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Abstract 

 

  Accurate prediction of protein pKa‘s is important to understand protein 

electrostatics and functions. Improving the accuracy of pKa prediction using the Poisson-

Boltzmann electrostatic model remains an active area of research. The major challenge 

is to determine the appropriate dielectric constant (P) that best describes the 

heterogeneous protein environment. The common use of a single large P often fails to 

reproduce large experimental pKa shifts of biological important residues. In this study, I 

implemented a two steps approach, as described in earlier PDLD/S model, that uses a 

single low dielectric constant for calculating the intrinsic protein pKa‘s when all other 

ionizable group are neutralized and a single large dielectric constant for evaluating the 

pKa‘s shifts as a result of charge-charge coupling between ionizable groups. This 

approach is less sensitive to the dielectric constants used and can reliably reproduce the 

commonly observed protein pKa‘s and others with abnormal large pKa shifts.  
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Introductions 

1.1 Ionizable residues in proteins 

 Protein electrostatics is an important factor governing the structural 

stabilities and functions of proteins.[1-4] A consistent model for predicting 

accurately the protein pKa’s can further provide the theoretical model for drug 

discovery and protein design applications. Proteins consist of amino acids with 

ionizable side chains that undergo proton association and dissociation reactions 

in aqueous solution. The pKa’s of these ionizable groups can be greatly 

influenced by their local environments such as the composition of the solvent 

mixture, pH and ionic concentration. In the unfolded state, the pKa of these 

ionizable sidechains are presumed to be solvent exposed and their pKa‘s are 

typically similar to that of the individual amino acids in aqueous solution. During 

the protein folding process, however, these ionizable groups become localized 

onto the surface or into the interior regions of the protein that engages in an 

intricate network of electrostatic and non-electrostatic interactions involving 

hydrogen bonding, charge-charge, charge-dipole, and hydrophobic interactions 

(Figure 1). These local heterogeneous environment greatly influences the overall 

energetics and stability of each ionizable residues and their corresponding 

apparent pKa‘s in proteins. Ability to quantify the compensatory electrostatic and 

non-electrostatic effects provides a rigorous benchmark for examining protein 

electrostatics. 
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Figure 1-1 Amino acids(a) form peptide chains(b) followed by secondary and tertiary 

structures (c). Ionizable sites are localized into heterogeneous electrostatic 

environments (d).  

 

1.2 Calculating pKa in proteins 

 Understanding the role of electrostatic interactions in proteins is crucial for 

the study of biological functions.  There are many essential biological processes 

that are modulated by the specific ionizable state of these ionizable groups.  It 

governs the overall protein stability, folding pathway, ion transport, molecular 

association and catalysis. [1-3] Consistently and accurately quantifying the pKa of 

ionizable groups and its specific ionization state in proteins is not a trivial task. 

Before the availability of 3 dimensional protein structures, early Tanford and 

Kirkwood (TK) model introduced for protein pKa calculation assumes proteins as 

an impenetrable macroscopic spheres consisting of a low dielectric hydrophobic 

protein core surrounded by ionizable group located on the surfaces of the 

protein.[5] In the era of X-ray protein crystallography that reveals many of these 

ionizable residues are buried, rigorous methods such as protein dipoles Langevin 

dipoles (PDLD) [6] , Poisson-Boltzmann (PB) [7-9] , and generalized Born (GB) 

[10, 11] type models have emerged that take into account the full atomistic detail 
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of the protein structure, as well as the explicit and implicit representation of 

solvent environment. With increase in computational power, algorithm design and 

the number of high resolution crystallized protein structures available for 

examining protein pKa’s, the accuracy in many of these computational models 

have significantly enhance over the past decades. 

 

Figure 2. Thermodynamic cycle for predicting pKa of an ionizable group in a protein. w 

and p designate water and protein, respectively. ∆𝐺𝑠𝑜𝑙𝑣
𝑤→𝑝

 designates a change in 

solvation free energy of moving the titratable group from water to its protein. 

 

The most widely used method for evaluating protein pKa is based on the 

thermodynamic cycle shown in Figure 2. Instead of directly calculating the 
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change in free energy of deprotonation of the indicated ionizable group inside the 

protein, the method utilizes the deprotonation of the ionizable group in the 

aqueous phase as our reference reaction. This allows us to take the advantage 

of using the reference pKa values of ionizable amino acids which can be 

measured experimentally (Table 1). ∆𝐺𝑠𝑜𝑙𝑣
𝑤→𝑝

 designates the change in solvation 

free energy of moving the titratable group from water (w) to its protein (p) 

environment. Both the ∆𝐺bond and the ∆𝐺solv(H+) terms are canceled from this 

cycle and the free energy difference of deprotonation of the side chain of the 

ionizable group can be given by 

∆𝐺𝑝(𝐴𝐻 → 𝐴− + 𝐻+) = ∆𝐺𝑤(𝐴𝐻 → 𝐴− + 𝐻+)  

  + ∆𝐺𝑠𝑜𝑙𝑣
𝑤→𝑝(𝐴−) − ∆𝐺𝑠𝑜𝑙𝑣

𝑤→𝑝(𝐴𝐻)   (1.1) 

which can be expressed in terms of pKa units as 

 pKa
p(AH) = pKa

w(AH) +  
1

2.303RT
∆∆𝐆𝐬𝐨𝐥𝐯

𝐰→𝐩(𝐀𝐇 → 𝐀−)       (1.2) 

Since we have the reference values for pKa
w(AH), the only problem is to evaluate 

the change in the solvation energies of moving the protonated group from the 

protein to water and the deprotonated group from water to protein or vice versa 

depending on whether it is an acid or base. Both the PDLD and PB model which 

have been parameterized to reproduce the solvation free energy of small 

molecules and ions are described below. 
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Protein ionizable groups 𝒑𝑲𝒂
𝒘, 𝒎𝒐𝒅

  

N-terminal NH3 7.5 – 8.0 

C-terminal COO
−
 3.6 – 3.8 

Arginine 12.0 – 12.5 

Aspartic Acid 3.9 – 4.0  

Cysteine 8.3 

Glutamic Acid 4.3 – 4.4 

Histidine 6.3 – 6.5 

Lysine 10.4 – 10.5 

Tyrosine 9.6 

Table 1 Model pKa of side chains of ionizable amino acids in water. 

1.3 Poisson Boltzmann Electrostatic Model 

 Poisson-Boltzmann (PB) electrostatic continuum type models are one of 

the most popular methods for examining protein electrostatics. There are several 

implementations of PB model within popular software including  Delphi [9, 12, 

13], CHARMM [14], APBS[15], and Amber [16, 17] and web servers such as 

H++[18-20] and CHARMM-gui. [21] The Poisson-Boltzmann equation is given by 

 ∇ ∙ 𝜀(𝒓)∇𝜙(𝒓) − 𝜅2𝜀(𝒓)sinh[𝜙(𝒓)] = −𝟒𝜋𝜌0(𝒓)    (1.3) 

where 𝜙(𝒓) is the electrostatic potential that we need to calculate at distance r, 

𝜌0(𝒓) is the permanent charge density, 𝜀(𝒓) is the distance dependent dielectric 

constant, and 𝜅 is the inverse Debye-Huckel salt screening length defined as 
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 𝜅2(𝒓)𝜀(𝒓) =
8𝜋𝑁𝑎𝑒2𝐼

𝑘𝛽𝑇
      (1.4) 

where Na is the Avogadro’s number, e is the electronic charge, and I is the ionic 

concentration. Using the Taylor series expansion, we can approximate 

sinh[𝜙(𝒓)] as 𝜙(𝒓) giving the linearized Poisson Boltzmann (LPB) equation as 

 ∇ ∙ 𝜀(𝒓)∇𝜙(𝒓) − 𝜅2𝜀(𝒓)𝜙(𝒓) = −4𝜋𝜌0(𝒓)    (1.5) 

which can be calculated more rapidly. Since proteins are irregularly shaped, the 

PB equation can also be solved numerically with several discretization methods 

commonly referred as finite-difference Poisson-Boltzmann (FDPB) method. The 

implementation of Poisson-Boltzmann models is described in Figure 3. The 

space grid is built around the protein with each grid point represents by a 

polarizable implicit solvent molecule with a water dielectric constant 80 while 

each of the protein atoms is given a partial charge with a specific protein 

dielectric constant. From each grid, the electrostatic potential of the system is 

calculated iteratively based on equation 1.5 until converged and the electrostatic 

energy can then by evaluated by the effective potential acting the charges of 

each of the titratable group. 
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Figure 3. Poisson-Boltzmann electrostatic solvent models. The protein is implicitly 

treated as a dielectric medium. The dielectric constant of water, (), is 80. The space is 

gridded up and each grid point represents a polarizable water molecule 

 

1.4 Dielectric constant in protein 

 The major challenge in PB method is to determine the appropriate 

dielectric constant that best describes the heterogeneous protein environment. 

