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Abstract

Accurate recovery of predicate-argument dependencies is vital for interpretation tasks like in-

formation extraction and question answering, and unbounded dependencies may account for a

significant portion of the dependencies in any given text. This thesis describes a Generalized

Categorial Grammar (GCG) which, like other categorial grammars, imposes a small, uniform,

and easily learnable set of semantic composition operations based on functor-argument rela-

tions, but like HPSG, is generalized to limit the number of categories used to those needed to

enforce grammatical constraints.

The thesis also describes a system for automatically reannotating syntactically-annotated

corpora for the purpose of refining linguistically-informed phrase structure analyses of vari-

ous phenomena. In particular, it describes a method for implementing syntactic analyses of

various phenomena through automatic reannotation rules, which operate deterministically on

a corpus like the Penn Treebank (Marcus et al., 1993) to produce a corpus with desired syn-

tactic analyses. This reannotated corpus is then used to define a probabilistic grammar which

is automatically annotated with additional latent variable values (Petrov and Klein, 2007) and

used to parse the constituent and syntactic dependencies from input sentences of the Wall Street

Journal and from a minimal but special corpus introduced by (Rimell et al., 2009) that contains

only sentences having Object extraction from a relative clause, Object extraction from a reduced

relative clause, Subject extraction from a relative clause, Free relatives, Object wh-questions,

Right node raising, and Subject extraction from an embedded clause. This corpus was designed

specifically to test various parsers on their capability to recover these unbounded dependencies

as studied by (Rimell et al., 2009, Nivre et al., 2010). Our system achieves the best result with

noticeable margin on unbounded dependency recovery task compared to the results of all 7 other

major systems studied by (Rimell et al., 2009, Nivre et al., 2010). The first paper describing

this system earned the attention from the NLP research community after it won the Best Paper

Award at the international conference COLING 2012.
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5.1 Syntax parsing for GCG. The darker color rectangles denote the commands

with arrows coming in as inputs and going out as outputs. The number i in the

yellow circle at the upper right corner of the command is referred to as step i

in the writeup description of these commands for the figure. The lighter color

rectangles denote the extensions of the files being generated or consumped by

the commands. The special lighter color rectangles with a shade denote the

files from corpora, i.e. “PTB” for PennTreebank corpus. There are two kinds

of arrows: the black ones are for the flow of gold data and the blue ones are for

the hypothesis data. If a command has at least one incoming blue arrow then its

outgoing arrow must be a blue one. The two outputs going out of this Figure

are “.parsed.linetrees” (hypothesis) and “.gcg13.linetrees” (gold). They will be

used in a number of different syntax, dependency, filler-gap, and proposition

evaluations for GCG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

5.2 Syntax evaluation for GCG. The hypothesis file “.parsed.linetrees” and gold

file “.gcg13.linetrees” inputs to the standard “evalb” script are coming from

the outputs toward the end of Figure 5.1. The output “.gcg13.syneval” of this

command is the official result of the GCG evaluation on syntax parsing. This

result is shown in Table 5.1. . . . . . . . . . . . . . . . . . . . . . . . . . . . 121
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5.3 Syntax parsing for CCG. The darker color rectangles denote the commands with

arrows coming in as inputs and going out as outputs. The number i in the yel-

low circle at the upper right corner of the command is referred to as step i in the

writeup description of these steps. The lighter color rectangles denote the exten-

sions of the files being generated or consumped by the commands. The special

lighter color rectangles with a shading denote the files from corpora, i.e. “CCG

Bank” for CCG Treebank corpus. There are two kinds of arrows: the black ones

are for the flow of gold data and the blue ones are for the hypothesis data. If a

command has at least one incoming blue arrow then its outgoing arrow must be

a blue one. The two outputs going out of this Figure are “.ccg.parsed.linetrees”

(hypothesis) and “.ccg.linetrees” (gold). They will be used in a number of dif-
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in Table 5.2. The standard “evalb” used in this Figure is exactly the one used in
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5.6 McNemar’s significance test for syntax evaluation between GCG and CCG. The

upper pair of inputs are “.parsed.linetrees” and “.gcg13.linetrees”, coming from

the outputs toward the end of Figure 5.1 to represent the syntax parsing on GCG.
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from the outputs toward the end of Figure 5.3 to represent the syntax parsing

on CCG. The step 1 is duplicated in 2 places to make it clear by reducing the

number of its inputs and outputs. This step 1 extracts only the perfect matches

in parsing on either GCG or CCG. The “.corr” file name implies taking only the

perfectly “correct” parsed sentences. The step 2 is an R script to compute the

McNemar significance test. This result as shown in Table 5.4, one more time,
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Chapter 1

Introduction

Recent years have been experiencing so much excitement and opportunity for computational

natural language understanding. These natural language understanding tasks include, but are

not limited to, the deployment of widespread commercial systems based on natural language

understanding to answer questions about flight departure or arrival time; give directions about

geographical information; report on bank account balances or even perform simple financial

transactions. The fast growing adoption of mobile devices into society also enable the develop-

ment of applications that aim to act as a personal assistant communicating to the device owner

using natural language like Siri (iOS) and Skyvi (Android). More sophisticated research sys-

tems may begin to generate concise summaries of news articles, mine the entire world wide

web to look for information of interest, answer fact-based questions, and recognize complex

semantic and dialogue structure.

This is not to say that the problem of computational language understanding is solved. Lots

of these systems operate on closed domains, recognize only limited sets of rules and/or key-

words which are domain specific and carefully hand-crafted, or rely upon some off the shelf

parsers that offer little to no way of changing their syntactic analyses to experience different

levels of generalities and learnabilities on different specific downstream tasks. It is therefore

comes the challenge to research and develop a robust, domain-independent system that can offer

a great level of flexibility in choosing any different syntactic analysis for any targeted language

construct. To step toward these goals, this hypothetical system must (1) be able to model deep

syntactic and at least shallow semantic representation in term of predicate-argument dependen-

cies, and (2) to have a flexible grammar acquirable by mean of automatically reannotating some
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available corpus such as the Penn Treebank (Marcus et al., 1993).

This thesis presents the research and development of such a comprehensive system known

as "modelblocks" that is publicly available on sourceforge.net. It is organized in 7 chapters

following this introduction as outlined below:

• Chapter 2 describes the background or related work of this research. It talks about CCG

(Steedman, 2000, Hockenmaier and Steedman, 2007) and HPSG (Pollard and Sag, 1994,

Miyao et al., 2004) as two other mainstream research directions toward these goals in-

cluding grammar formalisms and the reannotation of Penn Treebank (Marcus et al., 1993)

into their grammar representations.

• Chapter 3 provides details of a Generalized Categorial Grammar (GCG) formalism. It

shows areas of similarities to both CCG and HPSG but highlights the differences that

set itself apart and can be considered novel contributions empirically on a number of

different downstream tasks. The syntax representation of GCG can be programmatically

and deterministically transformed into a shallow semantic representation as structures of

predicate-argument dependencies. This is not so straightforward for CCG and HPSG.

• Chapter 4 is about the details of the reannotation process to acquire a corpus in this

GCG annotation from the well-known Penn Treebank (PTB). This reannotation is again

programmatically and deterministically done using a set of about 175 rules implemented

in Perl. This set of rules is modular and easy to change to support experiments using

different syntactic analyses. From this perspective, modelblocks is not just a tool that can

be taken as is, but a tool to build different tools to suit different purposes or downstream

tasks. This is another difference between this system compared to CCG and HPSG.

• Chapter 5 describes the evaluation of our GCG grammar on syntax parsing task. This

chapter also shows the same parsing evaluation on the competitive CCG. The two evalu-

ation results show that GCG is more accurate on section 23 of WSJ, but a Student’s t-test

and a McNemar’s test were done to generalize the claim that the reannotated GCG can

parse significantly better than CCG.

• Chapter 6 is on the same methodology as Chapter 5 but evaluating the recovery of syn-

tactic dependency relations instead of constituent parsing. The results also show that our

GCG grammar is significantly better than the competitive CCG on this task.
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• Chapter 7 evaluates GCG on the recovery of unbounded dependency relations, and filler-

gap constructions specifically. This evaluation, leveraging results from Rimell et al.

(2009) on this same task, shows that GCG outperforms by a good margin on unbounded

dependency recovery compared to seven other systems. This result is stronger than what

was reported in our paper that earned the Best Paper Award at COLING 2012.



Chapter 2

Background

The work presented in this thesis can be roughly divided into 3 parts: (1) A formalism of a new

Generalized Categorial Grammar (GCG), (2) The reannotation process to convert Penn Tree-

bank into this GCG representation, and (3) The various evaluations of the system on constituent

parsing, syntactic dependency parsing, and unbounded dependency recovery. This chapter will

do a survey of other research approaches to these ideas.

2.1 CCG and HPSG

A question one may ask is why do we need another grammar? There are very many out there

already. A grammar is just a way to impose some rules or dependency structures on a language

to make it easy to explain, teach, or validate it. For example, linguists come up with sets of

syntactic categories as ways to label different types of language constituents in a consistent

manner in order to describe language in a formal way. Computational linguists use grammars

for parsing or generating language structures to solve a number of downstream tasks such as

question answering, information retrieval, etc. One grammar may be proven as a good fit for

some tasks but not others. We are interested in finding or developing a grammar that allows a

relatively easy way to change some syntactic categories for the purpose of experimenting with

different syntactic analyses on some particular downstream task. An example would be to either

collapse or separate the two commonly occurring categories for post-nominal modifier phrases

and predicative phrases. CCG (Steedman, 2000, Hockenmaier and Steedman, 2007) and other

grammars treat these two phenomena as separate categories, but we can show that collapsing

4



5

them together yield much better results on the unbounded dependency recovery task. This is

the reason we want to build a new grammar, a meta-grammar that can help people build and

experiment on their own different grammars to fit their needs.

As a new grammar, our GCG is closely related to CCG (Steedman, 2000, Hockenmaier and

Steedman, 2007) and HPSG (Pollard and Sag, 1994, Miyao and Tsujii, 2005). Like CCG or

other categorial grammars, it imposes a small, uniform, and easily learnable set of semantic

composition operations based on functor-argument relations, but like HPSG, is generalized to

limit the number of categories used to those needed to enforce grammatical constraints.

2.2 Reannotation from Penn Treebank to CCG and HPSG

Having a good grammar formalism written out on paper is not so valuable if it’s not accom-

panied by a sufficient coverage corpus to test out its generality and learnability, but annotating

a wide coverage corpus by hand is practically impossible. We therefore built a reannotation

system to map existing resources based on Government and Binding Theory, like the Penn

Treebank, into this categorial representation in much the same way Clark and Curran (2007)

and Miyao and Tsujii (2005) did for their CCG and HPSG formalisms respectively. The dif-

ference between our reannotation system and these two reannotations lies in its simplicity and

capability to adapt to changes to support alternative syntactic analyses. As a system, our reanno-

tation consists of 175 rules and is designed to be applied deterministically in a single top-down

pass, pulling arguments and modifiers out of constituents until only a lexical head remains at the

bottom. This single-pass architecture allows the rules for reannotating various linguistic phe-

nomena to be relatively modular, so that they can be independently manipulated and evaluated.

Both CCG and HPSG reannotation involved multiple phases for head-finding, binarization, and

labeling. They both rely up on some heuristic component, so cannot be fully deterministic or

automatic.

2.3 System Evaluations

The reannotated GCG grammar is used to define a probabilistic model which is automatically

annotated with additional latent variable values (Petrov and Klein, 2007) and used to parse the

constituent and syntactic dependencies from input sentences of the Wall Street Journal and from
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a minimal but special corpus introduced by (Rimell et al., 2009) that contains only sentences

having Object extraction from a relative clause, Object extraction from a reduced relative clause,

Subject extraction from a relative clause, Free relatives, Object wh-questions, Right node rais-

ing, and Subject extraction from an embedded clause. This corpus was designed specifically to

test various parsers on their capability to recover these unbounded dependencies as studied by

(Rimell et al., 2009, Nivre et al., 2010).



Chapter 3

Generalized Categorial Grammar

This chapter describes the formalism of our Generalized Categorial Grammar (GCG), which has

the transparent predicate-argument dependencies of traditional categorial grammars (based on

function application), but is generalized to allow arbitrary sets of type-constructing operators.

An extended set of type-constructing operators and a corresponding set of inference rules are

then used to group syntactically-interchangeable signs — for example, those with peripheral

and non-peripheral gaps or those occurring in post-nominal and predicative contexts — into

equivalent categories.

A generalized categorial grammar (Lambek, 1958, Bach, 1981, Oehrle, 1994) is a tuple

〈U,O,R,X,M〉 of a set U of primitive category types, a set O of type-constructing operators,

a set R of inference rules, a set X of vocabulary items, and a mapping M from vocabulary

items to complex types. The set of primitive category types U specify various linguistic forms

for descriptions of entities or eventualities, corresponding to different clause types,1 e.g.:

V: finite verbal (they knew it)

I: infinitive verbal (them to know it)

B: base-form verbal (them know it)

L: participial verbal (them known it)

A: adjectival/predicative (them knowing it)

R: adverbial (them knowingly)

G: gerund (them knowing it)

N: nominal form (e.g. their knowledge of it)

D: determiner (their knowledge of it’s)

O: genitive (of their knowledge of it)

E: embedded infinitive (for them to know it)

C: complementized finite (that they know it)

Q: interrogative (did they know it)

S: complete utterance (know it)
1 This system of categories may be viewed as a simplification of a tectogrammatical type system such as that of

Mihalicek and Pollard (2010), weakened to be representable as a context-free grammar.

7
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The set of type-constructing operators O specify various kinds of arguments:2

-a: initial argument

-b: final argument

-c: initial conjunct

-d: final conjunct

-g: filler-gap argument

-h: held argument for right node raising

-i: interrogative pronoun argument

-r: relative pronoun argument

Using this set of primitive category types U and type-constructing operators O, a set of

complex categories C can be defined such that:

1. every U is in C

2. every C×O×C is in C

3. nothing else is in C

Mapping M defines associations from vocabulary items x ∈ X to meaning functions and

associated categories of the form ‘(λ ...) : uϕ1...ϕvψ’, where ‘(λ ...)’ is a meaning function

and ‘uϕ1...ϕvψ’ is a category consisting of output category u ∈ U , a sequence of argu-

ment categories ϕ1, ..., ϕv ∈ {-a, -b, -c, -d}×C, and an optional non-local argument category

ψ ∈ ({-r, -i}×C) ∪ {ε}. Since this model will be used to generate predicate-argument re-

lations but not scoping relations, these meaning functions are constrained to describe simple

existentially-quantified variables over instances of entities or eventualities, connected by a set

of numbered argument relations. These meaning functions map instances of entities or eventual-

ities i, j, k to truth values based on whether the described argument relations hold between these

referents. These argument relations are defined as numbered functions (v i)=j from eventuality

or predicate instances i to argument instances j identified by the number of the function v. The

‘0’ function identifies j as i’s predicate concept (so ‘0’ maps entity or eventuality instances to

instances of concepts associated with words in X), the ‘1’ function identifies j as i’s first argu-

ment (e.g. its subject), the ‘2’ function identifies j as i’s second argument (e.g. its direct object),

and so on.3 A graphical representation of the predicate-argument relations generated by this
2 The -a and -b operators may be viewed as equivalent to the forward and backward slash, respectively, of

Lambek (1958) or Bar-Hillel (1953) categorial grammars, except that they are not used to represent gap arguments
or conjuncts. The -g operator is similar to the vertical or neutral slash of Kubota and Levine (2012), used to represent
gap arguments. The -c and -d operators for conjuncts, the -h operator for rightward raising, and the -r and -i operators
for relative and interrogative pronoun referents are novel extensions to the system.

3 More sophisticated meaning functions are possible, but are not necessary for evaluating the accuracy of
unbounded dependency recovery.
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Figure 3.1: Graphical representation of predicate-argument dependencies for the sentence The
person who officials say stole millions.

system for the sentence The person who officials say stole millions, is shown in Figure 3.1. This

is similar to the semantic dependency representations of Mel’čuk (1988) and Parsons (1990).

The meaning functions associated with most words specify just the predicate concept (which

is here defined to match the word x):

x 7→M (λi (0 i)=x) : uϕ1...ϕv (3.1a)

Meaning functions for relative pronouns (Equation 3.1b) and interrogative pronouns (Equa-

tion 3.1c) introduce additional arguments k, using operators -r or -i for the referent of the

antecedent of a relative or interrogative pronoun respectively:

x 7→M (λk i (0 i)=x ∧ (v i)=k) : uϕ1...ϕv−1-rc (3.1b)

x 7→M (λk i (0 i)=x ∧ (v i)=k) : uϕ1...ϕv−1-ic (3.1c)

Inference rules are defined in terms of composition functions for arguments, modifiers, and

conjuncts. These composition functions each take a meaning function g for an initial (left)

child sign and a meaning function h for a final (right) child sign (each defining a set of entity

or eventuality instances) and return a meaning function for the parent, which is itself a function

from entity or eventuality instances i to truth values:

• Composition functions for arguments fuϕ1...ϕv connect the referent j of an initial (left)

child function g as an argument of referent i of a final (right) child function h, or vice
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versa:

fuϕ1...ϕv−1-ac
def
= λg h i ∃j (v i)=j ∧ (g j) ∧ (h i) (3.2a)

fuϕ1...ϕv−1-bc
def
= λg h i ∃j (v i)=j ∧ (g i) ∧ (h j) (3.2b)

• Composition functions for initial and final modifiers (fIM and fFM) are category-independent

and return the referent of the argument (j) rather than of the predicate (i):

fIM
def
= λg h j ∃i (1 i)=j ∧ (g i) ∧ (h j) (3.3a)

fFM
def
= λg h j ∃i (1 i)=j ∧ (g j) ∧ (h i) (3.3b)

• Composition functions for conjuncts are similar to composition functions for arguments,

except that they only count conjunct arguments, for c, d∈C:4

fc-cd
def
= λg h i ∃j (1 i)=j ∧ (g j) ∧ (h i) (3.4a)

fc-dd
def
= λg h i ∃j (2 i)=j ∧ (g i) ∧ (h j) (3.4b)

f&
def
= λg h i ∃j k j=(2 i) ∧ (0 i)=(0 j) ∧ (1 j)=k ∧ (g k) ∧ (h j) (3.4c)

The set of inference rules R in the categorial grammar then apply these composition func-

tions to compose and categorize super-lexical signs. These inference rules will use variables f, g,

h over meaning functions, variables k over referents for possible values of gaps, variables u ∈ U
over primitive categories, variables c, d, e ∈ U×({-a, -b, -c, -d}×C)∗ over categories with lo-

cal arguments, and variables ψ ∈ {-g, -h, -i, -r} × C over non-local operators and argument

categories:5

1. Inference rules for argument attachment apply functors of category c-ad or c-bd to initial

or final arguments of category d. Non-local arguments k, using non-local operator and ar-

gument category ψ, are then propagated to the consequent from all possible combinations
4 The last of these (3.4c) introduces lexical and compositional relations for elided conjunctions in sequences of

three or more conjuncts (e.g. between creditors and investors in the conjunction creditors, investors, and employees).

5 A deductive system consists of inference rules of the form
P

Q
R, meaning premises or antecedents P entail

conclusion or consequent Q according to rule or side condition R (Shieber et al., 1995). Additionally, this notation
assumes adjacent premises arise from adjacent and similarly ordered sequences of observations.
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of antecedents, skipping over the composition function:
g:d h: c-ad
(fc-ad g h): c

g:dψ h: c-ad
λk (fc-ad (g k)h): cψ

g:d h: c-adψ
λk (fc-ad g (h k)): cψ

g:dψ h: c-adψ
λk (fc-ad (g k) (h k)): cψ

(Aa–d)

g: c-bd h:d

(fc-bd g h): c

g: c-bdψ h:d

λk (fc-bd (g k)h): cψ

g: c-bd h:dψ

λk (fc-bd g (h k)): cψ

g: c-bdψ h:dψ

λk (fc-bd (g k) (h k)): cψ

(Ae–h)

For example, to attach a verb to a direct object with or without a gap:
read

V-aN-bN
a book about cars

N
V-aN Ae

read
V-aN-bN

a book about
N-gN

V-aN-gN Ag

2. Inference rules for modifier attachment apply initial or final modifiers of category u-ad
to modificands of category c (again propagating non-local arguments ψ to the consequent

from all combinations of antecedents, so as to skip over the composition function):
g:u-ad h:c

(fIM g h):c

g:u-adψ h:c

λk (fIM (g k)h):cψ

g:u-ad h:cψ

λk (fIM g (h k)):cψ

g:u-adψ h:cψ

λk (fIM (g k) (h k)):cψ

(Ma–d)

g:c h:u-ad
(fFM g h):c

g:cψ h:u-ad
λk (fFM (g k)h):cψ

g:c h:u-adψ
λk (fFM g (h k)):cψ

g:cψ h:u-adψ
λk (fFM (g k) (h k)):cψ

(Me–h)

For example, to attach an adverbial modifier with or without a gap:
sleep
V-aN

in Aix
R-aN

V-aN Me

sleep
V-aN

in
R-aN-gN

V-aN-gN
Mg

3. Inference rules for conjunct attachment apply conjunctions of category c-cd or c-dd to

conjuncts of category d (including repeated initial conjuncts):
g:d h: c-cd
(fc-cd g h): c

g:d h: c-cd
(f& g h): c-cd

g: c-dd h:d

(fc-dd g h): c
(Ca–c)

g:dψ h: c-cdψ
λk(fc-cd (g k) (h k)): c

g:dψ h: c-cdψ
λk(f& (g k) (h k)): c-cdψ

g: c-ddψ h:dψ

λk(fc-dd g (h k)): c
(Cd–f)

For example, to combine three noun phrase conjuncts:

creditors
N

investors
N

and
N-cN-dN

employees
N

N-cN Cc

N-cN Cb

N Ca
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4. Inference rules for gap attachment hypothesize gaps as initial arguments, final arguments,

or modifiers:6

g: c-ad
λk (fc-ad {k} g): c-gd

g: c-bd
λk (fc-bd g {k}): c-gd

g:c

λk (fIM {k} g):c-gd
(Ga–c)

For example:

is sleeping
V-aN
V-gN Ga

we
N

drove
V-aN-bN
V-aN-gN Gb

V-gN Ac

is sleeping
V-aN

V-aN-g{R-aN} Gc

5. Inference rules for filler attachment apply gapped clauses to modificands or relative or

interrogative phrases as fillers:

g:e h: c-gd
λi ∃j (g i) ∧ (h i j):e

g:d-re h: c-gd
λk j ∃i (g k i) ∧ (h i j): c-re

g:d-ie h: c-gd
λk j ∃i (g k i) ∧ (h i j): c-ie

(Fa–c)

g:e h: c-ge
λj ∃i (g i) ∧ (h i j):d

g:d-ie h: c-gd
λj ∃i k (g k i) ∧ (h i j): e

(Fd–e)

For example:

the car
N

we drove
V-gN

N Fa

which
N-rN

we drove
V-gN

V-rN Fb

what
N-iN

do we drive
Q-gN

Q-iN Fc

such a flight
N

I see
V-gN

V Fd

what
N-iN

we saw
V-gN

N Fe

6. Inference rules for relative pronoun attachment apply pronominal relative clauses of cat-

egory c-rd to modificands of category e:

g:e h:c-rd
λi ∃j (g i) ∧ (h i j):e

g:c-rd h:e

λj ∃i (g j i) ∧ (h j):e
(Ra–b)

For example:

the car
N

which we drove
V-rN

N Ra

when we left
V-rN

it snowed
V-aN

V-aN Rb

6 Here, set notation is used in order to save space: {k} = (λi i=k).
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7. Inference rules for argument elision (including determiners of plural nouns) simply leave

these arguments unspecified in the resulting meaning function:

g: c-ad
g: c

g: c-bd
g: c

g: c-adψ
g: cψ

g: c-bdψ
g: cψ

(Ea–d)

For example, to elide determiners of plural nouns or optional direct objects:

cars
N-aD

N Ea

drive
V-aN-bN

V-aN Eb

8. Inference rules for right node raising introduction and attachment treat right-node raising

as a type of non-local argument using operator -h:

g: c-hd h: d

λi ∃j (g j i) ∧ (h j): c

g: c-bd
λk (fc-bd g {k}): c-hd

(Ha–b)

For example:

peel
V-aN-bN
V-aN-hN Hb

and
(V-aN-hN)-c(V-aN-hN)-d(V-aN-hN)

eat
V-aN-bN
V-aN-hN Hb

(V-aN-hN)-c(V-aN-hN) Cc

V-aN-hN Ca shrimp
N

V-aN Ha

9. Inference rule to change category keeping the meaning function as is.

g: cψ

g: cχ
(T)

An example derivation of the noun phrase the person who officials say stole millions, ex-

emplifying F, G, and R rules, is shown in Figure 4.1; and an example derivation of the noun

phrase creditors, investors and employees of the company, exemplifying C, E, and H rules, is

shown in Figure 3.3. After all lambda expressions are applied to arguments in a derivation, each

word is associated with the variable of an existential quantifier. These existentially quantified

variables can then be uniquely identified using numerical indices of words, and the numbered

functions in lambda expressions (v i) = j are interpreted as dependency relations assigning

the vth argument of i to be j.

This system has the attractive property that the same syntactic constraints can be assigned

the same category in every context. This property is not shared by most categorial grammars:

e.g. post-nominal and post-copular prepositional phrases often have different categories.
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the
λi1(0 i1)

=the
:D

person
λi2(0 i2)

=person
:N-aD

λi2∃i1 ..
∧(1 i2)=i1

:N

Aa

who
λi2 i3(0 i3)=who
∧ (1 i3)=i2
:N-rN

officials
λi4(0 i4)

=officials
:N

say
λi5(0 i5)
=say

:V-aN-bV

stole
λi6(0 i6)
=stole

:V-aN-bN

millions
λi7(0 i7)

=millions
:N

λi6∃i7 .. ∧ (2 i6)=i7 :V-aN Ae

λi3 i6 .. ∧ (1 i6)=i3 :V-gN Ga

λi3 i5∃i6 .. ∧ (2 i5)=i6 :V-aN-gN
Ag

λi3 i5∃i4 .. ∧ (1 i5)=i4 :V-gN Ac

λi2 i5∃i3 .. :V-rN Fc

λi2∃i5 .. :N R

Figure 3.2: Example categorization of the noun phrase the person who officials say stole
millions. This derivation yields the following lexical relations: (0 i1)=the, (0 i2)= person,
(0 i3)=who, (0 i4)=officials, (0 i5)=say, (0 i6)=stole, (0 i7)=millions, and the following argument
relations: (1 i2)=i1, (1 i3)=i2, (1 i5)=i4, (2 i5)=i6, (1 i6)=i3, (2 i6)=i7. The semantic dependency
relations for this sentence are represented graphically in Figure 3.1.

creditors
λi1(0 i1)

=creditors
:N-aD-bO

λi5 i1 ..∧
(2 i1)=i5

:N-aD-hO

Hb

λi5 i1 ..
:N-hO

Ec

investors
λi2(0 i2)

=investors
:N-aD-bO

λi5 i2 ..∧
(2 i2)=i5

:N-aD-hO

Hb

λi5 i2 ..
:N-hO

Ec

and
λi2 i3(0 i3)=and

: (N-hO)
-c(N-hO)
-d(N-hO)

employees
λi4(0 i4)

=employees
:N-aD-bO

λi5 i4 ..∧
(2 i4)=i5

:N-aD-hO

Hb

λi5 i4 ..
:N-hO

Ec

λi5 i3∃i4 .. ∧ (2 i3)=i4
: (N-hO)-c(N-hO)

Cc

λi5 i′2
∃i3 .. ∧ (2 i′2)=i3 ∧ (1 i3)=i2

∧ (0 i′2)=(0 i3) : (N-hO)-c(N-hO)

Cb

λi5 i′2
∃i1 .. ∧ (1 i′2)=i1 :N-hO Ca

of
λi5(0 i5)

=of
:O-bN

the
λi6(0 i6)

=the
:D

company
λi7(0 i7)

=company
:N-aD

λi7∃i6 ..∧
(1 i7)=i6 :N

Aa

λi5∃i7 .. ∧ (1 i5)=i7 :O Ae

λi′2∃i5 .. :N Ha

Figure 3.3: Example categorization of the noun phrase creditors investors and employ-
ees of the company. This derivation yields the following lexical relations: (0 i1)= creditors,
(0 i2)=investors, (0 i′2)=(0 i3)=and, (0 i4)=employees, (0 i5)=of, (0 i6) =the, (0 i7)=company,
and the following argument relations: (2 i1)=i5, (2 i2)=i5, (2 i4)=i5, (1 i′2)=i1, (2 i′2)=i3, (1 i3)=i2,
(2 i3)=i4, (1 i5)=i7, (1 i7)=i6.



Chapter 4

Automatically Reannotating TreeBank

This chapter describes the reannotation process to convert Penn Treebank (PTB) into our GCG

annotation. It will be organized to show not only a complete reannotation system but also the

linguistic motivation behind each construct of widely accepted grammatical phenomena such

as noun phrase, verb phrase, relative clause, interrogative clause, topicalizations, right node

raising, etc.

TreeBank is one of the most well-known English annotated corpora for research in natural

language processing since early 1990’s. However, the annotation scheme is not easy for a PCFG

to learn as it is:

• Non-local: It has a variety of useful “null” elements and “trace” information to represent

non-local dependencies, specifically, to signal where the filler and the gap parts are, but

there is no connecting means to go from one to the other, so it is not suitable for a Prob-

abilistic Context Free Grammar (PCFG) learner that usually relies on local connecting

information between a node and its immediate children.

• Too flat: The flatness in PTB can be seen at the sentence level, as well as various con-

stituent types of VPs and NPs. For verb phrases, a modal or auxiliary, if present, intro-

duces a new VP level; within that the possibly complex modifiers and arguments appear

at the same level as sisters of the main verb. For noun phrases, any complex noun mod-

ifiers appear at the same level of the NP they modify. Compound nouns are lacking any

internal structure. This flatness is a disadvantage for a typical probabilistic learner as

evidence for large flat rules will be very sparse.

15
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The reannotation system described in this research defines its target grammar in terms of

a set of reannotation rules. These reannotation rules work within a script that traverses each

bracketed sentence in a corpus by selecting each pair of matching brackets from the top of the

tree to the bottom, and from left to right, then running a sed-like pattern substitution rule on

each selection (see Figure 4.1). Such rules can implement local syntactic transformations, as

well as certain non-local transformations like adding gap arguments to constituents containing

a particular trace marker, for example. Reannotation of the categorial grammar evaluated in this

paper requires about 175 such rules. These rules are modular and can be reused or modified to

experiment with different syntactic analyses.

