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Abstract

Numerical methods for solving simple macroscopic traffic flow con-
tinuum models have been studied and efficiently implemented in traf-
fic simulation codes. The Lax method is an explicit method which
has been implemented to solve simple continuum model in the traffic
simulation package KRONOS. In this part of the project we studied
the implementation of the Lax method for solving a high-order flow
conservation traffic model on Parallel Computers. We wrote an ex-
perimental code in C to simulate a freeway traffic flow. Tests with
real data collected from the 1-35 W freeway in Minneapolis were con-
ducted on a workstation computer. We then implemented the high
order Lax method on a parallel machine and run tests with real data
collected from an 18-mile stretch of the 1-494 freeway. The parallel
implementation demonstrated significant execution time speedup.
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1 Introduction

Macroscopic continuum traffic models flow based on traffic density, flow and
velocity have been proposed and analyzed in the past. Examples include
Lighthill and Whitham's (1955) flow conservation model,

Payne's momentum model conservation model and Michalopoulos's mo-
mentum model [8], [12], [11]. These models involve partial differential equa-
tions (PDEs) defined on appropriate domains with suitable boundary condi-
tions which describe various traffic phenomena and road geometries.

The improvement of computational efficiency in the continuum traffic
models has been the focal point in the development of traffic simulation pro-
grams. It is understood that the computer execution time to solve traffic flow
problems depends not only on the size of the freeway and the complexity of
roadway geometries, but also on the model equations and numerical schemes
used in their discretization.

Explicit numerical methods (for example Lax, Upwind) have been used
by Michalopoulos and Lin and Leo and Pretty to compute the solution of
traffic flow continuum models [10], [7]. In these explicit schemes the space
and time mesh sizes are restricted both by accuracy and numerical stability
requirements. In order to reduce the computer execution time and maintain
good accuracy, the total number of computations must be reduced. This can
be achieved by using larger values of time and space mesh sizes. Implicit
numerical methods provide the same accuracy as explicit methods and allow
changes in the mesh sizes while maintaining numerical stability (see [3], [4],
[5]).

In this work we use the Lax method to solve more efficiently the momen-
tum conservation model on a parallel computer. We wrote an experimental
code in C simulating a freeway traffic flow. Tests with real data collected from
the 1-35 W freeway in Minneapolis were conducted. These data have been
collected by the Minnesota Department of Transportation. Using these data
we tested (for accuracy and efficiency) our code on a Sun Sparcl workstation
computer. We then implemented efficiently the Lax-Momentum method on
the (16 processor) NCUBE2 parallel computer located at the Department of
Computer. Each processor of the NCUBE2 is as powerful as a SUN 3/50
workstation. We run tests with real data from the 1-494 freeway in Min-
neapolis. On the NCUBE2, the parallel Lax-Momentum method on the 16
processors run 13 times faster than on the one processor.
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The outline of this article is as follows. In section 2, we review the mo-
mentum conservation continuum traffic model. In section 3, we review the
the Lax method. In section 4, we describe the various theoretical and em-
pirical curves relating the traffic flow and density. In section 5, we describe
the freeway model. In section 6, we describe the parallel implementation of
the Lax method. In section 7, we present the numerical results. Section 8
contains concluding remarks.

2 A Simple and High-Order Continuum Model
of Traffic Flow

The following conservation equation has been proposed by Lighthill and
Whitham (1995) [8] as a simple continuum traffic model:

ak 9q+  -= (,), (1)

where k(x, t) and q(x, t) are the traffic density and flow respectively at the
space-time point (x, t). The generation term g(x, t) represents the number of
cars entering or leaving the traffic flow in a freeway with entries/exits. The
traffic flow, density and speed are related by the equation:

q = ku, (2)

where the equilibrium speed u(x, t) = u(k) must be provided by a theoretical
or empirical u-k model. The theoretical u-k model, equation of state, can
take the general form.

Ue = Uf[l - (k/kjam)a]1, (3)

where uf is the free flow speed and kjam the jam density [2]. For instance, for
a = 1 and / = 1, one obtains the Greenshield's(1934) equation of state. More
information on this and other forms of the u-k relationships can be found
elsewhere (Mcshane and Roess 1990) ( see [9]). Since the simple continuum
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model does not consider acceleration and inertia effects, it does not faithfully
describe non-equilibrium traffic flow dynamics.

The high-order continuum formulation takes into account acceleration
and inertia effects by replacing Equation (3) with the momentum equation
(Eq. 4).

du 1 Qu _ k
u [uf(x) - u] - G - vckx (4)dt T at 09

where d is the acceleration of an observer moving with the traffic stream and
is related to the acceleration t of the traffic stream as seen by an observer
at a fixed point of the road, i.e.

du Ou Qu+= + - (5)dt at zax

The first term on the right hand side of Eq. 4, #[uf(x) - u], represents the
relaxation term, the tendency of traffic flow to adjust speeds due to changes
in uf(x) along the roadway, where relaxation time T is assumed to vary with
density k according to

rk
T = to(l + rk (6)

kjam - rk

where to > 0 and 0 < r < 1 are constants. The second term, G ' , addresses
the traffic friction at freeway ramp junctions due to ramp flows. G is the
friction parameter. It is a function of both roadway conditions and the
ramp volume entering or leaving the freeway and is derived experimentally
as G = Ikc'g, where p is a geometry parameter depending on the type of
road geometry, c is a dimensionless constant, and g is the generation term.
The third term, vk , represents the anticipation term which is the effect
of drivers reacting to downstream traffic conditions. In this term v is the
anticipation paramter. As implied in this example, if downstream density is
higher due to congestion, speed has to be decreased accordingly. Conversely,
if downstream density is lower, speed can be increased. From equations (4)
- (6) one derives a momentum model for the traffic flow described by the
following system of PDEs.

aU (EI -=2  (7)+t ax



where U, E, and Z are the following vectors:

U=
q( )ku

E - U k+ k *+(+2

T[u(x)- - u Gk +gu

We note that the momentum conservation model does not require a q - k
curve as in the case of the simple continuum model. However speed data
are not available from the the real traffic data then a q - k curve is used to
generate the speed data.