The meaning of the protein dielectric constant, ε𝑝, has been discussed 

repeatedly. [22-24]  While early studies have assumed the protein dielectric 
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constant as the experimentally determined protein dielectric constant, it is only 

recently realized that it is a simply scaling factor that accounts for missing 

electrostatic effects such as solvent reorientation and reorganization, protein 

flexibility, polarization effect, and other medium’s responsiveness to charges 

within the electrostatic models. Thus, if an electrostatic model captures all the 

physically details of the described system in atomistic detail, the dielectric 

constant required for calculating all Coulombic interactions should be equivalent 

to 1. If an electrostatic model is described largely in a macroscopic way, such as 

neglecting the effect of protein relaxation and solvent reorganizations, the 

effective protein dielectric required to reproduce to experimental electrostatic 

behavior can be set as high as 10~20 to capture the missing dielectric screening 

effect due to the electrostatically induced solvent and protein reorganization. 

Therefore, the dielectric constant of protein depends on how the model describes 

the physical properties rather than directly being related to the experimental 

observations. In the recent meeting among the pKa-cooperative members, a 

focus group working on current advances in pKa calculation, it has been 

concluded that the best results generally could be produced with ε𝑝= 8~20 within 

the Poisson-Boltzmann model.[25-27] Unfortunately, while many 

implementations based on PB method reproduce the experimental pKa quite well, 

they often fail to predict the pKa of biological interesting and relevant ionizable 

groups that exhibit large pKa shifts within buried sites. This has been pointed out 

earlier by Warshel and coworkers that the use of high dielectric constant leads 

the prediction to a null model where ∆pKa = 0 and even this null model would 
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seem to predict pKa quite well because most of the protein pKa shifts are 

small.[23, 28] As a result, research focus on what protein dielectric constant 

should be used for accurate pKa prediction using the PB model remains an active 

area of research. 

 

1.5 Evaluating protein pKa with PDLD/S Model: Intrinsic pKa and apparent 

pKa 

  The semi-Microscopic Protein Dipole Langevin Dipole (PDLD/S) 

evaluates the electrostatic solvation free energy based on the LRA method.[23, 

29] (See Appendix A for more details of LRA method) The approach adopted for 

protein pKa calculation involved a two steps approach that uses a single low 

dielectric constant for calculating the intrinsic protein pKa‘s when all other 

ionizable group are neutralized and a single large dielectric constant for 

evaluating the pKa‘s shifts as a result of charge-charge coupling between 

ionizable groups. The detail of the PDLD type model is described elsewhere. The 

two steps approach for evaluating the protein pKa is described as follows. To 

evaluate the intrinsic pKa, the self-energy of ionizing this group when all other 

ionizable groups are neutralized are decoupled from the charge-charge 

interaction within the protein, ∆𝐺𝑞𝑄
p

, and ∆∆𝐺solv
w→p

  can be expressed as   

    (∆∆𝐺solv
w→p

)
𝑖

= ∆𝐺𝑞𝜇
p

+ ∆𝐺𝑞𝛼
p

+ ∆𝐺𝑞𝑤
p

+ ∆𝐺𝑞𝑄
p

− ∆𝐺self
w   

    = (∆𝐺self
p

− ∆𝐺self
w )

𝑖
 + ∆𝐺𝑞𝑄

p
    (1.6) 
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.  

Within this formalism, the charge-charge interactions are decoupled and are 

evaluated independently. The term, ‘self-energy’, is defined as the free energy 

associated with changing the charge of an ionizable group from zero to their 

average charge in its specific environment. It does not require the evaluation of 

the gas phase free energy as it is cancelled within the ∆∆𝐺𝑠𝑜𝑙𝑣
𝑤→𝑝

. The self-energy 

term consists of the opposing energetic influences involving ∆𝐺𝑞𝜇
p

, ∆𝐺𝑞𝛼
p

, and 

∆𝐺𝑞𝑤
p

 which are the free energy of the electrostatic interactions between the 

charge of an ionizable group and the surrounding permanent dipoles, polarizable 

dipoles, and water, respectively. Finally, equation 1.6 can be expressed in terms 

of pKa as 

p𝐾a,𝑖
app

= p𝐾a,𝑖
int + ∆p𝐾a,𝑖

charges
    (1.7) 

where p𝐾a,𝑖
app

 is the “expected” or the apparent pKa of residue i in protein,  p𝐾a,𝑖
int 

is the pKa of i-th residue when all surrounding ionizable groups are neutralized 

and ∆p𝐾a,𝑖
charges

 is the pKa shift due to the charge-charge coupling between 

residue I and all surrounding ionizable residues.  

  The presence of ionized groups polarizes the local environment that can 

lead to large dielectric screening between charges. By evaluating the intrinsic 

pKa when all other ionizable groups are neutralized, the approach focuses on 

evaluating the desolvation free energy associated with moving the ionizable 

group of interest from water to protein and circumvents the need to use of a large 
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dielectric constant to properly describe the induce screening between the 

charged ionized groups. Implementation of this strategy into the existing PB 

model will be the main subject of my thesis. The work will focus on identifying the 

optimal protein dielectric constant for accurate protein pKa prediction.  

1.6 Evaluating titration curve for monoprotic acid 

  Evaluation of charge-charge interactions have been introduced elsewhere. 

[23, 28, 29] To begin, one must first examine the ionization of the single amino 

acid side chain which is described by the proton dissociation reaction of a 

monoprotic acid. 

  

Its Gibbs free energy of reaction is described by  

 ∆𝐺 = −𝑅𝑇ln𝐾𝑎  (1.8) 

where R is the gas constant, T is the temperature, and Ka is the equilibrium acid 

dissociation constant defined as 

 𝐾a =  
[A−][H+]

[AH]
  (1.9) 

Such expression can be re-written in pKa units, −log(𝐾a) , as the well-known 

Henderson-Hasselbalch equation 

pH = p𝐾a +  log
[A−]

[AH]
       (1.10) 
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Denoting 
[A−]

[AH]0
 as 𝑓acid which is the fractional concentration of deprotonated 

acdis from its initial protonated state, Eq. 1.10 can be rewritten as 

 𝑓acid =  
[A−]

[AH]0
 =

1

1+ 10(p𝐾a−pH )
    (1.11) 

Now by multiplying the integer charge, q0, of the acid(-1) or base(+1), the 

average charge of a given acid can be expressed 

 〈𝑞〉 =  
𝑞0

1+ 10𝛾( pH −p𝐾a)  (1.12) 

whereis +1 for base and -1 for acid. Note that at the point where pH is equal to 

pKa, the average charge <q> becomes 0.5. Therefore, by calculating Eq. 1.12 at 

each pH point whose interval is small enough to interpolate, we can find the 

apparent pKa on its titration curve.  

1.7 Evaluating interactions between titratable groups 

 The reaction free energy of deprotonation, ∆𝐺0
, for a monoprotic acid at 

a specific pH is given by 

 ∆𝐺 
0 =  −2.3𝑅𝑇𝛾[𝑝𝐾𝑎 − 𝑝𝐻]  (1.13) 

If pH around an acid is higher than its pKa, ∆𝐺 
0 is negative and the 

deprotonation reaction is spontaneous, and vice versa. Now, we need to 

consider the charge-charge interactions between i-th titratable residue with all 
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other titratable groups. The charge-charge interaction can be evaluated within 

the macroscopic formalism using the Coulombic expression   

 ∑ ∆𝐺𝑖𝑗
p𝑁

𝑗≠𝑖 = ∑
〈𝑞𝑖〉〈𝑞𝑗〉

𝑟𝑖𝑗ε𝑖𝑗
= ∑ 〈𝑞𝑖〉〈𝑞𝑗〉𝑊𝑖𝑗

𝑁
𝑗≠𝑖

𝑁
𝑗≠𝑖          (1.14) 

where rij is the distance and εij is the effective dielectric constant (normally 

denoted as εeff is a single uniform dielectric is used) between i-th and j-th ionized 

residues. Because ε𝑖𝑗 involved interaction between charges and is described with 

in a macroscopic way, the ε𝑒𝑓𝑓 of 40 and higher can be used.  