In order to make the trace and function labels in the Treebank accessible to a PCFG-based

parser and latent variable annotator, they must be incorporated into the syntactic categories of

each tree node and propagated from filler to gap constituents, creating a categorial grammar

with local associations between parents and immediate children. First all trace annotations for

interrogatives, relative clauses, and topicalizations are transformed into gap arguments: -gN (for

noun phrase gaps), -g{R-aN} (for adverbial phrase gaps), and -gS (for e.g. topicalized sentential

gaps), which follow the category label for each constituent. Similar transformations localize it-

clefts (it seems that...), tough constructions (tough to cut), parentheticals (he/she said), and

certain types of inversion (‘it rained,’ she said), also using the gap operator -g. This is similar

to the treatment of filler-gap constructions used in HPSG (Pollard and Sag, 1994).

Then, specifiers of head projections are annotated as initial arguments, e.g. -aN for nominal

subjects, and complements of head projections are annotated as final arguments: e.g. -bN for

transitive verbs, prepositions, and certain adjectives, -bV for sentential complements, -bN-bN
for ditransitive verbs, etc. The -h operator is then used to propagate directional dependencies

in right node raising (they peeled and ate shrimp). These are similar to the ‘subcat’ feature in

HPSG, or to the left and right slash in categorial grammar accounts of specification, comple-

mentation and right node raising.

Then, interrogative and relative pronouns (e.g. what and which) are distinguished with -iN
and -rN arguments, respectively, in order to regularize typical contexts for filler-gap traces.

Conjuncts are assigned -c and -d arguments to distinguish composition functions for con-

juncts from composition functions for ordinary arguments. This distinction makes it possible

for ordinary arguments to be shared among conjuncts.

The transform rules are defined as recursive rewrites that progress down the Treebank trees,
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a) s/\ˆ(V-rN) <(WHNP)(-[0-9]+)([ˆ >]*)> (.*[-NONE- \*T\*\3].*)\ˆ/\ˆ\1 <N-rN\4> <V-gN\3 \5>\ˆ/;

b)
N

V-rN

S

VP

S

VP

NP

millions

VB

stole

NP

-NONE-

*T*-1

VB

say

NP

officials

WHNP-1

who

N

N-aD

person

D

the

c)
N

V-rN

V-gN-1

VP

S

VP

NP

millions

VB

stole

NP

-NONE-

*T*-1

VB

say

NP

officials

N-rN

who

N

N-aD

person

D

the

Figure 4.1: Sample sed-like reannotation rule introducing a gap tag at the top of a relative
clause (a), and an application of this rule to the movement-based notation in the Penn Tree-
bank (b) to produce a binary-branching categorial grammar derivation using gap arguments
(c). Rules are applied to every constituent from the top of the tree down, using parentheses
to delimit constituents above the current constituent, carets to delimit the current constituent,
angle brackets to delimit child constituents, and square brackets to delimit constituents below
children. Delimiters are then updated at every iteration.
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propagating -a, -b, -c, -d, -g, -h, -i, and -r arguments as they go. Figure 4.1 shows one step in a

reannotation of the noun phrase the person who officials say stole millions. This set of recursive

rules obtains about 94% coverage of the training set, consisting of sections 2–21 of the Penn

Treebank. Trees not completely transformed by these rules are excluded from training.

In many cases the conversion to this categorial grammar replaces Treebank category labels

with more general specifications. For example, in most contexts, adjective phrases, preposi-

tional phrases, and progressive and passive verb phrases are replaced with a predicative cate-

gory A-aN. This allows an HPSG-, GPSG- or CCG-like treatment of conjunction of any of these

kinds of phrases with any other, following Sag et al. (1985), Gazdar et al. (1985), and Komagata

(2002). This generalized predicative category is also used for noun phrase modifiers, and for

noun phrases following the copular be. This annotation is compatible with additional speci-

fication of categories for adjective phrases (following words like become), or gerund phrases

(following words like start), but these contexts cannot be reliably identified by the current rean-

notation.

In other cases, the conversion to categorial grammar distinguishes categories that are con-

flated in the Treebank. For example, the Treebank ‘SBAR’ category is distinguished into adjec-

tival relative clauses V-rN, embedded questions V-iN, embedded inflected sentences C, embed-

ded infinitival sentences E, nominal clauses N, adjectival modifier phrases A-aN, and adverbial

modifier phrases R-aN (e.g. because . . . ). Treebank ‘S’ categories are similarly distinguished

into inflected sentences V, infinitival sentences I, base form sentences B, adjectival sentences

(small clauses) A, and participial sentences L.1

Also, like other categorial grammars, this transform leaves trees in binary branching (Chom-

sky normal) form. For matching criteria, occasionally, some of these rules may look beyond the

current constituent to the right siblings, or down the subtree to the lexical nodes, but normally

they only rely on the category of the parent of the constituent (GCG category) and the categories

of the immediate children (PTB categories). Section 4.10 shows preprocessing steps done on

the PTB trees to convert the parent from a PTB category to a GCG category as the initial step

before progressing down the tree to applying these rules to transform the entire tree into GCG

format.

The following sections in this chapter will describe in more details all the reannotation rules
1 It is important to note that these rules allow the word that to be treated as a relativizer rather than a relative

pronoun, as it is in other categorial grammars, such as CCG.
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of the system. To aim for completeness in explaining these rules, they are associated with the

inference rules introduced in Chapter 3. These inference rules were classified into 9 groups and

labeled by A (argument attachment), M (modifier attachment), C (conjunction attachment), G

(gap attachment), F (filler attachment), R (relative pronoun attachment), E (argument elision),

H (right node raising), and T (type changing). A small letter can be used in conjunction with

these capital letters to label individual rules if the group has more than one rule. As a mirror to

this setup, the reannotation rules will be classified and described accordingly in the following

sections. The reannotation rules that do not belong to any of these groups will be described

in the miscellaneous section. For the most part, a reannotation rule is a reversed process of its

inference rule counterpart. For example, if inference rules Aa–d were about applying functors

of category c-ad to initial arguments of category d then their reannotation rule counterpart will

show how to inspect some node of category c to see if it can be rewritten to have a left child of

category d and a right child of category c-ad. Another way to think about this reversed process

is that the reannotation goes top down to rewrite the corpus into the desire format that can be

learnt and parsed in a bottom up fashion (e.g. by a CKY parser).

4.1 Reannotation rules for initial and final argument attachment
(-a/-b)

The reannotation rules for initial and final arguments together account for about one-third of

the entire reannotation rule set. The wild card term at the end of the parent category, usually

denoted as [ˆ ]* or a regular expression containing a non-empty string, is the possible non-local

attachment ψ that can tag along with the category and carry on to the left or the right child in the

re-write. These reannotation rules mainly match against the GCG category of the parent node,

together with the PTB categories of the immediate children nodes, to decide the appropriate new

GCG categories for the left and the right child of the parent. Some rules occasionally look at

the categories of the siblings of the parent or descendant nodes beyond the immediate children

all the way to the lexical item to determine whether they contain helpful information that is

not available at the parent or immediate children. This process continue to push the boundary

of GCG/PTB categories downward to the leaf nodes when the entire tree was reannotated into

GCG format.

Following are the two sub-sections to describe the rules for initial argument attachment
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(Aa–d) and the ones for final argument attachment (Ae–h). Since English is mostly a head-

initial language, we are more likely see final arguments than initial arguments. As a matter of

fact, the number of final argument rules is about five times more than that of initial arguments.

4.1.1 Reannotation rules for initial argument attachment (-a)

We have about a dozen rules for initial argument attachment. Common cases for the initial

argument rules are the one used to split the initial noun phrase (the possessor) of a possessive ’s

construct; split the initial specifier of measurement from an adjectival or adverbial phrase; split

the subject noun phrase as initial argument of the main verb phrase; or split the initial wh- and

non-wh determiner as an initial argument to the rest of a noun phrase.

Figure 4.2 shows an example of a rule to reannotate the possessive construct. If the parent

category has been determined to be a determiner D or a noun phrase N having no initial argu-

ment, and the rightmost child has a POS, the PTB annotation for a possessive, then this rule

will create a new intermediate left child N as an initial argument for the possessor which is the

head and receive a new category D-aN. The example in this figure has D as the category of

the parent, but other examples like the lab ’s can have an N category at the parent. The idea of

this rule is to specify the possessor as the head of a phrase, and whatever comes before it as its

initial argument.

(α(D|N(?!-a))[ˆ ]*)
D

POS
.

(γ’s?)
’s

β
today

α
D

D-aN

γ
’s

N

β
today

Figure 4.2: Branch off final possessive ’s. This example has α=D and γ=’s.

Figure 4.3 is for a rule to break up the initial specifier for measurement from an adjectival

or adverbial phrase. We use -x to denote intransitive and e for the expletive. The -[cp] is about

coordination conjunction and punctuation that will be explained in Section 4.3. This rule is

designed to eliminate any of those scenarios. If the parent is an adverbial or adjectival phrase

that has its left-most child annotated by the PTB’s NP, then that NP will be re-written into the



21

GCG category N which is an initial argument of a new right child node created to group all the

rest of the children. This right child node takes the category α of the parent appended by a -aN.

(α[AR]-aN(?!-x|e)(?!-[cp])[ˆ ]*)
R-aN

γ
ago

NP
NP

β
About a year

α
R-aN

α-aN
R-aN-aN

γ
ago

N
N

β
About a year

Figure 4.3: Branch off initial specifier N measure. This example has α=R-aN.

Figure 4.4 and Figure 4.5 are the two rules for reannotating the subject of a verb phrase into

an initial argument. If the category of the parent was determined to be a verbal (V: finite verbal,

I: infinitive verbal, B: base-form verbal, L: participial verbal, A: adjectival/predicative, G:

gerund) and the left-most immediate child is a subjective nominal phrase as denoted in PTB’s

NP(-SBJ)? (Figure 4.4) or [ˆ ]*-(NOM|SBJ)[ˆ ]* (Figure 4.5), then this subjective nominal

phrase will be re-written into a GCG category N which is an initial argument for a newly created

right child node that captures the rest of the children. This newly created right child node will get

the verbal part of the category of the parent α, followed by a -aN to denote its initial argument,

and the last part β of the parent as a mean to tag along non-local argument ψ.

(α[VIBLAG](?!-aN(?!e)))(β[ˆ ]*?)
V

δ
Take the Stage
in Windy City

NP(-SBJ)?
NP-SBJ

γ
Revitalized Classics

αβ
V

α-aNβ
V-aN

δ
Take the Stage
in Windy City

N
N

γ
Revitalized Classics

Figure 4.4: [VIBLAG] sentence: branch off initial N subject. This example has α=V and β=∅.

The next topic for initial argument attachment is about making the determiner an initial

argument for a noun phrase. These rules are illustrated in Figure 4.6, Figure 4.7, and Figure 4.8.
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(α[VIBLAG](?!-aN(?!e)))(β[ˆ ]*?)
V

δ
is just “ how the world is

[ˆ ]*-(NOM|SBJ)[ˆ ]*
S-TOBEAS-NOM-SBJ

γ
his predicting

continued volatility

αβ
V

α-aNβ
V-aN

δ
is just “ how the world is

N
N

γ
his predicting

continued volatility

Figure 4.5: [VIBLAG] sentence: branch off initial N subject. This example has α=V and β=∅.

The things to note about these rules are:

• The parent node must be recognized as a noun phrase having no determiner as an initial

argument yet. This is denoted by N(?!-aD).

• If the determiner has a PTB category of DT or something that covers a POS, but not a

wh-category, then any non-local attachment β recognized on the parent node is passed on

to the right child which is the head of the noun phrase. This is shown in Figure 4.6 and

Figure 4.7.

(αN(?!-aD))(β[ˆ ]*?(-[ir][ˆ- ]*)?[ˆ ]*?)
N

ζ
shares

(γNP[ˆ ]*)
NP

ε
∅

POS
POS

’s?
’

δ
their own companies

αβ
N

N-aDβ
N-aD

ζ
shares

D
D

ε
∅

POS
POS

’s?
’

δ
their own companies

Figure 4.6: Branch off initial determiner (non-wh). This example has α=N and β=∅.

• If the determiner has a wh-category which is the category of the English wh-words like

what, which, whose, who, whom, where, when, how, why, then the non-local attachment

recognized on the parent has to be split up when passing down to the left and the right
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(αN(?!-aD))(β[ˆ ]*?(-[ir][ˆ- ]*)?[ˆ ]*?)
N-bV-bO

ε
Oct. 19 review

(γDT|PRP$|PRP|NP[ˆ ]*)
DT

δ
an

αβ
N-bV-bO

N-aDβ
N-aD-bV-bO

ε
Oct. 19 review

D
D

δ
an

Figure 4.7: Branch off initial determiner (non-wh). If γ=NP[ˆ ]* then it must have a descendant
(POS ’s) or (POS ’) in δ. This example has α=N and β=-bV-bO.

child. The left (determiner) will get -i or -r as it’s more likely to be an interrogative or

relative. The right (head noun phrase) will get other non-local attachments such as -g or

-h. This is shown in Figure 4.8.

(αN(?!-aD))(β[ˆ ]*?)(γ(-[ir][ˆ- ]*)?)(δ[ˆ ]*?)
N

ζ
balloon

(WDT|WP$)[ˆ ]*
WDT

ε
what

αβγδ
N

N-aDβδ
N-aD

ζ
balloon

Dγ
D

ε
what

Figure 4.8: Branch off initial determiner (wh). This example has α=N, β=γ=δ=∅.

4.1.2 Reannotation rules for final argument attachment (-b)

We need about 50 rules to reannotate the final argument attachments of this corpus. Common

cases for the final argument rules are the one used to split the object part as a final argument

of the main verb of the object verb phrase in one of the most popular types of SVO sentences

(subject-verb-object). Also common final argument attachment can be found in questions where

the verb ordering is swapped; a number of embedded and complementizer constructions where

the last verb phrase is a final argument of the complementizer; or various types of modifiers

having a preposition to be the head and the rest of the phrase is a final argument. One thing to

note about the final argument attachment as apposed to the initial argument attachment is that
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it is more common to see a head with multiple final arguments attached to it (e.g. -bN-bN for

ditransitive verbs). Below is an account of all the rules we need to reannotate the final argument

attachments. These rules are classified based on the grammatical type of the parent node that

are: verbal phrase, modifier phrase, interrogative phrase, complementized phrase, embedded

phrase, genitive phrase, and noun phrase.

Final argument attachment for verbal phrase

We need about two dozen rules to reannotate the final argument attachment for verbal phrases.

The parent verbal phrase is annotated with a [VIBLARG] or any subset of those verbal cate-

gories. The A and the R here are classified as verbal because they usually have a PTB’s VP
as their right-most child. This is different from the [AR] parent that would be classified as a

modifier as shown in the next section. The main idea of these rules is to spin off the right-most

child (usually of PTB’s category VP) into one of the GCG’s verbal categories depending on the

context of the other children of the parent node. If the right-most child is not of PTB’s VP,

then depend on what it is and what their children are, these rules will try to re-write it into the

appropriate GCG’s category. Other usage of these rules is to reannotate the particle as a final

argument of the verb in a particle verb phrase (e.g. carry on, make up, etc.) Based on this

idea, these rules can be further classified into what GCG category they decided for the final

argument they generate. The possibilities are: base form verbal phrase B, participial verbal

phrase L, adjectival/predicative phrase A, sentential phrase S, genitive phrase O, gerund phrase

G, noun phrase N, infinitive verbal phrase I, finite verbal phrase V, embedded verbal phrase E,

complementized verbal phrase C, or any specific phrase type depending on the category of the

right-most child of the parent node. More specifically:

• Final argument categorized as base form verbal phrase B: If the right-most child has the

PTB category of VP, and some other child on the left is either of category TO (for the

word to), MD (for modals), or any other verbal category (e.g. for auxiliary verbs), then

the right-most child should be reannotated as a base form B final argument of a newly

created child node that covers the rest of the children. This is illustrated in the rule at

Figure 4.9. The three examples in this figure show three different types of to, modal, and

auxiliary verb of the left child node.

• Final argument categorized as participial verbal phrase L: Similar to the rules for base
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(α[VIBLAGR])(β-aN(?!-x))(γ[ˆ ]*)
I-aN

V-aNe
V-aN

(ιVP[ˆ ]*)
VP
VP
VP

κ
visit

be simple to...
believe in...

θ
∅

not
not really

δ η
∅ ∅
∅ ∅
∅ ∅

αβγ
I-aN

V-aNe
V-aN

Bβγ
B-aN
B-aNe
B-aN

ι

κ
visit

be simple to...
believe in...

θ
∅

not
not really

αβ-b{Bβ}
I-aN-b{B-aN}
V-aN-b{B-aN}
V-aN-b{B-aN}

δ η
∅ ∅
∅ ∅
∅ ∅

(εTO|MD|V[ˆ ]*)
TO
MD
VBD

ζ
to

would
did

ε
TO
MD
VBD

ζ
to

would
did

Figure 4.9: Branch off final VP as argument B-aN. If ε=V[ˆ ]* then ζ must be either do, does,
or did. If θ 6= ∅ then its top-left-most branch must be a (RB .*) e.g. (RB not). The three
examples show different types of possible categories of the left child.

form verbal phrase above, if some of the sibling of the right-most child is an auxiliary

have then it is a good signal that this is a past participial phrase. This means the right-

most verbal child will be reannotated as a GCG’s category of L which is a final argument

for a newly created child that encapsulates the rest of the children. This rule is illustrated

in Figure 4.10. A more specific version of this rule if the one shown in Figure 4.11 when

there is a noun phrase sitting between the auxiliary verb and the main verb. In this case,

the newly created left child covers only the auxiliary and the rest of the children (including

the noun phrase and the participial phrase) will be grouped under another newly created

right child labeled with an L.

Another common case to use L is in the passive voice as seen in Figure 4.12. In this rule,

the participial is the left-most child of the right-most child of the parent. The parent must

also have another child annotated by a PTB’s category VBZ covering an apostrophe-s

’s. This rule is more specific on certain participial to minimize the risk of it not being a

passive voice if ’s is in fact a has, not is.

• Final argument is a particle categorized as P followed by a word. If the right-most child
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(α[VIBLAG])(β-aN(?!-x))(γ[ˆ ]*)
V-aN

(θVP[ˆ ]*)
VP

ι
been set

η
n’t

ζ
∅

(εhave|having|has|had|’ve|’d)
has

δ
∅

αβγ
V-aN

Lβγ
L-aN

θ
VP

ι
been set

η
n’t

αβ-b{Lβ}
V-aN-b{L-aN}

ζ
∅

(εhave|having|has|had|’ve|’d)
has

δ
∅

Figure 4.10: Branch off final VP as argument L-aN (w. special cases because ’s is ambiguous
between has and is). If ε=’d then its parent must be a VBD. Top-right-most node in ζ must not
be an RB. Subtree η, if not empty, must be a (RB .*) such as (RB then), (RB n’t) or (RB not).
This example has α=V, β=-aN, γ=∅.
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(α[VIBLAGR]-aN(?!-x)[ˆ ]*)
R-aN

ι
∅

(ηVP[ˆ ]*)
VP

θ
remained in effect

ζ
∅

(δNP[ˆ ]*)
NP-SBJ

ε
1988 exchange rates

γ
∅

VBD
VBD

β
had

α
R-aN

L
L

ι
∅

(ηVP[ˆ ]*)
VP

θ
remained in effect

ζ
∅

(δNP[ˆ ]*)
NP-SBJ

ε
1988 exchange rates

γ
∅

α-bL
R-aN-bL

VBD
VBD

β
had

Figure 4.11: Branch off final argument L (had I known construction).
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(α[VIBLAG])(β-aN(?!-x))(γ[ˆ ]*)
V-aN

(ηVP[ˆ ]*)
VP

ι
like this

(θgot|made|Been|been|led|become|taken
|learned|attacked|given|won|waffled
|had|changed|put|hurt|settled|tried

|managed|worked|grown|done|written)
been

ζ
∅

ε
never

VBZ
VBZ

’s
’s

δ
∅

αβγ
V-aN

Lβγ
L-aN

η
VP

ι
like this

θ
been

ζ
∅

αβ-b{Lβ}
V-aN-b{L-aN}

ε
never

VBZ
VBZ

’s
’s

δ
∅

Figure 4.12: Branch off final VP as argument L-aN. This example has α=V, β=-aN, γ=∅.
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was annotated by a PTB’s PRT (for particle) that has only one child of category RP (for

adverb), then it is a good indication of a particle verb phrase, e.g. make up, carry out,

stand by, look after, etc. The PRT-RP will be collapsed to just one node and reannotated

with a P category followed by the particle word, e.g. Pout for carry out as in the example

at Figure 4.13

(α[VIBLAGRN](?=-a[ND](?!-x))|N(?!-a))(β[ˆ ]*)
V-aN-bN

PRT[ˆ ]*
PRT

RP
RP

δ
out

γ
carry

αβ
V-aN-bN

Pδ
Pout

δ
out

αβ-bPδ
V-aN-bN-bPout

γ
carry

Figure 4.13: Branch off final PRT as argument Pword particle. This example has α=V and
β=-aN-bN.

• Final argument categorized as adjectival/predicative phrase A. These rules try to detect

and spin off the predicative phrase that usually occurs after the copular be as shown in

Figure 4.14 and Figure 4.15. If there is enough evidence that the spin-off predicative is

also a type of noun phrase then the rule will further makes a unary transform to an N
category as depicted at Figure 4.15.

There are adjectival and adverbial predicative phrases following verbs other than the cop-

ular, e.g. ready in the phrase remain ready. This grammatical recognition is shown in the

rule at Figure 4.16.

• Final argument categorized as sentential phrase S. PTB used SQ, SINV, and SBARQ to

denote embedded questions as shown in Figure 4.17 and Figure 4.18. In GCG analysis,

these type of embedded sentential phrases would be reannotated into the category S as a

final argument to the newly created head left child that covers the rest of the children of

the parent node.

• Final argument categorized as genitive phrase O. Genitive is about the of construction.
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(α[VIBLAGR])(β-aN(?!-x))(γ[ˆ ]*)
V-aN

(θ(VP|VB[DNG]|ADJP|JJ|CD
|PP[ˆ ]*-PRD|IN|UCP

|ADVP[ˆ ]*-PRD
|SBAR[ˆ ]*-PRD)[ˆ ]*)

ADJP-PRD

ι
material

η
not

ζ
“

(εbe|being|been|is|’s
|was|are|were|’re)

was

δ
∅

αβγ
V-aN

Aβγ
A-aN

θ
ADJP-PRD

ι
material

η
not

αβ-b{Aβ}
V-aN-b{A-aN}

ζ
“

ε
was

δ
∅

Figure 4.14: Branch off final verbal or predicative adjectival phrase as argument A-aN if it
occurs after a copular be. Top-right-most node in ζ must not be an RB. Subtree η, if not
empty, must be an (RB .*) such as (RB then), (RB n’t) or (RB not). If ε=’s then its immediate
parent must be a VBZ. If θ=SBAR[ˆ ]*-PRD then its left-most child must not be a WH[ˆ ]* or
(IN that). This example has α=V, β=-aN, γ=∅.
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(α[VIBLAGR])(β-aN(?!-x))(γ[ˆ ]*)
V-aN

(θ(NP|NN|S[ˆ ]*-NOM|SBAR[ˆ ]*-NOM
|SBAR[ˆ ]*-PRD)[ˆ ])

NP-PRD

ι
a case in point

η
∅

ζ
∅

(εbe|being|been|is|’s
|was|are|were|’re)

was

δ
∅

αβγ
V-aN

Aβγ
A-aN

N
N

θ
NP-PRD

ι
a case in point

η
∅

αβ-b{Aβ}
V-aN-b{A-aN}

ζ
∅

ε
was

δ
∅

Figure 4.15: Branch off final predicative noun phrase following the copular be as argument
A-aN and then unary transforming to N. Top-right-most node in ζ must not be an RB. Subtree
η, if not empty, must be an (RB .*) such as (RB then), (RB n’t) or (RB not). If ε=’s then its
immediate parent must be a VBZ. This example has α=V, β=-aN, γ=∅.

(α[VIBLAGR])(β-aN(?!-x))(γ[ˆ ]*)
B-aN

(εADJP|PRT|ADVP[ˆ ]*-PRD|PP[ˆ ]*-PRD|VP)
ADJP-PRD

ζ
steady

δ
remain

αβγ
B-aN

Aβγ
A-aN

ζ
steady

αβ-b{Aβ}
B-aN-b{A-aN}

δ
remain

Figure 4.16: Branch off final adjectival or adverbial predicative as argument A-aN. If
ε=VP then its first VP-head must be a VB[NG]. This means there’s no child of category
VB|JJ|MD|TO between the left-most child and the VB[NG]-head. This example has α=B,
β=-aN and γ=∅.
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(α([VIBLAGR]-aN(?!-x))[ˆ ]*)
V-aN

SBARQ[ˆ ]*
SBARQ

γ
“ What the hell

are you doing planning
for a land war in

Asia 12,000 miles away

β
said ,

α
V-aN

S
S

γ
“ What the hell

are you doing planning
for a land war in

Asia 12,000 miles away

α-bS
V-aN-bS

β
said ,

Figure 4.17: Branch off final argument embedded question S with quotations.

(α[VIBLAGR]-aN(?!-x)[ˆ ]*)
R-aN
A-aN

(SQ|SINV)[ˆ ]*
SQ

SINV

δ
Do we want to go though this ?

do bulk chemicals

β
: “

than

α
R-aN
A-aN

S
S
S

δ
Do we want to go though this ?

do bulk chemicals

α-bS
R-aN-bS
A-aN-bS

β
: “

than

Figure 4.18: Branch off final SQ|SINV as argument S.
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PTB uses category IN for the preposition of. We detect this IN category to spin off a geni-

tive phrase of category O. While most of the time PTB grouped the genitive phrase under

a PP or a PP-CLR (closely related) that can be reannotated as shown in Figure 4.20, it

sometimes flatten out all the components of the genitive phrase and can be re-written by a

rule shown in Figure 4.21. This rule however found only matching when the parent node

is a noun phrase N.

(α([VIBLAGRN]-a[ND](?!-x)|N(?!-a))[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
N-rN

(δWHPP[ˆ ]*)
WHPP

ε
whom

IN
IN

of
of

γ
some

αβ
N-rN

Oβ
O-rN

ε
whom

IN
IN

of
of

α-bO
N-bO

γ
some

Figure 4.19: Branch off final argument O. This example has α=N and β=-rN.

(α([VIBLAGRN]-a[ND](?!-x)|N(?!-a))[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
N

V-aN

(δPP[ˆ ]*)
PP

PP-CLR

ε
options

it

IN
IN
IN

of
of
of

γ
exercises

thought little

αβ
N

V-aN

O
O
O

ε
options

it

IN
IN
IN

of
of
of

αβ-bO
N-bO

V-aN-bO

γ
exercises

thought little

Figure 4.20: Branch off final argument O. The magenta example is for parent node of noun
phrase category N. It has α=N and β=∅. The blue example is for parent node of verbal cate-
gories. It has α=V-aN and β=∅.
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(α([VIBLAGRN]-a[ND](?!-x)|N(?!-a))[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
N

(δ[ˆ ]*)
CD

(ε.*)
20

IN
IN

of
of

γ
19 out

αβ
N

O
O

δ
CD

ε
20

IN
IN

of
of

αβ-bO
N-bO

γ
19 out

Figure 4.21: Branch off final argument O. This example has α=N and β=∅.

• Final argument categorized as gerund phrase G. While gerunds are a variety of verbal

phrase, they often function like a noun phrase. This is why PTB used S-NOM to annotate

gerunds (extension -NOM is for nominal). We reannotate this type of node with a G-aN
(Figure 4.22) or simply a G (Figure 4.23) depending on whether the left-most child of the

S-NOM node was annotated with an NP-SBJ that cover a null element. This NP-SBJ
covering a null element usually signals a trace back to some subject happening before this

node, hence we use G-aN instead of just a G. Since we use G-aN to encode this subject

information, we no longer need the NP-SBJ and the null element on the resulting tree.

• Final argument categorized as nominal phrase N. Spinning off the last noun phrase, the

PTB category NP, as a final argument of a verb head is the most common case for final

argument attachment rules (Figure 4.24). For example, a sentence with a transitive verb

normally undergoes the first initial attachment rule S→ N V-aN and then is followed by

this final argument attachment rule to spin off the last noun phrase as a nominal final

argument of the main verb V-aN→ V-aN-bN N. Figure 4.25 and Figure 4.26 are two

other variations of these nominal final argument attachment rules. Specifically note that

the parent node of all these rules has to have a -aN. These variations are needed due to

the fact that PTB may use annotations other than NP, e.g. -NOM, to mark functional

noun phrase.

• Final argument categorized as I-aN. Figure 4.27 shows a very complicated structure to
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(α[VIBLAGR]-aN(?!-x)[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
R-aN

S(?:[-=][ˆ ]*)?-NOM(?![ˆ ]*-TMP)[ˆ ]*
S-NOM

δ
achieving reforms

NP-SBJ[ˆ ]*
NP-SBJ

-NONE-
-NONE-

..*
*-1

γ
at

αβ
R-aN

G-aNβ
G-aN

δ
achieving reforms

α-b{G-aN}
R-aN-b{G-aN}

γ
at

Figure 4.22: Branch off final argument G-aN. This example has α=R-aN and β=∅.

(α[VIBLAGR]-aN(?!-x)[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
R-aN

S(?:[-=][ˆ ]*)?-NOM(?![ˆ ]*-TMP)[ˆ ]*
S-NOM-LGS

δ
our driving immediately to
the nearest watering hole

γ
by

αβ
R-aN

Gβ
G

δ
our driving immediately to
the nearest watering hole

α-bG
R-aN-bG

γ
by

Figure 4.23: Branch off final argument G. This example has α=R-aN and β=∅.

(α[LVGB]-aN(?!-x)[ˆ ]*(-[ir][ˆ- ]*)?)
V-aN

NP(?![ˆ ]*-TMP)
NP

γ
Elianti

β
plays

α
V-aN

N
N

γ
Elianti

α-bN
V-aN-bN

β
plays

Figure 4.24: Branch off final argument N. This example has α=V-aN.
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(α[VIBLAGR]-aN(?!-x)[ˆ ]*)(β(-[ir][ˆ- ]*)?)
B-aN

(NP|DT|NN|WHNP|S[ˆ ]*-NOM)(?![ˆ ]*-TMP)
NN

δ
debt

γ
service

αβ
B-aN

Nβ
N

δ
debt

α-bN
B-aN-bN

γ
service

Figure 4.25: Branch off final argument N. This example has α=B-aN and β=∅.

