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Abstract 

Nowadays, along with the economic and technical progress, modern communication 

industry is playing a more and more important role in people’s lives. The rapid growth of 

communication industry is benefiting and gradually changing our work, learning, and life 

styles. It is difficult to imagine what life will be like without smartphones, HDTVs, high-

speed networks, and Wi-Fi hotspots. On the other hand, the ever-increasing users’ 

demands force the modern communication systems to be faster, more portable, more 

reliable, and safer. As an indispensable and important part of modern communication 

systems, channel decoders are expected to be low-latency, low-complexity, low-error, 

and wiretap-free. However, developing channel decoders to meet those requirements is 

quite a struggle. Fortunately, VLSI digital signal processing techniques offer us great 

facilities to enable channel decoders to advance to new generations. 

This thesis commits itself to the efficient VLSI implementation of low-latency low-

complexity channel decoders. In order to make our approaches more applicable for 

variant real-time communication applications, formal design methodologies are proposed. 

Novel non-binary QC-LDPC decoders with efficient switch networks are presented. For 

the newly invented polar codes, a family of latency-reduced decoder architectures is also 

proposed. Comparisons with prior works have demonstrated that the proposed designs 

show advantages in both decoding throughput and hardware efficiency. 

First, a novel design methodology to design low-complexity VLSI architectures for 

non-binary LDPC decoders is presented. By exploiting the intrinsic shifting and 

symmetry properties of non-binary quasi-cyclic LDPC (QC-LDPC) codes, significant 



 

 iii 

reduction of memory size and routing complexity can be achieved. These unique features 

lead to two network-efficient decoder architectures for Class-I and Class-II non-binary 

QC-LDPC codes, respectively. Comparison results with the state-of-the-art designs show 

that for the code example of the 64-ary (1260, 630) rate-0.5 Class-I code, the proposed 

scheme can save up to 70.6% hardware required by switch network, which demonstrates 

the efficiency of the proposed technique. The proposed design for the 32-ary (992, 496) 

rate-0.5 Class-II code can achieve a 93.8% switch network complexity reduction 

compared with conventional approaches. Furthermore, with the help of a generator for 

possible solution sequences, both forward and backward steps can be eliminated to offer 

processing convenience of check node unit (CNU) blocks. Results show that the 

proposed 32-ary (992, 496) rate-0.5 Class-II decoder can achieve 4.47 Mb/s decoding 

throughput. 

Second, the low-latency sequential SC polar decoder is proposed based on the DFG 

analysis. The complete gate-level decoder architecture is proposed. The feedback part is 

proposed to generate control signals on-the-fly. The proposed design method is universal 

and can be employed to design the low-latency sequential SC polar decoder for any code-

length. Compared with prior works, this design can achieve twice throughput with similar 

hardware consumption. 

Third, in order to meet the requirements of high-throughput communication systems, 

both time-constrained (TC) and resource-constrained (RC) interleaved SC polar 

decoders are proposed. Analysis shows that the TC interleaved decoders can multiply the 

throughput and achieve much higher utilization. Also, the RC interleaved decoders can 

improve the decoding throughput while keeping the hardware complexity low. Compared 
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with our pre-computation sequential polar decoder design, the RC 2-interleaved decoder 

given here can achieve 200% throughput with only 50% hardware consumption. 

Finally, the decoder design issue of the newly proposed simplified SC (SSC) 

decoding algorithm for polar codes is investigated. Since the decoding latency for SSC 

algorithm changes with the choice of codes, a systematic way to determine the decoding 

latency is derived. By following a simple equation, we can calculate the decoding latency 

for any given polar code easily. A formal DFG-based design flow for the SSC decoder 

architecture is developed also. Furthermore, in order to always achieve a lower decoding 

latency than previous works, a novel pre-computation SSC decoder architecture is also 

proposed. A (1024, 512) decoder example is employed to demonstrated the advantages of 

the proposed approaches. 
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   Chapter 1

Introduction 

 Introduction 1.1

Along with the emergence and rapid development of modern communication 

technologies, people’s lives have been enormously changed by a list of new concepts 

such as streaming media, cloud storage, smart phone, and so on. The corresponding 

markets are huge and of great potential. Take the mobile phone market as an example. 

China Mobile is the world's largest individual mobile operator by subscribers [1]. 

Illustrated in Figure 1.1, China Mobile has over 859 million mobile phone subscribers by 

the end of the year 2010 [2]. By the end of 2009, more than 50 mobile operators have 

over 10 million subscribers each. And more than 150 operators had at least one million 

subscribers [2]. Not only the number of subscribers has expanded drastically, the data 

transmission rate of a single mobile phone has increased a lot. The data-optimized 4th-

generation technologies such as the WiMAX standard [3] and the LTE standard [4] can 

achieve up to 10-fold speed improvements over 3G technologies [5]. And still researchers 

are now working towards the 5G systems [6], which would like to be implemented 

around the year 2020 [7]. Therefore, it becomes very challenging for modern 

communication systems to handle those increasing heavy tasks. 
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Figure 1.1  Subscribers with China Mobile of the year 2010 [2]. 

As illustrated in Figure 1.2, any modern communication system can be decomposed 

into five parts, which are the source, the transmitter, the noisy channel, the receiver, and 

the destination [8]. In order to protect the data transmitted over channels, we need to 

effectively suppress the influence of the noise. Therefore, channel codes are always of 

high necessity [9, 10]. Ever since the notation of channel capacity was defined by Claude 

E. Shannon during World War II [11], channel codes have experienced a rapid 

development [12]. From Gray codes [13], we had at the very beginning, nowadays we 

have much more choices: Hamming codes [14], Reed-Solomon (RS) codes [15], Bose-

Chaudhuri-Hocquenghem (BCH) codes [16, 17], Turbo codes [18], fountain codes [19], 

and low-density parity-check (LDPC) codes [20]. The history of channel codes is actually 

the annals of modern communication systems’ development. This reminds us of the 

emergence of Turbo codes, LDPC codes, and the iterative decoding methodology in 

1990’s. These channel coding techniques have promoted the growth of modern 

communication systems such as 10 Giga-bit/s Ethernet [21], Digital video broadcasting 

[22], Wi-Fi [23], and 3G wireless communications [5]. On the other hand, the always-
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existing pressing need to develop “the next generation” communication systems drives 

the development of channel codes move forward. Now, we are at the new turn again. 

Here comes the first question: what error channel codes can we expect for the next 

generation modern communication systems? 

 

Figure 1.2  Simple block diagram of modern communication systems. 

Aside from the issue of developing new channel codes, the efficient implementation 

of corresponding decoders is of equal importance [24]. For modern communication 

systems, to fulfill the long-distance high-quality information exchanges among a large 

number of people, the corresponding decoders for channel codes are required to be fast, 

portable, reliable, and safe [25]. This means that the channel decoder implementation 

should be low-latency, low-complexity, low-error rate, and wiretap-free. Therefore, the 

second question is: can we design low-complexity low-latency channel decoders to meet 

the requirements of modern communication systems? 

In order to answer the first question, recently two kinds of error correction codes have 

been proposed by the coding society, which are non-binary LDPC codes [26, 27] and 

polar codes [28-34], respectively. Compared with their binary counterparts, non-binary 

LDPC codes are defined over finite field GF(q) with q>2. Previous literatures such as [26] 

have shown that non-binary LDPC codes can show better decoding performance over 
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their binary counterparts with proper encoding approaches and code lengths. This 

advantage makes the non-binary LDPC codes very attractive for real-time applications. 

However, the straightforward implementation of non-binary LDPC decoders results in 

the computation complexity of (q2). This high hardware complexity makes it difficult to 

adopt non-binary LDPC codes for modern communication applications. Therefore, 

further methodologies which can reduce the complexity of non-binary LDPC decoders to 

an acceptable level are in need. For polar codes, now they are considered as the most 

favorable capacity-approaching channel codes due to the low encoding complexity and 

good secrecy [35]. But the disadvantage is also obvious. Since the successive cancellation 

(SC) polar decoders are only able to produce decoded bits in a serial manner, the 

corresponding decoding latency turns out to be 2(N-1) clock cycles, where N is the length 

of the codeword [36]. Considering N is always set to be greater than 210 [28], the 

resulting latency becomes impractical. How to design low-latency low-complexity SC 

polar decoder is still challenging. 

VLSI digital signal processing (DSP) design techniques can be widely applied to the 

implementation of different application scenarios [37]. We believe that with proper VLSI 

DSP design techniques, practical decoder designs for modern communication systems 

can be obtained. This thesis is devoted to developing design methodologies for feasible 

low-complexity low-latency channel decoders in modern communication systems, 

especially on non-binary LDPC decoders and SC polar decoders. Our contributions are 

listed in the next section as follows. 
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 Summary of Contributions 1.2

 Non-Binary QC-LDPC Decoders with Efficient Networks 1.2.1

As mentioned in Section 1.1, non-binary LDPC codes are of great interest due to their 

better performance over binary ones when the code length is moderate. However, the cost 

of decoder implementation for these non-binary LDPC codes is still very high [27]. 

Generally speaking, the hardware consumption for an LDPC decoder usually comes from 

two parts: the processing units, which include both the check node units (CNUs) and the 

variable node units (VNUs), and the switch networks connecting those processing units. 

Previous literatures [38-44] mainly focused on the low-complexity design of processing 

units, especially on the hardware-efficient implementation of CNUs. However, the 

methodologies on how to reduce the complexity of switch networks have not been well 

addressed yet. 

We have proposed a low-complexity VLSI architecture for non-binary LDPC 

decoders [45]. It should be mentioned that the specific non-binary LDPC codes we are 

dealing with are called non-binary quasi-cyclic LDPC (QC-LDPC) codes [46-56]. Like 

their binary counterparts, non-binary QC-LDPC codes are hardware-friendly and can also 

achieve promising decoding performance. According to Figure 2 of [49], with 50 

decoding iterations, the 64-ary (1260, 630) non-binary QC-LDPC code can attain 3.78 dB 

code gain over the (1260, 630, 631) shortened RS code.  

The non-binary QC-LDPC codes introduced in [49] can be categorized into to 

families. The first one is called Class-I non-binary QC-LDPC codes or Class-I codes for 

short. Their algebraic construction is mainly based on cyclic subgroups of the 

multiplicative group of GF(q). The other family is named as Class-II non-binary QC-

LDPC codes or Class-II codes for short. Their construction is similar to the first one but 
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based on additive subgroups of the finite field. We will show that by exploiting the 

intrinsic shifting and symmetry properties of non-binary QC-LDPC codes, significant 

reduction of memory size and routing complexity can be achieved. These unique features 

directly lead to two different network-efficient decoder architectures for Class-I and 

Class-II codes, respectively.  

Comparison results with the state-of-the-art designs show that for the code example 

of the 64-ary (1260, 630) rate-0.5 Class-I code, the proposed scheme can save up to 70.6% 

hardware required by the switch network, which demonstrates the efficiency of the 

proposed design methodology. The proposed design for the 32-ary (992, 496) rate-0.5 

Class-II code can achieve a 93.8% switch network complexity reduction compared with 

conventional approaches. Those comparison results have demonstrated that the proposed 

approaches are feasible and efficient. 

Furthermore, we also try to reduce the hardware complexity of the CNUs. With the 

help of a generator for possible solution sequences, both forward and backward steps can 

be eliminated to offer processing convenience of the CNU blocks. Results show that the 

proposed 32-ary (992, 496) rate-0.5 Class-II decoder can achieve 4.47 Mb/s decoding 

throughput. 

 Low-Latency Successive Cancellation Polar Decoders 1.2.2

Polar codes have recently emerged as one of the most favorable capacity-achieving error 

correction codes due to their low encoding and decoding complexity [28]. Polar codes are 

constructed with a method called channel polarization to achieve the symmetric capacity 

of any given binary-input discrete memoryless channel (B-DMC). It has been reported 

that polar codes under list decoding with CRC are competitive with the best LDPC codes 

at lengths as short as N = 211 [57]. 



 

7 

However, because of the large code length required by practical applications (N ≥ 210), 

the few existing SC decoder implementations still suffer from not only high hardware 

cost but also long decoding latency. Therefore, SC polar decoders with less decoding 

latency are required by modern communication systems. In this thesis, a data-flow graph 

(DFG) for the SC decoder is derived. Based on the DFG analysis, a family of low-latency 

SC polar decoders is derived formally [36, 58]. 

Low-Latency Sequential SC Polar Decoder 

According to the DFG analysis, a low-latency sequential SC polar decoder architecture is 

proposed to reduce the achievable minimum decoding latency. Pre-computation look-

ahead techniques are employed to halve the latency. The feedback part is presented for 

the first time. Sub-structure sharing is used to design a merged processing element (PE) 

for higher hardware utilization. 

TC Interleaved SC Polar Decoder 

In order to meet throughput requirements for a diverse set of application scenarios, a 

systematic approach to construct different TC interleaved SC polar decoder architectures 

is also presented. Compared with the conventional N-bit tree SC decoder, the proposed 

TC interleaved architectures can achieve as high as (N-1) times speedup with only 50% 

decoding latency and (N∙log2N)/2 merged PEs. 

RC 2-Interleaved SC Polar Decoder 

Another approach to meet the high-speed requirements for modern communication 

system applications is introducing RC interleaved processing. However, the design of an 

RC interleaved SC decoder is challenging due to the inherent serial decoding schedule. 

Straightforward RC interleaved designs usually introduce significant decoding latency 
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overhead. To this end, in this paper a low-latency low-complexity RC 2-interleaved SC 

decoder is proposed with the folding technique [59]. Compared with similar designs in 

previous literatures, the proposed design can achieve 4 times speed-up while only 

consumes similar hardware. 

 Simplified SC Polar Decoder Architecture 1.2.3

Although the low-latency SC polar decoder family could reduce the latency by 50%, we 

believe that we do better. Recently, a low-latency decoding scheme referred as the 

simplified successive cancellation (SSC) algorithm has been proposed for the decoding of 

polar codes [60]. It is claimed that significant latency reduction is achieved over a wide 

range of code rates. However, since this approach highly depends on the specific code it 

is dealing with, the corresponding latency is not easy to predict. 

In this thesis, we present the first systematic approach to formally derive the SSC 

decoding latency for any given polar code [61]. The method to derive various SSC polar 

decoder architectures for any specific code is also presented. Moreover, it is shown that 

with the pre-computation technique, the decoding latency can be further reduced. 

Similarly, the latency-reduced SSC decoder’s latency can also be calculated with a 

simple equation. Compared with the state-of-the-art SC decoder designs, the two SSC 

polar decoders can save up to 39.6% decoding latency with the same hardware cost. 

 Outline of the Thesis 1.3

The thesis is organized as follows. Chapter 2 gives a brief review of non-binary QC-

LDPC codes. Based on the geometry properties of Class-II and Class-II codes, two 

different switch networks are proposed. A generator for possible solution sequences is 

also introduced to further reduce the complexity of CNUs. 
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Chapter 3 introduces the design of low-latency sequential SC polar decoder. The 

DFG of SC decoding process is proposed for the first time. Then the novel pre-

computation look-ahead SC decoder architecture is described in detail. 

Chapter 4 presents two kinds of SC polar decoder architectures towards high-speed 

applications. First, a systematic methodology for designing the TC interleaved SC polar 

decoders is described. Afterwards, the RC 2-interleaved SC polar decoder architecture is 

constructed based on the folding technique. 

Chapter 5 proposes a method to determine the decoding latency of SSC algorithm. A 

design approach for corresponding SSC polar decoder is given also. 

Finally, Chapter 6 summarized of the contribution of the entire thesis and provides 

future research directions. 

Equation Chapter 2 Section 1 
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   Chapter 2

Non-Binary LDPC Decoders with Efficient 

Networks 

In this chapter, we present two network-efficient decoder architectures for non-binary 

QC-LDPC codes [45]. Section 2.1 provides a brief introduction of non-binary LDPC 

codes and their sub-class, non-binary QC-LDPC codes. Section 2.2 briefly reviews prior 

works on non-binary LDPC decoder designs. Section 2.3 investigates the geometry 

properties of both Class-I and Class-II codes. Decoding schemes with different choices of 

layers are evaluated in Section 2.4. Section 2.5 presents message passing schedules via 

proposed networks and corresponding low complexity non-binary QC-LDPC decoder 

architectures. The hardware cost estimations and comparisons are presented in Section 

2.6. Section 2.7 concludes this chapter finally. 

 Introduction 2.1

Rediscovered by MacKay [62], binary LDPC codes have shown near-Shannon limit 

performance [22, 63-66]. They have been extensively adopted in next-generation 

communication system standards. Recently, LDPC codes over GF(q) with q>2 are 
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reported to show even better decoding performance over the binary ones [26] when 

encoding approach and code length are proper. However, the introduced high decoding 

complexity is also significant. 

To this end, a sub-class of non-binary LDPC codes is proposed in [46-55]. Non-

binary QC-LDPC codes are architecture-aware and can achieve good performance. In 

[49], two algebraic construction methods based on array dispersions of matrices over 

non-binary subgroups are presented and referred as Class-I and Class-II, respectively. 

 Construction Method of Class-I Codes 2.1.1

Assume the Galois field GF(q) has a primitive element α. In this case, elements within 

GF(q) can be represented by powers of the primitive element α: α-∞ = 0, α0 = 1, α1, …, 

αq-2. Define z(αi) = (z0, z1, …, zq-2) as a (q-1)-ary location-vector. Here the i-th component 

zi = αi, and all the other ones are 0’s. Specially, z(0) is defined as the all-zero (q-1)-tuple. 

The circulant permutation matrix (CPM) of 𝛿 is defined as (z(𝛿), z(α𝛿), …, z(αq-2𝛿))T, 

where 𝛿 can be any element in GF(q). The construction method of Class-I codes is 

described as follows: 

Construction of Class-I Non-Binary QC-LDPC Codes  
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 Construction Method of Class-II Codes 2.1.2

Using the additive subgroups instead of the cyclic ones, we have the construction method 

of Class-II codes as follows. 

Construction of Class-II Non-Binary QC-LDPC Codes  
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 Prior Works on Non-Binary LDPC Decoders 2.2

Much research has been carried out on non-binary LDPC decoder designs. A brief review 

of previous works on non-binary LDPC decoding algorithms and decoder architectures is 

given as follows. 

 Decoding Algorithms for Non-Binary LDPC Codes 2.2.1

The belief propagation (BP) algorithm is the locally optimal, yet the most complex, 

iterative decoding algorithm of non-binary LDPC codes. Because the size of messages is 

q, the straightforward implementation of BP algorithm has the complexity of (q2), which 

is very high for hardware designers. To this end, several revised decoding algorithms 
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have been proposed. The log-domain decoding scheme [67] is mathematically equivalent 

to the BP algorithm. It has shown advantages in both decoding complexity and numerical 

robustness. By employing a p-dimensional two-point fast Fourier transform (FFT), the 

computation complexity can be further reduced, where p = log2q. However, the FFT 

algorithm is not suitable for the log domain. Then, a mixed-domain implementation has 

been presented in [68]. In this algorithm, FFT operation is carried out in real-domain. 

And the operations of CNU and VNU are carried out in log-domain. To implement the 

exponential and logarithm computations, the look-up table (LUT) is employed for the 

data conversion between log-domain and real-domain. 

Unfortunately, for high-order field applications, all the above approaches are of 

limited interests. This is because the number of LUT accesses grows with a complexity of 

(qp) for a single message. To solve this problem, a complexity-reduced variant of the 

Min-Sum (MS) decoding, called Extended Min-Sum (EMS), was proposed in [27, 69, 70]. 

In this algorithm, the CNUs only deal with a selective part of the incoming messages. 

Moreover, some other low-complexity quasi-optimal iterative algorithms are proposed in 

[71]. The Min-Max algorithm is the most attractive one of them. It reduces the total 

number of operations with minimum decoding degradation. 

 Existing Non-Binary LDPC Decoder Architectures 2.2.2

Although in the past few years, the research on binary LDPC decoder design has 

experienced a significant growth [72-74], very few publications on non-binary LDPC 

decoder implementations have appeared. A straightforward implementation of the EMS 

decoding algorithm was proposed in [41]. This is the first implementation of a non-binary 

LDPC decoder with q≥64. [68] presented a mixed-domain non-binary LDPC decoder for 

small codes. But the decoding throughput is only 1 Mb/s, which is not enough for modern 

communication systems. In [42-44], several non-binary QC-LDPC decoder architectures 
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using semi-parallel processing scheme are proposed. Another two efficient non-binary 

LDPC decoders have been proposed by [38] and [39]. Moreover, a flexible decoder 

which is suitable for both binary and non-binary LDPC codes has been given in [40]. 

However, all those architectures suffer from high-complexity networks. This is because 

they use either a bi-directional network or two full-size switch networks for shuffling and 

reshuffling messages. 

In this chapter, we present novel non-binary LDPC decoder architectures with both 

high network efficiency and low hardware complexity. The layered decoding algorithm is 

employed for the proposed decoders. By investigating the geometry properties of the 

corresponding H matrices, two kinds of local switch networks for VNUs are introduced 

for Class-I and Class-II codes, respectively. The proposed decoders are memory efficient, 

highly parallel, and have low routing complexity. Comparison results have shown that 

70.6% switch network hardware can be reduced compared with the state-of-the-art design 

for decoding Class-I codes. And 93.8% can be reduced for Class-II decoders. Finally, by 

uncovering the actual identity of parity check equations for different layers, low-

complexity CNUs are implemented. 

 Geometry Properties of Non-Binary QC-LDPC Codes 2.3

The parity-check matrix of non-binary QC-LDPC codes is simply composed of square 

sub-matrices. [42-44] have addressed some straightforward properties of them. However, 

for more efficient decoder architectures, more thorough investigations on the geometry 

properties of the check matrix H are required now. 
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 Shifting Properties of Class-I Codes 2.3.1

According to the construction method of Class-I codes, the identity of (1)
,Wi j  and its 

neighbor (1)
( 1)mod ,( 1)modW i c j c− − can be verified by the following equation: 

(1)
,

(( 1)mod ) (( 1)mod )

(1)
( 1)mod ,( 1)mod

[ ]

[ ]
.

j i k l
i j

j c i c k l

i c j c

δ β β

δ β β

−

−

− −

= −

= −

=

- -

W

W
    (2-1) 

Therefore, each row of the base matrix (1)W , except for the first row, is the 1-step right 

cyclic-shift of the row above it. The first row is the 1-step right cyclic-shift of the last row. 