 <q> is the effective average charges at the given pH evaluated based on 

eq. 1.12 . The total free energy of the i-th residue is given by combining equation 

1.13 and 1.14 as    

 ∆Gi
 =  ∆G 

0 + ∆Gij
p
 

 = −2.3𝑅𝑇𝛾[𝑝𝐾𝑎 − 𝑝𝐻] + ∑ 〈𝑞𝑖〉〈𝑞𝑗〉𝑊𝑖𝑗
𝑁
𝑗≠𝑖   (1.15) 

while the average charge of i-th residue, <qi>, can also be defined as [23] 

 〈𝑞𝑖〉 =
𝑞𝑖

0 exp−𝛽∆𝐺𝑖

(1+exp−𝛽∆𝐺𝑖) 
 (1.16) 

where 𝛽 is the inverse of the thermodynamic temperature and qi
0 is the initial 

charge of the titratable group, thus, +1 and -1 for base and acid respectively. 

Note that equation 1.15 and 1.16 are solved self-consistently through iteration 
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until converged. By titrating the average charge, the apparent pKa is found where 

<q> is equal to ±0.5 based on Eq. 1.16. 

1.8 Project Objectives 

  Although Warshel’s group has repeatedly pointed out the advantages of 

this decoupling charge-charge interactions strategy, this still has been 

overlooked and misunderstood in PB models. In the meanwhile, the reliability of 

pKa calculations has not been improved as much as the development of new and 

complicated methods with the increase of computational power over the past 

decades. [25] Interestingly, to the best of our knowledge, there is no Poisson-

Boltzmann based method that has been described to–date that has adopted this 

two steps method by first evaluating the intrinsic pKa and then the pKa shift from 

charge-charge interactions using two different dielectric constants 

 In this thesis, the previously described PDLD/S approach is incorporated 

into Poisson-Boltzmann model to verify the hypothesis that both general and 

large pKa shifts can be more reliably predicted by decoupling charge-charge 

interactions and applying more consistent small dielectric constant for intrinsic 

pKa calculation. Our results are compared to the classic PB method and other 

benchmarks to identify the optimal dielectric constants required by the model. 

Finally, we will demonstrate that incorporating protein relaxation within this new 

approach can further improve its predictive pKa accuracy. 

Methods 
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2.1 Implementation of intrinsic pKa calculation 

  A general process flow chart is given in Figure 4. The details of the 

implementation is described below.   
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Figure 4 The flow chart of intrinsic pKa calculation 

2.1.1 Protein preparation  

 X-ray protein crystal structures are obtained from Protein Data Bank. 

CHARMM (Chemistry at Harvard Molecular Mechanics), a program for 

macromolecular simulations, [14] is used for structure preparation. CHARMM27 

protein force field is used for atomic description of the protein structure. [30] 

Since original X-ray structures do not include hydrogen and disulfide bonds, they 

are assigned systematically based on the CHARMM27 force field.  

2.1.2 Electrostatic free energy calculations 

  pKa calculations based on original X-ray crystallographic structure are 

taken directly after protein preparation in 2.1.1.  PKa calculation that account for 

protein relaxation is evaluated using the trajectory obtained from MD simulation. 

The snapshots of each protein structure coordinates taken at every 1 

nanosecond as independent structural conformation sample were used with 

water and counter ions surrounding the proteins removed. The intrinsic pKa 

calculation was implemented with CHARMM script language. For each protein 

structure conformation (X-ray or simulated MD snapshot), all ionizable residues 

(ASP, GLU, TYR, SER, LYS, ARG, and HIS) as well as the N-terminal and C-

terminal regions are neutralized by reassigning partial atomic charges that can 

reproduce the experimental solvation energy of that chemical entity. The pKa 

calculation is carried out iteratively for each ionizable residues based on the PB 

model implemented within CHARMM.  
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  For each PB calculation, the dielectric constants for the protein interior 

and water are set to 4 and 80, respectively. 0.15M of salt concentration is used. 

The grids are generated around the protein with 1.5 Å  spacing. For better 

accuracy, smaller spacing with 1 Å  is applied around the indicated ionizable 

group. The electrostatic free energy of the indicated group in deprotonated states 

from water to protein is calculated by Poisson-Boltzmann equation module in 

CHARMM. Now the side chain of the indicated group is protonated and all 

hydrogen positions within 4 Å  of the group are energy minimized to ensure that 

the added hydrogen does not sterically clash with others atoms. The electrostatic 

free energy of the group in protonated states in water and in protein site 

calculated in the same way with the same parameters. The intrinsic pKa shifts are 

calculated based on Eq. 1.9. For pKa calculation with MD simulation, these steps 

are “embarrassingly” parallelized with scripting by distributing over large number 

of serial processes and repeated for all sampled conformations. The intrinsic pKa 

values for each ionizable residue along the trajectory are averaged based on 

Linear Response Approximation (LRA) method.  

2.1.3 Molecular Dynamics simulation 

  Each protein structure is solvated in a box with TIP3P explicit water 

model[31] with 15 Å  buffer region from the surface of the protein structure. Na+ or 

Cl- ion is added at 2 Å  from the box boundary to electroneutralize the total charge 

of the system. MD simulation is performed using NAMD version 2.6. [32] with 

periodic boundary condition using Particle Mesh Ewald (PME) [33]. Each system 
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is energy minimized with conjugate gradient algorithm for 5000 steps with 

50kcal/(mol•Å2) restrain on each heavy atom. SHAKE method [34] was employed 

allowing only hydrogen atoms to move at fixed bond length. During initialization 

the restraint system is gradually heated from 25 K to 300 K increasing 25 K at 

every 10 picoseconds for 100 picoseconds at 2 femtosecond time step. For the 

next 100 ps, the heavy atom restraints are gradually decreased and removed 

under NVT condition. The final unrestrained equilibration is carried out for 100 ps 

followed by 10~50 nanoseconds of MD simulation at 1atm and 300K under NPT 

condition. Snapshots of the protein-water system coordinates are saved at every 

1 picosecond. If the simulation is successfully finished, the configurations along 

the trajectory is superimposed to the initial structure and the divergence and the 

stability of the protein structure is evaluated with Cα atoms roots mean square 

deviations (RMSD) plot generated from the RMSD trajectory tool in VMD. [35] If 

RMSD shows large structural fluctuations a small constrain is employed during 

the simulation.  All MD simulation were carried out using Itasaca high 

performance computer at the University of Minnesota Supercomputing Institute.    

 

2.2 Calculation of pKa shifts by Charge-Charge interaction  

  An overall procedure is given in Figure 5. The detail of the implementation 

is described as follows. 
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Figure 5 The flow chart of apparent pKa calculation 

2.2.1 Preparation 

  Once the intrinsic pKa is calculated, the values are used as the starting 

points to evaluate the apparent pKa based on equation 1.15 and 1.16. The 

module was developed in Perl. For the macroscopic treatment of the charge-

charge interaction, the protein is treated as a macroscopic medium of large 

dielectric constant with only the ionizable side chains are considered. Each 

ionizable side chain is assigned either a single or double ionized centers based 

on the chemical nature of the ionizable group as shown in Table 2. For Ser, Tyr 

and Lys, a +/- 1 charge is assigned to the single electronegative atom as the 
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ionizable center. For Arg, Lys, His, Asp and Glu, double ionizable centers are 

assigned with an initial value of +/- 0.5 charge to reflect on the multiple 

tautomeric protonation states of the side chain.  

Residue Atom Type Initial charge 

Arginine NH1&NH2 0.5 for each 

Lysine NZ 1 

Histidine ND1&NE2 -0.5 for each 

Aspartate acid OD1&OD2 -0.5 for each 

Glutamic acid OE1&OE2 -0.5 for each 

Tyrosine OH -1 

Serine OG -1 

Table 2 Atom types that used to calculate the charge-charge interactions energy and the 

initial charges assigned 

As shown in Eq. 1.11, the distance between two charges is one of the factors 

used to evaluate charge-charge interactions. The computational complexity of 

calculating all the distances in the system is O(n!) where n is the number of the 

ionizable site. Therefore, the computation cost would be dramatically increased 

as the number of ionizable sites increases. Moreover, the charge-charge 

coupling calculation is an iterative procedure over the incremental range of pH. 