3 Numerical Methods

We consider one high-order explicit method (Lax) and one high-order implicit
method (Euler implicit ) which are used in computational fluid dynamics [3].
For each traffic model the road section (the space dimension) is discretized
using uniform mesh for all numerical methods; only the time stepsizes differ
between methods. We use the following notation:

At = time stepsize.

Az = space stepsize.

kj = density (vehicles/mile/lane) at space node jAx and at time nAt.

q7 = flow (vehicles/hour/lane) at space node jAx and at time nAt.

u = speed (mile/hour) at space node jAx and at time nAt.



3.1 Lax Method

The high-order Lax method is an explicit method. The new density value
k + 1 and flow value q74+ are computed directly from the density and flow at
the preceding time step n:

- U" _ + U At E" - E" At
U+ 2 + 2-1 _ -(Zj+ 1 + Zj- 1). (8)

The method is of first order accuracy with respect to At, i.e. the error
is O(At). To maintain numerical stability time and space stepsizes must
satisfy the CFL condition A > ul, where uf is the free flow speed. For
example in the KRONOS traffic simulation code (using Lax) Az = 100feet
and At = lsec are recommended.

4 Volume-Density (q-k) Model Curves

A q - k model curve is an indispensable part of the simple continuum model.
This relation can be used to express the flow rate as a function of the flow
density i.e. q = q(k). This function is a nonlinear function which must
satisfy some general requirements. The equations that define the q - k curve
are used in the programs to convert from density to flow and from flow to
density. The Momentum Traffic Flow Model does not require a q - k curve.
However, if the speed data are not available from the traffic data then a q - k
curve is used to compute the traffic speed.

These general requirements on the q - k curve can be derived from the
following observations on traffic flow modeling [9].

* For uncongested flow an increase in density corresponds to an increase
in flow, up to a critical density k,, where the flow becomes congested.

* Maximum flow occurs at the critical density: qma = q(kc).

* For congested flow an increase in density corresponds to a decrease in
flow, up to the jam density kjam, where flow stops.
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A q-k model curve must also be adapted to characteristics of the freeway
section which it represents. Theoretical q-k model curves can not be adapted
to the special roadway characteristics and so such a model function must be
constructed from empirical data. Greenshields q-k curve is derived from
equations (2) and (3) and appropriate choices for the free flow speed Uf and
jam density kjam = ko. In our applications we chose uf =(60 miles/hour)
and ko =(180 vehicles/mile). The Greenshields curve has the basic features
described above but can not be tuned to local characteristics of a freeway
section. However, we used Greenshield's q-k curve in the initial development
of the programs and as a baseline for comparisons.

4.1 Experimental q-k Model Curves
Field data for constructing the q-k model curve were collected in 1-35 W
in Minneapolis. With these discrete data a piecewise linear q-k curve was
derived [11]. Such a curve must have parameter ranges reflecting the road
characteristics of the freeway section it represents [?]. With our discrete data
the experimental q-k curve must have following parameter ranges:

* The critical density kc should be about 70 to 75 vehicles/mile/lane.

* The maximum flow qma, should be less than 2500 to 2700 vehicles/hour/lane.

* The slope of the curve at k = 0, which represents the free-flow speed
uf, should be approximately 65 to 75 miles/hour.

We have used several curve fitting methods to construct continuous q-k
curves from the set of (k, q) discrete data points available. Our objective
was to find a general method that produces a curve which is based on the
discrete data, has the basic features of a q-k curve, has the parameter ranges
(described above), and also works well in the numerical methods for solving
(1). We used three different methods piecewise linear, cubic spline, and
least squares to approximate q-k curves from field data.

The simplest method consists of connecting the q-k data points with
straight line segments, yielding a piecewise linear q-k curve. This is a
continuous curve that passes through all data points but the slope of the
curve (which is used in the implicit methods) is discontinuous at the line
segments intersections.



In an effort to find a curve that interpolated all of the q-k data points and
that also had a continuous first derivative, we constructed a cubic spline.
The cubic spline is a collection of third-degree polynomials, one polynomial
for each interval between q-k data points. We tested both clamped (slope at
endpoints is specified) and natural (slope at endpoints is unspecified) splines
and found that for our field data set the splines were nearly identical. All
cubic spline programs used the natural cubic spline.

Finally, several least squares approximations were tried. In this method
the data points (ki, qi) are used to construct a rectangular matrix with row
i composed of powers of ki and a right-hand-side vector containing the qi.
Then the matrix is reduced using the singular value decomposition method
(SVD) available in the LINPACK package or the Matlab package [1]. The
reduced matrix is then used to find the coefficients of the curve that mini-
mizes the total squared error between the data points and the curve. This
method will produce curves of any degree up to the number of data points.
Quadratic, cubic and quartic least-squares polynomial curves were found us-
ing the Matlab's (SVD). The quartic curve

q = -1.7156 x 10-5k 4 + 7.1802 x 10-3k 3 - 1.2514k2 + 94.8463k - 69.1588

appeared to be the lowest-degree least-squares approximation to the discrete
data that satisfies the q-k curve criteria. This quartic polynomial must be
evaluated at each node for each time step so it is important to use a polyno-
mial of the least degree. The choice of q-k curve was found to have a large
effect on the stepsize selection of the implicit methods. Implicit methods us-
ing the smooth q-k curves generated by the least squares and Greenshield's
methods were able to use larger time steps than the programs using cubic
spline or piecewise linear curves.
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4.2 Density estimation using occupancy

Ld

Figure 1. Density/Occupancy calculation from vehicle relative positions
Lane occupancy is defined as the time that detector is on divided by

the measured time and multiplied by 100. The value of lane occupancy is
available from the single detector installed under the freeway pavement. If
we assume that the speed of the vehicle is constant during measurement time
and each vehicle's length is the same, we can derive the relationship between
density and occupancy.

k = 52.8 x , where effective length Le = fil(,Ld) ,=lane occu-Le )- N . aoc
pancy, Li=vehicle length, Ld=intervehicle distance.