Moreover, further exploitation of sub-matrix (1)
,Wi j  can show that similar permutation 

property holds at a lower level. Let (1)
( , )( , )w i j k l  be the entry of sub-matrix (1)

,Wi j  located at 

the k-th row and l-th column. The property can be expressed as follows, 

(1)
( , )( , )

( 1)mod ( 1)mod

(1)
( , )(( 1)mod ,( 1)mod )

( )
.

w

w

j i k l
i j k l

j i k n l n

i j k n l n

δ β β

β δ β β

β

−

− − −

− −

= −

= −

=

   (2-2) 

Note that except for the permutation operation, one multiplication with β is also required. 

Combined with the definition of CPM, the geometry properties of Class-I codes can 

be summarized as follows: 

Proposition 1 The Class-I non-binary QC-LDPC codes satisfy the shifting properties at 

three different levels: 

1. The i-th row of the base matrix (1)W  is exactly the 1-step right cyclic-shift of the [(i-

1)modc]-th row. Therefore, (1) (1)
, ( 1)mod ,( 1)modW Wi j i c j c− −= ; 

2. The k-th row of the sub-matrix (1)
,Wi j  is exactly the 1-step right cyclic-shift of the [(k-

1)modn]-th row multiplied by β, that is, (1) (1)
( , )( , ) ( , )( 1, 1)i j k l i j k lβ − −=w w ..; 
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3. The m-th row of the CPM corresponding to (1)
( , )( , )w i j k l  is the 1-step right cyclic-shift of 

the [(m-1)modn]-th row multiplied by α, which is given by the definition of CPM. 

Here is a simple example. GF(24) has minimal polynomial 4( ) 1p x x x= + +  

Following the construction steps, we can determine that 3cβ α α= =  and 5nδ α α= = . 

Therefore, the sub-groups can be obtained as follows: 

0 1 0 3 12
1

0 1 0 5 10
2

{ 1, , , } { 1, , , },

{ 1, , , } { 1, , , }.

n

c

G
G

β β β α α α

δ δ δ α α α

−

−

 = = = =


= = = =

 

 

  (2-3) 

Accordingly, a 3×3 array of 5×5 sub-matrices can be constructed. Proposition 1.1 and 

1.3 can be verified. Now we only check the validation of Proposition 1.2. For the entry 
(1)
0,0W , we can find out that Proposition 1.1 holds: 

14 13 7 11

14 2 10

(1) 13 2 5 4
0,0

7 5 8

11 10 4 8

0
0

.0
0

0

W

α α α α
α α α α
α α α α
α α α α
α α α α

 
 
 
 =
 
 
  

    (2-4) 

Here we have 
(1) (1) (1)3
(0,0)( , ) (0,0)( 1, 1) (0,0)( 1, 1)w w wi j i j i jα β− − − −= = . 

 Symmetry Properties of Class-II Codes 2.3.2

Compared with the Class-I codes, uncovering geometry properties of Class-II codes is 

non-trivial. This is because the construction method of Class-II codes does not specify the 

exact surjective function from the elements of subgroups tF ′  and m tF −′′ to powers of α. 

Given this degree of design freedom, we develop one specific surjective function to 

construct Class-II codes with symmetry properties. Without loss of generality, the 

construction of subgroup tF ′  is illustrated here as an example. 
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Index Assignment of Surjective Function  

0 0

Suppose , , with 0 ,

0, , 

1: 

2: if  then 
3: elseif  then 
4: else
5:         for  do 
6:                 if  then  break
7:                 else 

p qm n
m n

i j
m m n n

l l
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p q i j
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l l l p
m n i j

β α β α
= =
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< <
> >

= + + ≤
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∑ ∑ ；

；

；

；

 then  break
8:         endfor
9: endif

l lm n i j> > ；

 

Table 2.1 denotes an example with t = 4. Here the minimal polynomial is given as 
4( ) 1p x x x= + + . Based on the construction steps, the subgroup tF ′  is spanned by the t 

elements within the set of 0 1 2 3{ , , , }tf α α α α′= . According to the proposed surjective 

function, we can check that for any element iβ  within sub-group tF ′ , the following 

equation holds, 

(2 1) 2 1t ti i
β β β

− − −
+ =     (2-5) 

Similarly, for the other sub-group m tF −′′ , the same symmetry property holds, 

2 1 2 1
.m t m ti i

δ δ δ− −− − −
+ =     (2-6) 

Therefore, the symmetry property for each sub-matrix of (2)W  is given as follows, 

(2) (2)
, 1, 1,W Wi j c j c i− − − −=     (2-7) 

which indicates that each sub-matrix (2)
,Wi j  is identical with its mirror about the anti-

diagonal. 

According to the construction method of non-binary QC-LDPC codes, every sub-

matrix (2)
,Wi j  is also self-symmetric about its own anti-diagonal: 

(2) (2)
( , )( , ) ( , )( 1, 1) .w wi j k l i j n l n k− − − −=     (2-8) 
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Table 2.1  Proposed surjective function example for tF ′ . 

Polynomial form Power form Element 
0    0 0β  

1    1 1β  

 α    α  2β  

  2α   2α  3β  

   3α  3α  4β  

1 +α    4α  5β  

1  + 2α   8α  6β  

1   + 3α  14α  7β  

 α  + 2α   5α  8β  

 α   + 3α  9α  9β  

  2α  + 3α  6α  10β  

1 +α  + 2α   10α  11β  

1 +α   + 3α  7α  12β  

1  + 2α  + 3α  13α  13β  

 α  + 2α  + 3α  11α  14β  

1 +α  + 2α  + 3α  12α  15β  

On the other hand, for Class-II codes, both the base matrix (2)W  and its sub-matrix 
(2)
,Wi j  are self-symmetric about their diagonals. This can be verified according to the 4th 

step of the construction method of Class-II codes: 

(2)
,

(2)
,

[( ) ( )]

[( ) ( )]

,

W

W

i j i j k l

j i k l

j i

δ δ β β

δ δ β β

= − + −

= − + −

=

    (2-9) 

(2)
( , )( , )

(2)
( , )( , )

( ) ( )

( ) ( )

.

w

w

i j k l i j k l

i j l k

i j l k

δ δ β β

δ δ β β

= − + −

= − + −

=

   (2-10) 

In what follows, we will summarize all the proposed geometry properties of Class-II 

codes in Proposition 2: 
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Proposition 2 The Class-II non-binary QC-LDPC codes satisfy the geometry properties 

at three different levels: 

1. The base matrix (2)W  is symmetric about its diagonal and anti-diagonal, i.e., 
(2) (2)
, ,W Wi j j i=  and (2) (2)

, 1, 1W Wi j c j c i− − − −= ; 

2. The sub-matrix (2)
,Wi j  is also symmetric about its diagonal and anti-diagonal, i.e., we 

have (2) (2)
( , )( , ) ( , )( 1, 1)w wi j k l i j n l n k− − − −=  and (2) (2)

( , )( , ) ( , )( , )w wi j k l i j l k= ; 

3. Each row of one CPM (2)
( , )( , )w i j k l  is the right cyclic-shift of the row above it multiplied 

by α and the first row is the right cyclic-shift of the last row multiplied by α. 

Since Proposition 2.1 and 2.2 are similar, without loss of generality, we only give an 

example of the latter one. Suppose t = 3 and the minimal polynomial 3( ) 1p x x x= + + . 

According to the proposed index assignment scheme, (2)
0,0W  can be constructed as follows: 

2 3 6 4 5

3 6 2 5 4

3 4 5 2 6

2 6 4 5 3
(2)
0,0 3 5 4 6 2

6 2 5 4 3

4 5 2 6 3

5 4 6 3 2

0 1
1 0

0 1
0 1

.
1 0

1 0
0 1
1 0

W

α α α α α α
α α α α α α

α α α α α α
α α α α α α
α α α α α α
α α α α α α
α α α α α α
α α α α α α

 
 
 
 
 
 =  
 
 
 
 
  

   (2-11) 

It can be observed that (2)
0,0W  is symmetric about its diagonal and anti-diagonal. For 

Proposition 2.3, which is similar to Proposition 2.1, similar conclusion can be drawn. 
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Figure 2.1  Performances of codes with different surjective functions. 

We can also check that rows of the base matrix (2)W  constructed according to the 

proposed surjective function satisfy the α-multiplied row-column constraints [49]. 

Assume m = 5 and t = 2. With the code construction steps and surjective function, we can 

construct a 32-ary (992, 496) rate-0.5 Class-II code. In order to guarantee the decoding 

performance of codes generated with the proposed surjective function, another Class-II 

code with random surjective function is employed for comparison. Figure 2.1 illustrates 

the decoding performances of this code and its random counterpart over AWGN channel 

with BPSK signaling. The conventional EMS decoding algorithm with maximum 

iteration number of 10 is used for both codes. 

Shown in Figure 2.1,  it is observed that the packet error rate (PER) performance of 

Class-II code with the proposed surjective function is similar as that of the one with 

random scheme. Therefore, the introduced geometry properties do not affect the algebraic 

architecture and the decoding advantage of Class-II codes. 
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 Layer Partition Choice for Layered Decoding Algorithm 2.4

 Review of Layered Decoding Algorithm 2.4.1

The layered decoding approach [75-78] partition the check matrix H into l layers: 

10 1[ ].
T T T T

H H  H H
l−

=      (2-12) 

Each layer is associated with one super-code iC , and the original code C  can be treated 

as the intersection of all l super-codes [76]: 

0 1 1.l−=  C C C C     (2-13) 

It is required that the column weight of each layer is equal or less than 1. 

The layered decoding message passing schedule with the Min-Max algorithm in the 

k-th iteration for layer t can be formulated as follows: 

Layered Decoding for Min-Max Algorithm  

( )\( )

, ,( 1) ( 1),

, ,

( ) ( )\( )
( | )

, , ,

( ) ( ) - ( )

( ) min ( max ( ))

( ) ( ) ( )

1: 
2: 

3: .

v v c v
v

k t k t k t
cv v cv
k t k t
cv cv va v c v

c a a

k t k t k t
v cv cv

L a L a R a
R a L a

L a L a R a

′ ′∈

− −

′ ′′∈
∈ =

=

=

= +

；

；
 


 

Here, , ( )k t
cvL a  is the variable to check message from layer t to the next layer during the 

k-th iteration which is associated with finite field element a. And , ( )k t
cvR a  is the check to 

variable message. The message , ( )k t
vL a  is the LLRs from layer t to the next layer during 

the k-th iteration. Define ( )c  be the set of variable nodes participating in check node c, 

and ( ) \ ( )c v  be the set excluded the variable node v. ( | )vc a a=  denotes the set of 

finite sequences which satisfy check node c, given the value of the variable node v equals 

a. As mentioned above, each layer carries out its own decoding process with both channel 

inputs and the extrinsic output of last layer. Because of this novel updating schedule, the 

layered decoding propagates much faster than the conventional ones such as the two-
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phase message-passing (TPMP) decoding algorithm [26]. Therefore, compared with 

conventional message passing algorithms, layered decoding performance is better within 

the same number of decoding iterations. 

 Layer Partition and Related Decoding Performances 2.4.2

According to Proposition 1 and 2, nice algebraic construction enables both classes of 

non-binary QC-LDPC codes accommodated with the layered decoding algorithm. 

Inherently, their check matrix H can be split into layers. And each layer can naturally 

serve as a super LDPC code. Actually, we have two layer partition options listed as 

follows: 

1. Choose each sub-block row of (1)
,Wi j  or (2)

,Wi j  as one layer, which consists of (q-1) 

rows. This option is defined as the Layer-I choice; 

2. Choose each row of CPM within (1)
( , )( , )w i j k l  or (2)

( , )( , )w i j k l  as one layer, which consists of 

only one row. This option is defined as the Layer-II choice. 

It can be observed that the constraint of at most 1 column weight within each layer is 

satisfied in both options. To demonstrate the advantages of the layered scheme for non-

binary QC-LDPC codes, one decoding example is given as follows. For a 64-ary (1260, 

630) rate-0.5 Class-I code, performances of three decoding approaches are compared in 

Figure 2.2. The maximum number of iterations is set to 10. Decoding performances of 

the conventional Min-Max algorithm and Min-Max algorithm with two different layer 

choices are illustrated. According to Figure 2.2, it can be seen that the layered decoding 

variations can attain more than 0.08 dB decoding gain than the conventional Min-Max 

algorithm. For the two different layer partition choices, the fewer rows in each layer, the 

better performance can be achieved. This is because compared with the Layer-I choice, 

more inter-layer extrinsic messages are utilized in each iteration of the Layer-II choice. 
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 64-ary (1260, 630) Class-I, Min-Max Layer-II

PE
R

SNR/dB  

Figure 2.2  PER comparisons between different algorithms for a Class-I code. 

 A Reduced-Complexity Decoder Architecture 2.5

Although non-binary LDPC codes outperform their equivalent binary counterparts, the 

efficient implementation of non-binary LDPC decoders still remains challenging. Since 

the routing complexity and control memory size increase drastically with order of GF(q), 

how to implement low-complexity switch network connecting various processing nodes 

becomes a big problem. For the (u, v) non-binary QC-LDPC decoder, the straightforward 

implementation requires ρp(q-1)γ-bit memory to store all the control signals. Here, u = 

ρ(q-1) is the code length, and u-v = γ(q-1) is the number of check bits. In the following 

part, we present a reduced-complexity decoder architecture based on the proposed 

geometry properties of non-binary QC-LDPC codes. The decoder is suitable for both 

serial and semi-parallel approaches. In addition, systematic algorithms to generate local 

switch network of VNUs are proposed for both classes of non-binary QC-LDPC codes. 
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 Overall Architecture of Reduced-Complexity Decoder 2.5.1

The overall block diagram of the proposed semi-parallel decoder is shown in Figure 2.3. 

We assume the code-word length and layer height of H to be ρ(q-1) and w, respectively. 

Illustrated in Figure 2.3, the proposed decoder architecture is composed of an array of 

ρ(q-1) VNUs with a local switch network, a set of l CNUs, a global shuffle network, and 

a permutation/de-permutation block which implements multiplication/division operation 

in Galois fields. All l rows in each layer are updated in parallel, and a total of γ(q-1)/w = l 

clock cycles are required per iteration. 
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Figure 2.3  Block diagram of proposed layered non-binary QC-LDPC decoder. 

The most significant point of the global shuffle network is, it stays unchangeable in 

the whole decoding process rather than being reconfigured for each layer. Once the parity 

check matrix is determined, no more reconfiguring operation is required. The switch 

network reconfiguration for the remaining layers can be eliminated by employing the 

local switch network. 
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 Algorithm for Generating Local Switch Network of VNUs 2.5.2

Local Switch Network for Class-I Codes Cases 

With the shifting properties of Class-I codes in Proposition 1.2 and 1.3, the local switch 

network now can be constructed based on a specific circulant permutation algorithm. It is 

clear that Proposition 1.2 and 1.3 only differ in the value of the multiplicand (β or α). 

Without loss of generality, here we chose the Layer-I decoding scheme as an example. 

Intuitively, we can split the local switch network shuffling operation between two 

layers into two steps. Mentioned previously, Eq. (2-2) can be employed to implement the 

partition of Layer-I. In Step One, the double mod operation (( 1) mod , ( 1) mod )k n l n− −  is 

carried out. The multiplication with β, which introduces another permutation at the level 

of CPM, is implemented in Step Two. The algorithm is given in detail: 

Scheduling Algorithm for Local Shuffle Network - I  

[ ( 1)]mod ( 1)

0 ( 1)
Pass the  result of  last layer from

          VNU to VNU

0
0 1

Step One

1:  for all  do
2:          
3:   
4:  endfor

Step Two

5:  for all  do
6:          for all  do
7:

i i q q

i q
extrinsic

i
j q

ρ

ρ

ρ

− − −

≤ < −

≤ <
≤ < −

( 1) ( 1) ( )mod( 1)

Pass the  result of  last layer from
                  VNU to VNU
                  

8:   
9:          endfor
10: endfor

i q j i q j c q

extrinsic

− + − + − −

 

Proof. Assume the code length is ρ(q-1). Therefore, we need the same number of VNUs. 

Indicated by Eq. (2-2), the interconnection among CNUs and VNUs of the last layer can 

be reused by the current layer. That is, the extrinsic result of the last layer can simply be 
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shuffled among existing VNUs before decoding the current layer. More specifically, 

since (1)
( , )( , )w i j k l  is associated with (1)

( , )(( 1)mod ,( 1)mod )w i j k n l n− − , and the row index modulation can 

be eliminated if the decoding process is carried out layer by layer, it is only required to 

assign the extrinsic result of VNUi  to [ ( 1)]mod ( 1)VNU i q qρ− − − . Also be aware that the 

jumping stride of Step One is q-1, which is exactly the size of CPM. 

However, the two sub-matrices in Eq. (2-2) are actually not identical, because of the 

multiplication operation. Therefore, another permutation step named Step Two is required. 

According to the definition of CPM, the CPM of (1)
( , )( , )w i j k l can be obtained as follows. 

Firstly, we have to right cyclic shift the CPM of (1)
( , )(( 1)mod ,( 1)mod )w i j k n l n− −  by logαβ steps. 

Then, we multiply the shifted CPM with β. It is Based on the construction method, we 

know that, 

log .c cαβ α β= ⇒ =      (2-14) 

Therefore, in Step Two an inner permutation with jumping stride of c is carried out. In 

this way, we assign the extrinsic result of ( 1)VNUi q j− +  to ( 1) ( )mod( 1)VNUi q j c q− + − − .∎ 

Take the layered decoding of the 4-ary (9, 3) rate-⅓ Class-I code shown in Figure 2.4 

as an example. The factorization parameters are given as c = 1, n = 3. Therefore, we have 

β = αc = α over GF(22). For instance, as shown in Figure 2.4, VNU7 is connected with 

CNU0 during the 1st layer decoding, and with CNU1 during the 2nd layer decoding. On the 

other hand, according to the decoding scheduling, the extrinsic result of VNU7 is first 

passed to VNU4 (Step One), then to VNU3 (Step Two) after the 1st layer decoding. It is 

similar for other VNUs. Also it is observed that rather than establishing a new switch 

network for the 2nd layer, the extrinsic results of the 1st layer can be efficiently shuffled 

perfectly with the help of the local switch network. 
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Considering both Step One and Step Two involve the circulant permutations, we can 

further simplify the scheduling algorithm by removing redundant shifting operations. The 

resulting new scheduling algorithm merges the former two steps into a single step. The 

proof is given as follows: 

Proof. Each VNU’s index can be rewritten in the form of i(q-1)+j, where 0≤i<ρ and 

0≤j<q-1. Therefore, every VNU can be represented with a new notation of (i, j). During 

Step One, whose jumping stride is q-1, the extrinsic result is transferred to the ((i-1)modn, 

j) VNU. Thereafter, the message is shuffled to the ((i-1)modn, (j-c)mod(q-1)) VNU in 

Step Two. That is, only one step is required to pass the extrinsic result of last layer from 

( 1)VNUi q j− +  to [( 1)mod ]( 1) ( )mod( 1)VNU i n q j c q− − + − − .∎ 

New Scheduling Algorithm for Local Shuffle Network - I  

( 1) [( 1)mod ]( 1) ( )mod( 1)

0
0 1

Pass the  result of  last layer from
VNU to VNU

1: for all  do
2:         for all  do
3:                 
4:                   
5:         endfor
6: en

i q j i n q j c q

i
j q

extrinsic

ρ

− + − − + − −

≤ <
≤ < −

dfor

 

For ease of explanation, the schedule shown in Figure 2.4 is employed as an example 

again. The index of VNU7 can be changed into the new form (2, 1). Using the new 

scheduling algorithm, we can easily find out that the destination index is (1, 0). Therefore, 

the extrinsic message is transferred from VNU7 to VNU3 (1×3+0 = 3), which matches 

our previous analysis perfectly. 
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Figure 2.4  Layered decoding example of the 4-ary (9, 3) rate-⅓ Class-I code. 

Local Switch Network for Class-II Codes Cases 

Similarly, the local switch network for Class-II codes can be implemented based on the 

inherent symmetry properties in Proposition 2.2 and 2.3. At the same time, it is worth 

noting that, indicated by Eq. (2-7)-(2-10), we only need to take care of the symmetry 

execution rather than both symmetry and multiplication. The scheduling algorithm for 

Class-II codes can be derived as follows, 

Scheduling Algorithm for Local Shuffle Network - II  

1, mod( 1)( )

0 , the beginning of  decoding the th layer 
0

0 1
Pass result of  VNU index

1: for all  do
2:         for all  do
3:                 for all  do
4:                         

v i nq n i n

v l v
i

j q
ρ

−− + +  

< ≤
≤ <

≤ < −

, mod( 1)( )to VNU index5:                          

6:                 endfor
7:         endfor
8: endfor

v i n

j

q n i n j− + +  

 

The INDEX(n) matrix is an n×n matrix defined as ( )
, 0 ,0[ ]INDEX indexn

i j i n j n≤ < ≤ <= . 

The entries of the first row of INDEX are determined by 0,index j j=  as default. Other 

entries can be derived from the index assignment of surjective function and symmetry 

properties of Proposition 2.2 and 2.3. For instance, INDEX(4) is given as follows, 
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(4)

0 1 2 3
1 0 3 2

.
2 3 0 1
3 2 1 0

INDEX

 
 
 =
 
 
 

    (2-15) 

It is observed that the matrix INDEX(4) is symmetric about both its diagonal and anti-

diagonal. The entries on the diagonal are 0’s, and the entries on the anti-diagonal are all 

3’s (= n-1). The last row (column) is the reverse-order version of the first row (column), 

and vice versa. The proof is given as follows, 

Proof. According to Eq. (2-8) and Eq. (2-10), the sub-matrix (2)
( , )( , )w i j k l  is identical to both 

(2)
( , )( 1, 1)w i j n l n k− − − −  and (2)

( , )( , )w i j l k . Therefore, the interconnection among CNUs and VNUs of 

the last layer is exactly the same as that of the current layer, and can be reused afterwards. 

Indicated by Proposition 2, the index of destination VNU can be obtained by using 

symmetry properties. Since there is no permutation for the very beginning row, the first 

row of INDEX is set as an array of n elements from 0 to n-1. Each column is associated 

with one specific VNU during a iteration. Since the dimension of INDEX is n, the same 

mapping scheme based on INDEX is performed by every n VNUs. Therefore, a modulo 

operation on the VNU index is required.∎ 

A simple example is employed to give a clear explanation. For the 4-ary (12, 6) rate-

½ Class-II code illustrated in Figure 2.5, the factorization parameters can be obtained by 

choosing t = 1. Accordingly, c = 2m-t = 2, and n = 2t = 2 over GF(22). The subgroups are 

1{0, } {0,1}tF β′= =  and 1{0, } {0, }m tF δ α−′′ = = . Therefore, the index matrix INDEX(4) is 

given as follows, 

(2) 0 1
.