Therefore, the total computational cost becomes O(n! x n!). To improve on the 

overall efficiency, the interatomic distance, rij is calculated only once for each 

protein structure conformation in the beginning and stored as a lookup two 

dimensional matrix table for the iterative Coulombic interaction energies 

calculation. 

2.2.2 Calculation of Charge-Charge interaction energies 
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  The charge-charge interaction energies are calculated based on Eq. 1.16 

and 1.17 at 0.2 pH intervals. Uncoupled free energy, Wi
0 for each titratable group 

is calculated at incremental pH based on the calculated intrinsic pKa. The Eq. 

1.18 and 1.19 are solved iteratively until convergence is achieved. The 

Coulombic energy between residue i and j, 
𝑞𝑖 𝑞𝑗

𝑟𝑖𝑗ε𝑒𝑓𝑓
 , is stored in an n x n matrix 

where n is the total number of the sites. For those residues whose side chains 

have two protonation sites, the interaction energy is calculated for both atoms 

and summated as one. For example, when the charge-charge interaction energy 

between a lysine and a glutamic acid group is calculated, two interactions are 

considered between NZ and OE1, and between NZ and OE2. By assigning a half 

of the charge to each atom, we can reflect the resonance form more consistently.   

2.2.3 Titration curve and apparent pKa 

  Once the average charges, <qi>, for the titrated for each residue is 

evaluated, the pH point where <qi> becomes a half of its initial charge (+1 for 

base. -1 for acid) is identified as apparent pKa. (Figure 6). Because it is titrated at 

0.2 pH unit intervals, there is no guarantee that one of the titration point will 

exactly hit <qi>=0.5. Because calculating with smaller intervals increases the 

computational cost, it is better to approximate the apparent pKa point assuming 

that the titration curve around <qi>=0.5 is almost linear. The titration curve is 

traced from the both sides until the closest upper bound and the lower bound 

from 0.5 are found. The apparent pKa is calculated using the linear properties 

with the proportions as described in Figure 6.  
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 Figure 6 A description showing how to find apparent pKa which is at <qi>=0.5. The 

curve is traced from both sides and the upper and lower bounds closest to 0.5 are 

selected. Assuming that the curve is close to linear, the midpoint calculated using 

(b−0.5)

(x2−x1)
 ×(x2-x1) + x1 

2.2.4 Simple case tests 

  Two simple cases were tested to see if this program captures the correct 

pKa shift trends. (Figure 7). Two ionizable groups were put together within 4 Å . In 

principle, the interaction between opposite charges are energetically favorable. 

As seen in Figure 7-(a), the base and acid stabilize each other shifting pKa down 

for the acid and shifting pKa up for the base to stay in charged states. In contrast, 

two bases nearby destabilize each other and tend not to have a charge-charge 

interaction by shifting down the pKa.(Figure 7-(b)) Note that there is no shift in the 



23 
 

titration curve for the lysine group. This can be explained by the fact that once 

the charge of the histidine is zero, there shouldn’t be any coupling.  

 (a)

(b) 

Figure 7 Simple test cases. Two ionizable groups were located 4 Å  away from each 

other and the average charges were titrated. 
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2.3  Protein pKa Benchmark 

 To evaluate our model, 7 protein structures were used with their well-

established experimental pKa data. (Table 3)  

Proteins 

Number 

of 

residue 

PDB Experiment set ref 

Lysozmye 26 1HEL [36] 

RNaseA 28 7RAA [37] 

Ovomucoid 11 1OMU [38, 39] 

Barnase 28 1A2P [40, 41] 

Thioredocxin-Oxidized 30 1TRS [42] 

Thioredoxin-Reduced 30 1TRW [42] 

BPTI 14 5PTI [43] 

Table 3 Protein structures tested and their experimental pKa data references. MD 

simulations were performed for each protein for 20ns.   

 

3. Results and Discussion 

3.1 PB method with single dielectric constants 

 First, we tested the dependence of the dielectric constants in the classic 

PB method that uses charged states with single dielectric constants and single 

structures. The comparisons between calculated and experimental pKa values 

are listed in Table 4. We tested a set of dielectric constants, 4, 6, 10, and 20. At 

this point, our focus was on the effect of the dielectric constants in classical PB 
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model. Thus, single structures are used for predictions. The numbers listed in 

Table 4 are root mean square deviations from the experimental pKa.  

 It is clear from the results that when a higher dielectric constant is used, the 

numbers show better correlations with the experimental values in overall. 

However, the good correlations observed at high dielectric constants such as P= 

20 or 40 do not necessarily mean that the model is consistent. As pointed out 

earlier, when compared to the null model, where ΔpKa = 0, the PB model 

reproduces similar results at P = 10 and 20. This result gives rise to the 

uncertainty of whether the best correlation at P = 20 and 40 is due to the lack of 

sensitivity of the electrostatic model itself. The use of a high dielectric constant 

screens significantly the electrostatic interaction with its surrounding environment 

which can inadvertently leads to the null model outcome. As most of the pKa 

shifts are experimentally observed to range below 1 pKa unit, it become important 

to question the consistency of the given model even when the RMSD appears 

“seemingly” more accurate.  The prediction for ovomucoid is the only exceptional 

case from this trend. Unlike other proteins whose most of the experimental pKa 

shift from water pKa are less than 1.0 pKa unit, half of the residues in ovomucoid 

showed more than 1.2 unit of experimental pKa shift from water pKa. Therefore, 

merely decreasing overall pKa shifts with high dielectric constant in ovomucoid 

results in an opposite trend which predicts pKa further from the experimental pKa.  
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Proteins 

Number 

of 

Residue 

 = 4  = 6  = 10  = 20  = 40



Null 

Model 

Lysozmye 10 2.6 1.9 1.4 1.1 1.1 1.5 

RNaseA 14 2.3 1.6 1.1 0.7 0.5 0.7 

Ovomucoid 6 0.6 0.6 0.7 0.8 0.9 1.1 

Barnase 10 3.8 2.6 1.7 1.0 0.8 1 

Thioredocxin-Ox 17 1.5 1.1 1.0 1.0 1.1 1.2 

Thioredoxin-red 17 2.4 1.4 0.9 1.1 1.4 1.6 

BPTI 13 1.0 0.9 0.8 0.8 0.7 0.7 

Total 87 2.3 1.6 1.3 1.0 1.0 1.2 

Table 4 Classic PB method in function of single dielectric constant. Listed numbers root mean 

square deviations (RMSD from experimental pKa values. The null model represents when there is 

no pKa shift which is pKa
mod – pKa

exp. 

 

 One may argue that using high dielectric constants by decreasing the 

overall pKa shift still predicts pKa values close to experimental data well. Indeed, 

Antosiewicz et al. [27] and Teixeira et al. [26] concluded that using single 

dielectric constant at 20 generate reliable results in PB method. One way to 

evaluate the possible false positive is to test special cases whose experimental 

pKa shifts are large. Warshel and his coworkers tested their PDLD/S model to 

predict such discriminative pKa shifts in their previous work by decoupling 

charge-charge interactions. [29]. Here, we performed the similar experiment but 

with PB model. The classic PB method with single dielectric constants was used 

to calculate pKa of the residues that are well known for their experimentally 

observed huge pKa shifts. (Table 5)  
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 As expected, the use of high single dielectric constant of 20 and 40 

severely underestimated the pKa shifts for these residues. The average pKa shift 

from the model pKa at P= 20 is 1.4 which is much smaller than that of the null 

model (4.3 pK unit). In contrast, the use of P= 4 overestimates the large pKa 

shifts observed in experiment. This can be especially observed in the calculated 

results of the the pKa of HIS6 of erabutoxin b which was estimated even below 

zero.  

 Optimal results were observed when P= 10 was used to predict the pKa. 

