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Executive Summary

This research builds on a previous investigation (1-3), which found that
corrosion-inhibitor-added deicing salts caused degradation of concrete by
both anions and cations. The precipitates resulting from chemical reactions
between concrete and corrosion-inhibitor-added deicing salts were
analyzed, and dramatic pH changes were noted in the concrete-saturated

solution mixed with the corrosion-inhibitor-added deicing salts.

The effects of the corrosion-inhibitor-added deicing salts on the concrete
degradation are not well understood, and the methods for determining the
effects of the corrosion-inhibitor-added deicing salts on concrete
degradation were not available. This investigation looked at methods to
detect the chemical reactions between concrete and
corrosion-inhibitor-added deicing salts and to determine the chemical
compositions of the precipitates formed by chemical reactions between

concrete and the corrosion-inhibitor-added deicing salts.

In the previous investigation (1), cone-shaped concrete samples were
fabricated to accelerate the deterioration of the concrete by providing a
large exposed surface area to corrosion-inhibitor-added deicing salt
solutions. The varying diameter enables quicker penetration in the top
portion of sample. Six corrosion-inhibitor-added deicing salts and plain
sodium chloride were mixed with deionized water to produce 3, 6, and 20

percent solutions. A sample cone and the test cells are shown in Figure 1.






Figure 1. A cone-shaped concrete sample (a) in the test cell (b) for concrete

degradation by corrosion-inhibitor-added deicing salts.






After immersing the concrete samples in the 3, 6, and 20 percent
corrosion-inhibitor-added deicing salt solutions for a day, varying amounts
of precipitates were observed on the concrete surfaces and/or at the bottom
of the test cells depending on the type and the concentration of
corrosion-inhibitor-added deicing salts. However, no precipitates were
observed in the test cells containing NaCl, either in tap water or in
deionized water. The amount of precipitates did increase as a function of

time.

As part of this research project, precipitates were collected from test cells
for quantitative and qualitative analyses to identify the chemical elements
involved in the reactions by using chemical analysis, scanning electron
microscopy, and X-ray diffraction analysis. After collecting precipitates
from the test cells, precipitates were rinsed three times with alcohol to
remove the salt solution by displacement from the precipitates, then dried
in an oven at 120 degree C. The chemistry of the precipitates formed by
chemical reactions between concrete and deicing chemicals was
determined by (i) a DIONEX 4000i ion chromatography for anions and a
Perkin Elmer/Sciex Elan 5000 inductively coupled plasma—mdss

spectrometer for cations, and (ii) a Simens D-500 Diffractometer.

Chemical composition by weight percentages of the precipitates
determined by chemical analysis is presented in Table I, and Figure 2
shows the X-ray diffraction patterns of precipitates formed by Deicing Salts
B, C, and E. Table II shows the major and minor chemical components in

precipitates determined by chemical analysis and X-ray diffraction.
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Figure 2. X-ray diffraction of precipitates formed by chemical reactions
between concrete and (a) Deicing Salt B, (b) Deicing Salt C, and

(O) Deicing Salt E.



Deicing Major Minor
Salt
A Mg(OH), Ca,(PO,),xH,0
Mg;(PO,), Ca,Na,(SO,),
B Mg(OH), Ca,Na,(SO,),
CaP,0O,
C CaCoO, Ca,Na,(S0O,),
Ca,(PO,), - xH,O
D Ca,(PO,), - xH,0O Mg(OH),
Ca,Na,(S0,),
E Ca3(PO4)2 * XHzo CazNa3(SO4)3
Mg(OH),
CaCoO,
SiO,
F CaCO, Ca,Nay(S0,),
Ca3(PO4)2 M XHzo
Sio,
Ca,SiO,

Table l. Chemical compounds in precipitates formed by chemical
reactions between corrosion-inhibitor-added deicing salts and concrete.

The precipitates of Deicing Salts D and E contained calcium phosphate as
major components, while those of Deicing Salts C and F were calcite. The

precipitates of Deicing Salts A and B contained magnesium hydroxide as a

major component along with calcium or magnesium phosphate.