1 0
INDEX  

=  
 

     (2-16) 
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Figure 2.5  Layered decoding example of the 4-ary (12, 6) rate-½ Class-II code. 

As illustrated in Figure 2.5, after the 1st layer decoding, the extrinsic message of 0VNU  is 

transferred according to the following direction: 

0,0 1,03 ( 0) 0 3 ( 0) 0 3VNU VNU VNU .index index× + + × + +→ =   (2-17) 

For the other VNUs, similar permutations can be obtained accordingly. The permutations 

are listed as follows, 

VNU0⟶VNU3, VNU6⟶VNU9, 
VNU1⟶VNU4, VNU7⟶VNU10, 
VNU2⟶VNU5, VNU8⟶VNU11, 
VNU3⟶VNU0, VNU9⟶VNU6, 
VNU4⟶VNU1, VNU10⟶VNU7, 
VNU5⟶VNU2, VNU11⟶VNU8. 

 Architectures of VNUs’ Local Switch Network 2.5.3

Local Switch Network for Class-I Codes 

It can be observed that the inter-layer message shuffle scheduling is irrelevant of the 

current layer index. It means, no matter what number i is, the extrinsic message transfer 

between the i-th layer and the (i+1)-th layer is exactly the same. Therefore, it can be 

implemented with fixed interconnections. Before further decoding steps are carried out, 

the intermediate results of VNUs are re-directed via the local switch network. 
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Figure 2.6  Local switch network of Class-I codes case. 
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The architecture of the local switch network for Class-I codes is illustrated in Figure 

2.6. A total of ρ(q-1) VNUs are employed and shuffling details of the first n(q-1) VNUs 

are given. Rather than store all extrinsic results immediately, we only need to store the 

shuffled LLRs output by the local switch network, which can be directly used by other 

elements. Similar scheme is also employed by VNUs with indices from n(q-1) to ρ(q-1). 

Local Switch Network for Class-II Codes 

Different from Class-I codes, the inter-layer message shuffle scheduling for Class-II 

codes varies with the layer index. Nevertheless, the INDEX(n) matrix can be used to 

design an efficient switch network. Since the output order is actually a permutation group 

of the input order, to provide the congestion-free communication from VNUs to LLRs, 

one-way Benes network is employed by Class-II decoders. Unlike previous approaches, 

the control signals for the re-configuring network become much simpler. For ease of 

analysis, we assume that the code length is ρ(q-1), and ρ is power of 2. Therefore, a total 

of ρ(q-1) VNUs and a ρq×ρq Benes network are required. In conventional designs, such 

network has 2log2(ρq)-1 stages and ρq[log2(ρq)-1/2] 2×2 crossbar switches. The control 

bits and control complexity are ρq[log2(ρq)-1/2] and 𝒪(2log2(ρq)-1), respectively. 
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Figure 2.7  Local switch network of the Class-II code defined by Eq. (2-15). 

According to the proposed algorithm, the size of Benes network has been reduced to 

ρ×ρ. Only 2log2ρ-1 stages and ρ(log2ρ-1/2) 2×2 crossbar switches are needed. The 
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control part has ρ(log2ρ-1/2) bits. Its complexity is (2log2ρ-1). In addition, the control 

bits can be acquired by pre-computation with the aid of INDEX(n) matrix easily. For 

instance, the local switch network for the example in Figure 2.7 is given as above. 

We group VNUs with indices from i to i+2 and mark them with i, where i = 0, 1, 2, 

and 3. Compared with conventional approaches, we succeed in taking the symmetry 

properties into account. In the proposed designs, the main Benes network, the control 

circuits, as well as the routing complexity are much simpler. Here, only 4 2×2 crossbar 

switches are needed. It is clear that, the greater the parameter q is, the more hardware 

reduction can be expected. When the value of ρ is not a power of 2, similar conflict-free 

reconfigurable Clos network can be employed also. Please refer to [73, 79, 80] for more 

details. To sum up, no matter what network is employed, the whole size can be reduced. 

The low complexity advantage of the proposed method remains attractive. 

 Hardware Architectures of VNU Block 2.5.4

LLRs

,( )−k t
vL 1

,k t
cvR

VNUρ(q-1)-1

…

          

Output to CNUs

FIFO1

LLRs

,( )−k t
vL 1

,k t
cvR

VNU1

…
FIFO0

LLRs

,( )−k t
vL 1

,k t
cvR

VNU0

…
FIFOρ(q-1)-1

…

…

local switch network

( ),−k t
cvR 1( ),−k t

cvR 1( ),−k t
cvR 1

-- -

 

Figure 2.8  Hardware implementation of the variable node unit (VNU). 
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Figure 2.8 illustrates the straightforward architecture of a VNU, which is based on the 

layered Min-Max decoding algorithm [75]. For each VNU, there is a FIFO employed. Its 

depth is exactly the number of layers given by the partition scheme. In this manner, the 

intrinsic messages for layer t during the k-th iteration can be correctly popped out for 

layer t during the (k+1)-th iteration. Furthermore, based on the layered decoding scheme, 

in each VNU a cascade of two adders are employed to update the variable to check 

messages layer by layer. The output messages are then shuffled by the local switch 

network, which will be slightly different from Class-I codes to Class-II codes, and stored 

in the correctly arranged registers for the next layer decoding. 

 Hardware Architectures of CNU Block 2.5.5

The function of CNU block is to calculate the intrinsic message ( )cvR a , which is the 

probability of check c being satisfied if the value of variable v (denoted as av) has been 

determined as a and the value of any other variable v’ (denoted as av’) has an independent 

distribution given by ( )cvL a′ . Here, variable v’ could be any variable connected with 

check c rather than variable v. In binary cases, the possible choices for a are 1 or 0. 

Therefore, whether the c-th check equation is satisfied or not can be easily determined by 

checking the parity of 1’s in the c-th row of check matrix H. However, for non-binary 

LDPC codes, provided the av is fixed at a, possible combinations which can make the 

check equation true are not unique. In order to compute the value of ( )cvR a , we need to 

traverse all the possible solution sequences for the equation below without missing a 

single one, given av equals a. 

( )\( )
0.cv cv v

v c v
h a h a′ ′

′∈

+ =∑


    (2-18) 

Referred as ( | )vc a a= , the set which contains all the possible sequences can be 

found with an efficient recursive algorithm called forward-backward algorithm [26]. By 

making the use of partial sums, this algorithm computes sum of the items prior to hcva 
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(denoted as σcv) and sum of items posterior to hcva (denoted as ρcv) in forward and 

backward direction, respectively. If and only if the following equation holds, the check c 

is satisfied. 

.cv cv cvh aσ ρ+ =     (2-19) 

Though claimed to be efficient, the computation complexity of the forward-backward 

approach is (q2). Mentioned previously, the CNU operation will become extraordinarily 

computation intensive when the order of finite field q increases. 

Check Equation Solution Sequences 

Suppose the set ( | )vc a a=  gives all the solution sequences for check c. That is, for any 

sequence in  , Eq. (2-18) holds. Two conclusions are stated as follows. 

1. According to the commutativity of addition operation, any permutation of addends in 

Eq. (2-18) will not affect the equality; 

2. Also, if cvh  and cvh ′  are changed with i
cvhα  and i

cvhα ′  respectively, Eq. (2-18) will 

still hold. Here, α is the primitive element of corresponding finite field GF(q) and i 

can be any integer. 

According to Proposition 1 and 2, it is known that for Layer-I partition scheme, each 

layer is either the cyclic shift of previous row multiplied by β (Class-I codes) or the 

symmetric version of previous row (Class-II codes). Also for Layer-II partition scheme, 

no matter which class of non-binary QC-LDPC codes it belongs to, all q-1 entries of each 

row are exactly 1-step right cyclic-shift of those in the above row multiplied by α. 

Therefore, no matter what class the code is, no matter what layer partition is chosen, once 

the set ( | )vc a a=  which gives all the possible finite solution sequences for check c is 

determined for the first layer, it will stay unchangeable for the remaining layers. As a 

result, for the decoding process of these layers, the conventional forward-backward step 
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can be eliminated thereafter. Since the set of solution sequences is actually the same for 

all CNUs, it is possible to pre-determine set ( | )vc a a=  before the CNU decoding 

process is carried out. 

Generation for Finite Solution Sequences 

In order to figure out the set of all finite solution sequences, a specific calculator has been 

designed to search all the possible choices that satisfy the check equation. Illustrated in 

Figure 2.9, a total of qρ-1 possible combinations are associated with the ρ-1 inputs of the 

calculator. All inputs are multiplied with the non-zero entries lying in the first row of 

check matrix H except for the last one (denoted as h00, h01, h02, …, h0(ρ-2)), respectively. 
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Figure 2.9  Internal structure of generator for possible solution sequences. 

The intermediate results are summed up then. For the selective Min-Max decoding 

algorithm employed in this paper, the computation complexity can be further reduced 

with the decrease of parameter nm. This is because both CNUs and VNUs only deal with 

nm values rather than the values corresponding to all the elements in the finite field. An 
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additional, division step with parameter h0(ρ-1) is necessary to obtain the last required 

element in the sequence. Suppose 0( 1)
ih ρ α− = , in finite field GF(q) it always holds that 

( 1) 1i q iα α − −⋅ = , the operation of division by h0(ρ-1) can then be simply implemented by 

multiplication with its reciprocal 1 ( 1)
0( 1)

q ih ρ α− − −
− = . Furthermore, from the permutation 

representation of finite field, all multiplication operations can be easily implemented with 

permutations. After all input combinations have been simulated, all results as well as 

their LLRs are output to CNUs for further use. 

CNU Block Architecture Design 

Usually, CNU blocks are the most complicated parts of the entire decoder. However, with 

the nice geometry properties of non-binary QC-LDPC codes, the architecture of the CNU 

block can be simplified. With the help of the proposed generator, all possible finite 

solution combinations for a specific check node can be determined in advance. During 

the check node process, we only need to compare the LLRs. In the Min-Max decoding 

algorithm, the CNU process is aim to find the minimum value among infinite norms of all 

possible check equation combinations given the corresponding variable node equals to a. 

Here, a can be any element in a given finite field GF(q). 

We can split the check node process into two steps. The first step is to find the 

minimum value of all infinite norms if the variable node is fixed at a. In the second step, 

we sort all possible a’s according to their likelihood values and pick up nm of them, 

which have the most significant probabilities (LLRs). For ease of clarity, suppose the 

check node degree is dc. We use the notation of ,{ ( )}k t
cvR a⇐  to denote the insertion of 

the LLR value , ( )k t
cvR a  into a pre-sorted LLR sequence. The CNU processing algorithm is 

presented as follows, 
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Decoding Processing Algorithm for CNU Block  

( )\( )

,

( )\( )

, ,

( ) ( )\( )
( | )

0 1
( ) 0, []

( ) ( | )

( ) min ( max ( ))

1: for all  or -  do
2:         
3:         for all  do

4:                 

5:    

v v c v
v

k t i
cv

i
v v c v v

k t i k t
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c a a

i q i
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     endfor
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k t i
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The data sorter can be implemented with right-shift cells [81]. A total of nm 

processing elements (PEs) are required by the sorter. Each PE is composed of two cells: 

the right-shift cell and the compare cell. The former one is in charge of the date storage 

and right-shift operation. The latter one realizes the comparison and generates the control 

signals for the right-shift cell. Here, ri is the right-shift enable signal, pi denotes the pre-

sorted data, and ci represents the result of comparison. Finally, a total of nm intrinsic 

messages with the most significant magnitudes will be output. 
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Figure 2.10  Data sorter structure with length of nm. 

Therefore, in order to implement the decoding processing algorithm of CNU, two 

sub-blocks are needed. The compare sub-block consists of a total of   (dc-1)-input 
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comparators and one (  -1)-input comparator, where   is the cardinality of the set 

( | )i
vc a α= . The inputs of this sorter can be read off from the LUT of the finite 

solution sequence generator. The input operation is achieved by a simple control unit 

selecting αi. The result of , ( )k t i
cvR α  is output to the sorter, which will pick up the nm most 

significant ones, realign them in decreasing order, and output them to the v-th VNU for 

further operations. 
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(a)  Concurrent version of CNU architecture. 
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(b)  Simplified version of CNU architecture. 

Figure 2.11  Proposed CNU block architecture employing data sorter. 

The corresponding hardware architecture of the CNU block is illustrated in Figure 

2.11 (a) as above. Moreover, the architecture in Figure 2.11 (a) can be further simplified 
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as shown in Figure 2.11 (b), where only one (dc-1)-input comparator is employed. For 

both structures, given the value of iα , all the   finite solution sequences are generated 

by the module illustrated in Figure 2.9. In Figure 2.11 (a), all possible solutions are 

processed in a parallel manner to select the required one. In the outer loop, only nm 

intrinsic messages with the most significant magnitudes are chosen by the data sorter, 

which is shown in Figure 2.10. In Figure 2.11 (b), the switch keeps open during the first 

step. All the solution sequences are input in serial. Here we employ a 2-input comparator 

with one delay element to generate LLR value of , ( )k t i
cvR α . In the outer loop, the switch is 

closed and the sorter will output the nm most significant intrinsic messages. 

 Comparison with Prior Decoder Designs 2.6

In this section, we present the hardware complexity of the proposed two classes of non-

binary QC-LDPC decoder architectures and compare them with previous designs. The 

decoding throughput of the proposed designs is also estimated at the end of this section. 

Without loss of generality, it is assumed that the proposed (u, v) decoders employ the 

Layer-I partition scheme. Therefore, a total of ρ(q-1) VNUs and q-1 CNUs are required. 

It is assumed that a (bq, bf) uniform quantization scheme is employed, in which bq bits are 

used for the entire message and bf bits are used for the fractional part. Table 2.2 lists the 

comparison results of the decoder architectures for Class-I and Class-II codes, 

respectively. For each decoder, both versions with specific and configurable shuffle 

networks have been taken into account. The former version is designed for certain 

specific code, whereas the latter version can be employed for decoding codes from the 

same category. Design details are depicted in terms of cost of processing units, 

complexity of shuffle network, and consumption of finite solution sequence generator. 
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Table 2.2  Comparisons for different non-binary QC-LDPC code decoders. 

Different designs Class-I decoder Class-II decoder [42]a [44]a [43]b [38]b Specific Flexible Specific Flexible 
Hardware cost of processing units 

Number of CNUs q-1 q-1 3(q-1) q-1 3(q-1) <γ(q-1) 
Each 
CNU 

Registers bq(nm+1) bq(nm+1) REGs 9300 2635 9300 37696 
Comp.s nm+dc-1 nm+dc-1 XORs 20693 11284 20693 40036 

Number of VNUs ρ(q-1) ρ(q-1) ρ(q-1) ρ(q-1) ρ(q-1) <ρ(q-1) 
Each 
VNU 

Registers bq(γ+nm) bq(γ+nm) − − − bq(γ+nm) 
Adders 2 2 2 

Total 
units 

Registers (q-1)bq[γρ+(ρ+1)nm+1] (q-1)bq[γρ+(ρ+1)nm+1] REGs 39990 35810 39990 3639648 
Comp.s (q-1)(nm+dc-1) (q-1)(nm+dc-1) XORs 75469 79388 75460 3723348 
Adders 2ρ(q-1) 2ρ(q-1) MEMs 1181410 451760 935110 206×106 

Complexity of shuffle network 

Global 
network 

Wires bqnm(q-1)dc bqnm(q-1)dc 3bqnm(q-1)dc 3bqnm(q-1)dc 3bqnm(q-1)dc γbq(q-1)dc 
De-MUX’s 0 (q-1)ρ 0 (q-1)ρ 3(q-1)ρ 3(q-1)ρ 3(q-1)ρ γ(q-1)ρ 
LUT bits 0 p(q-1)ρ 0 p(q-1)ρ p(q-1)[ρ+γ(γ-1)/2] p(q-1)(3ρ+γ-2) p(q-1)(3ρ+γ-2) ρp(q-1)γ 

Local 
network 

Wires bq(q-1)γ bq(q-1)γ − − − − 
Crossbars 0 ρ(log2ρ-1/2) − − − − 
LUT bits 0 (γρlog2ρ)/2 − − − − 

Consumption of finite solution sequence generator 
LUT bits pdc pdc − − − − 

Galois adders dc-2 dc-2 − − − − 
aBoth designs are for a 32-ary (837, 726) rate-0.85 Class-I code. 
bBoth designs are for a 32-ary (744, 653) rate-0.875 non-binary LDPC code. 
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For different versions of decoders, the architecture of CNU stays the same. Each 

CNU requires bqnm registers as well as nm+dc-1 2-input comparators, of which bqnm 

registers and nm 2-input comparators are required by the shift-register sorter. For the 

VNU, besides bq(γ+nm) registers for the FIFO, another 2 adders are also required. The 

global shuffle network connects VNUs with CNUs. Once established, this network would 

not change throughout the entire decoding process. Therefore, bq(q-1)dc wires are 

sufficient. Otherwise, for additional flexibility consideration, bq(q-1)ρ bits LUT and (q-

1)ρ de-MUX’s are needed. Because of the different algebraic construction schemes, the 

local switch network varies from Class-I decoder to Class-II decoder. For Class-I decoder, 

it is only required to connect all VNUs end to end with bq(q-1)ρ wires, no matter whether 

the design is specific or configurable. However, for Class-II decoder, another LUT 

containing γ×ρ elements and related crossbar switches are required. Each element can be 

represented with log2ρ quantization bits. Since the LUT is symmetric with respected to 

both its diagonal and anti-diagonal as indicated by Eq. (2-15), the memory size can be 

further reduced by half. Therefore, only (γρlog2ρ)/2 bits LUT is required. For the finite 

solution sequence generator, all multiplication operations are implemented with finite-

step permutation, which requires pdc bits of LUT. In addition, a total of dc-2 Galois field 

adders are required as well. 

In order to demonstrate the advantages of the proposed designs, comparisons between 

the proposed works and state-of-the-art designs [38, 42-44] are carried out. According to 

the comparison results in Table 2.2, it is observed that compared with the state-of-the-art 

decoder designs, the proposed designs can greatly reduce the hardware complexity by 

making use of the geometry properties of non-binary QC-LDPC codes. Based on the 

design scheme of [38, 42-44], the programming information of shuffle network should be 

pre-stored into ROM to guarantee the proper execution of the decoding. Since ROM is 

non-volatile, it is not convenient to incorporate flexibility into corresponding decoder 



 

43 

designs. Also, the decoder proposed in [42-44] are suitable for Class-I codes only. For 

code choices such as Class-II codes, a fully constructed global network, such as the one 

proposed in [38], is required by those decoders. On the other hand, the design approach 

proposed in this dissertation can be employed for both Class-I and Class-II codes. 

For the proposed Class-I decoder architecture, only fixed wires are necessary. It 

means that, by introducing the local switch network, all memories can be eliminated. If 

we can use more de-MUX’s and LUT, the decoder will be capable of dealing with a class 

of codes rather than a specific one. Even in this case, the proposed decoder architecture 

still shows advantages in hardware complexity. Now, we employ the 64-ary (1260, 630) 

rate-0.5 Class-I code as an example for a better demonstration. Here, we know q = 64, ρ 

= 20, and γ = 10. Therefore, the proposed configurable Class-I decoder needs a total of 

p(q-1)ρ = 5×(32-1)×20 = 3,100 bits LUT and (q-1)ρ = (32-1)×20 = 620 de-MUX’s. 

However, its counterparts in [42-44] require 3 times the amount of wires and de-MUX’s, 

and p(q-1)[ρ+γ(γ-1)/2] = 5×(32-1)×[20+10(10-1)/2] = 10,075 bits of LUT. The shuffle 

network in [44] needs even more, that is, a total of p(q-1)(3ρ+γ-2) = 5×31×(3×20+10-2) 

= 10,540 bits of LUT are required. Since a conventional shuffle network is employed by 

the decoder proposed in [38], it not surprising that the highest complexity is required. 

Although having more flexibility, the proposed shuffle network still achieves hardware 

saving of 69.2%, 70.6%, and 66.7% (because the number of CNUs is only 3 in [38]) 

compared with prior works, respectively. For the proposed Class-II decoder design, we 

fail to give one comparison with other literatures, because no hardware implementation 

has been addressed by previous literatures. However, we can still derive the hardware 

reduction compared with the conventional approach which stores all the permutation 

information for each layer. For configurable version of the 32-ary (992, 496) rate-0.5 

Class-II code decoder, the resulting hardware saving is 
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( 1) ( 1) 1 16 1 93.8%.
( 1) 16

p q k p q k
p q k k
ρ ρ

ρ
− − − − −

= = ≈
−

  (2-20) 

Although another ρ(log2ρ-1/2) = 32×(log232-1/2) = 144 crossbar switches and 

(γρlog2ρ)/2 = (32×16×log232)/2 = 1,280 bits of LUT are required, the expense is 

relatively low compared with its benefits introduced. All the above analysis is for the 

proposed flexible decoders, for the specific ones, more hardware reduction can be 

expected with a sacrifice of configurability. 

For the design of CNU block, the forward and backward steps in [41] can be 

eliminated as a result. Therefore, simple implementation of the proposed CNU 

architecture is achieved. Take a 32-ary (837, 726) rate-0.85 Class-I code as an example, it 

can be computed that only 85 registers and 572 equivalent XOR gates are required. This 

design requires less hardware consumption compared with designs in [42] and [44] while 

achieving the same critical path of 12 XOR gates. Here, all messages are quantized in 5 

bits. In order to further meet the requirements of high speed applications, pipelines can be 

inserted into the comparator network. The pipelined comparator network is able to 

achieve critical path of 2 XOR gates with 125 more registers. If shorter latency is required, 

the concurrent version of comparator network can be employed, which will reduce the 

latency at the expense of larger area. In general, the throughput of an LDPC decoder can 

be calculated as follows: 

,
avg

Throughput p u f
T I
× ×

=
×     (2-21) 

where f is the clock frequency determined by the critical path, T is the number of clock 

cycles required by one decoding iteration, and avgI is the average number of decoding 

iterations to process one code-word. As an example, the throughput of the proposed 32-

ary (992, 496) rate-0.5 Class-II flexible decoder can be estimated as follows. With the 

state-of-the-art technology, it is reasonable to assume that the executing frequency of the 
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decoder to be 150 MHz [44]. Also the maximum number of decoding iterations is set to 

10, nm is chosen to be 16, and the timing margin is given as 100 ns. The number of clock 

cycles required by each iteration is (32×32+16)×16 = 16,640. Hence, the resulting 

throughput is 4.47 Mb/s. If codes with higher rate and CNUs with larger concurrent 

number are employed, higher throughput can be expected. 

