
Low-Power Architectures for Signal Processing and
Classification Systems

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

Manohar Ayinala

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

Doctor of Philosophy

Keshab Parhi

August, 2012

c© Manohar Ayinala 2012

ALL RIGHTS RESERVED

Acknowledgements

First of all, I wish to thank my advisor, Professor Keshab K. Parhi, for his continuing

encouragement, guidance and financial support throughout my Ph.D. study at Univer-

sity of Minnesota. I would also like to thank Professor Gerald Sobelman, Professor

Tay Netoff, and Professor Sachin Sapatnekar for their support as members of my Ph.D.

committee. Their comments and suggestions helped me improve my thesis.

I would like to thank Prof. Chris Kim and his students for the technology libraries

and tools support used in this research. I would like to thank the Graduate School for

their financial support with Doctoral Dissertation Fellowship. I would also like to thank

Minnesota Supercomputing Institute for their support with computing resources. Part

of this work on FFT architectures is carried out at Leanics Corporation, Minneapolis.

I would like to give special thanks to my parents and sister for their love, encour-

agement and constant support to continue my studies because without them this work

would not have been possible.

My thanks also go to current and former members of our research group. Partic-

ularly, Dr. Yun Sang Park, Dr. Renfei Liu for our numerous discussions on various

research topics. Also, I am grateful to Dr. Aaron Cohen, Chuan Zhang, Sohini Roy-

chowdury, Bo Yuan for their support and encouragement during my Ph.D.

Additionally, I would like to thank my friends Prasanth Ganta, Raviteja Pavuluri

and erie group in Minneapolis especially Krishna, Vivek, Narayanarao, Ravali, Srikar,

Prathyusha for their special assistance and encouragement to continue my studies.

i

Abstract

Digital signal processing and classification algorithms play a crucial role in modern day

biomedical monitoring systems. Fortunately, emerging sensors and stimulators as well as

specialized networking technologies have enabled biomedical devices to advance to new

frontiers. Deep-brain stimulators, for instance, offer unprecedented modalities for deliv-

ering therapy to patients affected by neurological conditions, ranging from Parkinson’s

disease to epilepsy; out-patient monitoring networks raise the possibility of compre-

hensive yet cost-scalable healthcare delivery over large populations with increasingly

diverse disease states. The central need, as these systems advance towards intelligent,

closed-loop operation, is the ability to detect specific physiological states of interest

from signals that are available through sensors. A key challenge in closed-loop biomed-

ical systems is the ability to detect complex physiological states from the patient data

within a constrained power budget. Signal processing and data-driven machine learning

techniques are major enablers for modeling and detection of such states. However, the

computational power scales with the complexity of models required.

This thesis considers the VLSI implementation of basic signal processing techniques

such as fast Fourier transform (FFT), power spectral density (PSD) computation. Re-

configurable architectures for classification algorithms including support vector ma-

chines (SVM) and Adaboost are also presented. The proposed architectures improve

performance and reduce area/power consumption.

First, we present a novel methodology to design parallel pipelined FFT architec-

tures using folding transformation and register minimization techniques. Novel parallel-

pipelined architectures for the computation of complex valued fast Fourier transform

are derived. The proposed architectures overcome prior bottlenecks and achieve full

hardware utilization. The operating frequency of the proposed architecture can be de-

creased which in turn reduces the power consumption. This significantly reduces power

at same speed or increases speed at same power consumption level. The power con-

sumption can be reduced up to 37% in 2-parallel architectures. Further, we propose a

novel approach to develop pipelined fast Fourier transform (FFT) architectures for real-

valued signals. Novel 2-parallel and 4-parallel architectures are presented for radix-23

ii

and radix-24 algorithms. The proposed radix-23 and radix-24 architectures lead to low

hardware complexity compared to a prior RFFT architecture.

We propose an efficient architecture for memory-based in-place FFT/IFFT compu-

tation. A conflict-free memory addressing scheme is proposed to ensure the continuous

operation of the FFT processor. The proposed architecture requires fewer computation

cycles along with the low hardware cost compared to prior work. We then present a

low-complexity algorithm and architecture to compute power spectral density (PSD)

using the Welch method. The complexity reduction comes at the cost of slight perfor-

mance loss in accuracy due to the approximation used for the implementation of the

fractional delay filter. The performance loss is 6-8% using fractional delay filter with 2-3

multipliers. A novel architecture is presented based on the proposed algorithm which

consumes 33% less energy compared to the original method.

We propose a low-energy reconfigurable architecture for support vector machines

(SVMs) based on approximate computing by exploiting the inherent error resilience in

the computation. We present two design optimizations, fixed-width multiply-add and

non-uniform look-up table (LUT) for exponent function to minimize power consumption

and hardware complexity while retaining the classification performance. The proposed

design consumes 31% less energy on average compared to a conventional design. Finally,

we present a novel low-complexity patient-specific algorithm for seizure prediction using

spectral power features. The proposed algorithm achieves a sensitivity of 94.375% for

a total of 71 seizure events with a low false alarm rate of 0.13 per hour and 6.5% of

time spent in false alarms using an average of 5 features for the Freiburg database.

The low computational complexity of the proposed algorithm makes it suitable for an

implantable device.