Ca,Na3(SO,); was found as a minor component in all deicing chemicals

tested in this investigation. The precipitates of Deicing Salts E and F

contained some forms of silica as a minor component. In general, the

chemical reactions in concrete by the deicing chemicals produced calcium

or magnesium phosphate, magnesium hydroxide, and calcite.




The chemical changes of the test solutions as well as the physical chahges of
the concrete samples were monitored as a function of time. The results
collected so far provided clear evidence of chemical reactions between
concrete and the corrosion-inhibitor-added deicing salts. The impact of the
- chemical reactions on the concrete degradation can be understood by
determining the chemical and mineralogical changes of the concrete caused
by the corrosion-inhibitor-added deicing salts. The chemical changes in the
solutions provide a part of the necessary information on changes in the
chemistry and bonding-strength of concrete, but the mineralogy of the
precipitates also must be determined. The physical changes of the concrete
samples after 550 days of reaction were not significant enough (minimum
15 percent weigh and dimension changes) to determine the extent of

changes by the corrosion-inhibitor-added deicing salt solutions.

A number of alternative chemical deicers and salt-additive corrosion
inhibitors have been developed in recent years. In tests conducted by the
Iowa Department of Transportation (4) with steel coupons and reinforced
concrete blocks, the only alternative deicer showing significant inhibition of
corrosion of reinforcing steels in concrete was pure CMA (among CMA,
CMA + NaCl, Quicksalt + PCI, and CG-90), though all deicers were less
corrosive than NaCl. The steel coupons were placed in a 15 percent
solution of a deicer in distilled water to determine which deicer caused the
least amounts of weight loss from corrosion. The reinforced concrete
blocks were ponded with a 15 percent solution of a deicer, and corrosion
state of the steel was monitored by copper-copper sulfate half cell potential

measurements.



The Washington Department of Transportation (5) evaluated a number of
deicers such as CG-90, FREEZGARD + PCI, Urea, CMA, Quicksalt + PCI,
and Ice Stop CI both in laboratory and field. The deicers were less
corrosive than salt. Some deicers appeared to be effective in reducing rebar
corrosion. Three percent deicer solutions were used in the laboratory

coupon tests.

However, the studies performed by the University of Minnesota (2,3)
indicated that the effectiveness of corrosion-inhibitor-added deicing salts
on rebar corrosion was dependent on (i) concentration of
corrosion-inhibitor-added deicing salts, and (ii) environmental conditions
such as temperature and oxygen content, and that most deicing chemicals

were inferior to NaCl for rebar corrosion protection.

Also, the corrosion-inhibitor-added deicing salts caused changes in the
properties of concrete (6). The salt interacts with concrete by chemical
reactions. Some of the reactions are ettringite formation, carbonation, and
penetration of chloride ions into C-S5-H gels. The salt actions in concrete
~also affect the freeze-thaw resistance (7). An increase in deicer impurities,

such as calcium sulfate, increased damage to cement mortars (8).

In a previous investigation (1), numerous cracks and rough surfaces on
concrete were found on the slabs tested with 3 percent Deicing Salt B and E
solutions. The slabs tested with Deicing Salt B and with Sodium Formate
solutions contained cracks but did not show any yellow rust stains on the
surfaces. On the other hand, the slab surfaces tested with salt (NaCl)



solutions showed signs of rebar corrosion in concrete, but no cracks were
observed. These observations indicate that the cracks in concrete slabs may
be created by both rebar corrosion and chemical reactions between
corrosion-inhibitor-added deicing saits and concrete. The results suggested
the need to further investigation on the concrete degradation caused by

chemical reactions between deicing media and concrete.

Tables III and IV suggest that the high phosphate contents in Deicing Salts
A, D, and E formed calcium or magnesium phosphate precipitates by
chemical reactions with concrete. In Figure 3, high concentrations of
phosphates were observed in the top portion (0.5 cm) of the concrete when
the corrosion-inhibitor-added deicing salts or salts substitutes contained
phosphates as inhibitors. This is coincident with the phosphate
components of the precipitates of Deicing Salts A, D, and E as shown in
Table I. Thus, the phosphates added to deicing chemicals as
corrosion-inhibitors could not penetrate into concrete to prevent rebar

corrosion because of the chemical reactions.

