
 

 

Between-person and Within-person Subscore Reliability: Comparison of Unidimensional 

and Multidimensional IRT Models 

 

A DISSERTATION 

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL 

OF THE UNIVERSITY OF MINNESOTA 

BY 

 

 

 

 

Okan Bulut 

 

 

 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR THE DEGREE OF 

DOCTOR OF PHILOSOPHY 

 

 

 

Michael C. Rodriguez, Adviser 

 

 

 

 

June, 2013 

 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

© Okan Bulut 2013



i 

 

Acknowledgements 

 I would like to express my deepest gratitude to my advisor, Dr. Michael C. 

Rodriguez, for accepting me to the QME program and providing his excellent guidance 

and support during my graduate study at the University of Minnesota. He has been the 

main source of my inspiration for educational measurement and psychometrics. I feel 

very fortunate to be his advisee. I also would like to express my appreciation to Dr. Mark 

L. Davison for helping me to determine my dissertation topic and mentoring me patiently 

throughout my dissertation process. Without his valuable insights and feedbacks, this 

dissertation wouldn’t have been completed.  

 I would like to thank Dr. Ernest C. Davenport, Jr. and Dr. David J. Weiss who 

served on my doctoral dissertation committee. Their constructive comments and valuable 

suggestions helped me a lot to understand the nuts and bolts of my dissertation.  

 Finally, I am grateful to my mom and brother for their constant support and love; 

and to my friends and colleagues at the University of Minnesota for their cooperation, 

support, and positive thoughts.  

 

  

  



ii 

 

Dedication 

This dissertation is dedicated to my parents, Kayhan and Ayfer Bulut, who have been a 

constant source of love and support during my life, and to my brother, Onur Bulut, who 

has always been there when I need.   

 

 

 

 

 

 

 

 

 

 

 

 

 

 



iii 

 

Abstract 

The importance of subscores in educational and psychological assessments is undeniable. 

Subscores yield diagnostic information that can be used for determining how each 

examinee’s abilities/skills vary over different content domains. One of the most common 

criticisms about reporting and using subscores is insufficient reliability of subscores. This 

study employs a new reliability approach that allows the evaluation of between-person 

subscore reliability as well as within-person subscore reliability. Using this approach, the 

unidimensional IRT (UIRT) and multidimensional IRT (MIRT) models are compared in 

terms of subscore reliability in simulation and real data studies. Simulation conditions in 

the simulation study are subtest length, correlations among subscores, and number of 

subtests. Both unidimensional and multidimensional subscores are estimated with the 

maximum a posteriori probability (MAP) method. Subscore reliability of ability estimates 

are evaluated in light of between-person reliability, within-person reliability, and total 

profile reliability. The results of this study suggest that the MIRT model performs better 

than the UIRT model under all simulation conditions. Multidimensional subscore 

estimation benefits from correlations among subscores as ancillary information, and it 

yields more reliable subscore estimates than unidimensional subscore estimation. The 

subtest length is positively associated with both between-person and within-person 

reliability. Higher correlations among subscores improve between-person reliability, 

while they substantially decrease within-person reliability. The number of subtests seems 

to influence between-person reliability slightly but it has no effect on within-person 

reliability. The two estimation methods provide similar results with real data as well. 
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CHAPTER 1 

INTRODUCTION 

 

Standardized tests are one of the most common measurement tools in educational 

and psychological assessment. Scores from standardized tests are often used for making 

important decisions such as, K-12 school accountability, high school graduation, college 

and graduate school admissions, professional certification, employment, etc. These tests 

are usually designed to measure several domains based on content areas, strands, 

attributes, or skills such as the Graduate Record Examination (GRE) and the SAT 

Reasoning Test. Similarly, test batteries (e.g., Woodcock-Johnson Test, MMPI-2) consist 

of several subtests, each of which measures a specific domain.  

In testing programs such as SAT, two types of scores are typically reported. These 

are domain scores (i.e., subscores) based on examinees’ performance on each domain and 

an overall composite score that is usually a weighted sum or a weighted average of the 

subscores. The provision of such test scores while meeting conventional requirements of 

quality for score reporting on high-stakes assessments has been a challenge in terms of 

test development and psychometrics (Thissen & Edwards, 2005). Although subscores 

from clusters of very small numbers of items may not be highly reliable, reporting 

subscores can be still useful because of their potential diagnostic value (Sinharay, 2010). 

Compared to an overall composite score, subscores may be more informative for 

determining how the examinee’s abilities/skills vary over the different domains.   
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Why Subscores are important?  

The usefulness of assessments that report subscores or domain scores is well 

accepted by policy makers, college admissions officers, school district administrators, 

and other educators. Under the No Child Left Behind Act of 2001 (NCLB) in the U.S., 

every state is required to administer statewide accountability assessments and report the 

students’ scores in the major content domains – such as reading, writing, science, and 

mathematics – to measure school progress. In the classroom, teachers can benefit from 

subscores when they need to evaluate students’ strengths and weaknesses. By using 

subscores, teachers can determine the most effective intervention or instructional 

program for the students based on their performance in each content domain. In addition 

to the educators and decision-makers, students and parents can also utilize the domain 

scores from assessments. Students can see their strengths and weaknesses in different 

content areas and use this information to plan their future studies (Haladyna & Kramer, 

2004). Parents can use subscore information to monitor their child’s achievement in the 

specific content areas, assess the effectiveness of the instruction that he/she receives, and 

identify potential learning difficulties that the student encounters.    

In addition to the states, higher education institutions such as colleges and 

universities prefer to use scores from each domain for admissions because subscores can 

distinguish between candidates with the same or very similar total scores. In addition to 

admissions, colleges and universities use subscores as a summary of students’ 

performance on different domains to better evaluate their training programs and 

determine content areas that need instructional improvement (Haladyna & Kramer, 

2004).  
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Use of Subscores  

 Reliable and valid subscores could be very important for accountability 

assessments that could be used for diagnostic purposes. Subscores that provide diagnostic 

information about a skill or a cognitive behavior may lead to possible tailored instruction 

and remediation for students in classrooms and patients in clinical settings. Therefore, 

using subscores for important decisions such as diagnostic classifications potentially 

makes them more important and critical. Although it is useful to obtain and use subscores 

for making decisions or diagnoses, reasonable subscore performance should be 

empirically established before reporting subscores (Tate, 2004; Wainer et al., 2001).  

Having a provision to report subscores requires a set of conditions that should be 

met to benefit from additional information derived from subscores. First, subscores 

should be distinct enough to be more useful and valuable than the total test score. As 

Haberman (2008) and Haberman, Sinharay, and Puhan (2009) suggested, whether 

subscores provide distinct information over the total score should be carefully examined 

before reporting the subscores. If the subscores function very similarly and do not 

differentiate enough, information obtained from the subscores may be negligible. Second, 

as total scores, subscores should also have high reliability and adequate psychometric 

qualities. Standard 5.12 of Standards for Educational and Psychological Testing (AERA, 

APA, NCME, 1999) suggests that test scores should not be reported for test takers unless 

the validity, comparability, and reliability of such scores have been established. If a 

subtest measures the intended construct poorly or produces scores that are not consistent 

over multiple administrations, then the information it yields may not be trustworthy 

(Monaghan, 2006). Lastly, depending on the scoring method, subscores may be 
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influenced by factors such as test length, number of subtests, and type of test takers. 

Considering the relatively small number of items used in subtests, the reliability and 

validity of subscores should be carefully examined before reporting the subscores to 

students, parents, schools, and the public. 

Estimation of Subscores 

The high demand for meaningful and reliable diagnostic information from tests 

that are not usually designed for this purpose requires robust and reliable scoring methods 

to enhance the quality of subscore estimates (Boughton, Yao, & Lewis, 2006). 

Considering the difficulty of obtaining reliable subscores from tests, it is important to use 

sophisticated and precise scoring methods for the content domains, which can provide a 

more reliable and valid scoring mechanism. In the literature, there are several classical 

test theory (CTT) and item response theory (IRT)-based methods for computing 

subscores from a test consisting of multiple subtests, such as number-correct scores, 

Kelly’s univariate regression (Kelly, 1927, 1947), subscore augmentation (Wainer et al., 

2001), the objective performance index (OPI; Yen, 1987), unidimensional IRT (UIRT), 

and multidimensional IRT (MIRT) scoring.  

Summed scores and number-correct scores can be easily computed for each 

domain and used as estimates of subscores. However, these types of scores were judged 

unacceptable and inadequate for some stakeholders when the scores were subjected to 

intense public scrutiny in large-scale testing (Md Desa, 2012). In this approach, 

examinees with the same number of correct responses in a subtest receive the same 

subscore regardless of which items they respond to correctly because summed and 

number-correct scoring treat all items as equally difficult. Therefore, the scores are not 
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able to reflect examinees’ real strengths and weaknesses on the subject areas. Kelly’s 

univariate regression method (Kelly, 1927, 1947), Wainer’s subscore augmentation 

procedure (Wainer et al., 2001), and the OPI method (Yen, 1987) weight the observed 

scores based on the test reliability and mean scores. Kelly’s univariate regression uses 

CTT-based summed scores and weights them based upon test reliability (e.g., coefficient 

alpha) while Wainer’s subscore augmentation and the OPI method use IRT scale score 

estimates.  

Another approach that is commonly used to estimate subscores in large-scale 

assessments is to assume an independent unidimensional space for each subtest, and 

report domain scores as unidimensional IRT scale scores. IRT scale scores obtained from 

each subtest can be used as an indicator of the true proficiency in the subdomains 

measured on the test (Bock, Thissen, & Zimowksi, 1997; Hambleton & Jones, 1993; 

Hambleton & Swaminathan, 1985; Lord, 1980). Scoring in IRT models is neither sample- 

nor test-dependent, whereas the true-score approach in CTT is specific to the test and the 

sample of examinees. Also, item parameters and ability estimates obtained from 

unidimensional IRT models can be used for many psychometric procedures such as 

equating, linking, item banking, and computerized adaptive testing (Parshall et al., 2001; 

Wainer & Dorans, 2000). 

Despite the advantages of unidimensional IRT models over conventional scoring 

methods, there are some limitations of these models in terms of subscore estimation. 

First, each test item is believed to measure a single trait, which is known as a simple 

structure. Also, subtests are calibrated independently by ignoring the relationship among 

them. To overcome these issues, other scoring approaches that allow for using complex 
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test structures have been introduced. MIRT is one of these approaches; it provides an 

alternative to the limitations in unidimensional scoring methods. The following section 

gives a brief introduction about the foundations of MIRT. 

Application of MIRT 

Most educational and psychological tests consist of either tests that measure 

different constructs or subtests that measure different content domains of a single 

construct. In these tests, items in a particular subtest are usually designed to measure a 

single (i.e., unidimensional) ability or latent trait. For instance, the SAT is a test with 

verbal and mathematics subtests that measure the verbal and mathematical reasoning 

skills of high school students. Similarly, the National Assessment of Educational 

Progress (NAEP) consists of mathematics, reading, science, history, and geography 

subtests, and each of these subtests measures a specific domain. The most common way 

to obtain information about examinees’ abilities in multiple subtests is to apply UIRT for 

each subtest separately. UIRT models can be used to calibrate items and estimate person 

scores from the tests that measure a specific ability or proficiency (Hambleton, 

Swaminathan, & Rogers, 1991).  

Assuming the simple structure of the subtests, each subtest can be easily scored 

with a UIRT model. However, in many instances, due to the lack of a satisfactory index 

for assessing the dimensionality assumption, the unidimensionality of the test structure 

may not be clear. The unidimensionality assumption is sometimes violated because items 

or item sets can measure multiple abilities no matter how carefully the items are 

constructed (Ackerman, 1992; DeMars, 2006; Reckase, 1985). Because of its design and 

content, a test item may require test takers to have two or more abilities to respond to the 
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item correctly. Also, an item can be related to a nuisance or irrelevant skill in addition to 

the target skill because of the item itself (e.g., contextual effects) or test takers (e.g., DIF). 

If the unidimensionality assumption does not hold, then the conclusions reached on the 

basis of a UIRT model may be misleading and summarizing the test performance of a test 

taker through a single score may not be sensible (Bartolucci, 2007). 

Test items that simultaneously measure two or more abilities are called 

multidimensional in the literature, and they are usually evaluated within the framework of 

MIRT modeling. MIRT is an extension of UIRT, which relaxes the assumption of 

unidimensionality by estimating multiple abilities simultaneously and allowing for the 

inclusion of items that measure multiple abilities or traits. The estimation of item 

parameters and person abilities within the MIRT framework is not highly popular in 

testing due to the complexity of multidimensional models and the lack of software that 

can handle large numbers of items and examinees. However, there are several studies in 

the literature that have indicated the advantages of MIRT over other methods in 

estimating item parameters and abilities using simulations and real data (de la Torre, 

Song & Hong, 2011; Sheng & Wikle, 2007; Wang, Chen, & Cheng, 2004; Yao, 2010; 

Yao & Boughton, 2007). 

MIRT models are flexible and efficient in various test situations. For example, 

MIRT models can be used for assessments with multiple subtests that have complex item 

structures. That is, the test includes items that measure two or more abilities (Finch, 

2010; Zhang, 2012). Also, MIRT models can benefit from external information — such 

as the correlation between each ability dimension or other collateral information — when 

estimating subscores for each dimension. The intentional inclusion of this additional 



8 

 

information in ability estimation yields more precise scores, especially when tests are 

short and highly correlated (De la Torre, Song & Hong, 2011; Yao, 2010). Furthermore, 

if subtests are assumed to be related to each other in terms of scoring the items, MIRT 

models can be used to model compensation for low ability in one dimension by high 

ability on other dimensions. This type of MIRT model is called a “compensatory” MIRT 

model (Reckase, 2009). Noncompensatory MIRT models also exist in case one does not 

anticipate a compensatory relationship between the subscores.  

Statement of the Problem 

Goodman and Hambleton’s (2004) review about the current subscore reporting 

practices has shown that most states report students’ subscores based on raw score, 

percent correct metrics, or IRT scale scores obtained from the Rasch model. Raw scores 

(i.e., number of correct responses) or percentages of correct responses are very simple to 

compute, but they may be disadvantageous for reporting subscores. Since most testing 

programs consist of subtests based on a small number of items, the estimation of 

subscores using raw scores may lead to low reliability and precision of the scores 

(Haberman, 2008; Haberman, Sinharay, & Puhan, 2006; Monaghan, 2006).  

To improve reliability and precision of subscores, researchers have proposed 

alternative methods for estimating persons’ scores from subtests (e.g., de la Torre, Song, 

& Hong, 2011; Haberman & Sinharay, 2010; Kelly, 1947; Skorupski & Carvajal, 2009; 

Wainer et al., 2001; Yen, 1987). The main purpose of these studies is to propose a 

scoring method that provides more accurate and reliable test scores on the content 

domains. Multidimensional ability estimation is one of these methods; it allows for 



9 

 

estimating subscores from tests that have either a simple or complex structure. 

Multidimensional scoring of subscores is particularly useful when examinees’ relative 

strengths and weaknesses in the different content domains need to be evaluated because 

of the diagnostic information that they provide (de la Torre, 2009). 

Multidimensional ability scoring can incorporate the correlational structure of the 

latent abilities and ancillary or collateral information of other subtests into the estimation 

procedure (de la Torre, 2009; Edwards & Vevea, 2006; Wang, Chen, & Cheng, 2004). 

The correlational structure of the latent abilities refers to the correlation between the 

estimated latent abilities (i.e., subscores). Ancillary or collateral information can be 

obtained from any variable correlated with the target ability (de la Torre, 2009; Wang, 

Chen, & Cheng, 2004). For instance, the multidimensional scoring procedure can borrow 

ancillary information from other subtests or external variables such as previous test 

scores or grades. Compared to other estimation methods (e.g., UIRT, OPI, number-

correct scoring), employing multidimensional scoring provides ability estimates that have 

smaller bias and standard error and higher reliability (de la Torre, 2009; de la Torre & 

Patz, 2005, Yao & Boughton, 2007).  

Despite the promising findings from previous MIRT studies about obtaining more 

reliable subscore estimates, the requirements of MIRT estimation still seem to be in 

contradiction with the suggestions about when subscores provide valuable diagnostic 

information. For instance, Sinharay (2010) suggests that in order to have subscores that 

have added value, subscores should be based on an adequate number of items (at least 20 

or more), and they should not be highly correlated (i.e., less than .85). However, 

multidimensional scoring is found to be advantageous when there are several short 
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subtests measuring highly correlated abilities that are also highly correlated with the 

ancillary information sources (de la Torre, 2009; Wang, Chen, & Cheng, 2004, Yao, 

2010).  

This contradiction causes a paradoxical situation between subscore reliability and 

the usefulness of subscores. This paradox leads to the question of whether the precision 

of subscores is more important than the diagnostic information that they provide. Does 

obtaining more precise estimates from highly correlated but less distinct subscores make 

the MIRT approach better than other alternative methods? These questions clearly reflect 

the nature of the relationship between the test and the methodology used to obtain 

subscores. In order to understand the benefits of MIRT in subscore estimation, both the 

reliability and added value of subscores should be evaluated together.  

Purpose of the Study 

 As explained earlier, previous studies have revealed very limited amounts of 

information on the relationship between subscore reliability and how distinctly subscores 

function in the test. Previous MIRT studies have examined the reliability of subscores 

through different measures such as the correlation between true and estimated abilities, 

root mean squared error (RMSE) and bias using simulated data, root mean squared 

difference (RMSD), standard error, and relative efficiency in real data (e.g., de la Torre, 

2009; DeMars, 2006; Wang, Chen & Cheng, 2004; Yao, 2010; Yao & Boughton, 2007). 

Although these measures are not direct indicators of reliability, researchers have used 

them as analogous terms to reliability and precision.  
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 Given the need for a reliability index that indicates how reliable and distinct 

subscore estimates are, this study introduces a new reliability framework based on the 

variation among the subscores for each examinee. In contrast to other reliability 

coefficients that solely focus on the precision of individual subscores, the proposed 

reliability approach divides total subscore variation into within-person and between-

person variations. This allows for evaluating not only the consistency of subscores among 

the examinees but also the distinctiveness of subscores within the examinees.  

 The main purpose of this study is to compare multidimensional and 

unidimensional subscore estimation procedures using the reliability framework described 

above. For multidimensional estimation, a compensatory MIRT model was used to 

estimate subscores from a test in which each subtest measures a unidimensional trait. 

This model was specifically chosen to make a direct comparison against the UIRT model, 

which also assumes that each subtest measures a unidimensional trait. However, the 

compensatory MIRT model estimates subscores simultaneously using the correlation 

between subtests as ancillary information, whereas a UIRT model estimates each 

subscore separately and ignores the relationships between the subtests. Simulated data 

based on various conditions and real data were used to compare the performances of the 

MIRT and UIRT scoring approaches in terms of within-person and between-person 

subscore reliabilities.   

The specific research questions related to the performance of UIRT and MIRT for 

subscore precision are as follows: 
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1) Does the MIRT model perform better than the UIRT model in terms of within-

person and between-person subscore reliability? 

2) How are within-person and between-person subscore reliabilities from the UIRT 

and MIRT models affected by varying data conditions (test length, number of 

subtests, and correlation between subtests)? 

3) How do the MIRT and the UIRT models perform in terms of within-person and 

between-person subscore reliability in real data? 

Summary and Significance of the Study 

The significance of this study lies in the fact that diagnostic information obtained 

from subscores can be very useful for test takers, teachers, and other stakeholders. 

Therefore, it is important to employ a scoring approach that provides not only reliable but 

also diagnostically informative subscores. The MIRT framework has received a great 

deal of attention lately as a method for estimating both item parameters and person 

abilities. Although simultaneous estimation of the subscores from multiple subtests seems 

to provide more accurate estimates of abilities, to what extent the estimated subscores 

provide distinct and useful information is not clearly known yet. Considering the 

computationally intensive requirements of the existing MIRT models in the estimation of 

subscores, the question of whether the MIRT framework is worth employing over the 

computationally simpler UIRT models needs to be addressed. The findings of this study 

will focus on this important question by illustrating an alternative method for subscore 

reliability.  
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In Chapter 2, the foundations of unidimensional and multidimensional IRT 

frameworks are discussed in detail. Also, this chapter presents a review of the previous 

studies on subscore estimation methods and subscore reliability. The merits of 

multidimensional scoring of subscores and challenges related to the estimation process 

are briefly presented. Furthermore, subscore reliability measures that have been used in 

previous research are described. 

Chapter 3 provides the details of the studied MIRT and UIRT scoring methods 

employed in this study. Also, the concepts of within-person and between-person 

reliability are introduced. Then, the simulation studies and real data study are described, 

and evaluation criteria for the comparison of the MIRT and UIRT scoring approaches are 

addressed. Chapter 4 demonstrates the results from the simulation studies and real data, 

and Chapter 5 presents discussion and future directions based on the findings of this 

study. 
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CHAPTER 2 

LITERATURE REVIEW 

 

Unidimensional IRT (UIRT) 

IRT is a psychometric framework that aims to measure the abilities, attitudes, 

interests, knowledge, or proficiencies of respondents independently from the items and 

the persons who respond to these items. IRT models focus on the interaction between 

persons and test items by placing persons’ ability estimates and item difficulties on a 

continuous measurement scale so direct comparisons between respondents’ abilities and 

items are possible (Hambleton, 2000). In IRT, test items are assumed to measure a latent 

trait (θ) that represents a person’s location on the trait scale. When test items intend to 

measure a single latent trait, unidimensional IRT (UIRT) models are employed. The 

UIRT models express the probability of a correct response to a test item as a function of θ 

given one or more parameters of the item. When θ increases, the probability of a correct 

response to the items also increases monotonically. This monotonic relationship is 

defined by using item response functions. Figure 2.1 shows three hypothetical items and 

their relationships with the ability being measured. As the theta increases, the probability 

of correct response increases. Also, the slope of item characteristic curves represents item 

discrimination. As the steepness increases, the item discriminates better between 

examinees with low abilities and examinees with high abilities.   
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Figure 2.1. Item characteristic curves of three hypothetical test items 

 

 

Assumptions of UIRT 

There are two important assumptions of UIRT models. First, UIRT models 

require that items on a test should be independent of each other. This assumption is 

known as conditional local independence. Conditional on the latent trait level, the 

assumption of local independence requires the probability of responding to an item 

correctly to be independent of the responses given to the other items on the test. The 

assumption of conditional local independence has strong and weak versions (Embretson 

& Reise, 2000). When strong local independence is assumed, the responses to all items 

on a test should be independent of one another. Unlike strong local independence, weak 

local independence is met when the item covariances among all pairs of items decrease 

toward zero as test length approaches infinity. The assumption of conditional local 

independence is violated when the content or solution of a previous item on a test makes 
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a latter item easier for the respondents. Violation of this assumption may cause 

overestimation of test reliability or underestimation of the standard error of the ability 

estimates (Wainer, 1995; Wainer & Wang, 2000).  

The second assumption of the UIRT models is that test items measure a 

unidimensional latent trait. Within the IRT framework, this assumption is known as the 

unidimensionality assumption (Embretson & Reise, 2000). In practice, test items may 

require several traits to obtain a correct response. However, if there is a single dominant 

trait that accounts for a majority of the variance in the correct responses to a set of items, 

then the test satisfies the assumption of unidimensionality. UIRT models are appropriate 

for items that involve a single underlying ability or combination of abilities that are 

constant across items (Embretson & Reise, 2000). When test items measure more than a 

single dominant ability, then the assumption of unidimensionality is violated. Violation 

of this assumption can be a risk to the reliability and validity of the test. For example, 

unintentional dimensions derived from a test may lead to item bias and differential item 

functioning (DIF) due to different distributions of construct-irrelevant abilities for 

different examinee subgroups (e.g., Ackerman & Evans, 1994; Douglas, Roussos, & 

Stout, 1996; Walker & Beretvas, 2001). Also, an unintended or irrelevant dimension is a 

potential threat to construct and test score validity because the existence of such a 

dimension indicates that the test does not merely measure the intended construct. In this 

case, estimation of ability is confounded because the UIRT model conditions response 

probabilities on a single ability that is in fact a composite of the target measure and a 

nuisance construct.    
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UIRT Models 

There are several UIRT models based on the characteristics of item parameters. 

The simplest IRT model is the one-parameter logistic (1PL) model. The 1PL model 

assumes that all of the items have the same item discrimination, and the lower asymptote 

is assumed to approach zero. This model is as follows:  

 {     |         
      (     ) 

        (     ) 
 

where  {     |          is the probability of an examinee i with ability θi answering 

item j correctly, bj is the difficulty parameter of item j, a is a constant item discrimination 

parameter for all items, and θi is the ability level of examinee i. The Rasch model (Rasch, 

1960) is a variant of 1PL model. However, item discrimination is not estimated in the 

Rasch model whereas the 1PL model estimates a constant discrimination parameter for 

all items. Depending upon the software used for estimating the Rasch model, theta scale 

can be fixed either on the average item location or on the average person location. 

In contrast to the 1PL and the Rasch models that are restrictive in terms of item 

discrimination, the two-parameter logistic (2PL) model relaxes the restrictive 

discrimination assumption in the model. The 2PL model is as follows: 

 {     |          
       (     ) 

         (     ) 
 

where aj is the discrimination parameter and varies across items, and the other model 

parameters can be interpreted as those presented for the 1PL model. Discrimination 

parameters typically range from 0 to 2 in the normal ogive metric and from 0 to 3.4 in the 

(2.2) 

(2.1) 
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logistic metric (Hambleton & Swaminathan, 1985), with high values being more effective 

for discriminating between respondents with low and high trait levels. 

In multiple choice items, it’s possible for examinees to guess the items correctly. 

The 1PL and 2PL models assume that item response functions have a zero lower 

asymptote (which is sometimes referred to as the guessing parameter). The three-

parameter logistic (3PL) model includes a lower asymptote parameter, which is 

especially useful for multiple choice and other selected-response items. Among the UIRT 

models, the 3PL is the most popular (Kolen & Brennan, 2004). The 3PL model can be 

expressed as follows: 

 {     |                      
       (     ) 

         (     ) 
  

where    is the lower asymptote for item j. Estimation of a unique lower asymptote for 

each item on a test can lead to some estimation problems. Because in most cases, there 

are only few test takers whose locations on the theta scale are in the region of the lower 

asymptote, there are few data points from which to estimate the location of the c 

parameter. Thus, a common guessing parameter is often assumed for all items or for 

groups of similar items (Embretson & Reise, 2000; Han, 2012). 

Multidimensional IRT (MIRT) 

Educational and psychological assessments have been consistently found to be 

more complex than intended. When designing an assessment or a test, items or tasks that 

are associated with a certain skill or ability are included in the assessment. For such 

assessments, a scoring method — such as UIRT — can be employed because the items 

(2.3) 



19 

 

are thought to measure a single skill or ability. However, previous studies have shown 

that the unidimensionality assumption is often violated in real-world contexts (Ackerman, 

1994; Nandakumar, 1994; Reckase, 1985), and the number of dimensions is 

underestimated (Reckase & Hirsh, 1991). When the items require multiple abilities to 

obtain a correct response, using a scoring approach based on the assumption of 

unidimensionality increases errors of measurement and the chances of making incorrect 

inferences about a student’s proficiency in a given subject (Walker & Beretvas, 2003).  