 Conclusion 2.7

In this chapter, new non-binary QC-LDPC decoder architectures have been presented by 

exploiting the unique geometry properties of the check matrices of both Class-I and 

Class-II non-binary LDPC codes. Examples of Class-I and Class-II decoders have 

demonstrated that the proposed design approaches can lead to up to 70.6% and 93.8% 

hardware reduction for the switch networks. Moreover, by introducing the generator for 

possible solution sequences, the CNU process is further simplified as well. Systematic 

analysis has shown that the proposed schemes can result in efficient decoder designs with 

decoding throughput of 6.46 Mb/s. 

Equation Chapter 3 Section 1 
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   Chapter 3

Low-Latency Sequential SC Polar Decoder 

This chapter is organized as follows. An introduction to the SC decoding algorithm and 

its logarithm domain variants is provided in Section 3.1. Section 3.2 reviews the prior 

works on this topic briefly. In Section 3.3, the DFG of the SC polar decoder is 

constructed and analyzed [58]. To the best knowledge of the authors, the architecture of 

the feedback part for the conventional SC tree decoder is presented [36] in Section 3.4. 

Using the DFG, the pre-computation look-ahead SC decoder architecture [36] is derived 

in Section 3.5. Performance estimation and comparison with the state-of-the-art designs 

are presented in Section 3.6. Section 3.7 concludes the whole chapter. 

 Introduction 3.1

Introduced by Arıkan recently [28], polar codes are capable of achieving the symmetric 

capacity I(W) of any given binary-input discrete memoryless channel (B-DMC) W, when 

the code length N is considerable large. By recursively combining and splitting N copies 

of the B-DMC, we obtain a set of N binary-input coordinate channels ( ){ }i
NW  (1 )i N≤ ≤ . 

Among the N newly constructed channels, only those with the highest capacity are used 
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for data transmission. We refer inputs of these channels as information bits ( )u , and the 

set of corresponding indices as . The inputs of the other channels are denoted as frozen 

bits ( )cu


, and those channels’ indices make up the set c. A common used example is 

illustrated in Figure 3.1 [28], where the channel polarization phenomenon is quite 

obvious. 

 

Figure 3.1  Channel polarization for binary erasure channel (BEC) of rate 0.5. 

Compared to the well-known Turbo codes [82-84] and LDPC codes [20, 85, 86], 

polar codes are considered as the first codes that provably achieve the capacity for a 

fairly wide array of channels. Also it is claimed that the encoding and decoding of polar 

codes are of low complexity. These advantages make polar codes very attractive for real-

life communication applications. 

Suppose 1
Nx  and 1

Nu  are the input vector and encoded vector, respectively. NG  is the 

generator matrix. The encoding process of polar codes can be demonstrated with the 

following Eq. (3-1): 

1 1 ,N N N N
N N Nx u G B F F B⊗ ⊗= = =    (3-1) 
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where NB  is the bit-reversal permutation, NF⊗  is the Kronecker power of N with 

1 0
.

1 1
F  

 
 

      (3-2) 

As illustrated in Figure 3.2, this encoding operation can be implemented with the 

real-valued fast Fourier transform (RFFT) architectures proposed in [87]. Therefore, 

several newly proposed pipelined techniques can be employed. 

u1

u5

u3

u7

u2

u6

u4

u8

x1

x2

x3

x4

x5

x6

x7

x8  

Figure 3.2  Encoding operation of the 8-bit polar code [28]. 

Similar to other codes such as Turbo codes and LDPC codes, for polar codes, the 

decoding process is more complicated compared with the encoding. In the remainder of 

this section, we provide the preliminaries of the SC decoding algorithm. Moreover, its 

logarithm variant and Min-Sum simplification version are explained as well. 

 SC Decoding Algorithm 3.1.1

Consider an arbitrary polar code with parameters (N, K, , cu


) [28], where N and K represent 

the lengths of code bits and information bits, respectively. We denote the input vector as 1
Nu , 
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which consists of a random part u  and a frozen part cu


. The corresponding output vector 

through channel WN is 1
Ny  with conditional probability 1 1( | )N N

NW y u . The likelihood ratio (LR) 

is defined as, 

( ) 1
( ) 1 1 1

1 1 ( ) 1
1 1

ˆ( , | 0)ˆ( , ) .
ˆ( , |1)

i N i
i N i N

N i N i
N

W y uL y u
W y u

−
−

−    (3-3) 

In order to finish the decoding procedure, we are required to calculate the values of 
( ) 1

1 1̂( , )i N i
NL y u −  for all 1 i N≤ ≤ . The detailed calculations can be done by applying the 

following two equations recursively. 

2 1

(2 ) 2 1
1 1

ˆ1 2( ) 2 2 2 2 2 ( ) 2 2
2 1 1, 1, 2 2 1 1,

ˆ( , )
ˆ ˆ ˆ( , )] ( , ),=[ i

i N i
N

ui N i i i N i
N o e N N e

L y u

L y u u L y u−

−

−− − −
+⊕ ⋅

  (3-4) 

 
(2 1) 2 2

1 1
( ) 2 2 2 2 2 ( ) 2 2

2 1 1, 1, 2 2 1 1,
( ) 2 2 2 2 2 ( ) 2 2

2 1 1, 1, 2 2 1 1,

ˆ( , )
ˆ ˆ ˆ( , ) ( , ) 1

.
ˆ ˆ ˆ( , ) ( , )

-

=
+

i N i
N

i N i i i N i
N o e N N e

i N i i i N i
N o e N N e

L y u
L y u u L y u
L y u u L y u

−

− − −
+

− − −
+

⊕ +

⊕
  (3-5) 

It can be observed that the calculation of ( ) 1
1 1̂( , )i N i

NL y u −  depends on the estimate of the 

previous bit, from which the SC decoding algorithm is named. After we have got all the 

values of ( ) 1
1 1̂( , )i N i

NL y u −  for 1 i N≤ ≤ , we need to finish the last step of the entire 

procedure. It is worth noting that if ci∈ , that is the corresponding bit is a frozen bit, the 

value of ˆiu  is simply assigned as zero. The decision scheme is given as follows: 

A Posteriori Decision Scheme with Frozen Bits  

( ) 1
1 1

ˆ

ˆ ˆ( , ) 1 0
ˆ 1

1: if  then 
2: else
3:         if then 
4:         else 
5:         endif
6: endif

c
i i

i N i
N i

i

i u u

L y u u
u

−

∈

≥

= ；

= ；

=；


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The decoding procedure of polar codes with N = 8 is illustrated in Figure 3.3, where 

Type I and Type II processing elements (PEs) compute Eq. (3-4) and (3-5), respectively. 

The red label attached to each PE indicates the index of clock cycle when the 

corresponding PE is activated during the decoding process. It can be seen that the 

maximum value of the labels is 14, which means a total of 14 clock cycles are required to 

finish the SC decoding process for the 8-bit polar codes. This issue will be discussed 

further in following sections.  
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û5

û1
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Figure 3.3  SC decoding process of polar codes with length N = 8. 

 SC Decoding Algorithm in Logarithm Domain 3.1.2

Generally, for every decoding algorithm defined in real domain, its logarithm variant 

always has advantages in terms of hardware utilization, computational complexity, and 

numerical stability [88]. Therefore, compared with their real-domain counterparts, the 

decoding algorithms defined upon logarithm-domain are more attractive to hardware 
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designers [89-91]. Similar to the approach addressed in [89], the SC algorithm dealing 

with logarithm-likelihood ratio (LLR) was also mentioned in [92]. First, we define the 

LLRs as follows: 

( ) 1 ( ) 1
1 1 1 1ˆ ˆ( , ) ln ( , ).i N i i N i

N Ny u L y u− −
    (3-6) 

Then, the previous real-domain Eq. (3-4) and (3-5) can then be rewritten as follows: 

2 1

(2 ) 2 1
1 1

ˆ ( ) 2 2 2 2 2 ( ) 2 2
2 1 1, 1, 2 2 1 1,

ˆ( , )
ˆ ˆ ˆ(-1) ( , ) ( , ),i

i N i
N

u i N i i i N i
N o e N N e

y u

y u u y u−

−

− − −
+= ⊕ +


 

 (3-7) 

 
(2 1) 2 1

1 1
( ) 2 2 2 2 2 ( ) 2 2

2 1 1, 1, 2 2 1 1,

ˆ( , )
ˆ ˆ ˆ2 tanh{tanh[ ( , ) 2] tanh[ ( , ) 2]}.

-i N i
N

i N i i i N i
N o e N N e

y u
ar y u u y u

−

− − −
+= ⊕ ⋅


 

(3-8) 

 Min-Sum SC Decoding Algorithm 3.1.3

Although the SC decoding algorithm in logarithm domain seems more hardware-friendly 

compared with the real-domain one, there is still one problem. In order to implement the 

hyperbolic tangent function and its inverse function in Eq. (3-8), a look-up table (LUT) of 

large size is required. In the cases when code length N is considerable large, the hardware 

consumption for the LUT would be very high. To this end, some sub-optimal algorithms 

which can achieve better trade-off between decoding performance and hardware cost are 

required as a result. 

Note that in logarithm domain, for any variable x ≫ 1, then we have the following 

approximation holds: 

ln[cosh( )] ln 2.x x −     (3-9) 

Consequently, by applying the approximation, we reduce Eq. (3-8) to the Min-Sum 

update rule, which is LUT free: 
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(2 1) 2 2 ( ) 2 2 2 2 2 ( ) 2 2
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Simulation results have demonstrated that the Min-Sum SC decoding algorithm only 

suffers from little performance degradation than the optimal one while achieving high 

hardware utilization [92]. This makes Min-Sum SC decoding algorithm very attractive 

for VLSI implementation. Therefore, in this chapter we will focus our discussion of the 

polar decoder design on this sub-optimal algorithm only. 

 Prior Works on SC Polar Decoder Designs 3.2

Most of the research on polar codes has been focused on code performance rather than 

the design of high efficiency decoder architectures. Shown in [28], the straightforward 

polar decoder implementation using successive cancellation (SC) algorithm results in the 

complexity of 𝒪(Nlog2N). Several design examples based on belief propagation (BP) 

algorithm were also proposed in [28] and [34, 93]. However, due to its lower complexity 

compared with the BP algorithm, the SC approach appears more attractive for hardware 

implementation. Reduced SC decoders with complexity of 𝒪(N) were presented in [92] 

and [94]. However, to decode a polar code with length of N, 2(N-1) clock cycles are 

required by the decoder. For real-time applications, in order to achieve the required 

decoding performance, code length N higher than 210 is usually a necessity. Therefore, 

the approach proposed in [92] and [94] requires long decoding latency for large N. 

Another problem is that in each active stage of the decoder the highest hardware 

utilization can be only 50%, which means half of the processing elements (PEs) are idle 

at the same time. This is simply because the estimation of the current bit depends on the 
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value of the previous coded bit, which forces all coded bits to be output sequentially. A 

latency-reduction approach called simplified SC decoding has been proposed in [60] 

recently. Since this method is code-specific and highly influenced by the channel model, 

it would not be discussed in this chapter. An empirical method to construct pre-

computation look-ahead decoding schedule for any polar codes was presented in [36] to 

shorten the decoding latency by half. However, without investigating the inherent 

properties of the decoder’s data-flow graph (DFG), this method cannot be generalized to 

derive other decoder designs to meet different real-time application restrictions. 

This chapter makes three contributions. First, a DFG is derived and analyzed for the 

SC decoding process. According to the analysis result, validation of the empirical pre-

computation look-ahead approach in [36] is guaranteed. It is shown that the SC decoding 

process can in fact be described by a multi-rate DFG [95, 96], whose iteration bound is 

determined by the execution time of a single processing element (PE) only. Second, 

based on the DFG analysis, we present a complete pipelined hardware architecture for the 

conventional tree SC polar decoder for the first time. A new sub-block called the 

feedback part is proposed to compute the 1-bit input signals for Type I processing 

elements (PEs). We show that this sub-block can be constructed recursively. We also 

give a systematic method to conveniently determine the select signals for de-

/multiplexers. The pre-computation look-ahead decoder can be easily constructed within 

the new DFG context. It is demonstrated that compared with the architecture in [92], the 

proposed low-latency architecture can halve the decoding latency with similar hardware 

consumption. Comparison results show that the proposed pre-computation look-ahead 

sequential decoder has the advantage in latency or throughput compared with the 

conventional tree SC decoders. 
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 DFG Analysis of the SC Polar Decoder 3.3

The DFG captures the data-driven property of DSP algorithms where any node can fire 

whenever all the input data are available [37]. In a DFG, the nodes represent functions, 

while the directed edges represent the data communications between nodes. Each edge 

has a nonnegative number of delays associated with it [97]. In order to derive the pre-

computation look-ahead SC decoder architectures, we first consider construction of the 

DFG of the SC polar decoder in this section. 

 DFG Construction for the SC Polar Decoder 3.3.1

In order to construct the DFG of the SC polar decoder, certain pre-processing is required. 

Illustrated in Figure 3.4, each PE in the SC decoding process is marked with a new label 

(red) for better identification. 
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û1

: Type I PE : Type II PE 

A1

B1

A2

B2

A3

B3

A4

B4

C1

C3

D1

D3

C2

C4

D2

D4

E1

E3

E2

E4

F1

F3

F2

F4

 

Figure 3.4  SC decoding process with new labels. 
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According to the dependence relationship of each PE, the straightforward DFG can be 

constructed as follows in Figure 3.5. The “D” represents a delay element. All output bits 

are marked at the same clock cycle in which they are generated. By the way, it is worth to 

point out that the proposed DFG can be partitioned into two identical parts as shown by 

the dotted circles. 
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Figure 3.5  DFG for the 8-bit SC decoding process. 

Since the PEs 1,2,3,4A  are functionally identical, we can merge them together and 

represent the merged one with A. Similar approaches can be applied to other PEs. After 

merging all similar PEs together, we can derive a more compact version of DFG shown 

in Figure 3.6. The red dash line indicates the flow of the entire decoding procedure, 

which also corresponds to the decoding latency. The { }i  affiliated to each switch means 

the corresponding closure occurs during Clock Cycle 14n+i, where n≥0. The figures at 

the input or output of each PE represent the number of samples consumed or produced by 

an invocation of that PE [37]. 
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Figure 3.6  Simplified DFG for 8-bit SC decoding process. 

According to the proposed DFG, it can be seen that during the entire decoding 

process, PEs in Stage i will be activated 2i-1 times. Therefore, the decoding latency of 8-

bit SC polar decoder is 2×(22+21+20) = 14 clock cycles. More generally, with similar 

DFGs we can further verify that the decoding latency should be 

2 2log log
1

1

2 12 2 2 2( 1),
2 1

N N
i

i
N−

=

−
× = × = −

−∑    (3-11) 

which matches with the empirical conclusion derived in [36]. Since the numbers at both 

ends of an edge are different, the conventional SC polar decoder is actually a multi-rate 

system rather than a single-rate system [98]. 

More importantly, the iteration bound of the DFG is always determined by the 

processing time of one PE. The iteration bound is defined as the maximum loop bound. 

The loop bound represents the lower bound on the loop computation time. In summary, 

two properties of the DFG are stated as follows: 

1. The decoding latency for an N-bit SC polar decoder equals 2(N-1) clock cycles; 

2. The iteration bound of the DFG equals the processing time of a single PE. 

Proof The proof of the first property is given by Eq. (3-11) already. For the second 

property, the DFG in Figure 3.6 contains four loops (Figure 3.7), namely, the loops 
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1 2

3 4

, ,
, .

l E F D E l F D E F
l E F B C E l F B C E F

= → → → = → → →
= → → → → = → → → →

  (3-12) 

Suppose the processing time for each PE is T. The loop bounds for l1, l2, l3, and l4 are 

3T/3 = T, 3T/3 = T, 4T/4 = T, and 4T/4 = T, respectively. Thus, the iteration bound is 

3 3 4 4
3 3 4 4max{ , , , } .T T T TT T∞ = =     (3-13) 

Generally, in the DFG for the N-bit SC polar decoder, each loop has the same number 

of PEs and delay elements. Hence, the iteration bound of the DFG equals the processing 

time of a single PE.∎ 
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D D D
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D D D
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E F D
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D

(b)

F D E
D D
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Figure 3.7  Four loops of the simplified DFG. 

For the ease of understanding, the corresponding decoding schedule for the 8-bit SC 

decoder is shown in Table 3.1. C refers to the code-word which is being processed. Again, 

similar to the proposed DFG, it is observed that the second half of the decoding schedule 

is identical to the first half. 

Table 3.1  Decoding schedule for 8-bit SC decoder. 

Stage Clock cycle 
1 2 3 4 5 6 7 

1 C –– –– –– –– –– –– 
2 –– C –– –– C –– –– 
3 –– –– C C –– C C 

Stage Clock cycle 
8 9 10 11 12 13 14 

1 C –– –– –– –– –– –– 
2 –– C –– –– C –– –– 
3 –– –– C C –– C C 
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We now can transform the proposed DFG in Figure 3.6 to achieve iteration bound 

with lower decoding latency. This is addressed in the following sub-section. 

 DFG with Pre-Computation Look-Ahead Techniques 3.3.2

Pre-computation look-ahead approach is also referred to as parallel branch and delayed 

decision approach [99]. This approach is often used to achieve faster processing rate 

when the number of possible outputs is finite. 

Therefore, we could always perform all possible calculations a priori, get all the 

candidate results, and select the suitable one from the candidate pool thereafter. This 

approach can save us more processing time. Figure 3.8 illustrates a simple example of a 

first-order two-level quantizer loop [99]. Its pre-computation look-ahead reformulated 

version is illustrated in (b) part of the same figure. According to the figure, we can see 

that the latter one can potentially achieve faster speed. 
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(a) A first-order two-level quantizer loop. 
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(b) Its pre-computation look-ahead reformulated version. 

Figure 3.8  A quantizer example for pre-computation look-ahead approach [99]. 
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As mentioned in [36], for two possible LLR inputs, there are only two output 

candidates available for a Type I PE, depending on whether the control bit 2 1ˆ iu −  in Eq. 

(3-7) is 1 or 0. According to the pre-computation look-ahead approach, both output 

candidates can be pre-computed with the look-ahead manner [100, 101] and Type I and 

Type II PEs in the same stage are activated within the same clock cycle. The DFG 

illustrated in Figure 3.6 can then be modified as follows: 
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D D

Dstart

end

Stage 1 Stage 2 Stage 3
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Figure 3.9  DFG for 8-bit pre-computation look-ahead SC decoding process. 

Similar to Figure 3.6, each PE in Stage i will be activated for 2i-1 times. Compared 

with the conventional one, the total number of PEs in the transformed DFG has been 

reduced by 50%. For the 8-bit SC polar decoder example, its decoding latency has been 

halved and is only 22+21+20 = 7 clock cycles, which matches with the results derived in 

[36]. 

Table 3.2  8-bit pre-computation look-ahead decoding schedule. 

Stage Clock cycle 
1 2 3 4 5 6 7 

Pre-computation look-ahead decoding schedule 
1 C –– –– –– –– –– –– 
2 –– C –– –– C –– –– 
3 –– –– C C –– C C 

According to the proposed design details described later in the same chapter, the 

critical path of the transformed DFG stays the same as before. Therefore, the decoding 

latency has been halved also. Not only it coincides with the prior results, the DFG 
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approach indeed provides a more fundamental explanation of the pre-computation look-

ahead decoder construction. The length of the decoding schedule is reduced as well, 

which is shown in Table 3.2: 

 Pipelined Tree Decoder Architecture 3.4

Rather than dealing with the complicated conventional time-chart construction methods, 

the DFG approach proposed here enables us to design different SC polar decoder 

architectures formally. In this section, we proposed a systematic construction approach 

for the conventional tree SC polar decoder architecture for the first time. 

 Complete SC Tree Decoder Architecture Design 3.4.1
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Figure 3.10  The 8-bit conventional tree decoder architecture. 
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The conventional tree SC polar decoder architecture was first proposed in [92]. 

However, the architectures for the feedback part and the control logic were not presented 

in [92]. In this section, the complete design of the conventional tree decoder architecture 

is described in detail. Without loss of generality, an 8-bit SC polar decoder example is 

used in the following sections. All approaches employed by this simple example can be 

extended to general N-bit SC polar decoders in a similar fashion. 

Figure 3.10 illustrates the architecture for the conventional pipelined 8-bit SC decoder. 

The top part is referred to as the main frame, and the bottom part is referred to as the 

feedback part. In this decoder architecture, two kinds of PEs are employed. With those 

PEs, the main frame (dotted circle in Figure 3.10) of the decoder can be constructed in a 

full binary tree manner. A total of three stages are required, and Stage i is composed of 

N/2i copies of Type I PEs and Type II PEs. 

 Architecture of Type I PE 3.4.2

According to Eq. (3-7), the Type I PE is nothing but a W-bit adder-subtractor, where W is 

the fixed word-length of LLRs. It can be simply implemented using the architecture [102] 

in Figure 3.11 as follows. 
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Figure 3.11  Proposed Type I PE architecture. 
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 Architecture of Type II PE 3.4.3

Mentioned previously, the Type II PE employs the Min-Sum algorithm instead of 

employing the tanh and artanh functions. The architecture of the Type II PE is given in 

Figure 3.12 as follows. 
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Figure 3.12  Proposed architecture of Type II PE. 

The TtoS block performs the conversion from two’s complement representation to 

sign-magnitude representation. The StoT block performs the reverse conversion. The 

architecture of the TtoS block is illustrated in Figure 3.13. In order to avoid the overflow 

situation, a sign extension operation is required as well. 
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Figure 3.13  Proposed structure of the TtoS block. 
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The StoT block is similar to the TtoS block. The only difference is that a sign 

compression operation is needed by the StoT block to make the output data in the form of 

the W-bit quantization. 

 Architecture of the Feedback Part 3.4.4

Now, we have derived the architectures of the PEs employed by the main frame. 