iii

Contents

Acknowledgements i

Abstract ii

List of Tables viii

List of Figures x

1 Introduction 1

1.1 Introduction . 1

1.2 Summary of Contributions . 3

1.2.1 FFT Computation . 4

1.2.2 PSD Computation . 5

1.2.3 SVM Computation . 6

1.2.4 Seizure Prediction . 7

1.3 Outline of the Thesis . 8

2 FFT Architectures for complex inputs 10

2.1 Introduction . 10

2.2 FFT Algorithms . 11

2.2.1 Radix-2 . 11

2.2.2 Radix-22 . 11

2.2.3 Radix-23 . 13

2.3 Prior Work . 14

2.4 FFT Architectures via Folding . 17

iv

2.4.1 Feed-forward Architecture . 19

2.4.2 Feedback Architecture . 22

2.5 Architectures using DIF flow graph . 25

2.5.1 Radix-2 FFT Architectures . 25

2.5.2 Radix-22 and Radix-23 FFT Architectures 30

2.6 Architecture using DIT flow graph . 32

2.6.1 4-parallel design . 33

2.6.2 8-parallel design . 35

2.6.3 Proposed 128-pt FFT architecture 36

2.7 Reordering of the Output Samples . 37

2.8 Comparison and Analysis . 39

2.8.1 Power Consumption . 42

2.9 Conclusion . 43

3 FFT Architectures for real-valued signals 44

3.1 Introduction . 44

3.2 Prior RFFT Approaches . 46

3.2.1 Algorithms for Computing RFFT 46

3.2.2 Architectures for computing RFFT 46

3.3 Proposed Method 1 . 48

3.3.1 2-parallel Radix-2 Architecture 48

3.3.2 2-parallel Radix-22 Architecture 49

3.3.3 Radix-23 . 54

3.4 Proposed Methodology 2 . 56

3.4.1 Modifying the flow graph . 56

3.4.2 Hybrid datapaths . 57

3.4.3 Folding . 59

3.5 Proposed Architectures . 62

3.5.1 Radix-23 . 62

3.5.2 Radix-24 . 69

3.6 Comparison and Analysis . 70

3.7 Conclusion . 72

v

4 In-Place FFT Architectures 74

4.1 Introduction . 74

4.2 Complex-FFT Architecture . 75

4.2.1 Proposed Addressing Scheme . 77

4.2.2 Address generation unit . 80

4.3 Real-FFT Architecture . 80

4.3.1 RFFT and Prior Work . 80

4.3.2 Addressing Scheme . 83

4.3.3 Address generation unit . 86

4.4 Hermitian-symmetric IFFT processor . 87

4.5 Comparisons . 88

4.6 Conclusion . 89

5 Power Spectral Density Computation 91

5.1 Introduction . 91

5.2 PSD Computation . 93

5.3 Low-complexity PSD Computation . 95

5.3.1 Windowing in the frequency domain 95

5.3.2 Merging of 2 N/2-point FFTs . 96

5.3.3 Fractional delay filter . 98

5.3.4 Proposed PSD computation . 101

5.4 Analysis . 102

5.4.1 Performance . 102

5.4.2 Complexity . 103

5.5 Proposed Architecture . 106

5.6 Overlapped Block Processing . 109

5.7 STFT computation . 111

5.8 Conclusion . 112

6 Support Vector Machines Computation 113

6.1 Introduction . 113

6.2 SVM Theory . 115

6.3 SVM Complexity Analysis . 117

vi

6.4 Proposed Circuit Optimizations . 118

6.4.1 Fixed-width MAC . 119

6.4.2 Exponent Function . 121

6.5 Proposed Architecture . 123

6.5.1 Variable precision MAC . 125

6.5.2 Programmable Kernel . 125

6.6 Simulation Results . 125

6.7 Conclusion . 128

7 Low-power Seizure Prediction Algorithm 129

7.1 Introduction . 129

7.2 Epilepsy and Seizure Prediction . 130

7.3 Prior Work . 131

7.4 Adaboost . 134

7.5 Proposed Algorithm . 135

7.5.1 Dataset . 135

7.5.2 Feature Extraction . 136

7.5.3 Feature Selection . 136

7.5.4 Classification . 138

7.5.5 Post-processing . 139

7.6 Results and Discussion . 140

7.6.1 Performance Analysis . 140

7.6.2 Complexity Analysis . 141

7.6.3 Power estimation . 141

7.7 Conclusion . 142

References 146

vii

List of Tables

2.1 Comparison of pipelined hardware architectures for of N-point FFT . . 41

2.2 Comparison of architectures for the computation of 128-point FFT . . . 42

3.1 Comparison of architectures for the computation of N-point RFFT . . . 70

3.2 Multipliers required for the computation of different N-point RFFTs . . 71

3.3 Synthesis Results . 72

4.1 Address patterns for different N-point FFT computation 80

4.2 Address patterns for different N-point RFFT computation 86

4.3 Comparison of memory-based FFT architectures 89

4.4 Comparison of the RFFT processors . 90

5.1 Non-zero coefficients in frequency domain for different window functions 96

5.2 Performance of the proposed method using least squares FD filter 104

5.3 Computational complexity of the proposed approach 104

5.4 Comparison of computational complexity for different N values 104

5.5 Energy estimates . 108

5.6 Energy estimates for real input . 108

5.7 Computational complexity of processing one block 111

6.1 Computational complexity of SVM Classifier 118

6.2 Conversion between uniform and proposed quantization schemes 123

6.3 Area and power comparison of conventional and proposed LUT schemes 124

6.4 Energy consumption of the proposed architecture per test vector 127

6.5 Energy consumption of the RBF kernel per test vector 128

7.1 Complexity Analysis of SVM and Adaboost classifiers 139

7.2 Comparison of Seizure Prediction Algorithms 140

7.3 Perfomance of the proposed seizure prediction algorithm 142

viii

7.4 Energy estimates . 142

ix

List of Figures

1.1 Examples of implantable/wearable devices. 2

1.2 Closed-loop: monitor, predict/detect, and suppress seizures. 2

1.3 Block diagram of an implantable/wearable system. 3

2.1 Flow graph of a radix-2 8-point DIF FFT. 12

2.2 Radix-2 Flow graph of a 16-point radix-22 DIF FFT. 13

2.3 Flow graph of a 64-point radix-23 DIF Complex FFT 15

2.4 Flow graph of a radix-2 8-point DIF FFT. 18

2.5 Data Flow graph (DFG) of a radix-2 8-point DIF FFT. 18

2.6 Pipelined Data Flow graph (DFG) of a 8-point DIF FFT 20

2.7 Linear lifetime chart for the variables y0, y1, ...y7. 21

2.8 Register allocation table for the data represented in Fig. 2.7. 21

2.9 Delay circuit for the register allocation table in Fig. 2.8. 22

2.10 Folded circuit between Node A and Node B. 22

2.11 Register allocation table for the data represented in Fig. 2.7. 23

2.12 Folded architecture for the DFG in Fig. 2.6 23

2.13 Linear lifetime chart for variables for a 8-point FFT architecture. 24

2.14 Register allocation table for the data represented in Fig. 2.13. 25

2.15 Folded architecture for the DFG in Fig. 2.6 26

2.16 DFG of a radix-2 16-point DIF FFT with retiming for folding. 26

2.17 Proposed 2-parallel architecture of a radix-2 16-point DIF FFT 27

2.18 DFG of a radix-2 16-point DIT FFT with retiming for folding. 28

2.19 Proposed 2-parallel architecture of a radix-2 16-point DIT FFT 28

2.20 DFG of a radix-2 16-point DIF FFT for 4-parallel architecture 29