This predicts general cases quite well while also predicting large pKa shifts with 

smaller errors. These results coincide with the general agreement from the 

meeting among the pKa cooperative members, a focus group of researchers 

working on pKa predictions. They observed that a majority of PB based methods  

usually generate the best results at P= 8 to 10 although they still saw significant 

errors occasionally.[25] Starting from this classic method, we introduce our 

method that decouples charge-charge interaction in the next section.  
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Table 5 Reported large experimental pKa shifts and the deviations of calculated pKa from 

experimental pKa using classic PB model that uses charged states. The experimental 

pKa were determined in [44], [45], and [46] for staphylococcal nuclease, erabutoxin b, 

and horse heart cytochrome c, respectively. The PDB structures used here are 2SNM 

for Staphylococcal nuclease, 3EBX for erabutoxin b, and 1HRC for horse heart 

cytochrome c. 

 

3.2 Results of decoupling charge-charge interaction with PB method 

  The previous section addressed the challenge of the classic PB method. 

The model, while valid in a number of situations, is inadequate in addressing 

large pKa shifts which are biologically important and relevant. As such, the 

challenge of this study is to see if we can develop a method in which we can 

avoid the dependence on the dielectric constant.  

  Sham et al. pointed out that it is possible to examine self-energy and 

charge-charge interaction independently by decoupling these two terms.[29] By 

doing so, one can use a more consistent dielectric constant for the intrinsic pKa 



29 
 

while the use of high dielectric constant for charge-charge interaction (Wij) is 

allowed. However, their work was implemented on PDLD/S which is a semi-

microscopic model. Here, we tested this approach using PB model. We 

separated the charge-charge interaction terms with eff = 40 within 15Å  from the 

site and 80Å  for other residues outside this range. The intrinsic pKa were 

calculated when all ionizable residues are neutralized based on Eq. 1.19. The 

same set of dielectric constants were used for the same proteins. The calculated 

apparent pKa are listed in Table 6. Compared to the classic PB method, slight 

improvements are shown in most of the cases. Unlike the results from the classic 

PB method that show the best correlation with experimental pKa at P= 10, a 

better correlation was always observed at higher dielectric constants, thus, the 

best results were obtained at P= 20. 

  Although the overall accuracy did not change much, there are significant 

improvements in the predictions for lysozyme and RNaseA. In lysozyme, half of 

the calculated pKa showed large errors ranging 1.5~5.9 units at P= 4 in the 

classic PB method. As a result, with our method, large improvements were 

observed in a majority of the ionizable residues.  

  However, there were several residues for which both the classic PB 

method and our method could not account for. For example, GLU7 still showed a 

large error of 2.4 unit at low dielectric constants with our method. Additionally, in 

barnase, the predictions at P= 4 with both classic PB method and our method 

were still very different from the experimental pKa although most of the numbers 
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were improved after treating intrinsic pKa and charge-charge couplings 

separately. Especially, extremely large errors were observed for GLU73 and 

GLU75. When the intrinsic pKa and charge-charge interactions are inspected 

separately, it can be observed that the intrinsic pKa shifts mostly accounted for 

the large pKa shifts obtained. Therefore, these large perturbations must not be 

from charge-charge interactions, but rather caused by unconsidered protein 

relaxation effects or inappropriate dielectric boundary conditions since they are 

located on the surface.  

  For a better overview, all predicted pKa values were plotted against the 

experimental data in Figure 8. Overall, the plots show that most of these 

ionizable groups benefits from higher dielectric constants. While significantly 

large errors such as ASP26 in thioredoxin are observed, the model is shown to 

be accurate in a majority of residues observed. However, as seen in calculations 

with the classic PB method, this does not necessarily mean that the prediction is 

consistent because it may fall into a null model. To see if our model still shows 

the null model trend as the classic PB method, plots of the null model versus our 

calculated pKa shifts are shown in Figure 9. Note that most of the plots for the 

null model are ranged between -1 and 1. These plots clearly show that most of 

the predicted pKa shifts became smaller when the dielectric constant was 

increased and as a result, the plots become flatter which reflects a lower 

consistency approaching the null model. Again, this makes the results look highly 

correlated with the experimental pKa by forcing most of the predictions to be in 

the similar range as pKa shifts in the null model. The problem is that the model 
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that uses a high dielectric constant also scales down all other large shifts within 

this range. To use high dielectric constant for good overall prediction, it is 

inevitable to give up the accuracy for biologically important or relevant residues 

that have large pKa shifts.  

  For a better insight on the effect of the charge-charge couplings, the 

intrinsic pKa and Wij at P= 4 and 10 are listed in Table 7. Our predictions for most 

of the proteins were improved by adding Wij to the intrinsic pKa. However, the 

apparent pKa’s were not perturbed much by Wij which shows around 0.8 shifts 

from the intrinsic pKa in average. Our results correspond to a mutagenesis study 

in which small effects on pKa by charge charge interactions were observed by 

testing how much pKa is changed by mutating target ionizable residues to 

nonpolar residues. Their results found that there were only about 1 pKa unit 

changes.[47] This is because there should be large dielectric screenings 

between charge-charge interactions. Indeed, our results show that when a eff= 

40~80 is used, the observed Wij remains within a reasonably small range. 

  Our method so far has shown that a similar or even better predictions can 

be achieved with the strategy of decoupling charge-charge interactions. Now, as 

our main focus in this study, the calculations for the large experimental pKa with 

our method were conducted and the results are listed in Table 8. The intrinsic 

pKa shifts at P= 4 and the Wij with eff= 40,80 are listed in Table 9 for better 

insight of the effect of decoupling charge-charge interactions. In contrast to the 

classic PB method where P= 10 generated the optimal results, the accuracy of 
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our predictions is always seen better at lower dielectric constants. This trend is 

exactly opposite to the results from general cases seen in Table 6 with our 

methods. This reflects the dilemma more clearly that even though we get better 

results in general with higher dielectric constants approaching the null model, we 

really need to use low constants to accurately predict such large pKa shifts. 

However, using single dielectric constants means that dielectric screening from 

both charge-charge interaction and other induced dipole or non-polar interactions 

are adjusted at the same extent. Therefore, this leads to overestimation of 

charge-charge interactions at low dielectric constants and underestimation at 

high dielectric constants as observed in Table 6. Even though the best prediction 

from the classic PB method in Table 5 could be obtained at P= 10 for the large 

pKa shifts, errors larger than 1.2 unit were observed in all of the calculations. In 

our model, we could solve this dilemma by decoupling the charge-charge 

couplings and predict these large pKa shifts using P= 4 as accurate as the 

classic PB model that used P= 10. This strongly supports our motivation in this 

study.  
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Proteins PDB  = 4  = 6  = 10  = 20 

Lysozmye 1HEL 1.3 1.0 1.0 0.9 

RNaseA 7RAA 1.5 1.2 0.9 0.8 

Ovomucoid 1OMU 0.8 0.7 0.6 0.6 

Barnase 1A2P 3.6 2.5 1.6 1.1 

Thioredoxin-ox 1TRS 1.2 1.1 1.2 1.2 

Thioredoxin-red 1TRW 2.4 2.0 1.7 1.8 

BPTI 5PTI 0.9 0.5 0.3 0.3 

Total   1.9 1.5 1.2 1.1 

Table 6. RMSD of calculated apparent pKa with our method a dielectric constants of 

4,6,10, and 20 for intrinsic pKa calculation when all ionizable residues are neutralized.  

 

 

 

 

Proteins Intrinsic Apparent 

Lysozmye 2.0 1.7 

RNaseA 1.7 2.1 

Ovomucoid 1.3 0.8 

Barnase 3.5 3.6 

Thioredocxin-Ox 1.3 1.5 

Thioredoxin-red 2.1 2.5 

BPTI 1.5 0.9 

Total 2.0 1.9 

Table 7 RMSD of calculated intrinsic and apparent pKa before and after Wij.  
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                                                                                                            pKacalc                                                           ΔpKacalc-exp 

  

Proteins Residue pKamod pKaexp   = 4  = 10  = 20   = 4  = 10  = 20

Thioredoxin 

(red) 
ASP 26 3.86 9.9  10.2 6.7 5.2  0.3 -3.2 -4.7 

Thioredoxin 

(ox) 
ASP 26 3.86 8.1  9.3 5.5 4.5  1.2 -2.6 -3.6 

Staph. 

Nuclease 
LYS 66 10.53 5.6  4.1 7.5 9.2  -1.5 1.9 3.5 

Erabutoxin HIS 6 6.01 2.3  2.1 3.0 4.5  -0.2 0.8 2.3 

cytochrome c HIS 26 6.01 2.6  2.3 0.8 1.4  -0.3 -1.9 -1.2 

       RMSD  0.9 2.2 3.2 

Table 8 Large experimental pKa shifts and calculated pKa for those residues when 

charge-charge interactions are decoupled by neutralizing all other ionizable residues. 