Compared with the straightforward implementation of the main frame, the construction of 

feedback loop is not trivial. The feedback part computes the 1-bit input signals for Type I 

PEs. Indicated by Eq. (3-7), except for the two inputs ( ) 2 2 2 2 2
2 1 1, 1,ˆ ˆ( , )i N i i

N o ey u u− −⊕  and 
( ) 2 2

2 2 1 1,ˆ( , )i N i
N N ey u −

+ , a third input 2 1ˆ iu −  is also required by Type I PE to process the 

computation. 
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Figure 3.14  Flow graph of feedback part for 8-point polar decoder. 



 

64 

For efficient execution of each Type I PE, the value of 2 1ˆ iu −  needs to be provided on 

the fly. However, even for the 8-bit decoder illustrated in Figure 3.10, the complicated 

interleaving of odd and even indices makes the straightforward calculation of 2 1ˆ iu −  

inconvenient. In order to solve this inherent problem, a method to construct the feedback 

part is presented here. 

Careful investigation has shown that it is possible to generate the required 2 1ˆ iu −  using 

the real FFT-like signal flow [87]. All the extra input values 2 1ˆ iu −  for 8-bit polar code 

decoder can be easily generated using the flow graph in Figure 3.14. Here, the PASS 

operation PE only lets the lower input get through. 

Furthermore, the flow graph in Figure 3.14 can be simplified with the two properties 

explained below: 

1. The first simplification is to consider that all outputs associated with inputs 1ˆN
Nu −  are 

not necessary. Consequently, the shaded region in Figure 3.14 can be removed. 

Similar concept can be applied to the general case of N inputs. For any Stage i, its 

lower region which contains N/2i processing elements (PEs), can be removed. For 

example, the lower 4 PEs of Stage 1 and the lower 2 PEs of Stage 2 are removed 

from the flow graph in Figure 3.14. Therefore, (N/2)(log2N-1) outputs need to be 

computed. 

2. The second simplification refers to the fact that the PASS operation element can be 

replaced by the wire connection while the flow graph stays functionally the same. 

According to Figure 3.14, the PASS operation element only allows the lower input to 

the next stage. Thus, if the upper input is not treated as an input to the PASS operation 

element any more, one simple wire which connects the lower input and the output 

can be employed instead. Thus, complexity of the feedback flow graph can be halved 

with respect to the former one. 
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Figure 3.15  Simplified flow graph of the proposed feedback part. 

The resulting simplified data-flow graph is shown in Figure 3.15, where a new 

symbol is employed to denote the XOR operation. Both properties have been fully utilized. 

It can be seen that a total of (log2N-1) stages are required and the number of XOR 

operations is given by: 

2

2

[ (log 1) 2(1 2) (1 2)] 2
(log 2) 2 1.

N N N
N N

− − − −
= − +

  (3-14) 

In addition, it is worthwhile to note that with the help of generator matrix GN [1], the 

same simplified flow graph can be obtained as well. As mentioned previously, We define 

⨂ to be the matrix Kronecker product [103] and n0 equals log2N. Then the generator 

matrix GN is given by the following equation: 

0 0 ,n n
N N NG B F F B⊗ ⊗= =     (3-15) 

where BN is the bit-reversal permutation matrix and F matrix is defined as: 

1 0
.

1 1
F  

 
 

      (3-16) 
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The pipelined architecture of the simplified flow graph in Figure 3.15 can be 

implemented with the following feed-forward architecture, where two XOR-PASS elements 

are required. 
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Figure 3.16  Pipelined feed-forward architecture for 8-bit feedback part. 

It can be observed that the proposed pipelined architecture can only generate two 

outputs during the same clock cycle. However, as indicated by Figure 3.10, in order to 

work compatibly with the main frame of the decoder, Stage 1 of the feedback part should 

be able to generate 4 outputs at the same time. Therefore, Stage 1 needs to be modified to 

a 2-level parallel processing structure, which is shown in Figure 3.17, where Ui denotes 

an architecture which consists of i stage(s). Stage i computes N/2i outputs at the same 

time. In addition, the details of how to determine the select signal d2 will be described in 

the following sub-section. 
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Figure 3.17  The 2-parallel version of the architecture in Figure 3.16. 
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In general, for an N-bit length decoder, since the data structures of the feedback part 

are defined recursively for powers of 2, the general parallel pipelined architecture can be 

constructed with the recurrence relationship. The recursion for the general case is shown 

explicitly in Figure 3.18. 
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Figure 3.18  Recursive construction of Un based on Un-1. 

Here module Un can be constructed based on module Un-1 and (n-1) extra XOR-PASS 

elements. It can be observed that in order to cooperate with the main frame perfectly, the 

delay elements have been rearranged to equip each stage with output registers. For Un 

with n0 = log2N, the de-multiplexers are not required. 

 Selecting Signals for De-/Multiplexers 3.4.5

Another important issue we need to address clearly is at which time instance the de-

/multiplexers need to be switched. As shown in Figure 3.10, the select signals of the 

multiplexers and de-multiplexers in Stage i are denoted as mi and di (1≤i<log2N), 
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respectively. The switching schedule for mi can be obtained according to Table 3.3. The 

corresponding clock cycle index (c) is determined with the following equation: 

,j j
j

c b w i= +∑     (3-17) 

where bj, wj, and i represent the binary digit, weight, and stage index, respectively. The 

values of mi are assigned to be alternately “0” and “1”. For example, for Stage 1, m1 is set 

to 0 in Clock cycle 1, where 31 0 2 1 1.- += ×（ ）  

Although it can be observed in Figure 3.10 that m3 is actually not required in the 

design, the given switch time for m3 is still helpful to determine the clock cycle when 

each decoded bit is output. As indicted by Table 3.1, the decoded bits with odd indices 

are output in Clock cycles 3, 6, 10, and 13. Those with even indices are output in Clock 

cycles 4, 7, 11, and 14. 

Table 3.3  Calculation of switching time for mn. 

Weight Stage index Clock cycle mn 23-1 22-1 21-1 
Stage 1 (n = 1) 

0 –– –– 1 1 0 
1 –– –– 1 8 1 

Stage 2 (n = 2) 
0 0 –– 2 2 0 
0 1 –– 2 5 1 
1 0 –– 2 9 0 
1 1 –– 2 12 1 

Stage 3 (n = 3) 
0 0 0 3 3 0 
0 0 1 3 4 1 
0 1 0 3 6 0 
0 1 1 3 7 1 
1 0 0 3 10 0 
1 0 1 3 11 1 
1 1 0 3 13 0 
1 1 1 3 14 1 
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In order to determine the switching time for de-multiplexers’ control signal di, we re-

visit Figure 3.10. Two properties are observed as follows: 

1. Signal di needs to be set as 0 one clock cycle before signal mi is set as 1; 

2. Signal di needs to be set as 1 in the same clock cycle when any dj (i<j) is set as 0. 

Using these properties along with Table 3.3, the switch details for mi and di signals 

shown in Figure 3.10 are listed in Table 3.4 below. 

Table 3.4  Select signals for 8-bit decoder example. 

Clock cycle m1 m2 d2 
1 0 –– –– 
2 –– 0 –– 
3 –– –– –– 
4 –– –– 0 
5 –– 1 –– 
6 –– –– –– 
7 –– –– 1 
8 1 –– –– 
9 –– 0 –– 
10 –– –– –– 
11 –– –– 0 
12 –– 1 –– 
13 –– –– –– 
14 –– ––  

 Pre-Computation Look-Ahead Sequential Decoder  3.5

Since the transformed DFG of the conventional SC decoder has been derived in Section 

3.3, it provides us a more fundamental way to explain the pre-computation look-ahead 

approach. In this section, a novel pre-computation look-ahead sequential SC polar 

decoder architecture is presented based on the DFG analysis. Comparison has shown that 

this architecture can achieve 50% decoding latency with similar hardware consumption. 
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 Architecture of the Revised Type I PE 3.5.1

According to the pre-computation look-ahead scheme, the Type I PE in the pre-

computation look-ahead decoder is in charge of pre-computing two possible outputs in 

parallel. Therefore, the new Type I PE is called the revised Type I PE here. 

In the revised Type I PE, we need to incorporate both capabilities of adding or 

subtracting operands together and finish them simultaneously. As shown in Figure 3.19, 

the straightforward parallel implementation of the Type I PE can be employed here. It 

can be observed that in the straightforward way, two identical copies of the architecture 

in Figure 3.11 are employed. 
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Figure 3.19  The W-bit parallel adder-subtractor architecture. 

However, simple duplication results in penalty of doubling both area and power 

consumption. For a W-bit parallel adder-subtractor, totally 2W-1 1-bit full adder and one 

1-bit half adder are required. In order to implement the revised Type I PE more 

effectively, the complexity-reduced architecture of the parallel adder-subtractor is 

proposed here. Rather than implementing the revised Type I PE with two’s complement 

approach, the original carry-borrow idea is employed here. Suppose X and Y are the two 

operands, and Zin is the carried-in or borrowed-from bit. For the 1-bit full adder, the two 

output bits of summation and carry-out are represented by S and Cout, respectively. In 
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similar way, the difference and borrow-out bits produced by the 1-bit full subtractor are 

denoted with D and Bout. Therefore, the truth table for the 1-bit full adder and subtractor 

is given as follows. 

Table 3.5  Truth table of both full adder and subtractor. 

Inputs 
Outputs 

Adder Subtractor 
X Y Zin S Cout D Bout 
0 0 0 0 0 0 0 
0 0 1 1 0 1 1 
0 1 0 1 0 1 1 
0 1 1 0 1 0 1 
1 0 0 1 0 1 0 
1 0 1 0 1 0 0 
1 1 0 0 1 0 0 
1 1 1 1 1 1 1 

From Table 3.5, we can draw the corresponding Karnaugh map for all outputs. Then 

the logic equations are derived as follows: 

;
( ) .

in

out in

S X Y Z
C X Y X Y Z
= ⊕ ⊕

 = ⋅ + ⊕ ⋅
    (3-18) 

 

;

.
in

out in

D X Y Z

B X Y X Y Z

= ⊕ ⊕


= ⋅ + ⊕ ⋅
    (3-19) 

According to the equations, it can be noticed that S and D are actually the same. With 

the help of Boolean logic, we know that X Y⋅  is an intermediate term of X Y⊕  

operation. Similarly, ( ) inX Y Z⊕ ⋅  can be treated as a byproduct of the term inX Y Z⊕ ⊕  

as well. These observations enable us to employ the gate-level sub-block sharing scheme 

to implement the required parallel adder-subtractor. This scheme not only implements the 

parallel processing but also helps us to reduce the hardware consumption. The gate-level 
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structures of the proposed 1-bit parallel full and half adder-subtractor are depicted in 

Figure 3.20 (a) and (b), respectively.  

Bin

X

Y

Cin

D

Bout

S

Cout

 

(a) 1-bit parallel full adder-subtractor. 

X

Y
S D

Bout

Cout
 

(b) 1-bit parallel half adder-subtractor. 

Figure 3.20  Proposed 1-bit parallel adder-subtractor architectures. 

For the sake of easy estimation and comparison, the hardware consumption of the 

proposed architectures is converted in the form of equivalent XOR gate number. 

According to Figure 3.20, the complexities of 1-bit parallel full and half adder-subtractor 

equal to 4 XOR gates and 1 XOR gate, respectively. Compared with the straightforward 

implementation methods, the total hardware savings of the proposed approaches are 43% 

and 50%, respectively. 
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Figure 3.21  The revised Type I PE architecture. 

Illustrated in Figure 3.21, the revised Type I PE is composed of W-1 1-bit full adder-

subtractor and a 1-bit half adder-subtractor. With the proposed design method, it requires 

57% hardware of the conventional one in Figure 3.19 while achieves exactly the same 

function. 

 Architecture of the Merged PE 3.5.2

TtoS

TtoS
sgn
sgn

mag

mag

StoT
Merged PE

( ) ( )
,

( ) ( )
, ,

( )

ˆ( , ); ˆ ˆ( , ), ;
ˆ ˆ ˆ ˆ( , ); ( , ) .
ˆ( , );

− −
+ −

− − −
−

−

=
⊕ =，

2 2 2 -1 2 2
2 2 1 1 1 1 2 11 22 2 2 2 2 2 -1 2 2

2 2 1 1 1 3 1 1 2 1
2 -1 2 2

1 1 1

 0input : output :
input : output :  1
output :

i N i i N i
N N e N i
i N i i i N i
N o e N i

i N i
N

y u y u u
y u u y u u
y u

 
 


1input

2input1output

q

q

q

qqq

Type 
I PE

Bn

0

1

S

D

0
1

1
0

StoT2output
q

StoT3output
q

q
q

 

Figure 3.22  Proposed structure of the merged PE. 

Since in the pre-computation look-ahead approach, the function of the Type II PE 

stays unchanged, the corresponding hardware architecture is the same as the one 

illustrated in Figure 3.12. According to Figure 3.12, a comparator is required by the Type 
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II PE. Actually, the comparator is a W-bit subtractor, which is also employed by the 

revised Type I PE. Hence, it is possible to incorporate both the revised Type I PE and 

Type II PE together. By employing the sub-structure sharing scheme again, we can 

generate the architecture of merged PE. The detailed structure is illustrated in Figure 3.22. 

In the merged PE architecture, the comparison operation is carried out by the revised 

Type I PE illustrated in Figure 3.21. Two more StoT blocks as well as additional control 

logic are required here. According to Figure 3.22, a total of 2W-3 XOR gates can be saved 

with the proposed sub-structure sharing approach. As mentioned previously, in order to 

achieve good decoding performance in real-time communication applications, polar 

codes with length N over 210 is required. For the conventional tree SC polar decoder 

architecture, a total of N-1 Type I PEs and N-1Type II PEs are used, respectively. If N-1 

merged PEs can be employed instead, the resulting hardware saving could be around 

210∙(2W-3) XOR gates. 

 Decoder Architecture Construction 3.5.3

Since now we have the architecture of the proposed merged PE ready, the pre-

computation look-ahead sequential decoder architecture is presented in this sub-section. 

The 8-bit pre-computation look-ahead SC decoder is illustrated in Figure 3.23. The 

proposed merged PEs are used instead of Type I and Type II PEs. 

It can be noticed that the positions of pipelines have changed a little bit. However, 

since the decoding algorithm stays the same, the decoding performance will not be 

affected. Also the feedback part for the pre-computation look-ahead sequential decoder 

has changed a little. More details of the new feedback part will be discussed in the 

following sub-section. 
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Figure 3.23  8-bit pre-computation look-ahead polar decoder architecture. 

 Architecture of the Revised Feedback Part 3.5.4

Compared with the one shown in Figure 3.10, only half of the delay elements are 

employed by the feedback loop in accordance with the halved decoding latency. This is 

simply because the entire decoding latency of the proposed pre-computation look-ahead 

sequential decoder has been halved. 

The revised feedback part for the N-bit length pre-computation look-ahead decoder is 

shown as follows (Figure 3.24). Compared to the one in Figure 3.18, the only difference 

is the number of delay elements prior to each XOR-PASS element is (2n-2-2) rather than (2n-

1-2). 



 

76 

……

D



D D …

2n-2-2

D



D D …

2n-2-2

D


D D …

2n-2-2

Un-1

ˆ
−iu2 1

ˆ iu2

Un

…

……

…

0

1

0

1

0

1

0

1

0

1

0

1

D

D

D

D

D

D

…
…

Stage (log2N-n+1)

 

Figure 3.24  Revised recursive construction of Un based on Un-1. 

Note that slight modification of control signal mi is required. The revised calculation 

of the switching time is shown in Table 3.6. 

Table 3.6  Revised calculation of switching time for mn. 

Weight Stage index Clock cycle mn 22-1 21-1 
Stage 1 (n = 1) 

0 –– 1 2 0 
1 –– 1 5 1 

Stage 2 (n = 2) 
0 0 2 3 0 
0 1 2 4 1 
1 0 2 6 0 
1 1 2 7 1 

It can be observed that since the total decoding latency has been halved, the switching 

time for the signal mi should be revised according to Eq. (3-20). This is because the 

position of delay elements in the main frame is now before the multiplexers rather than 

after them. 
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( 1).j j
j

c b w i= + +∑     (3-20) 

For the control signal di of de-multiplexers, the same properties addressed in Section 

3.4 can be employed to determine the switching time as well. These details of the 

derivation are omitted here. 
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Figure 3.25  Revised recursive construction of Un using the memory bank. 

Here we focus on the optimized architecture for the revised feedback part. The 

previous pipelined feedback part structure in Figure 3.24 works best with the proposed 

pre-computation look-ahead scheme, which enables all intermediate results ( 2 1ˆ iu − ) to be 

generated in place without any extra clock cycles. However, it can be noted that for Un, 

the number of corresponding registers increases with complexity of 2n, which is 

impractical for polar codes of length over 210. One possible approach is to employ 

memory banks instead of flip-flops, which is shown in Figure 3.25. For RAMn, a total of 

2n-1 memory elements are required. And the data lifetime is (2n-2-2) clock cycles. The 

memory enable signals (addr.) can be determined accordingly. 
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 Comparison of Latency and Hardware 3.6

In this section, we compare the decoding latency and the hardware consumption for the 

proposed pre-computation look-ahead sequential SC polar decoder along with the state-

of-the-art references [28, 92]. Table 3.7 lists the comparison results of those designs in 

terms of hardware consumption, decoding latency, and data throughput. The design in the 

1st column is the implementation of the proposed pre-computation look-ahead sequential 

decoding schedule in Section 3.5. The design in the 2nd column is the straightforward SC 

polar decoder design proposed in [28]. The one in the 3rd column is the tree design 

presented in [92]. 

The most significant point is that, due to the pre-computation look-ahead decoding 

scheme, all the proposed architectures require only half the latency of their counterparts. 

This advantage makes the proposed decoders more attractive for practical 

implementations, which always demand code length N higher than 210. This means that 

we can always achieve twice higher data throughput with the proposed pre-computation 

approach. 
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Table 3.7  Comparison for different polar decoder architectures. 

Different designs Proposed pre-computation look-
ahead sequential design Straightforward design [28] Tree design [92] 

Hardware consumption 
# of merged PEs N-1 (Nlog2N)/2 N-1 

1 PE 
XOR 9W 11W-3 
REG 0 1 
MUX 6W 5W 

# of fbk parts N-1 –– 

1 fbk 
part 

XOR N/2-1 –– 
RAM N/2-2 –– 
MUX N/2-2 –– 

# of other REGs W(3N-4) W(Nlog2N)/2 W(N-1) 
# of other MUXs W(2N-3) 0 0 

Total XOR ~17WN ~(16W-3)(Nlog2N)/2 ~(16W-3)N 
REG ~3WN ~(W+1)N(Nlog2N)/2 ~(W+1)N 

Decoding schedule 
Latency N-1 2(N-1) 2(N-1) 

Throughput 2 1 1 
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The second design point that should be underlined is the proposed feedback part. The 

design of the feedback part is inspired by the real FFT processor proposed in [87]. It 

outputs all control bits (for the pre-computation look-ahead decoders) required by the 

multiplexers on the fly. Its architecture can be generated in a nice and easy recursive 

manner. Therefore, with the help of the feedback part, no additional clock cycles are 

needed for computation of 2 1ˆ iu − , which preserves the advantage of short latency. To the 

best of our knowledge, this is the first detailed design of the feedback module with such 

features. 

Usually, in order to fairly compare the decoder designs, both throughput and 

hardware consumption need to be taken into account. In Table 3.7, a detailed hardware 

architecture comparison for the proposed decoder design has been presented. Meanwhile, 

since no information could be found in reference [92] for the “ ˆsu  computation block”, 

which is the counterpart of the proposed feedback part, only the hardware consumption 

for the main frame is compared. Despite larger number of registers, which inherently 

result from the pre-computation look-ahead scheme, the proposed design requires much 

less hardware compared with the straightforward design proposed in [28]. Even 

compared with the state-of-the-art design listed in the 3rd column, the proposed design 

consumes similar hardware area (in terms of number of XOR gates). More specifically, the 

proposed pre-computation look-ahead sequential design needs 6.25% more hardware than 

the one presented in [28]. However, considering the latency reduction it can achieve, this 

small overhead hardware is acceptable. Here, without loss of generality, all data 

throughputs are represented in a normalized format. 
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 Conclusion 3.7

In this chapter, based on thorough investigation of the DFG for the conventional tree SC 

polar decoder, a novel pre-computation look-ahead sequential decoder architecture for 

polar codes, which can halve the decoding latency required by conventional approaches, 

is proposed. 

For efficient hardware implementation, a merged PE is presented by using the sub-

structure sharing technique. Its control signal 2 1ˆ iu −  can be generated with a real FFT-like 

diagram. This unique feature is directly applied to develop an efficient architecture for 

the feedback part, which works best with the low-latency polar decoder architectures. 

Compared with its conventional counterparts, aside from the feedback part, the proposed 

design shows comparable hardware utilization with 50% decoding latency. The next 

work will be directed towards designing architectures for even higher throughput 

communication applications. 

Equation Chapter 4 Section 1 
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   Chapter 4

High-Throughput Interleaved SC Polar 

Decoders 

This chapter presents SC polar decoder architectures which are suitable for high-

throughput applications. A brief introduction is given in Section 4.1. Section 4.2 presents 

a TC 3-interleaved SC polar decoder example. A general discussion on the properties of 

TC interleaved SC decoder architectures [58] is conducted in Section 4.3. Section 4.4 

introduces a new design approach using folding technique. Based on the folding 

technique, the RC interleaved SC decoder architectures [59] are proposed in Section 4.5. 

Comparison with other works is conducted in Section 4.6. Section 4.7 concludes this 

chapter. 

 Introduction 4.1

In Chapter 3, the pre-computation look-ahead approach helps us to reduce the decoding 

latency of polar decoders by 50%. However, the proposed pre-computation look-ahead 

serial decoder still needs to be improved for real-time communication applications. It can 

be noticed that for the proposed pre-computation look-ahead sequential SC decoder 
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architecture, although the hardware utilization of each active stage is 100%, other stages 

still remain idle at the same time. For the proposed 8-bit pre-computation look-ahead SC 

polar decoder example, a total of 7 clock cycles are required before the next code-word 

can be processed. 

Generally, for an N-bit pre-computation look-ahead SC polar decoder, each code-

word needs (N-1) clock cycles to be properly decoded with the given pre-computation 

look-ahead approach. During the entire process no new code-word could be input to the 

decoder. Therefore, even as high as half of the decoding latency has been reduced by the 

pre-computation look-ahead SC polar decoder, the data throughput and hardware 

utilization remain low for large values of N. To this end, the pre-computation TC 

interleaved polar decoder architectures are proposed in this chapter. For the TC 

interleaved approach, the decoding latency stays the same, and more PEs can be added. 