(α[VIBLAGR]-aN(?!-x)[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
V-aN

(δSBAR)(ε[ˆ ]*-NOM)
SBAR

ζ
when to do so

γ
tells them

αβ
V-aN

Nβ
N

ζ
when to do so

α-bN
V-aN-bN

γ
tells them

Figure 4.26: Branch off final SBAR as argument N (nom clause): If ε=∅ then the left-most
leaf on ζ must be (when|whether) as depicted in this example. No node in ζ can be of category
ending in -TMP. This example has α=V-aN and β=∅.
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realize a PTB category SBAR into an I-aN. The matching condition of this rule goes a

couple levels down beyond the parent and immediate children. It looks for the keyword

to of category TO and a co-indexation of a trace to a null element. The end result is to

remove the trace and the null element, promote the child S[ˆ]* of SBAR up and give it

the category I-aN.

(α([VIBLAGR]-aN(?!-x)|N)[ˆ ]*?)
N

(γSBAR[ˆ ]*)
SBAR

η
∅

S[ˆ ]*
S-TOBEIS

ζ
∅

(δVP[ˆ ]*)
VP-TOBEBP

ε
trace U.S. funds

TO
TO

to
to

NP[ˆ ]*
NP-SBJ

-NONE-
-NONE-

\*T\*-i
*T*-4

WH[ˆ ]*-i[ˆ ]*
WHNP-4

-NONE-
-NONE-

[ˆ ]*
0

β
accountants

α
N

I-aN
I-aN

η
∅

ζ
∅

δ
VP-TOBEBP

ε
trace U.S. funds

TO
TO

to
to

α-b{I-aN}
N-b{I-aN}

β
accountants

Figure 4.27: Branch off final SBAR as argument I-aN:

• Final argument categorized as V-iN. The PTB SBAR used on constructs such as how to

... or whether/if ... will be reannotated into a V-iN as shown in the rule at Figure 4.28.

Note one of the two examples of this rule shows its application to the it-cleft construct
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where the parent note was annotated with a -aNe.

(α([VIBLAGR]-aN(?!-x)|N)[ˆ ]*?)
V-aN

A-aNe

SBAR(γ[ˆ ]*)
SBAR
SBAR

η
to slide

they will
actually be built

δ
WHADVP

IN

ε
WRB
≡ δ

ζ
how

whether

β
know
clear

α
V-aN

A-aNe

V-iN
V-iN
V-iN

η
to slide

they will
actually be built

δ
WHADVP

IN

ε
WRB
≡ δ

ζ
how

whether

α-b{V-iN}
V-aN-b{V-iN}

A-aNe-b{V-iN}

β
know
clear

Figure 4.28: Branch off final SBAR as argument V-iN. This rule matches when either (1)
γ 6=(-ADV|-TMP) and ζ=(whether|if) or (2) δ=WH[ˆ ]* and neither ζ=that nor ε=-NONE-.

• Final argument categorized as an embedded phrase E. If for is the first word of an SBAR
phrase, it is more likely that this SBAR is an embedded phrase and will be reannotated

into an E as shown on the rule at Figure 4.29.

• Final argument categorized as a complementized finite phrase C. For some SBAR that

does not match with any rule above, or for the rightmost child of category INTJ, they look

more like a complementized phrase and we re-write them into a category C as shown in

the rule at Figure 4.30 and Figure 4.31.

• Final argument categorized as a V, I, B, or A depending on the category of the rightmost

child. Please refer to the preprocessing rules to see how we propagate the verbal phrasal

types from the parent of the tree downward to mark nodes as -TOBE[VIBA][SP]. These

marks, especially the [VIBA] part as denoted by variable γ on Figure 4.32, Figure 4.33,

and Figure 4.34 serve as the key criteria to determine the category of the right child final
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(α[SQCEVIBLAGRN][ˆ ]*?)
A-aN

(γSBAR[ˆ ]*)
SBAR

ε
the United States to

rejoin this dreadful group

(δ[ˆ ]*)
IN

for
for

β
desperate

α
A-aN

E
E

ε
the United States to

rejoin this dreadful group

δ
IN

for
for

α-bE
A-aN-bE

β
desperate

Figure 4.29: Branch off final SBAR as embedded argument E. The top-left node in β must not
be a [ˆ ]*-ADV and its sibling, if β has more than one top-level node, must not be a ([ˆ ]* :).

(α([VIBLAGRN]-a[ND](?!-x)|N(?!-a))[ˆ ]*)
V-aN

SBAR[ˆ ]*
SBAR

γ
he anticipates growth for the

luxury auto marker in Britain and
Europe , and in Far Eastern markets

β
said

α
V-aN

C
C

γ
he anticipates growth for the

luxury auto marker in Britain and
Europe , and in Far Eastern markets

α-bC
V-aN-bC

β
said

Figure 4.30: Branch off final SBAR as complementized argument C.

(α[VIBLAGR]-aN(?!-x)[ˆ ]*)
V-aN

INTJ(?![ˆ ]*-ADV)
INTJ

δ
No

β
responded , “

α
V-aN

C
C

δ
No

α-bC
V-aN-bC

β
responded , “

Figure 4.31: Branch off final INTJ as argument C.
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argument. These rules also create a new left child as the head that encapsulates all the

rest of the children.

(α(C(?!r)|[SQEVIBLAGRN])[ˆ x]*?)
A-aN

S-TOBE(γ[VIBA])S[ˆ ]*
S-TOBEAS

δ
“ A Musical Odyssey , ”

NP[ˆ ]*
NP-SBJ

-NONE-
-NONE-

\*[ˆA-Z ]*
*

β
dubbed

α
A-aN

γ-aN
A-aN

δ
“ A Musical Odyssey , ”

α-b{γ-aN}
A-aN-b{A-aN}

β
dubbed

Figure 4.32: Branch off final S with empty subject as argument [VIBA]-aN.

(α(C(?!r)|[SQEVIBLAGRN](?!r))[ˆ x]*?)
V-aN

S-TOBE(γ[VIBA])P[ˆ ]*
S-TOBEIP

δ
to visit

β
came

α
V-aN

γ-aN
I-aN

δ
to visit

α-b{γ-aN}
V-aN-b{I-aN}

β
came

Figure 4.33: Branch off final S with empty subject as argument [VIBA]-aN. This example has
γ=I.

Final argument attachment for modifier phrase

The parent node of rules falling under this classification have to be reannotated as modifiers,

e.g. having the category [AR]-aN or sometimes an I-aN which is an infinitive lacking an initial

argument playing the role of a modifier (e.g. the second example in Figure 4.38). The most

common category of the final argument of a modifier phrase is N, but they could be other

categories like A-aN, E-gN, or I-aN-gN. Below is an account of all possible rules to annotate



41

(α([VIBLAGR]-aN(?!-x)|N-aD)[ˆ ]*?)
B-aN

S-TOBE(γ[VIBA])S[ˆ ]*
S-TOBEIS

δ
executives to report exercises
of options later and less often

β
allow

α
B-aN

γ
I

ε
executives to report exercises
of options later and less often

α-bγ
B-aN-bI

β
allow

Figure 4.34: Branch off final S as modifier [VIBA]. This example has γ=I.

final argument attachment for modifier phrase based on the category of the final argument they

generate.

• Final argument categorized as a noun phrase N. One of the most common kind of mod-

ifiers is the prepositional phrase. Our GCG annotates the preposition as a head and the

noun phrase following a final argument. Figure 4.35 shows the reannotation for for now

where it detects the specific keyword for followed by either an RB or an ADVP. Other

scenarios to show a noun phrase being a final argument for a modifier can be seen in

Figure 4.36 as the way to annotate the no matter construction, or Figure 4.37, Figure 4.38

and Figure 4.39 where the last child was annotated by PTB as some variations of a noun

phrase.

(αR-aN(?!-x)(?!-[cp])[ˆ ]*)
R-aN

(βRB[ˆ ]*|ADVP[ˆ ]*)

γ
now

IN[ˆ ]*
IN

for
for

α
R-aN

N
N

γ
now

R-aN-bN
R-aN-bN

for
for

Figure 4.35: If β=ADVP[ˆ ]* then its leftmost child must be an R-aN.

• Final argument categorized as an A-aN. Figure 4.40 shows the reannotation for a modifier

having IN and JJ as its left and right child. The adjective JJ is rewritten into an adjectival
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(αR-aN(?!-x)[ˆ ]*?-i[ˆ- ]*)
R-aN-b{V-iN}

(NP|DT|NN|WHNP|S[ˆ ]*-NOM)(?![ˆ ]*-TMP)
NN

matter
matter

β
∅

DT
DT

[Nn]o
no

α
R-aN-b{V-iN}

N
N

matter
matter

β
∅

α-bN
R-aN-b{V-iN}-bN

DT
DT

[Nn]o
no

Figure 4.36: Branch off final argument N, special handling for "no matter".

(α[RA]-aN(?!-x)[ˆ ]*)(β(-[ir][ˆ- ]*)?)
A-aN

NN(?![ˆ ]*-TMP)
NN

δ
contradictory

γ
in the least

αβ
A-aN

Nβ
N

δ
contradictory

α-bN
A-aN-bN

γ
in the least

Figure 4.37: Branch off final argument N. This example has α=A-aN and β=∅.

(α[IAR]-aN(?!-x)[ˆ ]*)(β(-[ir][ˆ- ]*)?)
R-aN
I-aN

NP(?![ˆ ]*-TMP)
NP
NP

δ
the U.S.

homework

γ
in

doing

αβ
R-aN
I-aN

Nβ
N
N

δ
the U.S.

homework

α-bN
A-aN-bN
I-aN-bN

γ
in

doing

Figure 4.38: Branch off final argument N. This example has α=R-aN and β=∅.
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(αR-aN(?!-x)[ˆ ]*)(β(-[ir][ˆ- ]*)?)
R-aN

(DT|WHNP|S[ˆ ]*-NOM)(?![ˆ ]*-TMP)
SBAR-NOM

δ
what he plays

γ
in

αβ
R-aN

Nβ
N

δ
what he plays

α-bN
R-aN-bN

γ
in

Figure 4.39: Branch off final argument N. This example has α=R-aN and β=∅.

A-aN. The example on that figure is for at least where least is an adjectival final argument

to preposition at.

(α([AR]-aN(?!-x))[ˆ ]*)
R-aN

(δJJ[ˆ ]*)
JJS

ε
least

(βIN[ˆ ]*)
IN

γ
at

α
R-aN

A-aN
A-aN

ε
least

α-b{A-aN}
R-aN-b{A-aN}

β
IN

γ
at

Figure 4.40: Branch off final VP|ADJP as argument A-aN. This example has α=R-aN.

• Final argument categorized as an E-gN. Figure 4.41 shows a rule for a tough construction

like tough for X to Y. This reannotation re-writes an SBAR into an E-gN. It got an E due

to the keyword for there to serve as a good signal of an embedded. It got a -gN because

of the co-indexation of a WHNP to a null NP that gives a good indication of a gap.

• Final argument categorized as an I-aN-gN. Figure 4.42 is for another variation of a tough

construction, e.g. tough to Y. This is one of the most specific and complicated rule.
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(αA-aN(?!-x)[ˆ ]*?)
A-aN

SBAR[ˆ ]*
SBAR

ε
∅

(δNP[ˆ ]*)
NP

-NONE-
-NONE-

\*T\*-i
*T*-2

γ
a layman to contemplate

IN
IN

for
for

WHNP-i
WHNP-2

-NONE-
-NONE-

0
0

β
impossible

α
A-aN

E-gN
E-gN

ε
∅

δ
NP

-NONE-
-NONE-

\*T\*-i
*T*-2

γ
a layman to contemplate

IN
IN

for
for

α-b{E-gN}
A-aN-b{E-gN}

β
impossible

Figure 4.41: Branch off final SBAR as argument E-gN (tough for X to Y construction):
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(αA-aN(?!-x)[ˆ ]*?)
A-aN

SBAR[ˆ ]*
SBAR

η
∅

S[ˆ ]*
S-TOBEIS

ζ
∅

(γVP[ˆ ]*)
VP-TOBEIP

ε
off

NP[ˆ ]*
NP

-NONE-
-NONE-

\*T\*-i
*T*-4

δ
clip

TO
TO

to
to

NP[ˆ ]*
NP-SBJ

-NONE-
-NONE-

*
*

WHNP*-i
WHNP-1

-NONE-
-NONE-

0
0

β
difficult

α
A-aN

I-aN-gN-i
I-aN-gN-1

η
∅

ζ
∅

γ
VP-TOBEIP

ε
off

NP[ˆ ]*
NP

-NONE-
-NONE-

\*T\*-i
*T*-4

δ
clip

TO
TO

to
to

α-b{I-aN-gN}
A-aN-b{I-aN-gN}

β
difficult

Figure 4.42: Branch off final SBAR as argument I-aN-gN (tough to Y construction):
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Final argument attachment for interrogative phrase

In English, a common way to turn an affirmative statement into a question is to prefix the

statement with an auxiliary verb such as do, have, and be. This way makes the original statement

become a final argument to the auxiliary verb. For example, the affirmative statement is the

milk expired and one of the questions that can be constructed from this statement is has the

milk expired ?. In this case, the phrase the milk expired is analyzed as a final argument to

has and is given the category L because this is a participial phrase as shown in Figure 4.46.

Similarly, the rule at Figure 4.44 deals with be questions and the rule at Figure 4.43 is for the do

questions or the ones started with a modal. One difference to note between be and do questions

is the category of the final argument. The be questions generate an N argument while the do

questions usually go with a base-form phrase B.

Another common constructing of questions is to have the content of the question followed

by , he asked or something similar. In this construct, the added phrase after the question content

is analyzed as a final predicative argument to the question content. This is handled by the rule

shown in Figure 4.45.

Final argument attachment for complementized phrase

Complementized phrases are usually composed of a that followed by a verb phrase. In GCG

analysis, that is the head and the verb phrase is its final argument. The category of this final

argument is a finite verbal phrase V. PTB use IN as the category for that. We used this category

as a matching condition to re-write the final argument attachment for complemented phrase

as shown in Figure 4.47. For the complementized phrase that does not start with a that, we

can still recognize it by the parent category which was hypothesized as a C through the hit

of previous rules and the rightmost child is of category S-TOBEVS because complementized

phrase must be ending with a verb phrase. This rule is illustrated in Figure 4.48. If the parent

node is categorized as C, but the rightmost child is an SBAR phrase starting with a for then it’s

more likely to be an embedded final argument as shown in Figure 4.29. If the parent is a C but

the rightmost child is not of a sentential category, i.e. S-TOBE[VIBA]P then the final argument

attachment will get a -aN on its category to denote that it is sententially incomplete as shown in

Figure 4.33.



47

(αQ[ˆ ]*)
Q

ζ
this strategy require

implementation over extended period

β
≡ γ

ε
∅

(γMD|VB[A-Z]?)
VBZ

δ
does

α
Q

B
B

ζ
this strategy require

implementation over extended period

α-bB
Q-bB

ε
∅

γ
VBZ

δ
does

Figure 4.43: Polar question: branch off initial B-aN-taking auxiliary. γ is the left-most pre-
terminal under β and β is the left-most child of α, so γ is the left-most pre-terminal under
α. This example has β ≡ γ = VBZ, but β and γ could be different. If γ=VB[A-Z]* then
δ=([Dd]oes|[Dd]o|[Dd]id|’d).

(αQ[ˆ ]*)
Q

(ζ(NP|NN|DT)[ˆ ]*)
NP-PRT

η
the last time
on my mind

β
≡ γ

ε
∅

(γVB[A-Z]?)
VBD

(δ([Ii]s|[Aa]re|[Ww]as|[Ww]ere|’s|’re))
was

α
Q

N
N

ζ

η
the last time
on my mind

α-bN
Q-bN

ε
∅

γ
VBD

δ
was

Figure 4.44: Polar question: branch off initial N-taking auxiliary. γ is the left-most pre-
terminal under β and β is the left-most child of α, so γ is the left-most pre-terminal under α.
This example has β ≡ γ as it is the case almost all the time in the corpus.
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(αQ[ˆ ]*)
Q

ζ
this the future

of chamber music

β
≡ γ

ε
∅

(γVB[A-Z]?)
VBZ

(δ([Ii]s|[Aa]re|[Ww]as|[Ww]ere|’s|’re))
Is

α
Q

A
A

ζ
this the future

of chamber music

α-bA
Q-bA

ε
∅

γ
VBZ

δ
Is

Figure 4.45: Polar question: branch off initial Q-bA-taking auxiliary. γ is the left-most pre-
terminal under β and β is the left-most child of α, so γ is the left-most pre-terminal under α.
This example has β ≡ γ = VBZ but β and γ may be different.

(αQ[ˆ ]*)
Q

ζ
the milk expired

β
≡ γ

ε
∅

(γVB[A-Z]?)
VBZ

(δ([Hh]as|[Hh]ave|[Hh]ad|’s|’ve|’d))
has

α
Q

L
L

ζ
the milk expired

α-bL
Q-bL

ε
∅

γ
VBZ

δ
has

Figure 4.46: Polar question: branch off initial L-aN-taking auxiliary. The γ is the left-most
pre-terminal under β and β is the left-most child of α, so γ is the left-most pre-terminal under
α. This example has β ≡ γ as it is the case almost all the time in the corpus.
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C(?!r)(α(?!-[cp])[ˆ ]*)
C

γ
the proposed changes “ would substantially

improve the -LCB- law -RCB- by conforming it
more closely to contemporary business realities

IN

β
that

Cα
C

V
V

γ
the proposed changes “ would substantially

improve the -LCB- law -RCB- by conforming it
more closely to contemporary business realities

Cα-bV
C-bV

β
that

Figure 4.47: Embedded sentence: Branch off initial complementizer. This example has α=∅.

(αC(?!r)[ˆ ]*?)
C

S-TOBEVS
S-TOBEVS

γ
the company would

invest in the transaction

β
how much

α
C

V
V

γ
the company would

invest in the transaction

α-bV
C-bV

β
how much

Figure 4.48: Branch off final S as argument V.
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Final argument attachment for embedded phrase

An embedded phrase usually starts with a for, so the rule to recognize a final argument attach-

ment for it is very straightforward. If the parent node is known to be an embedded, i.e. annotated

with an E and the leftmost child is of PTB category IN that categorize a for, then create a new

right child node to cover the rest of the children. This right child node is the final argument and

will be categorized with an I as shown in Figure 4.49. This is inline with the rule E→ E-bI I.

E(α(?!-[cp])[ˆ ]*)
E

γ
the United States to rejoin

this dreadful group

IN

β
for

Eα
E

I
I

γ
the United States to rejoin

this dreadful group

Eα-bI
E-bI

β
for

Figure 4.49: Embedded sentence: Branch off initial complementizer. This example has α=∅.

Final argument attachment for genitive phrase

A genitive phrase always starts with of followed by a noun phrase, so the rule to recognize a

final argument for this phrase is to check for the parent of category O and the leftmost child has

PTB’s category IN that categorize a lexical of. This rule will create a new right child node of

category N to cover the rest of the children and it is the final argument as shown in Figure 4.50.

Final argument attachment for noun phrase

Figure 4.51 and Figure 4.52 show the reannotation for a specific type of noun phrase that com-

posed of a copular be followed by a predicative phrase. If this pattern is recognized, these rules

will generate a final argument of category A-aN for the predicative phrase. The difference be-

tween these two rules is that the predicative A-aN can transform unarily into a noun phrase N if

it was annotated as a noun (NN), a noun phrase (NP), some form of nominal phrase (-NOM),

or predicative (-PRD) on PTB.

Another specific type of noun phrase is the one composed of having followed by a verb
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O(α(?!-[cp])[ˆ ]*)(β(-[ir][A-Z]+)?)
O

δ
“ The Misanthrope ” at

Chicago ’s Goodman Theatre

IN

γ
of

Oαβ
O

Nβ
N

δ
“ The Misanthrope ” at

Chicago ’s Goodman Theatre

Oα-bN
O-bN

γ
of

Figure 4.50: Embedded sentence: Branch off initial complementizer. This example has
α=β=∅.

(αN[ˆ ]*)
N

(ζ(VP|VB[DNG]|ADJP|JJ|CD
|PP[ˆ ]*-PRD|IN|UCP

|ADVP[ˆ ]*-PRD
|SBAR[ˆ ]*-PRD)[ˆ ]*)

VP

η
acquired by Time Warner Inc

ε
∅

δ
∅

(γbe|being|been|is|’s
|was|are|were|’re)

being

β
∅

α
N

A-aN
A-aN

ζ
VP

η
acquired by Time Warner Inc

ε
∅

α-b{A-aN}
N-b{A-aN}

δ
∅

γ
being

β
∅

Figure 4.51: Branch off final predicative phrase after the copular be as argument A-aN. Top-
right-most node in δ must not be an RB. Subtree ε, if not empty, must be an (RB .*) such
as (RB then), (RB n’t) or (RB not). If γ=’s then its immediate parent must be a VBZ. If
ζ=SBAR[ˆ ]*-PRD then its left-most child must not be a WH[ˆ ]* or (IN that). This example
has α=N.
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(αN[ˆ ]*)
N

(ζ(NP|NN|S[ˆ ]*-NOM|SBAR[ˆ ]*-NOM
|SBAR[ˆ ]*-PRD)[ˆ ])

NP-PRD

η
a delver and a detail guy

ε
∅

δ
∅

(γbe|being|been|is|’s
|was|are|were|’re)

being

β
∅

α
N

A-aN
A-aN

N
N

ζ
VP

η
a delver and a detail guy

ε
∅

α-b{A-aN}
N-b{A-aN}

δ
∅

γ
being

β
∅

Figure 4.52: Branch off final post nominal phrase as argument A-aN. Top-right-most node in
δ must not be an RB. Subtree ε, if not empty, must be an (RB .*) such as (RB then), (RB n’t)
or (RB not). If γ=’s then its immediate parent must be a VBZ. This example has α=N.
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(αN[ˆ ]*)
N
N

NP[ˆ ]*|S[ˆ ]*-NOM
NP

η
Oct. 25 , when terms are

scheduled to be fixed
the balloon

β
NP
≡ δ

ζ
share
∅

(δVBG)
VBG
VBG

ε
closing
yanking

γ
the
∅

α
N
N

N
N
N

η
Oct. 25 , when terms are

scheduled to be fixed
the balloon

α-bN
N-bN
N-bN

β
NP
≡ δ

ζ
share
∅

δ
VBG
VBG

ε
closing
yanking

γ
the
∅

Figure 4.53: Gerund: branch off final argument N. All but three sentences in the corpus have
the need to have β 6≡ δ as shown by the magenta example. This requires that δ not have any
category in VB|JJ|MD|TO|NN. The rest of the matches of this rule are when β ≡ δ as depicted
by the blue example.

(αN(?!-a)[ˆ ]*?)
N

S-TOBE(γ[VIBA])S[ˆ ]*
S-TOBEVS

δ
nothing has changed

β
that

α
N

γ
V

ε
nothing has changed

α-bγ
N-bV

β
that

Figure 4.54: Branch off final S as modifier [VIBA]. This example has γ=V.
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(αN[ˆ ]*?)
N

VP[ˆ ]*
VP

δ
committed any crime

γ
∅

having
having

β
∅

α
N

L-aN
L-aN

δ
committed any crime

α-b{L-aN}
N-b{L-aN}

γ
∅

having
having

β
∅

Figure 4.55: Branch off final argument L-aN.

phrase, e.g. having committed any crime as shown in Figure 4.55. The noun phrase following

having is a participial verb phrase, hence receiving a category L-aN and it is a final argument.

A noun phrase can also be a gerund, as annotated by VBG in PTB, followed by a noun phrase

NP or some form of nominal phrase -NOM. When this pattern is realized, the noun/nominal

phrase will be reannotated to an N and served as a final argument to the newly generated head

covering the rest of the children as depicted in Figure 4.53. The last scenario of a noun phrase as

covered by this reannotation is the one ending with an S-TOBE[VIBA]S that will be branched

off as a final argument of a new head covering the rest of the children as shown in Figure 4.54.

4.2 Reannotation rules for initial and final modifier attachment

Initial and final modifiers are also called pre-modifiers and post-modifiers in literature. An

initial modifier is a modifier that goes before the constituent that it modifies. Likewise, a final

modifier is a modifier that goes after the thing it modifies. For example, a white ball on the

shelf has white as an initial modifier and on the shelf as a final modifier. By definition, modifiers

are adjuncts to the sentence, e.g. the core meaning of the sentence is preserved even with the

modifiers stripped off. For example, it is still a ball when removing both initial modifier white

and final modifier on the shelf. However, both initial and final modifiers play a vital part in the

semantic interpretation of the sentence. Recognizing and annotating initial and final modifiers

correctly can be a crucial help for semantically related downstream tasks as mentioned in a

couple of different evaluations in Chapter 6 and Chapter 7.

There are two types of modifiers: adjectival modifiers modifying noun phrases and adverbial

modifiers modifying verbal, adverbial, adjectival phrases or clauses. Adjectival modifiers are
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annotated with A-aN and adverbial modifiers get an R-aN. In this GCG analysis, the category

A is overloaded to represent both adjectival and predicative, so only if it is an adjectival phrase

(e.g. an attribute) can it be a modifier. Due to the many different types of constituent it modifies,

the adverbial modifier attachment rules outnumber the ones for adjectival modifier attachment.

This section describes the reannotation process to identify and branch off the modifiers

from a larger constituent. The three larger constituents that often come with some initial and/or

final modifiers that we focus on are (1) verbal or sentential phrases, (2) nominal phrases, and

(3) adverbial or adjectival/predicative phrases. The following two subsections will describe in

details how an initial and a final modifier argument attachment is done to re-write that type of

structure from PTB.

4.2.1 Reannotation rules for initial modifier attachment

We can classify the rules to do initial modifier attachments into three different groups based on

the grammatical type of the parent node: the one with a verbal or sentential category, the one

with the nominal category and the one with the adverbial or adjectival/predicative category.

Initial modifier attachment for verbal or sentential phrase

The first modifier attachment rule for a verbal or sentential phrase at Figure 4.56 shows the

recognition of a lexical colon separating an initial modifier (before the colon) from the head

or the modified constituent (after the colon). Note that not everything before a colon can be a

modifier. They have to be some variation of an adverbial, prepositional, or the often conflated

SBAR. This rule also further branches off the colon from the initial modifier on the next tree

level.

Figure 4.57 shows the next rule to deal with initial modifier attachment for a verbal phrase or

sentence where the modifier part is an infinitive, e.g. [to get a good result] , he studied day and

night. In PTB, this type of infinitive initial modifier is often annotated as a sentence with a null

subject. The lexical word to is also used as one of the key to recognize this structure. The initial

modifier R-aN re-written is also unarily transformed to an I-aN to reflect that it is an infinitive

before further unarily transforming to the verbal category of the PTB. The intermediate I-aN
node inserted here will help the next reannotation step down the tree to treat this constituent as

an infinitive.



56

(α[SQCEVIBLAG](?!-[acp])[ˆ ]*)
S

ε
“ It is
a very

unhappy
scene , ”
he said

(δ[ˆ ]*)
:

:
:

[NP]P|RB|ADVP|CC|FRAG|[ˆ ]*-(ADV|LOC|TMP)|SBAR[ˆ ]*
PP

γ
China ’s turmoil

IN
IN

(β(?!that))
On

α
S

α
S

ε
“ It is
a very

unhappy
scene , ”
he said

R-aN
R-aN

δ
:

:
:

R-aN
R-aN

γ
China ’s turmoil

IN
IN

β
On

Figure 4.56: Branch off initial modifier R-aN with colon. This example has α=∅.
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(α([SQCEVIBLAG](?!-a)|[VIBLG]-aN)(?!-[cp])[ˆ ]*)
S

ε
, Nissan recently established a

top-level cost-cutting committee

S[ˆ ]*
S

(β[ˆ(VB|JJ|IN|MD|TO)])
VP

δ
help close the gap

TO
TO

γ
To

NP[ˆ ]*
NP

-NONE-
-NONE-

\*(-[0-9]*)?
*-1

α
S

α
S

ε
, Nissan recently established a

top-level cost-cutting committee

R-aN
R-aN

I-aN
I-aN

β
VP

δ
help close the gap

TO
TO

γ
To

Figure 4.57: Branch off initial modifier R-aN and I-aN. This example has α=S.
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Beside the infinitival, participial sentential initial modifiers are another form of sentential

initial modifier as shown in Figure 4.58. This construct usually starts with a verb in participle

form. Again, PTB annotated this construct with an S that has an empty element as a null

subject. We used that as matching conditions to re-write this construct into an initial modifier

R-aN removing the null element.

(α([SQCEVIBLAG](?!-a)|[VIBLG]-aN)(?!-[cp])[ˆ ]*)
V-aN

γ
, boosts the rate to 95 %

S[ˆ ]*
S

β
taken in conjunction with the pills

NP[ˆ ]*
NP

-NONE-
-NONE-

\*(-[0-9]*)?
*-4

α
V-aN

α
V-aN

γ
, boosts the rate to 95 %

R-aN
R-aN

β
taken in conjunction with the pills

Figure 4.58: Branch off initial modifier R-aN and A-aN. This example has α=V-aN.

The last type of sentential initial modifier we deal with is the conditional initial modifier,

e.g. [if their jobs are terminated] , receive cash from the fund as shown in Figure 4.59. PTB an-

notated this structure with an SBAR as a subordinating conjunction. To be considered an initial

modifier, we restrict the matching condition to only the SBAR not having -SBJ and the left-

most lexical cannot be a that, for, where, when as those could be some form of complementized,

embedded or interrogative constructs.

The rule shown in Figure 4.60 groups a preposition followed by an adjective into some

commonly known modifier, e.g. at least, at most. PTB is flat in the sense that it does not have

a common node to represent this construct. We recognize them together as a single construct

which is a modifier of category R-aN. Note that for the same lexical like at least could be

annotated on PTB as an ADVP if it is under a nominal phrase as shown in Figure 4.64. This

inconsistency makes parsing a harder task. This problem is corrected in this GCG analysis as

they will be annotated as R-aN in all different contexts.

Another common initial modifier for a verbal or sentential phrase is concerned with timing,
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(α([SQCEVIBLAG](?!-a)|[VIBLG]-aN)(?!-[cp])[ˆ ]*)
B-aN

ε
, receive cash from the fund

SBAR(?![ˆ ]*-SBJ)
SBAR-ADV

δ
their jobs are terminated

(βˆ(WH[ˆ ]*))
IN

γ
if

α
B-aN

α
B-aN

ε
, receive cash from the fund

R-aN
R-aN

δ
their jobs are terminated

β
IN

γ
if

Figure 4.59: Branch off initial modifier R-aN from SBAR. If β=IN then γ must not be either
that, for, where or when.