Previous studies that have examined the impact of using unidimensional IRT 

models for test items that are not strictly unidimensional suggest that if there is another 

strong dimension in the test beyond the major dimension being measured, unidimensional 

estimates of items and abilities may be drawn towards the secondary dimension. Thus, 

item parameter estimates would be biased, and the standard error estimates associated 

with ability estimates falsely become very small (Ansley & Forsyth, 1985; Drasgow & 

Parsons, 1983; Reckase, 1979; Way, Ansley, & Forsyth 1988). The use of a 

multidimensional IRT (MIRT) model can be helpful for addressing these issues due to 

the intended or unintended multidimensionality of test items.  

A review of many forms of assessment and the associated scoring methods 

implies that MIRT is a promising framework for accounting for examinees’ test 

performances adequately in simple and complex test structures (van der Linden & 

Hambleton, 1997, p. 221). Reckase (1997) defined MIRT as either an extension of item 

response theory applied to multidimensional data, or as a special case of confirmatory 

factor analysis. MIRT can deal with complex items and assessments by introducing 

ability and item discrimination parameters for each skill being measured by a test 
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question, and modeling the interaction between examinees and test items (Ackerman, 

1992; Reckase, 1997). Modeling examinees’ responses in a multidimensional manner 

allows for making separate inferences about each skill or ability being measured on the 

test (Walker & Beretvas, 2000). Furthermore, MIRT models can be used for both 

exploratory and confirmatory purposes (Embretson & Reise, 2000). Exploratory MIRT 

models can be used for determining the underlying dimensions of a test, and also 

checking the unidimensionality assumption. When the number of dimensions and the 

items defining each dimension are known, confirmatory MIRT models can be used for 

estimating item and person parameters for specific dimensions.   

Common MIRT Models 

Several multidimensional IRT models for dichotomous and polytomous responses 

have been proposed (Bock & Aitkin, 1981; Bock & Lieberman, 1970; McDonald, 1985; 

Mulaik, 1972; Sympson, 1978; Whitely, 1980). The most common MIRT models are 

summarized below.  

Multidimensional Random Coefficients Multinomial Logit Model 

(MRCML). The MRCML model is an extension of the Rasch family of item response 

models. It assumes that for an item j with ordered categories of response indexed by k, 

there corresponds a unique dimension among a larger set of possible dimensions denoted 

by m (m = 1,…, M). For the presentation of the MRCML model, the notation developed 

in Adams, Wilson, and Wang (1997) will be used. Let items be indexed j = 1, ..., N with 

each item having Kj + 1 possible response categories (k = 0, 1, …, Ki). The random 

variable Xjk is introduced such that: Xjk = 1, if the response to item is in category or Xjk = 

0, otherwise. The MRCML model can be written at the item category level as: 
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where    is an M x 1 column vector with M corresponding to the number of hypothesized 

dimensions in a given instrument. Item and category parameters represented by     have 

been gathered into the vector   in this equation.  

Multidimensional Two-Parameter Compensatory Logistic Model (MC2PL). 

In this model, the probability of a correct response to item j can be expressed using the 

M-dimensional compensatory two-parameter logistic model (Reckase, 1985) as: 

 (     |         )   
     ∑       

 
      

        ∑       
 
      

 

where     represents the score (0,1) on item j person i,    represents a vector of multiple 

discrimination parameters associated with item j,    represents a scalar difficulty 

parameter of item j, and θp (θp = {θ1,...., θi} is the vector of ability parameters.  

Multidimensional Three-Parameter Logistic Model (M3PL). The 

multidimensional 3-parameter logistic (M3PL) model (Reckase, 1985; Ackerman, 1996) 

is a compensatory MIRT model where decreasing an examinee’s ability along one 

dimension can be offset by increasing ability along another dimension. Let θp = (θ1,...., 

θi) denote the vector of abilities on a                 J-dimensional space. Let    be an 

indicator variable such that       if a given examinee responds correctly to item j and 

      otherwise. Under the M3PL model, the probability of a correct response to item j 

given an examinee of ability (θ) is:    

(2.4) 

(2.5) 



22 
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     ∑       

 
      

        ∑       
 
      

 

where ai is again a vector of multiple discrimination parameters, di is the difficulty 

parameter, and ci is the lower asymptote for the item j. Although dj is called the difficulty 

parameter, the higher value of dj indicates the item being easier. The value of dj can be 

computed as        . In addition to the logistic form of the M3PL model, the normal 

ogive version of this model can be written using the same components in Equation 2.6 

(Bock, Gibbons, and Muraki, 1988):    

 

where  is the cumulative distribution function of the Normal (Gaussian) distribution.    

Multidimensional Two-Parameter Partial Credit Model (M-2PPC). For a 

polytomously scored item j, the probability of a response k − 1 to item j for an examinee 

with ability ( ̅ ) is given by the multidimensional version of the partial credit model (Yao 

& Schwarz, 2006):  

      (       | ⃗   ⃗ )      
       ⃗⃗⃗    ⃗⃗⃗ 

 
 ∑     

 
   

∑         ⃗⃗⃗    ⃗⃗⃗ 
 
 ∑     

 
      

   

 

where     = 0, ……., Kj-1 is the response of examinee i to item j,  ⃗                   

is a vector of dimension D for item discrimination parameters,      for k=1, 2, ….., Kj 

are the threshold parameters,     = 0, and Kj is the number of response categories for the 

j
th

 item, and  ⃗    ⃗ 
 
= ∑        

 
   . The parameters for the j

th
 item become  ⃗  

  ⃗                  .  

  (1 ) (1 , ), , iip i i i p ii c c aP X d c b      |θ p ia



(2.6) 

(2.8) 

(2.7) 
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Within-item and Between-item Multidimensionality 

MIRT models are divided into two groups in terms of test structure. These are 

between-item models and within-item models (Adams, Wilson & Wang, 1997; Wang, 

Chen, & Cheng, 2004). Multidimensional between-item models focus on test structures 

where subtests are mutually exclusive and measure different latent variables. This type of 

test structure is also known as “simple structure” because each item is only associated 

with a single latent dimension. In contrast to between-item models, multidimensional 

within-item models are appropriate for test structures where items can be an indicator of 

multiple latent dimensions. This type of test structure is known as a “nonsimple 

structure” or “complex structure.” Confirmatory models with complex structures or bi-

factor models can be examples of within-multidimensional MIRT models. Figure 2.2 

shows a graphical illustration of between-item and within-item test structures.  

 

 

Figure 2.2 An example of between-item and within-item models (θ1 & θ2 = Domain 

abilities, θ = Overall ability) 
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In multidimensional between-item models, the test contains several subscales that 

measure related but distinct latent dimensions. These types of MIRT models are also 

known as multi-unidimensional models in the literature because each subtest is treated as 

unidimensional while the overall test structure becomes multidimensional (Sheng & 

Wikle, 2007, 2008). An example of a multi-unidimensional test is the Trends in 

International Mathematics and Science Study (TIMSS). TIMMS consists of mathematics 

and science subtests, and each of these subtests includes several content and cognitive 

domains. For example, the mathematics subtest includes several content domains (e.g., 

algebra, geometry, number, and data display) and three cognitive domains (knowing, 

applying, and reasoning). Each of these domains is treated as a unidimensional subtest to 

report raw scores and percent correct but the overall test is still assumed to measure a 

single construct, i.e. mathematics. Similarly, the Armed Services Vocational Aptitude 

Battery (ASVAB) is a multiple-aptitude test that measures developed abilities and helps 

predict future academic and occupational success in the military. The ASVAB tests are 

designed to measure four domains (verbal, math, science and technical, and spatial). Each 

domain also includes several subdomains that are used to obtain an overall measure of the 

domain.  

The most common way of using IRT to analyze multi-unidimensional structures 

is to estimate item parameters and person abilities from each subtest separately with a 

UIRT model or to treat the whole test as unidimensional. Both of these methods have 

certain weaknesses that make them less desirable than undertaking a multidimensional 

calibration (see Adams, Wilson, & Wang, 1997; Zhang, 2012). When a test measures 

more than one latent dimension, and some of the test items require multiple abilities to be 



25 

 

responded to correctly, then the test displays within-item multidimensionality. Models 

that incorporate within-item multidimensionality are suitable for modeling interactions 

between different abilities and task demands. Here, the probability of solving an item can 

be modeled as a function of a combination of different dimensions of abilities. Hence, 

within-item multidimensional models imply explicit assumptions about the abilities 

required for the different items, which necessitate strong theoretical assumptions. Models 

with within-item multidimensionality are particularly interesting for modeling 

performance in complex tasks that cannot be explained by a single ability dimension for 

each task (Hartig & Hohler, 2009).  

Compensatory and Noncompensatory MIRT Models 

In addition to test structure, MIRT models can also be divided into two branches 

based on the presence of a compensatory relationship between the dimensions. MIRT 

models can be either compensatory or noncompensatory. Compensatory MIRT is 

additive in nature and therefore a respondent who happens to be weak in one dimension 

can make up for or compensate for this weakness with strength in another measured 

dimension (Reckase, 1997). For example, a child who is familiar with baseball but has 

poor reading skills may perform well on a test that requires him to read a passage on 

playing baseball and then write a brief essay about the reading passage. The 

compensatory model allows the dimensions to interact, with a high ability on one 

dimension compensating for a lower ability on a second dimension (Yao & Boughton, 

2007). The noncompensatory model, which is also known as the partially compensatory 

model, is multiplicative in nature. Therefore, a respondent who is weak in one area 

cannot make up for this weakness by having strength in another area. Within the 
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noncompensatory version of MIRT, one must be proficient in both abilities to obtain a 

higher score.  

The main difference between compensatory and noncompensatory models is the 

mechanism for computing the total probability of a correct response. The compensatory 

model of M3PL in Equation 2.6 sums the probabilities from a series of θ values to obtain 

the overall probability. Unlike compensatory models, noncompensatory models use a 

multiplication procedure to compute the overall probability. Each dimension in the model 

has a separate probability, and these probabilities are multiplied to find the overall 

probability for responding to an item correctly (Reckase & McKinley, 1982). The 

noncompensatory model for dichotomous responses was described by Sympson (1978) 

and Whitely (1991) as follows:  

 (     |            )     (    ) ∏
   [          ]

      [          ]

 

   

  

In contrast to the compensatory model, this model includes separate difficulty 

parameters for each dimension. Instead of the scalar difficulty (  ) in Equation 2.6, there 

is a vector of difficulties in Equation 2.9 (               for each item. This model 

does not allow for compensating a low ability using a high ability. For the 

noncompensatory model, high probability means high ability for all dimensions 

(Reckase, 1997, 2009).  

Figure 2.3 demonstrates a graphical illustration of multidimensional 

compensatory and noncompensatory models. The surface plot for the compensatory 

MIRT model indicates that the probability increases as both dimensions increase. A low 

(2.9) 
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level of dimension 1 is compensated by dimension 2. The same relationship is true for a 

low level of dimension 2 as well. The contour plot also shows that low ability on 

dimension 1 (e.g. θ1=0) and high ability on dimension 2 (e.g. θ2=2) still lead to a high 

probability (i.e., above .8). In contrast to the compensatory model, the surface plot for the 

noncompensatory model shows that the probability increases slowly as abilities on 

dimension 1 and 2 increase. The contour plot also shows that a person needs to have high 

ability levels on both dimensions to have a high probability of responding to an item 

correctly. There is no compensation between the dimensions.  

Compensatory models can be appropriate for items having disjunctive component 

processes (Maris, 1999). For example, items having multiple solution strategies (Reckase, 

1997) likely possess compensatory multidimensionality as a deficiency in one ability 

(i.e., skill with one strategy) naturally compensates for the other (i.e., skill with a 

different strategy). By contrast, noncompensatory models may be appropriate for items 

that have conjunctive component processes (Maris, 1999). For example, a word problem 

on a mathematics test may require reading ability to interpret the question and then 

mathematics ability to solve it. For such an item, it is unlikely that either ability will be 

able to compensate for a lack of the other.  
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Figure 2.3. Item response surface and contour plots for two dimensional compensatory 

(a) and noncompensatory (b) models.  

 

MIRT Estimation Programs  

There are two well-known programs for estimating MIRT models with 

dichotomous data; TESTFACT (Wilson, Wood, & Gibbons, 1998) and NOHARM 

(Fraser, 1987). TESTFACT is a program that was designed to perform a non-linear, 

exploratory full information factor analysis on dichotomous item responses. As an 

exploratory program, TESTFACT does not allow for specifying prior restrictions on item 
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parameters and relating the items to predefined dimensions. However, bi-factor MIRT 

models can be estimated as a confirmatory model in TESTFACT. The program sets the 

dimensional structure of individual items based upon the number of traits, defined a 

priori, that contribute to their responses (McDonald, 1999). TESTFACT uses full-

information marginal maximum likelihood (MML) in combination with an expectation-

maximization (EM) algorithm to estimate the item parameters (Bock & Atkin, 1981; 

Bock, Gibbons, & Muraki, 1988; Gibbons & Hedeker, 1992). In the estimation 

procedure, it is assumed that persons represent a random sample from the population, and 

their latent trait levels come from a normal distribution with mean zero and a standard 

deviation of one. Because TESTFACT cannot estimate the c parameter (i.e., lower 

asymptote), users need to enter either a fixed value of a vector of pre-specified c 

parameters.  

NOHARM, which stands for Normal Ogive Harmonic Analysis Robust Method, 

uses a polynomial approximation procedure (McDonald, 1997; 1999). The program aims 

to minimize the difference between observed values and expected values under the 

selected IRT model. In contrast to TESTFACT, NOHARM does not rely upon observed 

response vectors to estimate item parameters, and thus is not a full-information factor 

analytic procedure. It utilizes the information given by the pairwise proportions of an 

examinee successfully answering any two given items (Knol & Berger, 1988). An 

unweighted least squares (ULS) function of the difference between observed pairwise 

proportions and computed expected pairwise proportions is minimized through an 

iterative process. The item parameters that minimize the ULS function are used as the 

final parameter estimates. There are two important restrictions of NOHARM. Like 
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TESFACT, NOHARM cannot estimate the lower asymptote. The lower asymptote can be 

pre-specified based on a fixed value or a vector. Second, NOHARM can only estimate 

item parameters. So, it does not provide estimates of person abilities.  

ACER ConQuest (Wu, Adams, & Wilson, 1998) is another MIRT program that 

can estimate multidimensional item responses and latent regression models. ConQuest 

can fit several unidimensional and multidimensional models such as Rasch model, the 

1PL model, Andrich’s (1978) Rating Scale Model, Masters’ (1982) Partial Credit Model, 

generalized unidimensional models, and multidimensional item response models. 

ConQuest allows for estimating both within-item and between-item models. Users can 

add restrictions on the items and latent dimensions (e.g. uncorrelated latent dimensions). 

ConQuest can estimate both item parameters and person abilities.  

A recently developed IRT program, IRTPRO (Cai, Thissen, & du Toit, 2011), is 

capable of fitting various IRT models to dichotomously and polytomously scored items. 

The program can estimate multidimensional versions of several IRT models (e.g., 1PL, 

2PL, 3PL, rating scale model, partial credit model, graded response model). Users can 

specify different constraints in item parameter and ability estimation procedures. 

Differently from other IRT programs, IRTPRO provides multiple approaches to estimate 

structural parameters of a model. These approaches are Bock–Aitkin approach with 

expectation–maximization algorithm (BAEM; Bock & Aitkin, 1981), adaptive quadrature 

(ADQ; Schilling & Bock, 2005), and Metropolis–Hastings Robbins–Monro (MH-RM; 

Cai, 2010). For ability estimation, IRTPRO provides three estimation methods: EAP, 

maximum a posteriori (MAP; or Bayes modal estimator), and EAP for summed scores 

(Thissen, Nelson, Rosa, & McLeod, 2001). 
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BMIRT (Yao, 2003) is a relatively newer program that uses the Bayesian 

framework. BMIRT adopts a Markov Chain Monte Carlo (MCMC) method to estimate 

item and ability parameters in the multidimensional IRT framework. The program can be 

used for dichotomous and polytomous data that are multidimensional in nature. BMIRT 

supports both exploratory and confirmatory MIRT models. Multi-unidimensional models, 

within-item models, bi-factor models, diagnostic classification models, and higher-order 

IRT models can be estimated with BMIRT to obtain domain scores and overall test 

scores. For subscore estimation, BMIRT includes various ability estimators such as 

maximum likelihood (MLE), maximum a posteriori estimation (MAP), and MCMC 

estimation.  

 In addition to the programs mentioned above, Mplus (Muthén & Muthén, 1998-

2011), some macros in SAS (e.g. PROC NLMIXED), and STATA (e.g. GLLAMM) can 

be used for estimating MIRT models. MIRT parameterization programs for tests with 

mixtures of dichotomous and polytomous items are also available, such as POLYFACT 

(Muraki, 1999), which uses marginal maximum likelihood (MML) estimation, and 

MicroFACT (Waller, 2002), which, like TESTFACT, employs exploratory factor 

analysis.  

Subscore Estimation 

 There are several techniques for estimating subscores or domain scores from tests 

that consist of multiple subtests. Both CTT-based and IRT-based techniques exist to 

estimate and report subscores from the tests. These estimation techniques can be grouped 

into two categories based on whether they take the multidimensional structure of the test 
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into account when estimating subscores. These categories are unidimensional subscore 

estimation and multidimensional subscore estimation. This section provides a brief 

description of unidimensional and multidimensional subscore estimation techniques. 

Unidimensional Estimation of Subscores 

Kelley’s regressed score method (1927), Wainer et al. (2001)’s multivariate 

empirical Bayes estimation method, and objective performance index scoring (OPI; Yen, 

1987) are common methods for estimating subscores that are unidimensional in nature. In 

addition, other techniques based on the use of unidimensional IRT for the scoring of 

subscales or domains (Bock, Thissen, & Zimowski, 1997) and the subscore augmentation 

within the CTT framework (Haberman, 2008) have been demonstrated in the literature.  

Kelley’s Regressed Score Method. Kelley’s regressed score method (Kelley, 

1927, 1947) is based on weighting the observed subscores based on the group mean. 

Using the CTT notation, it can be written as follows:  

 ̂             

where  ̂ represents an estimate of true score (τ),   is the observed score,   is the group 

mean, and   is the reliability of the test.  

This method aims to improve the estimate of true score through the shrinkage in 

the observed score toward the group mean by an equal amount of reliability. Based on 

Equation 2.10, when the test is very reliable, the impact of the observed score becomes 

very dominant on the estimate of the true score. That is, a reliable observed score is 

assumed to be a very precise approximation of the true score. However, when the test is 

not highly reliable, the estimate of the true score shrinks toward the group mean to 

(2.10) 
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remove the unreliable part of the observed score. So, it can be said that Kelley’s 

regressed score method improves the precision of test scores by using the group mean as 

ancillary information. 

 Considering a test with several subtests, Kelley’s regressed score method can be 

applied to the subscores simultaneously. Instead of using a reliability index and a group 

mean for a single test within a univariate design, the same estimation procedure can be 

generalized for multivariate cases. When Equation 2.10 is rearranged, it can be written as:  

 ̂            

In a multivariate case with subscores from multiple subtests, Equation 2.11 can be 

written with a compact matrix notation as follows:  

 ̂            

where   is a vector of subtest means,   is a vector of subscores, and   is a matrix of the 

reliability indices for each subtest.   

Objective Performance Index (OPI). The Objective Performance Index (OPI) is 

an estimated true score for the items in an objective based on the performance of a given 

examinee (Yen, 1987). The OPI scoring method incorporates information from the total 

test score using an empirical Bayes procedure. For computing the OPI scores, it is 

assumed that each test consists of n items based on J objectives, with nj items in objective 

J. Each item on the test is assumed to contribute to one objective at most. Assuming that 

Xij is either the observed number-correct score or the unidimensional IRT estimate of 

person i on objective j,    equals to          , and Xij follows a binomial distribution 

(2.11) 

(2.12) 
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given Tij, i.e.,  (       |   ), the OPI can be computed as follows:  

 ̂   
 

  
∑     ̂ 

 

   

  

 

where      ̂  is the unidimensional ability estimate for person i on objective j. By using 

 ̂  , two additional values are computed:  

     ̂         

and 

        ̂              

 

 

Using these two values, the OPI is defined as:  

 ̃   
   

       
  

As previously mentioned, the OPI can use the prior information to gather more 

accurate estimates of subscores. For more detailed information about incorporating additional 

information into the prior distribution of    , see Yen (1987).  

Subscore Augmentation. The subscore augmentation procedure proposed by 

Wainer et al. (2001) is basically a multivariate generalization of Kelley’s regressed score 

method. Subscore augmentation is also based on the empirical Bayes estimates of the 

subscores using a weighting procedure. The main distinction between the two methods is 

(2.13) 

(2.14) 

(2.15) 

(2.16) 
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that Wainer et al.’s (2001) subscore augmentation can use either the number-correct 

scores or the IRT scale score estimates as the observed score.  

Subscore augmentation may be thought of as a multi-stage estimation procedure 

for proficiency estimates for the domains (Thissen & Edwards, 2005). In the first stage, 

unidimensional IRT ability estimates are obtained using one of maximum likelihood 

(MLE), maximum a posteriori (MAP), or expected a posteriori (EAP) methods. The 

values of MLE(θ), EAP(θ), and MAP(θ) in the augmentation procedure correspond to the 

regressed estimates in Kelley’s method. Second, an IRT-based estimate of reliability is 

computed in conjunction with the observed covariance matrix among the unidimensional 

IRT ability estimates. In the final stage, the estimates of the IRT scale scores are 

regressed on all subscores and weighted using the IRT-based estimate of reliability.  

When Equation 2.12 for Kelley’s method is rearranged using the IRT scale scores, 

the augmented subscores are as follows: 

     ̂        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )   

     ̂        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )   

   ( ̂)        ̅̅ ̅̅ ̅̅ ̅̅ ̅̅   (             ̅̅ ̅̅ ̅̅ ̅̅ ̅̅ )  

It should be noted that the reliability value (ρ) in Equation 2.18 is not a CTT-

based index of reliability (e.g., alpha coefficient, split-halt reliability) anymore. Rather, ρ 

is a marginal reliability of theta (Green et al., 1984), and it can be computed for a 

particular subscale as follows:  

 ̂     ̅ 
   

(2.17) 

(2.18) 
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where  ̅ 
  represents the average error variance of the estimated abilities.  

As an approximation of the reliability within the CTT framework, Wainer et al. 

(2001) suggested using the ratio of unconditional true score variance to unconditional 

estimated true score variance as an estimate of reliability. The unconditional true score 

variance for the k
th

 subscore is the k
th

 diagonal element of the variance-covariance matrix 

(S) below: (Skorupski, 2008):  

                                   

Similarly, the unconditional estimated true score variance for the k
th

 subscore is the k
th

 

diagonal element of the matrix:  

                      

Using these two matrices, the estimate of the reliability of the k
th

 subscore can be 

computed as follows:  

    
   
   

 
     
 

     
        

 
  

where      
  is true score variance of the k

th
 subscore, and       

  is residual or error 

variance for the k
th

 subscore.  

Although the Wainer et al.’s (2001) subscore augmentation method is based on 

the unidimensional IRT estimates of subscores, the method becomes isomorphic to the 

MIRT approach when a simple structure (i.e., multi-unidimensional structure) is present 

(Thissen & Edwards, 2005).  

(2.19) 

(2.20) 

(2.21) 
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 Unidimensional IRT Subscoring. Bock, Thissen, and Zimowski (1997) 

proposed an IRT-based subscore estimation that produced more accurate estimates than 

the number-correct scoring method. Assuming that examinees’ IRT-based subscores (θ) 

are estimated from an item bank with n items using a well-fitting IRT model, the 

subscores on the IRT metric can be transformed to domain expected number-correct 

scores as follows:  

 ( ̂)  
∑   
 
     ( ̂)

∑   
 
   

  

where    is the sampling weight, and   ( ̂) is the response function of item j in the item 

bank. When  ( ̂) is rescaled for obtaining the domain percent-correct score, it becomes: 

  ( ̂)  
    ( ̂)

 
  

The advantage of this approach is that it does not require the test items to be a 

random sample of the domain, and standard errors of the domain scores can be easily 

computed. Bock et al. (1997) suggest that this method can be used for mastery and 

diagnostic classifications in the context of student qualification and accountability 

assessments rather than selection and ranking purposes.   

Haberman Augmentation. Haberman (2008) and Haberman, Sinharay, and 

Puhan (2009) proposed a method based on CTT to estimate subscores and determine 

whether they provide any added value over total scores. Haberman and Sinharay (2010) 

refer to this approach as Haberman augmentation. Consider a test with q ≥ 2 correctly 

answered items taken by a sample of n ≥ 2 examinees. If examinee i (1 ≤ i ≤ n) responds 

(2.22) 

(2.23) 
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to item j (1 ≤ j ≤ q) correctly, his/her score for this item (Xij) becomes 1, and 0 otherwise. 

Examinees’ responses to the items are independent from each other and identically 

distributed. The test is also assumed to measure more than one skill based on a simple 

structure of the items. Based on these assumptions, the total raw score of examinee i is 

   ∑   

 

   

  

and the raw subscore on the subtest k is 

    ∑      
       

 

where J(k) is a subtest that measures skill k (1 ≤ k ≤ r). The subscore,    , ranges from 0 

to q(k). The true total score corresponding to    is   , and the true subscore corresponding 

to     is    . Using the observed scores and true scores defined above, Haberman (2008) 

and Haberman et al. (2008) define three ways to estimate subscores through a linear 

combination: 

a)                , based on the observed subscore    .  

b)               , based on the observed total score   . 

c)                        , based on the total raw score    and the 

subscore    .  

For all of these subscore estimations, α refers to either subscore reliability or total score 

reliability. In addition to the subscore estimates shown above, Haberman and Sinharay 

(2010) suggest that an augmented subscore based on all the raw subscores (Wainer et al., 

2001) can be computed as          ∑          
 
    . More detailed description about 

(2.25) 

(2.24) 
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Haberman’s subscore augmentation and mean squared errors for the estimated subscores 

can be found in Haberman (2008) and Haberman et al. (2009).  