5 Freeway Model with Multiple Entries/Exits

We considered two multiple entry/exit freeways

* A section of I-35W Northbound for the workstation implementation

* A section of 1-494 Eastbound for the parallel computer implementation

The I-35W roadway geometry is presented in Figure (2). The upstream
and downstream boundaries were set at the location of the 86th street and
the 63th street. It has two weaving sections at the first two entry/exit zones
as shown in Figure(2). Data were collected by the Minnesota Department of
Transportation on November 7, 1989 for I-35W. We have used two schemes to
add merge/diverge traffic volumes to the mainlane traffic flow and density. 1)
Ramp volumes are assumed to merge into(diverge from) the mainlane freeway
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at a single node. This treatment is necessary to simplify the modelling and
reduce computation time at such mainlane nodes. 2) Ramp volumes are
assumed to merge evenly into(diverge from) the mainlane freeway at the
acceleration/deceleration nodes. The road geometry of 1-494 is similar. The
1-494 Eastbound section extends from the Carlson Pwy to Portland Avenue.

- A - V V3 ----- B

Figure 2. Weaving flows in a freeway

In Figure (2), flow vi represents the through traffic stream flow in from
link A to link B and flow v2 represents the diverging stream from link A to
link F, where qA = vI + v2; v3 is the merging stream from link E to link
B and flow v4 is the through stream from link E to link F, and qE = 3 +
v4. It is obvious that qF = v2 + v4 and qB = v1 + v3 . Because there are
interchanges of v2 and v3 , traffic friction at link B and link E in this case
is greater than the case of a single entrance ramp or exit ramp. Likewise,
merging dynamics at an entrance ramp should be employed if v2 = 0.

When L is less than 600ft, merging and diverging movements must be
completed within a short distance. In such a case a net value of the merging
and exiting flows is sought for flow conservation, g = qet / Ax = ( q, - qot)
/ Ax , where q, and qot are the merging and exiting flows. If g > 0, the
short weeving section is treated as a single on ramp, if g < 0, it is treated
as a single on-ramp. However, since both q, and qt require lane changing
at the same limited length of roadway at the same time, the sum of q' and
q"ot should be included in the generation term.

10

0



Operation Time Comm/Comp
8 Byte transfer 111 A sec-

8 Byte Add 1.23 Asec 90 times
8 Byte Multiply 1.28 /sec 86 times

Table 1: Computation and Communication times on the NCUBE2

6 Parallel Lax
We have implemented the Lax - Momentum method on the NCUBE2 par-
allel computer at the Department of Computer Science of the University of
Minnesota. The NCUBE2 has 16 processors connected in a hypercube net-
work and a host (Sun 3/50) computer for interaction with the user. The
number of (N) processors to be active is chosen by the user, but must be
a power of 2. The host computer allocates N processors arranged in an
m-dimensional hypercube, where m = logz N. Each of the N processors is
directly connected to m other processors. In table 1 we show a summary
of inter processor communication times and basic floating point operation
times [6]. We see that communication even between neighbor processors
is several times slower than floating point operations. Programs run most
efficiently when inter processor communication is minimized and when all
communication occurs between neighbor processors.

In the parallel implementation of the Lax-Momentum method we parti-
tion a freeway section into N (equal) segments and assign each segment to
one processor, for N = 1 and 16. Boundary data, upstream and downstream
traffic volume and speeds are stored in processor 0 and processor 15 respec-
tively. At each time step the values for density and flow at the segment
boundary points must be exchanged between processors. Road boundary
conditions are handled by the processors assigned the upstream and down-
stream segments. When the computations are completed the processors with
check station send their output to screen or outfile.

We have tested this implementation with eighteen mile stretch of inter-
state highway 1-494. This 1-494 East Bound data has twenty one on-ramps
and eighteen off-ramps and twenty six test sites. Each processor only has 17
nodes to simulate. We used At = 1sec, total simulation time = 7200 sec,
and Ax = 200 ft.
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7 Results

The following statistics are used to measure the effectiveness of the simulation
quantitively.

1 N
Mean Absolute Error = -. IObserved - Simulated (9)

it=1

1 " ]Observed - Simulatedj
Mean Relative Error = - 1 -erved- Simuatd (10)

S= Observed

, . (Observed - Simulated)2 ]1/2Maximum Relative Error with 2-Norm = [--x 1(Ob - Simul
Eix Observed2

(11)

where N is the number of observations.

Standard Deviation = N[(Observed- Simulated)2 ] 2  (12)
i=1

The arrival and departure pattern for the tests with I-35W North and
are shown in Figures (3), (4) and for the tests with 1-494 East in Figures (5)
and (6) respectively. To test the program, the time stepsize selection was
made as follows. For the Lax method we set At = lsec. This is required
to maintain numerical stability. We measured the error of the simulation
on I-35W with weaving for the freeway weaving ramps and with average and
point merging schemes. The error statistics are summarized in tables (2),(3),
(4) and (5). The errors are very reasonnable for the volume but are higher
for the speed measurements. From the tables (2) and (4), we can see small
improvement at the test site 1 and 2 when we apply the point weaving at the
weaving area. The overall average relative error in traffic volume is about 10
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percent. There is little difference between using Average merge/exit scheme
and point merge/exit scheme in traffic volume error as we see in test sites 3,
4, and 5 of tables (2) and (4).

The table (6) shows each processor's execution time (in secs) for simu-
lating 18 mile's interstate highway 1-494 using 16 processors. The Sixteen
processors' execution time is about 13 times faster than that of single pro-
cessor's execution time since single processor's execution time is about 20
sees.

8 Conclusions

We studied a high-order continuum models using an explicit (Lax) method.
We wrote an experimental code in C simulating a freeway (un)congested
pipeline and freeway entry/exit traffic flow. Tests with real data collected
from the 1-35 W freeway in Minneapolis were conducted on a workstation
computer. The Lax explicit method were used to simulate the eight mile
stretch of I-35W freeway section for which we have real data. We have
also implemented efficiently the Lax-Momentum method on a (16 processor)
NCUBE2 parallel computer. The single processor of the NCUBE2 is as
powerful as a workstation processor. The parallel Lax-Momentum method
was 13 times faster than the single processor one. This implementation shows
there is a lot of potential in applying parallel processing to carry out real time
traffic simulations.
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1-2 sites with weaving, 3-5 sites with Average Entry/Exit scheme.
Lax dt = Isec, Volume error (veh/5min)