Another way to improve the decoding throughput is to introduce the RC interleaved 

processing. The RC interleaved approach always employs the same number of PEs while 

optimizing the decoding schedule. Compared with the pre-computation polar decoder 

proposed in [36], the RC 2-interleaved decoder proposed here can achieve 200% 

throughput with only 50% hardware consumption. Even if the number of processing 

elements (PEs) required is the same as [94], our design achieves up to four times 

throughput. Detailed architecture including the control logic is given as well. The general 

RC L-interleaved polar decoder is also proposed and discussed with respects to both 

hardware and latency. 
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 TC 3-Interleaved SC Polar Decoder Example 4.2

 TC 3-Interleaved Decoding Schedule 4.2.1

As mentioned in Section 4.1, we first try to interleave the decoding processes of multiple 

code-words. According to the DFG depicted in Figure 3.6, a tentative decoding schedule 

which triples the decoding throughput for 8-bit polar decoder is given in Table 4.1. 

Table 4.1  The TC 3-interleaved decoding schedule for 8-bit decoder. 

Stage Clock cycle 
1 2 3 4 5 6 7 8 

TC 1-interleaved pre-computation decoding schedule 
 1 C1 –– –– –– –– –– –– C2 
 2 –– C1 –– –– C1 –– –– –– 
 3 –– –– C1 C1 –– C1 C1 –– 

TC 3-interleaved pre-computation decoding schedule 
 1 C1 C2 C3 –– –– –– –– C4 
 2 –– C1 C2 C3 C1 C2 C3 –– 
 3 –– –– C1 C2 C3 C1 C2 C3 
 3’ –– –– –– C1 C2 C3 C1 C2 

According to Table 4.1, it can be observed that in order to process three code-words 

simultaneously, Stage 3 has been duplicated. Another copy of Stage 3, that is Stage 3’, 

has been included to avoid data conflict. As a result, the hardware utilization has been 

improved. For any Stage i (i>1), it is active 6 out of 7 clock cycles. Therefore, the 

hardware utilization is 85.7%. For Stage 1, it is active 3 out of 7 clock cycles. The 

hardware utilization is 42.9%. On the other hand, for the pre-computation look-ahead 

sequential design proposed in Chapter 3, the highest hardware utilization is only 57.1% 

(Stage 3). Compared with the sequential design, the TC 3-interleaved one achieves 3 

times higher decoding throughput. Moreover, the nice decoding schedule shown in Table 

4.1 is very easy to follow. 
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 TC 3-Interleaved SC Decoder Architecture 4.2.2

Based on the pre-computation look-ahead sequential SC decoder we have got previously, 

the TC 3-interleaved SC polar decoder architecture can be obtained as illustrated in 

Figure 4.1. It is worth noting that Stage 3 and 3’, which are activated in serial, are 

generated by using the unfolding transformation technique [104] with factor of 2. Since 

the consecutive 3 input code-words are independent, a total of 3 identical copies of the 

feedback part are required as a result. { }i  means the closure clock cycle index associated 

with the corresponding point is 7n+i, where n≥0. 
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Figure 4.1  The 8-bit TC 3-interleaved SC polar decoder. 
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 Properties of TC Interleaved SC Decoder Architectures 4.3

Although higher decoding throughput has been achieved by the proposed TC 3-

interleaved decoder example, the iteration bound of the SC decoder has not been 

achieved yet. According to the DFG analysis of the pre-computation look-ahead time 

chart presented in Chapter 3, for an N-bit SC polar decoder, the maximum value of 

concurrent inputs is (N-1). Therefore, how to systematically construct the TC (N-1)-

interleaved SC polar decoder while guaranteeing the sequential decoding process still 

needs to be addressed. 

Moreover, if only TC M-interleaved processing is required, where 1≤M≤N-1, what is 

the relationship between the concurrent number M and the hardware consumption? Here 

the concurrent number represents the maximum number of code-words the decoder can 

process at the same time. The design approach proposed in Section 4.2 can be treated as 

an empirical design method, which is somewhat case-specific. Can we derive a formal 

design methodology which only costs the minimal design efforts while meets all the 

design requirements. All these issues are well addressed with the following four 

properties. 

Property 1 For an N-bit pre-computation look-ahead polar decoder, the highest 

concurrent number M is (N-1). 

Proof According to the recursive construction of the pre-computation look-ahead DFG, 

the decoding latency equals 

2 2log 1 log

0

2 12 1
2 1

N N
i

i
N

−

=

−
= = −

−∑     (4-1) 

clock cycles. During the entire decoding process for a single code-word, Stage 1 is only 

activated during one clock cycle. Therefore, in the remaining (N-2) clock cycles, Stage 1 
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is available for other possible input code-words. The maximum number of other input 

code-words is (N-2). Therefore, the highest possible concurrent number is (N-1).∎ 

Property 2 For a given N-bit pre-computation look-ahead polar decoder, its TC (2i-1)-

interleaved version can be constructed based on its TC (2i-1-1)-interleaved version. The 

method is: A. find out the (2i-1-1) stages with the most significant stage indices of the TC 

(2i-1-1)-interleaved decoder; B. duplicate each of those (2i-1-1) stages. 

Proof It can be noticed that 

12 1 2 (2 1) 1,i i−− = × − +     (4-2) 

which is in the same form as the pre-computation look-ahead decoder. In order to achieve 

maximum hardware utilization of the entire decoder (or certain specific stages), the 

number of PEs in each relative decoding stage should stay the same. Since the DFG is 

constructed in the time domain, we only need to apply the same approach in the “stage 

domain”, which leads to Property 2.∎ 

A simple example is employed here for a better explanation. For instance, now we 

would like to construct the TC 3-interleaved version of 8-bit pre-computation look-ahead 

polar decoder based on the TC 1-interleaved version (or the sequential one proposed in 

Chapter 3). According to Property 2, we have 

2

1

3 2 1
1 2 1.2-

= -
= -





     (4-3) 

Therefore, we can determine that i = 2. We only need to include another copy of Stage 3 

(that is Stage 3’) to get the decoder architecture illustrated in Figure 4.1. 
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Table 4.2  The TC 1-, 3-, and 7-interleaved decoding schedule for 8-bit decoder. 

Stage Clock cycle 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

TC 1-interleaved pre-computation decoding schedule 
 1 C1 –– –– –– –– –– –– C2 –– –– –– –– –– –– 
 2 –– C1 –– –– C1 –– –– –– C2 –– –– C2 –– –– 
 3 –– –– C1 C1 –– C1 C1 –– –– C2 C2 –– C2 C2 

TC 3-interleaved pre-computation decoding schedule 
 1 C1 C2 C3 –– –– –– –– C4 C5 C6 –– –– –– –– 
 2 –– C1 C2 C3 C1 C2 C3 –– C4 C5 C6 C4 C5 C6 
 3 –– –– C1 C2 C3 C1 C2 C3 –– C4 C5 C6 C4 C5 
 3’ –– –– –– C1 C2 C3 C1 C2 C3 –– C4 C5 C6 C4 

TC 7-interleaved pre-computation decoding schedule 
 1 C1 C2 C3 C4 C5 C6 C7 ⋯       
 2 –– C1 C2 C3 C4 C5 C6 C7 ⋯      
 3 –– –– C1 C2 C3 C4 C5 C6 C7 ⋯     
 3’ –– –– –– C1 C2 C3 C4 C5 C6 C7 ⋯    
 2’ –– –– –– –– C1 C2 C3 C4 C5 C6 C7 ⋯   
 3’’ –– –– –– –– –– C1 C2 C3 C4 C5 C6 C7 ⋯  
 3’’’ –– –– –– –– –– –– C1 C2 C3 C4 C5 C6 C7 ⋯ 
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Moreover, its TC 7-interleaved version, which can achieve 100% hardware utilization 

in each decoding stage, can be constructed based on the TC 3-interleaved one accordingly 

as shown in Table 4.2. The construction steps are shown as follows. According to 

Property 2, since 

3

3 1

7 2 1
3 2 1,-

= -
= -





     (4-4) 

We have i = 3. For the TC 3-interleaved version decoder, the 3 stages with the most 

significant indices are Stage 2, 3, and 3’. Therefore, the architecture of the TC 7-

interleaved pre-computation look-ahead SC polar decoder can be derived based on the 

TC 3-interleaved one by duplicating Stage 2, 3, and 3’. According to Table 4.2, it can be 

seen that the proposed TC 7-interleaved decoder can handle all 7 inputs perfectly and 

achieve 100% utilization rate during any Decoding iteration i (i>1). Also the iteration 

bound is achieved as a result. 

Since all the interleaving factors mentioned now can be represented in the form of (2i-

1), what if when we are required to implement a TC M-interleaved decoder with M which 

could not be written in the form of (2i-1)? This problem can be addressed by Property 3 

as follows. 

Property 3 For any M which satisfies 2i-1-1<M≤2i-1, the TC M-interleaved polar 

decoder requires the same amount of hardware as the TC (2i-1)-interleaved version. A 

100% hardware utilization can be achieved if and only if M = N-1. 

Proof The proof of Property 2 can be used to prove this. According to Property 2, it 

can be noted that (2i-1) is the maximum number of code-words the TC (2i-1)-interleaved 

version decoder can handle. This gives the proof.∎ 
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Table 4.3  The TC 3-, 5-, and 7-interleaved decoding schedule for 8-bit decoder. 

Stage Clock cycle 
1 2 3 4 5 6 7 8 9 10 11 12 13 14 

TC 3-interleaved pre-computation decoding schedule 
 1 C1 C2 C3 –– –– –– –– C4 C5 C6 –– –– –– –– 
 2 –– C1 C2 C3 C1 C2 C3 –– C4 C5 C6 C4 C5 C6 
 3 –– –– C1 C2 C3 C1 C2 C3 –– C4 C5 C6 C4 C5 
 3’ –– –– –– C1 C2 C3 C1 C2 C3 –– C4 C5 C6 C4 

TC 5-interleaved pre-computation decoding schedule 
 1 C1 C2 C3 C4 C5 –– –– C6 C7 C8 C9 C10 –– –– 
 2 –– C1 C2 C3 C4 C5 –– –– C6 C7 C8 C9 C10 –– 
 3 –– –– C1 C2 C3 C4 C5 –– –– C6 C7 C8 C9 C10 
 3’ –– –– –– C1 C2 C3 C4 C5 –– –– C6 C7 C8 C9 
 2’ –– –– –– –– C1 C2 C3 C4 C5 –– –– C6 C7 C8 
 3’’ –– –– –– –– –– C1 C2 C3 C4 C5 –– –– C6 C7 
 3’’’ –– –– –– –– –– –– C1 C2 C3 C4 C5 –– –– C6 

TC 7-interleaved pre-computation decoding schedule 
 1 C1 C2 C3 C4 C5 C6 C7 ⋯       
 2 –– C1 C2 C3 C4 C5 C6 C7 ⋯      
 3 –– –– C1 C2 C3 C4 C5 C6 C7 ⋯     
 3’ –– –– –– C1 C2 C3 C4 C5 C6 C7 ⋯    
 2’ –– –– –– –– C1 C2 C3 C4 C5 C6 C7 ⋯   
 3’’ –– –– –– –– –– C1 C2 C3 C4 C5 C6 C7 ⋯  
 3’’’ –– –– –– –– –– –– C1 C2 C3 C4 C5 C6 C7 ⋯ 
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A simple example in Table 4.3 clearly shows that the TC 5-interleaved version 

consumes the same number of PEs as the TC 7-interleaved decoder does. 

Now, we are ready to derive the relationship between the concurrent number M and 

the hardware consumption. 

Property 4 For any M which satisfies 2i-1-1<M≤2i-1, the hardware consumption stays 

the same. The total number of merged PEs employed by the M-concurrent polar decoder 

is N+2i-1∙(i-2), where N is the code length of the polar codes. 

Proof According to Property 1, the number of merged PEs can be calculated as follows: 

2log 1
1

1

1 1

1

2 2 ( 1)

( 2 ) 2 ( 1)
2 ( 2).

N
j i

j i

i i

i

i

N i
N i

−
−

= −

− −

−

+ ⋅ −

= − + ⋅ −

= + ⋅ −

∑



    (4-5) 

For example, according to the calculations given by Property 4, the TC 1-, 3-, 5-, and 7-

interleaved versions of 8-bit pre-computation look-ahead polar decoder are supposed to 

have 7, 8, 12, and 12 merged PEs, respectively. By checking the details shown in both  

Table 4.2 and Table 4.3, those results can be easily verified. 

With the four properties proposed in this chapter, we now have a systematic 

methodology to design TC interleaved versions of pre-computation look-ahead SC polar 

decoders for various application requirements. 

 The Construction Approach with Folding Technique 4.4

The folding transformation provides a systematic technique for designing control circuits 

where multiple algorithm operations are time-multiplexed to a single function unit [37]. 
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The folding transformation technique can help us derive a formal procedure for designing 

a family of architectures for a specific DSP algorithm [105, 106]. In this section, we will 

see, with the help of the folding transformation technique, existing hardware architectures 

can be implemented systematically. 

 Preliminaries of Folding Transformation Technique 4.4.1

To implement the folding transformation upon the DFG, a folding set is required first. 

Each folding set is an ordered set of n operations executed by the same PE [37]. The 

operation in the i-th position in the folding set is executed by the PE during the i-th time 

instance. For example, according to the folding set 1 2 3{ , , , }A A A Aφ= , we have n = 4. 

Operations 1A , 2A , and 3A  will be carried out by PE A  at clock cycle 4l+1, 4l+2, and 4l, 

respectively. Since the 3rd operation within the folding set is null, no operation will be 

executed by PE A  during clock cycle 4l+3. 

Aside from the folding set, another key factor we should be aware of is the folding 

equation. The folding equation is employed to calculate the number of delay elements 

associated with a specific directed edge in the DFG. The general form of the n-folding 

equation can be written as follows: 

( ) ( )e
F UD U V nw e P v u→ = − + −     (4-6) 

Here, e is the w(e) weighted directed edge connecting PE U and PE V. ( )e
FD U V→  is 

the number of folding delay elements associated with edge e. PE U is PU-stage pipelined. 

u and v are the folding set indices of PE U and PE V, respectively. About the derivation 

of the folding equation, please refer to Chapter 6 of [105] for more details. 
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 Previous Decoders with Folding Transformation Technique 4.4.2

In this sub-section, we will derive the previous SC polar decoder architectures based on 

the folding transformation technique. 

Tree Architecture of the SC Decoder 

First, let us re-visit the DFG illustrated in Figure 3.5. The SC decoder architecture 

proposed in [28] can be treated as the original version which has not been folded yet. 

Then, the tree architecture of the SC polar decoder in [92] can be constructed with the 

following folding sets: 

1 1 1 1

2 2 2

3 3

4 4

{ , , , , , , , , , , , , , }, { , , , , , , , , , , , , , },

{ , , , , , , , , , , , , , }, { , , , , , ,

{ , , , , , , , , , , , , , },

{ , , , , , , , , , , , , , };

f f

f f

f

f

A A B B
A A B
A A

A A

φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ φ φ φ

 = =


= =


=
 =

2

3 3

4 4

1 1 3 1 1

2 2 4

, , , , , , , },

{ , , , , , , , , , , , , , },

{ , , , , , , , , , , , , , }.

{ , , , , , , , , , , , , , }; { , , , , , , , , , , ,

{ , , , , , , , , , , , , , }.

f

f

f f

f

B
B B

B B

C C C D D D

C C C

φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ

φ φ φ φ φ φ φ φ φ φ φ φ






=
 =

 = =


=

3

2 2 4

1 1 2 3 4 1 1 2 3 4

, , };

{ , , , , , , , , , , , , , }.
{ , , , , , , , , , , , , , }. { , , , , , , , , , , , , , }.

f

f f

D D D
E E E E E F F F F F

φ φ

φ φ φ φ φ φ φ φ φ φ φ φ
φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ φ




=
= =

(4-7) 

Here, the superscript “f” means “folding”. Assume neither Type I PE nor Type II PE 

has any pipeline stages and 14n = . We can write down the folding equation in Eq. (4-6) 

for each of the 28 edges in the DFG (Figure 3.5). The equations are: 

1,2 1 1 1,2

3,4 2 1,2 2

1,2 1 2 2

1 1 2 1,2,3,4

1,2 3 3 3,4

3,4 4 3,4 4

3,4 3 4 4

3

( ) 1, ( ) 1,
( ) 1, ( ) 1,
( ) 1, ( ) 1,
( ) 1, ( ) 1;
( ) 1, ( ) 1,
( ) 1, ( ) 1,
( ) 1, ( ) 1.
(

F F

F F

F F

F F

F F

F F

F F

F

D A C D F D
D A C D D E
D C E D E F
D E F D F B
D B C D F D
D B C D D E
D C E D E F
D E

→ = → =
→ = → =
→ = → =
→ = → =

→ = → =
→ = → =
→ = → =
→ 3 ) 1,F =

   (4-8) 
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For example, 1,2 1( ) 1FD A C→ =  means that the outputs of both 1
fA  and 2

fA  will be 

hold for 1 clock cycle before they are output to node 1
fC .Therefore, the tree architecture 

proposed by Figure 4 of [92] can be derived accordingly. 

Pre-Computation Look-Ahead Sequential Decoder Architecture 

Now we derive the pre-computation look-ahead sequential decoder architecture with the 

folding transformation technique. Consider the following folding sets: 

1 1

2 2

3 3

4 4

1 1 3

2 2 4

1 1

( ) {( ) , , , , , , },

( ) {( ) , , , , , , },

( ) {( ) , , , , , , },

( ) {( ) , , , , , , }.

( ) { , ( ) , , , ( ) , , };

( ) { , ( ) , , , ( ) , , }.
( ) { , , ( ) ,

f

f

f

f

f

f

f

AB AB
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CD CD CD
CD CD CD

EF EF

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ φ

φ φ φ φ φ

φ φ φ φ φ
φ φ

 =


=


=
 =

 =


=
= 2 3 4( ) , , ( ) , ( ) }.EF EF EFφ

  (4-9) 

Again, suppose neither Type I nor Type II PEs has any pipeline stages and 7n = . The 

folding equations are as follows: 

1,2 1 1 1,2

3,4 2 1,2 2

1,2 1 2 2

1 1 2 1,2,3,4

1,2 3 3 3,4

3,4 4 3,4 4

3,4 3 4 4

( ) 1, ( ) 1,
( ) 1, ( ) 2,
( ) 1, ( ) 0,
( ) 0, ( ) 3;
( ) 4, ( ) 1,
( ) 4, ( ) 2,
( ) 1, ( ) 0.
(

F F

F F

F F

F F

F F

F F

F F

F

D A C D F D
D A C D D E
D C E D E F
D E F D F B
D B C D F D
D B C D D E
D C E D E F
D

→ = → = −
→ = → =
→ = → =
→ = → = −

→ = → = −
→ = → =
→ = → =

3 3 ) 0,E F→ =

   (4-10) 

For example, 1,2 3( ) 4FD B C→ =  means that the outputs of both 1
fB  and 2

fB  will be 

hold for 4 clock cycles before they are output to node 1
fC . 2 1,2,3,4( ) 3FD F B→ = −  

indicates that the outputs of nodes 1,2,3,4
fB  will be hold for 3 clock cycles until the output 

of 1
fF  arrives. The pre-computation decoder can therefore be realized in Figure 3.10. 



 

95 

Pre-Computation TC Interleaved Decoder Architecture 

For the efficient TC interleaved decoder architectures in Section 4.2 and Section 4.3, they 

can also be derived by changing the folding sets. We know that the TC interleaved pre-

computation look-ahead decoder architectures are categorized into a big family. Without 

loss of generality, here we only show the construction details for the TC 3-interleaved 

decoder architecture. Other TC interleaved versions can be derived in a similar fashion. 

Consider the new folding sets listed as follows, where the superscripts “1”, “2”, and 

“3” mean the PE is dealing with Codeword 1, Codeword 2, and, Codeword 3, 

respectively. 

(1) (2) (3)
1 1 1 1

(1) (2) (3)
2 2 2 2

(1) (2) (3)
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f

f
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

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=

= (3) (1) (2) (3) (1)
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

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 (4-11) 

Here we can also derive the hardware utilization from the folding sets. Take the 

following folding set as an example: 

(3) (1) (2) (3) (1) (2)
1 3 1 1 1 3 3( ) {( ) , , ( ) , ( ) , ( ) , ( ) , ( ) }.fEF EF EF EF EF EF EFφ=  (4-12) 

It can be observed from the folding set that only 1 out of 7 clock cycle is occupied by the 

null operation. Therefore, the hardware utilization of Stage 3’ is 85.7%, which matches 

the previous analysis in Section 4.2. The utilization of other stages can be derived in the 

same manner. 
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The corresponding folding equations are given as follows. With these folding 

equations, the TC 3-interleaved pre-computation look-ahead decoder can be constructed: 

(1,2,3) (1,2,3) (1,2,3) (1,2,3)
1,2 1 1 1,2
(1,2,3) (1,2,3) (1,2,3) (1,2,3)
3,4 2 1,2 2
(1,2,3) (1,2,3) (1,2,3) (1,2,3)
1,2 1 2 2

(1,2,3) (1,2,3)
1 1 2 1

( ) 1, ( ) 1,
( ) 1, ( ) 1,
( ) 1, ( ) 1,

( ) 1, (
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3,4 4 3,4 4
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3,4 3 4 4
(1,2,3) (1
3 3

) 1;

( ) 1, ( ) 1,
( ) 1, ( ) 1,
( ) 1, ( ) 1.
(

F F

F F

F F

F

D B C D F D
D B C D D E
D C E D E F
D E F
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→ = → =
→ = → =
→ = → =
→ ,2,3) ) 1,=

  (4-13) 

 The RC Interleaved Pre-Computation Decoders 4.5

In Section 4.2 and Section 4.3, the TC interleaved decoder architectures are proposed. 

However, in order to achieve higher decoder throughput, the TC interleaved decoders 

required higher hardware consumption. Therefore, the decoder architecture with higher 

data rate and lower hardware cost is appreciated. To this end, the RC interleaved pre-

computation look-ahead decoder architecture is present based on the folding 

transformation technique. In order to save the hardware consumption, for N-bit RC 

interleaved decoders, the number of merged PEs employed is always N/2. Also, in order 

to increase the data rate, we try to process multiple code-words in an interleaved manner.  