Refer to Table 6 for the detail reference for experimental values. 

 

Proteins Residue ΔpKaexp ΔpKaint
calc Wij ΔpKaapp

calc 

Thioredoxin (r) ASP 26 6.0 5.5 0.8 6.3 

Thioredoxin (o) ASP 26 4.2 4.7 0.7 5.4 

Staph. Nuclease LYS 66 -4.9 -6.2 -0.2 -6.4 

Erabutoxin HIS 6 -3.8 -1.3 -2.7 -4.0 

cytochrome c HIS 26 -3.4 -3.3 -0.4 -3.7 

Table 9 Large experimental pKa shifts vs intrinsic pKa shifts, charge-charge interaction 

term(Wij), and apparent pKa shifts 
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Figure 8 Experimental vs calculated pKa for all 87 sites from the 7 proteins using four 

different dielectric constant, 4,6,10, and 20.  
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Figure 9 Experimental vs calculated pKa shifts from model pKa for all 87 residues from 7 

proteins using different  

 

 

 

3.3 Statistical sampling of conformations 

  Even though the results so far show that we can effectively predict the 

discriminative large pKa shifts at a low dielectric constant by decoupling charge-
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charge interactions, the overall accuracy is not satisfying with P= 4 for intrinsic 

pKa calculation. One important factor that has not been addressed so far is the 

effect of protein relaxation. We performed a MD simulation for each protein and 

took conformations every 1 ns to get statistically independent samples. All 

individual calculations are listed in Table 10 after averaging the pKa calculations 

at P= 4 and the overall summaries are listed in Table 11.  

Residue 
pKa

int Wij pKa
app pKa

exp 
ΔpKa

calc-

axp 
  

Residue 
pKa

int Wij pKa
app pKa

exp ΔpKa
calc-axp 

Lysozyme       BPTI      

ASP18 3.4 -1.4 2.0 2.7 -0.7  Asp3 4.2 -0.7 3.5 3.4 0.1 

ASP48 1.7 -1.3 0.5 2.5 -2.0  Glu7 7.0 -1.1 5.9 3.8 2.1 

ASP52 4.2 -0.7 3.5 3.7 -0.2  Lys15 10.6 -0.2 10.4 10.6 -0.2 

ASP66 1.9 -1.2 0.7 2.0 -1.3  Arg17 11.6 0.1 11.7 12.7 -1.0 

ASP87 3.1 -1.1 2.1 2.1 0.0  Arg20 12.2 0.3 12.5 13.9 -1.4 

ASP101 4.0 -1.0 3.0 4.1 -1.1  Lys26 10.2 -0.1 10.1 10.6 -0.5 

ASP119 3.3 -1.0 2.3 3.2 -0.9  Arg39 11.7 0.4 12.1 13 -0.9 

GLU7 4.1 -1.3 2.8 2.9 -0.1  Lys41 8.2 0.4 8.6 10.8 -2.2 

GLU35 4.9 -0.7 4.2 6.2 -2.0  Arg42 11.2 0.5 11.7 13.4 -1.7 

HSP15 5.6 -0.7 4.9 5.7 -0.8  Lys46 10.6 -0.1 10.5 10.6 -0.1 

RMSD     0.7  Glu49 4.3 -0.8 3.5 3.6 -0.1 

       Asp50 4.6 -1.1 3.5 3.0 0.5 

Barnase       Arg53 11.3 1.1 12.4 13.9 -1.5 

Asp8 2.3 -1.3 1.0 2.9 -1.9  RMSD     1.2 

Asp12 4.5 -1.0 3.5 3.8 -0.3        

His18 8.1 -0.2 7.9 7.9 0.0        

Asp22 4.3 -0.7 3.6 3.3 0.3  RNaseA      

Glu29 1.6 -1.1 0.6 3.8 -3.2  Glu2 4.6 -1.3 3.2 2.8 0.4 

Asp44 4.1 -0.6 3.5 3.4 0.1  Glu9 4.6 -0.5 4.0 4 0.0 

Asp54 2.3 -1.4 0.9 3.31 -2.4  His12 8.0 -0.6 7.4 6.2 1.2 

Glu60 4.8 -1.1 3.6 3.4 0.2  Asp14 3.6 -1.1 2.5 2 0.5 

Glu73 3.4 -1.3 2.1 2.1 0.0  Asp38 4.2 -1.4 2.7 3.5 -0.8 

Asp75 5.4 -1.3 4.1 3.1 1.0  His48 8.2 0.4 8.7 6 2.7 

Asp86 2.5 -1.0 1.5 4.2 -2.7  Glu49 4.0 -0.5 3.5 4.7 -1.2 

RMSD     1.6  Asp53 3.6 -0.7 2.9 3.9 -1.0 

       Asp83 4.6 -1.1 3.5 3.5 0.0 

Ovomucoid       Glu86 5.0 -0.9 4.1 4.1 0.0 
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Asp7 5.0 -0.4 4.6 2.7 1.9  His105 6.4 -0.3 6.1 6.7 -0.6 

Glu10 5.4 -0.8 4.6 4.1 0.5  Glu111 3.7 -0.9 2.8 3.5 -0.7 

Glu19 5.7 -1.1 4.7 3.2 1.5  His119 5.8 -0.7 5.2 6.1 -0.9 

Asp27 4.9 -1.2 3.7 2.3 1.4  Asp121 3.2 -1.2 2.0 3.1 -1.1 

Glu43 5.2 -0.3 5.0 4.8 0.2  RMSD     1.0 

His52 5.9 -0.2 5.8 7.5 -1.7        

     1.3        

             

TRX-red       TRX-ox      

Glu6 4.1 -0.1 4.0 4.8 -0.8  Glu6 3.6 -0.3 3.3 4.9 -1.6 

Glu13 4.2 -0.5 3.7 4.4 -0.7  Glu13 4.7 -0.7 3.9 4.4 -0.5 

Asp16 4.9 -0.2 4.7 4 0.7  Asp16 4.1 -0.5 3.6 4.2 -0.7 

Asp20 6.2 -1.2 5.0 3.8 1.2  Asp20 4.9 -1.3 3.6 3.8 -0.2 

Asp26 9.3 0.6 9.9 9.9 0.0  Asp26 8.3 0.9 9.1 8.1 1.0 

Glu47 4.3 -0.5 3.8 4.1 -0.3  Glu47 4.3 -0.9 3.5 4.3 -0.8 

Glu56 5.1 -1.1 4.0 3.3 0.7  Glu56 5.2 -1.1 4.1 3.3 0.8 

Asp58 2.4 -1.0 1.4 5.3 -3.9  Asp58 5.0 1.3 6.3 5.2 1.1 

Asp60 5.2 0.7 5.9 2.8 3.1  Asp60 2.8 -0.9 1.9 2.7 -0.8 

Asp61 3.7 0.0 3.7 4.2 -0.5  Asp61 3.2 -0.3 2.9 3.9 -1.0 

Asp64 3.5 -0.9 2.6 3.2 -0.6  Asp64 4.5 -0.1 4.4 3.2 1.2 

Glu68 5.6 -0.8 4.8 4.9 -0.1  Glu68 5.2 -1.1 4.1 5.1 -1.0 

Glu70 4.4 -0.9 3.5 4.6 -1.1  Glu70 4.4 -1.1 3.3 4.8 -1.5 

Glu88 5.6 -1.1 4.5 3.7 0.8  Glu88 6.5 -1.1 5.4 3.6 1.8 

Glu95 4.4 -1.4 3.0 4.1 -1.1  Glu95 4.2 -0.9 3.3 4.1 -0.8 

Glu98 5.3 -0.6 4.8 3.9 0.9  Glu98 5.5 -0.8 4.7 3.9 0.8 

Glu103 4.7 -0.5 4.3 4.4 -0.1  Glu103 4.3 -0.6 3.7 4.5 -0.8 

RMSD     1.4  RMSD     1.0 

Table 10 All individual calculations for 87 residues of 7 proteins after 20 ns of MD 

simulations. 20 conformations for every 1 ns were used and the average pKa were 

calculated. 
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Proteins <ΔpKa,int> <ΔpKa,app> ΔpKa,app
X-ray,P= 4 

Lysozyme 0.7 1.1 1.7 

RNaseA 1.1 1.0 1.5 

Ovomucoid 1.8 1.2 0.8 

Barnase 2.0 1.3 3.6 

Thioredoxin-Ox 1.1 1.0 1.2 

Thioredoxin-red 1.4 1.4 2.4 

BPTI 1.3 0.9 0.9 

Total 1.3 1.2 2.0 

Table 11 Summary of RMSD  of ΔpKa between experimental pKa and calculated intrinsic and 

apparent pKa  at , P= 4 by averaging them over trajectories from 10 ns of MD simulations. 