2.21 Proposed 4-parallel architecture of 16-point radix-2 DIF FFT. 29

x

2.22 Butterfly structures for the proposed FFT architecture 31

2.23 Proposed 2-parallel architecture of a radix-22 16-point DIF FFT 31

2.24 Proposed 4-parallel architecture of a radix-22 16-point DIF FFT 32

2.25 Proposed 2-parallel architecture of 64-point radix-23 DIF FFT 32

2.26 Proposed 2-parallel architecture of 64-point radix-23 DIF FFT 33

2.27 Proposed 4-parallel architecture for 16-point radix-2 DIT FFT. 34

2.28 Proposed 8-parallel architecture for 16-point radix-2 FFT. 35

2.29 Block diagram of the proposed 4-parallel 128-point FFT architecture . . 36

2.30 Solution to the reordering of the output samples 38

2.31 Basic circuit for the shuffling the data. 39

2.32 Linear lifetime chart for the 1st stage shuffling of the data. 39

2.33 Register allocation table for the 1st stage shuffling of the data. 40

2.34 Structure for reordering the output data of 16-point DIF FFT. 40

3.1 4-parallel architecture for the computation of 16-point RFFT 47

3.2 Flow graph of a radix-22 16-point DIF FFT 49

3.3 Proposed 2-parallel for the computation of 16-point radix-22 DIF RFFT. 49

3.4 Simplified flow graph of a 16-point radix-22 DIF RFFT 50

3.5 Proposed 2-parallel for the computation of 16-point radix-22 DIF RFFT. 51

3.6 Butterfly structure for the proposed FFT architecture in the real datapath 52

3.7 Butterfly structures for the proposed architecture 53

3.8 Simplified flow graph of a 16-point radix-22DIF RFFT 54

3.9 Flow graph of a 64-point radix-23 DIF RFFT 55

3.10 Proposed 2-parallel for the computation of 64-point radix-23 DIF RFFT. 55

3.11 Flow graph of a 16-point radix-22 DIF FFT. 56

3.12 Modified flow graph of a 16-point radix-22 DIF FFT. 58

3.13 Butterfly structure BFI for the proposed FFT architecture 60

3.14 Butterfly structure BFII for the proposed FFT architecture 60

3.15 Butterfly structure BFIII for the proposed FFT architecture 60

3.16 Modified flow graph of a 16-point radix-22 DIF FFT. 61

3.17 Modified flow graph of 64-point radix-23 DIF FFT 64

3.18 Structure of the multiplier block in the proposed architectures 65

3.19 Structure of the swap block in the proposed architectures 65

xi

3.20 Proposed 2-parallel architecture for radix-23 64-point DIF FFT 65

3.21 Reordering structure of the pipelined architecture 66

3.22 Proposed N-point 2-parallel architecture for radix-23 DIF FFT 66

3.23 Proposed 4-parallel architecture for radix-23 64-point DIF FFT. 67

3.24 Proposed N-point 4-parallel architecture for radix-23 DIF FFT 68

3.25 Proposed 4-parallel architecture for radix-24 128-point DIF FFT. 68

3.26 RFFT computation using packing algorithm 71

4.1 Proposed memory-based FFT architecture. 76

4.2 Processing element with mixed radix-2/22 butterfly 76

4.3 Data flow graph of mixed radix 32-point FFT. 77

4.4 Addressing scheme for computing 64-point FFT. 79

4.5 Address generation unit. 81

4.6 Data flow graph of 32-point FFT for real-valued signals. 82

4.7 Processing element for real-valued signals. 83

4.8 2-parallel pipelined architecture for a 16-point FFT computation. 83

4.9 Illustration of proposed addressing scheme for one processing element. . 84

4.10 Illustration of proposed addressing scheme for two processing elements. . 85

4.11 Address generation unit of the proposed RFFT processor. 87

4.12 Flow graph of the 16-point inverse FFT for hermitian symmetric input. 87

4.13 Addressing scheme for the proposed hermitian-symmetric IFFT processor 88

5.1 Illustration of the segmentation of a given block 94

5.2 Hamming window in time and frequency domains. 95

5.3 Combining two consecutive N/2-point FFTs into an N-point FFT 96

5.4 Implementation of (5.8) in hardware . 98

5.5 Merging two FFTs using half sample delay filter 100

5.6 Bidirectional estimator for half sample delay. 100

5.7 Coefficients of the filter h[n] for D = 1
2 of length 6. 100

5.8 Proposed bidirectional estimator using 6-tap FIR filter. 101

5.9 Effect of fractional delay approximation on merging two FFTs 102

5.10 Flow chart of the proposed modified Welch algorithm. 103

5.11 PSD computed using Welch method (left) and proposed method (right). 105

5.12 Block level architecture for PSD computation 105

xii

5.13 Absolute square-multiple accumulator (AMAC) circuit. 107

5.14 Filter circuit for windowing in frequency domain. 107

5.15 Illustration of block processing with 50% overlap 110

5.16 Block level architecture for STFT computation 110

6.1 SVM separating hyperplanes . 116

6.2 Overview of the SVM computation . 118

6.3 Architecture of (a) dot-product and (b) L2-norm 119

6.4 Structure of the 12-bit fixed-width multiplier 119

6.5 Effects of fixed-width multiplier . 120

6.6 Area and power comparison . 121

6.7 Curve of function f(x) = e−x(x > 0) . 122

6.8 Conversion circuit for implementing the proposed quantization scheme . 124

6.9 Proposed programmable SVM architecture 126

6.10 Proposed variable-precision MAC unit 126

7.1 Block diagram of a seizure prediction device. 132

7.2 Pre-ictal, ictal and inter-ictal iEEG signals. 133

7.3 Flow chart of the proposed seizure prediction algorithm 136

7.4 Pre-ictal, inter-ictal and their power spectral density 144

7.5 Post processing the classifier output with 5-tap moving average filter . . 145

7.6 Comparison of power and area of SVM-Linear and Adaboost circuits . . 145

xiii

Chapter 1

Introduction

1.1 Introduction

Design of intelligent medical monitoring devices that provides real-time feedback to the

patient is an increasingly important application in healthcare industry. A patient can

wear the device during normal daily activity, allowing medical staff to obtain a much

clearer view of the patient’s condition than is available from short periods of monitor-

ing in the hospital or doctor’s office. In recent years, a number of promising clinical

prototypes of implantable and wearable monitoring devices have started to emerge. If

we imagine an embedded wearable terminal (or implantable in certain cases) that can

monitor the data collected by these sensors through appropriate signal processing algo-

rithms and then provide warning signs of abnormalities, then several fatalities can be

avoided. Fig. 1.1 shows two examples of implantable devices.