 The Original Design Employing N/2 Merged PEs 4.5.1

Now we construct the folding sets for the original 8-bit SC polar decoder which only 

employs 4 merged PEs: 
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 (4-14) 

The decoding schedule of the original decoder design employing 4 merged PEs is 

listed in Table 4.4 as follows: 

Table 4.4  Number of active merged PEs for the original decoder. 

PE 
Clock cycle 

1 2 3 4 5 6 7 
1        
2   –– ––  –– –– 
3  –– –– –– –– –– –– 
4  –– –– –– –– –– –– 

 The RC 2-Interleaved Decoders 4.5.2

According to the decoding schedule of the original decoder design, it is observed that we 

can use the same number of merged PEs to carry out the decoding of two code-words at 

the same time. Now we construct the folding sets for the 8-bit RC 2-interleaved SC polar 

decoder as follows: 

(1) (2) (1) (1) (1) (1) (1) (1)
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 (4-15) 

Again, it is assumed that there are no pipelines within any PE. The folding factor n is 

set to 8. By applying Eq. (4-6), we have the following folding equations for the new 

folding sets: 
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(1) (1) (1) (1)
1,2 1 1 1,2
(1) (1) (1) (1)
3,4 2 1,2 2
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  (4-16) 

According to the new folding sets in Eq. (4-15), the RC 2-interleaved SC polar 

decoder architecture employing four merged PEs is illustrated in Figure 4.2. Since the 

routing for the RC 2-interleaved decoder architecture is a little bit complicated, different 

colors are employed for better identification. The control signals of the decoder 

architecture can be determined according to the folding sets. The switching schedule of 

all the control signals is listed in Table 4.5 as follows: 

Table 4.5  Control signals for the RC 2-interleaved decoder. 

Signal Clock cycle 
1 2 3 4 5 6 7 8 

m1 –– –– 0 0 1 1 0 1 
m2 –– –– 0 –– –– 1 –– –– 
d1 –– –– –– 0 1 –– –– –– 
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Figure 4.2  The RC 2-interleaved architecture for 8-bit polar decoder. 
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For easier understanding of the decoding schedule of the proposed RC 2-interleaved 

polar decoder, the four merged PEs are marked with red labels. The number of active 

PE(s) in each clock cycle is shown in Table 4.6. 

Table 4.6  Number of active merged PEs for RC 2-interleaved decoder. 

PE 
Clock cycle 

1 2 3 4 5 6 7 8 
1         
2    –– ––  –– –– 
3    –– ––  –– –– 
4         

∎: dealing with Codeword 1; 
∎: dealing with Codeword 2. 

Indicated by the cardinality of the folding sets, in order to complete the decoding 

process of both code-words, a total of 8 clock cycles are required. Compared with the 

conventional pre-computation look-ahead decoding process, an additional clock cycle is 

required. In general, the N-bit RC 2-interleaved SC decoder’s decoding latency equals N 

clock cycles. For real-time communication applications, the code length N is considerable 

large, the one clock cycle penalty is negligible. At the same time, its advantages are 

obvious: the decoding throughput has been doubled while the hardware cost is only 50% 

as before. 

In general, to construct an L-interleaved N-bit polar decoder architecture, the brute-

force way is to simply duplicate the proposed RC 2-interleaved decoder 2
L    times. 

Therefore, a total of 22
N L⋅     merged PEs and N clock cycles are required. In this case, 

the decoding latency will remain as N clock cycles. 

However, in our design situation, since the resources are constrained, we have to stick 

with 2
N  merged PEs. To avoid too large decoding latency, further optimization is required. 

According to the DFG analysis in Section 3.3, for the pre-computation look-ahead 

sequential decoder in Figure 3.10, Stage i is associated with 12i−  clock cycles’ latency. 
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Compare the proposed RC 2-interleaved decoder architecture in Figure 4.2 with the one 

illustrated in Figure 3.10. If we are trying to process L code-words in an interleaved 

manner using the same architecture in Figure 4.2, the resulting latency associated with 

Stage i in Figure 3.10 is 1
1

22 i
i L

−
− ⋅     clock cycles. Therefore, the entire decoding latency 

for this RC L-interleaved decoder is: 

2

1

log
1

2
1

2 .i

N
i L

i
T −

−

=

= ⋅   ∑      (4-17) 

Let us see some examples. First, let 2L =  and 8,N =  we have the decoding latency 

for the RC 2-interleaved 8-bit polar decoder architecture is 

2

1

1

0 1 2

log 8
1 2

(8,2) 2
1

3
1 2

2
1

0 1 22 2 2
2 2 2

2

2

2 2 2
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8,
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i

i

T −

−

−

=

−

=

= ⋅   

= ⋅   

= ⋅ + ⋅ + ⋅          
= + +
=

∑

∑
   (4-18) 

which matches the result shown in Table 4.6. 

Then, we try to calculate the decoding latency for the RC 3-interleaved example. Set 

3L =  and 8,N =  we have the decoding latency is 

2

1

1

0 1 2

log 8
1 3

(8,3) 2
1

3
1 3

2
1

0 1 23 3 3
2 2 2

2

2

2 2 2

3 4 4
11.

i

i

i

i

i

i

T −

−

−

=

−

=

= ⋅   

= ⋅   

= ⋅ + ⋅ + ⋅          
= + +
=

∑

∑
  s (4-19) 

On the other hand, the decoding schedule of the RC 3-interleaved decoder can be 

described by Table 4.7 as follows: 
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Table 4.7  Number of active merged PEs for RC 3-interleaved decoder. 

PE 
Clock cycle 

1 2 3 4 5 6 7 8 9 10 11 
1            
2            
3     –– –– ––  –– –– –– 
4     ––    ––   

∎: dealing with Codeword 1; 
∎: dealing with Codeword 2; 
∎: dealing with Codeword 3. 

Again, we have two results match with each other. However, in real applications the 

RC 2-interleaved pre-computation look-ahead decoder is the most favorable one. Because 

it can achieve good balance of both decoding throughput and hardware cost. 

 Comparison with Other Works 4.6

In this section, we conduct a comparison with the state-of-the-art designs. Both the pre-

computation look-ahead TC interleaved decoder design and the RC interleaved decoder 

design proposed in this chapter are included in the comparison. For the TC M-interleaved 

polar decoder, it is assumed that 2i-1-1<M≤2i-1. For the RC interleaved polar decoder 

architecture, the 2-interleaved version is compared here. The previous decoders which 

have already been mentioned in Table 3.7 are not compared here. The other designs 

included in Table 4.8 are the conventional overlapped decoder in [92], the line decoder in 

[94], and the pre-computation look-ahead sequential decoder proposed in Section 3.5. All 

the design details are listed in Table 4.8. The same assumptions on the hardware 

conversion and throughput estimation, which are used in Table 3.7, are also adopted here. 

Also, since the merged PE architecture we proposed in Chapter 3 consumes similar 

hardware compared with the conventional one, no more gate count details are provided 

here. 
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Table 4.8  Comparison between the two proposed works and others. 

Different designs Number of merged PEs Number of feedback parts Latency  Throughput 
Pre-computation TC 
interleaved design N+2i-1∙(i-2) M N-1 2M 

Pre-computation RC 2-
interleaved design N/2 2 N 4 

Pre-computation look-
ahead sequential design N-1 1 N-1 2 

Overlapped design [92] ~N+M(log2M/2)/2 –– 2(N-1) 1 

Line design [94] N/2 –– 2(N-1) 1 
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First, let us focus on the pre-computation look-ahead TC M-interleaved decoder. 

Compared with the line decoder and the pre-computation look-ahead sequential decoder, 

this design shows significant improvement in data throughput. Also, the proposed TC 

interleaved one can achieve the highest throughput and hardware utilization (100%) when 

M = N-1. If compare the pre-computation look-ahead TC interleaved decoder with the 

overlapped one given in [92], our design can achieve twice data throughput with similar 

hardware cost. 

Table 4.9  The TC 2-interleaved decoding schedule for 8-bit decoder. 

Stage Clock cycle 
1 2 3 4 5 6 7 8 

TC 3-interleaved pre-computation decoding schedule 
 1 C1 C2 –– –– –– –– –– C3 
 2 –– C1 C2 –– C1 C2 –– –– 
 3 –– –– C1 C2 –– C1 C2 –– 
 3’ –– –– –– C1 C2 –– C1 C2 

A recent publication has report the low hardware-complexity SC polar decoder called 

line decoder. However, if we compare the proposed RC 2-interleaved SC polar decoder 

with it, the advantages of our design is obvious. The RC 2-interleaved decoder can 

achieve 4 times decoding throughput while only consume the same hardware cost. If we 

compare the RC 2-interleaved decoder with the pre-computation look-ahead sequential 

decoder, it can achieve 200% throughput improvement and 50% hardware reduction. 

From the previous analysis, we know that the TC interleaved design proposed in Section 

4.2 can achieve high hardware utilization. For the TC 2-interleaved polar decoder (shown 

in Table 4.9), the hardware utilization of the entire decoder can be calculated as follows: 

4 4 2
7 7 72 2 4 42.9%.

8
× × ×+ +

     (4-20) 

However, according to Table 4.6, the hardware utilization for the RC 2-interleaved is 

75%. That means the proposed RC 2-interleaved polar decoder architecture can attain 
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even higher utilization than its TC interleaved counterpart. Low latency, high throughput, 

and high utilization make the RC 2-interleaved SC polar decoder very attractive for real-

time applications. 

 Conclusion 4.7

In this chapter, two kinds of interleaved SC polar decoder architectures are proposed. 

Compared with the pre-computation look-ahead sequential decoder, they can achieve 

even higher throughput. With the properties introduced, the pre-computation look-ahead 

TC interleaved decoder family can be constructed in a systematic manner. With the 

overlapping scheme, the hardware utilization can be as high as 100%. Also, the RC 

interleaved SC decoder family is presented. A formal design methodology is introduced 

as well. Comparison results have shown that the RC 2-interleaved pre-computation look-

ahead decoder can achieve 4 times decoding throughput compared with the state-of-the-

art design in [92]. 

Equation Chapter 5 Section 1 
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   Chapter 5

Design of Simplified SC Polar Decoders 

This chapter presents the latency analysis and the architecture design of simplified SC 

(SSC) polar decoders [61]. The remainder of this chapter is organized as follows. A brief 

introduction is given in Section 5.1. A review of the SSC decoding algorithm is provided 

in Section 5.2. In Section 5.3, a systematic way to calculate the latency for the SSC 

decoder is proposed. An SSC polar decoder architecture is presented in Section 5.4. 

Using the pre-computation technique, the latency-reduced SSC decoder architecture is 

presented in Section 5.5. Comparison results with state-of-the-art works are presented in 

Section 5.6. Section 5.7 concludes this chapter. 

 Introduction 5.1

According to Chapter 3 and Chapter 4, we can see that the decoder architecture design is 

an active area of research. In real-time applications, to guarantee better performance over 

turbo codes or LDPC codes, polar codes’ code length N needs to be greater 210. For the 

SC decoding algorithm [28], the long code length leads to a significant increase in 

decoding latency. To widely employ polar codes in real-time applications, the design of 
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low-latency decoders is greatly needed. In previous chapters, we have provided several 

design methodologies to address this problem. However, the few existing SC decoders 

fail to completely satisfy this requirement. According previous analysis, the decoding 

latency for conventional SC decoders in [28, 92, 94] is 2(N-1). In Chapter 3 and Chapter 

4, though the pre-computation technique is used, their decoding latency remains (N). 

Significant research has been directed towards code constructions and decoding 

algorithms for polar codes. However, how to construct efficient SC polar decoders with 

even shorter latency is still a problem. 

To this end, [60] introduced a modified decoding scheme called the simplified SC 

(SSC) decoding algorithm is introduced. First, the SSC algorithm removes all the 

redundant computations required by the rate-zero constituent codes. Second, by 

simplifying local decoders for rate-one constituent codes, the SSC algorithm can further 

reduce the decoding latency. However, how to efficiently determine the decoding latency 

for one specific polar code has not been addressed yet. Hardware implementation for the 

SSC decoding algorithm has not been proposed either. Another important issue, which 

we should be aware of is, in some cases the decoding latencies for the SSC decoder are 

still longer than those in [36, 58, 59]. 

In this paper, first we propose a systematic way to calculate the decoding latency for 

the SSC algorithm. With this method, we can calculate the decoding latency for any 

given polar code easily. Then a formal design flow for the SSC decoder architecture is 

developed. Finally, in order to always achieve a lower decoding latency than those in [36, 

58, 59], a novel pre-computation SSC decoder architecture is also proposed. 
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 Review of the SSC Algorithm 5.2

 Tree Representation of the SC Decoding Algorithm 5.2.1

Previously, the FFT-like butterfly trellis shown in Figure 3.3 is employed to denote the 

SC decoding process. [60] has shown that the binary tree can also be employed to provide 

another representation of the SC decoding algorithm. Again, the 8-bit polar decoder is 

used as the running example to give a clear explanation. 
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βv
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α
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β
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α
rv

Stage 1
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Figure 5.1  Tree representation of the 8-bit SC polar decoder. 

As illustrated in Figure 5.1, like the previous trellis representation, this binary tree can 

be partitioned into three stages. In general, except of the last stage, each stage is 

composed of one level of nodes of the binary tree. The last stage is composed of the two 

bottom levels of the binary tree. 

Every node within the binary tree representation is associated with some message 

vectors. For any Node v, ( )v vα β , ( )
l lv vα β , and ( )

r rv vα β are the message vectors passing 

between node v and its parent pv, left child vl, and right child vr, respectively. If, Node v is 

located in the last stage, we have sgn( )v vβ α= , and this vβ  is the decoding result of the 

corresponding code bit. With those new notations, the SC decoding algorithm can be re-

descripted by the following equations: 
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Figure 5.2  Decoding process of the 8-bit SC decoder with tree representation. 
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The Decoding Scheme for the SC Algorithm  

[ ] [2 ] [2 1],

[ ] [2 ](1 2 [ ]) [2 1];

[2 1] [ ],

[2 ] [ ] [ ];

sgn( );

l

r l

r

l r

v v v

v v v v

v v

v v v

v v

from the root node
i i i

i i i i

i i

i i i

v in the last row

α α α

α α β α

β β

β β β

β α

= +
 = − + +

+ =
 = ⊕

=

1: begin     

2:     

3:     

4:     if     
5:        
6:    



;vβ    output 
7:     endif
8: endbegin

 

For easy understanding of the tree representation, a detailed example is illustrated in 

Figure 5.2. The nodes within the red dotted circles stay active during the corresponding 

clock cycles. 

 The SSC Decoding Algorithm 5.2.2

According to the definition of polar codes, the input vector as 1
Nu  consists of a random part 

u  and a frozen part cu


. In order to reduce the error rate, when decoding the frozen part, we 

simply assign ˆ c cu u=
 

. Here the values of cu


 are known before the decoding process. 

Therefore, the tedious computations associated with the frozen part can be removed. The real 

decoding task is to generate an estimate û  of u  [28]. 

This fact means the node with in the tree representation can be categorized into three 

parts: the one nodes which are associated with the random part, the zero nodes which are 

associated with the frozen part, and the rest as the mixed nodes. It is assumed that the 

polar code illustrated in Figure 5.1 is actually an (8,3,{5,6,7}, (0,0,0,0,0))  code, whose 

random part consists of the 5th, 6th, and 7th bits. And all its frozen bits are assigned as “0”. 

Its tree representation is given in Figure 5.3 as follows: 
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Figure 5.3  The revised tree representation of the 8-bit SC polar decoder. 

Since the values of the frozen part are pre-determined, we do not need actually go 

through the data flow of the zero nodes. Similarly, the calculations corresponding to the 

one nodes can be replaced by the matrix multiplication operations as well. For more 

details and the proof, please refer to [60]. In this chapter, we only give the SSC decoding 

algorithm as follows: 

The Decoding Scheme for the SSC Algorithm  
{ }
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1: if   then 

2:     
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4: elseif  then
5:     
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2

]) ( [min ], , [max ]);
ˆ ˆ( [min ], , [max ]) ;n dv

v v

v v v

u u
u u Gβ −

=

=6: else 

8: endif


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Here v  is the set which contains indices of all leaf nodes that are descendants of v. dv 

is the depth of v. 
2n dvG −  denotes the generation matrix of dimension 2 vn d−  [60]. Index i can 

vary from 0 to 1(2 1)vn d− − − . We can see, the computations of both the zero nodes and the 
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one nodes can be saved as a result. Therefore, the decoding latency and hardware 

complexity are reduced. 

 The Latency Analysis of the SSC Decoder 5.3

Since decoding latency is a key criterion to weigh the polar decoder design, it is 

important to be able to estimate the latency accurately for any polar code. However, in 

most applications the code length is large and the locations of frozen bits are random. The 

calculation for the SSC decoding latency is not trivial. To this end, an efficient approach 

to calculate the SSC decoding latency for any polar code is proposed in this section. 

 A Simple Example 5.3.1
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Figure 5.4  Conventional SC decoding process. 
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Again, consider the (8,3,{5,6,7}, (0,0,0,0,0))  code in Figure 5.3. If we do not try to 

distinguish frozen bits from information bits, the dependence relationship of each PE can 

always be derived as an FFT-like structure shown in Figure 5.4. Here, we do not try to 

distinguish the Type I PE and Type II PE any more. 

Now, with the SSC decoding algorithm, the PEs in Figure 5.4 are not homogeneous 

any more. As shown in Figure 5.5, all PEs have been categorized into three families. 

Since the values of frozen bits can be determined as zero immediately, computations of 

all zero nodes are eliminated. Also the tedious calculations required by one nodes in 

previous approaches are replaced with simple matrix multiplications (
2n dvG −× ), which can 

be easily implemented with XOR operations. Therefore, only the nodes along the red 

arrow lines need to be activated and the others can be ignored. It can be observed that the 

decoding procedure has been simplified. 
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Figure 5.5  SSC decoding process of the (8, 3) polar code. 
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0 1 2 3 4 5 6 7

: one node tree

: zero node tree

 

Figure 5.6  Nodes categorization with circled binary trees. 

Figure 5.6 illustrates the corresponding tree representation. The calculations of those 

circled binary trees are removed according to the SSC decoding algorithm. The decoding 

latency now can be calculated by subtracting the computation latency savings from the 

previous SC decoding latency. 

In this example, the latency for the 8-bit conventional SC decoder is 14 clock cycles. 

The latency savings for each constituent sub-trees (from left to right) are 7, 1, 1, and 3 

clock cycle(s), respectively. One must note that in the SSC decoding process, each one 

node tree will be replaced by a simple matrix multiplication (
2n dvG −× ). Hence, we need to 

take the processing time for the matrix multiplications into account. Here, the two one 

node trees (from left to right) will be replaced by 1G×  and 2G× , respectively. Their 

latency costs are 1 and 2 clock cycle(s) (see more details in Section 5.4). Therefore, the 

decoding latency for this (8, 3) decoder can be calculated below: 

(8,3) 14 (7 1 1 3) (1 2) 5.T = − + + + + + =     (5-1) 

Alternatively, the decoding latency of the SSC algorithm can be obtained in the 

straightforward way. The schedule of events for this 8-bit SSC decoding process is shown 
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in Table 5.1. The SSC decoding latency of five clock cycles is also verified with this 

method. 

Table 5.1  The SSC decoding schedule for the (8, 3) polar decoder. 

Clock cycle 1 2 3 4 5 
Active nodes B1,…,4 C3,4 F3 D3,4 ×G2 
Output bits –– –– 6û  –– 7 8ˆ ˆ,u u  

 Latency Analysis for the General Code Length 5.3.2

In this sub-section, we would like to find a method to derive the SSC decoding latency 

for the general code length. From the remainder of this sub-section, we will see similar 

calculation approach employed in Figure 5.6 could be used for the general case. However, 

before deriving this method, two lemmas are presented first. 

The first lemma is dealing with the decoding latency of a depth-given a constituent 

zero (one) node tree. As the name implies, a constituent tree is defined as zero (one) node 

tree if and only all its nodes are zero (one) nodes (see Figure 5.6). This lemma is stated as 

follows: 

Lemma 1 The decoding latency for a constituent zero (one) node tree of depth d is 2d+1-1. 

Proof Each node of a constituent zero (one) node tree will be activated once. Therefore, 

the latency equals the number of nodes in a perfect binary tree of depth d, i.e., (2d+1-1).∎ 

With Lemma 1, we can also derive the decoding latency for the SC polar decoder: 

Lemma 2 The decoding latency for a conventional N-bit SC decoder is 2(N-1). 

Proof A conventional N-bit SC decoder can be considered as two constituent trees of 

depth log2N-1. The lemma follows immediately.∎ 
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Now, we have both Lemma 1 and Lemma 2 available. By subtracting the clock 

savings from the total latency required by the conventional N-bit SC decoders, the SSC 

decoding latency for the general code length is obtained as follows. 

Theorem 1 The decoding latency T for an N-bit SSC polar decoder can be calculated by: 

11

{ } { }
2( 1) (2 1) [(2 1) ( 1)],ji dd

j
i j

T N d++= − − − − − − +∑ ∑   (5-2) 

where { }i  and { }j  are the sets of zero node trees and one node trees, respectively. 

Proof According to Lemma 2, the decoding latency for a conventional N-bit SC decoder 

is 2(N-1). Removing a zero node tree of depth d will reduce latency by 12 1d+ −  clock 

cycles (Lemma 1). Similarly, removing a one node tree will result in the same reduction. 

But we need to spend additional clock cycles for the matrix multiplication operation. 

With the fully pipelined matrix multiplication block, which is discussed in next section, 

d+1 additional clock cycles are required by the “
2dG× ” operation. This completes the 

proof.∎ 

Now, we would like to use Theorem 1 for the previous code example. In Figure 5.6, 

there are two zero node trees in the binary tree plot, whose depths are 2 and 0, 

respectively. There are also two one node trees with depths 1 and 0. According to Eq. 

(5-2), the latency for the (8, 3) SSC decoder can be calculated as follows:  

3 1 1 2
(8,3) 2 (8 1) [(2 1) (2 1)] {[(2 1) (0 1)] [(2 1) (1 1)]}

5,

T = × − − − + − − − − + + − − +

=
(5-3) 

which matches our previous analysis. 

Next we use this method for another code, which is more complicated than the first 

code. Consider the code (8,5,{2,3,5,6,7}, (0,0,0)) , its tree representation is illustrated in 

Figure 5.7 as follows: 
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Figure 5.7  Sub-trees identification for an (8, 5) code example. 

With the conventional approach, we go through the entire decoding process. Its 

decoding schedule is derived as shown in Table 5.2. It can be observed that its decoding 

latency is 8 clock cycles. 