Wij is the averages of absolute values of the shifts by charge-charge couplings. For comparison, 

the result without MD simulation sampling is also listed  

   After sampling multiple conformations, the overall accuracy of the 

prediction was significantly improved from the results with only single structures. 

The majority improvements were achieved in intrinsic pKa calculation while the 

shifts by Wij were in the similar range as the calculations with single structures. 

Many other groups have incorporated Monte-Carlo simulation into PB model to 

take account for protein flexibilities.[25, 26, 48] Here, we also see the 

improvement by incorporating MD simulation into the PB method. Since we 

decouple charge-charge interactions and do conformational sampling, we should 

be able to use a small P which will compensate for only missing induced dipole 

interaction, quantum entities, or other small electrostatic effects that this model 

does not capture.   

  In detail, lysozyme, barnase, and reduced thioredoxin especially show 
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much smaller deviations from the experimental data when we use MD 

conformational sampling.  For example, in case of lysozyme without 

conformational sampling, even though there was a big improvement in pKa 

prediction for ASP66 compared to the classic PB method, big deviations of 2.7 

pKa unit from the experimental pKa was observed. This large errors was corrected 

to -1.3 unit error after the samplings. This residue is buried and surrounded by 

many hydroxyl group and a better desolvation effect could have been captured 

by MD simulations. Glu73 and ASP75 of barnase, which affected the overall 

accuracy significantly, also showed much improvement after the sampling. With 

the single X-ray structure, the deviations from experimental the pKa were 8.8 for 

GLU73 and 6.6 for ASP75 which is a very undesirable result. GLU73 which is 

exposed to solvent was corrected and this may be explained by correct dielectric 

boundaries obtained by MD samplings . ASP75 is a buried residue and very 

close to the side chain of ARG83 within 2 Å . In X-ray structure calculation, the 

intrinsic pKa showed extremely high shifts which suggests overestimation of the 

desolvation effect despite the presence of the arginine group nearby. The 

standard deviation of the intrinsic pKa of this residue over the trajectories was 

1.27 unit which is a larger fluctuation than most cases. Therefore, statistical 

sampling can resolve such errors that can appear in a static protein structure. 

These results indicate that the pKa of ionizable groups both on the surface and in 

the buried sites can be more reliably evaluated by considering protein relaxation 

effect.  

  Another way to evaluate the validity of MD conformational sampling is by 
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comparing pKa calculations between two different X-ray structures for the same 

protein to see if the results converge to each other. We used 2 PDB structures 

for hen egg lysozyme, 1HEL and 2LZT. The comparison of deviations from the 

experimental pKa is listed in Table 12. For both structure, better correlations with 

experimental data were obtained after MD sampling. Although the overall 

accuracy is similar to each other for single structures, opposite predictions for 

ASP66 were observed. The pKa’s of this group for both structures were predicted 

in the same direction after MD simulation. To see if the calculations converge 

regardless of the accuracy, the calculated pKa for 27 ionizable residues, including 

arginine, lysine, and histidines whose experimental pKa is not available, are 

plotted in Figure 10. It is clearly shown that the numbers were predicted in a 

more narrow range from each other with higher R2 value than when calculated 

with single structures. Therefore, MD conformational sampling also gets rid of the 

variability of single original structures and enables one to get more robust 

predictions.  

  Now, the question remains if large pKa shifts can be more accurately 

predicted with consideration of the protein relaxation effect. The predictions and 

comparisons with the results from single structure are listed in Table 13. 

Although the predictions for ASP 26 of both thioredoxin and LYS 66 of 

staphylococcal nuclease were improved, the predictions for two other histidine 

cases got worse. During the MD simulation, these two cases have been 

stabilized and the large pKa shifts were underestimated with the averaged 

structures. The difficulty of predicting pKa of histidines with MD conformational 
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sampling is discussed in detail later. Despite the worsen predictions for these 

histidines, the similar total RMSD was obtained and it was still shown to be better 

than the results at P= 10 with the classic PB method. As a result, our data show 

that our method is accurate in predicting both the large pKa shifts and other 

normal cases using low dielectric constants.  

  To verify that a low dielectric constant is more consistent when it takes 

account into the protein relaxation effect, in contrast to the classic PB model, we 

tested our model at P= 10 as well. (Table 14, 16)  As seen in Table 14, the 

values obtained at P= 10 were accurate and similar to those obtained at P= 4 

which shows that our method can use a small dielectric constant and still 

reproduce experimental pKa. Another important point is that there was much 

more improvement when looking at a comparison between single structures to 

averaged structures at P= 4 than at P= 10. This leads us to the question of null 

model again. Since we are already dealing with the protein relaxation effect, high 

dielectric constants would underestimate other missing electrostatic effects even 

more. This explanation is supported in the observed worsening for the 

predictions of large pKa shifts at P= 10 with the MD conformational sampling as 

seen in Table 15. Not only did the lower P predict these cases much more 

accurately, but the RMSD value observed at P= 10 was significantly worse than 

the results obtained with single structures which has been shown in Table 8. 
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  Therefore, we conclude that our method with MD conformational sampling 

can effectively and consistently predict pKa at P= 4  for both normal cases and 

large pKa shifts without having to worry about which dielectric constants we 

would need to use. 

 

 

    With conformation sampling   With single X-ray structure 

ID RES ΔpKa2lzt ΔpKa1hel   ΔpKa2lzt ΔpKa1hel 

18 ASP 0.7 -0.7  -1.0 -0.8 

48 ASP -1.5 -2.0  2.2 1.0 

52 ASP 1.0 -0.2  -1.0 0.2 

66 ASP -2.3 -1.3  -2.1 2.7 

87 ASP 0.4 0.0  0.4 0.6 

101 ASP 0.2 -1.1  0.0 -0.2 

119 ASP -1.0 -0.9  -0.9 -0.5 

7 GLU 0.4 -0.1  0.6 2.4 

35 GLU -1.1 -2.0  -1.4 -1.1 

15 HSE -0.1 -0.8  0.9 1.0 

RMSD   1.1 1.1   1.2 1.3 

Table 12 pKa calculation comparisons between 1HEL and 2LZT which are the same 

protein, hen egg lysozyme. Both single structure and MD simulation sampling were 

tested. Listed numbers are the deviations from experimental pKa. 
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Figure 10 Scattered plots of the calculated pKa of 2LZT vs 1HEL. Both single structure 

and MD simulation sampling were tested 

 

 

 
                                                                                                            pKacalc                                                           ΔpKacalc-exp 

  

Proteins Residue pKamod pKaexp  pKaint Wij pKaapp  ΔpKa,app ΔpKa,app
Xray 

Thioredoxin 

(red) 
ASP 26 3.86 9.9  9.3 0.6 9.9  0.0 0.3 

Thioredoxin 

(ox) 
ASP 26 3.86 8.1  8.3 0.4 8.7  0.6 1.2 

Staph. 

Nuclease 
LYS 66 10.53 5.6  6.5 -0.4 6.1  0.5 -1.5 

Erabutoxin HIS 6 6.01 2.3  6.1 -2.0 4.2  2.0 -0.2 

cytochrome c HIS 26 6.01 2.6  4.4 -0.2 4.2  1.5 -0.3 

       RMSD  1.1 0.9 

Table 13 Our methods with MD conformational sampling for large pKa shift cases  
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Proteins 
<Apparen> 

 = 4  
<Apparent> 

 = 10  
Apparent, 
X-ray,  = 4 

Apparent, 
X-ray,  = 10 

Lysozyme 1.1 1.0 1.3 1.2 

RNaseA 1.0 1.0 2.1 0.9 

Ovomucoid 1.2 0.8 0.8 0.6 

Barnase 1.3 1.0 1.5 1.6 

Thioredoxin-Ox 1.0 1.0 2.5 1.2 

Thioredoxin-red 1.4 1.4 0.9 1.7 

BPTI 1.2 0.4 3.6 0.3 

Total 1.2 1.0 1.9 1.2 

Table 14 RMSD between experimental pKa and the predicted pKa with our method at 

two different dielectric constants 

 

 
                                                                                                    pKacalc                                                           ΔpKacalc-exp 

  

Proteins Residue pKamod pKaexp   = 4  = 10   = 4  = 10

Thioredoxin 

(red) 

ASP 26 3.86 9.9  9.9 5.4  0.0 -2.7 

Thioredoxin 

(ox) 

ASP 26 3.86 8.1  8.7 6.3  0.6 -3.6 

Staph. 