Multidimensional IRT Subscore Estimation 

The subscore estimation approaches described in the previous section aim to 

estimate each subscore or domain score from a test one by one. As an alternative 

approach, MIRT models can be also employed to report subscores (e.g., Beguin & Glas, 

2001; de la Torre & Patz, 2005; Reckase, 1997, 2007; Yao & Boughton, 2007). There are 

certain advantages of using MIRT models over other subscore estimation methods. First, 

unlike unidimensional subscoring methods, MIRT does not require a test based on a 

simple structure to estimate the subscores. MIRT models can estimate subscores from 

both simple and complex test structures. Second, despite its computational complexity, 

MIRT is more straightforward than other subscoring methods that use an empirical Bayes 

procedure to borrow information from external variables. The subscoring methods such 

as the OPI (Yen, 1987) and subscore augmentation (Wainer et al., 2001) require a multi-

stage procedure in which unidimensional subscores are first estimated, and then ancillary 

information (e.g., group mean, test reliability, examinees’ previous scores) are used to 

weight the estimated subscores to improve the precision. However, MIRT models can 

estimate accurate subscores by using ancillary information such as the correlation 

between the subscores within a single estimation process.  

Several types of estimators can be used for estimation subscores from the MIRT 

models. These estimators can be either Bayesian (e.g., EAP, and MAP) or non-Bayesian 

(e.g., MLE) Also, MCMC techniques can be employed for estimating the subscores from 

a MIRT model although it is computationally intensive and inconvenient for testing 
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programs with large sample sizes (de la Torre & Patz, 2005; Sheng, 2005; Yao & 

Boughton, 2007). The MLE method estimates the subscores by maximizing the 

likelihood of an examinee’s item responses. This method fails when an examinee 

responds to all items correctly or incorrectly (Embretson & Reise, 2000).  

Both EAP and MAP are based on the Bayesian perspective. The MAP method 

estimates the subscores by maximizing a posterior distribution based on prior information 

about the subscores with the likelihood function. The MAP method allows for estimating 

scores from all possible response patterns (e.g., all-correct response pattern, all-incorrect 

response pattern). Similarly, EAP estimates the subscores through a posterior 

distribution. The EAP method aims to find the mean of the posterior distribution, which 

may however lead to biased estimates of the scores (Wainer & Thissen, 1987). For MAP 

and EAP estimation of the subscores, strong priors, standard normal priors, and non-

informative priors can be applied during the estimation process. In a multidimensional 

context, Carlson (1987) created a joint ML method of estimating MIRT item parameters 

and multiple latent traits, θ = [θ1, θ2, … , θk]. Segall (1996) developed a MAP ability 

estimation approach for calculating θ based on the covariance matrix of the posterior 

distribution of latent traits.  

MIRT ability estimation has been shown to outperform number-correct scoring 

and OPI (Yao & Boughton, 2007), and was on par with the augmentation methods (de la 

Torre & Patz, 2005; Dwyer et al., 2006) in terms of recovering true values of the 

subscores. MIRT has also provided promising results for the estimation of subscores and 

composite scores (de la Torre & Hong, 2010; de la Torre & Song, 2009; Haberman & 
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Sinharay, 2010; Wang, Cheng, & Chen, 2004; Yao, 2011; Yao & Boughton 2009). More 

detailed information about these studies will be provided in the following sections.  

Subscore Reliability 

Although reliability has not been a well-defined concept within the IRT 

framework, many studies have presented alternative methods for computing the IRT-

based reliability as a function of item parameters and the distribution of person ability 

(e.g., Bechger, Maris, Verstralen, & Béguin, 2003; Dimitrov, 2003; May & Nicewander, 

1994; Samejima, 1994; Shojima & Toyoda, 2002). Some of these methods (e.g., May & 

Nicewander, 1994) aim to define a constant IRT-based reliability index while others (e.g. 

Dimitrov, 2003; Shojima and Toyoda, 2002) focus on the approximation of a reliability 

coefficient. Samejima (1994) proposed a reliability index by combining CTT and IRT 

approaches through the test information function (TIF) and the ability distribution of a 

target population. According to Samejima (1994), TIF provides more precise local 

measures of accuracy in trait estimation than are available from the reliability coefficient.  

The concept of score reliability in IRT cannot be defined as a constant but rather 

is a function of θ. By following the same approach used for test reliability in CTT, Wang 

et al. (2004) described a method for obtaining IRT-based reliability. First, the test 

information is averaged over the θ level to obtain  ̅. The average test information is the 

average degree of measurement precision that the test or subtest provides for the sampled 

persons. Based on this fact, the IRT-based test reliability, which is also called the 

composite test reliability, can be defined as:  

       
 ̅  

  
  

(2.26) 
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where   
  is the variance of the θ distribution. This IRT reliability is also known as 

marginal reliability. To simplify the computation of this reliability, Mislevy et al. (1992) 

suggested a simpler solution when MML estimation is used:  

     
    
 

  
  

where     
  is the variance of the EAP estimates. Wang et al. (2004) noted that the 

second formula of IRT test reliability is more practical in real data analysis.  

Kim and Feldt (2010) also described how to estimate an IRT-based reliability 

coefficient using the CTT framework. In CTT, test reliability is defined as the ratio of 

true-score variance to observed-score variance (i.e.   
    

  . This is equivalent to the 

squared correlation between true score (T) and the observed score (X). From the 

perspective of nonlinear regression, Kim and Feldt (2010) argued that the same approach 

can be applied to the correlation of test score X with ability θ:  

     
  
 

  
     

  
 

  
  

where   
  is the average test error variance over an ability distribution of the conditional 

error variances given θ.  

In addition to finding the reliability of a single test, there have been some efforts 

to find reliability techniques that can be applied to test batteries including several 

subtests. When a composite score and its associated subscores are estimated, Feldt and 

Brennan (1989) proposed the following method for computing test reliability:  

(2.27) 

(2.28) 
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∑    

           
 
   

    
  

where Z is the mean of k subscores on a test battery,    
  is the observed score variance 

for the j
th

 subscore,        is the reliability of the j
th

 subtest, and   
  is the variance of the 

mean subtest score in the population of examinees. As explained earlier, if there are two 

sets of composite scores, reliability can be estimated using the Pearson product-moment 

correlation coefficient or the intraclass correlation coefficient (ICC).  

Recently, Haberman (2008) has proposed a new reliability coefficient called the 

proportional reduction in mean squared error (PRMSE). The main purpose of PRMSE is 

to determine whether estimated subscores are accurate and they have added value over 

the total score. The three alternative subscores (i.e.     ,     ,     ) proposed by 

Haberman (2008) have been previously described under the section of unidimensional 

estimation of subscores.    
     

   and    
  are the variances of     ,     , and      

respectively. Assuming    
  is the variance of the true raw score (   ) of person i on the 

k
th

 subtest, PRMSEs for the subscores become as follows:  

             
     

   

             
     

   

             
     

   

As most reliability coefficients, PRMSE also lies between 0 and 1. A larger 

PRMSE (i.e., closer to 1) is equivalent to a smaller mean squared error in estimating the 

true subscore. That is, the larger the PRMSE, the more accurate the corresponding 

(2.29) 
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subscore estimate. Haberman (2008) recommended the following criteria to determine 

whether a subscore or a weighted average has added value. If         is less than 

       , the subscore does not provide added value over the total score, indicating that 

the observed total score provides more accurate diagnostic information than the observed 

subscore. Furthermore, if         is substantially larger compared to both         

and        , then the weighted average has added value over the total score (Sinharay, 

2010). Based on these comparisons of PRMSEs, if neither the subscore nor the weighted 

average has added value over the total score, they should not be reported for diagnostic 

purposes.  

Previous MIRT Studies about Subscore Estimation 

 The final section of Chapter 2 provides a review of recent studies about the use of 

MIRT for the estimation of subscores, and the comparison of MIRT against other 

subscoring methods in terms of subscore reliability.  

As previously mentioned, MIRT models can be applied to test batteries and tests 

consisting of multiple subtests. MIRT models allow for the use of correlations between 

subtests of test batteries to improve the measurement precision of individual ability 

estimates. Wang, Chen, and Cheng (2004) demonstrated two empirical examples to solve 

the problem of ignoring the correlations between latent traits that yields imprecise 

measures when tests are short. For this study, the multidimensional random coefficients 

multinomial logit (MRCML) model (Adams, Wilson, & Wang, 1997) was used. To 

compare measurement efficiency of the unidimensional and multidimensional 

approaches, test reliability and numbers of items needed to achieve the same 

measurement precision were estimated. Data from a science proficiency test and a teacher 
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personality inventory were analyzed using both unidimensional and multidimensional 

models. The results showed that the multidimensional approach improved measurement 

precision substantially using the correlations between latent traits, especially when tests 

are short and the number of tests is large. The greater the number of latent traits and the 

shorter the target tests, the more significant the improvements are. Wang, Chen, and 

Cheng (2004) suggested that if there are other kinds of collateral information available, 

such as persons’ educational backgrounds, status on demographic variables, in-class test 

grades, or homework grades, they could be incorporated into the multidimensional 

approach to further improve measurement efficiency.  

De la Torre and Patz (2005) conducted a study where they applied a hierarchical 

Bayesian framework to ability estimation. The authors proposed a practical method based 

on the availability of information from multiple tests measuring the correlated abilities 

given in a single test administration. They conducted a simulation study to examine the 

performance of the hierarchical model ability estimates under some factors such as the 

number of abilities (2 and 5), the number of items (10, 30, and 50) and the degree of 

correlation between the abilities (.0, .4, .7, and .9). The M3PL model was used for 

estimating the subscores. To quantify the amount of improvement attributable to 

simultaneous estimation of tests, Pearson correlations between estimated and true 

abilities and relative efficiency, which is the ratio of the mean squared error of the 

unidimensional ability estimates over the mean square of the multidimensional ability 

estimates, were computed. Correlations and ability estimates were obtained using a 

MCMC algorithm. The results of this study showed that ability estimates obtained from 

the hierarchical (i.e., multidimensional) approach were more accurate and precise 
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compared to ability estimates obtained using one dimension at a time. This approach 

becomes more efficient when tests are short and dimensions are highly correlated. The 

authors showed that employing multidimensional scoring can further reduce the bias and 

standard error of the estimates of traditional unidimensional EAP, which already have 

smaller bias and standard error compared to other methods of estimation (Kim & 

Nicewander, 1993; Thissen & Orlando, 2001). 

De la Torre (2009) proposed a model that incorporates ancillary variables and 

correlational structure of the latent abilities in scoring the examinees using various MIRT 

models. The study specifically focused on the M3PL model and covariates related to 

examinees. Markov chain Monte Carlo parameter estimation algorithms were used for 

both simulated and actual data. The study also examined how the number of tests (2 or 5), 

the length of test (10 or 20 items), the correlation between the different abilities (.5 or .9), 

and the correlation between the ancillary variables and the latent trait (.25 or .5) affect the 

quality of the estimates. Results showed that using the different sources of information 

separately or simultaneously provided better ability estimates (i.e., higher correlation 

with the true abilities and smaller posterior variance and mean squared error). The 

optimal condition occurs when several short tests measuring highly correlated abilities 

that also correlate highly with the covariates are used.   

To examine the performance of the MIRT models in polytomously scored 

responses, de la Torre (2008) used multidimensional scoring of abilities in ordered 

polytomous data. The Generalized Partial Credit (GPC) model was used for estimating 

subscores. The study systematically examined how improvement in ability estimates is 

affected by factors such as the number of score categories (2, 3, or 4), number of tests (2 
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or 5), test length (5, 10, or 20 items), and correlation between abilities (.0, .4, .7, or .9). 

Ability estimates and the correlational structure were obtained using the MCMC method. 

Correlation and mean squared error (MSE) between true and estimated abilities and the 

posterior variance of the abilities were used to examine the quality of estimates. As in 

previous studies, this study also indicated that greater improvement can be achieved 

when the abilities are very highly correlated. Results showed that more accurate estimates 

of the correlation between the abilities were obtained when several long tests with more 

score categories were used. The number of tests did not affect the accuracy of estimates 

substantially. Higher correlations between abilities could be accurately estimated even 

with only two tests with at least 10 polytomous items in each of them. In extreme cases 

where abilities measured by the different subtests were perfectly correlated, reporting 

subtest scores on top of the overall score did not provide additional information. The 

variability observed among the subscores did not reflect true differences in abilities, but 

rather differences due to measurement errors. The posterior variances representing the 

precision of the ability estimates showed that when longer and more tests, more score 

categories, and higher correlations between abilities were involved, better results were 

obtained  

Other studies in the literature have focused on the use of MIRT for obtaining 

subscores under different conditions. For example, Yao and Boughton (2007) conducted 

a simulation study of dichotomous and polytomous MIRT for subscale score proficiency 

estimation using real data-derived parameters from a large-scale statewide assessment. 

The simulation conditions were with sample size (1000, 3000, or 6000) and correlations 

between subscales (.0, .1, .3, .5, .7, or .9). The study examined the recovery of a Markov 
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chain Monte Carlo (MCMC) estimation approach to multidimensional item and ability 

parameter estimation, as well as subscale proficiency and classification rates. The 

accuracy of subscore estimation was investigated for number-correct scores (NC), 

multidimensional IRT Bayesian subscale scores (BMIRTSS), multidimensional IRT 

Bayesian domain subscale scores (BMIRTDS), and objective performance index scoring 

(OPI). Results showed that to report accurate diagnostic information at the subscale level, 

the subscales need to be highly correlated and borrow information from other subscales or 

a multidimensional approach should be used. In terms of classification recovery, as the 

correlations increase among the dimensions, the average error rates for BMIRTSS and 

BMIRTDS become closer to the OPI rates. As the correlation among the dimensions 

decreased, the error rates for the OPI increased, and BMIRTSS and BMIRTDS 

classification errors decreased.  

DeMars (2005) compared several IRT-based methods of subscoring. These 

methods included two bifactor models, one of which used each subtest as a composite 

score based on the primary trait measured by the set of tests and a secondary trait 

measured by the individual subtest; the other was a model where the traits measured by 

the subtests were separate but correlated. Composite scores based on unidimensional item 

response theory, with each subtest borrowing information from the other subtests, as well 

as independent unidimensional scores for each subtest, were also considered. Data from 

two multiple-choice assessment tests were used for this study. By using results from real 

data, simulations were run to assess bias and RMSE of the ability estimates. Results 

showed that the independent unidimensional scores showed the greatest bias and RMSE. 

The relative bias and RMSE for the other approaches differed on the two tests. The 
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bifactor and 2-factor models showed very similar levels of bias and RMSE; on one test 

higher than the augmented scores at the extremes, and on the other test lower. Based on 

these results, there is no clear advantage for any of these three methods over the others, 

but all produced lower bias and RMSE than the separate unidimensional models. 

Yao (2010) investigated the performance of four methods [UIRT model, higher-

order IRT model (HO-IRT), MIRT model, and the bifactor general model] using 

simulated data to demonstrate how reliable and valid the overall scores and domain 

scores provided by each method are. For data simulation, sample size (500, 1000, or 

2000), correlations between domains (.2, .3, .4, .5, .7, or .9), and test length (20, 32, 48, 

or 60 items) were manipulated. Root mean squared error (RMSE), absolute bias (ABS), 

bias (BIAS), and reliability (squared correlation between true and estimated parameters) 

were used to evaluate the accuracy of overall ability and domain ability parameter 

recoveries. RMSE and the test response function (TRF) were used to evaluate the item 

parameter recovery. The findings showed that the M3PL model provided more reliable 

domain and overall scores in comparison to the other models used in this study. As the 

test length increased, as the correlation between dimensions increased, and as the sample 

size increased, the reliability of domain scores increased and RMSE and BIAS decreased 

for all the models and methods. The MIRT estimation method performed slightly better 

than HO-IRT for all the criteria and for all the conditions, but the differences between the 

two methods were minor. For the overall scores, the MIRT method performed as well as 

HO-IRT when the correlation was high. Although the HO-IRT model performed equally 

well in most cases, it may not be as useful as the MIRT model because an item can only 
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contribute to one domain (simple structure) in the HO-IRT method whereas the MIRT 

models allow for both simple and non-simple structures.  

De la Torre, Song, and Hong (2011) conducted a similar study to Yao (2010), 

where the authors made a comparison of four subscoring methods (multidimensional 

scoring (MS), augmented scoring (AS), higher order IRT scoring (HO), and objective 

performance index scoring (OPI)) using simulated and real data. In the simulation study, 

test length (10, 20, or 30 items), number of subtests or domains (2 or 5), and correlation 

between the abilities (.0, .4, .7, or .9) were manipulated. The quality of the subscore 

estimates was evaluated using the correlation between the true and estimated abilities, 

RMSE of the estimates across the examinees, and conditional bias and conditional mean 

absolute deviation (MAD). Results indicated that the correlation-based methods (i.e., MS, 

AS, and HO) provided mostly similar results, and performed most efficiently under 

conditions involving multiple short subtests, more dimensions and highly correlated 

abilities. In most of the conditions considered, the OPI method performed poorer 

compared to other methods on both ability estimates and proportion correct scores. The 

authors argued that although HO and MS may provide better estimates than AS for 

extreme abilities, the AS method can be preferred because of its efficiency and lesser 

complexity depending on the purpose of subscoring.  

Summary  

The effectiveness of MIRT models for improving measurement precision and 

accuracy of subscores has been well established in previous studies. Researchers 

investigated the performance of various MIRT models under various data conditions such 



51 

 

as test length, number of dimensions, sample size, and correlations between dimensions 

in simulation studies. A majority of the research has indicated an increase in the 

measurement precision of subscores obtained from MIRT models compared to subscores 

obtained from other methods (e.g., Haberman & Sinharay, 2010; Sheng & Wikle, 2007; 

Tate, 2004; Wang et al., 2004; Yao, 2010; Yao & Broughton, 2007). The aim of these 

subscoring methods is to improve diagnostic utility of the subscores by improving the 

reliability of the subscores. It is assumed that the reliable subscores will help identify an 

examinee’s relative strengths and weaknesses. However, the main concern should be 

whether the subscores provide reliable information about an examinee’s relative strengths 

and weaknesses. 

In the comparison of UIRT and MIRT models regarding subscore reliability, the 

evaluation criteria were mostly the correlation between true and estimated subscores, bias 

and RMSE. Although these measures indicate to what extent subscores are accurately 

estimated, they do not consider how the relationship among the subscore estimates varies 

depending on conditions such as test length, number of dimensions, or correlation 

structure of the subscores. Although PRMSE (Haberman, 2008) seems to be promising 

for the determination of subscore reliability, the availability of this approach for MIRT is 

still questionable because it is heavily based on CTT.  

Reliability is an important psychometric characteristic of scores, and it has 

received great attention in the literature for many years. As the importance of diagnostic 

information from subscores increases in education, obtaining reliable and accurate 

subscores has become a more crucial task. The research on subscore estimation in MIRT 

is still in a development phase with many uncertainties. Considering the computational 
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burden and high complexity of MIRT models, the major benefits of this framework 

should be clearly revealed for both researchers and practitioners. Therefore, more studies 

are needed to determine whether MIRT should be used as an alternative method for 

estimating subscores with added value.   
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CHAPTER 3 

METHODOLOGY 

 

Chapter 3 consists of four sections. The first section discusses the details of 

multidimensional and unidimensional IRT models, and the method of estimation used for 

estimating the subscores. In the second section, the framework of between-person and 

within-person reliability is introduced, and between-person and within-person reliability 

coefficients are described. The third section explains the design of the simulation study, 

including simulation conditions, data generation, and subscore estimation procedures. In 

addition, evaluation criteria for the estimated subscores are described. In the last section, 

a real data study is described. The instrument, the sample, and data preparation for 

estimating subscores are explained.  

Subscoring Procedure 

The following sections describe the unidimensional and multidimensional IRT 

models that are used for subscore estimation in this study. Furthermore, details about the 

subscore estimation process are provided.  

Models for Subscore Estimation 

In this study, two IRT models were used for estimating the subscores. The first 

model was a unidimensional 3PL model. The 3PL model and its components were 

explained in Chapter 2 (see Equation 2.3). This model assumes that each subtest 

measures a unidimensional ability that is not affected by the level of abilities obtained 

from other subtests. That is, each subtest is a simple structure by itself. Therefore, there is 
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neither a compensatory nor a noncompensatory relationship between the estimated 

subscores from different subtests. The following example shows the item parameter 

structure of the 3PL model from a test including multiple subtests. Assume that there is a 

test consisting of three subtests based on three content domains (e.g., algebra, 

trigonometry, and geometry). Each subtest includes ten multiple-choice items that are 

scored dichotomously. The item parameters for the three subtests based on the 

unidimensional 3PL model are illustrated in Figure 3.1 below. Each subtest has a separate 

set of item parameters. There was no subscore augmentation that weighted the estimated 

subscores based on ancillary variables. The estimated abilities (θ1, θ2, and θ3) were used 

as subscore estimates.  

 

Subtest Item             

1 1 1.87 -1.44 0.15 

1 2 2.61 -0.42 0.09 

1 3 2.46  1.56 0.12 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

2 11 2.02   0.33 0.23 

2 12 1.74 -1.23 0.11 

2 13 2.25   1.31 0.07 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

3 21 2.62 1.22 0.15 

3 22 2.13 -0.15 0.19 

3 23 1.81   1.89 0.06 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

 

Figure 3.1. An example of item parameters for three unidimensional subtests.  
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 The second model was a multi-unidimensional 3PL (M3PL) model. This model 

assumes that each subtest measures a domain defined by unique items (i.e., simple 

structure). The overall test is assumed to be multidimensional while each subtest still 

remains unidimensional. The subscores from the subtests are estimated simultaneously. 

The estimation procedure allows for including the inter-dimension correlations as 

ancillary information to improve the precision of subscore estimates. Using the notation 

of the compensatory MIRT model in Yao and Schwartz (2006), the M3PL model 

(Reckase, 1997) for a dichotomous item j answered by person i with abilities  ⃗  

            on a test including D subtests can be shown as:  

 

     (     | ⃗       ⃗      )      
     

         ⃗⃗⃗    ⃗⃗⃗ 
      

  

 

where     is the response of person i to item j,  ⃗   is a vector of item discrimination 

parameters for D dimensions (i.e., subtests),     is the item difficulty parameter,     is 

the lower asymptote or the guessing parameter, and   ⃗    ⃗ 
  ∑        

 
   . Using the 

same example given earlier, the M3PL item parameter structure for a test with three 

unidimensional subtests is illustrated in Figure 3.2. 

 

 

 

 

 

(3.1) 
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Subtest Item  ⃗⃗⃗           

1 1 [1.87, 0, 0] -1.44 0.15 

1 2 [2.61, 0, 0] -0.42 0.09 

1 3 [2.46, 0, 0]  1.56 0.12 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

2 11 [0, 2.02, 0]   0.33 0.23 

2 12 [0, 1.74, 0] -1.23 0.11 

2 13 [0, 2.25, 0]   1.31 0.07 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

3 21 [0, 0, 2.62] 1.22 0.15 

3 22 [0, 0, 2.13] -0.15 0.19 

3 23 [0, 0, 1.81]   1.89 0.06 

. . . . . 

. . . . . 

. . . . . 

. . . . . 

 

Figure 3.2. An example of a multi-unidimensional structure based on three subtests.  

 

Subscore Estimation Method 

 In this study, both unidimensional and multidimensional subscores were estimated 

with the maximum a posteriori (MAP) method. By using the information of the prior 

distribution, MAP estimation can provide a lower estimated error of θ (Chen, 2006). In 

most cases, MAP is more feasible compared to EAP and MLE methods for estimating 

subscores from MIRT models because MAP can estimate the subscores for the examinees 

who obtained either a perfect or zero score on one of the dimensions, which is not 

possible in MLE. Also, since MAP does not require an iterative estimation process like 

EAP, the estimation time is much shorter.  
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Using the item parameters defined above for the M3PL model, the probability can 

be written as 

       (   | ⃗       ⃗⃗      )     
       

       
         

where     is response of examinee i to item j,  ⃗  is a vector of abilities, and      ⃗    and 

    are item parameters. If the item parameters for the j
th

 item are  ⃗⃗⃗⃗         ⃗      ) and 

the item parameters for all items on the test are expressed as                 
 , then 

the likelihood equation can be shown as follows:  

   |     ∏   ⃗⃗⃗ |

 

   

 ⃗⃗⃗     ∏∏ (   | ⃗⃗⃗   ⃗⃗⃗ ) 

 

   

 

   

 

Boughton, Yao, and Lewis (2006) defined the posterior probability distribution 

for an examinee population with ability θ using the pre-defined population priors in the 

Bayesian framework as follows:  

       |      |         |             

                    |       |           

where     ⃗   , and   is defined by  ⃗ and   that are the vector of population means 

and the variance-covariance matrix of the abilities (i.e., population priors), respectively. 

For instance, the DxD correlation matrix, the vector of the population means, and the 

vector of the population variances for a D-dimensional test can be written as 

∑ [
      
   
      

]

   

     ⃗                  ⃗             

(3.2) 

(3.3) 

(3.4) 

(3.5) 
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Equation 3.5 represents the posterior likelihood distribution of  ⃗ that can be 

shown as  ( ⃗| ⃗). The elements of the 1
st
 and 2

nd
 derivatives of the posterior density 

function for MAP estimation using variance-covariance matrix, Σ, are expressed as 

     ( ⃗| ⃗)  

  ⃗
 
       ( ⃗| ⃗) 

  ⃗
 
 ( ⃗   ⃗)

  ⃗
   ( ⃗   ⃗)  

and 

      ( ⃗| ⃗)  

  ⃗ 
 
        ( ⃗| ⃗) 

  ⃗ 
      ( ⃗)      

where  ( ⃗⃗⃗) is the matrix of the second partial derivative.  

When using Bayesian MAP estimation, MIRT-based abilities are estimated by 

finding the mode that maximizes the posterior likelihood function,  ( ⃗| ⃗), using the 

Newton-Raphson method (Yao, 2013), which can be expressed as 

      ( ⃗| ⃗) 

  ⃗
| ⃗     

and the m
th 

approximation that maximizes the posterior likelihood function becomes 

 ⃗     ⃗   ⃗   

where  

 ⃗  [   ⃗  ]
  
  
      ( ⃗| ⃗) 

  ⃗
  

In the MAP subscoring procedure, using standard normal or no informative priors 

would ignore the correlated information between domains that would yield similar results 

(3.6) 

(3.7) 

(3.8) 

(3.9) 

(3.10) 
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as those from MLE. However, using strong priors would allow the information to be 

borrowed from each dimension and increase the precision, especially when the test is 

short (Yao, 2013; Yao & Boughton, 2007). The same estimation procedure can be 

applied to each subtest separately so that unidimensional MAP estimates are obtained. 

For unidimensional MAP, the only prior information would be the population mean and 

variance. Because there is only one dimension, it is not possible to use inter-dimension 

correlations during the estimation.  