Sites Maximum Max. Rel. 2 - Norm Average Average Rel. Std. Dev.
1 56.7 0.17 0.10 30.4 0.10 32.5
2 64.8 0.24 0.10 20.6 0.08 26.7
3 40.0 0.14 0.09 22.7 0.08 24.5
4 48.4 0.17 0.11 26.9 0.10 29.4
5 47.1 0.14 0.09 21.6 0.09 24.4

Table 2. Error statistics for Traffic flow

1-2 sites with weaving, 3-5 sites with Average Entry/Exit scheme.
Lax dt = lsec, Speed error (mile/hour)

Sites Maximum Max. Rel. 2 - Norm Average Average Rel. Std. Dev.
1 17.4 0.31 0.26 12.8 0.25 13.0
2 17.0 0.32 0.24 10.3 0.22 11.0
3 14.3 0.23 0.15 8.2 0.15 8.53
4 13.5 0.25 0.23 12.4 0.23 12.4
5 19.9 0.36 0.34 18.1 0.33 18.2

Table 3. Error statistics for Traffic speed

1-2 sites without weaving, 3-5 sites with Point Entry/Exit scheme.
Lax dt = lsec, Volume error (veh/5min)

Sites Maximum Max. Rel. 2 - Norm Average Average Rel. Std. Dev.
1 58.0 0.18 0.11 32.1 0.11 33.86
2 58.5 0.21 0.09 18.8 0.07 24.10
3 40.1 0.14 0.09 22.7 0.08 24.6
4 48.6 0.17 0.11 27.0 0.10 29.6
5 47.3 0.14 0.09 21.8 0.09 24.6



Table 4. Error statistics for Traffic flow

1-2 sites with weaving, 3-5 sites with Point Entry/Exit scheme.
Lax dt = lsec, Speed error (mile/hour)

Sites Maximum Max. Rel. 2 - Norm Average Average Rel. Std. Dev.
1 17.3 0.31 0.26 12.8 0.25 13.01
2 17.0 0.32 0.24 10.2 0.22 10.98
3 14.3 0.23 0.15 8.18 0.15 8.52
4 13.5 0.25 0.23 12.4 0.23 12.42
5 19.9 0.36 0.34 18.1 0.33 18.22

Table 5. Error statistics for Traffic speed

Processor Parallel Execution time
0 21.34
1 22.65
2 22.65
3 22.77
4 22.61
5 22.69
6 22.65
7 22.77
8 22.66
9 22.75
10 22.69
11 22.88
12 22.76
13 22.75
14 22.83
15 21.25

Table 6. Computation times (in secs) on the NCUBE2 processors
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Traffic Flow Simulation Through Parallel
Processing

Final Research Report

September 26. 1991

Abstract

Explicit numerical methods for solving macroscopic traffic flow
continuum models have been studiedand efficiently implemented in
traffic simulation codes. We studied and implemented implicit numer-
ical methods for solving the flow conservation traffic model. We then
wrote an experimental code in C simulating a freeway (un)congested
pipeline and freeway entry/exit tratficiow. Tests with real data col-
lected from the 1-35 W freeway in Minneapolis were conducted on a
workstation computer. The implicit methods gave the same (and in
some cases better) accuracy as the Lax method. The implicit methods
were (more than twice) faster than the Lax method. We also imrple-
mented the Lax method on a parallel machine and obtained significant
execution time reduction.
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1 Introduction

Macroscopic continuum traffic models flow based on traffic density, flow and
velocity have been proposed and analyzed. Examples include Lighthill and
Whitham's (1955) flow conservation and Payne's momentum conservation
models [6]. [11]. These models involve partial differential equations (PDEs)
defined on appropriate domains with suitable boundary conditions which
describe various traffic phenomena and road geometries.

The improvement of computational efficiency in the continuum traffic
models has been the focal point in the development of traffic simulation pro-
grams. It is understood that the computer execution time to solve traffic flow
problems depends not only on the size of the freeway and the complexity of
roadway geometries, but also on the model equations and numerical schemes
used in their discretization.

Explicit numerical methods (for example Lax, Upwind) have been used
by Michalopoulos and Lin and Leo and Pretty to compute the solution of
traffic flow continuum models [8]. '.5!. In these explicit schemes the space
and time mesh sizes are restricted both by accuracy and numerical stability
requirements. In order to reduce the computer execution time and maintain
good accuracy, the total number of computations must be reduced. This can
be achieved by using larger values of time and space mesh sizes. Implicit
numerical methods provide the same accuracy as explicit methods and allow
changes in the mesh sizes while maintaining numerical stability [3].

In this work we use implicit numerical methods (Backward Euler, Trape-
zoid) to solve more efficiently the flow conservation model. We wrote an
experimental code in C simulating a freeway (un)congested pipeline and free-
way entry:exit traffic flow. Tests with real data collected from the 1-35 W
freeway in Minneapolis were conducted. These data have been collected by
the Department of Civil Engineering at the University of Minnesota and the
Minnesota Department of Transportation. Using these data we tested (for
accuracy and efficiency) the implicit methods against the Lax method on a
Sun Sparci workstation computer. The implicit methods yielded the same
(or better accuracy) as the Lax method and they were (more than twice)
faster than the Lax method. We have also implemented efficiently the Lax
method on the (64 processor) NCUBE/7 parallel computer located at the
Department of Computer. Each processor of the NCUBE/7 is as powerful
as a SUN 3/ 50 workstation. On the NCUBE/7, the parallel Lax method on



the 64 processors run 25 times faster than on the one processor.
The outline of this article is as follows. In section 2, we review the flow

conservation continuum traffic model. In section 3. we review the Euler im-
plicit, Trapezoidal and Lax methods. In section 4, we describe the various
theoretical and empirical curves relating the traffic flow and density. In sec-
tion 5, we describe the congested/uncongested and entry/exit freeway mod-
els. In section 6, we describe a parallel implementation of the Lax method.
In section 7. we present the numerical results. Section 8 contains concluding
remarks.