Nuclease 

LYS 66 10.53 5.6  6.1 8.5  0.5 2.9 

Erabutoxin HIS 6 6.01 2.3  4.2 4.8  2.0 2.5 

cytochrome c HIS 26 6.01 2.6  4.2 0.5  1.5 -2.1 

      RMSD  1.1 3.3 

Table 15 RMSD between experimental pKa and the predicted pKa with our method at 

two different dielectric constants 
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3.4 Comparison to other benchmarks 

  After we verified the validity of our method, we compared our 

results to other benchmarks. First, since our method was motivated by Sham et 

al. [23] which decoupled charge-charge interactions in PDLD/S model and 

showed a very good agreement with experimental data, we evaluate our Wij 

comparing to the results in the previous work for lysozyme. (Table 15) No large 

perturbation by charge-charge interaction is observed in both predictions which 

are the desirable results as addressed in section 3.3. Our implementation has 

larger shifts for ASP52, ASP66, and ASP87. But for these cases, larger shifts 

help predict the experimental pKa better.  

  Now, we compare our model to two other PB based benchmarks 

The first is H++ which is a webserver where one can quickly calculate the pKa of 

a submitted protein. [18-20] As recommended by them as an optimal value, we 

used a single dielectric constant of P= 10. Another benchmark has been 

reported in Nielsen at al.[48] This work incorporated Monte-Carlo simulation 

sampling for protein relaxation effects using DelPhi II. They used dielectric 

constant of 8 for most of the calculations and 16 for special criteria. The 

comparisons are listed in Table 15. We could reproduce the similar accuracy to 

theirs using lower dielectric constant. However, to our tests with the classic PB 

model, H++ failed to reproduce the large pKa shifts.  
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residue Our Wij Sham et al. 

GLU7 -1.3 -1.4 

ASP18 -1.4 -0.9 

GLU35 -0.7 -0.5 

ASP48 -1.3 -1.0 

ASP52 -0.7 -0.1 

ASP66 -1.2 -0.6 

ASP87 -1.1 -0.5 

ASP101 -1.0 -1.3 

ASP119 -1.0 -1.0 

avg 1.1 0.8 
Table 16 Comparison of calculated Wij between ours and the results from Sham at al 

[23]  

 

Proteins Our method H++ Nielsen et al. 

Lysozyme 1.1(2.0) 1.0(1.6) 1.2(2.6) 

RNaseA 1.0(2.7) 1.1(2.5) 1.0(2.4) 

Ovomucoid 1.3(1.9) 0.7(1.0) 1.2(2.6) 

Barnase 1.6(3.2) 1.4(3.1) - 

Thioredoxin-
Ox 

0.9(1.8) 1.0(4.2) - 

Thioredoxin-
red 

1.0(3.9) 1.0(4.6) - 

BPTI 0.9(2.2) 0.8(2.2) 0.7(2.0) 

Total 1.2 1.4 1 

Table 17 Comparison of out method to other benchmarks. Listed numbers are RMSD 

from experimental data and the largest errors are listed in bracket 

 

3.5 Limitations and other challenges 

  While not the main focus of this study, we found several important 

discrepancies depending on the parameters set in the calculation. One is the 

dielectric boundary conditions. There are several ways to define the boundary 
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between proteins and solvents. It can be defined by either the van der Waals 

surface or molecular surface. Theoretically, even though using the molecular 

surface which takes account for accessibility of solvents is more physically 

sound, we often observed better accuracy when using the van der Waals 

surface. This has been previously addressed elsewhere.[25, 49]  We 

occasionally observed significantly large differences between two results with 

different boundary settings. In this study, we chose the conditions which 

generated the smaller perturbation for each protein.  

  Another difficulty we faced was the convergence problem in the 

calculation of Wij which resulted in unacceptable huge pKa shifts. It is likely that 

this was due to systemic errors caused by the sequential calculation for each 

residue. The Coulombic interaction energies were calculated in the order of the 

residue number as defined in the PDB file. As a result, the calculation can be 

trapped in a fluctuation between two numbers. This can be solved either by 

giving a different number of iterative steps to choose the smaller perturbation 

around 1 pKa unit shift or by calculating the energies in different order of the 

residues. However, more consistent method needs to be devised to effectively 

remove this problem. 

   We wanted to stress the pKa calculation of histidine. Many times, histidine 

should be treated in a special way since its side chain has two possible 

protonation sites(HSD and HSE) and it can have a flipped configuration. 

Especially, the calculated numbers can be very different between before and 

after MD conformational sampling. We usually calculate the pKa with single X-ray 
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structure first to start with the initial protonated states that have smaller pKa shifts 

which are suggested to be more stable. Then, MD simulation is performed with 

these states. However, it sometimes turns out that it actually becomes 

destabilized during the MD simulation and we have to perform the simulation with 

the other protonated states. This can be very crucial in the studies of proteins 

where histidine plays a very important role in protein stability and conformational 

change such as Dengue virus envelope protein.[50, 51] Similarly, glutamic acid 

and aspartate acid have two possible protonation sites in the carboxyl groups. 

Even though the alternative protonation does not matter during MD simulation in 

this case since they are simulated in charged states, significantly different pKa 

values are often observed in the calculation depending on which site is 

protonated. Thus, proper protonation site needs to be selected carefully.  

  Lastly, our implementation actually includes the calculations for 

serine and tyrosine but the results were not satisfying. One possible scenario is 

that CHARMM27 parameter defines the radius of protonated and deprotonated 

oxygen in their side chain in the same sizes. After trying different radius and 

partial charges, we found that the result is very sensitive to these parameter 

values. Also, more experimental data sets are required to evaluate the 

calculations for these two residues more reliably.  

Conclusions 

  This study presents a more reliable and robust calculation with 

PB methods by decoupling charge-charge interactions and incorporating explicit 
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MD conformational sampling.  Our method takes away the problem of adjusting 

dielectric constants which inevitably causes a loss of accuracy either in normal 

cases or large pKa shifts cases. We tested our method that incorporated the 

PDLD/S approach against the classic PB model which has been initially 

suggested by Warshel and coworkers. There have been a lot of efforts to 

improve the pKa prediction with PB model for decades by many other 

considerations such as optimizing hydrogen bond, other parameters, and, most 

importantly, trying to find an ‘optimal’ dielectric constant. Our work contributes to 

narrowing down these considerations by eliminating this dependence of dielectric 

constants in PB model.  
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Appendix A 

Linear Response Approximation 

It is necessary to consider protein reorganization and relaxation during the 

charge process. Linear Response Approximation(LRA) has been introduced and 

adopted by many electrostatic computation approaches to achieve it efficiently. 

[6, 23, 52] In LRA, it is assumed that the curvatures of the free energy graphs of 

two different charged states (Figure 4) are identical. Because λa = λb by this 

assumption, the following equation can be derived 

 Δ𝐺a→b =
1

2
[〈𝑉a − 𝑉b〉a + 〈𝑉a − 𝑉b〉b]      (1.6) 

where ‘a’ and ‘b’ designates non-charged and charged sates, respectively and < 

> represensts average values from a set of conformations using statistical 

mechanics with Monte Carlo or Molecular Dynamic simulations. However, the 

free energy associated with the non-charged state is neglectible compared to the 

charged state. Therefore, Eq 1.6 is further simplified as 

 Δ𝐺a→b ≅
1

2
〈∆𝑉〉b    (1.7) 
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Figure A. Two parabolas describe the function of the free energy of the non-

charged state(a) and the charged state(b). By the assumption of LRA, the 

curvatures of two free energy graphs are same. This leads to the linear 

relationship of <Vb - Va>a + Δ𝐺a→b =<Va - Vb>b - Δ𝐺a→b where 𝐺a→b is the free 

energy associated with the adiabatic charging process 

 