These kinds of monitoring systems require merging of sensing and stimulation sys-

tems together to arrive at a bi-directional interface or a closed loop system. Some ap-

plications of bi-directional interfaces that prove beneficial include closed-loop epilepsy

control based on seizure detection, dynamic titration of a Parkinson’s deep brain stim-

ulation (DBS) device based thalamo-cortical oscillation state, and sensory feedback for

motor prosthesis [1]. The challenge with these systems is to balance all of the system

constraints to make the design practical, safe and effective. Fig. 1.2 shows an example

of a closed-loop system for epilepsy.

The main requirement in the closed-loop systems is the ability to detect/predict

1

2

Figure 1.1: Examples of implantable/wearable devices. Pacemaker (left) and Deep brain
stimulator (right).

Figure 1.2: Closed-loop: monitor, predict/detect, and suppress seizures.

3

Sensors
Analog to

Digital
Conversion

Pre-processing
and

Feature
Extraction

Detection/
Prediction

Alarm/Display/
Drug Delivery

System

Digital Signal Processing

Figure 1.3: Block diagram of an implantable/wearable system.

the abnormalities from signals that are available through the sensors. This poses two

essential challenges: (1) the signal correlations to clinically relevant states are generally

too complex to model, and (2) these correlations often varies from patient to patient

[2]. Machine learning based techniques can lead to powerful approaches to overcome

these challenges. This has been prompted by the recent availability of sensors data

in the healthcare domain as well as the development of machine learning techniques

for modeling specific correlations in the data and efficiently applying these models [3].

However, the computations involved must be achieved at very low-power levels (e.g.,

1-10mW for wearable devices and 10-100µW for implantable devices).

1.2 Summary of Contributions

In typical, patient-monitoring applications, bio-signals such as bio-potentials are ac-

quired by sensors attached to a patient’s body, and sent to a nearby intermediate termi-

nal for processing. Most of the processing will be done on remote terminals [4], [5]. With

the advancement of signal processing and VLSI technology, the processing can be done at

the sensor node in the wearable/implantable systems. Low-power consumption and high

sensitivity and specificity are the main requirements in a wearable/implantable mon-

itoring system. Fig. 1.3 shows a generic implantable/wearable system with real-time

processing. The tradeoffs involved in low-power architectures for biomedical monitoring

applications have not yet been fully explored. To this end, this thesis will address the

design of low-power architectures for signal processing and classification algorithms for

biomedical applications.

Our main contributions can be classified under four categories: FFT computation,

PSD computation, SVM computation and an application of these in design of a seizure

4

prediction system. The first three categories represent the feature computation and

classification steps of a general biomedical monitoring system.

1.2.1 FFT Computation

Complex FFT

Fast Fourier transform (FFT) is widely used for biomedical signal analysis to compute

the discrete Fourier transform (DFT). Numerous architectures for FFT have been pro-

posed in the literature [18]-[22]. A formal method of developing these architectures from

the algorithms is not well established. Further, most of these hardware architectures

are not fully utilized and require high hardware complexity. High-throughput and low-

power designs are required to meet the speed and power requirements while keeping

the hardware overhead to a minimum. Therefore, in this thesis we have proposed a

new approach to design these architectures from the FFT flow graphs using folding

transformation [11]. Several novel architectures are also developed using the proposed

methodology which have not been presented in the literature before.

The approach based on use of decimation-in-time algorithms reduce the number of

delay elements by 33% compared to the decimation-in-frequency based designs. The

number of delay elements required for an N -point FFT architecture is N − 4 which is

comparable to that of delay feedback schemes. The number of complex adders required is

only 50% of those in the delay feedback designs. The proposed approach can be extended

to any radix-2n based FFT algorithms. The proposed architectures are feed-forward

designs and can be pipelined by more stages to increase the throughput. Further, a

novel four parallel 128-point FFT architecture is derived using the proposed approach.

Real FFT

Further, when the input samples are real, the spectrum is symmetric and approximately

half of the operations are redundant. In applications such as speech, audio, image, radar

and biomedical signal processing [43], [44], a specialized hardware implementation is best

suited to meet the real-time constraints. This type of implementation also saves power

in implantable or portable devices which is a key constraint.

Even though specific algorithms for the computation of the RFFT [45] - [50] have

5

been proposed in the past, these algorithms lack regular geometries to design pipelined

architectures. These approaches are based on removing the redundancies of the complex

FFT when the input is real and can be efficiently used in in-place architectures [51] or

digital signal processors (DSP). We proposed a novel general methodology for designing

pipelined FFT architectures for real-valued signals. The proposed methodology is based

on modifying the flow graph of the FFT algorithm such that it has both real and

complex datapaths. The imaginary parts of the computations replace the redundant

operations in the modified flowgraph. New butterfly structures are designed to handle

the hybrid datapaths. The proposed hybrid datapath leads to a general approach which

can be extended to all radix-2n based FFT algorithms. Further, architectures with

arbitrary level of parallelism can be derived using the folding methodology. Novel 2-

parallel and 4-parallel architectures are presented for radix-23 and radix-24 algorithms.

The proposed architectures maximize the utilization of hardware components with no

redundant computations. The proposed architectures based on radix-23 and radix-24

algorithms require less multiplication complexity compared to prior RFFT architectures.

In-Place FFT

We propose an efficient architecture for memory-based in-place FFT/IFFT computa-

tion for real-valued signals. The proposed computation is based on a modified radix-2

algorithm, which removes the redundant operations from the flow graph. A new pro-

cessing element is proposed using two radix-2 butterflies which can process four inputs

in parallel. A conflict-free memory addressing scheme is proposed to ensure the con-

tinuous operation of the FFT processor. Further, the addressing scheme is extended to

support parallel processing elements. The proposed real-FFT processor requires fewer

computation cycles along with the low hardware cost compared to prior work.