2 A Continuum Model of Traffic Flow

The following conservation equation has been proposed by Lighthill and
\hitham i1995) [6] as a continuum traffic model:

ak 6o
--- I g. (1)at 0X

where kix. t) and q(x.t) are the traffic density and flow respectively at the
space-time point (x. t). The traffic now. density and speed are related by the
equation:

q = ku. (2)

where the equilibrium speed u(x. t = u(k) must be provided by a theoretical
or empirical u-k model. For the Greenshields u-k model

u(k) = (1 k/k), (3)

where uf is the free flow speed and kco the jam density [2]. The generation
term g(x. ti represents the number of cars entering or leaving the traffic flow
in a freeway with entries/exits.

3 Numerical Methods

We consider one explicit method (Lax) and two implicit methods (Euler
implicit and Trapezoidal) which are used in computational fluid dynamics [31.



For each traffic model the road section (the space dimension) is discretized
using uniform mesh for all numerical methods: only the time stepsizes differ
between methods. We use the following notation:

At = time stepsize.

Ax = space stepsize.

k0 = density (vehicles/mile/lane) at space node jAx and at time nAt.

q = flow (vehicles/hour/lane) at space node j,.x and at time nAt.

3.1 Lax Method

The Lax method is an explicit method. The new density value k*+1 is com-
puted directly from the density and flow at the preceding time step n:

n k+ k~ 1  t t q 1  -- l t q .. 2.2 2 r (3 -g ̂  )- (4)

The method is of first order accuracy with respect to At, i.e. the error
is O(At). To maintain numerical stability time and space stepsizes must
satisfy the CFL condition - > Uf, where uf is the free flow speed. For
example in the KRONOS traffic simulation code (using Lax) zx = 100feet
and At = isec are recommended.

3.2 Euler Implicit

The Euler impiicit method applied to the nonlinear PDE (1) generates a
nonlinear recursion involving all space nodes at each time step. To solve nu-
merically this recursion Beam and Warming have suggested using one New-
ton linearization steps [3]. Each Newton step constructs a tridiagonal linear
system with unknowns iAk; = k l' - k+ .

\x( ,-( j+1
Ž^ke-.+ - .)+ =(^.- )·
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This tridiagonal linear system is solved by a variant of the Gaussian elimina-
tion called the Thomas algorithm. The solution is then advanced to the next
time step simultaneously at all space nodes by computing kj +1 = kj + Akj.
This method is of first order accuracy with respect to At and it is uncondi-
tionally stable.

Artificial smoothing is often added to reduce oscillatory behavior in the
numerical solution. This is achieved by adding a fourth order damping term
d- to each term kI

d =-I (kj_ 2 - 4ky.i +- 6k4 - 4kj+1 + kj+ 2)
J S

\We have tested several damping coefficients from w = 0 (no damping) to
= i. The choice w = 1 gave the best results.

3.3 Implicit Trapezoidal Method

The Trapezoidal method is identical to the Euler implicit method except for
the constants used in the tridiagonal linear system equations.

dq At dq " j+ =', Akj_ + Ak, + Ak+ 1 =. I x AA dkj+

At (q) - q-) + (A+t - 1i)

It is of second order accuracy with respect to At and unconditionally stable.
However. for discontinuous problems Euler Implicit may yield more accurate
results. As with the Euler method. explicit damping is added at each time
Ztep. VWe note that the Trapezoidal and the Euler implicit methods require
also the comrutation of the Jacobian dqidk. It is clear that these methods
involve more computations per time step than Lax. However, they allow
much larger stepsizes which may make them overall faster than Lax.

4 Flow Rate-Flow Density (q-k) Models

. u-k model (see (2) and (3) above) is an indispensable part of the flow
conservation model. This relation can be used to express the flow rate as
a function of the flow density i.e. q = q(k). This function is a nonlinear
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function which must satisfy some general requirements. The equations that
define the q-k curve are used in the programs to convert from density to flow
and from flow to density.

These general requirements on the q-k curve can be derived from the
following observations on traffic flow modeling [7].

* For uncongested flow an increase in density corresponds to an increase
in flow. up to a critical density kv, where the flow becomes congested.

* Maximum flow occurs at the critical density: q,,m = q(ke).

* For congested flow an increase in density corresponds to a decrease in
flow. up to the jam density kam, where flow stops.

A q-k relation model must also be adapted to characteristics of the freeway
section which it represents. Theoretical q-k models can not be adapted to
the special roadway characteristics and so such a model function must be
constructed from empirical data. Greenshields q-k curve is derived from
equations (2) and (3) and appropriate choices for the free flow speed uf and
jam density km = ko. In our applications we chose u/ =(6& miles/hour)
and ko =f(1SO vehicles/mile). The Greenshields curve has the basic features
described above but can not be tuned to local characteristics of a freeway
section. However, we used Greenshield's q-k curve in the initial development
of the programs and as a baseline for comparisons.

4.1 Experimental q-k Models

Field data for constructing the q-k model were collected in 1-35 W in Min-
neapolis. With these discrete data a q-k curve was derived (9],{10]. Such a
curve has the following parameter ranges:

* The critical density k, should be about 40 to-45 vehicles/mile/lane.

* The maximum flow qmax should be less than 2500 to 2700 vehicles/hour/lane.

* The sope of the curve at k = 0, which represents the free-flow speed
uf, should be approximately 65 to 75 miles/hour.
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We have used several curve fitting methods to construct continuous q-k
curves from the set of (k, q) discrete data points available. Our objective
was to find a general method that produces a curve which is based on the
discrete data. has the basic features of a q-k curve, has the parameter ranges
(described above), and also works well in the numerical methods for solving
(1). We used three different methods piecewise linear, cubic spline, and
least squares to approximate q-k curves from field data.

The simplest method consists of connecting the q-k data points with
straight line segments, yielding a piecewise linear q-k curve. This is a
continuous curve that passes through all data points but the slope of the
curve (which is used in the implicit methods) is discontinuous at the line
segments intersections.

In an effort to find a curve that interpolated all of the q-k data points and
that also had a continuous first derivative, we constructed a cubic spline.
The cubic spline is a collection of third-degree polynomials, one polynomial
for each interval between q-k data points. \Ve tested both clamped (slope at
endpoints is specified) and natural (slope at endpoints is unspecified) splines
and found that for our field data set the splines were nearly identical. All
cubic spline programs used the natural cubic spline.