(α([SQCEVIBLAGN](?!-a)|[VIBLG]-aN)(?!-[cp])[ˆ ]*)
N

ε
$ 40 million

(γJJ[ˆ ]*)
JJS

δ
least

IN
IN

β
at

α
N

α
N

ε
$ 40 million

R-aN
R-aN

γ
JJS

δ
least

IN
IN

β
at

Figure 4.60: Branch off initial RB and JJS as modifier R-aN (e.g. "at least/-
most/strongest/weakest"). The left-most branch of ε that started from α must not be CC.
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e.g. [Some nights] he slept under his desk, as shown in Figuref 4.61. PTB considered this

construct a noun phrase NP and used the category extension -TMP to denote the timing. We

re-write it into an initial modifier attachment with the category R-aN.

(α(C(?!r)|[SQEVIBLAG](?!-a)|[VIBLG]-aN)(?!-[cp])[ˆ ]*)
S

γ
he slept under his desk

NP-TMP
NP-TMP

β
Some nights

α
S

α
S

γ
he slept under his desk

R-aN
R-aN

β
Some nights

Figure 4.61: Branch off initial modifier R-aN. The top-left node of γ must not be a CC. This
example has α=S.

The last initial modifier attachment rule for verbal or sentential phrase is shown at Fig-

ure 4.62. This is a catch all rule for any type of determiner, prepositional or adverbial phrase

before the head of the verbal phrase or sentence allowing them to be an initial modifier attach-

ment, given the category R-aN.

Initial modifier attachment for nominal phrase

If the parent node has category N, then this is a nominal phrase that we are trying to detect

initial modifier attachment for. Our analysis shows there are only two kinds of left-most child

that could be initial modifiers. They are either (1) a conjunction CC shown in Figure 4.63 or

(2) an adverb or prepositional phrase shown in Figure 4.64. While the later is reannotated to

an R-aN as usual, the former is chosen to be an R-aN-x to denote its lexicality. More about

the difference between an [AR]-aN and an [AR]-aN-x will come on the next sub-section about

initial modifier attachment for adverbial or adjectival/predicative phrases. In both cases, the

initial modifier is branched off to modify a new nominal head that covers all the rest of the

children.

Initial modifier attachment for adverbial and adjectival/predicative phrase

When the parent node is of category [AR]-aN(?!-x), i.e. it does not have -x yet, then it can

be further re-written as a modifier and a new head. Figure 4.65 and Figure 4.66 show two
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(α(C(?!(?:-)?r)|[SQEVIBLAG](?!-a|r)|[VIBLG]-aN)(?!-[cp])[ˆ ]*)
S

γ
suddenly Ike ’s ghost
came to visit and said
, “ What the hell are

you doing planning for
a land war in Asia
12,000 miles away

DT|PP|RB|IN|ADVP|CC|FRAG|[ˆ ]*-ADV|[ˆ ]*-LOC|[ˆ ]*-TMP
ADVP

β
then

α
S

α
S

γ
suddenly Ike ’s ghost
came to visit and said
, “ What the hell are

you doing planning for
a land war in Asia
12,000 miles away

R-aN
R-aN

β
then

Figure 4.62: Branch off initial modifier R-aN (including determiner, e.g. both in A and B. The
top-left node of γ must not be a CC. This example has α=S.

(αN(?!-aD|-[cp])[ˆ ]*(-[ir][A-Z]+)?[ˆ ]*)
N

γ
their names but also
their dates of hire

CC
CC

β
not only

α
N

α
N

γ
their names but also
their dates of hire

R-aN-x
R-aN-x

β
not only

Figure 4.63: The left-most branch of γ started from α must not be a PP or WHPP. This
example has α=N.
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(αN(?!-aD|-[cp])[ˆ ]*?(-[ir][A-Z]+)?[ˆ ]*?)
N

γ
a pleasant bonus for them

(ADVP|PP)
ADVP

β
at least

α
N

α
N

γ
a pleasant bonus for them

R-aN
R-aN

β
at least

Figure 4.64: Branch off initial modifier R-aN (including determiner, e.g. both in A and B. The
top-left node of γ must not be a CC. This example has α=N.

variations of this rule to spin off an initial modifier of category R-aN-x and a new head of

the same category as the parent node to cover the rest of the children. While the matching

condition of Figure 4.66 is so specific that the parent must have only two children of those

specific categories, the one on Figure 4.65 is more relaxed in term of the number of children

because a WRB (meaning Wh-adverb in PTB) could be a modifier of the following adjective or

predicative phrase.

(α[AR]-aN(?!-x|-[cp])[ˆ ]*)(β-[ir][A-Z]+)
R-aN-iN

η
∅

(εJJ|ADJP|VB|VP|RB|WRB|IN|TO|[ˆ ]*-PRD)
RB

ζ
belle

δ
“

WRB
WRB

γ
how

αβ
R-aN-iN

α
R-aN

η
∅

ε
RB

ζ
belle

δ
“

R-aN-xβ
R-aN-x-iN

γ
how

Figure 4.65: Branch off initial modifier R-aN-x-iN/R of A-aN/R-aN. The δ in this rule must
not have any PTB category that contains a vertical bar such as PRT|ADVP. This example has
α=R-aN and β=-iN.
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(α[AR]-aN(?!-x|-[cp])[ˆ ]*)
R-aN

(δJJ|ADJP|VB|VP|RB|WRB|
IN|TO|[ˆ ]*-PRD)

RB

ε
often

(βDT|PP|RB.*|IN|ADVP|[ˆ ]*-(ADV|
LOC|TMP)|SBAR[ˆ ]*)

RBR

γ
less

α
R-aN

α
R-aN

δ
RB

ε
often

R-aN-x
R-aN-x

γ
less

Figure 4.66: Branch off initial modifier R-aN of A-aN or R-aN. If β=IN then δ must also be
of category IN. If β=SBAR[ˆ ]* then its left-most branch must be of category IN and the child
of this child must not be that. This example has α=R-aN.

The rest of the rules to deal with initial modifier attachment for adverbial and adjecti-

val/predicated phrases work on parent nodes already annotated with a -x. The two rules at

Figure 4.67 and Figure 4.68 show the analysis of an adverbial modifier modifying an adjectival

phrase. Note that both children, the adverbial and the adjectival phrase, got -x on their cate-

gories. Similarly, the analysis of an adverbial modifier modifying another adverbial phrase is

done in Figure 4.69 and Figure 4.70.

(αA-aN-x[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
A-aN-x-iN

δ
many

W[ˆ ]*
WRB

γ
how

αβ
A-aN-x-iN

A-aN-x
A-aN-x

δ
many

R-aN-xβ
R-aN-x-iN

γ
how

Figure 4.67: Branch off initial modifier R-aN-x. Both γ and δ are not ∅. This example has
α=A-aN-x and β=-iN.
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(αA-aN-x[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
A-aN-x

A-aN-x-iN

δ
1,200

how many

[ˆ ]*
IN
RB

γ
about

exactly

αβ
A-aN-x

A-aN-x-iN

A-aN-xβ
A-aN-x

A-aN-x-iN

δ
1,200

how many

R-aN-x
R-aN-x
R-aN-x

γ
about

exactly

Figure 4.68: Branch off initial modifier R-aN-x. Both γ and δ are not ∅. The magenta example
has α=A-aN-x and β=∅. The blue example has α=A-aN-x and β=-iN.

(αR-aN-x[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
R-aN-x

δ
hto cut the world ’s

Ortegas loose from Moscow

W[ˆ ]*
WHADVP

γ
[-NONE- 0]

αβ
R-aN-x

R-aN-x
R-aN-x

δ
to cut the world ’s

Ortegas loose from Moscow

R-aN-xβ
R-aN-x

γ
[-NONE- 0]

Figure 4.69: Branch off initial modifier R-aN-x. Both γ and δ are not ∅. This example has
α=R-aN-x and β=∅.

(αR-aN-x[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
R-aN-x

δ
any

[ˆ ]*
RB

γ
almost

αβ
R-aN-x

R-aN-xβ
R-aN-x

δ
any

R-aN-x
R-aN-x

γ
almost

Figure 4.70: Branch off initial modifier R-aN-x. Both γ and δ are not ∅. This example has
α=R-aN-x and β=∅.
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4.2.2 Reannotation rules for final modifier attachment

We focus our analysis on only final modifier attachment for (1) nominal phrase and (2) verbal

or sentential phrase because these two types of phrase are most commonly found having final

modifier attachment. One crucial difference between the modifiers of these two phrase types

is that the modifier of a nominal phrase is an adjectival phrase hence will get category A-aN
and the modifier of a verbal or sentential phrase is an adverbial phrase and will get the category

R-aN.

Final modifier attachment for nominal phrase

The first rule to deal with final modifier attachment for nominal phrases detects the special

construct having a nominal phrase followed by a colon then another nominal phrase as shown

in Figure 4.71. The phrase after the colon, including the colon, is considered a final modifier

and will receive a category A-aN.

(αN[ˆ ]*)
N

δ
7 %

(γ[ˆ ]*)
:

:
:

β
DISCOUNT RATE

α
N

A-aN
A-aN

δ
7 %

γ
:

:
:

α
N

β
DISCOUNT RATE

Figure 4.71: Branch off middle modifier A-aN colon.

The second rule for final modifiers of nominal phrases targets temporal (time) and location

(place) specifiers that come after a nominal phrase. In PTB, -TMP and -LOC were used as

extensions to denote the time and location. We used these as matching conditions to spin off

final modifiers for nominal phrases as shown in Figure 4.72.

Next about final modifier attachment of nominal phrases, if a nominal phrase is composed

of two smaller nominal phrases without any sign of them being in a coordination conjunction

then the second nominal phrase is annotated as a modifier of the first one. Using PTB’s category
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(αN[ˆ ]*?)
N

SBAR(γQ?-LOC|Q?-TMP|[ˆ ]*)
SBAR-TMP

δ
while watching the

balloons inflate

β
coffee drinking

α
N

A-aN
A-aN

δ
while watching the

balloons inflate

α
N

β
coffee drinking

Figure 4.72: Branch off final SBAR as modifier A-aN. If γ is not ending with (-LOC|-TMP)
then the top-left node of δ must be an IN and its child must not be a that.

extension -NOM as a marker of nominal phrase, this rule is shown in Figure 4.73.

(αN[ˆ ]*?)
N

N[SP]|[ˆ ]*-NOM
NP

ζ
president and chief executive officer

ε
,

(γNP|[ˆ ]*-NOM)
NP

δ
Howard Mosher

β
∅

α
N

A-aN
A-aN

N
N

ζ
president and chief executive officer

α
N

ε
,

γ
NP

δ
Howard Mosher

β
∅

Figure 4.73: Branch off final modifier A-aN appositive N. In this rule, α must not have a child
of category CC.

The next two rules dealing with final modifiers of nominal phrases look at nominal phrases

ending with a verbal phrase. For example, final guidelines [to be published in early November]

in Figure 4.74 or Bell [based in Los Angeles] in Figure 4.76. The verbal phrase in these cases
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are adjectival final modifiers and will get the category A-aN. The difference between these two

rules is that if the modifier is an infinitival phrase then it will be unarily transformed into an

I-aN. In either cases, a new head is formed to group the rest of the children and get the same

category with the parent node.

(αN[ˆ ]*?)
N

VP
VP

ε
be published in
early November

TO
TO

δ
to

γ
∅

β
final guidelines

α
N

A-aN
A-aN

I-aN
I-aN

ε
be published in
early November

TO
TO

δ
to

γ
∅

α
N

β
final guidelines

Figure 4.74: Branch off final modifier A-aN infinitive phrase (with TO before any VB). In this
rule, γ must not contain any VB.

The last catch-all rule for final modifier of nominal phrase is to look at the last child of the

nominal phrase. If the last child is a reduced relative clause, a prepositional phrase, a temporal, a

locative, or some form of adjectival/adverbial phrase then they will be considered final modifier

and will be annotated with an A-aN. This is shown in Figure 4.75.

Final modifier attachment for verbal or sentential phrase

All final modifiers for verbal or sentential phrases are adverbial phrases and will get category

R-aN. The first analysis to find a final modifier attachment for a verbal or sentential phrase is to

look for the rightmost child of a verbal category that is co-indexed with an *ICH* node which

is a descendant of some other child. The *ICH* means “insert constituent here” in PTB, i.e.

the co-indexation signifies that the rightmost child could syntactically be inserted at the position

of the *ICH* node. If the leftmost child is a VB[ˆ ]*, i.e. a finite verb in any form, then the

rightmost child could be a final modifier of a verb phrase headed by the verb on the leftmost

child. This is shown in Figure 4.77.
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(αN[ˆ ]*?)
N

(γRRC|PP|ADJP|ADVP|RB|UCP|[ˆ ]*-LOC|[ˆ ]*-TMP|SBAR[ˆ ]*)
ADVP-LOC

δ
12,000 miles away

β
a land war in Asia

α
N

A-aN
A-aN

δ
12,000 miles away

α
N

β
a land war in Asia

Figure 4.75: Branch off final modifier A-aN. If γ=SBAR[ˆ ]* then its left-most child must be
IN covering something not a that. This example has α=β=γ=∅.

(αN[ˆ ]*?)
N

VP
VP

ζ
based in Los Angeles

ε
,

(γN[PN])
NP

δ
Bell

β
∅

α
N

A-aN
A-aN

ζ
based in Los Angeles

α
N

ε
,

γ
NP

δ
Bell

β
∅

Figure 4.76: Branch off final modifier AP infinitive phrase (with TO before any VB).
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(α[VIBLAG])(β-aN(?!-x))(γ[ˆ ]*)
L-aN

VP[ˆ ]-i
VP-1

λ
to be fickle investors

κ
in the past

(η[ˆ ]*)
S

ι
∅

-NONE-
-NONE-

\*ICH\*-i
*ICH*-1

θ
themselves

ζ
∅

(δVB[ˆ ]*)
VBN

ε
shown

αβγ
L-aN

Rβ-i
R-aN-1

λ
to be fickle investors

αβγ
L-aN

κ
in the past

η
S

ι
∅

-NONE-
-NONE-

\*ICH\*-i
*ICH*-1

θ
themselves

ζ
∅

δ
VBN

ε
shown

Figure 4.77: Branch off final modifier R-aN (extraposed from argument) This example has
α=L, β=-aN, γ=∅.
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(α([VIBLAGR]-aN(?!-x))[ˆ ]*)
A-aN
R-aN

(εNP[ˆ ]*)
NP
NP

ζ
cotton , soybeans and rice

the earthquake in San Francisco

(γ(IN|TO)[ˆ ]*)
IN
TO

δ
as
to

β
such
Due

α
A-aN

R-aN
R-aN
R-aN

ε
NP
NP

ζ
cotton , soybeans and rice

the earthquake in San Francisco

γ
IN
TO

δ
as
to

α
A-aN
R-aN

β
such
Due

Figure 4.78: Branch off final (IN|TO) + NP as modifier R-aN.
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The next five rules at Figure 4.79, 4.80, 4.81, 4.82, and 4.83 attempt to turn the rightmost

child of category S-TOBE(AS|IP|AP|VS|IS) into a final modifier. This should be noted that

PTB does not have -TOBExx. They are coming from the percolation process done as a pre-

processing step before the reannotation takes place. While the first three of these four rules

reannotate only the rightmost child of category S-TOBExx into a modifier on its own, the last

rule at Figure 4.82 expects a lexical so to detect modifiers of the form so + sentential phrase. It

also combines the second rightmost child (covering the lexical so) with the rightmost one into

a final modifier.

(α[SQCEVIBLAGRN][ˆ x]*?)
A-aN

S-TOBEAS[ˆ ]*-(ADV|PRP)[ˆ ]*
S-TOBEAS-ADV

γ
unchanged from Monday

NP[ˆ ]*
NP-SBJ

-NONE-
-NONE-

\*[ˆA-Z ]*
*-52

β
estimated at 14 million shares ,

α
A-aN

R-aN
R-aN

γ
unchanged from Monday

α
A-aN

β
estimated at 14 million shares ,

Figure 4.79: Branch off final S-ADV with empty subject as modifier R-aN.

The next construct of interest to spinning off final modifier for a verbal or sentential phrase

is the detection of usage of colon and/or SBAR on the rightmost child. Figure 4.84 shows the

usage of both a colon and the rightmost child of category SBAR, but Figure 4.86 and Figure 4.85

show when only one of the two conditions is satisfied. In any case, the colon is considered part

of the final modifier.

Next are a couple of special rules (1) to turn the second to last child of category IN or TO,

together with the last child of category NP, into a final modifier R-aN as shown in Figure 4.78;

(2) to turn the last child of category NP-TMP into a final modifier R-aN as in Figure 4.87.

The last rule to deal with final modifier attachment for verbal or sentential phrase is one
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(α[SQCEVIBLAGRN][ˆ x]*?)
A-aN

S-TOBEIP[ˆ ]*-(ADV|PRP)[ˆ ]*
S-TOBEIP-PRP

γ
to pressure a foreign government

β
cut off funds

α
A-aN

R-aN
R-aN

I-aN
I-aN

γ
to pressure a foreign government

α
A-aN

β
cut off funds

Figure 4.80: Branch off final S-ADV with empty subject as modifier R-aN.

(α[SQCEVIBLAGRN][ˆ x]*?)
A-aN

S-TOBEAP[ˆ ]*-(ADV|PRP)[ˆ ]*
S-TOBEAP-ADV

γ
thereby producing hybrid seed

β
fertilized by pollen from another strain of the plant ,

α
A-aN

R-aN
R-aN

γ
thereby producing hybrid seed

α
A-aN

β
fertilized by pollen from another strain of the plant ,

Figure 4.81: Branch off final S-ADV with empty subject as modifier R-aN.
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(α[SQCEVIBLAGR][ˆ x]*?)
S

(ζS-TOBEVS[ˆ ]*)
S-TOBEVS

ζ
order could be taken

γ
≡ δ

ε
∅

(δ[ˆ ]*)
IN

so
so

β
The computer system was operating ,

α
S

R-aN
R-aN

ζ
S-TOBEVS

η
order could be taken

γ
≡ δ

ε
∅

δ
IN

so
so

α
S

β
The computer system was operating ,

Figure 4.82: Branch off final ’so’ + S as modifier R-aN. This rule either has δ ≡ γ or δ is the
left-most leaf branch of γ.

(α[SQCEVIBLAGR][ˆ x]*?)
V-aN

S-TOBE(γ[IA])S[ˆ ]*(?:-ADV|-PRP)[ˆ ]*
S-TOBEAS-ADV

δ
60 of them in retail

β
adds 70 people –

α
V-aN

R-aN
R-aN

γ
A

δ
60 of them in retail

α
V-aN

β
adds 70 people –

Figure 4.83: Branch off final S-ADV or S-PRP as modifier R-aN. This example has γ=A.
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(α[SQCEVIBLAGR][ˆ ]*?)
V-aN

(εSBAR[ˆ ]*)
SBAR

ζ
Well , your bunny
has a good nose

δ
“

(γ[ˆ ]*)
:

:
:

β
responded

α
V-aN

R-aN
R-aN

ε
SBAR

ζ
Well , your bunny
has a good nose

δ
“

γ
:

:
:

α
V-aN

β
responded

Figure 4.84: Branch off final SBAR as modifier R-aN colon. The top-left node in β must not
be a [ˆ ]*-ADV and its sibling, if β has more than one top-level node, must not be a ([ˆ ]* :).

(α[SQCEVIBLAGR][ˆ ]*?)
A-aN

SBAR(γ[ˆ ]*)
SBAR-TMP

δ
just before Congress sent

accountants to trace U.S. funds

β
set

α
A-aN

R-aN
R-aN

δ
just before Congress sent

accountants to trace U.S. funds

α
A-aN

β
set

Figure 4.85: Branch off final SBAR as modifier R-aN. If γ is not ending with -ADV, -LOC,
-TMP, or -CLR then the top-left node of δ must be an IN and its child must not be a that.
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(α[SQCEVIBLAGR](?![ˆ ]*-x)[ˆ ]*)
V

δ
“ We have redefined

our mission here

(γ[ˆ ]*)
:

:
:

β
he said

α
V

R-aN
R-aN

δ
“ We have redefined

our mission here

γ
:

:
:

α
V

β
he said

Figure 4.86: Branch off final modifier R-aN colon. The top-left node in β must not be a
.*-ADV and its next sibling, if β has more than one top level node, must not be a (.* :).

(α[SQCEVIBLAGR](?![ˆ ]*-x)[ˆ ]*)
A-aN

NP-TMP(γ[ˆ ]*)
NP-TMP

δ
Feb. 15

β
payable

α
A-aN

R-aN
R-aN

δ
Feb. 15

α
A-aN

β
payable

Figure 4.87: Branch off final modifier R-aN. This rule does not allow γ to have -PRD.



76

that catches all varieties of the category of the rightmost child to see if it could be a modifier as

shown in Figure 4.88.

(α[SQCEVIBLAGR](?![ˆ ]*-x)(?!r)[ˆ ]*?)
A-aN

(γ(RB|ADVP|PP|UCP|FRAG|[ˆ ]*-ADV|[ˆ ]*-LOC|[ˆ ]*-TMP)[ˆ ]*)
PP

δ
by Kim Cattrall

β
played

α
A-aN

R-aN
R-aN

δ
by Kim Cattrall

α
A-aN

β
played

Figure 4.88: Branch off final modifier R-aN. The γ of this rule must not contain a -PRD.

4.3 Reannotation rules for coordinating conjunctions (-c/-d)

PTB trees use CONJP on coordinating words such as and, or, or but to denote a very flat

coordinating conjunction with all conjuncts and coordinating words all on the same level. We

further group commonly accepted conjunction phrases such as as well as under a CONJP node.

All the CONJP are then turned into just CC as part of the preprocessing before the reannotation

can take place. Complex conjunctions usually come with commas or semicolons that have

been annotated with operator -p (punctuation), specifically -pPs for semicolons and -pPc for

commas. This section will show how operators -c (initial conjunct), -d (final conjunct), and -p
can be used to reannotate coordinating conjunctions.

First, we isolate any null element sibling away from the conjunction as shown in the rule at

Figure 4.89. This is to counter the flatness problem of PTB. Any null element sibling here is

believed to be linking to the entire conjunction node, not the individual conjuncts. There is also

another isolation for the coordinating conjunction away from the prefix colon, again to counter
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the flatness of PTB, as shown in the rule at Figure 4.90.

(α[ˆC][ˆ ]*(?!.*\|))
A-aN-g{R-aN}-1

(ε[ˆ ]*)
ADVP-TMP

-NONE-
-NONE-

.*
*T*-1

δ
in our case

descending a tad
trop rapidement –

CC[ˆ ]*
CC

γ
or

β
ascending –

α
A-aN-g{R-aN}-1

ε
ADVP-TMP

-NONE-
-NONE-

.*
*T*-1

α
A-aN-g{R-aN}-1

δ
in our case

descending a tad
trop rapidement –

CC[ˆ ]*
CC

γ
or

β
ascending –

Figure 4.89: Pinch ... CC ... -NONE- and re-run. This example has α=N-aD.

The first in a series of rules to target the coordinating conjunction reannotation is the one to

branch off the initial conjunct prior to the semicolon as seen in Figure 4.91. This branching-off

uses the initial conjunct operator -cα on the newly created right child to denote that it has a left

sibling as its initial conjunct argument α. The right child is also marked with a -pPs to denote

that it has a semicolon as the first lexical item. This is a signal of work in progress in the next

reannotation steps continuing down the tree to complete reannotating the entire coordinating

conjunction. There are three other similar rules like this one. The one depicted in Figure 4.92

is for a comma separating the first conjunct, using -pPc instead of -pPs. The rules shown in

Figure 4.93 and Figure 4.94 are like the one in Figure 4.91 and Figure 4.92, respectively, but

for the case where parent node α is a primitive category, not a compositional category.

The (work in progress) signal introduced by either a -pPs (Figure 4.91 and Figure 4.93)

or a -pPc (Figure 4.92 and Figure 4.94) above will continue to be rewritten by the rules at

Figure 4.97 and Figure 4.98 to further branch off the semicolon or comma, respectively. Note

that if the -pPs/-pPc is in the middle of the category, it means the semicolon/comma is first in

its lexical coverage, but if they are at the end of the category then they mean there is an initial
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(α[ˆ ]*(?!.*\|))
A-aN

ε
8.40 % 90 days

.
:

;
;

δ
8.475 % 60 days

.
:

;
;

NP(β[ˆ ]*)
NP

γ
8.575 % 30 days

.
:

:
:

α
A-aN

Nβ
N

ε
8.40 % 90 days

.
:

;
;

δ
8.475 % 60 days

.
:

;
;

Nβ

γ
8.575 % 30 days

.
:

:
:

Figure 4.90: Branch off initial colon in colon...semicolon...semicolon construction. This ex-
ample has α=A-aN and β=∅.
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(α[A-Z]-[abri].(?:-x)?[ˆ cp]*?(?!.*\|))
V-aN

η
before the same shall
take effect , shall be

approved by him or ...
disapproved by him

(εCC|ADVP|.)
CC

ζ
and

δ
∅

(γ[ˆ ]*)
:

;
;

β
shall be presented
to the president of
the United States

α
V-aN

α-pPs-c{α}
V-aN-pPs-c{V-aN}

η
before the same shall
take effect , shall be

approved by him or ...
disapproved by him

ε
CC

ζ
and

δ
∅

γ
:

;
;

α
V-aN

β
shall be presented
to the president of
the United States

Figure 4.91: Branch off initial conjunct prior to semicolon delimiter. The β and η must not be
∅. If ε=ADVP then the left-most pre-terminal tree in ζ must either be (RB then) or (RB not).
If ε is a single character category such as : then it must be a pre-terminal and ζ=;. This example
has α=V-aN.
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(α[A-Z]-[abri].(?:-x)?[ˆ cp]*?(?!.*\|))
A-aN

η
ambitious

(εCC|ADVP)
CC

ζ
and

δ
abrasive

(γ[ˆ ]*)
,

;
,

β
imperious

α
A-aN

α-pPc-c{α}
A-aN-pPc-c{A-aN}

η
ambitious

ε
CC

ζ
and

δ
abrasive

γ
,

;
,

α
A-aN

β
imperious

Figure 4.92: Branch off initial conjunct prior to semicolon delimiter. The β and η must not be
∅. If ε=ADVP then the left-most pre-terminal tree in ζ must either be (RB then) or (RB not).
This example has α=A-aN.
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(α[ˆ \-cp]*(?!.*\|))
N

η
8.45 % 90 days

(εCC|ADVP|.)
:

ζ
;

δ
8.55 % 60 days

(γ[ˆ ]*)
:

;
;

β
8.62 % 30 days

α
N

α-pPs-cα
N-pPs-cN

η
8.45 % 90 days

ε
:

ζ
;

δ
8.55 % 60 days

γ
.

;
;

α
N

β
8.62 % 30 days

Figure 4.93: Branch off initial conjunct prior to semicolon delimiter. The β and η must not be
∅. If ε=ADVP then the left-most pre-terminal tree in ζ must either be (RB then) or (RB not).
If ε is a single character category such as : then it must be a pre-terminal and ζ=;. This example
has α=V-aN.
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(α[ˆ \-cp]*(?!.*\|))
N

η
corporate officials

(εCC|ADVP)
CC

ζ
and

δ
money managers

(γ[ˆ ]*)
,

;
,

β
Investors

α
N

α-pPc-cα
N-pPc-cN

η
corporate officials

ε
CC

ζ
and

δ
money managers

γ
,

;
,

α
N

β
Investors

Figure 4.94: Branch off initial conjunct prior to comma delimiter. The β and η must not be
∅. If ε=ADVP then the left-most pre-terminal tree in ζ must either be (RB then) or (RB not).
This example has α=N.
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punctuation semicolon/comma on their left sibling. This alternating process of reannotation can

go on until (1) a conjunction word is encountered or (2) no conjunction word is encountered,

i.e. a parallel structure of conjuncts delimited by semicolons or commas.

(α[A-Z]-[abri].(?:-x)?)([ˆ cp]*?)(?!.*\|))
R-aN

ε
less often

(γCC[ˆ ]*)
CC

δ
and

β
later

α
R-aN

α-c{α}
R-aN-c{R-aN}

ε
less often

γ
CC

δ
and

α
R-aN

β
later

Figure 4.95: Branch off initial conjunct prior to conjunct delimiter.

(α[ˆ \-cp]*(?!.*\|))
N

ε
Arts

(γCC[ˆ ]*)
CC

δ
&

β
Leisure

α
N

α-cα
N-cN

ε
Arts

γ
CC

δ
&

α
N

β
Leisure

Figure 4.96: Branch off initial conjunct prior to conjunct delimiter.

If the bigger coordinating conjunction ends up at a smaller constituent covering a conjunc-

tion word connecting the last two conjuncts then this constituent must have the category com-

posed of -c followed by a -pPs or -pPc due to the alternating position of -c and -p described

above. The rule at Figure 4.99 will pick up this constituent to branch off the last initial conjunct

α prior to the conjunction word and group the conjunction word together with the last conjunct

into a common parent using the operator -c to link back to the last initial conjunct α. An-

other variation of this rule is the rule at Figure 4.100 that allows tagging along the coordinating
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(α[ˆ ]*)-pPs-c(β{?α}?)(γ[ˆ ]*)
N-pPs-cN

ι
7.55 % 180 to 270 days

(ηCC|ADVP|.)
:

θ
;

ζ
7.90 % 120 to 149 days ;
7.80 % 150 to 179 days

(δ[ˆ ]*)
:

ε
;

α-pPs-cβγ
N-pPs-cN

α-cβ-pPsγ
N-cN-pPs

ι
7.55 % 180 to 270 days

η
:

θ
;

ζ
7.90 % 120 to 149 days ;
7.80 % 150 to 179 days

δ
:

ε
;

Figure 4.97: Branch off initial semicolon delimiter. β=α if α is not a composite category. Oth-
erwise, β={α}. If η=ADVP then the left-most pre-terminal tree in θ must either be (RB then)
or (RB not). If η is a single character category such as : then it must be a pre-terminal and θ=;.
This example has α=N, β=α=N, and γ=∅.

(α[ˆ ]*)-pPc-c(β{.*}|[ˆ- ]*)(γ[ˆ ]*)
A-aN-pPc-c{A-aN}

ι
ambitious

(ηCC|ADVP)
CC

θ
and

ζ
abrasive

(δ[ˆ ]*)
,

ε
,

α-pPc-cβγ
A-aN-pPc-c{A-aN}

α-cβ-pPcγ
A-aN-c{A-aN}-pPc

ι
ambitious

η
CC

θ
and

ζ
abrasive

δ
,

ε
,

Figure 4.98: Branch off initial comma delimiter. If η=ADVP then the left-most pre-terminal
tree in θ must either be (RB then) or (RB not). This example has α=A-aN, β={α}={A-aN},
and γ=∅.
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conjunction any non-local gap (-g) or right node raising (-h).