1.2.2 PSD Computation

We also propose a low-complexity algorithm and architecture to compute power spec-

tral density (PSD) using the Welch method. The Welch algorithm provides a good

estimate of the spectral power at the cost of high computational complexity. We pro-

pose a new modified approach to reduce the computational complexity of the Welch

PSD computation for a 50% overlap. In the proposed approach, an N/2-point FFT

6

is computed, where N is the length of the window and is merged with the FFT of

the previous N/2-point to generate an N -point FFT of the overlapped segment. This

requires replacing the windowing operation as a convolution in the frequency domain.

Fortunately, the frequency domain filtering requires a symmetric 3-tap or 5-tap filter

FIR filter for raised cosine windows. The proposed method needs to compute (L + 1)

N/2-point FFTs instead of L N -point FFTs, where L is the number of overlapping

segments.

In the proposed FFT merging approach, the even samples are computed exactly,

while the odd samples require a shift by a half sample delay and are estimated using a

fractional-delay filter. The complexity reduction comes at the cost of slight performance

loss due to the approximation used for the implementation of the fractional delay filter.

The performance loss is 6-8% using fractional delay filter with 2-3 multipliers. A novel

architecture is presented based on the proposed algorithm. The proposed architecture

is estimated to consume 33% less energy compared to the original method. Further

a low-complexity architecture is presented to compute a special case of the short-time

Fourier transform based on the proposed PSD computation algorithm.

1.2.3 SVM Computation

A wide variety of classification algorithms exist in the literature including artificial neu-

ral networks (ANN), linear discriminant analysis (LDA), Bayes’ classifier etc. Support

Vector Machines (SVM) is one such popular machine learning classifier that can be effi-

ciently trained offline to derive the support vectors. SVMs provide good generalization

performance for a wide range of regression and classification tasks based on the struc-

tural risk minimization induction principle [70], [71]. In recent years, SVMs have been

effectively used as a classification tool in a wide range of problems including pattern

recognition, image analysis, communications, and biomedical signal analysis [8] - [10].

While SVM training can be considered as an offline task, the classification is mostly

performed in real-time on newly obtained data. Face detection, speech recognition,

biomedical signal analysis require online classification and have real-time constraints.

However, the SVM classification is a computationally expensive task, and is linearly

dependent on the classification data load, the population of the support vectors and the

problem’s dimensionality.

7

SVM architectures employing different kernels have been proposed in the recent

literature either for FPGA or ASIC. Not much research has been published on optimiz-

ing the implementation of radial basis function (RBF) kernel either for area or energy

minimization. SVM computations are inherently error resilient as the decision function

depends on the sign but not on the magnitude of the final value. Therefore, we propose

to reduce the precision of the computations for energy minimization which has not been

exploited earlier in the case of SVM design. We propose a general-purpose architecture

for SVM computation that takes advantage of inherent error resiliency of the SVM al-

gorithms. We consider the common SVM kernels used in biomedical signal analysis and

multimedia recognition applications and propose design techniques and optimizations

to minimize power consumption.

We present two design optimizations, fixed-width multiply-add and non-uniform

look-up table (LUT) for an exponent function to minimize power consumption and hard-

ware complexity while retaining the classification performance. A novel non-uniform

quantization scheme is proposed for implementing the exponent function which reduces

the size of the look-up table by 50%. The proposed non-uniform look-up table reduces

the power consumption by 35% using 10-bit quantization. The proposed architecture is

programmable and can evaluate three different kernels (linear, polynomial, radial basis

function (RBF)). The proposed design consumes 31% less energy on average compared

to a conventional design. We demonstrate that SVM computation using RBF kernel

can be performed in 109.2nJ for 36 features and 5000 support vectors with 0.5V Vdd

using 65nm technology.

1.2.4 Seizure Prediction

We propose a novel low-complexity patient-specific algorithm for seizure prediction

based on spectral power features. Adaboost algorithm is used in two stages of the

algorithm: feature selection and classification. The algorithm extracts spectral power

features in 9 different sub-bands from the electroencephalogram (EEG) recordings. We

have proposed a new feature ranking method to rank the features. The key (top ranked)

features are used to make a prediction on the seizure event. Further, to reduce the com-

plexity of classification stage, a non-linear classifier is built based on the Adaboost

algorithm using decision stumps (linear classifier) as the base classifier. A non-linear

8

decision function is built using a combination of linear decision functions (in general

linear decision functions are less computationally complex). The proposed algorithm

uses several linear classifiers and are combined using the Adaboost algorithm. The com-

putational complexity of the classifier depends on the number of iterations (T, also the

number of linear classifiers used) needed to achieve the required performance. The pro-

posed method only requires comparison and addition operations, and does not require

multiplications at all.

The proposed algorithm achieves a sensitivity of 94.375% for a total of 71 seizure

events with a low false alarm rate of 0.13 per hour and 6.5% of time spent in false

alarms using an average of 5 features for the Freiburg database. The low computational

complexity of the proposed algorithm makes it suitable for an implantable device.

1.3 Outline of the Thesis

The thesis is outlined as follows. Fast Fourier transform (FFT) is introduced in Chapter

2. Afterwards, we introduce novel methodology to design efficient parallel-pipelined

FFT architectures using folding technique. Then novel pipelined architectures for FFT

computation for complex-valued signals are described.

Chapter 3 introduces the design of FFT architectures for real-valued signals. A

novel methodology is presented to modify the data flow graph. Then novel pipelined

FFT architectures for real-valued signals are described.

Chapter 4 introduces the idea of memory-based FFT architectures. Afterwards,

a novel conflict-free addressing scheme is described. Then the design of novel FFT

processors for both complex and real-valued signals are discussed.

Chapter 5 introduces the computation of power spectral density (PSD). A novel low-

complexity PSD computation is presented based on the Welch method. Afterwards, a

low-complexity architecture for PSD computation is described.

Chapter 6 introduces the theory of support vector machines (SVM). A low-energy

reconfigurable architecture for SVM computation is discussed.