Finally, several least squares approximations were tried. In this method
the data points (ki, qi) are used to construct a rectangular matrix with row
i composed of powers of ki and a right-hand-side vector containing the qi.
Then the matrix is reduced using the singular value decomposition method
(SVD) available in the LINPACK package or the Matlab package [1]. The
reduced matrix is then used to find the coefficients of the curve that mini-
mizes the total squared error between the data points and the curve. This
method wiil produce curves of any degree up to the number of data points.
Quadratic. cubic and quartic least-squares polynomial curves were found us-
ing the M.atiab's (SVD). The quartic curve

q = -1.7156 x 10'k 4 - 7.1802 x 10 - 1.2514k2 + 94.8463k - 69.1588

appeared to be the lowest-degree least-squares approximation to the discrete
data that satisfies the q-k curve criteria. This quartic polynomial must be
evaluated at each node for each time step so it is important to use a polyno-
mial of the least degree.

The choice of q-k curve was found to have a large effect on the stepsize
selection of the implicit methods. Implicit methods using the smooth q-k



curves generated by the least squares and Greenshield's methods were able
to use larger time steps than the programs using cubic spline or piecewise
linear curves.

5 Freeway Traffic Models

Three models of freeway traffic flow were used to test the numerical methods
described above. Each model consists of a section of a single-lane freeway.
The data sets used with each model give the number of vehicles counted
crossing each boundary (all lanes) during each 5-minute interval. In all mod-
els these numbers. vehicles/5 minutes, are then multiplied by 12 and divided
by the number of lanes to yield an average single-lane flow rate in vehi-
cles/hour/lane. The field data are collected as follows: A detector is placed
at a check station which counts the volume of cars passing that road point
every 5 minutes. Check stations are set at the upstream and downstream
boundaries and at one more locations in the freeway stretch in between.
These measurements provide a flow-time function. This function has the
form of a step function. The flow at the boundaries is used to set up the
boundary conditions of the PDE (1). The flow at intermediate points is used
to compute the deviation of the computed model solution from the field data.

In our modeling we distributed linearly the flow within the 5 minute in-
tervals. The resulting boundary flow-time function is piecewise linear. In the
programs boundary flow rates are converted to density (vehicles/mile/lane)
using a q-k relation. This gives boundary density-time functions which are
piecewise linear. This is implemented as follows. At each time step the
boundary densities must be assigned to the boundary nodes (upstream and
downstream), and then the boundary flow is determined from the density.
In these programs the boundary density at each time step is found by linear
interpolation between the known density values at t = 5 min, 10 min, etc.
Then boundary flow is found at the point on the q-k curve corresponding to
the boundary density.

5.1 Uncongested Pipeline

The uncongested pipeline freeway traffic model consisted of a 4000-ft seg-
ment of a 2-lane freeway. In this model the road segment contains no entry
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or exit ramps and the traffic flow is always uncongested. This was the Min-
neapolis 1-35 W northbound between the 76th and the 70th streets with a
check station located at the 73rd street. The field data table 2 contains traf-
fic flow measurements (vehicles/5 minutes/2 lanes) made at the upstream
and downstream boundaries and at a check station point 2000 ft from the
upstream boundary. Observations were recorded at 5-minute intervals over
a span of 2 hours. These field data have also been used in [9],[10].

5.2 Congested Pipeline

The congested pipeline model allows both congested and uncongested flow
in a road segment without entry or exit ramps. The data used in this model
was taken from observations of 3600-ft segment of 4-lane freeway. This was
the Minneapolis 1-35 WV southbound between the 26th and the 31th streets
with a check station at the 28th street. Traffic flow measurements (vehicles/5
minutes/4 lanes) were made at the upstream and downstream boundaries and
at a check station point 1600 ft from the upstream boundary. Along with
the flow measurements. the state of congestion (uncongested or congested)
at the boundaries was also recorded. Observations were recorded at 5-minute
intervals over a span of 2 hours and 40 minutes. These field data have also
been used in [9].[10!.

The field data table 3 for the congested model represents a road section
that changes from uncongested to congested flow and remains congested for
approximately 2 hours. then changes from congested to uncongested flow.
For each numerical method that we tested the largest error occurred in the
second congestion-change interval, where flow changes from congested to
::ncongested. The next largest error occurred at the first congestion-change
interval.

In the implicit methods programs we used a large time step in the in-
tervals where congestion remains constant and we used a small time step
in congestion-change intervals, to minimize the error in those intervals. In
addition to the decrease in the time step we used repeated iterations (ex-
traNewton steps) in the congestion-change intervals. The implicit methods
yielded considerably smaller maximum errors after these improvements were
made to the codes.



5.3 Entry/Exit

The entry/exit freeway is a section of I 35-W northbound in Minneapolis.
The upstream/downstream boundaries were set at the location of the 55th
street and the 46th street, respectively. The uncongested entry/exit model
consists of a 6400-ft section of 3-lane freeway with one entrance ramp'and
one exit ramp. The entrance ramp is located 1400 ft below the upstream
boundary and the exit is located 5600 ft below the upstream boundary. The
first check station is located 2000 ft below the upstream boundary; the second
check station is located 3800 ft below the upstream boundary.

Data were collected by the Department of Civil Engineering and the Min-
nesota Department of Transportation on November 8, 1989. The data con-
sists of flow measurements (vehicles/5 minutes/3 lanes) made at the bound-
aries and at the check stations and ramp flow measurements (in vehicles/5
minutes) made at each ramp. Observations were recorded at 5-minute inter-
vals during one morning from 6:05am to 9:30am. The initial conditions were
not specified so we have assumed the initial flow to be the average of the flow
values at the check stations at 6:05am, and constant along the road section.
For this report. only the measurements made at the first check station were
used in comparisons with the numerical program output.

In this simplified model the flow is assumed to be uncongested at all
times. MIerging flow from the entry ramp is added to the flow at the first
node downstream of the ramp. If merging flow plus mainstream flow exceeds
-he maximum flow qmas, the flow value at the entry node is set to qrma
and any excess merging flow is not used in the calculations. Exiting flow is
subtracted from the first node downstream of the exit ramp.