(α[ˆ ]*)(β-c{?α}?)(γ-pP[sc])(δ[ˆ ]*)
A-aN-c{A-aN}-pPc

θ
ambitious

(ζCC|ADVP)
CC

η
and

ε
abrasive

αβγδ
A-aN-c{A-aN}-pPc

αγβ
A-aN-pPc-c{A-aN}

θ
ambitious

ζ
CC

η
and

α
A-aN

ε
abrasive

Figure 4.99: If ζ=ADVP then the left-most pre-terminal tree in η must either be (RB then) or
(RB not). β=-cα or -c{α} depending on whether α is a primitive or composite category. Subtree
ε must not be empty. This example has α=A-aN, β=-c{α}=-c{A-aN}, γ=-pPc and δ=∅.

(α[ˆ ]*)(β-c{?α}?)(γ-pP[sc])(δ-[ghj][ˆ ]*)
V-aN-c{V-aN}-pPc-gN

θ
cut rates

(ζCC|ADVP|.)
CC

η
and

ε
copy

αβγδ
V-aN-c{V-aN}-pPc-gN

αγβδ
V-aN-pPc-c{V-aN}-gN

θ
cut rates

ζ
CC

η
and

αδ
V-aN-gN

ε
copy

Figure 4.100: Branch off initial conjunct prior to conj delimiter (and don’t pass -p down). If
ζ=ADVP then the left-most pre-terminal tree in η must either be (RB then) or (RB not). If ζ
is a primitive category such as : then it must be a pre-terminal and η=;. β=α or {α} depending
on whether α is a primitive or composite category. Subtree ζ must not be empty. This example
has α=V-aN, β=-c{α}=-c{V-aN}, γ=-pPc and δ=-gN.

Similar but simpler versions of rules at Figure 4.99 and Figure 4.100 are the two rules

at Figure 4.95 and Figure 4.96. These rules are for simple coordinating conjunctions having

only a conjunction word connecting two conjuncts, without a comma or semicolon. Rule at

Figure 4.95 is slightly more complex to support a compositional category at the parent node
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while rule at Figure 4.96 is for parent of primitive category.

If the coordinating conjunction does not have a conjunction word but rather a parallel struc-

ture of conjuncts delimited by semicolons/commas, then the last semicolon/comma will be

treated as a conjunction word. This is covered by the rule in Figure 4.101 for the semicolon and

the rule in the Figure 4.102 for the comma.

(α[ˆ ]*)(β-c{?α}?)(γ-pPs)
N-cN-pPs

η
8.45 % 90 days

(ε[ˆ ]*)
:

ζ
;

δ
8.55 % 60 days

αβγ
N-cN-pPs

αγβ
N-pPs-cN

η
8.45 % 90 days

ε
:

ζ
;

α
N

δ
8.55 % 60 days

Figure 4.101: Branch off initial conjunct prior to semicolon delimiter. β=-cα or -c{α} depend-
ing on whether α is a primitive or composite category. Neither δ nor η could be empty. This
example has α=N, β=-cα=-cN and γ=-pPs.

(α[ˆ ]*)(β-c{?α}?)(γ-pPc)
N-cN-pPc

η
Bill Douglas

and Eddie Gomez

(ε[ˆ ]*)
,

ζ
,

δ
Ornette Coleman

αβγ
N-cN-pPc

αγβ
N-pPc-cN

η
Bill Douglas

and Eddie Gomez

ε
,

ζ
,

α
N

δ
Ornette Coleman

Figure 4.102: Branch off initial conjunct prior to comma delimiter. β=α or {α} depending on
whether α is a primitive or composite category. Neither δ nor η could be empty. This example
has α=N, β=-cα=-cN and γ=-pPc.

The last step to finish reannotating a coordinating conjunction is to introduce a final conjunct
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node and rename the category of the conjunction word from a CC to an X-cX-dX. This is

covered by the rule at Figure 4.103, or the one at Figure 4.104 when there is non-local gap (-g)

or right node raising (-h) tagging along the coordinating conjunction being reannotated.

(α[ˆX][ˆ ]*)(β(-pP[cs])?-c{?α}?)(γ[ˆ ]*)
A-aN-pPc-c{A-aN}

N-cN

ζ
ambitious

Arts

(δCC|ADVP|.)
CC
CC

ε
and
&

αβγ
A-aN-pPc-c{A-aN}

N-cN

αγ
A-aN

N

ζ
ambitious

Arts

X-cX-dX
X-cX-dX
X-cX-dX

ε
and
&

Figure 4.103: Branch off initial conjunct delimiter and final conjunct (no -p to remove). If
δ=ADVP then the left-most pre-terminal tree in ε must either be (RB then) or (RB not). If
δ is a primitive category such as : then it must be a pre-terminal and ε=;. β=-pP[cs]-cα or
-pP[cs]-c{α} depending on whether α is a primitive or composite category. This example has
α=A-aN, β=-pPc-c{α}=-pPc-c{A-aN}, and γ=∅.

(α[ˆ ]*)(β-c[ˆ ]*-pP[cs])(γ-[ghj][ˆ ]*)
A-aN-c{A-aN}-pPc-hN

ζ
doing something about

(δCC|ADVP)
CC

ε
and

αβγ
A-aN-c{A-aN}-pPc-hN

αγ
A-aN-hN

ζ
doing something about

X-cX-dX
X-cX-dX

ε
and

Figure 4.104: Branch off initial conjunct delimiter and final conjunct (and don’t pass -p down).
If δ=ADVP then the left-most pre-terminal tree in εmust either be (RB then) or (RB not). This
example has α=A-aN, β=-c{A-aN}-pPc, and γ=-hN.

4.4 Reannotation rules for filler attachment

The F-rules in Chapter 3 are to attach gapped clauses to modificands or relative or interrogative

phrases in a variety of different constructs. This Section is about the reannotation rules to
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rewrite the trees to make such constructs available. As specified in the description of the F-rules

in Chapter 3, we will describe these correspondent reannotation rules below in three groups

for the modificands (Fa and Fd), the relative (Fb), and the interrogative (Fc and Fe) phrases.

Only some representatives of these rules will be discussed here. Otherwise, section A.3 in the

Appendix has a complete reference to the filler attachment rules we used in this reannotation

system.

4.4.1 Reannotation rules to apply gapped clauses to modificands (Fa and Fd)

While both Fa and Fd can be described as applying some right child gapped clause to some left

child modificand, they are very different syntactically and semantically. In rule Fa, the syntax

category of the gapped clause does not matter, so long as it contains a gap tag. This gapped

clause contributes only to the semantic composition function. The syntax category of the parent

is that of the left child modificand. This is suitable for some post nominal modifier as illustrated

in Figure 4.105. For rule Fd, the category of the gap tag is constrained to be the same with the

category of the modificand. The combination of the modificand and the gapped clause could

produce a different syntactic category for the parent. This analysis is targeted for topicalization

for the most part as shown in Figure 4.106.

4.4.2 Reannotation rules to apply gapped clauses to relative phrases (Fb)

Figure 4.107 shows a copy of the Fb rule. This rule is to first introduce the gap tag into the

right tree branch on the same level with the left branch which is the filler. The gap tag is then

progressing down on the right branch until it stops at the gap constituent to complete a chain

from the filler to the gap, modeled as a series of local parent/child dependencies. The rule at

Figure 4.107 make it possible to create the first step of this chain by matching the index on the

filler with that of the null trace element. This helpful trace information on PTB is commonly

ignored by other systems.

4.4.3 Reannotation rules to apply gapped clauses to interrogative phrases (Fc
and Fe)

The syntactic constraint setup for the left branch interrogative phrase and the right branch

gapped clause is the same for both Fc and Fe rules, i.e. the gap category of the right branch is the
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(αN[ˆ ]*?)
N

SBAR[ˆ ]*
SBAR

η
∅

S[ˆ ]*
S-TOBEIP

δ
∅

-NONE-
-NONE-

\*T\*-i
*T*-5

γ
to say

NP[ˆ ]*
NP-SBJ

-NONE-
-NONE-

*
*

WHNP[ˆ ]*-i
WHNP-5

-NONE-
-NONE-

0
0

β
anything much

α
N

I-aN-gN-i
I-aN-gN-5

η
∅

δ
∅

-NONE-
-NONE-

\*T\*-i
*T*-5

γ
to say

α
N

β
anything much

Figure 4.105: Branch off final SBAR as modifier I-aN-gN. This is an Fa rule N + I-aN-gN =
N.
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(α[SCEV](?!-a))(β(?!-[cp])[ˆ ]*)
S

ζ
our pilot as our basket
plunged into the canal

-NONE-

\*T\*-i
*T*-1

ε
, “ yelled

NP(γ[ˆ ]*)-i
NP-TPC-1

δ
Attention

αβ
S

Vβ-gN-i
V-gN-1

ζ
our pilot as our basket
plunged into the canal

-NONE-

\*T\*-i
*T*-1

ε
, “ yelled

N-i
N-1

δ
Attention

Figure 4.106: Topicalized sentence: branch off initial topic N. γ should not contain -SBJ. This
example has α=S, β=∅, and i=1. This is one of the Fd rules.

same with the main part of the category of the left branch interrogative phrase. The difference

comes in the way the parent category is determined. Fc chooses to compose the category of the

parent in the normal way as if gap is hypothesized as an initial argument. This composition is

suitable for the analysis of embedded questions as shown in Figure 4.108.

Fa on the other hand chooses the category of the interrogative to be the one for the parent.

This is suitable for the analysis of nominalization to create some bigger nominal phrase as

shown in Figure 4.109.

4.5 Reannotation rules to hypothesize gap as initial argument, final
argument, or modifiers

Section 4.4 discussed rules that introduce a gap tag -g into a tree. This gap tag is normally

accompanied by some index copied from the filler node. When it comes the time for a parent

node with a gap tag to be inspected for a rewrite, there are rules that copy this gap tag to the

child (left or right) containing trace information with the same index. This process recursively
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(α(([CV](?=-rN)|R-aN(?!-x))(-rN)?)(β[ˆ ]*))
V-rN

S[ˆ ]*
S

ε
∅

-NONE-

\*T\*-i
*T*-1

δ
to “ find the true performance label

NP[ˆ ]*
NP-SBJ

-NONE-
-NONE-

*
*

WH[A-Z]*-i[ˆ ]*
WHADVP-1

γ
where

α-rNβ
V-rN

A-aNβ-g{R-aN}-i
A-aN-g{R-aN}-1

ε
∅

-NONE-
-NONE-

\*T\*-i
*T*-1

δ
to “ find the true performance label

R-aN-rN-i
R-aN-rN-1

γ
where

Figure 4.107: Branch off initial relative adverbial phrase with empty subject (‘when in rome’).
This example has α=V-rN, β=∅ and i=1. This is an Fb rule R-aN-rN + A-aN-g{R-aN} =
A-aN-rN followed by a type changing rule to change an A-aN to a V.

V\-iN(α[ˆ ]*)
V-iN

γ
a hostile bidder acquires

more than a specified percentage
of the corporation ’s stock

IN

β
if

V\-iNα
V-iN

Vα-g{R-aN}
V-g{R-aN}

γ
a hostile bidder acquires

more than a specified percentage
of the corporation ’s stock

R-aN-iN
R-aN-iN

β
if

Figure 4.108: Embedded question: branch off initial interrogative R-aN of whether or if .
This example has α=∅. This is one of the Fc rules.
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(α(V-iN|N(?!-aD))[ˆ ]*)
N

S[ˆ ]*
S

δ
∅

-NONE-
-NONE-

\*T\*-i
*T*-1

γ
to pay for the savings-and-loan

bailout without adding to
the federal budget deficit

NP[ˆ ]*
NP

-NONE-
-NONE-

\*
*

WH[ˆ ]*-i
WHADVP-1

β
how

α
N

I-aN-g{R-aN}-i
I-aN-g{R-aN}-1

δ
∅

-NONE-
-NONE-

\*T\*-i
*T*-1

γ
to pay for the savings-and-loan

bailout without adding to
the federal budget deficit

R-aN-iN-i
R-aN-iN-1

β
how

Figure 4.109: Embedded question / nom clause: branch off initial interrogative R-aN and final
modifier I-aN with R-aN gap
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creates a path of gap tags connecting the filler (e.g. a relative pronoun) to the gap (e.g. a noun

phrase syntactically connected with the filler) where the attachment can take place.

4.6 Reannotation rules for relative pronoun attachment (-r)

There are only two R rules in Chapter 3 to attach pronominal relative clauses to their modif-

icands depending on whether the modificand is ahead (Ra) or behind (Rb) the relative clause,

and there is only one combination -rN because operator -r can only occur with an N. But there

are a couple different known syntactic categories of the pronominal relative clauses.2

Among these modifier categories, a finite verbal V-rN and a complementized finite C-rN are

found most common. For the modificand, the most common category is N (e.g. [the executives]

[who are really calling the shots]), but any verbial category is entirely possible. For example,

Figure 4.112 shows an A-aN for phrase [offering a gift] [when consumers make a purchase]

or a V-aN is shown in the example of Figure 4.113 for phrase [came in for some blocks in

the secondary market ,] [which we have n’t seen for awhile]. The modificand can also be

a sentential category as illustrated in the rule at Figure 4.114 for the example [when market

interest rates move up rapidly] [, increases in bank CD yields sometimes lag]. For this analysis

of English, a sentential modificand can stand before of after the pronominal relative clause, e.g.

using either rule Ra or Rb, and a swap of the left and right child of the example in Figure 4.114

yield a grammatically valid sentence of the same meaning, but a nominal or verbial modificand

seem to always happen before the pronominal relative clause (i.e. using only rule Ra). Because

the modificand is the head of the phrase after the attachment, the syntactic category of the parent

is that of the modificand.

The rules to reannotate PTB trees into this analysis of pronominal relative attachment de-

pend on the parent having category N, or any verbial or sentential, that has the right child (rule

Ra) or the left child (rule Rb) exposing some signal of being a relative clause (e.g. starting

with a wh-word, having some WH[ˆ ] category in the case of reduced relative clause, or having

the WH[ˆ ] category under some SBAR that marks a sentential modifier) to rewrite them into

a modificand having the same category as the parent, and a pronominal relative clause of type

C-rN or V-rN depending on the structure of the original relative clause.
2 We had thought about doing -rV for finite clause modifier but haven’t tried it yet.
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4.6.1 Relative pronoun attachment for nominal phrase

A relative or pronominal reduced relative clause was annotated as SBAR in PTB. While Fig-

ure 4.110 shows the rule to detect a wh-word, the rule in Figure 4.111 only looks for a category

WH[ˆ ] that possibly covers a null element so that we do not miss the case for reduced rel-

ative clauses. In all these cases, the relative pronominal clause is consistently analyzed as a

complementized finite C-rN.

(αN[ˆ ]*?)
N

(γSBAR[ˆ ]*)
SBAR

θ
are really calling the shots

(δWH[ˆ ]*-[0-9]+)
WHNP-1

η
∅

(ε(?!-NONE-))
WP

(ζ(?!what))
who

β
the executives “

α
N

C-rN
C-rN

θ
are really calling the shots

δ
WHNP-1

η
∅

ε
WP

ζ
who

α
N

β
the executives “

Figure 4.110: Branch off final SBAR as modifier C-rN. This is a relative pronoun attachment
rule Ra.
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(αN[ˆ ]*?)
N

SBAR[ˆ ]*
SBAR

ε
the agency somehow owns

(γWH[ˆ ]*)-i
WHNP-1

δ
∅

β
a fancy 19th-century

French chateau

α
N

C-rN
C-rN

ε
the agency somehow owns

γ-i
WHNP-1

δ
∅

α
N

β
a fancy 19th-century

French chateau

Figure 4.111: Branch off final SBAR as modifier C-rN (that|nil). This is a relative pronoun
attachment rule Ra.
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4.6.2 Relative pronoun attachment for verb phrase

One thing different about pronominal relative clause attachment for a verb phrase compared to

the one for a nominal phrase is that the category of the pronominal relative clause is a finite

verbal V-rN instead of a complementized finite C-rN. Another crucial difference is that the

attachment must have a pronoun, so there is no reduced relative allowed.

With that said, the rules for relative pronoun attachment for verb phrase look very similar to

the ones for nominal phrase in the way the pronominal relative clause is detected. For example,

the matching condition of the right child of Figure 4.112 for the verb phrase looks similar to that

of Figure 4.110 (one looks for any relative not a what and the other looks for where or when)

for the nominal phrase. Similarly, the matching condition of the right child on Figure 4.113

for verb phrase looks almost the same as that of Figure 4.111 of the nominal phrase; it is only

different in that it requires a relative pronoun which because no reduced relative is allowed in

this case.

(α(C(?!r)|[SQEVIBLAGR])[ˆ ]*?)
A-aN

SBAR(?![ˆ ]*-NOM)
SBAR-TMP

γ
consumers make

a purchase

where*|when*
when

β
offering

a gift

α
A-aN

V-rN
V-rN

γ
consumers make

a purchase

where*|when*
when

α
A-aN

β
offering

a gift

Figure 4.112: Branch off final SBAR as modifier V-rN. This is a relative pronoun attachment
rule Ra.

4.6.3 Relative pronoun attachment for sentential phrase

One thing different about pronominal relative clause attachment for a sentential phrase com-

pared to the one for a nominal or verbial phrase is that this one can have the relative clause as

the left or right child. When the relative clause is the right child, it used rules Ra, e.g. the one at

Figure 4.113 and when the relative clause is the left child, it used rules Rb, e.g. the one at Fig-

ure 4.114. The category of the pronominal relative clause seems to be only finite verbal V-rN
instead of a complementized finite C-rN or a finite verbal V-rN. Another crucial difference is
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(α[SQCEVIBLAGR][ˆ ]*?)
V-aN

SBAR[ˆ ]*
SBAR-ADV

ζ
we have n’t seen for a while

(γWH[ˆ ]*)-i
WHNP-1

ε
∅

which
which

δ
∅

β
came in for some blocks
in the secondary market ,

α
V-aN

V-rN
V-rN

ζ
we have n’t seen for a while

γ-i
WHNP-1

ε
∅

which
which

δ
∅

α
V-aN

β
came in for some blocks
in the secondary market ,

Figure 4.113: Branch off final SBAR as modifier V-rN. This is a relative pronoun attachment
rule Ra.
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that the attachment must have a pronoun, so there is no reduced relative allowed.

(α([SQCEVIBLAG](?!-a)|[VIBLG]-aN)(?!-[cp])[ˆ ]*)
S

ε
, increases in bank CD yields sometimes lag

SBAR(?:-ADV|-TMP)[ˆ ]*
SBAR-TMP

δ
market interest rates move up rapidly

(βWH[ˆ ]*)
WHADVP

γ
when

α
S

α
S

ε
, increases in bank CD yields sometimes lag

V-rN
V-rN

δ
market interest rates move up rapidly

β
WHADVP

γ
when

Figure 4.114: Branch off initial modifier V-rN from SBAR-ADV or SBAR-TMP. This is a
relative pronoun attachment rule Rb.

4.7 Reannotation rules for argument elision (-a/-b)

The category for a common noun is usually N-aD to denote that they normally have an initial

argument which is a determiner D to make up a noun phrase N, but sometimes a noun can be

found without a determiner. To cope with this irregularity, we need a rule to simply transform

an N-aD to an N, or simply eliding the -aN from the category. Other scenarios could be some

verbs that can be used as a transitive verb V-aN-bN or as an intransitive verb V-aN, e.g. drive,

do, play, etc. In this case, we need a rule to elide the -bN from the normal transitive context to

make up the intransitive one. Whenever possible, we embedded elision rules into the syntactic

analysis of other rules for brevity.
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4.8 Reannotation rules for right node raising (-h)

PTB trees use a special node *RNR* with an index to denote right node raising, but we do

not always agree with their analysis of what right node raising is. For example, [availability]

and [raising cost] of insurance was annotated with *RNR* in PTB, but we see it as an adjec-

tival modifier phrases A-aN that modifies a conjunction of two conjuncts instead, as seen in

Figure 4.115. Note that we do not use operator -h in this case.

(α[ˆ ]*)
N-aD

PP[ˆ ]*-i
PP-1

δ
of health insurance

γ
∅

-NONE-
-NONE-

\*RNR\*-i
*RNR*-1

β
availability and

rising cost

α
N-aD

A-aN
A-aN

δ
of health insurance

α
N-aD

γ
∅

-NONE-
-NONE-

\*RNR\*-i
*RNR*-1

β
availability and

rising cost

Figure 4.115: Branch final right-node-raising modifier A-aN. This example has α=N-aD.

When we do agree with PTB analysis, we use the operator -h to mark a right node raising

as seen in Figure 4.116. The key to this agreement or disagreement of right node raising is at

the category of the right periphery: the NP is but the PP is not.

4.9 Reannotation rules for type changing

Any grammar has the need for some form of type-changing rules to cope with language specific

features in a more regular formalism. As seen in Hockenmaier and Steedman (2007), the CCG

reannotation also used quite a few type changing rules to reduce the number of lexical category
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(α[ˆ ]*)
V-aN

NP[ˆ ]*-i
NP-2

δ
fearsome contemporary scores

γ
∅

-NONE-
-NONE-

\*RNR\*-i
*RNR*-2

β
commissions and

splendidly interprets

α
V-aN

N
N

δ
fearsome contemporary scores

α-hN-i
V-aN-hN-2

γ
∅

-NONE-
-NONE-

\*RNR\*-i
*RNR*-2

β
commissions and

splendidly interprets

Figure 4.116: Branch final right-node-raising complement N. This example has α=V-aN.

types required to model complex adjuncts, NP-extraposition for arbitrary types of predicative

noun phrase, etc. We need some type changing rules, too.

Sometimes we combined the type changing with other syntactic analysis instead of having

their own rules just for brevity. For example, one of the rules for initial modifier at Figure 4.57

also shows a type changing from an I-aN to an R-aN on the left branch. We know by looking at

the PTB category TO that this is an infinitive clause, hence should be annotated with an I-aN,

but this clause is analyzed as an initial modifier of the right branch, so it should be an R-aN.

Another example is shown at Figure 4.117 where the PTB category extension of -NOM is a

good indication that it should be an N, but it is a final modifier A-aN in this analysis, hence an

embedded type changing rule comes to change from N to A-aN.

At other times we may have separate rules just to deal with the type changing analysis. For

example, Figure 4.118 shows a rule to change a B-aN to an S. We know it should be a base-form

verbal phrase B-aN based on the PTB category VB, but it could also be an imperative sentence

S if that is everything it has (i.e. no subject). Section A.4 in the Appendix has a complete

reference to the type changing rules we used in this reannotation system.
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(αN[ˆ ]*?)
N

SBAR[Q]?-NOM[ˆ ]*
SBAR-NOM

γ
how much Japan gets

under our skin

β
no matter

α
N

A-aN
A-aN

N
N

γ
how much Japan gets

under our skin

α
N

β
no matter

Figure 4.117: Branch off final SBAR as modifier A-aN then N (nominal clause): Direct
children of α in β must not be any CC.

S(α(?!-[cp])[ˆ ]*)
S

ζ
∅

(βVP[ˆ ]*)
VP

ε
Richard Blumenfeld , a New Jersey

dentist who consider himself “
a reasonably sophisticated investor

VB

δ
ask

γ
Just

NP[ˆ ]*
NP-SBJ

-NONE-
-NONE-

\*
*

Sα
S

B-aNα
B-aN

ζ
∅

β
VP

ε
Richard Blumenfeld , a New Jersey

dentist who consider himself “
a reasonably sophisticated investor

VB

δ
ask

γ
Just

Figure 4.118: Imperative sentence: delete empty NP. Top level node in δ must not be a VP
head, i.e. one of (VB, JJ, MD, TO)
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4.10 Preprocessing Penn Treebank trees

PTB trees are inconsistent due to their being manually annotated. To fully automate the rean-

notation process, we must first normalize these inconsistencies in a preprocessing step. This

preprocessing step also does some head percolation to reveal the needed tree structure infor-

mation internally in the tree up to its root to help guide the starting point of the reannotation

process walking down the tree.

4.10.1 Normalize PTB inconsistencies

Treebank trees use null-subjects as traces to link back to functional subjects. It gets more

complicated when it is not a null-subject-S but a conjunction of multiple null-subjects. Our

GCG grammar does not have null elements. The conversion process will eventually remove

them all. In this preprocessing step, we convert conjunctions of null-subject-S’s into a null-

subject-S with a conjunction of VP’s as shown in Figure 4.120. We also turn the modifier of

null-subject-S followed by a VP into a null-subject-S with a modifier of the VP as shown in

Figure 4.119

4.10.2 Head Percolation

As apposed to the top-down reannotation, head percolation is a bottom up process. The head

percolations we did only focus on the VP-head and S-head. Treebank trees use the verbal cate-

gory VP to denote a top-level verb phrase, and its immediate children such as MD (modal), TO
(infinitive), VB (base-form, non-third person), VBZ (base-form, third person), VBG (gerund),

VBD (past tense), VBN (participial) further denote more specific types of verb phrases. Our

GCG does not have two levels of verb phrase like that, so we need to percolate the Treebank

tree VP to reflect its specific verbal type before the reannotation can start. Our GCG has seven

different primitive verbal categories: V (finite verbal), I (infinitive verbal), B (base-form ver-

bal), L (participial verbal), A (adjectival or predicative), R (adverbial), and G (gerund), but not

all of these seven types can be easily identified as a proper mapping from the Treebank tree. For

example, a Treebank VBN could be equivalent to an L but more likely to be an A. This is why

Figure 4.124 shows that we percolate the head to a VP-TOBEAP instead of a VP-TOBELP.
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(αS[ˆ ]*)
S-ADV

(εVP[ˆ ]*)
VP

ζ
giving dignity to their allegations of the war ’s immorality

(γNP[ˆ ]*)
NP-SBJ

-NONE-

(δ[ˆ ]*)
*-1

β
thus

α
S-ADV

ε
VP

ζ
giving dignity to their allegations of the war ’s immorality

β
thus

γ
NP-SBJ

-NONE-

δ
*-1

Figure 4.119: Transform a modifier of null-subject-S into a null-subject-S with a modifier of
VP.
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(αS[ˆ ]*)
S

S[ˆ ]*
S

ε
was unchanged in July

β
NP-SBJ

-NONE-

*T*-i
*T*-1

CC
CC

δ
but

S[ˆ ]*
S

γ
had climbed 0.5 % in August

(βNP[ˆ ]*)
NP-SBJ

-NONE-

*T*-i
*T*-1

α
S

VP

ε
was unchanged in July

CC
CC

δ
but

γ
had climbed 0.5 % in August

β
NP-SBJ

-NONE-

*T*-i
*T*-1

Figure 4.120: Transform a conjunction of multiple null-subject-S’s into a null-subject-S with
a VP-conjunction.
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VP(?![ˆ ]*-TOBE)(α[ˆ ]*)
VP

ε
thousands of draft evaders ...

(γVB[ZDP]|MD)
VBD

δ
pardoned

β
∅

VP-TOBEVPα
VP-TOBEVP

ε
thousands of draft evaders ...

γ
VBD

δ
pardoned

β
∅

Figure 4.121: Percolate a VP-TOBEVP-head if this head has a direct child of category
VB[ZDP] or MD. The top-level nodes in the branch β must not contain any VB.* or TO.

Percolating VP

We temporarily appended -TOBExP with x be one of V, I, B, L, A, G, into the PTB’s VP based

on the type of its child’s head as follows. Note that we cannot reliably determine a -TOBELP
at this point, but that will come later into the reannotation process as we know more about

the structure of the tree. We don’t need -TOBEGP as that verbal phrase is more likely to be

transformed into an A instead.

1. If VP child’s head is a VBZ, catVBD or VBP then x=V (Figure 4.121).

2. If VP child’s head is a TO then x=I (Figure 4.122).

3. If VP child’s head is a VB then x=B (Figure 4.123).

4. If VP child’s head is a VBG or VBN then x=A (Figure 4.124).

5. Propagate the -TOBExP up to its parent VP if it is part of a conjunction as the left

conjunct (Figure 4.125) or as the right conjunct (Figure 4.126).

6. Propagate the first child -TOBExP up to the parent VP (Figure 4.127).

7. Snap a -TOBEVP to a VP when the only child it has is a null element (Figure 4.128).

8. Snap a -TOBEAP to a VP if it does not have any child of category VP.* (Figure 4.129).
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VP(?![ˆ ]*-TOBE)(α[ˆ ]*)
VP

ε
defend the U.S.

(γTO)
TO

δ
to

β
∅

VP-TOBEIPα
VP-TOBEIP

ε
defend the U.S.

γ
TO

δ
to

β
∅

Figure 4.122: Percolate a VP-TOBEIP-head if this head has a direct child of category TO.
The top-level nodes in the branch β must not contain any VB.* or TO.

VP(?![ˆ ]*-TOBE)(α[ˆ ]*)
VP

ε
the danger of combat

(γVB)
VB

δ
avoid

β
∅

VP-TOBEBPα
VP-TOBEBP

ε
the danger of combat

γ
VB

δ
avoid

β
∅

Figure 4.123: Percolate a VP-TOBEBP-head if this head has a direct child of category VB.
The top-level nodes in the branch β must not contain any VB.* or TO.

VP(?![ˆ ]*-TOBE)(α[ˆ ]*)
VP

ε
the war immoral

(γVB[GN])
VBG

δ
declaring

β
∅

VP-TOBEAPα
VP-TOBEAP

ε
the war immoral

γ
VBG

δ
declaring

β
∅

Figure 4.124: Percolate a VP-TOBEAP-head if this head has a direct child of category
VB[GN]. The top-level nodes in the branch β must not contain any VB.* or TO.
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VP(?![ˆ ]*-TOBE)(α[ˆ ]*)
VP

θ
hiding until it is over

CC
CC

η
and

ζ
∅

(γVP[ˆ ]*-TOBE(δ[VIBLA])P)
VP-TOBEAP

ε
declaring the war immoral

β
∅

VP-TOBEδPα
VP-TOBEδP

θ
hiding until it is over

CC
CC

η
and

ζ
∅

γ
VP-TOBEAP

ε
declaring the war immoral

β
∅

Figure 4.125: Percolate a VP-TOBExP-head if this head is the head of a conjunction and the
left conjunct has been annotated with a VP-TOBExP already. This is a variation of Figure 4.126
where it looks at the left conjunct instead of the right one.

VP(?![ˆ ]*-TOBE)(α[ˆ ]*)
VP

ζ
∅

(γVP[ˆ ]*-TOBE(δ[VIBLA])P)
VP-TOBEVP

ε
pleaded guilty to or ...

θ
∅

CC
CC

η
either

β
∅

VP-TOBEδPα
VP-TOBEVP

ζ
∅

γ
VP-TOBEVP

ε
pleaded guilty to or ...