Subscore Reliability 

The aim of an assessment is to obtain reliable scores that can be used to evaluate 

examinees’ skills for diagnostic, classification or selection purposes. The higher the 

reliability of a test, the better examinees are evaluated based on their test scores. Brennan 

(2005) described three types of reliability based on classical test theory. These are 

parallel-form reliability, canonical reliability, and internal consistency. The third 

reliability approach, internal consistency, is the most common way to evaluate the 

reliability of scores from tests and subtests with dichotomously scored items. Coefficient 

alpha (Cronbach, 1951) and the Kuder–Richardson Formula 20 (KR-20; Kuder & 

Richardson, 1937) are typical examples of reliability coefficients that examine the 

variation in test scores across the examinees within a single test. In such reliability 

coefficients, obtaining consistent scores across all examinees on the same test or subtest 

is highly desirable. Because this type of reliability focuses on the variation between the 

examinees’ scores on the test, it can be seen as a measure of between-person reliability. 

Between-person reliability coefficients can be particularly useful for selection 

assessments because this type of assessment requires reliable and differentiating scores so 
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that the examinees with high performances can be separated from those with low 

performance. For tests with multiple subtests or test batteries, internal consistency is 

computed for each subtest separately, ignoring the relationship between the subtests.  

When the main purpose of an assessment is to determine the strengths and 

weaknesses of examinees in particular domains, the variation among the subscores for 

each individual is more important than the variation within each subscore across all 

examinees. Multiple subscores derived from an assessment can be considered as a test 

score profile. The term “test score profile” can be described as a collection of test scores 

attained by a particular student. An examinee’s test score profile provides information 

about his/her strengths and need for improvement of the knowledge, skills, and abilities 

relevant to the assessments in the profile (Arce-Ferrer, 2010). Individual test reports 

based on test score profiles often include recommendations to improve students’ 

academic achievement and classroom teaching, or to select the most effective 

intervention for students. The analysis of test score profiles can provide information 

about an examinee’s performance in either broad content areas (e.g., reading, 

mathematics, and science) or narrow content domains (e.g., algebra, geometry, and 

calculus). 

Test score profiles can be used for both for inter-individual and intra-individual 

interpretations. Through the use of profile analysis techniques, a person’s strengths and 

weaknesses can evaluated based upon their ipsatized scores (i.e. pattern vectors), which 

are obtained by subtracting an examinee’s average score on the domains from each score 

in the test score profile (Davison, 1996; Davison, Kim, & Close, 2009). Figure 3.3 shows 

the test score profiles of six individuals on three domains. For each person, the three 
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scores in the person’s profile vector are shown above the profile while each person’s 

ipsatized scores are shown below the profile. Individual differences in profile can be seen 

in the comparison of the top and bottom three profiles. Also, from left to right, variation 

in the ipsatized scores can be seen. The first two test score profiles display a linearly 

increasing pattern; the second two display an inverted V shape pattern; and the last two 

display a linearly decreasing pattern. 

 

Figure 3.3. A hypothetical example of test score profiles of six persons on three domains. 

Adapted from “Factor Analytic Modeling of Within Person Variation in Score Profiles” 

by M. L. Davison, S. Kim, and C. Close, 2009, Multivariate Behavioral Research, 44, p. 

669.  

 

Examining an individual’s strengths and weaknesses from ipsatized scores has 

brought some uncertainties due to lack of evidence for subscore reliability and validity 

(Watkins, Glutting & Youngstrom, 2005). In order to estimate the precision of unique 
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patterns of test score profiles, Davison, Chang, and Davenport (2012) proposed an 

approach for estimating the reliability of individual differences in test score profiles 

based upon the total variation, the variation among individuals, and the variation among 

the subscores. This approach is mainly an extension of canonical test reliability as 

proposed by Conger and Lipshitz (1973). Canonical reliability (Conger & Lipshitz, 1973) 

for test score profiles is the multivariate version of the traditional univariate reliability as 

the ratio of the variance of true scores to the variance of observed scores. Conger and 

Lipshitz (1973) define the observed difference vector as   ⃗   ⃗   , where  ⃗  is the 

vector of subscores for person i, and  ⃗   is the average of subscores that person i obtained. 

Using the observed and true difference vectors, canonical reliability can be written for 

any distance function as  

  
( ⃗⃗   ⃗⃗  )

 
    ⃗⃗   ⃗⃗   

( ⃗   ⃗  )
 
    ⃗   ⃗   

  

where   ⃗⃗   ⃗⃗    is the true difference vector, and A is a square matrix used for weighting 

the reliability. The square matrix A can be either a correlation matrix of the subscores on 

the test score profiles or an identity matrix if weighting is not desired (Conger & Lipshitz, 

1973). 

Using the profile reliability framework defined by Conger & Lipshitz (1973), 

Davison et al. (2012) has described a profile reliability approach that makes use of both 

the vector of difference scores (i.e. pattern) and the vector of the average subscore (i.e. 

level) in a test score profile. For a given person, the level of a test score profile is the 

mean of the subscores in the profile, which can be expressed as  

(3.11) 
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 ̅  
 

 
∑   

 

   

  

 

 

where     is the score of person i (i = 1, ……, I) on subtest d (d = 1, ….., D), and  ̅  is 

the average scores from D subtests for person i. When Equation 3.12 is applied to each 

person in the sample, a level vector that consists of D level scores is obtained (see Figure 

3.4) 

Person 
Subtests  

1 …. ….    

1           ̅                

2     ̅                

.     ̅                

.    . 

.    . 

.    . 

.    . 

I     ….      ̅                

 

Figure 3.4. Obtaining the level scores for each examinee. 

 

 

The pattern of a test score profile is a vector of the score differences (i.e. ipsatized 

scores) between each subscore and the mean of the subscores for a given person. A 

pattern vector of a test score profile can be shown as        ̅              ̅   , 

where     is the subscore for person i on the subtest d, and  ̅  is the mean of the 

subscores that person i obtained from D subtests. Therefore, for each person, the number 

of difference scores in the pattern vector is the same as the number of the subtests in the 

profile. Figure 3.5 illustrates the pattern vectors of the examinees on D subtests.  

 

(3.12) 
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Person 
Pattern Scores 

1 …. ….   

1       ̅          ̅   

2    

.    

.    

.    

.    

.    

P       ̅   ….       ̅   

 

Figure 3.5. Obtaining the vector of pattern scores for each examinee. 

Using the terms described above, the total score variation (T) of a test score 

profile can be defined as the sum of the variances for the D subtests. The total variance of 

a test score profile can be indicated as follows:  

  ∑  
 

 

   

 

Davison et al. (2012) stated that the total score variation can be divided into two 

orthogonal components: T = B + W; where B is the between-person variation referred to 

as profile level, and W is the within-person variation referred to as profile pattern. 

Essentially, B is the between-person variation due to individual differences in profile 

level, and W is the within-person variation due to individual differences in profile 

patterns. The following sections show the derivation of between-person and within-

person reliability coefficients based on the pattern and level variances. Because level is 

the indicator of between-person variation (B), and pattern is the indicator of within-

person variation (W), these terms will be used interchangeably throughout this study.  

(3.13) 
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Between-person Subscore Reliability 

To characterize the between-person reliability in the test score profiles, the 

relationship between observed and true test scores in the CTT framework is used. Based 

on CTT, if observed test scores (Xid) are expressed as a sum of true scores (Tid) and error 

(Eid), then each person has a profile of observed scores                as well as the 

profile of true scores                . Therefore, the same approach for computing level 

and pattern scores can also be applied to true scores. If Equation 3.12 is applied to the 

true scores, the level of true scores becomes  ̅   ∑    
 
      .  

Since reliability in CTT is defined as the proportion of observed total variation in 

profiles that is attributable to true scores, the total variation in the observed and true level 

scores should be computed for obtaining between-person reliability. If the total observed 

score variation is defined as the sum of the variances for D subtests, then the observed 

total level variance becomes       ̅ 
 , where B is the observed total level variance 

and D is the number of subtests. Similarly, the true total level variance based on the true 

level values becomes         ̅ 
 ; where   ̅ 

  is the variance of true level scores, and 

so    becomes the total true level variance. Using the observed and true level variances, 

between-person reliability can be defined as the ratio of true level variation to observed 

level variation:    

   
  ̅ 
 

  ̅ 
  

  
 
  

Based on Equation 3.14, between-person reliability can be interpreted as the 

proportion of variation in observed profile levels that can be attributable to true level 

(3.14) 
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variation in a test score profile. So, the more consistent the variation among the 

examinees becomes, the higher between-person reliability is.     

Within-person Subscore Reliability 

 Within-person reliability can be defined in a similar fashion. In a test score 

profile, the total observed pattern variance is   ∑ [
 

 
∑       ̅  

  
   ] 

   , where W 

represents the total observed within-person variation due to individual differences in the 

subscores. Similarly, the total true pattern variance can be shown 

as    ∑ [
 

 
∑       ̅  

  
   ] 

   , where    is the total true within-person variation in 

the test score profile. By using the same approach with the ratio of observed and true 

scores, within-person reliability can be defined as the ratio of true pattern variation to 

observed pattern variation as follows:  

   
∑ [

 
 
∑       ̅  

  
   ] 

   

∑ [
 
 
∑       ̅   
 
   ] 

   

 
  
 
  

The within-person reliability coefficient can be interpreted as the proportion of 

variation in observed profile patterns that can be attributed to true pattern variation in the 

test score profile. Within-person reliability can also be interpreted as a weighted average 

of the within-person reliability for each subtest, and as a weighted average of the person 

profile reliabilities (see Davison et al., 2012).  

Overall Profile Reliability 

As with between-person and within-person reliability, the overall profile 

reliability is also the proportion of observed total variation in the test score profile that is 

attributable to true scores. The total observed and true score variances can be defined as 

(3.15) 
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the sum of the observed score variance    ∑        
 
     and the sum of the true score 

variance     ∑       
 
     in the separate measures respectively. To find the overall 

profile reliability in a test score profile, the ratio of true total variation to observed total 

variation can be computed as follows:  

   
∑        
 
   

∑        
 
   

 
  
 
  

The overall profile reliability is directly related to both the between-person and 

within-person reliability because it is a weighted average of the between-person and 

within-person reliability. Following the fact that the total variation is the sum of the 

between-person and within-person variation, Equation 3.16 can be rewritten as follows:  

 

   
  
 
 
     
 

 
 

 
 
  
 
 
 

 
 
  
 
 

 

   
             

According to Davison et al. (2012), in some cases, most or all of the variation in a 

test score profile is due to level; in other cases, it is due to pattern. Therefore, as a 

weighted average of between-person and within-person variation, the total profile 

reliability always lies within a range between within-person reliability and between-

person reliability. All of the between-person reliability, the within-person reliability, and 

the overall profile reliability coefficients range from 0 to 1, where a higher value 

indicates higher reliability. For a test in which subscores are reliable and have added 

value over the total score, within-person reliability should be higher and more dominant 

than between-person reliability in the profile of test scores.  

(3.17) 

(3.16) 
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Estimating Total, Between-person, and Within-person Reliabilities 

As explained above, within-person and between-person reliability coefficients are 

based on the relationship between true and observed subscores in a test score profile. It is 

assumed in the classical test theory that true scores are unknown, and observed scores are 

the approximations of true scores. When there are parallel forms of a test, the covariance 

of the two forms provides an estimate of the true score variation. Holland and Hoskens 

(2003) noted that if true scores from two tests are perfectly correlated (i.e., congeneric) 

and equally reliable, then the correlation between the observed scores provides an 

estimate of the proportion of true score variance to observed score variance. Brennan 

(2005) explained the derivation of true score variance from two parallel test profiles as 

follows:  

        
       

         
  

 where X and X’ are two parallel test profiles, and each profile consists of D subtests. 

When the expectations for the correlation and covariance are taken for all possible pairs 

of parallel test profiles, the expected value of the covariance becomes  

          
         

       
  

and the expected value of the covariance of the parallel forms is 

             [
 

 
∑      ̅    

   ̅   
   ] 

                      
 

 
∑        ̅     

   ̅  

 

   

  

(3.18) 

(3.19) 

(3.20) 
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∑       ̅       

   ̅  

 

   

 

                      
 

 
∑      

  

 

   

 

                             

Following the reasoning in Equation 3.20, after obtaining an estimate of the 

covariance between every possible pair of parallel tests d and d′, the true score variation 

becomes equal to the average of all possible covariances because the tests d and d′ are 

assumed to have equal variances. Based on this fact, the proportion of total profile 

variation due to true scores can be estimated as follows:  

 

 

Using the same approach, within-person and between-person reliability coefficients based 

on the test scores from parallel test forms can be formulated as follows: 
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It should be noted that Equation 3.22 indicates an overall within-person reliability 

coefficients that is a weighted average of within-person reliability coefficients from all 

persons. Without averaging over the persons, within-person reliability coefficients can 

also be used to evaluate reliability for each individual in the sample.     

Simulation Study 

 To address the research questions stated in Chapter 1, a simulation study was 

designed with various simulation conditions. The aim of the simulation study was to 

compare UIRT and MIRT ability estimates (i.e. subscores) in terms of between-person 

and within-person reliability, and to investigate how factors such as test length, number 

of subtests, etc., affect the between-person and within-person reliability of ability 

estimates obtained from UIRT and MIRT models. As pointed out in Chapter 2, previous 

studies have indicated that the subscore estimates from MIRT models tend to be more 

reliable and precise than the subscore estimates from UIRT models when the subtests are 

short and the abilities are highly correlated (de la Torre, 2008, 2009; Wang, Chen, & 

Cheng, 2004; Yao, 2010; Yao & Boughton, 2007). This simulation study examined 

whether MIRT subscore estimation is still favorable over unidimensional subscore 

estimation in terms of between-person and within-person reliability under various test 

conditions. The following section explains the details of simulation conditions used in 

this study.  
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Simulation Conditions 

In this study, there were three simulation conditions chosen based on the 

suggestions from previous MIRT studies. These conditions were test length, number of 

subtests, and correlation between dimensions.  

a) Test length: In earlier studies, Tate (2004) used 12 items as the lowest number 

and 30 as the highest number of items for each subtest. Yao (2010) designed a 

simulation study with minimum 20 and maximum 60 items for each subtest. De la 

Torre, Song and Hong (2011) used 10, 20, and 30 items as test length. In this 

study, the number of items for each subtest was 10, 20, and 40, representing short, 

moderate, and long subtests. Each subtest had the same number of items.  

b) Number of subtests: In previous simulation studies, the number of subtests (i.e., 

dimensions) ranged from 2 to 5 (De la Torre, 2008; De la Torre, Song & Hong, 

2011; Tate, 2004; Yao, 2010). Considering the number of subtests in test batteries 

and similar tools (e.g., personality scales), the number of subtests was chosen to 

be 3, 5, or 7 in this study.  

c) Correlation between dimensions: The size of correlations between the dimensions 

(i.e., subscores from different subtests) was .3, .5, or .8, representing low, 

moderate, and high subscore correlations. Correlations between the dimensions 

were the same. For instance, with three subtests, the correlations between 

dimensions one and two, dimensions one and three, and dimensions two and three 

were the same.  

 The three simulation conditions (test length, number of subtests, and correlation 

between dimensions) yielded 27 crossed conditions in total. A summary of the simulation 
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conditions in this study is presented in Figure 3.6. Because, sample size was found to 

have little effect on multidimensional and unidimensional ability estimation procedures 

(de la Torre & Patz, 2005; de la Torre & Song, 2009), a fixed sample size, N=1500, was 

used for all conditions in the simulation study. This sample size is considered a sufficient 

number of examinees to obtain stable estimates of subscores.  

 

# of subtests Test length 
Correlation between dimensions 

.3 .5 .8 

3 

10    

20    

40    

5 

10    

20    

40    

7 

10    

20    

40    
                                 

Figure 3.6. Simulation conditions of the study 

 

Data Generation 

As explained earlier, a simple structure was chosen for item parameters of the 

simulated tests to make a direct comparison of unidimensional and multidimensional 

models in terms of subscore reliability. Each subtest was assumed to be unidimensional 

while the overall test was multi-unidimensional. Each test item had a single difficulty 

parameter across all subtests and multiple discrimination parameters. The number of item 

discrimination parameters for each item was equal to the number of subtests. Because of 

the simple structure design, each item had a vector of item discriminations in which only 

one component was nonzero, as shown in Figure 3.2 above. Item discrimination 



73 

 

parameters were drawn from a uniform distribution, ai ~ U [0.8, 2.5]; item difficulty 

parameters were drawn from a normal distribution, bi ~ N (0, 1); and c parameters (i.e. 

lower asymptote) were drawn from a uniform distribution, ci ~ U [0, 0.25]. Different 

levels of the discrimination, difficulty, and c parameters reflect test items with low to 

high discrimination, low to high difficulty, and low to high guessing.  

 The true subscores were drawn from a multivariate normal distribution with a pre-

specified variance-covariance matrix, θi ~ MVN (0, Σ). Based on the correlations between 

the dimensions explained under simulation conditions, mean vectors, variance vectors, 

and correlation matrices for the three-dimensional, five-dimensional, and seven-

dimensional MIRT models were as follows: 

a) Three-dimensional model:                        

∑ [
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c) Seven-dimensional model:                                        

∑  
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  ∑  
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  ∑  
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To make the simulation results more comparable, a 10-item parameter set was 

duplicated twice to get parameters for the 20-item tests, and they were duplicated four 

times to get item parameters for the 40-item tests. Using the item parameters and true 

subscores described above, dichotomous item responses were generated in SimuMIRT 

(Yao, 2003) as follows:  

1- First, item parameters were generated in R (R Development Core Team, 2010) 

based on the predefined characteristics.  

2- The correct response probabilities for the items were computed for each person 

using the probability function of the M3PL model (see Equation 3.1).  

3- A random number from a uniform distribution, U [0, 1], was drawn for each item. 

If the random number is smaller than the probability of correct response, then the 

item response was equal to 1 indicating a correct response, and if the random 

number was larger than the probability of correct response, the item response 

became 0, indicating an incorrect response.  

4- For three subtests, 1500x30, 1500x60, and 1500x120 data matrices were 

generated; for five subtests, 1500x50, 1500x100, and 1500x200 data matrices 

were generated; and for seven subtests, 1500x70, 1500x140, and 1500x280 data 

matrices generated.  
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5- For the MIRT model, the data, including all subtests, were used for simultaneous 

estimation of subscores. For the UIRT model, the simulated response datasets 

were separated for each subtest.  

 600 replications (300 x 2 parallel forms) were carried out for each cell in Figure 

3.6. Both item and person parameters were redrawn in each replication. As explained 

above, to estimate between-person and within-person reliability indices for each test, two 

parallel test forms are required. Therefore, step 3 in the data generation procedure was 

repeated twice, which yielded two response datasets based on the same item parameters 

and true subscores. These response datasets were used as parallel forms. As a result of the 

data generation process, 600 response datasets (300 replications x 2 parallel forms) were 

simulated for each crossed condition in Figure 3.7. An example syntax file for 

SimuMIRT (Yao, 2003) is shown in Appendix A1.  

Subscore Estimation Procedure  

For the estimation of subscores, true item parameters were used for both MIRT 

and UIRT models. The purpose of using the true item parameters was to eliminate 

additional errors in the subscore estimates due to the estimation error of the item 

parameters. Using the true item parameters and response datasets for parallel test forms, 

the subscores were estimated with BMIRT (Yao, 2003). BMIRT is a Bayesian software 

program that allows the estimation of item parameters and person abilities for both 

unidimensional and multidimensional IRT models. When estimating subscores, the 

multidimensional MAP estimation procedure in BMIRT allows for providing standard 

normal, noninformative, or strong priors to improve the precision of the ability estimates. 
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The syntax files for multidimensional and unidimensional subscore estimation in BMIRT 

are illustrated in Appendix A2.  

The subscores from the M3PL model (see Equation 3.1) were estimated for each 

test form using the true item parameters based on a simple structure and strong priors. 

The strong priors were the mean vector for the subscore estimates and the variance-

covariance matrix of the subscores. The strong priors were based on the generating 

distribution of the true subscores. Using strong priors for the population mean, variance, 

and inter-dimensional correlations would allow the information to be borrowed from one 

dimension to improve the precision of another dimension (Yao, 2013).  

The subscores from the unidimensional 3PL model were also estimated using the 

true item parameters. For the unidimensional subtests, each subtest had a separate set of 

item parameters (see Figure 3.7). In addition to item parameters, each subtest in the 

simulated response datasets was saved as a separate data file to be used in the 

unidimensional subscore estimation in BMIRT. Noninformative priors were applied by 

entering prior values for the mean and variance of the unidimensional subscores. Because 

each subtest was analyzed separately, the correlated information between subtests was 

ignored. 
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Item 
Subtest 1 Subtest 2 Subtest 3 

aj bj cj aj bj cj aj bj cj 

1 1.47 -1.12 0.16 1.23 1.26 0.13 1.23 0.96 0.23 

2 1.67 0.85 0.21 0.98 0.58 0.17 1.35 0.85 0.19 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

. . . . . . . . . . 

18 2.14 -0.36 0.07 1.44 -0.67 0.08 1.89 1.26 0.03 

19 2.11 -1.45 0.12 1.87 -0.05 0.05 1.96 -0.79 0.09 

20 1.76 0.66 0.15 1.77 1.48 0.11 1.48 0.08 0.12 

 

Figure 3.7. A sample set of item parameters from three unidimensional subtests with 20 

items.  

The estimation of unidimensional and multidimensional subscores in BMIRT was 

implemented using the computers of the Minnesota Supercomputing Institute (MSI). The 

computer system was a Dell PowerEdge R710s with 2 quad-core 2.66 GHz processors 

and 48 GB memory, running 64-bit Windows Server 2008 R2. While the unidimensional 

subscore estimation was very quick regardless of test length, the multidimensional 

subscore estimation, especially for five- and seven-dimensional models, was 

computationally very intensive and it required more estimation time.  

Evaluation Criteria 

This section explains the criteria used for the evaluation of the data simulation 

procedure and the reliability of subscores estimated from the MIRT and UIRT models. 

First, the simple structure of simulated response datasets and the descriptive statistics of 

the true subscores (i.e., mean, variance, and the correlations among the true subscores) 

were checked to verify the accuracy of the data simulation procedure. Then, the methods 

for evaluating the between-person and within-person reliability of the estimated 

subscores are discussed. 
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Evaluation of Simulation Design. Several researchers have conducted factor 

analyses to determine whether the subtests of a test are distinct enough to estimate 

subscores (e.g., Stone, Ye, Zhu, & Lane, 2010; Wainer et al., 2001; Sinharay, Haberman, 

& Puhan, 2007). In terms of the subscores, the purpose of factor analytic approaches is to 

discover the underlying factor structure of a test including several subtests. Exploratory 

factor analysis (EFA) can be used for the evaluation of subscores in terms of distinctness 

based on the eigenvalues from the correlation matrix of the subscores (Sinharay, Puhan, 

& Haberman, 2011). In addition to EFA, confirmatory factor analysis (CFA) can be 

implemented when the number of dimensions is assumed to be known. Although CFA 

has been derived from the CTT framework, the parameterization of factor loadings, 

thresholds, and factor scores in non-linear factor analysis software programs, such as 

Mplus (Muthén & Muthén, 1998-2011), is very similar to the parameterization of item 

discrimination, item difficulty, and person abilities in IRT. CFA uses the factor loadings 

to indicate the relationship between the indicator variable (i.e., item) and the latent 

variable (i.e., subscore) across all levels of the latent variable (Osteen, 2010). Also, CFA 

provides a variety of fit indices for evaluating model-data fit, which may provide some 

insight regarding the test structure.  

In this study, CFA was used for the examination of whether the simulated 

response datasets display a simple structure as specified in the data simulation procedure. 

A CFA model in which the items of each subtest were loaded on a single dimension was 

implemented for each dataset using Mplus (Muthén & Muthén, 1998-2011). CFI, TLI, 

and RMSEA fit indices were used to evaluate the fit of the simple structure model. TLI 

and CFI values greater than 0.90 are considered acceptable, and values greater than 0.95 
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are considered a good fit (Browne and Cudeck, 1993; Hu & Bentler, 1999; Kline, 2005). 

RMSEA values smaller than 0.07 are considered a close fit (Steiger, 2007). 

After the confirmation of test structure, means and variances of the true subscores 

from the simulated response data were checked. Also, the correlations among the true 

subscores were obtained using Pearson’s correlation coefficient. It is important to 

examine whether the true subscores follow the characteristics of the data generation 

distributions because these three components were used as the priors in the subscore 

estimation procedure. Descriptive statistics for the parallel forms were averaged over 300 

replications for each simulation condition.  

 Evaluation of Subscore Reliability. As explained earlier, this study focused on 

the examination of subscore reliability based on the between-person and within-person 

variations in the estimated subscores. To make a comparison of the UIRT and MIRT 

models in terms of between-person and within-person subscore reliability under various 

simulation conditions, several evaluation criteria were considered. For the evaluation of 

subscore reliability, the evaluation criteria were as follows: 

a) The correlation of the subscores from two parallel forms: After the subscores 

were estimated from the parallel test forms for both MIRT and UIRT models, the 

correlation of the subscores from the first test form and the second test form was 

examined using the Pearson correlation coefficient as follows:  

     
 

 
∑
          

      
 

 

   

 

 
∑    

 

   

        (3.24) 
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where    and   are the subscore estimates of the same subtest from test form 1 

and test form 2, K is the number of replications, and      is the average correlation 

over 300 replications. A higher correlation indicates that the subscore estimates 

from the parallel forms are similar.  

b) The correlation among the subscores within each test form: In addition to the 

correlation of the subscores across test forms, the correlations among the subscore 

estimates within each test form were also computed for the UIRT and MIRT 

models. As in Equation 3.24, the correlations were averaged over 300 

replications. The magnitude of these correlations indicated to what extent the 

resulting subscores had a meaningful relationship based on the factors they 

measure. 

c) The average total profile reliability, within-person reliability, and between-person 

reliability: Using Equations 3.21, 3.22, and 3.23, total profile, within-person, and 

between-person reliability coefficients were computed and averaged over 300 

replications for each simulation condition in R (R Development Core Team, 

2012). The R code for computing total profile, between-person, and within-person 

reliability coefficients are presented in Appendix A3. Reliability estimation 

procedure was repeated for both unidimensional and multidimensional subscore 

estimates. Then, the magnitudes of the reliability estimates were compared across 

the two models. 

d)  Sampling distributions of within-person, between-person, and total reliability 

coefficients: Graphical illustrations of the sampling distributions of the reliability 

coefficients from 300 replications are presented. These graphical illustrations 
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show the differences in the UIRT and MIRT models in terms of within-person 

and between-person reliability under various simulation conditions.  

e) Repeated measures multivariate analysis of variance model (MANOVA): A 

repeated measures MANOVA was used to evaluate the effects of simulation 

conditions (test length, number of subtests, and true correlations among 

subscores) as between-factor variables and the type of estimation method (i.e., 

UIRT vs. MIRT) as a within-factor variable on between-person, within-person, 

and total profile reliability estimates. The main advantage of the repeated 

measures MANOVA is that it does not require equal variances and covariances 

among dependent measures (i.e., sphericity assumption) as opposed to univariate 

repeated measures analysis. For each predictor, partial eta squared (η
2
 ) was 

reported as a measure of effect size. η
2
 is the proportion of the total variance 

accounted for by each independent variable. For the within-subject factor (i.e., 

subscore estimation method), η
2
 was computed based on the method described by 

Tabachnick and  Fidell (2007). Using Wilk’s lambda (Λ), the partial eta squared 

can be found as follows:  

     √  

For the between-subject factors, the partial eta squared is the ratio of the sum of 

squares for the main effect of the factor (SSeffect) to the sum of squares for the total 

variance. Based on this definition, the partial eta squared becomes as follows:  

   
        

       
  

where         is equal to                  (Yon, 2006).  