6 Parallel Lax

\We have implemented the Lax method on the NCUBE/7 parallel computer
at the Department of Computer Science of the University of Minnesota. The
NCUBE has 64 processors connected in a hypercube network (see fig. 13)
and a host (Sun 3/50) computer for interaction with the user. The number
of (N) processors to be active is chosen by the user, but must be a power of
2. The host computer allocates N processors arranged in an m-dimensional
hypercube, where m = log2 N. Each of the N processors is directly connected
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Operation Time Comm/Coomp
8 Byte transfer 470 p sec -

8 Byte Add 11.2 sec 42 times
8 Byte Multiply 14.7 psec 32 tmes

Table 1: Computation and Communication times on the NCUBE/7

to m other processors. In table 1 we show a summary of inter processor
communication times and basic floating point operation times [4]. We see
that communication even between neighbor processors is several times slower
than floating point operations. Programs run most efficiently when inter
processor communication is minimized and when all communication occurs
between neighbor processors.

In the parallel implementation of the Lax method we partition a freeway
section into N (equali segments and assign each segment to one processor,
for N = 1.. 4. 8, 16. 32. and 64. At each time step the values for den-
sity at the segment boundary points must be exchanged between adjacent
segments. Adjacent road segments are assigned to adjacent processors, so
all data exchanges occur between directly connected processors. The way
these simultaneous data exchanges between adjacent processors are carried
out is shown in figure 14. At each time step, after all segment interior values
have been determined, two exchange steps must be performed. Each step
exchanges the segment boundary values for half of the segment boundaries.
Road boundary conditions are handled by the processors assigned the up-
stream and downstream segments. When the computations are completed
the processors send their output back to the host, where the output data is
arranged in the proper order and printed.

We have tested this implementation with an arbitrary set of upstream
boundary densities. We used At = isec. total time = 3600 sec, and Ax =
200 ft. In order to test the program on a large number of processors we used
a road model with 512 space nodes. for a total length of 102,400 ft..

7 Results

Table 2 contains the data for the empirical q-k curve. These data were
used in constructing the piecewise linear, cubic spline and least squares ap-
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proximations shown in figure 1. Tables 3,4,5 contain the field data for the
uncongested/congested and entry/exit freeway traffic flow tests.

For the tests the time stepsize selection was made as follows. For the Lax
method we set At = Isec. This is required in order to maintain ntmerical
stability. For the implicit methods we increased the time stepsize subject
to the restriction that the maximum error does not exceed that of the Lax
method. For the uncongested and entry/exit flow cases a single time stepsize
was selected. For the congested flow case two different time stepsizes were
used. One small stepsize was used in the 5 min time intervals of change from
congested to uncongested (or vice versa) and another large stepsize was in
other time intervals.

The tests for selecting the best empirical q.k curve pointed to the quartic
least squares approximation. This allows the largest stepsize combinations
in the implicit methods yielding the smallest maximum error. The results
for the congested case are contained in table 6. The largest of the stepsizes
was found to give the smallest maximum error in the uncongested and en-
try/exit flow cases. Table 7 shows the results for accuracy and execution
time obtained on the Sun SPARCstation I, using a time step size At = 15
sec for the implicit methods programs on the uncongested field data. Table
S shows the results obtained on the same machine using congested field data
and At = 15 sec during regular intervals and At = 3 sec during congestion-
change intervals. Table 9 shows the results obtained on the same machine
using the entry/exit field data and At = 15 sec.

The best performance in accuracy and execution time was obtained with
the Euler implicit method using three (Newton) iterations per time step in
congestion-change intervals. This method showed a large improvement over
:he Lax method in both error and time required. In the uncongested and
entry exit cases (tables 7 and 9) the maximum errors in all three methods are
of the same magnitude. In the congested case (table 8) the maximum error
produced by the Euler method was about one fourth of the maximum error
produced by the Lax method. The implicit methods are more than twice as
fast the Lax method (tables 7.8,9 last column) for the congested case and
more than three times in the uncongested and entry/exit cases.

The 3-D figures show the Lax. Euler and Trapezoid solution using the
empirical quartic least squares approximation. These solutions plots look
very close to each other in all cases except the congested flow case. The high
oscillations in the congested/uncongested change intervals appear in the Lax
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method more than the Euler method.
The parallel implementation of the Lax method on the 64 processor

NCUBE/7 for a pipeline (artificially lengthened) freeway section shows an
execution time speedup of 25 versus the single processor execution time.

8 Conclusions

We have studied the use of implicit numerical methods solve the flow con-
servation continuum model. We have written an experimental code in C
simulating a freeway (un)congested pipeline and freeway entry/exit traffic

oow. Tests with real data collected from the 1-35 W freeway in Minneapolis
were conducted on a workstation computer. Our tests show that the implicit
methods are more efficient than the Lax method and provide the same or
better accuracy. This could increase if iterative methods are used instead of
the Gaussian elimination in solving the tridiagonal linear systems required by
the implicit methods. We have also implemented efficiently the Lax method
on a (64 processor) NCUBE/7 parallel computer. The single processor of
the NCUBE/7 is as powerful as a workstation processor. The parallel Lax
method was 25 times faster than the single processor one. This could increase
substantially if larger freeway sections (involving entry/exits) are simulated.
This implementation shows there is a lot of potential in applying parallel
processing to carry out real time traffic simulations.
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k = density (veh/mile/lane)
q = flow (veh/hour/lane)

k q I k q
0 0 66 2376
10 650 76 2432
20 1260 98 2352
30 1860 124 2232
32 1952 11 150 1500
35 2100 175 5525
36 2124 186 0

Table 2: Empirical q-k Data

Initial condition: 271.67 veh/5 min/2 lanes uncongested flow at all nodes
q, = upstream flow. qd = downstream flow. qc ,= flow at check station

Time Flow (veh/5 min/2 lanes i Time Flow (veh/5 min/2 lanes)(mn !s (min). .
S(mnin) q, 7 qd q e I (min) qs qd q_

5 272 1277 2 70 65 275 267 277
10 285 284 288 i 70 283 289 285
15 287 1283 279 7' 5 253 261 255
20 301 293 296 80 .262 259 260
25 285 286 284 85 245 240 237
30 318 310 315 90 259 257 260
35 321 319 318 95 294 287 291
40 344 356 348 100 232 241 236
45 322 322 330 105 227 234 229
50 3001 303 295 110 259 247 250
S55 329 319 328 115 272 273 279
60 313 327 317 120 249 240 243

Table 3: Uncontested Flow Field Data



Initial condition: 575 veh/5 min/4 lans uncongested flow at all nodes
qu = upstream flow, qd = downstream flow, q = flow at check station

u = uncongested flow. c = congested flow
Flow (veh/5 min/4 lanes
q<u

579 u
580 u
574 c
549 c
576 c
574 c
483 c
545 c
548 c
545 c
512 c
501 c
531 c
492 c
508 c
487 c

. .. .....oomm

qd
572 u
547 c
562 c
558 c
550 c
489 c
503 c
563 c
554 c
503 c
507 c
506 c
502 c
511 c
470 c
422 c

go
564
579
570
541
561
529
472
555
542
527
510
500
523
496
497
436

Time
(min)

85
90
95
100
105.
110
115
120
125
130
135
140
145
150
155
160

Flow (vehf5 min/4 lanes)
u.