θ
∅

CC
CC

η
either

β
∅

Figure 4.126: Percolate a VP-TOBExP-head if this head is the head of a conjunction and
the right conjunct has been annotated with a VP-TOBExP already. This is a variation of Fig-
ure 4.125 where it looks at the right conjunct instead of the left one.
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VP(?![ˆ ]*-TOBE)(α[ˆ ]*)
VP

ζ
, to step into ...

(γVP[ˆ ]*-TOBE(δ[VIBLA])P)
VP-TOBEIP

ε
to be an owner

β
∅

VP-TOBEδPα
VP-TOBEIP

ζ
, to step into ...

γ
VP-TOBEIP

δ
to be an owner

β
∅

Figure 4.127: Percolate a VP-TOBExP-head if this head has a direct child VP-TOBExP-head
already.

VP(?![ˆ ]*-TOBE)(α[ˆ ]*)
VP

-NONE-
-NONE-

.*
*ICH*-1

VP-TOBEVPα
VP-TOBEVP

-NONE-
-NONE-

.*
*ICH*-1

Figure 4.128: Percolate a VP-TOBEVP-head if this head has only one child which is a null
element.

VP(?![ˆ ]*-TOBE)(α[ˆ ]*)
VP

β
required

VP-TOBEAPα
VP-TOBEAP

β
required

Figure 4.129: Percolate a VP-TOBEAP-head if this head has no direct child of category VP.*.
This means the β in this rule has not top-level node of type VP.*.
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S(?![ˆ ]*-TOBE)(α[ˆ ]*)
S

ε
∅

(γ[ˆ ]*-PRD)
NP-PRD

δ
chairman

β
(null-subj)

S-TOBEASα
S-TOBEAS

ε
∅

γ
NP-PRD

δ
chairman

β
(null-subj)

Figure 4.130: The null-subj usually is (NP-SBJ (-NONE- .*)). Percolate an S-TOBEAS-head
if it has a direct child of category [ˆ ]*-PRD as this is the PTB marker of “predicative”.

Percolating S

Similar to VP, S-head is also appended with -TOBExS with x be one of V, I, B, L, A, depending

on the now recognized type of its VP-TOBExP child or some other S-TOBExS child. Below

are the rules for these percolations.

1. Append a -TOBEAS to the S that has its child head of .*-PRD as this is the PTB marker

of ‘predicative’ (Figure 4.130).

2. Append a -TOBExS to an S if it has a null-subject child followed by a VP-TOBExP
child (Figure 4.131).

3. Append a -TOBExS to an S if it has a VP-TOBExP child (Figure 4.132).

4. Propagate the -TOBExS up to its parent S if it is part of a conjunction as the left conjunct

(Figure 4.133) or as the right conjunct (Figure 4.134).

5. Append a -TOBExS to an S if it has an S-TOBExS child (Figure 4.135).

6. Append a -TOBEVS to an S if the only child it has is a null-subject (Figure 4.136).

7. Append a -TOBEAS to an S if none of the child it has is a VP.* (Figure 4.137).
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S(?![ˆ ]*-TOBE)(α[ˆ ]*)
S

θ
∅

(εVP[ˆ ]*-TOBE(ζ[VIBLA])P)
VP-TOBEIP

η
to pursue other interests

δ
∅

(βNP[ˆ ]*-SBJ)
NP-SBJ

-NONE-
-NONE-

(γ*[ˆA-Z]*)
*-1

S-TOBEζSα
S-TOBEIS

θ
∅

ε
VP-TOBEIP

η
to pursue other interests

δ
∅

β
NP-SBJ

-NONE-
-NONE-

γ
*-1

Figure 4.131: If S covers a null-subject and a VP-TOBExP then append a -TOBExS to it.
This is a more specific rule of the one in Figure 4.132 where we don’t even need a null-subject.

S(?![ˆ ]*-TOBE)(α[ˆ ]*)
S-TPC-2

ζ
∅

(γVP[ˆ ]*-TOBE(δ[VIBLA])P)
VP-TOBEVP

ε
is going to pursue other interests

β
He

S-TOBEδSα
S-TOBEIS-TPC-2

ζ
∅

γ
VP-TOBEVP

ε
is going to pursue other interests

β
He

Figure 4.132: If S covers a VP-TOBExP then append a -TOBExS to it. This is a more general
version of the rule in Figure 4.131.
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S(?![ˆ ]*-TOBE)(α[ˆ ]*)
S

η
the French cows amble about the fields

CC
CC

ζ
and

(γS[ˆ ]*-TOBE(δ ..))
S-TOBEBS

ε
the silver mists rise off the river

β
∅

S-TOBEδα
S-TOBEBS

η
the French cows amble about the fields

CC
CC

ζ
and

γ
S-TOBEBS

ε
the silver mists rise off the river

β
∅

Figure 4.133: If S covers a conjunction and one of the conjunct was already percolated with a
-TOBExS then append a -TOBExS to it. This rule has the conjunct as a left one. Figure 4.134
as a similar version of this rule but for the right conjunct.

S(?![ˆ ]*-TOBE)(α[ˆ ]*)
S

(γS[ˆ ]*-TOBE(δ ..))
S-TOBEBS

ε
the silver mists rise off the river

η
the French cows amble about the fields

CC
CC

ζ
and

β
∅

S-TOBEδα
S-TOBEBS

γ
S-TOBEBS

ε
the silver mists rise off the river

η
the French cows amble about the fields

CC
CC

ζ
and

β
∅

Figure 4.134: If S covers a conjunction and one of the conjunct was already percolated with a
-TOBExS then append a -TOBExS to it. This rule has the conjunct as a right one. Figure 4.133
as a similar version of this rule but for the left conjunct.
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S(?![ˆ ]*-TOBE)(α[ˆ ]*)
S-TPC-1

ζ
, it ’s a case-by-case situation ...

(γS[ˆ ]*-TOBE(δ ..))
S-TOBEVS

ε
It ’s not a blanket commitment

β
∅

S-TOBEδα
S-TOBEVS-TPC-1

ζ
, it ’s a case-by-case situation ...

γ
S-TOBEVS

ε
It ’s not a blanket commitment

β
∅

Figure 4.135: If S covers another S that was already percolated with a -TOBExS then keep
percolating on to this parent S.

S(?![ˆ ]*-TOBE)(α[ˆ ]*)
S

-NONE-
-NONE-

.*
*T*-1

S-TOBEVSα
S-TOBEVS

-NONE-
-NONE-

.*
*T*-1

Figure 4.136: If S covers only a null-element, append it with a -TOBEVS.

S(?![ˆ ]*-TOBE)(α[ˆ ]*)
S

β
the third in fall 1991

S-TOBEASα
S-TOBEAS

β
the third in fall 1991

Figure 4.137: The β in this rule has no top-level node of type VP.*. If S has no children of
type VP.* then it is percolated with a -TOBEAS.



Chapter 5

Syntax Evaluations

This chapter describes the syntax evaluation to check the performance of the system. This

syntax evaluation uses the Berkley parser (Petrov and Klein, 2007). The same method of evalu-

ation is done on our reannotated GCG grammar and the CCG grammar from (Clark and Curran,

2007). Each corpus is used to define its own probabilistic grammar which is automatically an-

notated with additional latent variable values (Petrov and Klein, 2007) to introduce distinctions

based on distributions of words and syntactic categories that increase the probability of the cor-

pus (and improve the accuracy of parsing on held-out data), but do not affect the calculation of

dependency structure. Each latent-variable-augmented probabilistic grammar is used to parse

sentences of WSJ section 23. Each parsed result is fed through the standard evalb1 to report

the precision, recall, and F-measure. Because of using the standard evalb, the format of our re-

ported results look similar to that of other parsing system. We also run a pair-wise McNemar’s

and Student’s t-test on the two results to confirm that GCG result is significantly more accurate

than CCG on both tests, hence GCG seems to be more learnable than CCG.

In addition to this strict syntax evaluation, we also tried a couple more relaxed evaluations.

In the first one, called “onlyval”, we only care about the compositional structure of each syntax

category without looking at its composed primitive categories. The next one is called “unla-

beled” where the evaluation is relaxed even further to only care about the structure of the parsed

trees without looking at the syntax category at any node. Both of these relaxed evaluations once

again show that GCG is significantly more accurate than CCG on the parsing task.

The syntax evaluation involves two steps. The first step is the parsing and the second step is
1 http://nlp.cs.nyu.edu/evalb/
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evaluating the parse result. This two step separation helps make it easier to describe later eval-

uations on the recovery of dependency relations (Chapter 6) and long-distance or unbounded

dependency relations (Chapter 7) because these evaluations always need syntactic parsing as

the first step.

5.1 Syntax Evaluation on GCG

For GCG, the parsing step is illustrated in Figure 5.1 and the evaluating step is shown in Fig-

ure 5.2. This section will describe these two steps in more detail and conclude with the result

of this evaluation in Table 5.1.

5.1.1 Syntax Parsing in GCG

There are a total of 7 steps to syntax parsing using the GCG grammar. These steps are annotated

by the yellow circles in Figure 5.1. Training data used section 02 to 21 from the Wall Street

Journal (WSJ) of the Penn Treebank, hence these filenames started with “wsj02to21”. Testing

data is section 23, so these filenames started with “wsj23”. The flows of training and testing can

be seen from Figure 5.1 as follow:

• Gold data provided for training as PTB’s “wsj02to21” is passed through a series of step

1, step 3, step 4, step 5, step 6 in that exact ordering. The step 6 is the Berkley Parser that

is waiting for the raw test data coming as another input, described next.

• Hypothesis test data flow starts from PTB’s “wsj23” and goes through step 2 and step

6 which is the Berkley Parser. The “.parsed.output” then goes to step 7 to produce

“.parsed.linetrees” which is the hypothesis of syntax parsing that will be used as input

to subsequent evaluations for GCG grammar.

• Gold test data flow starts from PTB’s “wsj23” and goes through step 1 then step 3 as the

gold standard for this syntax parsing. This will be used as input to subsequent evaluations

for GCG grammar.
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step 1: Convert PTB’s trees to .linetrees

PTB’s trees are multi-line of indented structure to be friendly reading by human. However,

without even an empty line delimiter between the sentences, this format is not very easy for a

program to parse as it has to keep track of pushing/popping the open and close parentheses to

detect their balance at the end of a sentence. For example, the two sentences appear like this in

wsj_0202.mrg:

( (S

(NP-SBJ (DT The) (JJ new) (NN rate) )

(VP (MD will)

(VP (VB be)

(ADJP-PRD (JJ payable)

(NP-TMP (NNP Feb.) (CD 15) ))))

(. .) ))

( (S

(NP-SBJ-1 (DT A) (NN record) (NN date) )

(VP (VBZ has) (RB n’t)

(VP (VBN been)

(VP (VBN set)

(NP (-NONE- *-1) ))))

(. .) ))

This step 1 is the Perl script editabletrees2linetrees.pl. This script reformats the data to

place a tree on each line and get rid of unnecessary outermost pair of parentheses so the two

trees above will look like the following in the .linetrees file.2

(S (NP-SBJ (DT The) (JJ new) (NN rate) ) (VP (MD will) (VP (VB

be) (ADJP-PRD (JJ payable) (NP-TMP (NNP Feb.) (CD 15) ))))

(. .) )

(S (NP-SBJ-1 (DT A) (NN record) (NN date) ) (VP (VBZ has) (RB n

’t) (VP (VBN been) (VP (VBN set) (NP (-NONE- *-1) )))) (. .)

)

2 Note that the text may look wrapped on multiple lines but that is only because of the width of this document.
There is no newline character anywhere but the end of each sentence.
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step 2: Extract only words of sentences in .linetrees to create .sents

This command simply removes all the annotation of each sentence, so the two example sen-

tences in Section 5.1.1 above would look like this in the .sents file:

The new rate will be payable Feb. 15 .

A record date has n’t been set .

step 3: Reannotate PTB grammar into GCG grammar

This step 3 undertakes the biggest task in this evaluation process which is to reannotate the PTB

corpus into our GCG grammar. It is a chain of 4 sub-commands described below.

• The first one is annotateFixes.pl containing 167 rules designed to fix various issues in

PTB. Examples of these fixes ranging from simple typo introduced by annotators, e.g.

“diversifed” instead of “diversified”, inconsistencies in using null elements for trace, e.g.

(-NONE- *-i) vs (-NONE- *T*-i), or mistakes in the analysis of past tense VBD vs past

participle VPN, etc. This is by no means a complete set of fixes. There are more problems

in PTB that are very difficult to fix. For example, particle or phrasal verbs like “look

after”, “dig up”, “stand by”, etc. are not easily identifiable in PTB. The particle following

the verb, while forming a semantic unit with the verb and should be annotated with a PRT,

is often annotated as a preposition IN or TO. Together with the mostly flat structure of

the trees, it is impossible to know when a preposition should be grouped with the verb to

form a phrasal verb or should be grouped with the following (usually nominal) phrase.

• Next in the chain is annotate-gcg13.pl containing about 175 rules to reannotate PTB trees

into our GCG format as described in detail in Chapter 4. The number 13 in the name

stands for version of year 2013 that contains a number of improvements over prior ver-

sions including annotate-gcg12.pl which was used in (Nguyen et al., 2012). One of these

significant improvements is a change to make all primitive categories a single-character

and the capability to compose nested categories.

• Third in the chain is killUnaries.pl. This script turns unary branches of the form A →
B→ C into just A→ C. This is mostly just to evaluate the parser on a fair format, with

always the same number of constituents in each tree for the same sentence.
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• Last in the chain are 3 in-line Perl scripts. The first one remove all the sentences that failed

to go through the reannotation process completely. The signal of this failure is the tree still

having some category consisting of only capital letters because trees coming out of the

annotate-gcg13.pl must have at least one dash “-” at every category, e.g. a “-f” to record

the “from” category which is the category the node was in before being transformed to

this category. This “from” field on every category is just a debug information and will be

removed by the next in-line Perl script. Last in the chain is another in-line Perl script to

move the “-lX” field to the end of the category with X being “I”: the Identity or head of

the constituent, “A”: the argument, “M”: the modifier, “C”: the coordination conjunction,

or “N”: no relation. Moving this field to the end helps avoid categories with the same

features differing in order (e.g. -bN-lA vs -lA-bN) sparsifying our data unnecessarily.

step 4: Modify trees to conform to the format expected by the Berkley GrammarTrainer

This step is a chain of 2 sub-commands to do minor reformatting of the trees before feeding

them through the Berkley Grammar Trainer. The first sub-command is an in-line Perl script to

turn every dash “-” in the category to the ampersand “&” because the Berkley Grammar Trainer

uses the “-” as a delimiter in its split-merge algorithm. The last sub-command in the chain is

a sed script to put back the extra set of open and close parentheses to wrap around each tree,

hence the name of the output file got “extrpar” in it. This sub-command is needed because that

is the format of the original PTB and also the one the Berkley Grammar Trainer accepts.

step 5: Train the Berkley Grammar Trainer on GCG

This step is Java code that can be downloaded directly from the Berkley NLP Group.3 We use

the last 1671 sentences of wsj02to21 for validation. The larger the split-merge cycles used, the

slower but higher accuracy is accomplished. This command is very time and memory intensive,

only second to the parsing task which is the next command down the command chain.

step 6: Parse using the Berkley Parser

This step is also Java code: the Berkley Parser that can be downloaded as a bundle with the

Berkley Grammar Trainer above. This is the most time and memory consuming task. Three
3 http://nlp.cs.berkeley.edu/Software.shtml
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split-merge cycles would require at least 4GB of memory allocated to the JVM to run while five

split-merge cycles require at least 8GB of memory.

step 7: Reformat the output from the Berkley Parser

This step consists of a chain of 3 sub-commands to do various reformatting to turn the output

from the Berkley Parser into our GCG trees. The first sub-step in the chain does the reversed

task of the first sub-step of step 4 above, replacing the “&” in the category back to their original

“-”. Next in the chain is a sed step to remove the extra set of open and close parentheses around

each tree as they are not needed in our GCG format.

5.1.2 Evaluating GCG Parse Result

This step has only one sub-step, namely step 1 in the yellow circle in Figure 5.2. The two inputs

“.parsed.linetrees” (hypothesis) and “.gcg13.linetrees” (gold) are the outputs of the parsing step

above. The output from evalb is “.gcg13.syneval” which is a report of precision, recall, and

F-measure of the system on GCG grammar. This result is shown in Table 5.1.

5.2 Syntax Evaluation on CCG

For CCG, the parsing step is illustrated in Figure 5.3 and the evaluation step is shown in Fig-

ure 5.4. This section will describe these two steps in more detail and conclude with the result

of this evaluation in Table 5.2.

5.2.1 Syntax Parsing on CCG

There are a total of 6 steps to do syntax parsing using the CCG grammar, one command less

than the parsing using GCG because we start from CCG Bank so there is no need for a step

to reannotate PTB. These commands are annotated by the yellow circles in Figure 5.3 in much

the same way as the parsing for GCG in Section 5.1. The main difference between this CCG

evaluation compared to the GCG evaluation is that this one starts from the CCG corpus (the

CCG version of the PTB), not the original PTB, and it does not have the step to convert the

corpus into GCG format. Training data used the same sections 02 to 21 from the Wall Street

Journal (WSJ) of the CCG Bank, hence the filename started with “wsj02to21”. Testing data is
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PTBPTB editabletrees2linetrees.pl .linetrees

.sents

.gcg13.linetrees

.gcg13.extrpar.linetrees

.model.parsed.output

.parsed.linetrees

1

2

3

4

5

6

7

.gcg13.linetrees

Figure 5.1: Syntax parsing for GCG. The darker color rectangles denote the commands with
arrows coming in as inputs and going out as outputs. The number i in the yellow circle at the
upper right corner of the command is referred to as step i in the writeup description of these
commands for the figure. The lighter color rectangles denote the extensions of the files being
generated or consumped by the commands. The special lighter color rectangles with a shade
denote the files from corpora, i.e. “PTB” for PennTreebank corpus. There are two kinds of
arrows: the black ones are for the flow of gold data and the blue ones are for the hypothesis
data. If a command has at least one incoming blue arrow then its outgoing arrow must be a
blue one. The two outputs going out of this Figure are “.parsed.linetrees” (hypothesis) and
“.gcg13.linetrees” (gold). They will be used in a number of different syntax, dependency, filler-
gap, and proposition evaluations for GCG.
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=== Summary ===

– All –
Number of sentence = 1795
Number of Error sentence = 0
Number of Skip sentence = 0
Number of Valid sentence = 1795
Bracketing Recall = 89.74
Bracketing Precision = 89.93
Bracketing FMeasure = 89.84
Complete match = 40.56
Average crossing = 2.00
No crossing = 47.30
2 or less crossing = 69.69
Tagging accuracy = 94.49

– len<=40 –
Number of sentence = 1705
Number of Error sentence = 0
Number of Skip sentence = 0
Number of Valid sentence = 1705
Bracketing Recall = 90.17
Bracketing Precision = 90.35
Bracketing FMeasure = 90.26
Complete match = 42.46
Average crossing = 1.77
No crossing = 49.50
2 or less crossing = 71.96
Tagging accuracy = 94.54

Table 5.1: Syntax evaluation for GCG on Berkley Parser.
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.parsed.linetrees .gcg13.linetrees
1

.gcg13.syneval

Figure 5.2: Syntax evaluation for GCG. The hypothesis file “.parsed.linetrees” and gold file
“.gcg13.linetrees” inputs to the standard “evalb” script are coming from the outputs toward the
end of Figure 5.1. The output “.gcg13.syneval” of this command is the official result of the
GCG evaluation on syntax parsing. This result is shown in Table 5.1.

section 23, so the filename started with “wsj23”. The flows of training and testing can be seen

from Figure 5.3 as followed:

• Gold data provided for training as CCG’s “wsj02to21”→ step 1→ step 3→ step 4→
step 5 which is the Berkley Parser that is waiting for the raw test data coming as another

input, described next.

• Hypothesis test data flow starts from CCG’s “wsj23” → step 2 → step 5 which is the

Berkley Parser. The “ccg.parsed.output” → step 6 to produce “.ccg.parsed.linetrees”

which is the hypothesis of syntax parsing that will be used as input to subsequent evalua-

tions for CCG grammar.

• Gold test data flow starts from CCG’s “wsj23” → step 1 to produce the gold standard

“.ccg.linetrees” for this syntax parsing. This will be used as input to subsequent evalua-

tions for CCG grammar.

step 1: Convert CCG’s trees to .linetrees

This command is the Perl script ccglinetrees2nicelinetrees.pl. CCG Bank already has one tree

each line, the format we prefer over the original PTB. However, each tree in CCG Bank comes

prefixed by a line to contain the tracing information back to its original PTB. The same example

of the two trees shown in Section 5.1.1 but on CCG Bank is listed below:

ID=wsj_0202.2 PARSER=GOLD NUMPARSE=1
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(<T S[dcl] 0 2> (<T S[dcl] 1 2> (<T NP 1 2> (<L NP[nb]/N DT DT

The NP[nb]_129/N_129>) (<T N 1 2> (<L N/N JJ JJ new N_124/

N_124>) (<L N NN NN rate N>) ) ) (<T S[dcl]\NP 0 2> (<L (S[

dcl]\NP)/(S[b]\NP) MD MD will (S[dcl]\NP_88)/(S[b]_89\NP_88:

B)_89>) (<T S[b]\NP 0 2> (<L (S[b]\NP)/(S[adj]\NP) VB VB be

(S[b]\NP_98)/(S[adj]_99\NP_98:B)_99>) (<T S[adj]\NP 0 2> (<L

(S[adj]\NP)/NP JJ JJ payable (S[adj]\NP_106)/NP_107>) (<T

NP 0 1> (<T N 0 2> (<L N/N[num] NNP NNP Feb. N/N[num]_112>)

(<L N[num] CD CD 15 N[num]>) ) ) ) ) ) ) (<L . . . . .>) )

ID=wsj_0202.3 PARSER=GOLD NUMPARSE=1

(<T S[dcl] 0 2> (<T S[dcl] 1 2> (<T NP 1 2> (<L NP[nb]/N DT DT

A NP[nb]_97/N_97>) (<T N 1 2> (<L N/N NN NN record N_92/N_92

>) (<L N NN NN date N>) ) ) (<T S[dcl]\NP 0 2> (<T (S[dcl]\

NP)/(S[pt]\NP) 0 2> (<L (S[dcl]\NP)/(S[pt]\NP) VBZ VBZ has (

S[dcl]\NP_55)/(S[pt]_56\NP_55:B)_56>) (<L (S\NP)\(S\NP) RB

RB n’t (S_68\NP_63)_68\(S_68\NP_63)_68>) ) (<T S[pt]\NP 0 2>

(<L (S[pt]\NP)/(S[pss]\NP) VBN VBN been (S[pt]\NP_77)/(S[

pss]_78\NP_77:B)_78>) (<L S[pss]\NP VBN VBN set S[pss]\NP_83

>) ) ) ) (<L . . . . .>) )

We will need to strip off the prefix line of each tree. We also need to remove the co-

indexations and non-local dependencies information on the tree because the Berkley grammar

trainer and parser won’t be able to make use of those. We preserve the feature on each category

but remove the square brackets around them so S[dcl] would look like Sdcl. The result of this

step 1 of the CCG Bank trees above will look like the ones below:

(Sdcl (Sdcl (NP (NPnb/N The) (N (N/N new) (N rate))) (Sdcl\NP

({Sdcl\NP}/{Sb\NP} will) (Sb\NP ({Sb\NP}/{Sadj\NP} be) (Sadj

\NP ({Sadj\NP}/NP payable) (NP (N (N/Nnum Feb.) (Nnum 15))))

))) (. .))
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(Sdcl (Sdcl (NP (NPnb/N A) (N (N/N record) (N date))) (Sdcl\NP

({Sdcl\NP}/{Spt\NP} ({Sdcl\NP}/{Spt\NP} has) ({S\NP}\{S\NP}

n’t)) (Spt\NP ({Spt\NP}/{Spss\NP} been) (Spss\NP set)))) (.

.))

step 2: Extract only words of sentences in .linetrees to create .sents

This step is the same as step 2 of Section 5.1.1, stripping off all the CCG annotations to leave

only the text of the sentence to feed through the parser.

steps 3 to 6

These steps are exactly the steps 4 to 7 described on the syntax parsing for GCG above. Simi-

larly, the two outputs “ccg.parsed.linetrees” (hypothesis) and “.ccg.linetrees” (gold) coming out

of this parsing step can be used as inputs into various evaluations later.

5.2.2 Evaluating CCG Parse Result

This step, as shown in Figure 5.4, used the standard evalb script, exactly like the evaluation of

GCG parse result above, but only different in the inputs and output. The inputs this time are the

gold and hypothesis data coming from the parsing step of Figure 5.3. The result of this CCG

syntax evaluation is shown in Table 5.2.

5.3 Significance Tests on Syntax Evaluations for GCG vs CCG

From the syntax evaluation results of GCG in Table 5.1 and that of CCG in Table 5.2, it shows

that GCG can parse more accurately than CCG on Section 23 of WSJ. To generalize the claim

that GCG is more learnable than CCG on syntax parsing, we do significance tests on series of

data points extracted from the parsing results of Section 23 using each grammar. Specifically,

we run the two series of data points side-by-side through a Student’s t-test or McNemar’s test

to reject the null hypothesis that the difference between the two series is random.
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CCG BankCCG Bank ccglinetrees2nicelinetrees.pl .ccg.linetrees

.sents

.ccg.extrpar.linetrees

.ccg.parsed.output

1

2

3

4

5

6

Figure 5.3: Syntax parsing for CCG. The darker color rectangles denote the commands with
arrows coming in as inputs and going out as outputs. The number i in the yellow circle at
the upper right corner of the command is referred to as step i in the writeup description of
these steps. The lighter color rectangles denote the extensions of the files being generated or
consumped by the commands. The special lighter color rectangles with a shading denote the
files from corpora, i.e. “CCG Bank” for CCG Treebank corpus. There are two kinds of arrows:
the black ones are for the flow of gold data and the blue ones are for the hypothesis data. If a
command has at least one incoming blue arrow then its outgoing arrow must be a blue one. The
two outputs going out of this Figure are “.ccg.parsed.linetrees” (hypothesis) and “.ccg.linetrees”
(gold). They will be used in a number of different syntax, dependency, and filler-gap evaluations
for CCG.
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=== Summary ===

– All –
Number of sentence = 1795
Number of Error sentence = 0
Number of Skip sentence = 1
Number of Valid sentence = 1794
Bracketing Recall = 86.96
Bracketing Precision = 86.79
Bracketing FMeasure = 86.87
Complete match = 34.56
Average crossing = 2.12
No crossing = 43.65
2 or less crossing = 68.62
Tagging accuracy = 93.51

– len<=40 –
Number of sentence = 1705
Number of Error sentence = 0
Number of Skip sentence = 1
Number of Valid sentence = 1704
Bracketing Recall = 87.31
Bracketing Precision = 87.17
Bracketing FMeasure = 87.24
Complete match = 36.03
Average crossing = 1.90
No crossing = 45.31
2 or less crossing = 71.07
Tagging accuracy = 93.52

Table 5.2: Syntax evaluation for CCG on Berkley Parser.
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.ccg.linetrees
1

Figure 5.4: Syntax evaluation for CCG. The hypothesis “.ccg.parsed.linetrees” and gold
“.ccg.linetrees” inputs to the standard “evalb” of step 1 are coming from the outputs toward
the end of Figure 5.3. The output “.ccg.syneval” of this command is the result of the CCG eval-
uation on syntax parsing. This result is shown in Table 5.2. The standard “evalb” used in this
Figure is exactly the one used in Figure 5.2. This shows that the syntax evaluations for GCG
and CCG are done in the exact same way, only different in the grammar formalism.

5.3.1 Student’s t-test on Syntax Evaluations for GCG vs CCG

The two inputs “.gcg13.syneval” and “.ccg.syneval” coming to Figure 5.5 are the outputs of the

syntax evaluations for GCG and CCG from Figure 5.2 and Figure 5.4, respectively. The step 1

in Figure 5.5 composed of an “egrep” and an inline Perl script. This command depends on the

format of the output generated by the commonly used “evalb” script. The “egrep” extracts only

the lines with numbers separated by spaces which is the first line of each individual sentence

from “.gcg13.syneval” and “.ccg.syneval” as apposed to the final summary results of all the sen-

tences shown in Table 5.1 and Table 5.2. These lines show a summary of parse results on each

sentence. The inline Perl script then takes the last number of each line which is the parsing ac-

curacy of each sentence into the files “.gcg13.syneval.corr” and “.ccg.syneval.corr” (the “.corr”

mean “correct” instances). These two “.corr” files are input into the “ttest.r” script to compute

the Student’s t-test result. The result of this significance test is in “.gcg13.ccg.ttestsignif” file

and the content of this file is shown in Table 5.3. This test shows that the p-value is less than

5%, so it is concluded that GCG is statistically significantly more accurate compared to CCG.

5.3.2 McNemar’s test on Syntax Evaluations for GCG vs CCG

To confirm one more time that GCG is significantly more accurate on parsing than CCG, we

do another pair-wise test of the parsing results using McNemar’s test as shown in Figure 5.6.

This time, instead of starting from the “.gcg13.syneval” and “.ccg.syneval” to extract the correct
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==> 131028/wsj23-inboth..gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.gcg13_syneval..ccg.
wsj02to21-ccg-1671-5sm.fullberk.parsed.ccg_syneval..ttestsignif <==

[1] "131028/wsj23-inboth.gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.gcg13_syneval.corr"
[2] "131028/wsj23-inboth.ccg.wsj02to21-ccg-1671-5sm.fullberk.parsed.ccg_syneval.corr"
[1] 88.73589
[1] 85.98558

Paired t-test

data: d1[["dat"]] and d2[["dat"]]
t = 6.7563, df = 1794, p-value = 1.906e-11
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.951933 3.548703
sample estimates:
mean of the differences

2.750318

Table 5.3: Student’s t-test for Syntax Evaluation between GCG and CCG on the Berkley parser
using the R stats software.

percentage of each individual sentence to be used as data points, we start right after the parsing

step to bypass the “evalb” as we are looking for the exact match sentences as data points instead

of the percentage of constituents matched.

