to either hit or miss in L2 level. The figure 6-1 below explains this phenomenon.

L1I0.IF

L1i0.IF_HIT

L1i0.IF
MISS

L2C0.IF

L2C0.IF_HIT

L2C0.IF
MISS

L3C0.IF

L3C0.IF_HIT

L3C0.IF
MISS

Figure 6-1 Propagation of instruction request in cache

L1I0.RD

L1i0.RD_HIT

L1i0.RD
MISS

L2C0.RD

L2C0.RD_HIT

L2C0.RD
MISS

L3C0.RD

L3C0.RD_HIT

L3C0.RD
MISS

Figure 6-2 Propagation of data request in cache

So for the attributes if we choose only the leaves we will eliminate the singularity and the

data dependence problem.

6.1 Building Model-I

This model builds one prediction model per prefetch option. Thus for model-I we will

have total of 22 prediction models. The simulation cycle count value is used to label

samples as positive or negative. For a sample to be positive its performance for 1M

instructions should be 25% better than the baseline. Baseline cycle count is obtained by

 34

turning off prefetching at the start of workload. Assumption made in that is the phase of

workload will not change by a huge margin and the first cycle will be somewhat

representative. Using this baseline cycle and the cycles computed at run-time for every

interval the samples are labelled as positive or negative. The leaves of the trees shown in

figure 6-1 and 6-2 are used as attributes to create the model. Figure 6-3 shows the

distribution and division of training and test set. The samples falling in level 0 used in

training. They are the positive samples. From the figure 6-3 53% of the samples are used

to build the model. The rest 47% of samples fall in level 1 which is used as test data set.

There is no validation set as only 53% of samples are positive.

Table 6-1 talks about the performance of all the prediction models on training

data set. The classification algorithm used is the bootstrap method. The misclassification

ratio should be low. Based on the values of misclassification rate we have pretty

reasonable models.

Figure 6-3 Distribution of training and validation dataset

 35

Using JMP when the models are built, they will make predictions on all the samples.

Once the predictions for all the samples are made, these predicted prefetch options are

copied back in Simics environment. Ideal scenario would be to implement these

prediction models in Simics. But due to complex nature of the model JMP is used to

create these prediction models. As Simics is deterministic in nature we can map the

predicted prefetch options to its corresponding interval.

Table 6-1 Prediction for Model - I

Training set : 35835 samples

Prefetch

Option

Prefetch

Degree

Prefetch

Stride

Misclassification

Ratio

1 1 1 0.1272

2 1 2 0.2428

3 1 4 0.2140

4 1 8 0.2088

5 1 -1 0.1720

6 1 -2 0.1680

7 1 -4 0.1345

8 1 -8 0.1164

9 2 1 0.2699

10 4 1 0.2177

11 8 1 0.1764

12 -2 1 0.1552

13 -4 1 0.1300

14 -8 1 0.1017

15 64 1 0.0974

16 64 2 0.0972

17 64 4 0.0985

18 64 8 0.1028

 36

19 64 -1 0.0350

20 64 -2 0.0357

21 64 -4 0.0349

22 64 -8 0.0345

6.1.1 Performance of Model-I

Once the predicted prefetch options are obtained from JMP, they are integrated in Simics.

The workloads are run with these predicted options and the overall performance of the

workload is observed. Figure 6-4 shows the performance of adaptive prefetching

approach over sandbox prefetcher [23]. The performance comparison is done using

normalized CPI. It is normalized to no prefetch. Most of the time sandbox prefetcher

works better than this adaptive prefetching technique. But the performance difference

between the two is very less. Also the adaptive prefetching is always better than no

prefetch. The performance of machine learning technique is within 5% of sandbox

prefetcher.

Figure 6-4 Comparing performance of adaptive prefetching (Machine Learning) with other

prefetching techniques

 37

6.1.2 Limitation of this approach

The labeling of samples into positive negative depends on the value of baseline which is

computed once at the start of the workload. What if this value is faulty? Also if the phase

of the workload changes this baseline value might be too high or too low for that interval.

Also what if the cycles computed by simulator is incorrect? Let us tackle each question

independently.

Most of the workload goes through various phases. Hence we need to collect

baseline samples more frequently. For that we have another data set in which the

prefetching option is triggered using random threshold but after every 100M instructions

i.e. after every 100 samples we are turning off prefetching and that becomes our baseline

for next 100 samples. Section 6.2 will talk about the model built with this dataset.

 For simulation cycle, based on paper [22] we can do a quick check if the values

are faulty or noisy. A simple linear regression for response as simulation cycle and

factors as read and instruction fetch misses for each cache level gives a reasonable

rsquare. As it is a simulator we would expect an rsquare close to 1. But due to some long

latency instructions we have noise in the simulation cycle. Here in our case we got an

rsquare of approximately 0.9 which is reasonable. There is some noise in the dataset but

we can work with it and continue with using this metric for labelling samples.