404 u
465 u
465 c
460 c
440 c
469 c
523 c
527 c
513 c
555 c
522 c
503 c
489 c
430 c
447 c
444 c

qd
484 u
492 c
485 c
482 c
454 c
455 c
519 c
519 c
540 c
551 c
526 c
537 c
495 c
441 c
434 c
453 c

437
467
473
463
437
475
536
497
532
559
516
515
493
431
432
453

Table 4: Congested Flow Field Data

Time
(min)

5

10
15
20
25
30
35
40

A

45
.50

60
65
70
S75

I
qc --

mvfimm- ------ --



q = upstream flow, q, = entry flow, q = exit flow
qc = flow at check point, q = downstream flow

All flow is uncongested. q, and q. are given in veh/5 min/ramp
All mainstream flow is given in veh/5 min/3 lanes

Time
6:05
6:10
6:15
6:20
6:25
6:30
6:35
6:40
6:45
6:50
6:55
7:00
7:05
7:10
7:15
7:20
7:25
7:30

Flow
qu,

219
253
302
348
378
473
536
588
603
684
599
577
581
612
588
588
606

qm
7

12
11
18
26
17
24
23
20
22

25
24
26
27
26
28
26

584 i 23
S7:35 556 1 29

7:40 |599 I24
7:45 534 21

vehl / mm)
qce

205
255
294
355
388
466
568
565
598
583
621
566
601
605
611
577
605
593
563
591
526

6
5
6
4
7
4

13
8
9
5

12
13
7
6
6
5

12
4
41
53
3

4qd
208
267
275
365
390
483
532
607
583
624
612
600
598
621
625
611
609
637
574
604
553

Table 5: Entry/Exit Field Data

S J.L vLw
lInF u vi l h/ S i I

Time

7:50
7:55
8:00
8:05
8:10
8:15
8:20
8:25
8:30
8:35
8:40
8:45
8:50•
8:55
9:00
9:05

q u
509
526
535
507
507
513
550
552
528
545
557
530
573
538
461
432

qmn

26-
30
25
25
27
24
33
26
23
28
38
44
40
40
38
33
31
17
27
46
28

Iqc
556
546
536
518
494
530
551
574
530
550
558
537
580
540
467
433
440
446
416
496
423

6
6
9
13
9
-8
6
11
22
12
17
15
14
22
15
24
13
17
10
15
19

qd
5.66
593
578
535
525
528
581
584
556
554
600
572
598
575
549
427
488
408
470
479
474

9:10 428
9:15 425
9:20 i427
9:25 1 478
9:30 i 417

vi i ii
eV CLA V mn1141

- --- ---- --
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Max Error (vehi5 mini/4 lanes)
Greenshield Linear Cubic Spline Least Squares

Method dt= 15 3 s dt = 6: 3s .dt = 6 : 3 s dt 15 : 3 s
Lax 205.86 261.98 278.56 273.56
Euler 45.35 302.12 317.73 77.32

Trapezoid 40.62 300.93 318.52 106.77

Table 6: q-k Curve Comparison Results for Congested Flow

Quartic Least Squares q-k Curve
dt = 15 s

Time = exec time on SPARCstation 1
Error (veh/5 min/2 lanes) Time

Method maximum average (s)
Lax 9.61 3.93 2.6

Euler 9.84 4.01 0.6
Trapezoid 9.83 4.03 0.6

Table 7: Uncongested Flow Results

Comparison of numerical methods
using different q-k curves

Lax method: dt = 1 s for all curves

; I~~-- -- --~? -- ----



Quartic Least Squares q-k Curve
dt = 15 : 3 s

Time = exec time on SPARCstation 1
Error (veh/5min/4 lanes) Time

Method maximum average (s)
Lax 273.56 24.99 3.2

Euler 77.32 17.33 1.6
Trapezoid 106.77 20.88 1.6

Table 8: Congested Flow Results

Quartic Least Squares q-k Curve
dt = 15 s

Time = exec time on SPARCstation 1
Error tveh/5 min/3 lanes) Time

SMethod maximum I average (s)
Lax 42.66 11.58 7.2

Euler 42.51 11.38 1.6
Trapezoid 42.52 11.50 1.6

Table 9: Entry/Exit Flow Results



q-k CURVES
q = traffic fow in vehicles/hour/lane

k = traffic density in vehicles/mile/lane
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cars/
5 min

7200

(0,0'

Lax Method
Uncongested Pipeline Flow (veh/5 min/2 lanes)
Quartic Least Squares q-k Curve
dx = 200 ft
dt = 1 s



q cars/
5 min

)ft

7200
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Lax method on the NCUBE for problem with 512 space points.
Number of processors used: p = 1, 2, 4, 8, 16, 32, or 64.
Time given is maximum single node computation time.
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Speedup achieved for Lax method on the NCUBE.
Problem size: 512 space points.

Number of processors used: p = 1, 2, 4, 8, 16, 32, or 64.
T1 = computation time on single processor.

Tp = maximum node computation time for program on p processors.
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Fig. 13. Hyperube Network of dimension 4.

Fig. 13. Hypercube Network of dimension 4.

oo1< --M-too I
10.0 i.401

oi• -- o •

i ............ 101

000 .. .. 1

1 •.. ........ . 1 1 1

01'...... ...11

Fig. 14. Examples of data exchanges between adjacent processors.
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