(3.25) 

(3.26) 
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Real Data Study 

In the last section of this study, to illustrate the between-person and within-person 

reliability procedures, a subset of the Entrance Examination for Graduate Studies (EEGS) 

was used. EEGS is a nationwide test that is used for the selection of students for graduate 

programs at the universities in Turkey. EEGS consists of three subtests: Quantitative 1, 

Quantitative 2 and Verbal. Quantitative 1 and Quantitative 2 subtests include 40 multiple-

choice items that measure the mathematical and logical reasoning abilities of the 

examinees. The items in Quantitative 2 are designed to be more advanced than the items 

in Quantitative 1. The verbal subtest includes 80 multiple-choice items that measure the 

verbal reasoning ability. All items in EEGS have five response options, and they are 

scored dichotomously.  

The data used in this study were from the 2008 administration of EEGS. A 

random sample of 10,000 examinees (5000 male, 5000 female) was selected from the full 

dataset. The sample includes examinees from 123 universities in Turkey and outside of 

Turkey. Examinees’ ages ranged from 18 to 61. Table 3.1 shows the descriptive statistics 

of the raw subscores from EEGS. 

Table 3.1 

 

Summary Statistics for the Raw Subscores in the Three Subtests of EEGS 

 

Subtest # of items M SD Min Max α 

Quantitative 1 40 23.28 11.92 0 40 .96 

Quantitative 2 40 18.36 13.31 0 40 .97 

Verbal 80 59.72 16.66 0 80 .96 

Note: α: Alpha reliability coefficient 
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In order to compute between-person and within-person reliability coefficients 

from the subtests of EEGS, two parallel forms were created from each subtest based on 

the test information function (TIF). TIF is basically the sum of the information functions 

of the items on a test, which can be computed as  

     ∑      

 

   

 

where      is the amount of test information at an ability level of θ,       is the amount 

of information for item j at ability level θ, and J is the number of items in the test (Baker, 

2001). TIF can be used to design similar test forms and also to control measurement error 

very precisely within a test form.  

To create two parallel test forms from each of the subtests of EEGS, item 

parameters for the three subtests were estimated using the unidimensional 3PL model. 

After obtaining the item parameters, test items with similar item difficulties and item 

information functions were placed into separate test forms. Each parallel form had the 

same number of items. Quantitative 1 and Quantitative 2 had two parallel test forms with 

20 items, and the Verbal subtest had two parallel test forms with 40 items. The similarity 

of the resulting parallel forms was examined by plotting the TIF for each test form. 

Figure 3.9 shows test information functions for the parallel test forms based on the 

Quantitative 1, Quantitative 2, and Verbal subtests of EEGS. As seen in Figure 3.8, the 

parallel test forms indicated very similar test information functions.  

In the subscore estimation procedure, the subscores were estimated for each of the 

parallel forms using the unidimensional 3PL model and the M3PL model. First, the 

(3.27) 
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unidimensional subscore estimates were obtained for each parallel test form of 

Quantitative 1, Quantitative 2, and Verbal. Then, Pearson correlations among the 

unidimensional subscore estimates were found. In the next step, these correlations were 

used as strong priors in the multidimensional estimation of subscores. As in the 

simulation study, a simple structure was assumed again. The items of each subtest were 

loaded on a single dimension. Both unidimensional and multidimensional subscore 

estimates were obtained using BMIRT. Between-person, within-person, and total profile 

reliability coefficients were computed for the subscore estimates from each estimation 

method. Then, the magnitudes of these reliability coefficients were compared.  
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Figure 3.8. Test information functions of parallel test forms from Quantitative 1 (a), 

Quantitative 2 (b), and Verbal (c) subtests of EEGS 
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CHAPTER 4 

RESULTS 

 

This chapter presents the results from the simulation and real data studies 

described in the previous chapter. The first section summarizes the results from the 

simulation study in which the subscores from parallel test forms were estimated using the 

unidimensional and multidimensional IRT models. The simulated response datasets were 

examined in terms of their generating distributions. Then, the estimated subscores from 

the UIRT and MIRT models were compared based on between-person, within-person, 

and total profile reliability coefficients to address the research questions of this study. In 

the second section of this chapter, the results from a real data study are presented. Model 

comparisons are carried out to examine the differences between unidimensional and 

multidimensional subscore estimates of EEGS regarding subscore reliability.  

Results of the Simulation Study 

 As explained in Chapter 3, several evaluation criteria were used for the inspection 

of the simulation design and the comparison of the UIRT and MIRT models. The 

simulated response datasets were examined based on the following criteria: (a) 

Correlations between the true subscores generated in SimuMIRT; and (b) the fit of CFA 

models based on simple structure. After checking the accuracy of the data simulation 

process, the subscore estimates from the unidimensional 3PL model and the M3PL model 

were compared based on between-person, within-person, and total profile reliability 

coefficients. The following section explains how the data generation procedure was 
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evaluated based on the underlying distributions of true subscores and the structure of 

simulated response datasets.  

Means, Variances, and Correlations of True Subscores 

The simulation study assumed three different correlations between the true 

subscores (.3, .5, and .8) to represent low, medium, and high correlations of the 

subscores. The correlation matrices for the three-dimensional, the five-dimensional, and 

the seven-dimensional models were as follows: 

  (
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For the other two correlations, the value of .3 was replaced with either .5 or .8. In 

addition, the correlations between the true subscores, means, and variances of the true 

subscores were specified in the data generation process. For all dimensions, the subscores 

followed a normal distribution with a mean of 0 and variance of 1.  

In order to check if the true subscores were accurately generated based on the 

generating distributions, the correlations between the true subscores as well as the means 

and variances of the true subscores were computed under each simulation condition, and 

the average values for 300 replications were reported. Since the parallel test forms were 

generated based on the same true subscores, the data inspection procedure was 

implemented once. Tables 4.1, 4.2, and 4.3 show the average correlations between the 

true subscores when the test consisted of three, five, and seven subtests.  
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Results indicated that the correlations among the true subscores were very close to 

the hypothesized correlations (i.e., .3, .5, and .8) used for generating the multivariate 

subscores. In addition to the correlations, the means and variances of the true subscores 

were examined. These two statistics were particularly important because they were 

entered as the population priors in the subscore estimation procedure. As explained 

earlier, the subscores were designed to have a multivariate normal distribution. Results 

indicated that the average mean and variance values over 300 replications were very 

similar to the values from a multivariate normal distribution. The off-diagonal elements 

of Tables 4.1, 4.2, and 4.3 show the variance of each dimension (i.e., subscore). These 

values were very close to 1 in all conditions. The mean of the true subscores ranged 

between -.004 and .003 across all crossed conditions, indicating that the true subscores 

followed the generating distributions closely. Also, testing of the generating mean values 

on a random set of datasets indicated that the mean values were statistically no different 

than the generating parameters.  

Evaluation of Simple Structure  

 To evaluate if the simulated response datasets display a simple structure, CFA 

models were fitted to the simulated datasets in Mplus (Muthén & Muthén, 1998-2011). 

CFI, TLI, and RMSEA fit indices were used to evaluate whether there was an adequate 

model-data fit. In the CFA models, the subtest items were defined as categorical 

variables, and each item was loaded on a single dimension to define a simple structure 

(see Figure 4.1). The CFA models were estimated with a mean- and variance-adjusted 

weighted least squares (WLSMV) estimator that uses a robust weighted least squares 

approach for categorical variables in Mplus. 
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Table 4.1 

Correlation Matrix of the True Subscores from Three Subtests 

ρ  S1 S2 S3 

.3 

S1 0.999   

S2 .301 0.997  

S3 .300 .300 0.998 

.5 

S1 0.999   

S2 .502 0.997  

S3 .501 .500 0.998 

.8 

S1 0.998   

S2 .800 0.999  

S3 .801 .800 0.998 
Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3. Diagonal elements are variances and off-diagonal 

elements are correlations over 300 replications. ρ: True correlation between subscores used in the data 

generation. 

 

 

Table 4.2 

Correlation Matrix of the True Subscores from Five Subtests 

ρ  S1 S2 S3 S4 S5 

.3 

S1 .988     

S2 .290 1.004    

S3 .290 .290 1.002   

S4 .300 .310 .300 .998  

S5 .290 .310 .300 .300 1.003 

.5 

S1 0.988     

S2 .490 1.001    

S3 .490 .490 0.989   

S4 .500 .500 .500 0.997  

S5 .500 .510 .500 .500 1.002 

.8 

S1 0.988     

S2 .790 0.993    

S3 .790 .790 0.997   

S4 .800 .800 .800 0.993  

S5 .800 .800 .800 .800 0.993 
Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5. Diagonal elements 

are variances and off-diagonal elements are correlations over 300 replications. ρ: True correlation between 

subscores used in the data generation. 
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Table 4.3 

Correlation Matrix of the True Subscores from Seven Subtests 

ρ  S1 S2 S3 S4 S5 S6 S7 

.3 

S1 0.998       

S2 .290 0.995      

S3 .300 .300 1.001     

S4 .290 .300 .290 1.001    

S5 .300 .290 .290 .300 0.999   

S6 .300 .300 .300 .300 .300 0.996  

S7 .310 .300 .300 .300 .300 .300 1.002 

.5 

S1 0.999       

S2 .490 0.996      

S3 .500 .500     1.000     

S4 .490 .500 .490 0.999    

S5 .500 .490 .490 .500 0.999   

S6 .500 .500 .500 .500 .500 0.998  

S7 .500 .490 .500 .500 .500 .500 1.001 

.8 

S1 0.999       

S2 .790 0.996      

S3 .800 .800    1.000     

S4 .800 .800 .790 0.999    

S5 .800 .790 .800 .800 0.999   

S6 .800 .800 .800 .800 .800 0.998  

S7 .800 .800 .800 .790 .800 .800 1.001 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5; S6: Subscore 6; S7: 

Subscore 7. Diagonal elements are variances and off-diagonal elements are correlations over 300 

replications.         ρ: True correlation between subscores used in the data generation. 
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Figure 4.1. A simple-structure CFA model based on three subtests and thirty test items. 

 

To evaluate model-data fit, the following criteria were used: CFI > .95; TLI > .95; 

RMSEA < .07. The model fit indices were averaged over 300 replications. Because the 

parallel test forms were based on the same true subscores and the distribution 

characteristics, only one set of the forms was evaluated in terms of the factor structure. 

Table 4.4 presents the findings from the CFA models.  

The results from the CFA models show that the response datasets indicated 

adequate fit based on the fit indices. Under all conditions, the simulated datasets provided 

CFI and TLI values higher than .95, and RMSEA smaller than .05. CFI and TLI values 

were very close across different levels of subtest length and inter-dimension correlations. 

However, as the number of subtests (i.e., dimensions) increased, CFI and TLI decreased 

because of the increasing complexity of the CFA models. As the correlation among the 

dimensions increased, RMSEA also increased slightly, indicating that the CFA models 

with low correlated dimensions (r = .3) provided a better fit compared to the CFA models 

with moderately (r = .5) and highly (r = .8) correlated dimensions.  
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Table 4.4 

Summary of Model-Fit Statistics from CFA Models Used for Testing Simple Structure 

N of Subtests Subtest Length Correlation CFI TLI RMSEA 

3 10 .3 .998 .999 .003 

3 10 .5 .998 .998 .004 

3 10 .8 .998 .999 .005 

3 20 .3 .998 .999 .002 

3 20 .5 .998 .998 .003 

3 20 .8 .997 .997 .004 

3 40 .3 .988 .986 .001 

3 40 .5 .985 .986 .002 

3 40 .8 .983 .981 .003 

5 10 .3 .978 .976 .011 

5 10 .5 .977 .976 .013 

5 10 .8 .975 .977 .016 

5 20 .3 .973 .976 .009 

5 20 .5 .974 .975 .011 

5 20 .8 .975 .974 .014 

5 40 .3 .973 .971 .008 

5 40 .5 .971 .971 .011 

5 40 .8 .972 .971 .012 

7 10 .3 .964 .963 .021 

7 10 .5 .963 .963 .023 

7 10 .8 .963 .962 .026 

7 20 .3 .959 .958 .019 

7 20 .5 .958 .957 .021 

7 20 .8 .958 .957 .022 

7 40 .3 .953 .951 .017 

7 40 .5 .953 .952 .019 

7 40 .8 .952 .952 .020 

Note: CFI, TLI, and RMSEA values in the table are the average of 300 replications.  
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The second step of the simulation study was the comparison of between-person, 

within-person, and total profile reliability estimates obtained from the UIRT and MIRT 

models. The subscores for each response dataset were estimated using multidimensional 

and unidimensional IRT scoring methods. The following sections present the findings of 

subscore reliability estimates from the two methods, and explain how the subscore 

reliability estimates are influenced by the simulation conditions. In addition, the results 

for the recovery of correlations between the subscores and the correlation between the 

parallel test forms are presented.  

Correlations between Parallel Test Forms 

 As explained in Chapter 3, between-person, within-person, and total profile 

reliability coefficients are estimated using parallel test forms. Assuming that subscores 

from two parallel test forms have equal variances, the true score variation becomes equal 

to the covariances of subscores from the parallel test forms. True score variations among 

the individual subscore estimates can be used for estimating an overall profile reliability 

coefficient as well as between-person and within-person subscore reliability coefficients.  

 In this study, to create parallel test forms, the same item parameters and true 

subscores were used for generating two datasets. The random seed option in SimuMIRT 

was modified between the first and second data generation procedures to simulate 

different response files based on the same item and person parameters. After the subscore 

estimates were obtained for each response dataset using the UIRT and MIRT models, 

correlations between the subscore estimates from the two test forms were computed. 

Table 4.5 and Table 4.6 present the correlations of the subscores across the parallel test 

forms from the multidimensional and unidimensional scoring, respectively.  
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 Table 4.5 

Correlations of the Subscore Estimates from MIRT across Two Parallel Test Forms 

Subtests 
Subtest 

Length 
ρ S1 S2 S3 S4 S5 S6 S7 

3  .3 .77 .77 .77     

 10 .5 .79 .79 .79     

  .8 .85 .85 .85     

  .3 .86 .86 .86     

 20 .5 .87 .87 .87     

  .8 .90 .90 .90     

  .3 .92 .92 .92     

 40 .5 .93 .92 .92     

  .8 .94 .94 .94     

5  .3 .78 .77 .78 .78 .78   

 10 .5 .81 .81 .81 .81 .81   

  .8 .88 .88 .88 .88 .88   

  .3 .86 .86 .87 .86 .87   

 20 .5 .88 .88 .88 .88 .88   

  .8 .92 .92 .92 .92 .92   

  .3 .92 .92 .92 .92 .92   

 40 .5 .92 .93 .92 .93 .93   

  .8 .94 .95 .94 .94 .95   

7  .3 .79 .79 .79 .79 .79 .79 .79 

 10 .5 .82 .83 .82 .82 .82 .82 .83 

  .8 .89 .89 .89 .89 .89 .89 .89 

  .3 .88 .88 .88 .88 .87 .88 .88 

 20 .5 .91 .91 .91 .92 .91 .91 .91 

  .8 .92 .92 .92 .92 .92 .92 .92 

  .3 .93 .93 .93 .93 .93 .93 .93 

 40 .5 .94 .94 .94 .94 .94 .94 .94 

  .8 .95 .95 .94 .95 .95 .95 .95 

Note: ρ: Correlation between the subscores. S1: Subscore 1; S2: Subscore2; S3: Subscore 3; S4: Subscore 

4; S5: Subscore 5; S6: Subscore 6; S7: Subscore 7. 
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Table 4.6 

Correlations of the Subscore Estimates from UIRT across Two Parallel Test Forms 

Subtests 
Subtest 

Length 
ρ S1 S2 S3 S4 S5 S6 S7 

3  .3 .74 .74 .74     

 10 .5 .74 .74 .74     

  .8 .74 .74 .74     

  .3 .85 .85 .85     

 20 .5 .85 .85 .85     

  .8 .85 .85 .85     

  .3 .92 .92 .92     

 40 .5 .92 .91 .92     

  .8 .92 .92 .92     

5  .3 .74 .73 .74 .74 .75   

 10 .5 .74 .73 .74 .74 .75   

  .8 .74 .73 .73 .74 .74   

  .3 .85 .85 .85 .85 .85   

 20 .5 .85 .85 .85 .85 .85   

  .8 .85 .85 .85 .85 .85   

  .3 .91 .92 .91 .92 .92   

 40 .5 .91 .92 .91 .91 .92   

  .8 .91 .92 .91 .91 .92   

7  .3 .74 .74 .74 .74 .74 .74 .74 

 10 .5 .74 .74 .74 .74 .74 .74 .74 

  .8 .74 .74 .74 .74 .74 .74 .74 

  .3 .85 .85 .85 .85 .85 .85 .85 

 20 .5 .85 .85 .85 .85 .85 .85 .85 

  .8 .85 .85 .85 .85 .85 .85 .85 

  .3 .92 .91 .92 .92 .92 .92 .92 

 40 .5 .92 .91 .92 .92 .91 .92 .92 

  .8 .92 .91 .92 .92 .91 .92 .92 

Note: ρ: Correlation between the subscores. S1: Subscore 1; S2: Subscore2; S3: Subscore 3; S4: Subscore 

4; S5: Subscore 5; S6: Subscore 6; S7: Subscore 7.  
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The results indicated that the multidimensional subscore estimates from the 

parallel test forms had higher correlations than the unidimensional subscore estimates 

under all simulation conditions. The correlation between the parallel forms ranged from 

.77 to .95 for the multidimensional subscore estimation, and from .74 to .92 for the 

unidimensional subscore estimation. The difference between the two methods was the 

largest when the number of items was small and the correlations between the subscores 

were high. The number of test items had a positive effect on the correlations between the 

parallel forms for both methods. As the number of items increased from 10 to 40 in each 

subtest, the correlation between the parallel test forms dramatically increased. The 

number of subtests had no impact on the magnitude of the correlations between the 

parallel forms for both unidimensional and multidimensional scoring methods. Figure 4.2 

shows the relationship between subtest length, the true correlation between the subscores, 

and the correlation between the parallel forms when the multidimensional subscore 

estimation is used. 

The results also suggest that the correlation between the subscores had an impact 

only when the multidimensional subscore estimation was used. As the correlation 

between the subscores increased from .3 to .8 within each test form, the correlation of the 

subscore estimates between the parallel forms increased substantially. In contrast to the 

multidimensional subscore estimation, the correlations between the parallel test forms 

remained constant across different levels of the correlations among the subscores within 

each test form when unidimensional scoring was used.  
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Figure 4.2.  The average test-retest correlations of the multidimensional subscores across 

three levels of subtest length and true correlations between the subscores. 
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The main reason for the difference between the two estimating procedures is that 

the multidimensional subscore estimation takes the correlations among the subscores into 

account as strong population priors, whereas the unidimensional subscore estimation 

estimates the subscores from each subtest one at a time by ignoring the correlation 

between the subscores. Incorporating the correlational structure in the subscore 

estimation provided moderately large to large improvements (.08–.10) when tests were 

short and ρ = .8, and small improvements (.02–.04) when tests were longer and ρ = .3. 

Despite its positive effects, the number of items had still greater impact than the size of 

the correlation between the subscores when multidimensional scoring was used.  

Correlations of Estimated Subscores 

The correlations of the multidimensional subscore estimates across all simulation 

conditions are presented in Table B1.1 through Table B1.6 in Appendix B1. The results 

indicated that correlations among the multidimensional subscores were overestimated 

under all simulation conditions. The estimated correlations were higher than the true 

correlations used for generating the subscores. The estimated correlations did not change 

across different ability dimensions (i.e., subscores), indicating that recovery of the true 

correlations based on the MIRT model was the same across all dimensions. The number 

of items (i.e., subtest length) had an impact on the recovery of true correlations. The 

largest discrepancy between the true correlations and the estimated correlations occurred 

when the subtests were short (e.g., 10 items per subtest). As the subtest length increased, 

the correlations of the multidimensional subscore estimates became closer to the true 

correlations among the subscores. In addition to subtest length, recovery of the true 

correlations also depends on the true correlations among the subscores. When the true 
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correlation among the subscores was small (ρ=.3), the discrepancy between the true 

correlations and the estimated correlations were the smallest. As the true correlations 

increased from .3 to .8, the correlations of the multidimensional subscore estimates 

indicated larger deviations from the true correlations. The number of subtests (i.e., 

dimensions) did not seem to affect the observed correlations among the subscores. Across 

the 3-dimensional, 5-dimensional, and 7-dimensional models, correlations among the 

multidimensional subscore estimates did not change for all ability dimensions.  

 The correlations of the unidimensional subscore estimates across all simulation 

conditions are presented in Table B2.1 through Table B2.6 in Appendix B2. In contrast to 

the multidimensional subscore estimates, correlations among the unidimensional 

subscore estimates were always smaller than the true correlations among the subscores 

under all simulation conditions. Also, the discrepancy between the true subscore 

correlations and the observed subscore correlations was larger for the unidimensional 

subscore estimates than the multidimensional subscore estimates, indicating that the 

MIRT model recovered the true correlations better than the UIRT model.  

As for the multidimensional subscore estimation, subtest length was influential on 

the recovery of the true subscore correlations. Especially when the number of subtest 

items was small (i.e., 10 items for each subtest) and the true correlation among the 

subscores was high (ρ=.8), the correlations among the unidimensional subscore estimates 

were fairly low compared with the true correlations. When subtest length increased from 

10 to 40, the recovery of the true correlations substantially improved and the discrepancy 

between the estimated and true correlations became smaller. The best approximations of 

the true correlations were observed when subtest length was long (i.e., 40 items for each 



100 

 

subtest) and the true correlation among the subscores was small (ρ=.3). The number of 

subtests (i.e., dimensions) was again not an important factor for the recovery of true 

correlations among the subscores. For both multidimensional and unidimensional 

subscore estimates, the recovery of the true correlations was very similar across the 

parallel test forms.  

Between-person, Within-person, and Total Profile Reliability Estimates 

 Descriptive summaries of subscore reliability estimates based on the 

multidimensional and unidimensional estimation procedures are presented in Table 4.7 

and Table 4.8, respectively. For each crossed simulation condition, subscore reliability 

estimates included a sample of 300 estimates resulting from 300 replications.  

 The results in Table 4.7 and Table 4.8 indicated that between-person subscore 

reliability estimates were higher than within-person subscore reliability estimates across 

all simulation conditions for both multidimensional and unidimensional subscores. The 

average between-person subscore reliability ranged from .83 to .98 for the 

multidimensional subscore estimates and it ranged from .82 to .98 for the unidimensional 

subscore estimates. For both unidimensional and multidimensional subscores, the 

magnitude of between-person reliability estimates was found to be positively associated 

with subtest length, number of subtests, and correlations among the subscores. As subtest 

length, number of subtests, and correlations among the subscores increased, between-

person reliability substantially improved. The highest between-person reliability     

   ) in the multidimensional subscore estimates was obtained when there were seven 

subtests, each of which included 40 items, and the correlations between the seven 

subtests were high (ρ=.8). Similarly, the highest between-person reliability estimate was 
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.98 for the unidimensional subscore estimates when the subtest length was 40 and the true 

correlations among the subscore estimates were .8.  

 

Table 4.7 

Descriptive Statistics for Between-Person, Within-Person, and Total Profile Reliability 

Estimates from the Multidimensional Subscore Estimates across Simulation Conditions. 

Subtests 
Subtest 

Length 
ρ 

           

M SD  M SD  M SD 

3  .3 .831 .015  .689 .021  .771 .016 

 10 .5 .859 .012  .617 .023  .792 .014 

  .8 .885 .010  .406 .026  .851 .010 

  .3 .905 .008  .809 .014  .862 .011 

 20 .5 .921 .007  .754 .017  .872 .009 

  .8 .936 .005  .567 .025  .904 .006 

  .3 .947 .004  .888 .008  .921 .005 

 40 .5 .957 .003  .852 .011  .924 .005 

  .8 .965 .002  .711 .019  .939 .003 

5  .3 .868 .025  .689 .029  .776 .021 

 10 .5 .898 .017  .619 .036  .806 .021 

  .8 .922 .014  .410 .045  .878 .017 

  .3 .928 .013  .808 .019  .865 .013 

 20 .5 .946 .009  .776 .023  .879 .013 

  .8 .958 .007  .571 .037  .918 .011 

  .3 .961 .008  .887 .012  .921 .008 

 40 .5 .971 .005  .852 .016  .926 .008 

  .8 .977 .004  .709 .031  .944 .021 

7  .3 .878 .031  .689 .037  .786 .025 

 10 .5 .908 .022  .619 .049  .821 .027 

  .8 .932 .018  .410 .059  .888 .024 

  .3 .938 .018  .808 .024  .901 .018 

 20 .5 .949 .014  .759 .029  .913 .016 

  .8 .958 .012  .578 .046  .921 .014 

  .3 .958 .011  .893 .016  .922 .011 

 40 .5 .967 .007  .851 .021  .931 .011 

  .8 .979 .006  .712 .043  .941 .036 
Note: ρ: True correlation between the subscores. ρB: Between-person reliability; ρW: Within-person 

reliability;  ρT: Total profile reliability. 
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Table 4.8 

Descriptive Statistics for Between-Person, Within-Person, and Total Profile Reliability 

Estimates from the Unidimensional Subscore Estimates across Simulation Conditions. 