In Chapter 7, background on seizure prediction is discussed. A low-complexity

algorithm for seizure prediction using spectral power features is described. Adaboost

algorithm is used to reduce the complexity in the classification step.

9

Finally, Chapter 8 concludes with a summary of total contributions of this thesis

and future research directions.

Chapter 2

FFT Architectures for complex

inputs

In this chapter, we present numerous FFT architectures for complex signals. Section

2.2 provides the mathematical background behind the fast Fourier transform for various

radices. Section 2.3 discusses the prior work on FFT architectures for complex signals.

In Section 2.4, the proposed methodology to design FFT architectures using folding

transformation is described. Section 2.5 and Section 2.6 presents the various architec-

tures developed based on decimation-in-frequency and decimation-in-time algorithms,

respectively. The circuits to reorder the output samples are presented in Section 2.7.

Finally, Section 2.8 compares the proposed architectures with prior designs.

2.1 Introduction

Fast Fourier Transform (FFT) is widely used in the field of digital signal processing

(DSP) such as filtering, spectral analysis etc., to compute the discrete Fourier transform

(DFT). FFT plays a critical role in modern digital communications such as digital

video broadcasting and orthogonal frequency division multiplexing (OFDM) systems.

The FFT core is one of the modules having high computational complexity in the

physical layer of these communication systems. Therefore, we will present different FFT

algorithms and explore efficient techniques for implementing the FFT computation.

10

11

2.2 FFT Algorithms

In this section, radix-2, radix-22 and radix-23 algorithms are reviewed and comparison

between these algorithms is made in terms of multiplications required. The N -point

Discrete Fourier Transform (DFT) of a sequence x[n] is defined as

X[k] =
N−1∑
n=0

x[n]Wnk
N , (2.1)

where Wnk
N = e−j(2π/N)nk.

The FFT includes a collection of algorithms that reduce the number of operations

of the DFT. The Cooley-Tukey algorithm [12] is the most used among them. It is based

on decomposing the DFT in n = logrN stages, where r is the radix. This achieves a

reduction on the number of operations from order O(N2) in the DFT to order O(NlogN)

in the FFT. The decomposition can be carried out in different ways. The most common

ones are the Decimation in Time (DIT) and the Decimation in Frequency (DIF).

2.2.1 Radix-2

For radix-2, the DIF decomposition separates the output sequence X[k] into even and

odd samples. The following equations are obtained:

X[2r] =
N/2−1∑
n=0

(x[n] + x[n + N/2])e−j 2π
N/2

rn
, r = 0, 1..., N/2 − 1

X[2r + 1] =
N/2−1∑
n=0

(x[n] − x[n + N/2])e−j2π/Nne
−j 2π

N/2
rn

, r = 0, 1..., N/2 − 1(2.2)

The N -point DFT is transformed into two N/2 point DFTs. Applying the procedure

iteratively leads to decomposition into 2-point DFTs. Fig. 2.1 shows the flow graph of

8-point radix-2 DIF FFT.

2.2.2 Radix-22

The radix-22 FFT algorithm is proposed in [13]. We can derive the algorithm by using

the following new indices,

n = <
N

2
n1 +

N

4
n2 + n3 >N

k = < k1 + 2k2 + 4k3 >N (2.3)

12x0x1x2x3x4x5x6x7
X0X4X2X6X1X5X3X7W1W2W3

W2
W2W0
W0W0

Figure 2.1: Flow graph of a radix-2 8-point DIF FFT.

Substituting (2.3) in (5.3), we get

X(k1 + 2k2 + 4k3)

=

N
4
−1∑

n3=0

1∑
n2=0

1∑
n1=0

x(
N

2
n1 +

N

4
n2 + n3)Wnk

N (2.4)

By decomposing the twiddle factor, we get

Wnk
N = (−j)n2(k1+2k2)W

n3(k1+2k2)
N W 4n3k3

N (2.5)

Substituting (2.5) in (2.4) and expanding the summation with indices n1, n2, and

we get,

X(k1 + 2k2 + 4k3) =

N
4
−1∑

n3=0

[HN
4
(n3, k1, k2)W

n3(k1+2k2)
N]Wn3k3

N
4

(2.6)

where H(k1, k2, n3) is expressed as,

HN
4
(n3, k1, k2) = BN

2
(n3, k1) + (−j)(k1+2k2)BN

2
(n3 +

N

4
, k1)

BN
2
(n3, k1) = x(n3) + (−1)k1x(n3 +

N

2
) (2.7)

Equation (2.7) represents the first two stages of butterflies with only trivial multipli-

cations. After these two stages, full multipliers are required to compute the product

of decomposed twiddle factors. The complete radix-22 algorithm can be derived by

applying (2.6) recursively. Fig. 2.2 shows the flow graph of an N = 16 point FFT an

decomposed according to decimation in frequency (DIF). The numbers at the inputs

13x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)x(8)x(9)x(10)x(11)x(12)x(13)x(14)x(15)

X(0)X(8)X(4)X(12)X(2)X(10)X(6)X(14)X(1)X(9)X(5)X(13)X(3)X(11)X(7)X(15)
-j-j-j-j

-j
-j
-j
-j

W2W4W6W1W2W3W3W6W9
Figure 2.2: Radix-2 Flow graph of a 16-point radix-22 DIF FFT.

and output of the graph represent the index of input and output samples, respectively.

The advantage of the algorithm is that it has the same multiplicative complexity as

radix-4 algorithms, but still retains the radix-2 butterfly structures. We can observe

that, only every other stage of the flow graph has non-trivial multiplications. The −j

notion represents the trivial multiplication, which involves only real-imaginary swapping

and sign inversion.