Figure 6-5: Linear model for simulation cycle

 38

6.2 Building Model-II

In the previous model the baseline samples for labelling the dataset was collected once

per workload. But this one sample might not be representative for all the samples as the

phase of the workload might change. For this model we frequently collect the baseline

samples for labelling data. After every 100M instruction we turn off prefetching and

collect these baseline samples. Rest of the things are same as compared to the previous

model in section 6.1.

Table shows the misclassification ratio for all the prediction models built for model-II.

These models will now make performance prediction for all the samples.

Table 6-2 Prediction for Model - II

Training set : 35835 samples

Prefetch

Option

Prefetch

Degree

Prefetch

Stride

Misclassification

Ratio

1 1 1 0.2748

2 1 2 0.2542

3 1 4 0.2289

4 1 8 0.2250

5 1 -1 0.2760

6 1 -2 0.2525

7 1 -4 0.2289

8 1 -8 0.2247

9 2 1 0.2943

10 4 1 0.2797

11 8 1 0.2462

12 -2 1 0.2938

13 -4 1 0.2797

14 -8 1 0.2463

15 64 1 0.2190

16 64 2 0.2149

17 64 4 0.2133

 39

18 64 8 0.2205

19 64 -1 0.2187

20 64 -2 0.2145

21 64 -4 0.2131

22 64 -8 0.2194

 40

6.2.1 Performance of Model-II

Figure 6-6 Comparing performance of adaptive prefetching (Machine Learning) with other

prefetching techniques

This model does 2% better than sandbox for SPECjvm workloads and 1% better than

sandbox for SPECcpu workloads. The reason why it is able to beat sandbox is, now the

labelling of the samples is more meaningful. Earlier we had only one sample per

workload. But this model looks at phase of workload every 100M instruction and then

labels the samples into positive negative buckets.

6.2.2 Comparing Model-I and Model-II

The graph below compares of both the models. It is quite evident from the graph that

model-2 works best. Just by labelling the data in a more representative way we can get

good prediction.

 41

Figure 6-7 Comparing both the models

With this approach we can dynamically tune the prefetch options without any predefined

heuristics. All that is needed is a good training dataset which has reasonable coverage of

different workloads possible and various different prefetch options which benefit the

workload.

 42

Chapter 7 Limitation and Future Work
In the last chapter we discussed various models built and the performance of those

models. It works well with both SPECcpu and SPECjvm workloads. This chapter will

cover the limitation and future work of this adaptive approach.

7.1 Limitation

1. The prefetch options predicted by the models are very sensitive to the way the

models are labelled. Thus the performance of this prefetcher highly depends on

this step of labelling samples into positive negative bucket

2. The prediction models are built outside the simulator. Ideally speaking they

should be built inside the simulator so that they can adaptively look at the

hardware performance counters to predict the prefetch options. As we have

models built outside the simulator the results obtained by this approach will be

little different than what would be obtained when this model is implemented in

hardware.

3. The machine learning algorithm used is very complex and difficult to implement

on actual hardware. It will be very expensive to build it. Hence we need a good

alternative algorithm that can be cheaply implemented on hardware or simulator.

4. The performance counters which are being monitored by the model to make

prediction are very limited and biased. We need more counters which gives us

some information about the stride and memory performance.

 In spite of having so many limitations this approach still gives us a reasonable

performance improvement. This may not be the best prefetching technique but with the

results so far we have a good confidence in the direction we are heading towards. This

technique will eliminate the need of selecting heuristics for prefetcher.

7.2 Future Work

If we go along this route the final product will look like figure 7-1. Figure 7-1 shows that

every socket will have a predictive model that will decide the prefetch options at run-

time. On interval basis it will monitor the hardware performance counters like EMON

 43

and decide the prefetch option. Once the model is built it doesn’t have to keep track of

the access history. The model is built before the SKU is released.

Figure 7-1 Predictive Model in the socket

7.3 Alternative uses of this approach

This approach need not be limited to only prefetching. It can be used in places where we

need to have adaptive behavior without having fixed heuristics. For DRAM access the

energy consumption is higher. We can use this kind of a smart engine or model to decide

if we need to propagate the prefetch request to the main memory. It can be used in hybrid

architecture to schedule tasks on different cores. We can use this technique wherever we

need to have a dynamic behavior in the system

Finally to conclude this project is all about integrating machine learning with hardware

prefetching. With machine learning we can eliminate the need to fix heuristics for

prefetching.