Subtests 
Subtest 

Length 
ρ 

           

M SD  M SD  M SD 

3  .3 .817 .020  .669 .026  .739 .023 

 10 .5 .848 .017  .594 .028  .739 .023 

  .8 .879 .014  .379 .031  .739 .023 

  .3 .899 .009  .799 .014  .849 .011 

 20 .5 .918 .007  .741 .018  .849 .011 

  .8 .936 .006  .538 .024  .849 .011 

  .3 .946 .004  .884 .009  .916 .006 

 40 .5 .956 .003  .845 .012  .915 .006 

  .8 .965 .003  .688 .019  .915 .006 

5  .3 .858 .026  .667 .035  .737 .027 

 10 .5 .890 .018  .594 .041  .737 .027 

  .8 .918 .016  .382 .054  .737 .027 

  .3 .926 .015  .798 .021  .849 .015 

 20 .5 .943 .010  .741 .025  .849 .015 

  .8 .960 .007  .541 .041  .847 .017 

  .3 .959 .008  .883 .013  .915 .009 

 40 .5 .969 .005  .845 .016  .915 .009 

  .8 .978 .004  .687 .032  .914 .009 

7  .3 .873 .029  .673 .043  .741 .031 

 10 .5 .901 .022  .594 .045  .741 .031 

  .8 .931 .019  .389 .058  .741 .031 

  .3 .931 .021  .801 .028  .852 .019 

 20 .5 .939 .016  .743 .032  .851 .019 

  .8 .958 .013  .542 .045  .851 .019 

  .3 .971 .013  .879 .019  .919 .012 

 40 .5 .983 .011  .847 .022  .920 .012 

  .8 .981 .009  .689 .039  .919 .012 
Note: ρ: True correlation between the subscores. ρB: Between-person reliability; ρW: Within-person 

reliability; ρT: Total profile reliability. 
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The average within-person subscore reliability estimates ranged from .41 to .89 

for the MIRT model and from .38 to .88 for the UIRT model. In contrast to between-

person subscore reliability, within-person subscore reliability was negatively associated 

with the true correlations among both the subscore estimates. As the true correlations 

increased from .3 to .8, within-person reliability estimates from the MIRT and UIRT 

models became fairly small. Within-person reliability estimates were the lowest for both 

multidimensional and unidimensional subscore estimates especially when the true 

correlation among the subscores was .8. This finding implies that high correlations 

among the subscore estimates leads to low within-person reliability as a result of smaller 

variations among the subscores. Therefore, when subtests are very similar (i.e., highly 

correlated), the estimated subscores may not be a reliable indicator of the within-person 

variation among the subscores.  

Within-person reliability was also dependent on the number of items in the 

subtests. As subtest length increased from 10 to 40, within-person reliability improved 

substantially for both multidimensional and unidimensional subscore estimates. The 

highest average within-person reliability        ) in the multidimensional subscore 

estimates was obtained when subtest length was 40 for each subtest and the true 

correlation among the subscores was low (ρ=.3). Similarly, the highest within-person 

reliability estimate        ) was obtained for the unidimensional subscore estimates 

when subtest length was 40 and the true correlations among the subscore estimates were 

.3. Number of subtests did not seem to have an impact on within-person reliability. 

Within-person reliability estimates obtained from the MIRT and UIRT models did not 

change when the number of subtests increased from 3 to 7.  
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As mentioned earlier, total profile reliability is a weighted average of between-

person and within-person reliability coefficients. Results of the simulation study showed 

that total profile reliability estimates always lie between the values of within-person 

reliability and between-person reliability. For the UIRT model, estimates of total profile 

reliability were only dependent on subtest length. Correlations among the subscores and 

the number of subtests did not affect total profile reliability. In contrast to the UIRT 

model, total profile reliability from the MIRT model was positively associated with both 

subtest length and correlations among the subscores. As in the UIRT model, total profile 

reliability estimates remained constant across different numbers of subtests in the MIRT 

model. Figures 4.3, 4.4, and 4.5 show the interaction between between-person reliability, 

within-person reliability, and total profile and simulation conditions for three subtests, 

five subtests, and seven subtests, respectively.  

Density plots in Appendix C1 show the sampling distributions of reliability 

estimates from the MIRT and UIRT models across the simulation conditions. These plots 

showed that reliability estimates had a larger variation when subtest length was short (i.e., 

10 items) and the true correlations among the subscores were low (ρ=.3). Under these 

conditions, between-person, within-person, and total profile reliability estimates showed 

very similar distributions. However, as subtest length and true correlations among the 

subscores increased, variation in between-person and total profile reliability estimates 

decreased and the distributions became narrower. Especially when the correlations 

among the subscores were high, the distributions of between-person reliability estimates 

indicated high kurtosis with a sharper peak and fatter tails while the distributions of 

within-person reliability estimates indicated smaller kurtosis with longer tails.  
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Figure 4.3. Interaction between estimated subscore reliability coefficients, correlations 

among subscores, and subtest length for three subtests. 
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Figure 4.4. Interaction between estimated subscore reliability coefficients, correlations 

among subscores, and subtest length for five subtests. 
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Figure 4.5. Interaction between estimated subscore reliability coefficients, correlations 

among subscores, and subtest length for seven subtests. 
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Reliability estimates from both estimation methods (i.e., MIRT and UIRT) 

indicated similar sampling distributions under all simulation conditions. However, the 

sampling distributions of reliability estimates obtained from the UIRT model were more 

robust against subtest length and the correlations among the subscores. The sampling 

distributions of reliability estimates from the MIRT model were more heavily affected by 

the changes in subtest length and the correlations among the subscores. As explained 

earlier, the number of subtests did not seem to affect reliability estimates from either the 

MIRT or the UIRT models. When the number of subtests (i.e., dimensions) changed from 

3 to 7, the sampling distributions remained very similar.  

Repeated Measures Analysis 

 Tables 4.9, 4.10, and 4.11 show the results from repeated measure MANOVA 

analyses for between-person, within-person, and total profile reliability estimates, 

respectively. In addition to the results of statistical significance tests, partial eta squared 

(η
2
)
 
are also provided as a measure of effect size for the conditions. As explained earlier, 

in the repeated measures MANOVA analyses, the between-subject factors were true 

correlations among subscores, subtest length, and number of subtests. The within-subject 

factor was the main effect of the subscore estimation method (i.e., MIRT vs. UIRT) and 

all of the two-way interactions between the estimation method and the between-subject 

factors. The repeated measures MANOVA analysis was repeated for between-person, 

within-person, and total profile reliability coefficients by using them as the dependent 

variable.  
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Table 4.9 

Results of Repeated Measures Analyses for Between-Person Reliability 

Factors SS df MS η
2 

Within                                 Model 0.062 1 0.062 0.14 

Model x Correlation 0.015 2 0.007 0.04 

Model x Subtest Length 0.046 2 0.023 0.11 

Model x Subtest Number 0.002 2 0.001 0.01 

Error 0.182 8093   

Between                      Correlation 3.537 2 1.768 0.50 

Subtest Length 20.329 2 10.164 0.85 

Subtest Number 3.621 2 1.811 0.51 

Error 3.517 8093   

Note: Model: Type of IRT model (MIRT=1, UIRT=0); SS: Sums of squares; MS: Mean square; η
2
: Effect 

size.  

 

Table 4.10 

Results of Repeated Measures Analyses for Within-Person Total Reliability 

Factors SS df MS η
2 

Within                                 Model 1.313 1 1.313 0.36 

Model x Correlation 0.166 2 0.083 0.08 

Model x Subtest Length 0.120 2 0.060 0.06 

Model x Subtest Number 0.001 2 <.001 < .01 

Error 0.935 8093   

Between                      Correlation 171.359 2 85.680 0.91 

Subtest Length 171.114 2 85.557 0.91 

Subtest Number 0.001 2 <.001 < .01 

Error 16.752 8093   

Note: Model: Type of IRT model (MIRT=1, UIRT=0); SS: Sums of squares; MS: Mean square; η
2
: Effect 

size.  
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Table 4.11 

Results of Repeated Measures Analyses for Total Reliability 

Factors SS df MS η
2 

Within                                 Model 8.605 1 8.605 0.64 

Model x Correlation 2.310 2 1.155 0.41 

Model x Subtest Length 2.802 2 1.401 0.44 

Model x Subtest Number 0.270 2 0.135 0.09 

Error 1.281 8093   

Between                      Correlation 2.113 2 1.056 0.34 

Subtest Length 58.758 2 29.379 0.93 

Subtest Number 0.185 2 0.093 0.04 

Error 4.157 8093   

Note: Model: Type of IRT model (MIRT=1, UIRT=0); SS: Sums of squares; MS: Mean square; η
2
: Effect 

size.  

 

Within-subject Factors. The results indicated that the within-subject factor (i.e., 

type of IRT model) was an important predictor for all of the reliability coefficients, 

indicating that the MIRT model provides significantly higher between-person, within-

person, and total profile reliability estimates than the UIRT model under all simulation 

conditions. The effect sizes for the estimation method were 0.14, 0.36, and 0.64 for 

between-item reliability, within-item reliability, and total profile reliability, respectively. 

The difference between the MIRT and UIRT models was higher for within-person and 

total profile reliabilities than between-person reliability.  

All interactions between the estimation method and between-subject factors were 

also large in terms of sums of squares except the interaction of estimation method and 

number of subtests for within-person reliability, implying that the difference between the 
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MIRT and UIRT models depends on subtest length and correlations among subscores but 

not the number of subtests (i.e., dimensions). The effect sizes for the interaction of the 

estimation method and between-subject factors were very small when comparing 

between-person and within-person reliability; however, the effect sizes of the interactions 

between estimation method and between-subject factors were larger for total profile 

reliability. Figures 4.6 and Figure 4.7 show box plots of between-person, within-person, 

and total profile reliability estimates across different levels of correlation between 

subscores and subtest length. Figure 4.6 shows that the multidimensional scoring (i.e., 

MIRT) performed better than the unidimensional scoring (i.e., UIRT) in terms of within-

person and total profile reliabilities. The difference in within-person reliability between 

the two methods was similar across the three levels of correlation, while the difference in 

total profile reliability became larger as the correlation increased. The two estimation 

methods performed very similarly in terms of between-person reliability when the 

correlations among subscores were low, medium, and high.  
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Figure 4.6. Box plots of between-person, within-person, and total profile reliability 

estimates from the MIRT and UIRT models across three levels of subscore correlations.  
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Figure 4.7. Box plots of between-person, within-person, and total profile reliability 

estimates from the MIRT and UIRT models across three levels of subtest length.  
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Figure 4.7 indicates that as the number of items in the subtests (i.e., subtest 

length) increased from 10 to 40, the distributions of between-person and total profile 

reliability estimates became narrower for both MIRT and UIRT, whereas the distributions 

of within-person reliability estimates became wider. As subtest length increased, the 

average between-person, within-person, and total reliability estimates improved for both 

MIRT and UIRT. Also, when subtest length was 40, the difference between the MIRT 

and UIRT models became negligible, suggesting that the MIRT and UIRT models’ 

performances were not very different from each other in terms of subscore reliability 

when the subtest length was long.  

Between-subject Factors. Results showed that for between-person, within-

person, and total profile reliabilities, all of the between-subject factors (i.e., subtest 

length, correlations among subscores, and number of subtests) had large sums of squares 

except the effect of number of subtests for within-person reliability. The effect sizes of 

between-subject factors varied widely across the three types of reliability estimates. For 

between-person reliability, subtest length showed the largest effect size (η
2
=.85). The 

effect sizes for correlations among subscores and number of subtests were equal (η
2
=.55) 

for between-person reliability. For within-person reliability, both correlations among 

subscores and subtest length indicated very high effect sizes (η
2
=.91), suggesting that 

within-person reliability heavily depends on correlations among subscores and subtest 

length. As subtest length increased and correlations among subscores decreased, within-

person reliability improved substantially. Results also indicated that number of subtests 

did not have any impact on within-person reliability for both the MIRT and UIRT 

models.  
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For total profile reliability, the largest effect size for between-subject factors was 

subtest length (η
2
=.93) followed by correlations among subscores (η

2
=.34) and number of 

subtests (η
2
=.04). Although the effect of number of subtests was large, the impact of this 

factor was found to be very small based on its effect size. As explained earlier, total 

profile reliability is a weighted combination of within-person and between-person 

reliability coefficients. In this study, between-person variation was larger and more 

dominant, and so total profile reliability estimates were closer to between-person 

reliability estimates than within-person reliability estimates. Therefore, the relationship 

between total profile reliability and the simulation conditions was similar to the 

relationship between between-person reliability and the simulation conditions.   

Summary of the Simulation Study 

 The simulation study was conducted to investigate whether multidimensional and 

unidimensional subscore estimates differ in terms of between-person and within-person 

reliability under various real test situations. The two estimation methods were compared 

in their recovery of the relationship between subscores as well as in the subscore 

reliability of subscore estimates. From the simulation results summarized above, it is 

suggested that multidimensional and unidimensional estimation procedures perform 

differently in terms of subscore reliability and recovery of the relationship between 

subscores.  

 First, multidimensional subscore estimation recovers true correlations among 

subscores and the overall subscore structure better than unidimensional subscore 

estimation. MIRT tends to overestimate correlations among subscores while UIRT 

underestimates the same correlations. As subtest length increases, both estimation 
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procedures estimate correlations among subscores more accurately. Furthermore, both 

methods recover low correlations (ρ=.3) better than high correlations (ρ=.8). Number of 

subtests is not a part of subscore estimation process, and hence it does not affect the 

recovery of correlations among subscores. In addition to correlations among subscores, 

MIRT yields more similar subscores across parallel test forms than UIRT, indicating that 

simultaneous estimation of subscores in MIRT recovers the actual structure of subscores 

more consistently than separate estimation of subscores in UIRT.  The effects of 

simulation conditions on parallel form correlations are again very similar to their effects 

on recovery of correlations among subscores. For MIRT, increasing subtest length and 

correlations among subscores improve parallel form correlations. Subtest length improve 

parallel form correlations of unidimensional subscore estimates as well. However, 

correlations among subscores have no effect on parallel form correlations. Neither MIRT 

nor UIRT is affected by number of subtests regarding parallel form correlations.  

 Second, between-person reliability estimates in the simulation study are higher 

than within-person reliability estimates regardless of which estimation method is used for 

estimating subscores. Between-person reliability improves as subtest length, correlations 

among subscores, and number of subtests increase. Because between-person subscore 

reliability is a result of between-person variation, it can be said that the higher between-

person reliability, the better the test differentiates examinees. Within-person subscore 

reliability is heavily affected by subtest length and correlations among subscores. For 

short and highly correlated subtests, within-person reliability is fairly low for both 

estimation methods. On the contrary, for long and low correlated subtests, within-person 

reliability improves substantially. This finding suggests that long subtests with low 
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interdimensional correlations can provide more reliable subscores than short tests with 

highly correlated dimensions.  

 Finally, compared to unidimensional subscore estimates, multidimensional 

subscore estimates show higher within-person and between-person reliability. Results of 

repeated measures analysis indicate that MIRT performs better than UIRT in terms of 

between-person, within-person reliability, and total profile reliability. The main effect of 

estimation method is statistically significant for all of the three reliability indices. 

Estimation method (i.e., model) indicate the largest effect size in total profile reliability. 

Although almost all interactions between the estimation methods and the simulation 

conditions (i.e., subtest length, correlations among subscores, and number of subtests) are 

significant for all three reliability indices, the effect sizes are very small with respect to 

between-person and within-person reliability. The relationship between the 

unidimensional and multidimensional estimation methods is largely influenced by subtest 

length and correlations among subscores, but little by number of subtests. The interaction 

between estimation method and subtest length has the largest effect size among all 

interactions across the three reliability indices.   

 In conclusion, the results of the simulation study are in favor of multidimensional 

subscore estimation with regard to between-person and within-person subscore reliability. 

Although there is not a massive difference between the two estimation methods in terms 

of reliability estimates, the benefits of multidimensional estimation method are clearly 

evident. In order to examine these two estimation methods in an actual test, the same 

subscore and reliability estimation procedures used in the simulation study were also 

applied to a real dataset. The following section provides the findings from the real data 
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study regarding the performances of multidimensional and unidimensional subscore 

estimation procedures in between-person, within-person, and total profile reliability.  

Results of the Real Data Study 

 In the real data study, unidimensional and multidimensional estimation methods 

were used for estimating the subscores from Quantitative 1, Quantitative 2, and Verbal 

subtests of EEGS. First, item parameters were estimated for the parallel test forms of 

each subtest. Then, unidimensional and multidimensional subscore estimates were 

obtained for each subtest. Lastly, between-person, within-person, and total profile 

reliability coefficients were estimated for EEGS.  

Estimation of Item Parameters 

 Item parameters for the parallel test forms of Quantitative 1, Quantitative 2, and 

Verbal subtests of EEGS were obtained using the M3PL model in BMIRT (Yao, 2003). 

Table 4.12 shows the estimated item parameters for each subtest across the two parallel 

forms. As explained earlier, the parallel test forms for each subtest were constructed 

based on the item information functions obtained from the concurrent estimation of item 

parameters. To obtain between-person, within-person, and total profile reliabilities, 

subscores from the subtests were estimated using the same models in the simulation 

study. Unidimensional and multidimensional subscores were estimated based on the 3PL 

and M3PL models, respectively.  
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Table 4.12 

Estimated Item Parameters for the Three Subtests of EEGS 

Subtest Item 
Test Form 1  Test Form 2 

β2j β1j β3j  β2j β1j β3j 
Q1 1 1.076 0 0 0.262 0.15  1.089 0 0 -0.022 0.10 

Q1 2 1.602 0 0 -0.114 0.08  1.777 0 0 -0.582 0.12 

Q1 3 1.753 0 0 0.336 0.05  1.545 0 0 -0.843 0.13 

Q1 4 1.618 0 0 -0.187 0.09  1.369 0 0 -0.647 0.12 

Q1 5 1.161 0 0 0.387 0.07  1.463 0 0 0.272 0.05 

Q1 6 2.189 0 0 -0.803 0.12  1.703 0 0 -0.250 0.07 

Q1 7 0.752 0 0 0.114 0.11  1.343 0 0 0.171 0.06 

Q1 8 1.564 0 0 -0.454 0.12  1.626 0 0 -0.259 0.10 

Q1 9 1.857 0 0 -0.573 0.11  1.094 0 0 -0.126 0.10 

Q1 10 1.147 0 0 -0.314 0.09  1.056 0 0 -0.590 0.17 

Q1 11 1.596 0 0 0.088 0.10  0.788 0 0 -0.926 0.18 

Q1 12 1.566 0 0 -0.239 0.08  3.473 0 0 0.704 0.11 

Q1 13 1.708 0 0 0.167 0.06  3.488 0 0 0.704 0.11 

Q1 14 1.931 0 0 0.217 0.09  1.654 0 0 0.758 0.10 

Q1 15 1.468 0 0 0.091 0.13  0.785 0 0 -0.971 0.18 

Q1 16 1.806 0 0 -0.508 0.16  1.902 0 0 -0.183 0.11 

Q1 17 2.263 0 0 -0.322 0.09  1.336 0 0 0.265 0.06 

Q1 18 0.948 0 0 -0.200 0.21  1.570 0 0 -0.003 0.06 

Q1 19 0.856 0 0 1.153 0.16  2.069 0 0 0.043 0.05 

Q1 20 1.657 0 0 0.127 0.10  1.794 0 0 0.069 0.05 

Q2 21 0 1.239 0 0.320 0.06  0 1.574 0 -0.667 0.11 

Q2 22 0 1.702 0 0.166 0.06  0 1.371 0 -0.665 0.11 

Q2 23 0 1.793 0 0.362 0.05  0 1.239 0 -0.110 0.08 

Q2 24 0 1.501 0 -0.508 0.09  0 1.376 0 -0.073 0.06 

Q2 25 0 1.088 0 0.111 0.10  0 2.014 0 -0.217 0.06 

Q2 26 0 1.630 0 -0.003 0.06  0 1.754 0 0.105 0.05 

Q2 27 0 0.923 0 1.402 0.05  0 1.245 0 0.134 0.06 

Q2 28 0 1.929 0 0.326 0.04  0 1.712 0 0.173 0.05 

Q2 29 0 1.538 0 0.565 0.04  0 1.797 0 0.659 0.03 

Q2 30 0 1.978 0 0.185 0.04  0 3.191 0 0.208 0.06 

Q2 31 0 2.025 0 -0.104 0.05  0 2.893 0 0.298 0.04 

Q2 32 0 2.305 0 -0.039 0.05  0 3.528 0 -0.020 0.06 

Q2 33 0 2.074 0 0.374 0.03  0 3.009 0 0.300 0.03 

Q2 34 0 2.070 0 -0.196 0.09  0 3.528 0 0.083 0.04 

Q2 35 0 2.573 0 0.100 0.08  0 3.121 0 0.526 0.04 

Q2 36 0 2.602 0 0.232 0.04  0 2.935 0 0.701 0.03 

Q2 37 0 1.900 0 0.210 0.08  0 2.178 0 -0.288 0.12 

Q2 38 0 2.016 0 0.611 0.04  0 2.147 0 -0.149 0.09 

Q2 39 0 2.252 0 0.183 0.08  0 1.433 0 1.604 0.03 

Q2 40 0 1.133 0 1.060 0.05  0 2.138 0 0.235 0.05 
Note: Q1: Quantitative 1; Q2: Quantitative 2; V: Verbal. β1j: Item difficulty; β2j: Item discrimination, β3j: 

Lower asymptote.  
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Table 4.12 

Estimated Item Parameters for the Three Subtests of EEGS (Cont.) 

Subtest Item 
Test Form 1  Test Form 2 

β2j β1j β3j  β2j β1j β3j 
V 41 0 0 0.425 -3.019 0.18  0 0 0.616 -2.941 0.18 

V 42 0 0 0.477 -1.980 0.19  0 0 0.429 -2.287 0.18 

V 43 0 0 0.461 -2.528 0.18  0 0 0.467 -2.717 0.18 

V 44 0 0 0.671 -2.747 0.18  0 0 0.595 -2.559 0.19 

V 45 0 0 0.686 -2.758 0.20  0 0 0.358 -1.072 0.19 

V 46 0 0 0.393 -2.400 0.18  0 0 0.496 -2.329 0.17 

V 47 0 0 0.475 -0.914 0.18  0 0 0.367 -2.925 0.19 

V 48 0 0 0.558 -1.757 0.17  0 0 0.395 -1.984 0.18 

V 49 0 0 0.625 -1.345 0.17  0 0 0.607 -2.377 0.19 

V 50 0 0 0.819 -1.620 0.17  0 0 0.261 -1.251 0.17 

V 51 0 0 0.639 -0.319 0.15  0 0 0.979 -2.186 0.16 

V 52 0 0 0.602 -2.327 0.18  0 0 0.656 -1.092 0.15 

V 53 0 0 1.187 -2.292 0.19  0 0 0.525 -1.733 0.17 

V 54 0 0 0.642 -1.205 0.16  0 0 1.480 -1.741 0.15 

V 55 0 0 0.417 0.139 0.18  0 0 0.758 -1.135 0.14 

V 56 0 0 0.679 -0.980 0.14  0 0 0.558 -0.050 0.13 

V 57 0 0 0.876 -0.314 0.12  0 0 0.803 -0.548 0.12 

V 58 0 0 0.665 -1.762 0.16  0 0 1.580 -1.135 0.13 

V 59 0 0 1.075 -1.604 0.15  0 0 1.627 -0.826 0.10 

V 60 0 0 0.453 -0.399 0.15  0 0 0.986 -0.296 0.10 

V 61 0 0 1.228 -1.003 0.13  0 0 2.363 -0.644 0.10 

V 62 0 0 1.209 -0.647 0.12  0 0 1.756 -0.421 0.08 

V 63 0 0 1.063 -0.158 0.09  0 0 1.790 -0.394 0.08 

V 64 0 0 2.268 -0.453 0.09  0 0 2.876 -0.317 0.08 

V 65 0 0 1.339 -0.415 0.09  0 0 1.387 -0.588 0.11 

V 66 0 0 2.291 -0.480 0.08  0 0 1.574 -0.505 0.11 

V 67 0 0 1.884 -0.309 0.08  0 0 2.141 -0.300 0.11 

V 68 0 0 1.401 -0.510 0.10  0 0 0.775 0.330 0.10 

V 69 0 0 2.383 -0.676 0.14  0 0 1.754 -0.100 0.08 

V 70 0 0 0.928 0.325 0.08  0 0 1.281 -0.329 0.11 

V 71 0 0 1.880 -0.507 0.14  0 0 2.324 -0.472 0.18 

V 72 0 0 2.354 -0.253 0.09  0 0 1.967 -0.289 0.11 

V 73 0 0 1.155 -0.328 0.12  0 0 1.998 -0.147 0.11 

V 74 0 0 1.530 -0.147 0.11  0 0 3.423 -0.056 0.08 

V 75 0 0 2.159 -0.139 0.09  0 0 3.125 -0.008 0.08 

V 76 0 0 1.697 0.513 0.15  0 0 2.111 0.582 0.15 

V 77 0 0 1.616 0.403 0.15  0 0 2.446 0.466 0.15 

V 78 0 0 2.050 0.677 0.12  0 0 3.528 0.607 0.14 

V 79 0 0 2.092 0.808 0.11  0 0 3.529 0.598 0.16 

V 80 0 0 1.737 0.587 0.15  0 0 2.833 0.853 0.11 
Note: Q1: Quantitative 1; Q2: Quantitative 2; V: Verbal. β1j: Item difficulty; β2j: Item discrimination, β3j: 

Lower asymptote.  
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Subscore Estimation 

 Subscore estimation consisted of two steps. First, unidimensional subscore 

estimates were obtained for each of the subtests of EEGS separately. Then, 

multidimensional subscore estimates were estimated simultaneously by using correlations 

among unidimensional subscore estimates as population priors, as suggested by Yao 

(2013). As in the simulation study, unidimensional and multidimensional MAP methods 

were used to estimate the subscores. Figures 4.8 and 4.9 show the distributions of 

Quantitative 1, Quantitative 2, and Verbal subscores for the UIRT and MIRT models, 

respectively. The figures show that both unidimensional and multidimensional subscores 

are slightly negatively-skewed. The skewness is more evident in the Verbal subtest 

compared to Quantitative 1 and Quantitative 2. Also, the Verbal subtest has smaller 

variation than the other two subtests. There are a few outliers in the Quantitative 1 and 2 

subtests while the number of outliers is larger in the Verbal subtest.   

Table 4.13 shows the correlations among the subscores from the UIRT and MIRT 

models. There is a very small correlation between Quantitative 1 and Quantitative 2 in 

both forms although these two subtests measure the similar constructs (i.e., mathematical 

reasoning). The main reason of this outcome is that most examinees respond the 

Quantitative 1 and Verbal subtests but only the examinees from the science programs 

(e.g., engineering, math, etc.) tend to complete the Quantitative 2 subtest. Quantitative 2 

had a higher correlation with the Verbal subtest, which also includes several items about 

graphical interpretation and other items requiring higher-order thinking skills. The 

correlations among the estimated subscores were similar across the two estimation 

methods.  
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Figure 4.8. Distributions of Quantitative 1, Quantitative 2, and Verbal subscores from the 

UIRT model. 
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Figure 4.9. Distributions of Quantitative 1, Quantitative 2, and Verbal subscores from the 

MIRT model 
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Table 4.13 

Correlation Matrices of the Estimated Subscores from Three Subtests of EEGS 

Model Parallel Forms Subtests          Q1 Q2 V 

UIRT 

 Q1           1   

1 Q2 .04            1  

 V .06 .23 1 

 Q1           1   

2 Q2 .04            1  

 V .06 .22 1 

MIRT 

 Q1           1   

1 Q2 .03            1  

 V .03 .18 1 

 Q1           1   

2 Q2 .03            1  

 V .03 .18 1 
Note: Q1: Quantitative 1; Q2: Quantitative 2; V: Verbal. 