2.2.3 Radix-23

The radix-23 FFT algorithm is proposed in [14]. Similar to radix-22, we can derive the

algorithm by using the following new indices,

n = <
N

2
n1 +

N

4
n2 +

N

8
n3 + n4 >N

k = < k1 + 2k2 + 4k3 + 8k4 >N (2.8)

Substituting (2.8) in (5.3), we get

X(k1 + 2k2 + 4k3 + 8k4)

=

N
8
−1∑

n4=0

1∑
n3=0

1∑
n2=0

1∑
n1=0

x(
N

2
n1 +

N

4
n2 +

N

8
n3 + n4)Wnk

N (2.9)

14

The twiddle can be decomposed into the following form

Wnk
N = (−j)n2(k1+2k2)W

N
8 n3(k1+2k2+4k3)

N

.W
n4(k1+2k2+4k3)
N W 8n4k4

N (2.10)

Substitute (2.10) into (2.9) and expand the summation with regard to index n1, n2

and n3. After simplification we have a set of 8 DFTs of length N/8,

X(k1 + 2k2 + 4k3 + 8k4)

=

N
8
−1∑

n4=0

[TN
8
(n4, k1, k2, k3)W

n4(k1+2k2+4k3)
N]Wn4k4

N
8

(2.11)

where a third butterfly structure has the expression of

TN
8
(n4, k1, k2, k3)

= HN
4
(n4, k1, k2) + W

N
8

(k1+2k2+4k3)

N HN
4

(n4+N
8

,k1,k2) (2.12)

As in radix-22 algorithm, the first two columns of butterflies contain only trivial

multiplications. The third butterfly contains a special twiddle factor

W
N
8

(k1+2k2+4k)

N = (
1√
2
(1 − j))k

1(−j)k2+2k3 (2.13)

It can be easily seen that applying this twiddle factor requires only two real multipli-

cations. Full complex multiplications are used to apply the decomposed twiddle factor

W
n4(k1+2k2+4k3)
N after the third column. An N = 64 example is shown in Fig. 2.3.

2.3 Prior Work

Much research has been carried out on designing pipelined architectures for computation

of FFT of complex valued signals. Various algorithms have been developed to reduce

the computational complexity, of which Cooley-Tukey radix-2 FFT [12] is very popular.

Algorithms including radix-4 [15], split-radix [16], radix-22 [13] have been developed

based on the basic radix-2 FFT approach. The architectures based on these algo-

rithms are some of the standard FFT architectures in the literature [17]-[22]. Radix-2

15

-j-j-j-j
-j-j-j-j
-j-j-j-j
-j-j-j-j

-j-j-j-j
-j-j-j-j

-jW8-jW8-jW8-jW8-jW8-jW8-jW8-jW8
W8W8W8W8W8W8W8W8

-j-j
-j-j
-j-j
-j-j
-j-j
-j-j
-j-j
-j-j

-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8

W35W30W25W20W10W15W5
W42W36W30W24W12W18W6W14W12W10W8W4W6W2W28W24W20W16W8W12W4

W7W6W5W4W2W3W1

W49W42W35W28W14W21W7W21W18W15W12W6W9W3

x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)x(8)x(9)x(10)x(11)x(12)x(13)x(14)x(15)x(16)x(17)x(18)x(19)x(20)x(21)x(22)x(23)x(24)x(25)x(26)x(27)x(28)x(29)x(30)x(31)x(32)x(33)x(34)x(35)x(36)x(37)x(38)x(39)x(40)x(41)x(42)x(43)x(44)x(45)x(46)x(47)x(48)x(49)x(50)x(51)x(52)x(53)x(54)x(55)x(56)x(57)x(58)x(59)x(60)x(61)x(62)x(63)

X(0)X(32)X(16)X(48)X(8)X(40)X(24)X(56)X(4)X(36)X(20)X(52)X(12)X(44)X(28)X(60)X(2)X(34)X(18)X(50)X(10)X(42)X(26)X(58)X(6)X(38)X(22)X(54)X(14)X(46)X(30)X(62)X(1)X(33)X(17)X(49)X(9)X(41)X(25)X(57)X(5)X(37)X(21)X(53)X(13)X(45)X(29)X(61)X(3)X(35)X(19)X(51)X(11)X(43)X(27)X(59)X(7)X(39)X(23)X(55)X(15)X(47)X(31)X(63)
Figure 2.3: Flow graph of a 64-point radix-23 DIF Complex FFT

Multi-path delay commutator (R2MDC) [17] is one of the most classical approaches

for pipelined implementation of radix-2 FFT is shown in Fig. Efficient usage of the

storage buffer in R2MDC leads to Radix-2 Single-path delay feedback (R2SDF) archi-

tecture with reduced memory [18]. Fig shows a radix-2 feedback pipelined architecture

for N = 16 points. R4MDC [19] and R4SDF [20], [21] are proposed as radix-4 versions

of R2MDC and R4SDF respectively. Radix-4 single-path delay commutator (R4SDC)

[22] is proposed using a modified radix-4 algorithm to reduce the complexity of R4MDC

architecture.

Many parallel architectures for FFT have been proposed in the literature. A formal

method of developing these architectures from the algorithms has not been proposed

till now. In the recent literature, four parallel designs have been proposed to increase

16

the throughput of the FFT processors for OFDM systems [25] - [30] for a fixed 128-

point FFT. These architectures are based on radix-23 and radix-24 algorithms and

mixed radix (e.g., radix-2 and radix-8) algorithms. A 128-point four parallel multi-path

delay feedback (MDF) architecture has been proposed in [25] based on radix-2 and

radix-8 algorithms (mixed radix) combining the features of single delay feedback (SDF)

and multi-path delay commutator (MDC). Another 4-parallel 128-point radix-24 FFT

architecture based on MDF has been proposed in [26]. Further, an 8-parallel 2048-point

FFT architecture has been proposed in [31] based on radix-23 and radix-24 algorithms.

These architectures are based on different approaches which have their own advantages

and disadvantages. The required number of delay elements in MDF architectures is less

due to the delay feedback (SDF) design while the number of datapaths (consisting of

butterflies) is equal to the level of parallelism.

Further, most of these hardware architectures are not fully utilized which leads

to high hardware complexity. In the era of high speed digital communications, high

throughput and low power designs are required to meet the speed and power require-

ments while keeping the hardware overhead to minimum. In this thesis, we present a new

approach to design these architectures from the FFT flow graphs. Folding transforma-

tion [33] and register minimization techniques [34], [35] are used to derive several known

FFT architectures. Novel architectures are developed using the proposed methodology

which have not been presented in the literature.