Element Percentage
Ca™ 0.35 ~ 20.00
K* 0.01 ~ 0.39
Mg™ 0.01 ~ 3.68
Na* 0.67 ~ 37.00
Si** 0.00 ~2.13
PO,” 0.05 ~ 9.52
SO,° 1.79 ~ 33.00
cr 0.79 ~ 56.25

Table lll. Chemistry of corrosion-inhibitor-added
deicing salts used in the previous research (1,2).
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Figure 3. (a) CI, (b) SO,* and (c) PO,* distributions in concrete slabs ponded

with 3% corrosion-inhibitor-added deicing salts solutions.
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Sodium phosphate is an anodic inhibitor effective in the presence of
oxygen, and its protective properties toward steel are a function of pH (9).
Whether phosphate ion can act as an accelerator or as an inhibitor for steel
corrosion depends on its concentration. At low concentrations, PO,> will
develop pits on the surface of the metal. Higher concentrations of 15 to 20
mg/L reverse this role, and the ion contributes to the stabilization of
gamma-Fe,0, (10, 11). Polyphosphates are widely used together with

cathodic inhibitors that are relatively insensitive to concentration.

If PO, in the corrosion-inhibitor-added deicing salts are lost by
precipitation, the effectiveness of the corrosion-inhibitor-added deicing
salts on rebar corrosion could drop significantly. On the other hand, the
formation of precipitates in cracks may act as a barrier to the penetratibn of
the salt solutions, thereby acting as an inhibitor. Alternatively, some of the
precipitates may form in micro-cracks or pores of concrete, and facilitate
propagation of cracks. The solubility of Ca,(PO,),decreases with increasihg
pH. Because of the low solubility of Ca,(PO,),in concrete at pH 12 ~ 13, the

precipitates remain in the air voids in concrete or microcracks (12).

The effect of sulfate ion on the potentiodynamic polarization behavior of
1020 steel (mild steel) in a saturated Ca(OH), solution at 22 degrees C was
investigated, and the corrosion potential was found to become more
negative with increasing sulfate concentrations. This implies that greater
amounts of sulfate ions increase the corrosion rate of 1020 steel in a

saturated Ca(OH), solution (13).

12



The calcite precipitates formed by Deicing Salts C and F may decrease the
concrete pH. Lime is the dominant substance in cement. As a result, large
quantities of Ca(OH), are crystallized in pores. The impermeability of
concrete, the reserve of hydroxide, and the low CO,concentration in air are
the primary reasons why the carbonation process proceeds slowly in

concrete (14). The carbonation entails;

Ca(OH), + CO, = CaCO, + H,0

The reaction gives rise to neutralization of the pore solutions to pH values
under nine. The neutralization takes place in stages and several
intermediate reactions occur. One of the final products is CaCQO,.
However, the effect of pH changes on concrete is not well understood at
this time. The effect of precipitates found in this investigation on concrete

durability is yet to be determined by research in progress.

The research led to the following conclusions:

® A simple method was developed for the detection of chemical reactions
between deicing chemicals and concrete.

® The results provided clear evidence of the chemical reactions between
concrete and the corrosion-inhibitor-added deicing salts.

® The different amounts of precipitates (chemical reaction products) found
in the test cells were dependent on the type and concentration of
corrosion-inhibitor-added deicing salts.

® Precipitates formed by chemical reactions between deicing chemicals and

13



concrete were identified by using chemical analysis, scémning electron
microscopy, and X-ray diffraction analysis.
® Precipitates were calcium and/or magnesium phosphates as a major

component, and gypsum as a minor component.

The physical changes of the concrete sample were not significant enough to
date to note any dimensional changes by the corrosion-inhibitor-added
deicing salt solutions. Further investigation is recommended until

significant physical changes of the concrete samples may be observed.

To obtain a copy of the original report, Effect of Salt Additives on Concrete
Degradation, contact the Office of Research Administration, Minnesota
Department of Transportation, 200 Ford Building, MS 330, 117 University
Ave., St. Paul, MN 55155, 612/282-2274.
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