Table 5.2  The SSC decoding schedule for the (8, 5) polar decoder. 

Clock cycle 1 2 3 4 
Active nodes A1,…,4 C1,2 ×G2 B1,…,4 
Output bits –– –– 2 3ˆ ˆ,u u  –– 
Clock cycle 5 6 7 8 

Active nodes C3,4 F3 D3,4 ×G2 
Output bits –– 6û  –– 7 8ˆ ˆ,u u  

Meanwhile, the latency can also be calculated with the proposed approach. According 

to Eq. (5-2), the SSC decoding latency is: 

2 1 1 2
(8,5) 2 (8 1) [(2 1) (2 1)] {[(2 1) (0 1)] 2 [(2 1) (1 1)]}

8.

T = × − − − + − − − − + + × − − +

=
(5-4) 

Two results match again. This approach is universal that can be applied to the SSC 

polar decoder with any code length, code rate, or frozen bit location. Without laboriously 

following the entire decoding process like before, the decoding latency can be derived 

easily in a systematic manner. 
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 Proposed SSC Decoder Architecture 5.4

Now we present the design steps for the SSC decoder. The (8,3,{5,6,7}, (0,0,0,0,0))  

polar code example used in [60] is employed here to illustrate the procedure. 

 DFG Analysis of the SSC Decoding Process 5.4.1

For the conventional SC algorithm, its DFG analysis [58] has been carried out in Chapter 

3. Now we show that several modifications are needed to obtain the revised DFG for the 

SSC decoding process. According to the latency analysis, all PEs corresponding to zero 

node trees can be safely removed. All PEs corresponding to one node trees can be 

replaced by matrix multiplications (
2n dvG −× ). In Figure 5.8, by removing all the shaded 

nodes, a total of 5 clock cycles are required to output all code bits, compared 14 clock 

cycles for the conventional ones. 
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Figure 5.8  The DFG for the SSC decoding approach. 

 The SSC Decoder Architecture Design 5.4.2

With the revised DFG available, we can derive the corresponding decoder architecture 

now. Interpreting the DFG in Figure 5.8 with hardware implementations, we can derive 
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the SSC polar decoder architecture illustrated in Figure 5.9. Since all frozen bits are set to 

0, PEs B1,…,4 and F1 are nothing but W-bit adders, where W is the quantization length. C1,2 

and D1,2 can be implemented with Type I and Type II PE proposed in Chapter 3, 

respectively. 
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û7

D

D

: Hard decision 

( ) ( )L y1
1 1

( ) ( )L y1
1 2

( ) ( )L y1
1 3

( ) ( )L y1
1 4

( ) ( )L y1
1 5

( ) ( )L y1
1 6

( ) ( )L y1
1 7

( ) ( )L y1
1 8

D

D

D

D

W-bit  
adder

×G2 û8
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Figure 5.9  The SSC decoder architecture for the (8, 3) codes. 

For the matrix multiplication block, it is known that the generation matrix can always 

be written in the form: 

1 0
,

1 1
n

N NG B F F⊗  
= =  

 
 with    (5-5) 

where N is the code length, n equals log2N, ⨂ is the Kronecker power operation, and BN 

is the bit-reversal matrix. 
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Figure 5.10  The fully-pipelined implementation for 3F⊗ . 

The matrix multiplication block is composed of two parts: the NB  part and the nF⊗  

part. Because all inputs to the matrix multiplication block are available at the same time, 

the BN part can always be implemented with simple routing. The fully pipelined design 

example for 3F⊗  is illustrated in Figure 5.10. 
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Figure 5.11  Recursive construction of the fully-pipelined implementation. 
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The general form of the nF⊗  part can be implemented in a recursion fashion, which 

is shown in Figure 5.11. With this approach, two copies of 1nF⊗ − implementation and N/2 

XOR gates are combined together to produce the fully pipelined implementation of the 
nF⊗ part. 

 Pre-Computation Look-Ahead SSC Polar Decoder 5.5

 Look-Ahead SSC Polar Decoder Architecture 5.5.1

Though the SSC algorithm can effectively reduce the latency, in some occasions its 

latency can still be greater than that of the pre-computation look-ahead SC approach [36, 

58, 59]. This is because the SSC decoding latency highly depends on the specific code 

which is being processed. Following our prior approach in [36, 58, 59], we can further 

reduce the decoding latency for SSC decoder by using pre-computation look-ahead 

technique [99]. Back to our (8, 3) decoder example, it can be noted that C3,4 and D3,4 are 

actually dual PEs which can be merged together. The corresponding decoding schedule is 

shown in Table 5.3: 

Table 5.3  Pre-computation schedule for the (8, 3) decoder. 

Clock cycle 1 2 3 4 
Active nodes B1,…,4 C3,4, D3,4 F3 ×G2 
Output bits –– –– 6û  7 8ˆ ˆ,u u  

Since the pre-computation look-ahead technique is used, the same merged PE 

proposed in Chapter 3 is employed here to construct the new architecture shown in Figure 

5.12. This merged PE is used instead of Type I and Type II PEs to carry out both 

operations efficiently in the same clock cycle. 
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Figure 5.12  Pre-computation SSC decoder architecture for the (8, 3) polar codes. 

 Latency of the Look-Ahead SSC Polar Decoder 5.5.2

However, for the general case, how to calculate the reduced latency remains 

undetermined. Again, we will exploit the nodes categorization tree to extend pre-

computation scheme to the realm of N-bit decoder condition. 

The method to compute the decoding latency of the pre-computation look-ahead SSC 

decoders is given in the following theorem. 

Theorem 2 The latency T' for an N-bit pre-computation SSC polar decoder can be 

calculated by: 

11

{ } { }
2( 1) (2 1) [(2 1) ( 1)] ,ji dd

j
i j

T N d k++′ = − − − − − − + −∑ ∑   (5-6) 

where k is the number of mixed nodes which have one node descendants in both left and 

right sub-trees. 

Proof According to Figure 5.8, a mixed node will be activated twice during one decoding 

procedure if and only if it has one node descendants in both its left and right sub-trees. 
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However, with pre-computation technique this mixed node can be activated only once. 

Hence, one clock cycle is saved for each qualified mixed node. This completes the proof: 

since the above argument applies to any pre-computation SSC decoder, its decoding 

latency T' is k clock cycles less than T (see Eq. (5-2)), where k is the number of the 

qualified mixed nodes.∎ 

: qualified mixed node

(8, 3) code

0 1 2 3 4 5 6 7  

Figure 5.13  The qualified mixed node for the (8, 3) code. 

We can apply this method back to our previous (8, 3) polar code example. As 

illustrated in Figure 5.13, the number of qualified mixed node(s) is one. We apply 

Theorem 2 to calculate its decoding latency. We get the result which matches Table 5.3: 

(8,3) 5 1 4.T ′ = − =     (5-7) 

For the previously mentioned (8, 5) polar code, we have its pre-computation look-

ahead decoding schedule listed in Figure 5.4 as follows: 

Table 5.4  Pre-computation schedule for the (8, 5) decoder. 

Clock cycle 1 2 3 
Active nodes A1,…,4, B1,…,4 C1,2 ×G2 
Output bits –– –– 2 3ˆ ˆ,u u  
Clock cycle 4 5 6 

Active nodes C3,4, D3,4 F3 ×G2 
Output bits –– 6û  7 8ˆ ˆ,u u  
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: qualified mixed node

0 1 2 3 4 5 6 7

(8, 5) code

 

Figure 5.14  The qualified mixed node for the (8, 5) code. 

According to Figure 5.14, the number of qualified mixed node(s) within the binary 

tree is two. By applying Theorem 2 again, we get the result which matches Table 5.4: 

(8,5) 8 2 6.T ′ = − =     (5-8) 

Although the saving here is only one or two clock cycle(s), when N becomes larger, 

the positions of one nodes become more scattered, the advantage brought by the pre-

computation method will be more prominent. Please see the 1024-bit polar code in 

Section 5.6 as an example. 

 Latency and Complexity Comparison 5.6

In this section, we compare the proposed SSC polar decoder architectures with state-of-

the-art references. Comparison results of the decoding latency and the hardware 

efficiency are listed in Table 5.5 in detail. Since the SSC algorithm is code-aware, here, a 

common used (1024, 512) polar code is employed as an example to conduction the 

comparison in Table 5.5. 
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Table 5.5  Comparison between the proposed SSC decoders and others. 

Different 
designs Conventional SC decoder† Pre-computation SC 

decoder‡ Proposed SSC decoder Proposed pre-computation 
SSC decoder 

Hardware complexity 

# of PEs Type I Type II Merged Type I Type II Merged Type I Type II Merged Type I Type II Merged 
1023 1023 –– –– –– 1023 1023 1022 –– 7 6 1016 

# of matrix 
mult. block –– –– ×G2 ×G4 ×G2 ×G4 

1 1 1 1 
# of other REGs 1023W 3068W 1023W 3055W 
# of other MUXs 0 2045W 12W 2032W 

Total XOR 16368W-3069 17390W 16371W-3067 17375W-19 
REG 1023W 3068W 1023W+4 3055W+4 

Decoding latency 
Latency 2046 1023 1235 866 

†Tree SC decoder proposed in [92]. 
‡Pre-computation SC decoder proposed in [58]. 
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For the proposed (1024, 512) polar code, there are 258 one node trees with depth 0, 

97 with depth 1, and 15 with depth 2, respectively. Meanwhile, there are 258 zero node 

trees with depth 0, 97 with depth 1, and 15 with depth 2, respectively. According to 

Theorem 1, the latency for the corresponding 1024-bit SSC polar decoder is calculated 

as 1235 clock cycles. The number of qualified mixed nodes defined in Theorem 2 is 369. 

Hence, the decoding latency for 1024-bit pre-computation SSC polar decoder is 866 

clock cycles. 

Before the comparison, it is mentioned that the counterpart of the proposed SSC 

decoder is the conventional SC tree decoder [92], and the counterpart of the proposed 

pre-computation SSC decoder is the pre-computation SC decoder [58]. For hardware 

complexity, the word-length of the soft message is W. It is assumed that each 1-bit 2-to-1 

multiplexer requires the same silicon area as an XOR gate. 

Compared with the conventional SC polar decoder, the proposed SSC one can 

achieve 39.6% decoding latency reduction with the same amount of hardware. The 

proposed pre-computation SSC decoder requires only 84.6% decoding latency compared 

with its SC counterpart, with even lower hardware consumption. Therefore, proposed 

SSC polar decoder designs are shown to have advantages in decoding latency compared 

with the state-of-the-art designs [36, 58, 59, 92, 94]. For polar codes with long code 

lengths and deep one (zero) node trees, this advantage can become more apparent. 

 Conclusion 5.7

In this chapter, a newly proposed decoding algorithm named SSC algorithm is 

investigated. A method to calculate the SSC decoding latency is proposed. Based on the 

revised DFG, a design methodology for the SSC polar decoder is given. In order to attain 

further reduced decoding latency, the pre-computation look-ahead SSC decoder 
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architecture is also proposed. Comparison results have shown that the proposed 

architectures turn out to be very attractive for real-time applications. 

Equation Chapter 6 Section 1 
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  Chapter 6

Conclusions and Future Research Directions 

 Conclusions 6.1

This thesis focuses on developing approaches for designing low-latency low-complexity 

channel decoder architectures for modern communication systems. Decoding latency (or 

throughput) and hardware complexity are the two main focuses of channel decoder 

design. How to design a decoder architecture which can well balance the latency and the 

hardware is still a challenging problem. In this thesis, we are not only satisfied with 

specific decoder designs. Our main goal is to propose a design methodology which is 

applicable for general case. With the help of this methodology, we are able to construct 

the decoder architecture to meet various design requirements formally. 

With the help of VLSI DSP techniques [37], two kinds of channel decoders are 

investigated. First, this thesis studies the non-binary QC-LDPC codes. With the given 

geometry properties, the low-complexity non-binary QC-LDPC decoder architectures are 

proposed. We are able to construct the decoder architecture to meet various design 

requirements formally. As a newly proposed error correction code, polar code has shown 
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advantages in several aspects. The rest chapters of this thesis derive several polar decoder 

design methodologies for different real-time communication applications. 

 Non-Binary LDPC Decoders with Efficient Networks 6.1.1

In Chapter 2, the intrinsic shifting and symmetry properties of non-binary QC-LDPC 

codes have been exploited. These unique features lead to significant hardware reduction 

of the switch networks. With those networks, two low-complexity decoder architectures 

are proposed for Class-I and Class-II non-binary QC-LDPC codes, respectively. This 

design approach is general and can be applied to other non-binary QC-LDPC decoders. 

In order to demonstrate the merits of the proposed method, two design examples are 

given. Comparison results with the state-of-the-art designs show that for the code 

example of the 64-ary (1260, 630) rate-0.5 Class-I code, the proposed scheme can save 

up to 70.6% hardware required by switch network, which demonstrates the efficiency of 

the proposed technique. The proposed design for the 32-ary (992, 496) rate-0.5 Class-II 

code can achieve a 93.8% switch network complexity reduction compared with 

conventional approaches. Furthermore, with the help of a generator for possible solution 

sequences, both forward and backward steps can be eliminated to offer processing 

convenience of check node unit (CNU) blocks. Results show that the proposed 32-ary 

(992, 496) rate-0.5 Class-II decoder can achieve 4.47 Mb/s decoding throughput. 

 Low-Latency Sequential SC Polar Decoder 6.1.2

Due to their low encoding and decoding complexity, polar codes have recently emerged 

as one of the most favorable capacity-achieving error correction codes. However, because 

of the large code length required by practical applications, the few existing SC decoder 

implementations still suffer from not only high hardware cost but also long decoding 

latency. 
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In Chapter 3, a data-flow graph (DFG) for the SC decoder is derived for the first time. 

A complete hardware architecture is first derived for the conventional tree SC decoder 

and the feedback part is presented next. It is worth noting that the feedback part can be 

generated in a systematic way. In order to reduce the decoding latency, pre-computation 

look-ahead techniques are proposed based on the DFG analysis. Sub-structure sharing is 

used to design a merged PE for higher hardware utilization. Gate-level design details of 

the merged PE are provided also. Compared with the conventional N-bit tree SC decoder, 

the proposed pre-computation look-ahead decoder architecture can achieve twice speedup 

with similar hardware consumption. 

 High-Throughput SC Polar Decoder Architectures 6.1.3

Two meet the requirements of the modern communication systems, two new SC polar 

decoder architectures are proposed in Chapter 4 to achieve higher throughput. 

First, a family of TC interleaved pre-computation look-ahead SC polar decoders is 

proposed. Several properties of the decoder architectures have been proposed. In order to 

meet different throughput requirements for a diverse set of application scenarios, 

different versions of the proposed TC interleaved decoders are required. With the help of 

those properties, we are able to construct the desired decoder architecture in a systematic 

way. Furthermore, when the concurrent parameter M = N-1, the 100% hardware 

utilization is achieved. Compared with the conventional N-bit tree SC decoder [28, 92], 

the proposed TC interleaved architectures can achieve as high as 2(N-1) times speedup 

with only 50% decoding latency and (N∙log2N)/2 merged PEs. 

Secondly, a RC interleaved processing approach is also introduced to design polar 

decoders. Based on the DFG analysis and the folding technique, the RC L-interleaved 

pre-computation look-ahead SC decoder is proposed. The RC 2-interleaved version is 
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used to show the advantage of this approach. Compared with the newly proposed line 

decoder design [94], the RC 2-interleaved design can achieve 4 times decoding 

throughput with the same hardware cost. 

 Design of Simplified SC Polar Decoders 6.1.4

The simplified successive cancellation (SSC) algorithm is a revised version of the 

conventional SC decoding algorithm. Though it is mathematically equivalent to the SC 

decoding algorithm, its decoding latency and hardware cost have been reduced. In 

Chapter 5, some problems regarding the SSC polar decoder design issues are discussed. 

Since the SSC decoding process highly depends on the specific polar code it is 

dealing with, its decoding latency is not trivial to calculate. In this chapter, we present the 

first systematic approach to formally derive the SSC decoding latency for any given polar 

code. By revising the DFG for the conventional SC decoder, we can easily get the DFG 

for the SSC decoder. With this revised DFG, the method to derive various SSC polar 

decoder architectures for any specific code is also presented. In order to further reduce 

the latency, the pre-computation look-ahead technique is also employed. Similarly, the 

latency-reduced SSC decoder’s latency can also be calculated with a simple equation. 

Compared with the state-of-the-art SC decoder designs, the two SSC polar decoders can 

save up to 39.6% decoding latency with the same hardware cost. 

Recently, a low-latency decoding scheme referred as the simplified successive 

cancellation (SSC) algorithm has been proposed for the decoding of polar codes. In this 

brief, we present the first systematic approach to formally derive the SSC decoding 

latency for any given polar code. The method to derive various SSC polar decoder 

architectures for any specific code is also presented. Moreover, it is shown that with the 

pre-computation technique, the decoding latency can be further reduced. Similarly, the 
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latency-reduced SSC decoder’s latency can also be calculated with a simple equation. 

Compared with the state-of-the-art SC decoder designs, the two SSC polar decoders can 

save up to 39.6% decoding latency with the same hardware cost. 

 Future Research Directions 6.2

In the future, we would like to extend our research in the following aspects: (1) extending 

our switch network designing methodology to other non-binary QC-LDPC codes; (2) 

designing low-latency low-complexity CNU architecture for further non-binary LDPC 

decoders; (3) implementing the pre-computation look-ahead SC polar decoder with real 

chip; (4) investigating the hardware architectures for the list decoding polar decoders; and 

(5) designing the polar decoder architectures for the belief propagation (BP) algorithm. 

 Switch Networks for Other Non-Binary QC-LDPC Codes 6.2.1

In Chapter 2, the switch networks construction methodology for both Class-I and Class-II 

codes. This method leads to significant reduction of memory size and routing complexity. 

However, now this method is only applicable for Class-I and Class-II codes. 

In the next step, we would like to apply it to other non-binary QC-LDPC codes. The 

non-binary QC-LDPC codes form a big family. The previously stated two classes of non-

binary QC-LDPC codes can be categorized into codes constructed in [49]. Usually, the 

techniques such as array masking and array dispersion are employed to construct non-

binary QC-LDPC codes. Several useful codes have been proposed by Lingqi’s [46] and 

Bo’s [54] PhD dissertations as references. Table 6.1 gives a brief overview of those 

popular non-binary QC-LDPC codes. According to the listed construction approaches, 

those codes are highly related. Therefore, we can expand our current approach to other 

kinds of non-binary QC-LDPC to make this approach more general. 
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Table 6.1  Summary of major non-binary QC-LDPC codes. 

Reference Contribution Comment 

[47] A general matrix dispersion construction of non-binary QC-
LDPC codes based on finite fields is given.  

Constriction details can be found in Chapter 3 
of [46]. 

[48] A non-binary incidence-vector construction of non-binary QC-
LDPC codes based on finite geometries is proposed. 

Constriction details can be found in Chapter 4 
of [46]. This is a prior work of [52]. 

[51] A unified approach for constructing binary and non-binary QC-
LDPC codes is presented. This is a prior work of [49]. 

[52] Construction of non-binary QC-LDPC codes based on flats of 
finite Euclidean geometries and array masking is presented. 

Constriction details can be found in Chapter 5 
of [54]. 

[53] Construction of non-binary QC-LDPC codes based on arrays of 
circulant matrices and multi-fold array dispersions is presented. 

Constriction details can be found in Chapter 4 
of [54]. 

[50] Four specific algebraic constructions of RS-based QC-LDPC 
codes (construction based on RS codes) are presented. 

Constriction details can be found in Chapter 6 
of [54]. 

[49] Construction of non-binary QC-LDPC codes based on dispersing 
matrices over subgroups of non-binary finite fields is proposed. 

Constriction details can be found in Chapter 8 
of [54]. 
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 Low-Latency Low-Complexity CNU Architectures 6.2.2

Similar to their binary counterparts, in the non-binary LDPC decoders, CNU has the 

highest hardware complexity among all units. Therefore, low-latency low-complexity 

CNU design is the most favorable topic for non-binary decoders [38, 39, 42-44, 68]. 

Although in Chapter 2, by introducing the generator for possible solution sequences, the 

CNU process is simplified, this method is not suitable for 64-ary (or higher order) LDPC 

codes since the throughput is too slow to be practical. Also, Because of the inherent high 

decoding complexity, the hardware cost of CNU block will increase drastically with the 

increase of the finite field order. 

Therefore, CNU architectures with low latency and low complexity are still required. 

In the next design, we are going to refine the previous path-finding approach to present 

an efficient architecture design for the CNU block. 

 Chip Implementation of the Proposed Polar Decoders 6.2.3

According to Chapter 3 up to Chapter 5, the proposed polar decoder architectures have 

shown advantages over previous works. However, the best way to evaluate the decoding 

throughput and hardware consumption of one design is to implement it. Also we know 

that there are at two published works that provide detailed hardware complexity reports 

in FPGA or ASIC [93, 94]. Implementing the proposed designs with prototype would 

give a much more clear view of the potential of those works. This would also alleviate 

the somehow problematic complexity comparison with the feedback part omitted. 

 List Decoder Architectures for Polar Codes 6.2.4

In this thesis, all the polar decoders are dealing with SC decoding algorithm, or its 

variants, such as Min-Sum algorithm and SSC decoding algorithm. However, the SC 
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decoding algorithm family could not achieve the optimal decoding performance [107]. 

Recently, the list decoding approach is reported to show better performance compared 

with other codes [57]. Until now, no hardware implementation of the list polar decoder 

has been reported. Actually, the list decoding algorithm for polar code is nothing but a 

multi-way version of the conventional SC decoding followed by a selecting step. 

Therefore, the SC decoding algorithm and the list decoding algorithm are highly related. 

Our previous design approaches on SC polar decoder architectures can be employed. 

 Polar Decoders Using Belief Propagation Algorithm 6.2.5

Aside from the SC decoding algorithm, there is another decoding algorithm for polar 

codes: the belief propagation (BP) algorithm. This algorithm was first used to give a 

performance comparison of polar codes and Reed-Muller codes [34]. In [107], Korada 

and Urbanke have proved that SC decoding as a particular instance of BP algorithm. The 

performance of BP decoding algorithm is in general superior to that of the SC algorithm. 

Also, the corresponding decoding latency is much shorter than that of the SC decoder. 

Although the computation complexity of BP decoder is higher than the SC decoder, its 

hardware implementation is very attractive for hardware designers. 
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