There are two steps in Figure 5.6 but step 1 was duplicated in two places to make it clear

by reducing the number of inputs/outputs coming to and going out from it. There are four

inputs, or two pair of them. The upper pair of inputs are “.parsed.linetrees” (GCG hypothesis)

and “.gcg13.linetrees” (GCG gold) coming from the outputs of Figure 5.1. The lower pair of

inputs are “.ccg.parsed.linetrees” (CCG hypothesis) and “.ccg.linetrees” (CCG gold) coming

from the outputs of Figure 5.3. The step 1 composed of a shell command “sdiff” to compare

the hypothesis and the gold data line by line. The output of this “sdiff” is piped through a

“grep” to eliminate all the failed parse sentences. Last in the chain is an inline Perl script to

replace each unmatched pair of sentences by a 0 and each matched pair by a 1. The result of this

step 1 is a series of 0 and 1, with 0 representing sentences that were not perfectly parsed (may

be partially correct), and 1 representing sentences that were parsed 100% correct. These two

series of 0 and 1 in “.gcg13.synmatch.corr” and “.ccg.synmatch.corr” are used as data points

input to step 2 which is an R script to run the McNemar test. The content of the result file

“.gcg13.ccg.symmatch.signif” is shown in Table 5.4, and once again confirm that GCG can

parse statistically significantly more accurate than CCG because the p-value of this McNemar’s

test is less than 5%.
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1

2

Figure 5.5: Student’s t-test to measure significance for syntax evaluation between GCG and
CCG. The two inputs “.gcg13.syneval” and “.ccg.syneval” are coming from the last outputs of
Figure 5.2 and Figure 5.4, respectively. The final output produced is “.gcg13.ccg.ttestsignif”
as shown in Table 5.3. This result shows the syntax evaluation on GCG is significantly more
accurate than that of CCG.

==> 131028/wsj23-inboth..gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.synmatch..ccg.
wsj02to21-ccg-1671-5sm.fullberk.parsed.synmatch..signif <==

[1] "131028/wsj23-inboth.gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.synmatch.corr"
[2] "131028/wsj23-inboth.ccg.wsj02to21-ccg-1671-5sm.fullberk.parsed.synmatch.corr"
[1] 0.3799443
[1] 0.3420613

McNemar’s Chi-squared test with continuity correction

data: d1[["dat"]] and d2[["dat"]]
McNemar’s chi-squared = 9.3912, df = 1, p-value = 0.00218

Table 5.4: McNemar test for Syntax Evaluation between GCG and CCG on the Berkley parser
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.gcg13.linetrees

1

2

.ccg.linetrees

1

Figure 5.6: McNemar’s significance test for syntax evaluation between GCG and CCG. The
upper pair of inputs are “.parsed.linetrees” and “.gcg13.linetrees”, coming from the outputs to-
ward the end of Figure 5.1 to represent the syntax parsing on GCG. The lower pair of inputs
are “.ccg.parsed.linetrees” and “.ccg.linetrees”, coming from the outputs toward the end of Fig-
ure 5.3 to represent the syntax parsing on CCG. The step 1 is duplicated in 2 places to make
it clear by reducing the number of its inputs and outputs. This step 1 extracts only the per-
fect matches in parsing on either GCG or CCG. The “.corr” file name implies taking only the
perfectly “correct” parsed sentences. The step 2 is an R script to compute the McNemar signifi-
cance test. This result as shown in Table 5.4, one more time, confirms that GCG is significantly
more accurate than CCG on syntax parsing.
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5.4 Relaxed Syntax Evaluations

We conduct two relaxed syntax evaluations for both GCG and CCG. The first relaxation is to

ignore the type of individual primitive category and the -l tag encoding the local predicate-

argument dependencies. For this relaxation, the syntax category at each tree node is measured

only by the correct composition of the number of individual generic primitive categories (does

not care about the exact correctness of each compositional primitive category). This relaxation

also drops the predicate-argument structure and is referred to in the code as the “onlyval” eval-

uation. The second relaxation went further to check only the correctness of the tree structure

without caring what category the tree has at each node. This relaxation is referred to as “unla-

beled” syntax evaluation.

5.4.1 “Onlyval” Syntax Evaluations

For these relaxed evaluations, the parsed results of GCG and CCG are routed through an ad-

ditional step to reset every primitive category to just an X and remove the -l tag encoding the

local predicate-argument. For example, the category for a transitive main verb of a sentence

may be V-aN-bN-lI and will be simplified to just X+X+X where the V, the -aN, and the -bN
are all relaxed to just X’s and the -lI is removed. This relaxation maintains the compositional

structure of the categories, like in this example, the category X+X+X denotes that it composed

of 3 primitive categories but does not care what exactly each one of those 3 are. This relaxation

also maintains the complex compositional structure, e.g. a category of L-aN-bA-aN-lM will be

relaxed to X+X+{X+X}.

This relaxation is done in step 1 of Figure 5.7. The upper pair of inputs is coming from

the outputs in Figure 5.1 and the lower pair is coming from the outputs of Figure 5.3. The

corresponding pairs of outputs are routed through the the evalb script in the same way the

complete syntax evaluations were done as shown in Figure 5.2 and Figure 5.4. The results

of these two evaluations is shown in Table 5.5 and the accompanied pair-wise Student’s t-test

and McNemar’s test are in Table 5.6. These evaluations show that GCG is significantly more

accurate than CCG again on this relaxed setting of the syntax.
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1

Figure 5.7: “onlyval” relaxation drops the check for correctness of each individual primitive
category as they were all X’ed out. This also drops the -l tag to not care about the local
predicate-argument dependencies. This relaxation is meant to only check the correct composi-
tional structure of the syntax category at each node as well as the correct structure of the tree
overall.

5.4.2 “Unlabeled” Syntax Evaluations

These evaluations take the relaxation one step further where even the compositional structure

of the syntax categories is ignored, hence every syntax category is simplified to just an X. A

parsed tree under this relaxation is considered a match if it has the same tree structure with the

gold tree without caring about any syntax category at every node.

For these relaxed evaluations, the parsed results of GCG and CCG are routed through an
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GCG CCG
=== Summary === === Summary ===

– All – – All –
Number of sentence = 1795 Number of sentence = 1795
Number of Error sentence = 0 Number of Error sentence = 0
Number of Skip sentence = 0 Number of Skip sentence = 1
Number of Valid sentence = 1795 Number of Valid sentence = 1794
Bracketing Recall = 88.12 Bracketing Recall = 87.30
Bracketing Precision = 88.12 Bracketing Precision = 87.30
Bracketing FMeasure = 88.12 Bracketing FMeasure = 87.30
Complete match = 44.18 Complete match = 37.57
Average crossing = 2.00 Average crossing = 2.01
No crossing = 47.30 No crossing = 43.65
2 or less crossing = 69.69 2 or less crossing = 70.23
Tagging accuracy = 97.32 Tagging accuracy = 94.62

– len<=40 – – len<=40 –
Number of sentence = 1705 Number of sentence = 1705
Number of Error sentence = 0 Number of Error sentence = 0
Number of Skip sentence = 0 Number of Skip sentence = 1
Number of Valid sentence = 1705 Number of Valid sentence = 1704
Bracketing Recall = 88.71 Bracketing Recall = 87.73
Bracketing Precision = 88.71 Bracketing Precision = 87.73
Bracketing FMeasure = 88.71 Bracketing FMeasure = 87.73
Complete match = 46.28 Complete match = 39.14
Average crossing = 1.77 Average crossing = 1.80
No crossing = 49.50 No crossing = 45.31
2 or less crossing = 71.96 2 or less crossing = 72.65
Tagging accuracy = 97.37 Tagging accuracy = 94.65

Table 5.5: “onlyval” syntax evaluations result for GCG on the left and CCG on the right. These
relaxing results also consistently show that GCG is a better parsing tool than CCG on WSJ
section 23.

additional step to reset every syntax category to just an X before sending to the evalb script. This

is illustrated in Figure 5.8. The upper pair of inputs is coming from the outputs in Figure 5.1

and the lower pair is coming from the outputs of Figure 5.3. The corresponding pairs of outputs

are routed through the the evalb script in the same way the complete syntax evaluations were

done as shown in Figure 5.2 and Figure 5.4. The results of these two evaluations is shown in
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[1] "131028/wsj23-inboth.gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.onlyval.
gcg13_syneval.corr"

[2] "131028/wsj23-inboth.ccg.wsj02to21-ccg-1671-5sm.fullberk.parsed.onlyval.ccg_syneval.corr
"

[1] 89.4162
[1] 87.55787

Paired t-test

data: d1[["dat"]] and d2[["dat"]]
t = 4.5862, df = 1794, p-value = 4.826e-06
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
1.063620 2.653049
sample estimates:
mean of the differences

1.858334

[1] "131028/wsj23-inboth.gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.synmatch.onlyval.
corr"

[2] "131028/wsj23-inboth.ccg.wsj02to21-ccg-1671-5sm.fullberk.parsed.synmatch.onlyval.corr"
[1] 0.416156
[1] 0.3582173

McNemar’s Chi-squared test with continuity correction

data: d1[["dat"]] and d2[["dat"]]
McNemar’s chi-squared = 21.563, df = 1, p-value = 3.424e-06

Table 5.6: significance test results for “onlyval” evaluations: Student’s t-test (above) and Mc-
Nemar test (below). Both tests confirm that GCG is significantly more accurate than CCG on
this relaxed syntax parsing task.
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Table 5.7 and the accompanied pair-wise Student’s t-test and McNemar’s test are in Table 5.8.

These evaluations show that GCG is significantly more accurate than CCG once again on this

much relaxed setting of the syntax.

1

Figure 5.8: “unlabeled” relaxation turns each syntax category at every node into just an X. This
relaxation therefore only evaluates the parsing on its capability to recover the tree structure.
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GCG CCG
=== Summary === === Summary ===

– All – – All –
Number of sentence = 1795 Number of sentence = 1795
Number of Error sentence = 0 Number of Error sentence = 0
Number of Skip sentence = 0 Number of Skip sentence = 1
Number of Valid sentence = 1795 Number of Valid sentence = 1794
Bracketing Recall = 90.60 Bracketing Recall = 90.55
Bracketing Precision = 90.60 Bracketing Precision = 90.55
Bracketing FMeasure = 90.60 Bracketing FMeasure = 90.55
Complete match = 47.30 Complete match = 43.65
Average crossing = 2.00 Average crossing = 2.01
No crossing = 47.30 No crossing = 43.65
2 or less crossing = 69.69 2 or less crossing = 70.23
Tagging accuracy = 100.00 Tagging accuracy = 100.00

– len<=40 – – len<=40 –
Number of sentence = 1705 Number of sentence = 1705
Number of Error sentence = 0 Number of Error sentence = 0
Number of Skip sentence = 0 Number of Skip sentence = 1
Number of Valid sentence = 1705 Number of Valid sentence = 1704
Bracketing Recall = 91.11 Bracketing Recall = 90.96
Bracketing Precision = 91.11 Bracketing Precision = 90.96
Bracketing FMeasure = 91.11 Bracketing FMeasure = 90.96
Complete match = 49.50 Complete match = 45.31
Average crossing = 1.77 Average crossing = 1.80
No crossing = 49.50 No crossing = 45.31
2 or less crossing = 71.96 2 or less crossing = 72.65
Tagging accuracy = 100.00 Tagging accuracy = 100.00

Table 5.7: “unlabeled” syntax evaluations result for GCG on the left and CCG on the right.
These relaxing results also consistently show that GCG is a better parsing tool than CCG on
WSJ section 23.
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[1] "131028/wsj23-inboth.gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.unlabeled.
gcg13_syneval.corr"

[2] "131028/wsj23-inboth.ccg.wsj02to21-ccg-1671-5sm.fullberk.parsed.unlabeled.ccg_syneval.
corr"

[1] 91.96688
[1] 90.6714

Paired t-test

data: d1[["dat"]] and d2[["dat"]]
t = 3.8736, df = 1794, p-value = 0.0001111
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.6395591 1.9514047
sample estimates:
mean of the differences

1.295482

[1] "131028/wsj23-inboth.gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.synmatch.unlabeled.
corr"

[2] "131028/wsj23-inboth.ccg.wsj02to21-ccg-1671-5sm.fullberk.parsed.synmatch.unlabeled.corr"
[1] 0.4729805
[1] 0.4362117

McNemar’s Chi-squared test with continuity correction

data: d1[["dat"]] and d2[["dat"]]
McNemar’s chi-squared = 8.4163, df = 1, p-value = 0.003719

Table 5.8: significance test results for “unlabeled” evaluations: Student’s t-test (above) and
McNemar test (below). Both tests confirm that GCG is significantly more accurate than CCG
on this relaxed syntax parsing task in general.



Chapter 6

Dependency Evaluations

Encouraged by the good result on the Syntax Evaluation described in previous chapter, we

move on to the next evaluation which is to check the capability of this grammar formalism

on the recovery of syntax dependencies. This chapter will describe this evaluation process for

both grammars, our GCG and CCG, again on the same settings of scripts and Berkley grammar

trainer and parser being used. For example, with a sentence Rolls-Royce Motor Cars Inc. said

it expects its U.S. sales to remain steady at about 1,200 cars in 1990 , the target of this task is to

evaluate the capability to generate predicate-argument dependencies as shown in the Figure 6.1.

The extraction of these local syntax dependencies from the parsed trees is done as an addi-

tional step after the parsing. Therefore, the flow of this evaluation for both GCG and CCG will

look similar to their counterparts in the Syntax Evaluations at the first steps up to and including

the generation of the parsed trees. These parsed trees will then go through a script to extract

local predicate-argument dependencies before passing to a dependency evaluation script that

counts the number of dependencies being recovered (recall) as well as the percentage of correct

predictions (precision) and computes the F-Measure accordingly. The dependency evaluation

result of each grammar will then go through the same Student’s t-test and McNemar’s test, as

done in the Syntax Evaluations, to confirm or deny that the two results are significantly different

(better or worse).
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r0/0/A-aN-x#Rolls-Royce r0/1/i3 m1/0/A-aN-x#Motor m1/1/i3 c2/0/
A-aN-x#Cars c2/1/i3 i3/0/N-aD#Inc. s4/0/V-aN-bC#said s4/1/i3
s4/2/e6 i5/0/N#it e6/0/V-aN-bI#expects e6/1/i5 e6/3/s9 e6

/2/r11 i7/0/D#its i7/1/s9 u8/0/A-aN-x#U.S. u8/1/s9 s9/0/N-aD
#sales t10/0/I-aN-b{B-aN}#to t10/1/r11 r11/0/B-aN-b{A-aN}#
remain r11/1/s9 r11/2/s12 s12/0/A-aN#steady a13/0/R-aN-bN#at
a13/1/r11 a13/2/c16 a14/0/R-aN-x#about a14/1/115 115/0/A-aN

-x#1,200 115/1/c16 c16/0/N-aD#cars i17/0/R-aN-bN#in i17/1/
r11 i17/2/118 118/0/N#1990 .19/0/.#. .19/1/s4

Figure 6.1: The format of these dependencies presented as “word1/number/word2” to mean
“word2” is a numeric argument “number” of predicate “word1.” For example, in the phrase “...
it expects ... sales remain ...”, the “expects” predicate has 3 arguments: “it” is its argument 1,
“remain” is its argument 2, and “sales” is its argument 3. Argument 0 is used as the identify
relation of each word and usually tagged along with the syntax category of the word, a pound
sign (#) as a delimiter, and the word itself. For brevity in the code, we use the lowercase initial
of the word instead of the word itself over and over again at all the non-zero relations.

(S (S-lI (N-lA (A-aN-x-lM (A-aN-x-lI Rolls-Royce))

(N-aD-lI (A-aN-x-lM (A-aN-x-lI Motor))

(N-aD-lI (A-aN-x-lM (A-aN-x-lI Cars))

(N-aD-lI Inc.))))

(V-aN-lI (V-aN-bC-lI said)

(C-lA (N-lA (N-lI it))

(V-aN-lI (V-aN-bI-lI expects)

(I-lA (N-lA (D-lM (D-lI its))

(N-aD-lI (A-aN-x-lM (A-aN-x-lI U.S.))

(N-aD-lI sales)))

(I-aN-lI (I-aN-b{B-aN}-lM (I-aN-b{B-aN}-lI to))

(B-aN-lI (B-aN-lI (B-aN-lI (B-aN-b{A-aN}-lI remain)

(A-aN-lA (A-aN-lI steady)))

(R-aN-lM (R-aN-bN-lI at)

(N-lA (A-aN-x-lM (R-aN-x-lM (R-aN-x-lI about))

(A-aN-x-lI 1,200))

(N-aD-lI cars))))

(R-aN-lM (R-aN-bN-lI in)

(N-lA (N-lI 1990))))))))))

(.-lM (.-lI .)))

Figure 6.2: A complete example of GCG tree for the sentence: Rolls-Royce Motor Cars Inc.
said it expects its U.S. sales to remain steady at about 1,200 cars in 1990 .
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.gcg13.linetrees.parsed.linetrees

.melconts

1

.parsed.melconts

Figure 6.3: Compute Dependency Relations for GCG.

6.1 Dependency Evaluation on GCG

Figure 6.3 shows a work flow for GCG Dependency Evaluation. The two inputs “.parsed.linetrees”

(hypothesis) and “.gcg13.linetrees” (gold) are coming from the parsing step, i.e. the outputs to-

ward the end of Figure 5.1. The step 1 in this Figure 6.3 is a Python script “trees2melconts.py”

that extracts syntax dependencies as Melcuk-like constructs, hence the file name ending with a

“.melconts”, from GCG formatted “.linetrees” coming out from the parsing step. For example,

if input is a “.linetrees” sentence in Figure 6.2 then the output is what shown in Figure 6.1.

The “melconts” part of the name implies that we model our syntax dependency constructs

similar to the model of Deep Syntax introduced by (Mel’čuk, 1988). This “trees2melconts.py”

script walks down the tree looking at the -l tag part of the syntax category of each node to

deterministically print out the predicate-argument dependency between the nodes. Our GCG

used -lI for Head, -lA for Argument, -lM for Modifier, and -lC for Coordination Conjunction.

The arguments of a predicate are numbered labels, started from 0 which is the predicate itself

to mean an identity relation. These numbers increase from 1 to 4 to denote argument 1 through

argument 4. The lower the number, the more important or directly related the argument is to the

predicate, e.g. if the predicate is the main verb of the sentence then the head word of the subject

would be the argument 1 and the head word of the object would be argument 2. Experimental

results show that we only need a few argument 5’s to reannotate the entire PTB, so argument

number 5 could safely be ignored.

The “.parsed.melconts” (hypothesis) and “.melconts” (gold) coming out from Figure 6.3

are used as inputs into the step 1 of Figure 6.4 which is a Python script “depeval.py”. This



140

.melconts
1

.gcg13.depeval

.parsed.melconts

Figure 6.4: Dependency evaluation for GCG.

tail -2 131028/wsj23-inboth.gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.gcg13_depeval
TOT recall: 34861.0/38440.0 precis: 34861.0/38435.0
PCT recall: 0.906893860562 precis: 0.907011838168 fscore: 0.906952845528

Table 6.1: Dependency evaluation for GCG.

script simply counts the total number of melconts dependencies recovered (recall), the number

of correct ones within those recovered (precision), and computes the F-Measure based on those

recall and precision. The result of this evaluation is shown in Table 6.1.

6.2 Dependency Evaluation on CCG

.ccg.linetrees.ccg.parsed.linetrees

.ccg.melconts

1

.ccg.parsed.melconts

Figure 6.5: Compute Dependency Relation for CCG.

In the exact same manner with the Dependency Evaluation on GCG, this CCG Dependency

Evaluation starts from the output files “.ccg.parsed.linetrees” (hypothesis) and “.ccg.linetrees”

(gold) from the CCG Syntax Parsing step shown in Figure 5.3 as the inputs for Figure 6.5

that has the Python script “ccgtrees2dsyndeps.py” to extract the same type of “.melconts” from
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tail -2 131028/wsj23-inboth.ccg.wsj02to21-ccg-1671-5sm.fullberk.parsed.ccg_depeval
TOT recall: 39811.0/45256.0 precis: 39811.0/45187.0
PCT recall: 0.879684461729 precis: 0.881027729214 fscore: 0.880355583074

Table 6.2: Dependency evaluation for CCG.

the functor-argument relations. The “.ccg.parsed.melconts” (hypothesis) and “.ccg.melconts”

(gold) outputs from Figure 6.5 are then used as inputs into Figure 6.6 that has the same “de-

peval.py” script used in Figure 6.4 for the GCG Dependency Evaluation. The content of the

output file “.ccg.depeval” is shown in Table 6.2. This result shows that the CCG Dependency

recovery can get to about 88.03%, a 2% higher than the 85.78% (using Clark and Curran’s

parser (Clark and Curran, 2007)) or 86.01% (using Petrov and Klein’s parser (Petrov and Klein,

2007)) reported as the highest result on this task for CCG by Fowler and Penn (2010). This

result however is lower than the 90.70% of the GCG on the same task as shown in Table 6.1.

All of these results are on section 23 of the WSJ.

6.3 Significance Tests on Dependency Evaluations for GCG vs CCG

We know that GCG is about 2 points better than CCG on the Dependency Evaluations on Section

23. To confirm that GCG is in fact significantly more accurate for Dependency recovery than

CCG, we conduct significance tests using Student’s t-test and McNemar’s test the same way we

did in the Syntax Evaluations.

.ccg.melconts
1

.ccg.depeval

.ccg.parsed.melconts

Figure 6.6: Dependency evaluation for CCG.
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6.3.1 Student’s t-test on Dependency Evaluations for GCG vs CCG

Figure 6.7 shows a flow to calculate Student’s t-test for Dependency Evaluations between GCG

and CCG. It looks almost the same as the flow to calculate Student’s t-test for Syntax Evalua-

tions between these two grammars in Figure 5.5. What is different this time are the inputs and

the way to extract data points from these inputs in step 1. As shown on Figure 6.7, the input

files “.gcg13.depeval” and “.ccg.depeval” are coming from the outputs of the Dependency Eval-

uations for GCG shown on Figure 6.4 and for CCG shown on Figure 6.6, respectively. These

two input files have the same format as they both come out from the “depeval.py” script. This

format has one sentence per line that look like the following:

6: (12/15) [+]’01/2/02’, [+]’03/2/01’, [ ]’03/3/07’, [+]’

04/2/05’, [+]’05/2/06’, [+]’07/2/08’, [+]’07/3/04’, [+]’

08/2/09’, [+]’09/2/10’, [ ]’11/2/03’, [+]’11/3/12’, [ ]’

13/2/11’, [+]’13/3/16’, [+]’14/2/15’, [+]’16/2/14’]

The first field is the sentence number or line number that can be ignored. The second field

wrapped in parentheses is the ratio of the correct number of dependency relations recovered over

the total number of dependency relations of the sentence. Following is the list of dependency

relations that are prefixed by a “[+]” to denote a correct dependency recovered or an “[ ]”

to denote a missing one. The example sentence above is for sentence number 6 that has 12

correct dependency relations recovered over a total of 15 dependency relations. Only the second

field is needed for the purpose of generating data points and this is done by an “awk” script

shown in step 1 of Figure 6.7 to translate the ratio into a real decimal number. The outputs

of step 1 are fed into the same “ttest.r” script to compute the Student’s t-test result in the file

“.gcg13.ccg.depeval.ttestsignif”. This result on Table 6.3 shows a p-value much less than 5%,

so GCG is significantly better than CCG on the Dependency Relation Recovery task.

6.3.2 McNemar’s test on Dependency Evaluations for GCG vs CCG

Figure 6.8 shows a flow to calculate the McNemar’s test for Dependency Evaluations between

GCG and CCG. Other than the fact that the inputs are now in “.melconts” which is the repre-

sentation of dependency relations, this looks exactly like the McNemar’s test on Syntax Eval-

uations between GCG and CCG on Figure 5.6. The GCG (upper) pair of inputs are com-

ing from Figure 6.3 and the CCG (lower) pair of inputs are coming from Figure 6.5. Both
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1

2

Figure 6.7: Student’s t-test to measure significant for dependency evaluation between
GCG and CCG. The two inputs “.gcg13.depeval” and “.ccg.depeval” are coming from the
last outputs of Figure 6.4 and Figure 6.6, respectively. The final output produced is
“.gcg13.ccg.depeval.ttestsignif” as shown in Table 6.3. This result shows the dependency eval-
uation on GCG is significantly better than that of CCG.
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==> 131028/wsj23-inboth..gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.gcg13_depeval..ccg.
wsj02to21-ccg-1671-5sm.fullberk.parsed.ccg_depeval..ttestsignif <==

[1] "131028/wsj23-inboth.gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.gcg13_depeval.corr"
[2] "131028/wsj23-inboth.ccg.wsj02to21-ccg-1671-5sm.fullberk.parsed.ccg_depeval.corr"
[1] NaN
[1] NaN

Paired t-test

data: d1[["dat"]] and d2[["dat"]]
t = 9.135, df = 1795, p-value < 2.2e-16
alternative hypothesis: true difference in means is not equal to 0
95 percent confidence interval:
0.03130461 0.04842197
sample estimates:
mean of the differences

0.03986329

Table 6.3: Student’s t-test result for Dependency Evaluation between GCG and CCG

==> 131028/wsj23-inboth..gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.depmatch..ccg.
wsj02to21-ccg-1671-5sm.fullberk.parsed.depmatch..signif <==

[1] "131028/wsj23-inboth.gcg13.wsj02to21-gcg13-1671-5sm.fullberk.parsed.depmatch.corr"
[2] "131028/wsj23-inboth.ccg.wsj02to21-ccg-1671-5sm.fullberk.parsed.depmatch.corr"
[1] 0.3910864
[1] 0.4167131

McNemar’s Chi-squared test with continuity correction

data: d1[["dat"]] and d2[["dat"]]
McNemar’s chi-squared = 4.05, df = 1, p-value = 0.04417

Table 6.4: McNemar test result for Dependency Evaluation between GCG and CCG

step 1 and step 2 are exactly the same with those in Figure 5.6. The content of the result file

“.gcg13.ccg.depmatch.signif” is shown in Table 6.4. The p-value is 4.4%, less than 5%. This is

once again confirming that GCG is significantly better than CCG on the dependency recovery

task.
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.melconts

1

2

.ccg.melconts

1

Figure 6.8: McNemar’s significance test for dependency evaluation between GCG and CCG.
The upper pair of inputs are “.parsed.melconts” and “.melconts”, coming from the outputs to-
ward the end of Figure 6.3 to represent the dependency parsing on GCG. The lower pair of
inputs are “.ccg.parsed.melconts” and “.ccg.melconts”, coming from the outputs toward the end
of Figure 6.5 to represent the dependency parsing on CCG. The step 1 is duplicated in 2 places
to make it clear by reducing the number of its inputs and outputs. This step 1 extracts only the
perfect matches in dependency parsing on either GCG or CCG. The “.corr” file name implies
taking only the perfectly “correct” dependency parsed sentences. The step 2 is an R script to
compute the McNemar significance test. This result as shown in Table 6.4, one more time,
confirms that GCG is significantly more accurate than CCG on dependency parsing.



Chapter 7

Unbounded Dependency Evaluations

The dependency relations evaluated in the previous chapter are general syntactic dependencies

because they are direct relations from the argument to the predicate. By direct, it means there is

a single arrow going from the argument word to the predicate word on a dependency grammar

representation, or the phrase headed by the argument is a sibling or a direct child of the phrase

headed by the predicate on a phrase structure grammar representation. Most of these dependen-

cies are easier to recover due to this direct type of relationship and their readiness to be extracted

from the syntax representation. This chapter focus the evaluation of our GCG grammar on its

capability to recover a difficult subset of these dependencies known as unbounded dependencies

or sometimes long-range dependencies.

Unbounded dependencies are dependencies between constituents and points of attachment

that have other constituents syntactically intervening. For example, the sentence What does the

First Amendment protect? has a preposed constituent what that functions as a direct object of

the transitive verb protect. The long range between the source and destination of this type of

dependency, paired with the relatively low probability of their occurrence in the language, and

the fact that filler-gap annotations in syntactic resources such as the Penn Treebank are often

stripped out, makes it very difficult for parsers to recognize this type of dependency correctly.

While difficult to parse, this type of dependency is vital to the meaning of the sentence and of

great importance in applications such as question answering and information extraction.

Many current interpretation models are based on PCFGs, trained on syntactic annotations
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from the Penn Treebank (Marcus et al., 1993). These often recover dependencies as a post-

process to parsing, and often are not able to retrieve unbounded dependencies if they are opti-

mized on syntactic representations that leave these dependencies out.

Categorial grammars, on the other hand, have well-defined unbounded dependency rep-

resentations based on functor-argument relations in a small and easily-learnable set of com-

position operations. Such grammars — in particular, Combinatory Categorial Grammar (CCG)

(Steedman, 2000, Clark and Curran, 2007) — do well on unbounded dependency recovery tasks

(Rimell et al., 2009) but not as well as models based on Head Driven Phrase-structure Grammar

(HPSG) (Pollard and Sag, 1994, Miyao and Tsujii, 2005), given the same training. This may

be attributed to implicit tradeoffs in many categorial frameworks that minimize the number of

composition operations at the expense of large numbers of possible categories for each lexical

item, which may lead to sparse data effects in training. HPSG models, in contrast, maintain a

relatively large number of composition operations and a relatively small set of possible lexical

categories, which are then used in a wider set of contexts.

Can categorial grammars, which have well-studied semantic representations and are well

suited for interpretation, obtain better performance on a general unbounded dependency extrac-

tion task if it adopts an HPSG-like strategy of re-using types in various contexts? The attempt

to answer that question is the driving force for us to develop our GCG which, like HPSG, is

generalized to limit the number of categories used to those needed to enforce grammatical con-

straints, but like other categorial grammars, imposes a small, uniform, and easily learnable set

of semantic composition operations based on functor-argument relations.

The previous two evaluations on the syntax parsing and dependency recovery have shown

the promising, but this evaluation on the recovery of unbounded dependencies is an important

task of the grammar as a main building block for a state-of-the-art interpretation model. To

go on with this evaluation, we leverage a research from Rimell et al. (2009) where the authors

had built a minimal corpus consisting of 700 sentences representing the most common 7 types

of unbounded dependency (100 sentences each type, 80 for development and 20 for test, and

nothing else). This corpus is referred to as “LR” (cf. long range) in Figure 7.1. We also put

the result of our system into comparison with that of 7 other systems reported by these authors.

Below is a brief description of these 7 common types of unbounded dependency constructions.

• Object extraction from a relative clause (Obj RC): This construction has a relative clause

headed by a relative pronoun that is extracted from the object position of the clause. For



148

example, “The cart that the horse pulled broke.” has the relative clause “that the horse

pulled” where the pronoun “that” is extracted from the object position of that clause.

Possible pronouns in English are wh-words and that.

• Object extraction from a reduced relative clause (Obj Red): This construction is similar to

the one above but without the relative pronoun, hence the name “reduced relative clause”.

For example, “The cart the horse pulled broke.” has the reduced relative clause “the

horse pulled” where the omitting pronoun at the beginning of the clause is extracted

from the object position of that clause.