 

 In addition to correlations among the estimated subscores, correlations among the 

parallel test forms were also obtained. For the unidimensional subscores, correlations 

between the two parallel forms of Quantitative 1, Quantitative 2, and Verbal subtests 

were .87, .89, and .92, respectively. Compared to the unidimensional subscore estimates, 

multidimensional subscore estimates indicated higher correlations between the parallel 

forms. The correlations for Quantitative 1, Quantitative 2, and Verbal subtests were .89, 

.92, and .93, respectively. As in the simulation study, MIRT performed better than UIRT 

when obtaining subscores from the parallel test forms. Although MIRT provided slightly 

better correlations among the parallel test forms than UIRT, the subscore estimates from 

both models indicated a strong association. Figure 4.10 shows the scatterplots of the 

unidimensional and multidimensional subscore estimates for each of the three subtests in 

EEGS. For all of the subtests, the estimates from MIRT and UIRT models were very 



125 

 

similar except for very high and low subscore estimates. Furthermore, the relationship 

between the unidimensional and multidimensional subscore estimates was very similar 

across the parallel test forms.  

Estimating Subscore Reliability 

 Between-person, within-person, and total profile reliability coefficients were 

computed for the UIRT and MIRT models using the same approach employed in the 

simulation study. Results indicated that MIRT provided slightly higher reliability 

estimates than UIRT. Between-person, within-person, and total profile reliability 

estimates for the UIRT model were .88, .90, and .89, respectively. For the MIRT 

subscore estimates, between-person, within-person, and total profile reliabilities were .90, 

.92, and .91.  

Both between-person and within-person reliability coefficients were fairly high 

for the subtests of EEGS, indicating that EEGS provides reliable subscores that can be 

used as measures of between-person variation as well as within-person variation. Results 

showed that for the estimation of subscores from EEGS, MIRT was a better method than 

UIRT because MIRT allowed the simultaneous estimation of subscores by using 

correlations among the subscore estimates as population priors. Although a simple 

structure was assumed for the subtests of EEGS, the MIRT procedure improved the 

reliability of subscore estimates by borrowing correlational information from the subtests. 

As indicated in the simulation study, subtest length and correlation among subscores are 

the main factors that affect between-person and within-person reliability. Because the 

subtests of EEGS were fairly long and the subscores had low correlations, subscore 

reliabilities were high for both unidimensional and multidimensional estimation 
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procedures. This finding may imply that when subtests that are long but have low 

correlation with each are used, both estimation procedures perform almost equally well.  

 

 

Figure 4.10. Scatterplots of unidimensional and multidimensional subscore estimates 

from Quantitative 1, Quantitative 2, and Verbal subtests.  
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CHAPTER 5 

DISCUSSION and CONCLUSION 

 

Recently, there have been several research studies about statistical procedures to 

improve subscore reliability. Some studies have focused on methods — such as subscore 

augmentation — to weight subscore estimates based on reliability indices or other 

subscores (e.g., Haberman, 2008; Haberman, et al., 2009; Wainer, et al., 2001; Yen, 

1987). Other studies have proposed alternative estimation methods — such as Bayesian 

and MCMC methodologies — (de la Torre & Song, 2009; Yao & Boughton, 2007) or 

alternative models — such as the bi-factor model — for subscore estimation (Md Desa, 

2012; DeMars, 2006). This study introduces a new profile reliability approach based on 

variations between examinees and within examinees. Following this approach, the 

simulation and real data studies were used to compare multidimensional and 

unidimensional subscore estimation methods in terms of subscore reliability.  

The unidimensional 3PL and the M3PL IRT models were chosen for estimating 

subscores from simulated datasets and real data based on a multi-unidimensional 

structure (i.e., simple structure). In contrast with previous studies in the literature, this 

study employed a profile reliability approach that allows the evaluation of subscore 

variation across examinees as well as the variation among subscores of each single 

examinee. Between-person, within-person, and total profile reliability coefficients were 

used for the comparison of unidimensional and multidimensional subscore estimation 

procedures. This chapter summarizes and discusses the results of simulation and real data 
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studies. Each of the research questions indicated in Chapter 1 is revisited based on the 

findings from the simulation and real data studies. Afterwards, the implications of this 

study for subscore estimation and subscore reliability are discussed. Lastly, the 

limitations of the study and suggestions for future research are presented.    

Summary of Findings 

 The first part of this study contains a simulation study in which unidimensional 

and multidimensional subscore estimation methods were applied to simulated response 

datasets under various simulation conditions (subtest length, correlations among 

subscores, number of subtests), and performances of the two methods were compared in 

terms of between-person and within-person subscore reliability. The simulation study 

addressed the first two research questions presented in Chapter 1. The second part of the 

study was based on an actual standardized assessment from Turkey. As in the simulation 

study, the difference between the unidimensional and multidimensional subscore 

estimation methods were demonstrated in terms of between-person and within-person 

subscore reliability. The real data study addressed the third research question presented in 

Chapter 1. The following section explains the results of these, and discusses the findings 

to address the research questions of this study.  

Simulation Study  

In the simulation study, there were two models used for the estimation of 

subscores from simulated data. These models were the 3PL model and the M3PL model. 

The M3PL model is a multidimensional version of the 3PL IRT model that can estimate 

item parameters and persons’ abilities from multiple dimensions simultaneously. The 
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M3PL model is a compensatory MIRT model in which high ability in one dimension can 

compensate for low ability in another dimension. However, this feature is no longer in 

use if a test battery displays a simple structure. When each item on the test defines a 

single subtest or domain, the additive probability procedure in the M3PL model does not 

lead to a compensatory solution for estimating the probability of responding to items 

correctly. This type of test structure is known as a multi-unidimensional structure, where 

items of a subtest define a single domain but the domains may still be related to each 

other. The M3PL model benefits from associations (i.e., correlations) among subtests or 

domains by using these pieces of information as population priors in the estimation 

process. Previous studies indicated that this feature of multidimensional subscore 

estimation can help to improve the reliability of subscore estimates; therefore, MIRT is a 

better way of estimating subscores than UIRT (de la Torre & Hong, 2010; Haberman & 

Sinharay, 2010; Wang, Cheng, & Chen, 2004; Yao & Boughton 2009). In light of the 

findings of previous studies, the simulation study investigated the subscore reliability of 

unidimensional and multidimensional subscore estimates using Davison et al.’s (2012) 

profile reliability approach.  

Evaluation of subscore estimates. Before the comparison of the MIRT and 

UIRT models in terms of subscore reliability, these models were evaluated based on two 

criteria: (a) recovery of true correlations among subscores, and (b) correlations between 

parallel test forms. Accurate recovery of true correlations among subscores was essential 

because true correlations were used as population priors in the subscore estimation 

procedure. Correlations between parallel test forms are also important because the profile 
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reliability approach employed in this study is based on the assumption that the correlation 

of two parallel test forms yields true score variance.  

Results showed that the MIRT model tends to overestimate true correlations 

among subscores, whereas the UIRT model mostly underestimates the same correlations. 

For both models, discrepancies between true correlations and estimated correlations 

substantially increased as true correlations among subscores became higher. In addition 

to true correlations among subscores, subtest length was another factor that had an impact 

on the recovery of true correlations. As subtest length increased from 10 items to 40 

items, both models provided better results in terms of recovery of true subscore 

correlations. For both MIRT and UIRT, the most accurate results were obtained when 

subtest length was 40 and true correlations among subscores were .3. The number of 

subtests affected neither the MIRT model nor the UIRT model in terms of recovery of 

true correlations among subscores.  

The second criterion for the evaluation of subscore estimates was the magnitude 

of correlations between parallel test forms. As explained earlier, for each crossed 

condition, two response datasets were simulated using the same item parameters and 

subscores. The evaluation of correlations between the parallel forms was particularly 

important because the profile reliability approach employed in this study obtains true 

within-person and between-person variations based on covariances of the parallel test 

forms. Results indicated that parallel form correlations from the MIRT model were 

higher than parallel form correlations from the UIRT model under all simulation 

conditions. This finding suggests that the simultaneous estimation of subscores with 

MIRT helps to reduce the discrepancies between parallel test scores because it applies the 
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same population priors to both test forms. Multidimensional subscore estimates from the 

parallel test forms become more similar to each other whereas unidimensional subscore 

estimates from the parallel test forms tend to differ more from each other due to 

estimation errors emerging from separate estimations of subscores. As subtest length and 

correlations among subscores increased, parallel form correlations of multidimensional 

subscore estimates substantially improved. For unidimensional subscore estimates, 

parallel form correlations increased only when subtest length increased. Correlations 

among subscores within each test form did not affect parallel form correlations. For both 

estimation methods, the number of subtests did not have any impact on parallel form 

correlations.  

Research Question 1. The first research question focused on the comparison of 

unidimensional and multidimensional IRT models in terms of within-person and 

between-person subscore reliability. The first research question is as follows: Does the 

MIRT model perform better than the UIRT model in terms of within-person and 

between-person subscore reliability? 

As described in Chapters 2 and 3, MIRT allows the simultaneous estimation of 

multiple ability dimensions (i.e., subscores) whereas unidimensional item response theory 

(UIRT) modeling treats each subtest as a standalone test and ignores the relationship 

between the subtests. Another major difference between the MIRT and UIRT approaches 

is that MIRT takes prior information (e.g. correlations among subscores) into account 

when estimating subscores to improve the precision of subscore estimates, while UIRT 

does not allow any prior information unless an augmentation procedure is applied to 

subscore estimates. MIRT adjusts likelihood functions for ability estimation depending 
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on pre-specified population priors (i.e., mean, variance, and correlations) and allows 

dimensions to borrow information from each other, while UIRT deals with a single 

dimension or subtest each time. Through this feature, MIRT seems to provide more 

accurate estimates of correlations among the subscores, and it also minimizes differences 

between parallel test forms due to estimation errors.   

Results of the simulation study suggest that multidimensional estimation 

generally provides more reliable subscore estimates than unidimensional estimation. For 

both estimation methods, within-person reliability is smaller than between-person 

reliability no matter which estimation method was used in the simulations. Also, total 

profile reliability estimates are mostly closer to between-person reliability estimates. 

Compared to between-person reliability, the utility of the multidimensional estimation 

method seems more evident in within-person reliability based on effect sizes of the 

estimation method in repeated measures analyses. The use of the multidimensional 

estimation method improves within-person subscore reliability more than between-person 

subscore reliability. This finding suggests that when subscores are intended to be used for 

making inferences regarding variation among a person’s subscores (i.e., within-person 

variation), multidimensional subscore estimation can be more useful than unidimensional 

subscore estimation. 

Interactions between the estimation methods and simulation conditions differ 

across the three reliability coefficients. Tests of interaction effects in repeated measures 

analyses indicate that for between-person reliability, the impact of the estimation method 

highly depends on the level of subtest length. The longer the subtest length, the greater 

the difference between the multidimensional estimation and the unidimensional 
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estimation. In contrast to between-person reliability, the impact of estimation method 

mostly depends on correlations among subscores for within-person reliability. The more 

correlated the subscore estimates, the less reliable subscores become in terms of within-

person reliability. The number of subtests has a weak interaction with between-person 

reliability and it has no effect at all for within-person reliability.   

Research Question 2. The second research question involved the effects of 

simulation conditions on between-person, within-person, and total profile reliability of 

subscore estimates. Simulation conditions were subtest length, correlations among 

subscores, and number of subtests. As discussed earlier, subtest length and correlations 

among subscores had an impact on the recovery of true correlations among subscores and 

parallel form correlations, while the number of subtests did not have an impact on the 

results. The second research question specifically focused on the impact of the simulation 

conditions on subscore reliability estimates. The second research question is as follows: 

How are within-person and between-person subscore reliabilities from the UIRT and 

MIRT models affected by varying data conditions (test length, number of subtests, and 

correlations between subtests)? 

Subtest length has a large impact on both between-person and within-person 

reliability estimates. It has a very large effect as a main effect and a relatively small effect 

as an interaction with the estimation method. In the simulation study, three levels (10, 20, 

or 40 items) of subtest length are considered. As subtest length increases, both between-

person and within-person reliability improve substantially. The relationship among 

estimation methods seems to differ depending on subtest length for both within-person 

and between-person reliability. Regardless of subtest length, multidimensional subscore 
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estimation performs slightly better than unidimensional subscore estimation with respect 

to between-person and within-person reliability. Multidimensional estimation seems 

more robust than unidimensional estimation against changes in subtest length. For both 

methods, when subtest length is short, between-person subscore reliability is slightly 

greater than within-person subscore reliability. This finding implies that short subtests 

may not be appropriate for evaluating the variation among each examinee’s subscores in 

a test because the estimated subscores may not be reliable indicators of within-person 

variation. Rather, the use of short subtests seems more appropriate when one intends to 

evaluate the overall variation between the examinees. In the case of multiple short 

subtests, multidimensional estimation seems more advantageous over unidimensional 

subscore estimation.   

 Correlations between subscores are another factor that largely affects between-

person and within-person subscore reliability. In the simulation study, three levels (.3, .5, 

or .8) of correlations representing low, medium, and high correlations were considered. 

Correlations among subscores have a positive relationship with between-person 

reliability, while they are negatively associated with within-person reliability. This is 

because highly correlated subscores lead to smaller variation between subscores but 

larger variation among the examinees. Consequently, high correlations among subscores 

increase between-person reliability whereas they substantially reduce within-person 

reliability. Correlations among subscores affect multidimensional and unidimensional 

subscore estimations in the same way. Repeated measures analyses indicate that the 

relationship among estimation methods with respect to subscore reliability is largely 

influenced by correlations among subscores. The main effect of correlations has a large 



135 

 

effect size while the effect size for the interaction of correlations with the estimation 

method is relatively small. Both the main effect and the interaction displayed larger effect 

sizes for within-person reliability than between-person reliability.  

 The number of subtests seems to influence between-person reliability but it has no 

effect on within-person reliability. As the number of subtests increases from three to 

seven, within-person reliability remains almost constant for both the unidimensional and 

multidimensional estimation methods. Repeated measures analyses also show that neither 

the main effect of the number of subtests nor its interaction with the estimation method is 

statistically significant. However, for between-person reliability, the number of subtests 

seems to have a positive impact although this effect is still very small. With more 

subtests, between-person reliability seems to increase while within-person reliability 

remains unaffected. This is because all subscores are assumed to have the same 

relationship with each other in the simulation study; therefore adding more subtests into 

the test does not affect the total within-person variation. Rather, it increases the average 

variation between the examinees, and so between-person reliability also increases. If the 

subscores from a test have different correlations with each other, the number of subtests 

may influence within-person reliability as well.  

Real Data Study 

The real data study differs from the simulation study in terms of some data 

characteristics. First, the sample size in the real data study is larger (N=10000) than the 

sample size (N=1500) in the simulation study. Second, the subtest length in the real data 

study is different across the subtests (20 items for Quantitative 1 and 2, 40 items for 

Verbal) whereas the subtest length is fixed (10, 20, or 40 items) across the subtests in the 
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simulation study. Lastly, correlations among the subscores also differ across the subtests 

in the real data study while it is fixed (.3, .5, or .8) across the subtests in the simulation 

study. Through these differences, the real data study provides a good example of test 

characteristics that are more likely to occur in real testing programs.  

  Research Question 3. The third research question involved the comparison of 

multidimensional and unidimensional subscore estimates from EEGS in terms of within-

person and between-person subscore reliability. The third research question is as follows: 

How do the MIRT and the UIRT models perform in terms of within-person and between-

person subscore reliability in real data? 

Results of the real data study resemble the findings from the simulation study. In 

EEGS, the lengths of the three subtests are fairly long. Also, correlations between 

Quantitative 1 and other subtests (i.e., Quantitative 2 and Verbal) are close to zero, and 

Verbal and Quantitative 2 subtests have a small correlation. Under similar conditions, the 

simulation study suggests that both unidimensional and multidimensional subscore 

estimates should have high between-person and within-person reliability. Findings from 

the real data study show that between-person and within-person reliability for the three 

subtests of EEGS are fairly high. Within-person subscore reliability is greater than 

between-person subscore reliability, and the estimate of total profile reliability is between 

between-person and within-person reliability estimates. According to between-person and 

within-person subscore estimates, subscores from EEGS seem highly reliable for the 

evaluation of variation between the examinees as well as variation within each 

examinee’s subscores.  
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In EEGS, multidimensional subscore estimation provides slightly higher subscore 

reliability than unidimensional subscore estimation. It should be noted that 

multidimensional estimation uses means, variances, and interdimensional correlations of 

unidimensional subscores as population priors. Although correlations among the 

subscores are quite small, using this information along with means and variances in the 

multidimensional estimation procedure seems to improve both between-person and 

within-person reliability. This finding implies that, for EEGS, multidimensional 

estimation can benefit from unidimensional subscore estimates to determine population 

priors, and this may help to improve subscore reliability.      

Conclusions 

 The use of subscores in educational and psychological assessments is important. 

Subscores yield valuable diagnostic information that can be used for the evaluation of 

examinees’ strengths and weaknesses in different domains as well as providing feedback 

or planning future remedial studies. However, these benefits of subscores do not 

necessarily mean that subscores obtained from tests are always useful. Considering that 

subscores are sometimes estimated from short subtests, the utility and psychometric 

quality of subscores may be highly questionable. One of the most common criticisms 

regarding reporting and using subscores is subscore reliability. Reliability is particularly a 

significant issue for subscores because subtests usually tend to be shorter than typical 

tests and subscores tend to be more highly correlated since they are components of a 

larger test or battery of tests. If subscores are not reliable indicators of the construct being 

measured, then the information they yield is not trustworthy, and any decisions based on 

those subscores are likely to be misleading. Therefore, it is vitally important to 
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investigate the reliability of subscores before using them for any purpose or reporting 

them to examinees.  

 In this study, a profile reliability approach is introduced for the evaluation of 

subscore reliability between persons and within persons. This approach is applied to 

subscores from multidimensional and unidimensional IRT models and the performances 

of these models are compared with simulated and real data sets. The findings of this study 

suggest that simultaneous estimation of subscores in MIRT benefits from the 

correlational information among subscores and improves both between-person and 

within-person subscore reliability. Unidimensional estimation in UIRT ignores the 

relationships among subtests, and so it fails to use this additional information to improve 

subscore reliability. Increasing subtest length helps to improve both between-person and 

within-person reliability. Higher correlations among subscores increase between-person 

reliability while they substantially reduce within-person reliability. Although both models 

underperform when subtest lengths are short and subscores are highly correlated with 

each other, the performance of MIRT still seems to be better than UIRT in terms of 

subscore reliability. Another implication of this study is that subscores with low within-

person but high between-person reliability should be used for between-person 

comparisons rather than within-person comparisons. When subscores of a test indicate 

high within-person reliability, subscores can be used for interpreting examinees’ strength 

and weaknesses in the content domains measured in the test.  

 The findings of this study have important implications in terms of test design. 

First, the use of profile scores or subscores should be determined depending on the 

purpose of the test. If the purpose of a test is to evaluate examinees’ strength and 
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weaknesses in multiple domains or strands, then profile scores or subscores should be 

distinct enough to make inferences regarding examinees’ performances in each domain. 

Findings of this study indicate that within-person reliability can be a good indicator of the 

extent which subscores provide distinct information. As correlations among subscores 

increase and subscores become more similar to each other, within-person reliability is 

getting smaller, suggesting that highly correlated subscores may not be reliable enough to 

make inferences or decisions about examinees’ performance in each domain. However, if 

the purpose of the test is to compare examinees’ overall test performance rather than 

evaluating strengths and weaknesses in each domain, high correlations among subscores 

do not constitute a treat in terms of subscore reliability. Highly correlated subscores 

imply that the subtests measure a similar construct. Therefore, a composite test score base 

on the multiple subscores can be more useful and reliable than using individual subscores 

in terms of evaluating examinees’ performance.  

 Second, the decision of which estimation method to use should be made based on 

the design and purpose of the test rather than the statistical properties of the estimation 

methods. It should be noted that the use of MIRT over UIRT models cannot solve the 

issues in subscores due to test design but it may help to reduce the negative effects of test 

design. For instance, if a test was assumed to measure multiple distinct dimensions but 

the estimated subscores were unexpectedly highly correlated, then within-person 

reliability of subscores would be low regardless of what estimation method was used. The 

use of MIRT can help to improve within-person reliability of subscores by using the 

information among subscores. However, the degree of precise information that subscores 

provide would still remain questionable. Therefore, the selection of estimation method 
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should be done in conjunction with the relationship among subscores and the purpose of 

the test.  

Limitations of the Study and Future Research 

 There are several limitations of this study. First, the simulation study in this study 

used true item parameters to eliminate additional errors in subscore estimation due to 

item parameter estimation. However, real testing programs require both item parameters 

and abilities to be estimated. Therefore, in addition to subtest length, correlations among 

subscores, and number of subtests, other factors that are likely to affect item parameter 

estimation (e.g., sample size, distribution of item parameters) should be taken into 

consideration before evaluating subscore reliability. Further studies are needed to 

understand the joint effects of item parameter and subscore estimation procedures on 

subscore reliability.  

 Second, subscore estimates in this study were obtained using the 

multidimensional MAP approach in BMIRT (Yao, 2003). The MAP method is usually 

more feasible than the MLE method because it allows ability estimation from all response 

patterns including zero or perfect scores. However, the use of the MAP method could be 

disadvantageous when prior mean and variance are not correctly specified. Also, ability 

estimates from MAP are heavily regressed towards the prior mean assumed for the ability 

distribution (Bock & Mislevy, 1982; Mislevy & Bock, 1997). Therefore, MAP may yield 

higher estimation errors than other estimation methods such as EAP and MLE. To 

minimize these problems with MAP, population priors should be carefully chosen, and 

the effects of different ability distributions on the subscore estimation should be 



141 

 

examined. Despite its computational complexity, MCMC could also be considered as an 

alternative method for subscore estimation. 

 Third, the simulation conditions used in this study included subtest length, 

correlations among subscores, and number of subtests. To facilitate the interpretation of 

results, the same subtest length and inter-correlations were used across subtests. 

However, subtest length and especially correlations among subscores may not be fixed 

across subtests in real testing applications. Further study is needed to examine subscore 

reliability when the subtests differ in length and inter-correlations. 

 Lastly, in order to make a direct comparison of the MIRT and UIRT models, this 

study considered a simple test structure in which each item measures only one dimension. 

However, MIRT can also estimate subscores from a non-simple test structure (i.e., 

complex test structure) in which items measure multiple abilities. Future studies can 

consider the evaluation of subscore reliability in MIRT models based on a non-simple 

test structure.      
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SimuMIRT Control and Batch Files 
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REM SimuMIRT Batch File 

REM Simulating 10 datasets based on MIRT compensatory model 

for %%f in (1   2   3   4   5   6   7   8   9  10) do call SimulateRwo 

Parameter/sctl1_%%f.par Datasets/sctl1_%%f 

pause;  

 

sctl1_1 through sctl1_10 are the parameter files. An example item parameter file is shown below. 

The first line shows the total number of items, sample size, number of dimensions, means for 

each dimension, variance-covariance matrix of dimensions, maximum response level, random 

seed for ability generation, random seed for data generation. After the first line, item parameters 

based on a simple structure is presented.  

 
30 1500 3 0 0 0 1 0.3 0.3 0.3 1 0.3 0.3 0.3 1 5 9001 867989 

1 1 2.25      0 0 1.8186 0.0747 

2 1 2.4133 0 0 -1.0097 0.2175 

3 1 2.0419 0 0 -0.0084 0.2335 

4 1 0.969 0 0 0.4482 0.1840 

5 1 0.9449 0 0 -0.9046 0.0514 

6 1 2.3515 0 0 -1.1728 0.1696 

7 1 2.227 0 0 -0.1464 0.0967 

8 1 1.5589 0 0 0.1868 0.2220 

9 1 1.6131 0 0 -0.5554 0.0129 

10 1 1.8727 0 0 0.3856 0.1970 

11 1 0 2.4685 0 1.0619 0.0683 

12 1 0 1.5533 0 -1.1986 0.0348 

13 1 0 1.024 0 -0.1942 0.1002 

14 1 0 0.914 0 -0.947 0.1084 

15 1 0 1.1497 0 1.5473 0.0879 

16 1 0 1.8895 0 1.6996 0.2309 

17 1 0 2.2246 0 0.5514 0.1291 

18 1 0 1.2891 0 0.8959 0.0816 

19 1 0 1.4597 0 0.0865 0.0720 

20 1 0 0.8712 0 1.4818 0.2419 

21 1 0 0 1.2896 1.4225 0.2405 

22 1 0 0 2.4976 -0.2124 0.1590 

23 1 0 0 1.1607 -1.5689 0.1371 

24 1 0 0 1.9731 0.5155 0.0786 

25 1 0 0 1.7548 -0.6218 0.0081 

26 1 0 0 2.4172 1.2701 0.1891 

27 1 0 0 1.5476 -0.1565 0.1465 

28 1 0 0 0.9018 -0.2182 0.0297 

29 1 0 0 1.2977 -1.6267 0.2445 

30 1 0 0 1.5863 -0.3844 0.0181 
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BMIRT Control and Batch Files 
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REM BMIRT Control File 

REM Estimating subscores based on compensatory MIRT model 

1500 30 3 100 99631 0.01 1 

111111111111111111111111111111 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 

1 0.3 0.3 0.3 1 0.3 0.3 0.3 1 0 0 0 

 

First line: Sample size, number of items, number of dimensions, number of iterations, 

random seed, delta, estimation method (1: MAP, 0: MLE). 

Second line: 1 is indicating multiple-choice format for all items 

Third line: Item numbers 

Fourth line: Variance-covariance matrix of dimensions and means of dimensions. These 

are strong priors.  