 44

Chapter 8 Bibliography

[1] J. L. Hennessy and D. A. Patterson, Computer Architecture: A Quantitative

Approach, San Fransico: Morgan Kaufmann Publishers Inc, 2011.

[2] S. Byna and X.-H. Sun, "Taxonomy of Data Prefetching for Multicore Processors,"

JOURNAL OF COMPUTER SCIENCE, p. 405{417, May 2009.

[3] T. C. Mowry, M. S. Lam and A. Gupta, "Design and evaluation of a compiler

algorithm for prefetching," in ASPLOS V Proceedings of the fifth international

conference on Architectural support for programming languages and operating

systems, New York, 1992.

[4] R. Hegde, "Optimizing Application Performance on Intel® Core™

Microarchitecture Using Hardware-Implemented Prefetchers".

[5] E. Ebrahimi, O. Mutlu and Y. Patt, "Techniques for bandwidth-efficient prefetching

of linked data structures in hybrid prefetching systems," in IEEE 15th International

Symposium on High Performance Computer Architecture, Feb. 2009.

[6] R. Chappell, J. Stark, S. Kim, S. Reinhardt and Y. Patt, "Simultaneous subordinate

microthreading (SSMT)," in Proceedings of the 26th International Symposium on

Computer Architecture, 1999.

[7] C. Zilles and G. Sohi, "Execution-based prediction using speculative slices," in ISCA

'01 Proceedings of the 28th annual international symposium on Computer

architecture, New York, May 2001 .

[8] S. Srinath, O. Mutlu, H. Kim and Y. Patt, "Feedback Directed Prefetching:

Improving the Performance and Bandwidth-Efficiency of Hardware Prefetchers," in

IEEE 13th International Symposium on High Performance Computer Architecture,

Feb. 2007.

[9] O. Mutlu, J. Stark, C. Wilkerson and Y. Patt, "Runahead execution: an alternative to

very large instruction windows for out-of-order processors," in The Ninth

International Symposium on High-Performance Computer Architecture, 2003, Feb.

2003.

[10] X. Gu and C. Ding, "On the theory and potential of LRU-MRU collaborative cache

management," in Proceedings of the international symposium on Memory

management, November 2011 .

[11] P. Magnusson, M. Christensson, J. Eskilson, D. Forsgren, G. Hallberg, J. Hogberg,

F. Larsson, A. Moestedt and B. Werner, "Simics: A full system simulation

platform," in Computer , vol.35, no.2, pp.50,58,, Feb 2002.

[12] "WIND RIVER," [Online]. Available: http://www.windriver.com/products/product-

notes/8033_Simics_PN_0612.pdf.

[13] Y. Ishii, M. Inaba and K. Hiraki, "Access map pattern matching for data cache

prefetch," in Proceedings of the 23rd international conference on Supercomputing,

 45

2009.

[14] "Wind River Simics Full System Simulator," [Online]. Available:

http://www.windriver.com/products/simics/.

[15] "Standard Performance Evaluation Corporation CPU2006 Benchmark Suite,"

[Online]. Available: http://www.spec.org/cpu2006/..

[16] "Standard Performance Evaluation Corporation JVM 2008 Benchmark Suite,"

[Online]. Available: https://www.spec.org/jvm2008/.

[17] "Standard Performance Evaluation Corporation CPU 2006," [Online]. Available:

https://www.spec.org/cpu2006/Docs/.

[18] "Standard Performance Evaluation Corporation JVM 2008 Benchmark Suite,"

[Online]. Available: https://www.spec.org/jvm2008/docs/benchmarks/index.html.

[19] "Microsoft Logistic Regression Algorithm Technical Reference," [Online].

Available: http://technet.microsoft.com/en-us/library/cc645904.aspx.

[20] S.-W. Liao, T.-H. Hung, D. Nguyen, C. Chou, C. Tu and H. Zhou, "Machine

learning-based prefetch optimization for data center applications," in Proceedings of

the Conference on High Performance Computing Networking, Storage and Analysis,

Nov. 2009.

[21] H. Wickham, "Tidy Data," Journal of Statistical Software, vol. VV, no. II.

[22] K. Chow, P. Maldikar, R. Scott, P.-f. Chuang and K. Ban, "Experiments and

Analytics for Software-Hardware Optimization," in Workshop on Reproducible

Research Methodologies at HPCA 2014, Orlando, February 2014.

[23] S. H. Pugsley, d. R. Balasubramonian, Z. Chishti, C. Wilkerson, S.-L. Lu, P.-f.

Chuang, R. L. Scott and K. Chow, "Sandbox Prefetching: Safe Run-Time Evaluation

of Aggressive Prefetchers," in 20th IEEE International Symposium On High

Performance Computer Architecture, Orlando, 2014.