• Subject extraction from a relative clause (Sbj RC): This construction has a relative clause

headed by a relative pronoun that is extracted from the subject position of the clause. For

example, “The horse that pulled the cart died.” has the relative clause “that pulled the

cart” where the pronoun “that” is extracted from the subject position of that clause. Note

that a pronoun is required in this construction, so English does not have subject extraction

from a reduced relative clause.

• Free relative (Free): This construction has a relative pronoun without an antecedent. For

example, “I know what he did.” has the pronoun “what” having no antecedent and can

be interpreted as “the thing” or something similar.

• Object wh-question (Obj Q): This construction has the wh-word play the role of a seman-

tic object of the main verb or a preposition of the main verb. For example, “what did you

do?” or “what hotel did you stay in?”.

• Right node raising (RNR): This construction has coordinated phrases from which a shared

component moves to the right, e.g. “Mary peeled and Pete ate the shrimps.” This

example has RNR at the sentence level, but it could also happen at various levels like

verb phrases (Peeling and eating those shrimps is time consuming.), noun phrases (The

old and the new iPad displayed side-by-side.), or prepositional phrases (I left before his
and after her arrival.)

• Subject extraction from an embedded clause (Sbj Embed): This construction has a se-

mantic subject which is extracted across two clause boundaries, e.g. “There was some

money in my wallet which I thought was not there.” This example shows that “money”

from the main clause is a semantic subject of the verb “was” (be) on the embedded clause.
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Figure 7.1 shows the flow of this evaluation. The two additional shaded boxes of “LR

test raw” (contains raw sentences without any annotation, as in our .sents files) and “LR test”

(contains the same sentences with their accompanied gold unbounded dependencies) are coming

from the LR corpus.

• Step 1 through Step 6 are exactly the ones being used in the GCG parsing step shown in

Figure 5.1, but this time being used only for the training data to build the model for the

parser. This is because the test data is coming from the long-range (LR) corpus studied

by Rimell et al. (2009), not PTB. We evaluate our GCG on the LR corpus in order to

compare with the results of 7 other systems as reported by Rimell et al. (2009).

• Step 7 takes input from the raw test data without any annotation from the long-range

(LR) corpus studied by Rimell et al. (2009) and replaces “(” with “-LRB-” and “)” with

“-RRB-” to be consistent with the GCG grammar model learnt on the Berkley parser.

• Step 8 is the same script “trees2melconts.py” used to extract dependency relations for

GCG in Figure 6.3, but this time is used with option “-c” to mean shifting the head of

the conjunction from the last conjunct to the conjunction word. In GCG formalism, the

head of a conjunction, i.e. A and B, is B, but the gold standard in LR corpus assumed the

head to be the conjunction word and. The option “-c” helps shift the conjunction head

to make a fair comparison with other systems studied by Rimell et al. (2009). To note

this difference in the type of dependencies extracted by this script, we used “.tbconts”

extension for the output file name instead of the standard “.melconts”.

• Step 9 is a Python script “convertGoldUnbound.py” to translate the representations of

unbounded dependencies into our “.tbconts” format. The format of dependency relations

used by Rimell et al. (2009) is that of de Marneffe et al. (2006) but only for the unbounded

dependencies, not the whole sentence. This Python script deterministically maps from

this format to our numeric relations format. This simplification of dependency labels to

numbers can be losslessly reversed by looking at the categories of the involved predicates.

Specifically, the mapping is done as follows:

– Dependencies ‘nsubj’ and ‘nsubjpass’ are mapped to a ‘1’ relation.

– Dependencies ‘dobj’, ‘pobj’, ‘infmod’, ‘xcomp’, and ‘obj2’ are mapped to a ‘2’

relation.
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PTBPTB editabletrees2linetrees.pl .linetrees

.gcg13.linetrees

.gcg13.extrpar.linetrees .model

.parsed.output

.pars ed .lin e
t ree s

.parsed.tbconts

1

2

3

4

5

6

10

8

.gcg13.parsed.gapeval
.ans.tbconts

LR test rawLR test raw .sents

LR testLR test

9

7

Figure 7.1: Filler gap evaluation for GCG.
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– Dependencies ‘advmod’, ‘prep’, ‘amod’, ‘partmod’, ‘auxpass’, ‘iobj’, and ‘nn’ are

also mapped to a ‘1’ relation with the direction of the dependency reversed. This

reversal of direction for modifier dependencies is similar to that described in de-

pendency accounts of Tree Adjoining Grammars (Joshi, 1985, Candito and Kahane,

1998).

– Dependency ‘cop’ is also mapped to a ‘2’ relation with the direction of the depen-

dency reversed.

• Step 10 takes the hypothesis data from “.parsed.tbconts” and gold data from “.ans.tbconts”

to count the recall and precision, and to compute F-score for the task. Due to differences

between the de Marneffe et al. (2006) dependency representation and that of our current

system, some deterministic modifications were required for evaluation against the Rimell

et al. (2009) corpus.1

1. If the hypothesized target of a dependency is a conjunction, the dependencies to

each of its conjuncts are hypothesized instead;

2. If the target of a dependency is a relativizer or a relative pronoun, the predicate it

modifies is used in its place; and

3. If the source predicate of a dependency has a category of O, the predicate that

depends on the hypothesized target is hypothesized as the target.

The results on the 7 types of unbounded dependencies are shown in Table 7.1 in context of

the results reported by Nivre et al. (2010), an extended version to include the Malt and MST

parsers to the list of systems first chosen to study for this task by Rimell et al. (2009). This

extension brought the total numbers of systems to 7. Below are the short descriptions of the

grammar and parsing technique for each of these 7 systems to help put the comparison of these

systems into the perspective of recovering unbounded dependencies.

1. Enju: This system used Head-Driven Phrase Structure Grammar (HPSG) introduced by

Pollard and Sag (1994). Enju is a well known representative wide-coverage HPSG parser

from Miyao and Tsujii (2005). These authors took the same approach to reannotate PTB
1 This automated scoring makes the evaluation less generous than the manual output interpretations given in

Rimell et al. (2009) and Nivre et al. (2010), but has the advantage of being easily reproducible.
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into an HPSG formalism hence making the first wide-coverage parser for HPSG; and

rolled out their own parser for this grammar. This parser produced head-word dependen-

cies reflecting the underlying predicate-argument structure of sentence making it a good

candidate for the unbounded dependencies recovery task.

2. C&C: The grammar being used by this system is CCG (Hockenmaier and Steedman,

2007), a well known variation of a radically lexicalist categorial grammar. Like our GCG,

this CCG was the result of reannotating PTB and was designed to specifically capture the

unbounded dependencies. Unlike our GCG, we are more moderately lexicalist, i.e. we try

to use fewer lexical categories in much the same way as “signs” in HPSG, and prefer to

use a richer set of inference rules based on the underlying syntax structure. This system

used the “candc” parser from Clark and Curran (2007).

3. Malt: First introduced to this evaluation by Nivre et al. (2010). This is a dependency

parser implementing the parsing models introduced by Nivre et al. (2006a,b). It is a data-

driven parser generator for dependency parsing and is categorized as a transition-based

parsing system producing dependency trees by greedily transitioning through abstract

state machines. Transition-based parsers learn models to predict the next state given the

current state, the features over the history of parsing decisions, and the input sentence.

The greedy nature of these systems make them fast, but can lead to enormous error prop-

agation if they pick some incorrect states at early predictions.

4. MST: Also first introduced to this evaluation by Nivre et al. (2010). This is another de-

pendency parser implemented by McDonald (2006). It is categorized as a graph-based

parsing system that learns and finds directed maximum spanning trees from a dense graph

representation of the sentence. In term of complexity, this problem is a typical NP-hard

problem. This system therefore must try to limit the scope of their features to a small

number of adjacent arcs (usually two) and/or turn to approximation algorithms for infer-

ence (McDonald and Pereira, 2006).

5. Stanford: This Stanford parser represents PTB parsers, exemplified by Collins (1997)

and Charniak (2000). This parser works on the straight PTB grammar, but ignores all

the trace information, so is not ideal for the unbounded dependencies recovery task, but

was selected by Rimell et al. (2009) for this study because of its popularity. This is
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a phrase-structure, not dependency, parser. The phrase structure trees output from this

parser were piped through a set of manually defined rules to extract dependencies needed

for the evaluation (de Marneffe et al., 2006).

6. DCU: This system is from Cahill et al. (2004). It is a post processor of PTB parsers

such as that of Charniak (2000), and based on Lexical-Functional Grammar (Kaplan and

Bresnan, 1982, Dalrymple, 2001). The authors tried to exploit functional tags (e.g. -LOC,

-TMP, -TPC, etc.) and traces from PTB to implement an automatic LFG f-structure

annotation algorithm that associates nodes in PTB trees with f-structure annotations in

the form of attribute-value structure equations representing abstract predicate-argument

structure or dependency relations. They then extracted LFG subcategorization frames and

paths linking unbounded dependency reentrancies from f-structures generated to build

a finite approximation algorithm to recognize unbounded dependencies. These authors

prefer the term “long distance dependency” (LDD) instead of the more commonly used

“unbounded dependency.”

7. RASP: The name stands for Robust Accurate Statistical Parsing. The system being eval-

uated is the second release (RASPv2) developed by Briscoe et al. (2006). This parser

consists of a POS tag-sequence grammar, a statistical parse selection component, and a

robust partial-parsing technique which allows it to always return a parsed result for in-

put sentences even when they do not obtain a full spanning analysis according to the

grammar. This system is a shallow parser and was not designed to capture many of the

unbounded dependencies being studied, but was included based on its popularity.

Despite a wide gap of almost 5% between our GCG system and the second best on LR test

data, we would like to conduct significance tests in order to confirm that GCG is the best choice

for unbounded dependency recovery in general. However, our effort to contact the authors

asking for data points of that study failed, so we cannot move forward with significance tests.
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Obj RC Obj Red Sbj RC Free Obj Q RNR Sbj Embed Total
Enju 47.3 65.9 82.1 76.2 32.5 47.1 32.9 54.4
C&C 59.3 62.6 80.0 72.6 27.5 49.4 22.4 53.6
Malt 40.7 50.5 84.2 70.2 16.2 39.7 23.5 46.4
MST 34.1 47.3 78.9 65.5 18.8 45.4 37.6 46.1

Stanford 22.0 1.1 74.7 64.3 41.2 45.4 10.6 38.1
DCU 23.1 41.8 56.8 46.4 27.5 40.8 5.9 35.7
RASP 16.5 1.1 53.7 17.9 27.5 34.5 15.3 25.3

This system 52.7 71.4 78.9 71.4 52.5 36.2 51.8 59.3

Table 7.1: Unbounded dependency results compared to those of other systems studied by Rimell
et al. (2009) and Nivre et al. (2010) over a variety of constructions: object extraction from
relative clauses (Obj RC), object extraction from reduced relative clauses (Obj Red), subject
extraction from relative clauses (Sbj RC), free relatives (Free), object wh-questions (Obj Q),
right node raising (RNR), and subject extraction from embedded clauses (Sbj Embed). Evalu-
ated parsers are C&C (Clark and Curran, 2007), Enju (Miyao and Tsujii, 2005), DCU (Cahill
et al., 2004), Rasp (Briscoe et al., 2006), Stanford (Klein and Manning, 2003), MST (McDon-
ald, 2006), Malt (Nivre et al., 2006a,b). This system used the Berkley parser (Petrov and Klein,
2007) run on the reannotated categorial grammar.



Chapter 8

Conclusion and Discussion

This thesis has described a Generalized Categorial Grammar (GCG) which, like other categorial

grammars, imposes a small, uniform, and easily learnable set of semantic composition opera-

tions based on functor-argument relations, but like HPSG, is generalized to limit the number of

categories used to those needed to enforce grammatical constraints.

The thesis has also described a system for automatically reannotating syntactically-annotated

corpora for the purpose of refining linguistically-informed phrase structure analyses of various

phenomena. In particular, it described a method for implementing syntactic analyses of various

phenomena through automatic reannotation rules, which operate deterministically on a corpus

like the Penn Treebank (Marcus et al., 1993) to produce a corpus with desired syntactic analyses.

This reannotated corpus is then used to define a probabilistic grammar which is automatically

annotated with additional latent variable values (Petrov and Klein, 2007) and used to parse the

constituent and syntactic dependencies from input sentences of the Wall Street Journal and from

a minimal but special corpus introduced by (Rimell et al., 2009) that contains only sentences

having Object extraction from a relative clause, Object extraction from a reduced relative clause,

Subject extraction from a relative clause, Free relatives, Object wh-questions, Right node rais-

ing, and Subject extraction from an embedded clause. This corpus was designed specifically to

test various parsers on their capability to recover these unbounded dependencies as studied by

(Rimell et al., 2009, Nivre et al., 2010).

This system achieves significantly better result on syntax and semantic dependencies pars-

ing compared to the main stream Combinatorial Categorial Grammar (CCG) system from (Steed-

man, 2000, Clark and Curran, 2007). It also scores the best result on the unbounded dependency
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parsing accuracy favorably comparable to all the 7 major systems recently studied by Rimell

et al. (2009) and Nivre et al. (2010) on this same task.
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Appendix A

Additional Reannotation Rules

Other than the rules categorized and mentioned in Chapter 4, there are more rules that we used

in the system that are considered miscellaneous or just other variations of the ones categorized.

These rules will be listed here for reference.

A.1 Other reannotation rules for initial and final argument attach-
ment

(αN(?!-a)[ˆ ]*)
N

(RB|ADJP)[ˆ ]*
RBS

γ
best

DT
DT

β
the

α
N

A-aN-x
A-aN-x

γ
best

D
D

β
the

Figure A.1: Branch N -> D A-aN-x: ’the best’ construction. This rule consists of a type
changing rule to change an A-aN to an N-aD and an initial argument attachment rule Aa.
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(α[VIBLAG](?!-aN(?!e)))(β[ˆ ]*?)
V

δ
is ... a devastating admission
of professional dishonesty

SBAR[ˆ ]*-SBJ[ˆ ]*
SBAR-SBJ

γ
an academic to

refer to himself as
an intellectual gigolo

for
for

αβ
V

α-aNβ
V-aN

δ
is ... a devastating admission
of professional dishonesty

E
E

γ
an academic to

refer to himself as
an intellectual gigolo

for
for

Figure A.2: [VIBLAG] sentence: branch off initial E subject. This rule embedded a type
changing rule to change an E to an N to enable a final argument attachment rule Ae.
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A.2 Other reannotation rules for initial and final modifier attach-
ment

N(α(-aD)?)(β[ˆ ]*?)
N-aD-bV-bO

η
∅

(ε(DT|NN|NX|NP|VB|VP|JJ|ADJP|CD|$|QP)[ˆ ]*)
NN

ζ
review

δ
19

NN[ˆ ]*
NNP

γ
Oct.

Nαβ
N-aD-bV-bO

N-aDβ
N-aD-bV-bO

η
∅

ε
NN

ζ
review

δ
19

A-aN-x
A-aN-x

γ
Oct.

Figure A.3: Branch off initial modifier A-aN-x. If ε=QP then its leftmost child in ζ must be
of category $. This example has α=-aD, β=-bV-bO. This is an initial modifier attachment rule
Ma.
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N(α(-aD)?)(β[ˆ ]*?)
N-aD

θ
∅

(ζ(DT|NN|NX|NP|VB|VP|
JJ|ADJP|CD|$|QP)[ˆ ]*)

NN

η
rate

ε
∅

(γ(CD|QP|JJ|ADJP|WHADJP|
IN|PP|RB|TO|ADVP|VB|

UCP|[ˆ ]*-ADV|[ˆ ]*-LOC|
[ˆ ]*-TMP|SBAR)[ˆ ]*)

JJ

δ
new

Nαβ
N-aD

N-aDβ
N-aD

θ
∅

ζ
NN

η
rate

ε
∅

A-aN-x
A-aN-x

δ
new

Figure A.4: Branch off initial modifier A-aN-x. If γ=SBAR[ˆ ]* then its left-most child in δ
must be of category IN having child not that. If ζ=QP then its leftmost child in η must be of
category $. This example has α=-aD, β=-bV-bO. This is an initial modifier attachment rule Ma.

(α(N|A-aN-x)[ˆ ]*?)
N

ε
-NONE- *U*

δ
80 billion

(β[ˆ ]*)
$

(γ[$#][ˆ ]*)
$

α
N

A-aN-x
A-aN-x

δ
80 billion

$
$

γ
$

Figure A.5: Rebinarize currency unit followed by QP. If ε 6=∅ then ε=(-NONE- *U*). This
rule embedded a type changing rule to change a $ to an N that will enable a final modifier
attachment rule Me.
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N(α(-aD)?)(β[ˆ ]*?)
N-aD

η
∅

(ε(DT|NN|NX|NP|VB|VP|JJ|ADJP|CD|$|QP)[ˆ ]*)
NN

ζ
pipeline

δ
capacity

NAC[ˆ ]*
NAC

γ
500 million
cubic feet

a day

Nαβ
N-aD

N-aDβ
N-aD

η
∅

ε
NN

ζ
pipeline

δ
capacity

A-aN-x
A-aN-x

N
N

γ
500 million
cubic feet

a day

Figure A.6: Branch off initial modifier A-aN-x. If ε=QP then its leftmost child in ζ must be of
category $. This example has α=-aD, β=∅. This rule embedded a type changing rule to change
an N to an A-aN to enable an initial modifier attachment rule Ma.

(αN-aD[ˆ ]*?)(β(-[ir][ˆ- ]*)?)
N-aD

δ
cases

[ˆ ]*
DT

γ
some

αβ
N-aD

N-aDβ
N-aD

δ
cases

A-aN-x
A-aN-x

γ
some

Figure A.7: Branch off initial modifier A-aN-x. Both γ and δ are not ∅. This example has
α=N-aD and β=∅. This is an initial modifier attachment rule Ma.
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A.3 Other reannotation rules for filler attachment

(αS)(β(?!-[cp])[ˆ ]*)
S

ε
∅

-NONE-

\*T\*-i
*T*-1

δ
it is

WH[A-Z]*[ˆ ]*-i
WHADVP-1

γ
how sweet

αβ
S

Qβ-g{R-aN}
Q-g{R-aN}

ε
∅

-NONE-

\*T\*-i
*T*-1

δ
it is

R-aN-iN
R-aN-iN

γ
how sweet

Figure A.8: Content question: branch off initial interrogative R-aN. This example has α=S,
β=∅, and i=1. This is one of the Fc rules R-aN-iN + Q-g{R-aN} = Q-iN that is followed by a
type changing rule to change a Q-iN to an S.
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(α(V-iN|N(?!-aD))[ˆ ]*)
V-iN

S[ˆ ]*
S

δ
to get people to answer

-NONE-
-NONE-

\*T\*-i
*T*-1

γ
to ask

NP[ˆ ]*
NP

-NONE-
-NONE-

\*
*

WHNP[ˆ ]*-i
WHNP-1

β
what questions

α
V-iN

I-aN-gN-i
I-aN-gN-1

δ
to get people to answer

-NONE-
-NONE-

\*T\*-i
*T*-1

γ
to ask

N-iN-i
N-iN-1

β
what questions

Figure A.9: Embedded question / nom clause: branch off initial interrogative N and final
modifier I-aN with N gap. This rule combines an Fc rule N-iN + I-aN-gN = I-aN-iN that is
followed by a type changing rule to change an I-aN to a V.
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(α[SCEV](?!-a))(β(?!-[cp])[ˆ ]*)
S

ζ
W. Henson Moore ,

U.S. deputy secretary
of energy

-NONE-

\*T\*-i
*T*-1

ε
adds

S(γ[ˆ ]*)-i
S-1

δ
And consumers

“ should be comfortable , ” αβ
S

Vβ-gS-i
V-gS-1

ζ
W. Henson Moore ,

U.S. deputy secretary
of energy

-NONE-

\*T\*-i
*T*-1

ε
adds

S-i
S-1

δ
And consumers

“ should be comfortable , ”

Figure A.10: Topicalized sentence: branch off initial topic S (possibly quoted). γ should not
contain -SBJ. This example has α=S, β=∅, and i=1. This is one of the Fd rules.
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(α[SCEV](?!-a))(β(?!-[cp])[ˆ ]*)
S

ζ
the implications of a confrontation

between Japan securities
and banking industries

-NONE-

\*T\*-i
*T*-1

ε
are

ADJP(γ[ˆ ]*)-i
ADJP-PRD-TPC-1

δ
No less significant than

the Japanese banks ’ attempt
to cut off funds to

pressure a foreign government
αβ
S

Vβ-g{A-aN}-i
V-g{A-aN}-1

ζ
the implications of a confrontation

between Japan securities
and banking industries

-NONE-

\*T\*-i
*T*-1

ε
are

A-aN-i
A-aN-1

δ
No less significant than

the Japanese banks ’ attempt
to cut off funds to

pressure a foreign government

Figure A.11: Topicalized sentence: branch off initial topic A-aN. γ should not contain -SBJ.
This example has α=S, β=∅, and i=1. This is one of the Fd rules.
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(α[SCEV](?!-a))(β(?!-[cp])[ˆ ]*)
S

ζ
through the first half

-NONE-

\*T\*-i
*T*-1

ε
it went

(γ(?!WH)[ˆ ]*)-i
ADVP-1

δ
so

αβ
S

Vβ-g{R-aN}-i
V-g{R-aN}-1

ζ
through the first half

-NONE-

\*T\*-i
*T*-1

ε
it went

R-aN-i
R-aN-1

δ
so

Figure A.12: Topicalized sentence: branch off initial topic R-aN. γ should not contain -SBJ.
This example has α=S, β=∅, and i=1. This is one of the Fd rules.

(αV-iN|N(?!-aD))(β[ˆ ]*)
N

ε
∅

-NONE-
-NONE-

\*T\*-i
*T*-16

δ
he plays

WHNP[ˆ ]*-i
WHNP-16

γ
what

αβ
N

Vβ-gN-i
V-gN-16

ε
∅

-NONE-
-NONE-

\*T\*-i
*T*-16

δ
he plays

N-iN-i
N-iN-16

γ
what

Figure A.13: Embedded question / nom clause: branch off initial interrogative N. This is an Fe
rule.
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(αV-iN|N(?!-aD))(β[ˆ ]*)
N

ε
before or during
the second half

-NONE-
-NONE-

\*T\*-i
*T*-1

δ
some of the

audience departed

WH[A-Z]*[ˆ ]*-i
WHADVP-1

γ
why

αβ
N

Vβ-g{R-aN}-i
V-g{R-aN}-1

ε
before or during
the second half

-NONE-
-NONE-

\*T\*-i
*T*-1

δ
some of the

audience departed

R-aN-iN-i
R-aN-iN-1

γ
why

Figure A.14: Embedded question / nom clause / nom clause modifier: branch off initial inter-
rogative R-aN. This is an Fe rule
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(αN[ˆ ]*?)
N

SBAR[ˆ ]*
SBAR

η
∅

S[ˆ ]*
S-TOBEIP

δ
∅

-NONE-
-NONE-

\*T\*-i
*T*-1

γ
to stay out

NP[ˆ ]*
NP-SBJ

-NONE-
-NONE-

*
*

WHADVP[ˆ ]*-i
WHADVP-1

-NONE-
-NONE-

0
0

β
reasons

α
N

I-aN-g{R-aN}-i
I-aN-g{R-aN}-1

η
∅

δ
∅

-NONE-
-NONE-

\*T\*-i
*T*-1

γ
to stay out

α
N

β
reasons

Figure A.15: Branch off final SBAR as modifier I-aN-g{R-aN}. This is an Fa rule N + I-aN-gN
= N.
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A.4 Other reannotation rules for type changing

(αS|V-iN)(β(?!-[cp])[ˆ ]*)
S

θ
under similar
circumstances

(ζNP[ˆ ]*)
NP-PRD

η
a source of liability

ε
simple negligence

or inadvertent action

(γMD|VB[A-Z]?)
VBZ

δ
is αβ

S

Qβ
Q

θ
under similar
circumstances

ζ
NP-PRD

η
a source of liability

ε
simple negligence

or inadvertent action

γ
VBZ

δ
is

Figure A.16: Polar question: unary expand to Q. γ is the left-most pre-terminal
under αβ. If γ=VB[A-Z]* then δ=[Dd]oes|[Dd]o|[Dd]id|[Ii]s|[Aa]re|[Ww]as|[Ww]ere or
[Hh]as|[Hh]ave|[Hh]ad. This example has α=S, β=∅, γ=VBD, and ε=NP-SBJ.
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(αS)(β(?!-[cp])[ˆ ]*)
S

θ
U.S.A

(γVP[ˆ ]*)
VP

η
∅

(εVB[ˆ ]*)
VB

ζ
Go

δ
∅

αβ
S

B-aNβ
B-aN

θ
U.S.A

γ
VP

η
∅

ε
VB

ζ
Go

δ
∅

Figure A.17: Imperative sentence: unary expand to B-aN. In this rule, top level nodes in δ
must not be any of VB, JJ, MD, or TO. This means ε is the first VP-head child of γ. This type
changing rule changes a B-aN to an S.

(αQ[ˆ ]*-gN)-i(β[ˆ ]*)
Q-gN-23

γ
’s next

NP[ˆ ]*
NP-SBJ

-NONE-
-NONE-

\*T\*-i
*T*-23

α-iβ
Q-gN-23

V-aN
V-aN

γ
’s next

Figure A.18: Polar question: allow subject gap without inversion. This type changing rule
changes a V-aN to a Q-gN. This example has α=Q-gN, i=23, and β=∅.
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(α[CV](?:-rN))(β[ˆ ]*)
C-rN

ε
the agency somehow owns

WHNP[ˆ ]*-i[ˆ ]*
WHNP-1

-NONE-

γ
0

αβ
C-rN

V-gN-i
V-gN-1

ε
the agency somehow owns

Figure A.19: Implicit-pronoun relative: delete initial empty interrogative phrase. This type
changing rule changes a V-gN to a C-rN. This example has α=C, β=-rN and i=1.

(α[CV](?:-rN))(β[ˆ ]*)
C-rN

ε
for a new season to begin

WH[ˆ ]*-i[ˆ ]*
WHADVP-2

-NONE-

γ
0

αβ
C-rN

V-g{R-aN}-i
V-g{R-aN}-2

ε
for a new season to begin

Figure A.20: Implicit-pronoun relative: delete initial empty interrogative phrase as adverbial.
This type changing rule changes a V-g{R-aN} to a C-rN. This example has α=C, β=-rN and
i=2.
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A.5 Miscellaneous Rules

(α[SQCEVIBLAGR][ˆ ]*)
V

SBAR[ˆ ]*-i
SBAR-3

ζ
would dominate Europe

(δWH[ˆ ]*-[0-9]+)
WHNP-1

ε
that

β γ
a Bismarckian super state will emerge

α
V

C-rN
C-rN

ζ
would dominate Europe

δ
WHNP-1

ε
that

α-g{C-rN}-i
V-g{C-rN}-3

β γ
a Bismarckian super state will emerge

-NONE-

\*ICH\*-i
*ICH*-3

-NONE-

\*ICH\*-i
*ICH*-3

Figure A.21: Branch off final SBAR as extraposed modifier C relative clause. Subtree ε under
δ must not contain -NONE- or what. This example has i=3.
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(α[SQCEVIBLAGR][ˆ x]*)
V-aN

SBAR[ˆ ]*-i
SBAR-1

S[ˆ ]*
S

ε
∅

ADVP

-NONE-

\*T\*-j

δ
to restructure in

a bid to fend off the
hostile take over

NP[ˆ ]*
NP-SBJ

-NONE-

\*

WH[ˆ ]*-j
WHADV-2

-NONE-

0

β γ
gained Thursday

shareholder
approval

α
V-aN

I-aN-i
I-aN-1

ε
∅

δ
to restructure in

a bid to fend off the
hostile take over

α-g{C-rN}-i
V-aN-g{C-rN}-1

β γ
gained Thursday

shareholder
approval

-NONE-

\*ICH\*-i

-NONE-

\*ICH\*-i

Figure A.22: Branch off final SBAR as extraposed modifier I-aN. The part [ˆ x]* in α is to
ensure it won’t match with intransitive categories which are ending in -aN-x. This example has
α=V-aN, i=1 and j=2.
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(α[SQCEVIBLAGR](?:-aN)?)(?!-[cp])[ˆ a]*)
V-aN

ε
, will retain the rest of the
current management team

PRN|S(?![A-Z])
S-TOBEVS

δ
∅

(γS[ˆ ]*)
S-TOBEVS

-NONE-
-NONE-

\*INTERNAL\*-i
*INTERNAL*-1

β
the company said

α
V-aN

α
V-aN

ε
, will retain the rest of the
current management team

V-gS-i
V-gS-1

δ
∅

γ
S-TOBEVS

-NONE-
-NONE-

\*INTERNAL\*-i
*INTERNAL*-1

β
the company said

Figure A.23: Branch off initial parenthetical sentence with extraction.

(α[VIBLAG](?!-aN(?!e)))(β[ˆ ]*?)
A

NP[ˆ ]*-SBJ[ˆ ]*
NP-SBJ

δ
one writer

γ
said

αβ
A

N
N

δ
one writer

α-aNβ
A-aN

γ
said

Figure A.24: Inverted declarative sentence: branch off final subject.
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N(α(-aD)?)(β[ˆ ]*?)(γ(-[ir][ˆ- ]*)?)(δ[ˆ ]*?)
N-iN

ι
∅

(η(DT|NP|NX|NN|VB|VP|JJ|ADJP|CD|$|QP)[ˆ ]*)
NNS

θ
weapons

ζ
∅

(WHADJP|WRB)[ˆ ]*
WHADJP

ε
how many

Nαβγδ
N-iN

N-aDβδ
N-aD

ι
∅

η
NNS

θ
weapons

ζ
∅

A-aN-xγ
A-aN-x-iN

ε
how many

Figure A.25: Branch off initial modifier A-aN-x. if η=QP then its leftmost child in θ must be
of category $. This example has α=β=δ=∅ and γ=-iN.

(α(N|A-aN-x)[ˆ ]*?)
N

ζ
(-NONE- *U*)

QP
QP

ε
70 million

(γ[ˆ ]*)
$

(δ[ˆ ]*[$#][ˆ ]*)
$

β
about

α
N

QP
QP

ε
70 million

γ
$

δ
$

β
about

Figure A.26: Rebinarize QP containing dollar sign followed by *U*, and continue. If ζ 6=∅
then ζ=(-NONE- *U*).
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(α(N|A-aN-x)[ˆ ]*?)
N

ε
annual income

-NONE-
-NONE-

\*U\*
*U*

δ
20,000

(β[ˆ ]*)
$

(γ[$#][ˆ ]*)
$

α
N

N-aD
N-aD

ε
annual income

A-aN-x
A-aN-x

δ
20,000

β
$

γ
$

Figure A.27: Branch off currency unit followed by non-final *U*.
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