 

To run MAP estimation for 10 replications, the following batch file should be used: 

REM BMIRT Batch File 

for %%f in (1 2 3 4 5 6 7 8 9 10) do call BayesianModeAbility control_%%f.ctl 

sctl1_%%f.rwo sctl1_%%f.par out/tctl1_%%f 

pause; 

 

 

This batch file uses the same item parameter files used for SimuMIRT. It reads control 

files and item parameter files for each replication, estimates subscores, and creates an 

output file in “out” folder.  
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R Codes for Computing Reliability Coefficients 
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profile.r <- function(form1, form2) { 

   

#Form1 and Form2 are data frames that include the subscores 

n <- ncol(form1) 

k <- nrow(form1) 

 

#Average score for each person (level) 

f1 <- as.matrix(rowMeans(form1),ncol=1,nrow=k) 

f2 <- as.matrix(rowMeans(form2),ncol=1,nrow=k) 

 

pattern1 <- matrix(,ncol=n, nrow=k) 

pattern2 <- matrix(,ncol=n, nrow=k) 

 

#Creating pattern scores 

for (i in 1:n) { 

 pattern1[,i] <- form1[,i]-f1 

 pattern2[,i] <- form2[,i]-f2 

} 

 

#Overall profile reliability 

covar1 <- matrix(,ncol=n, nrow=1) 

 

for (i in 1:n) {covar1[,i]=cov(form1[,i],form2[,i])} 

num1=rowSums(covar1) 

 

variance.form1 <- sum(apply(form1,2,var)) 

variance.form2 <- sum(apply(form2,2,var)) 

 

denum1 <- sqrt(variance.form1*variance.form2) 

 

overall <- num1/denum1 

   

#Level reliability 

num2 <- n*(cov(f1,f2)) 

denum2 <- sqrt((n*var(f1))*(n*var(f2))) 

level <- num2/denum2 

   

#Pattern reliability 

covar2 <- matrix(,ncol=n, nrow=1) 

 

for (i in 1:n) {covar2[,i]=cov(pattern1[,i],pattern2[,i])} 

num3=rowSums(covar2) 

 

var.form1 <- sum(apply(pattern1,2,var)) 

var.form2 <- sum(apply(pattern2,2,var)) 
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denum3 <- sqrt(var.form1*var.form2) 

 

pattern <- num3/denum3 

    

  #Function profile.r returns the estimated values of level, pattern, and overall reliabilities. 

  result <- cbind(level,pattern,overall) 

  return(result) 

} 
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Correlations of Multidimensional Subscore Estimates 
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Table B1.1. Correlations of the Multidimensional Subscore Estimates from Three Subtests in 

Form 1 

Subtest Length ρ  S1 S2 S3 

10 

.3 

S1 1   

 S2 .36 1  

 S3 .36 .36 1 

 

.5 

S1 1   

 S2 .59 1  

 S3 .59 .59 1 

 

.8 

S1 1   

 S2 .89 1  

 S3 .89 .89 1 

20  S1 1   

 .3 S2 .34 1  

  S3 .34 .33 1 

  S1 1   

 .5 S2 .56 1  

  S3 .56 .56 1 

  S1 1   

 .8 S2 .87 1  

  S3 .87 .87 1 

40  S1 1   

 .3 S2 .32 1  

  S3 .32 .32 1 

  S1 1   

 .5 S2 .53 1  

  S3 .54 .53 1 

  S1 1   

 .8 S2 .85 1  

  S3 .85 .85 1 
Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3. ρ: True correlation between subscores used in the 

data generation. 
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Table B1.2. Correlations of the Multidimensional Subscore Estimates from Three Subtests in 

Form 2 

Subtest Length ρ  S1 S2 S3 

10 

.3 

S1 1   

 S2 .36 1  

 S3 .36 .36 1 

 

.5 

S1 1   

 S2 .59 1  

 S3 .59 .59 1 

 

.8 

S1 1   

 S2 .89 1  

 S3 .89 .89 1 

20  S1 1   

 .3 S2 .34 1  

  S3 .34 .33 1 

  S1 1   

 .5 S2 .56 1  

  S3 .56 .56 1 

  S1 1   

 .8 S2 .87 1  

  S3 .87 .87 1 

40  S1 1   

 .3 S2 .32 1  

  S3 .32 .32 1 

  S1 1   

 .5 S2 .54 1  

  S3 .54 .53 1 

  S1 1   

 .8 S2 .85 1  

  S3 .85 .85 1 
Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3. ρ: True correlation between subscores used in the 

data generation. 
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Table B1.3. Correlations of the Multidimensional Subscore Estimates from Five Subtests in Form 

1 

Subtest 

Length 
ρ  S1 S2 S3 S4 S5 

10 

.3 

S1 1     

 S2 .35 1    

 S3 .35 .35 1   

 S4 .35 .35 .35 1  

 S5 .35 .35 .35 .35 1 

 

.5 

S1 1     

 S2 .59 1    

 S3 .59 .59 1   

 S4 .59 .59 .59 1  

 S5 .59 .59 .59 .59 1 

 

.8 

S1 1     

 S2 .89 1    

 S3 .89 .89 1   

 S4 .89 .89 .89 1  

 S5 .89 .89 .89 .89 1 

20  S1 1     

 

.3 

S2 .33 1    

 S3 .33 .33 1   

 S4 .33 .34 .33 1  

 S5 .33 .34 .33 .33 1 

  S1 1     

 .5 S2 .56 1    

  S3 .56 .56 1   

 S4 .56 .56 .56 1  

 S5 .56 .56 .56 .56 1 

  S1 1     

 

.8 

S2 .87 1    

 S3 .87 .87 1   

 S4 .87 .87 .87 1  

 S5 .87 .87 .87 .87 1 

40  S1 1     

 

.3 

S2 .32 1    

 S3 .32 .33 1   

 S4 .33 .32 .32 1  

 S5 .32 .32 .32 .32 1 

  S1 1     

 

.5 

S2 .53 1    

 S3 .53 .53 1   

 S4 .54 .53 .53 1  

 S5 .53 .53 .53 .53 1 

  S1 1     

 .8 S2 .84 1    

  S3 .84 .84 1   

  S4 .84 .84 .85 1  

  S5 .85 .84 .84 .84 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5.  ρ: True correlation 

between subscores used in the data generation. 
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Table B1.4. Correlations of the Multidimensional Subscore Estimates from Five Subtests in Form 

2 

Subtest 

Length 
ρ  S1 S2 S3 S4 S5 

10 

.3 

S1 1     

 S2 .35 1    

 S3 .35 .35 1   

 S4 .35 .35 .35 1  

 S5 .35 .35 .35 .35 1 

 

.5 

S1 1     

 S2 .59 1    

 S3 .59 .59 1   

 S4 .59 .59 .59 1  

 S5 .59 .59 .59 .59 1 

 

.8 

S1 1     

 S2 .89 1    

 S3 .89 .89 1   

 S4 .89 .89 .89 1  

 S5 .89 .89 .89 .89 1 

20  S1 1     

 

.3 

S2 .33 1    

 S3 .33 .33 1   

 S4 .33 .34 .33 1  

 S5 .33 .34 .33 .33 1 

  S1 1     

 .5 S2 .56 1    

  S3 .56 .56 1   

 S4 .56 .56 .56 1  

 S5 .56 .56 .56 .56 1 

  S1 1     

 

.8 

S2 .87 1    

 S3 .87 .87 1   

 S4 .87 .87 .87 1  

 S5 .87 .87 .87 .87 1 

40  S1 1     

 

.3 

S2 .32 1    

 S3 .32 .33 1   

 S4 .33 .32 .32 1  

 S5 .32 .32 .32 .32 1 

  S1 1     

 

.5 

S2 .53 1    

 S3 .53 .53 1   

 S4 .54 .53 .53 1  

 S5 .53 .53 .53 .53 1 

  S1 1     

 .8 S2 .84 1    

  S3 .84 .84 1   

  S4 .84 .84 .85 1  

  S5 .85 .84 .84 .84 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5.  ρ: True correlation 

between subscores used in the data generation. 
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Table B1.5. Correlations of the Multidimensional Subscore Estimates from Seven Subtests in 

Form 1 

Subtest 

Length 
ρ  S1 S2 S3 S4 S5 S6 S7 

10 

.3 

S1 1       

 S2 .36 1      

 S3 .36 .35 1     

 S4 .36 .36 .36 1    

 S5 .36 .35 .36 .36 1   

 S6 .36 .36 .36 .36 .36 1  

 S7 .36 .36 .36 .36 .36 .3 1 

 

.5 

S1 1       

 S2 .59 1      

 S3 .58 .59 1     

 S4 .59 .59 .59 1    

 S5 .59 .58 .59 .59 1   

 S6 .59 .59 .59 .59 .58 1  

 S7 .59 .59 .59 .59 .58 .59 1 

 

.8 

S1 1       

 S2 .89 1      

 S3 .89 .88 1     

 S4 .89 .89 .89 1    

 S5 .89 .89 .89 .89 1   

 S6 .89 .89 .88 .89 .89 1  

 S7 .89 .89 .89 .89 .88 .89 1 

20  S1 1       

 

.3 

S2 .33 1      

 S3 .33 .33 1     

 S4 .33 .33 .33 1    

 S5 .33 .33 .33 .33 1   

 S6 .33 .33 .33 .33 .33 1  

 S7 .33 .33 .33 .33 .33 .33 1 

  S1 1 .      

 

.5 

S2 .56 1      

 S3 .56 .56 1     

 S4 .56 .56 .56 1    

 S5 .57 .56 .56 .56 1   

 S6 .56 .56 .56 .56 .56 1  

 S7 .56 .56 .57 .56 .56 .56 1 

  S1 1 .      

 

.8 

S2 .87 1      

 S3 .86 .87 1     

 S4 .87 .87 .87 1    

 S5 .87 .86 .86 .87 1   

 S6 .86 .87 .87 .87 .87 1  

 S7 .87 .87 .87 .87 .87 .87 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5; S6: Subscore 6; S7: 

Subscore7. ρ: True correlation between subscores used in the data generation. 
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Table B1.5. Correlations of the Multidimensional Subscore Estimates from Seven Subtests in 

Form 1 (Cont.) 

Subtest 

Length 
ρ  S1 S2 S3 S4 S5 S6 S7 

40 

.3 

S1 1       

 S2 .33 1      

 S3 .32 .32 1     

 S4 .33 .32 .32 1    

 S5 .33 .32 .32 .32 1   

 S6 .32 .32 .32 .33 .32 1  

 S7 .32 .32 .32 .32 .32 .32 1 

 

.5 

S1 1       

 S2 .53 1      

 S3 .54 .53 1     

 S4 .53 .53 .53 1    

 S5 .53 .53 .54 .53 1   

 S6 .54 .53 .53 .54 .53 1  

 S7 .54 .53 .54 .53 .54 .53 1 

 

.8 

S1 1       

 S2 .84 1      

 S3 .84 .85 1     

 S4 .85 .84 .84 1    

 S5 .84 .84 .84 .84 1   

 S6 .84 .84 .84 .84 .84 1  

 S7 .84 .84 .84 .84 .85 .84 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5; S6: Subscore 6; S7: 

Subscore7. ρ: True correlation between subscores used in the data generation. 
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Table B1.6. Correlations of the Multidimensional Subscore Estimates from Seven Subtests in 

Form 2 

Subtest Length ρ  S1 S2 S3 S4 S5 S6 S7 

10 

.3 

S1 1       

 S2 .36 1      

 S3 .35 .35 1     

 S4 .36 .36 .36 1    

 S5 .36 .35 .36 .36 1   

 S6 .36 .36 .36 .36 .36 1  

 S7 .36 .36 .36 .36 .36 .3 1 

 

.5 

S1 1       

 S2 .58 1      

 S3 .58 .59 1     

 S4 .59 .59 .59 1    

 S5 .59 .58 .59 .59 1   

 S6 .59 .59 .59 .59 .58 1  

 S7 .59 .59 .59 .59 .58 .59 1 

 

.8 

S1 1       

 S2 .89 1      

 S3 .89 .88 1     

 S4 .89 .89 .89 1    

 S5 .89 .89 .89 .89 1   

 S6 .89 .89 .88 .89 .89 1  

 S7 .89 .89 .89 .89 .88 .89 1 

20  S1 1       

 

.3 

S2 .33 1      

 S3 .33 .33 1     

 S4 .33 .33 .33 1    

 S5 .33 .33 .33 .33 1   

 S6 .33 .33 .33 .33 .33 1  

 S7 .33 .33 .33 .33 .33 .33 1 

  S1 1 .      

 

.5 

S2 .56 1      

 S3 .56 .56 1     

 S4 .56 .56 .56 1    

 S5 .57 .56 .56 .56 1   

 S6 .56 .56 .56 .56 .56 1  

 S7 .56 .56 .57 .56 .56 .56 1 

  S1 1 .      

 

.8 

S2 .86 1      

 S3 .86 .87 1     

 S4 .87 .87 .87 1    

 S5 .87 .86 .86 .87 1   

 S6 .86 .87 .87 .87 .87 1  

 S7 .87 .87 .87 .87 .87 .87 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5; S6: Subscore 6; S7: 

Subscore7. ρ: True correlation between subscores used in the data generation. 
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Table B1.6. Correlations of the Multidimensional Subscore Estimates from Seven Subtests in 

Form 2 (Cont.) 

Subtest 

Length 
ρ  S1 S2 S3 S4 S5 S6 S7 

40 

.3 

S1 1       

 S2 .32 1      

 S3 .32 .32 1     

 S4 .33 .32 .32 1    

 S5 .33 .32 .32 .32 1   

 S6 .32 .32 .32 .33 .32 1  

 S7 .32 .32 .32 .32 .32 .32 1 

 

.5 

S1 1       

 S2 .53 1      

 S3 .53 .53 1     

 S4 .53 .53 .53 1    

 S5 .53 .53 .54 .53 1   

 S6 .54 .53 .53 .54 .53 1  

 S7 .54 .53 .54 .53 .54 .53 1 

 

.8 

S1 1       

 S2 .84 1      

 S3 .84 .85 1     

 S4 .85 .84 .84 1    

 S5 .84 .84 .84 .84 1   

 S6 .84 .84 .84 .84 .84 1  

 S7 .84 .84 .84 .84 .85 .84 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5; S6: Subscore 6; S7: 

Subscore7. ρ: True correlation between subscores used in the data generation. 
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Correlations of Unidimensional Subscore Estimates 
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Table B2.1. Correlations of the Unidimensional Subscore Estimates from Three Subtests in Form 

1 

Subtest Length ρ  S1 S2 S3 

10 

.3 

S1 1   

 S2 .22 1  

 S3 .22 .21 1 

 

.5 

S1 1   

 S2 .36 1  

 S3 .36 .36 1 

 

.8 

S1 1   

 S2 .59 1  

 S3 .58 .58 1 

20  S1 1   

 .3 S2 .25 1  

  S3 .25 .25 1 

  S1 1   

 .5 S2 .42 1  

  S3 .42 .42 1 

  S1 1   

 .8 S2 .67 1  

  S3 .67 .67 1 

40  S1 1   

 .3 S2 .27 1  

  S3 .27 .27 1 

  S1 1   

 .5 S2 .45 1  

  S3 .45 .45 1 

  S1 1   

 .8 S2 .73 1  

  S3 .73 .73 1 
Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3. ρ: True correlation between subscores used in the 

data generation. 
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Table B2.2. Correlations of the Unidimensional Subscore Estimates from Three Subtests in Form 

2 

Subtest Length ρ  S1 S2 S3 

10 

.3 

S1 1   

 S2 .22 1  

 S3 .21 .21 1 

 

.5 

S1 1   

 S2 .36 1  

 S3 .36 .36 1 

 

.8 

S1 1   

 S2 .58 1  

 S3 .58 .58 1 

20  S1 1   

 .3 S2 .25 1  

  S3 .25 .25 1 

  S1 1   

 .5 S2 .42 1  

  S3 .42 .42 1 

  S1 1   

 .8 S2 .67 1  

  S3 .67 .67 1 

40  S1 1   

 .3 S2 .27 1  

  S3 .27 .27 1 

  S1 1   

 .5 S2 .45 1  

  S3 .45 .45 1 

  S1 1   

 .8 S2 .73 1  

  S3 .73 .73 1 
Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3. ρ: True correlation between subscores used in the 

data generation. 

 

 

 

 

 



173 

 

Table B2.3. Correlations of the Unidimensional Subscore Estimates from Five Subtests in Form 1 

Subtest 

Length 
ρ  S1 S2 S3 S4 S5 

10 

.3 

S1 1     

 S2 .21 1    

 S3 .20 .20 1   

 S4 .22 .22 .21 1  

 S5 .21 .23 .21 .21 1 

 

.5 

S1 1     

 S2 .36 1    

 S3 .34 .34 1   

 S4 .36 .36 .36 1  

 S5 .35 .37 .36 .36 1 

 

.8 

S1 1     

 S2 .58 1    

 S3 .57 .57 1   

 S4 .58 .58 .58 1  

 S5 .57 .58 .57 .58 1 

20  S1 1     

 

.3 

S2 .24 1    

 S3 .24 .23 1   

 S4 .26 .26 .24 1  

 S5 .25 .26 .25 .26 1 

  S1 1     

 .5 S2 .41 1    

  S3 .41 .41 1   

 S4 .42 .42 .41 1  

 S5 .41 .43 .41 .42 1 

  S1 1     

 

.8 

S2 .67 1    

 S3 .67 .67 1   

 S4 .67 .68 .67 1  

 S5 .67 .68 .67 .68 1 

40  S1 1     

 

.3 

S2 .26 1    

 S3 .26 .25 1   

 S4 .28 .28 .27 1  

 S5 .26 .28 .27 .27 1 

  S1 1  .   

 

.5 

S2 .45 1    

 S3 .44 .44 1   

 S4 .45 .46 .45 1  

 S5 .45 .46 .45 .45 1 

  S1 1     

 .8 S2 .72 1    

  S3 .73 .72 1   

  S4 .73 .73 .73 1  

  S5 .72 .73 .73 .73 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5.  ρ: True correlation 

between subscores used in the data generation. 
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Table B2.4. Correlations of the Unidimensional Subscore Estimates from Five Subtests in Form 2 

Subtest 

Length 
ρ  S1 S2 S3 S4 S5 

10 

.3 

S1 1     

 S2 .21 1    

 S3 .20 .20 1   

 S4 .21 .22 .21 1  

 S5 .21 .22 .21 .21 1 

 

.5 

S1 1     

 S2 .35 1    

 S3 .35 .35 1   

 S4 .35 .36 .36 1  

 S5 .35 .36 .36 .35 1 

 

.8 

S1 1     

 S2 .57 1    

 S3 .57 .57 1   

 S4 .58 .58 .57 1  

 S5 .58 .58 .58 .58 1 

20  S1 1     

 

.3 

S2 .24 1    

 S3 .23 .23 1   

 S4 .25 .25 .24 1  

 S5 .25 .26 .25 .24 1 

  S1 1     

 .5 S2 .41 1    

  S3 .41 .41 1   

 S4 .42 .42 .41 1  

 S5 .41 .43 .41 .42 1 

  S1 1     

 

.8 

S2 .67 1    

 S3 .67 .67 1   

 S4 .67 .68 .67 1  

 S5 .67 .68 .67 .68 1 

40  S1 1     

 

.3 

S2 .27 1    

 S3 .26 .26 1   

 S4 .28 .28 .27 1  

 S5 .26 .28 .27 .27 1 

  S1 1  .   

 

.5 

S2 .45 1    

 S3 .44 .44 1   

 S4 .45 .46 .45 1  

 S5 .45 .46 .45 .45 1 

  S1 1     

 .8 S2 .72 1    

  S3 .73 .72 1   

  S4 .73 .73 .72 1  

  S5 .72 .73 .73 .72 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5.  ρ: True correlation 

between subscores used in the data generation. 
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Table B2.5. Correlations of the Unidimensional Subscore Estimates from Seven Subtests in Form 

1 

Subtest 

Length 
ρ  S1 S2 S3 S4 S5 S6 S7 

10 

.3 

S1 1       

 S2 21 1      

 S3 21 .22 1     

 S4 21 21 21 1    

 S5 21 .22 21 21 1   

 S6 22 21 21 21 21 1  

 S7 21 21 21 21 21 21 1 

 

.5 

S1 1       

 S2 .35 1      

 S3 .36 .35 1     

 S4 .35 .35 .35 1    

 S5 .35 .36 .35 .35 1   

 S6 .35 .35 .35 .35 .36 1  

 S7 .35 .35 .35 .35 .36 .35 1 

 

.8 

S1 1       

 S2 .57 1      

 S3 .57 .58 1     

 S4 .57 .57 .57 1    

 S5 .57 .57 .57 .57 1   

 S6 .58 .57 .58 .57 .57 1  

 S7 .57 .57 .57 .57 .58 .57 1 

20  S1 1       

 

.3 

S2 .24 1      

 S3 .24 .24 1     

 S4 .25 .25 .24 1    

 S5 .24 .24 .25 .24 1   

 S6 .24 .24 .24 .24 .24 1  

 S7 .25 .24 .24 .25 .24 .24 1 

  S1 1       

 

.5 

S2 .41 1      

 S3 .41 .41 1     

 S4 .41 .44 .41 1    

 S5 .42 .41 .42 .41 1   

 S6 .41 .41 .41 .41 .41 1  

 S7 .41 .41 .42 .41 .43 .41 1 

  S1 1 .      

 

.8 

S2 .67 1      

 S3 .68 .67 1     

 S4 .67 .67 .67 1    

 S5 .67 .68 .68 .67 1   

 S6 .68 .67 .67 .67 .67 1  

 S7 .67 .67 .67 .67 .67 .67 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5; S6: Subscore 6; S7: 

Subscore7. ρ: True correlation between subscores used in the data generation. 
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Table B2.5. Correlations of the Unidimensional Subscore Estimates from Seven Subtests in Form 

1 (Cont.) 

Subtest 

Length 
ρ  S1 S2 S3 S4 S5 S6 S7 

40 

.3 

S1 1       

 S2 27 1      

 S3 .26 .26 1     

 S4 27 .26 .26 1    

 S5 27 .26 .26 .26 1   

 S6 .26 .26 .26 27 .26 1  

 S7 .26 .26 .26 .26 .26 .26 1 

 

.5 

S1 1       

 S2 .45 1      

 S3 .44 .45 1     

 S4 .45 .45 .45 1    

 S5 .45 .45 .44 .45 1   

 S6 .44 .45 .45 .44 .45 1  

 S7 .44 .45 .44 .45 .44 .45 1 

 

.8 

S1 1       

 S2 .72 1      

 S3 .72 .73 1     

 S4 .73 .72 .72 1    

 S5 .72 .72 .72 .72 1   

 S6 .72 .72 .72 .72 .72 1  

 S7 .72 .72 .72 .72 .73 .72 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5; S6: Subscore 6; S7: 

Subscore7. ρ: True correlation between subscores used in the data generation. 
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Table B2.6. Correlations of the Unidimensional Subscore Estimates from Seven Subtests in Form 

2 

Subtest Length ρ  S1 S2 S3 S4 S5 S6 S7 

10 

.3 

S1 1       

 S2 22 1      

 S3 21 .22 1     

 S4 22 21 21 1    

 S5 21 .22 21 21 1   

 S6 22 21 21 22 21 1  

 S7 21 21 21 21 21 21 1 

 

.5 

S1 1       

 S2 .35 1      

 S3 .35 .35 1     

 S4 .36 .35 .35 1    

 S5 .36 .36 .35 .35 1   

 S6 .35 .35 .37 .35 .36 1  

 S7 .35 .35 .35 .35 .36 .35 1 

 

.8 

S1 1       

 S2 .57 1      

 S3 .57 .57 1     

 S4 .56 .57 .57 1    

 S5 .57 .57 .57 .57 1   

 S6 .58 .58 .58 .57 .57 1  

 S7 .57 .57 .57 .57 .57 .57 1 

20  S1 1       

 

.3 

S2 .24 1      

 S3 .24 .24 1     

 S4 .24 .24 .24 1    

 S5 .24 .24 .25 .24 1   

 S6 .24 .24 .24 .24 .24 1  

 S7 .25 .24 .24 .24 .24 .24 1 

  S1 1       

 

.5 

S2 .41 1      

 S3 .42 .41 1     

 S4 .41 .44 .41 1    

 S5 .41 .41 .42 .42 1   

 S6 .41 .41 .41 .41 .41 1  

 S7 .41 .41 .42 .41 .43 .41 1 

  S1 1 .      

 

.8 

S2 .67 1      

 S3 .68 .67 1     

 S4 .67 .67 .67 1    

 S5 .67 .68 .68 .67 1   

 S6 .68 .67 .67 .67 .67 1  

 S7 .67 .67 .67 .67 .67 .67 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5; S6: Subscore 6; S7: 

Subscore7. ρ: True correlation between subscores used in the data generation. 
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Table B2.6. Correlations of the Unidimensional Subscore Estimates from Seven Subtests in Form 

2 (Cont.) 

Subtest 

Length 
ρ  S1 S2 S3 S4 S5 S6 S7 

40 

.3 

S1 1       

 S2 27 1      

 S3 .26 .26 1     

 S4 27 .27 .26 1    

 S5 27 .27 .26 .26 1   

 S6 .26 .26 .26 27 .26 1  

 S7 .26 .26 .26 .26 .26 .26 1 

 

.5 

S1 1       

 S2 .44 1      

 S3 .44 .45 1     

 S4 .45 .45 .45 1    

 S5 .45 .45 .45 .45 1   

 S6 .45 .45 .45 .43 .45 1  

 S7 .44 .45 .44 .45 .44 .45 1 

 

.8 

S1 1       

 S2 .72 1      

 S3 .71 .73 1     

 S4 .73 .71 .72 1    

 S5 .72 .72 .72 .72 1   

 S6 .72 .72 .72 .72 .73 1  

 S7 .72 .72 .72 .72 .73 .72 1 

Note: S1: Subscore 1; S2: Subscore 2; S3: Subscore 3; S4: Subscore 4; S5: Subscore 5; S6: Subscore 6; S7: 

Subscore7. ρ: True correlation between subscores used in the data generation. 
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Appendix C 

 

Sampling Distributions of Between-person, Within-person, and Total Profile 

Reliability 
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Figure C1.1. Sampling distributions of reliability estimates from 3-dimensional MIRT 

model with 10 items. 
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Figure C1.2. Sampling distributions of reliability estimates from 3-dimensional MIRT 

model with 20 items. 
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Figure C1.3. Sampling distributions of reliability estimates from 3-dimensional MIRT 

model with 40 items. 
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Figure C1.4. Sampling distributions of reliability estimates from 5-dimensional MIRT 

model with 10 items. 
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Figure C1.5. Sampling distributions of reliability estimates from 5-dimensional MIRT 

model with 20 items. 
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Figure C1.6. Sampling distributions of reliability estimates from 5-dimensional MIRT 

model with 40 items. 
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Figure C1.7. Sampling distributions of reliability estimates from 7-dimensional MIRT 

model with 10 items. 
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Figure C1.8. Sampling distributions of reliability estimates from 7-dimensional MIRT 

model with 20 items. 
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Figure C1.9. Sampling distributions of reliability estimates from 7-dimensional MIRT 

model with 40 items. 
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Figure C1.10. Sampling distributions of reliability estimates from 3-dimensional UIRT 

model with 10 items. 
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Figure C1.11. Sampling distributions of reliability estimates from 3-dimensional UIRT 

model with 20 items. 
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Figure C1.12. Sampling distributions of reliability estimates from 3-dimensional UIRT 

model with 40 items. 
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Figure C1.13. Sampling distributions of reliability estimates from 5-dimensional UIRT 

model with 10 items. 
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Figure C1.14. Sampling distributions of reliability estimates from 5-dimensional UIRT 

model with 20 items. 
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Figure C1.15. Sampling distributions of reliability estimates from 5-dimensional UIRT 

model with 40 items. 
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Figure C1.16. Sampling distributions of reliability estimates from 7-dimensional UIRT 

model with 10 items. 
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Figure C1.17. Sampling distributions of reliability estimates from 7-dimensional UIRT 

model with 20 items. 
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Figure C1.18. Sampling distributions of reliability estimates from 7-dimensional UIRT 

model with 40 items. 

 