In the folding transformation, all butterflies in the same column can be mapped to

one butterfly unit. If the FFT size is N , then this corresponds to a folding factor of

N/2. This leads to a 2-parallel architecture. In another design, we can choose a folding

factor of N/4 to design a 4-parallel architectures, where 4 samples are processed in the

same clock cycle. Different folding sets lead to a family of FFT architectures. Alter-

natively, known FFT architectures can also be described by the proposed methodology

by selecting the appropriate folding set. Folding sets are designed intuitively to reduce

latency and to reduce the number of storage elements. It may be noted that prior FFT

architectures were derived in an adhoc way, and their derivations were not explained in

a systematic way. This is the first attempt to generalize design of FFT architectures for

arbitrary level of parallelism in a systematic manner via the folding transformation. In

17

this paper, design of prior architectures is first explained by constructing specific fold-

ing sets. Then, several new architectures are derived for various radices, and various

levels of parallelism, and for either the decimation-in-time (DIT) or the decimation-in-

frequency (DIF) flow graphs. All new architectures achieve full hardware utilization.

It may be noted that all prior parallel FFT architectures did not achieve full hardware

utilization.

2.4 FFT Architectures via Folding

In this section, we present a method to derive several known FFT architectures in

general. The process is described using an 8-point radix-2 DIF FFT as an example. It

can be extended to other radices in a similar fashion. Fig. 2.4 shows the flow graph of a

radix-2 8-point DIF FFT. The graph is divided into 3 stages and each of them consists

of a set of butterflies and multipliers. The twiddle factor in between the stages indicates

a multiplication by W k
N , where WN denotes the Nth root of unity, with its exponent

evaluated modulo N . This algorithm can be represented as a data flow graph (DFG)

as shown in Fig. 2.5. The nodes in the DFG represent tasks or computations. In this

case, all the nodes represent the butterfly computations of the radix-2 FFT algorithm.

In particular, assume nodes A and B have the multiplier operation on the bottom edge

of the butterfly.

The folding transformation is used on the DFG in Fig. 2.5 to derive a pipelined

architecture. To transform the DFG, we require a folding set, which is an ordered set

of operations executed by the same functional unit. Each folding set contains K entries

some of which may be null operations. K is called the folding factor, the number of

operations folded into a single function unit. The operation in the j-th position within

the folding set (where j goes from 0 to K − 1) is executed by the functional unit during

the time partition j. The term j is the folding order, the time instance to which the

node is scheduled to be executed in hardware.

For example, consider the folding set A = {φ, φ, φ, φ,A0, A1, A2, A3} for K = 8.

The operation A0 belongs to the folding set A with the folding order 4. The functional

unit A executes the operations A0, A1, A2, A3 at the respective time instances and will

be idle during the null operations. We use the systematic folding techniques to derive

18

x0x1x2x3x4x5x6x7
X0X4X2X6X1X5X3X7W1W2W3

W2
W2W0
W0W0

Figure 2.4: Flow graph of a radix-2 8-point DIF FFT.

A0A1A2A3
B0B1B2B3

C0C1C2C3

x0x4x1x5x2x6x3x7

y0y1y5y2y6y3y7
y4 z0z2z1z3z4z6z5z7

X0X4X2X6X1X5X3X7
Figure 2.5: Data Flow graph (DFG) of a radix-2 8-point DIF FFT.

19

the 8-point FFT architecture. Consider an edge e connecting the nodes U and V with

w(e) delays. Let the executions of the l-th iteration of the nodes U and V be scheduled

at the time units Kl + u and Kl + v, respectively, where u and v are the folding orders

of the nodes U and V . The folding equation for the edge e is

DF (U → V) = Kw(e) − PU + v − u (2.14)

where PU is the number of pipeline stages in the hardware unit which executes the node

U [33].

2.4.1 Feed-forward Architecture

Consider folding of the DFG in Fig. 2.5 with the folding sets

A = {φ, φ, φ, φ,A0, A1, A2, A3},

B = {B2, B3, φ, φ, φ, φ,B0, B1},

C = {C1, C2, C3, φ, φ, φ, φ, C0}.

Assume that the butterfly operations do not have any pipeline stages, i.e., PA = 0,

PB = 0, PC = 0. The folded architecture can be derived by writing the folding equation

in (2.14) for all the edges in the DFG. These equations are

DF (A0 → B0) = 2 DF (B0 → C0) = 1

DF (A0 → B2) = −4 DF (B0 → C1) = −6

DF (A1 → B1) = 2 DF (B1 → C0) = 0

DF (A1 → B1) = −4 DF (B1 → C1) = −7

DF (A2 → B0) = 0 DF (B2 → C2) = 1

DF (A2 → B2) = −6 DF (B2 → C3) = 2

DF (A3 → B1) = 0 DF (B3 → C2) = 0

DF (A3 → B3) = −6 DF (B3 → C3) = 1 (2.15)

For example, DF (A0 → B0) = 2 means that there is an edge from the butterfly node

A to node B in the folded DFG with 2 delays. For the folded system to be realizable,

DF (U → V) ≥ 0 must hold for all the edges in the DFG. Retiming and/or pipelining

20A0A1A2A3
B0B1B2B3

C0C1C2C3

Pipeline cutset

D DDD
DD X0X4X2X6X1X5X3X7

DDx0x4x1x5x2x6x3x7
Figure 2.6: Pipelined Data Flow graph (DFG) of a 8-point DIF FFT as a preprocessing
step for folding

can be used to either satisfy this property or determine that the folding sets are not

feasible. We can observe the negative delays on some edges in (2.15). The DFG can

be pipelined as shown in Fig. 2.6 to ensure that folded hardware has a non-negative

number of delays. The updated folding equations for all the edges are

DF (A0 → B0) = 2 DF (B0 → C0) = 1

DF (A0 → B2) = 4 DF (B0 → C1) = 2

DF (A1 → B1) = 2 DF (B1 → C0) = 0

DF (A1 → B1) = 4 DF (B1 → C1) = 1

DF (A2 → B0) = 0 DF (B2 → C2) = 1

DF (A2 → B2) = 2 DF (B2 → C3) = 2

DF (A3 → B1) = 0 DF (B3 → C2) = 0

DF (A3 → B3) = 2 DF (B3 → C3) = 1 (2.16)

From (2.16), we can observe that 24 registers are required to implement the folded

architecture. Lifetime analysis technique [35] is used to design the folded architecture

that use the minimum possible registers. For example, in the current 8-point FFT

design, consider the variables y0, y1, ...y7 i.e., the outputs at the nodes A0, A1, A2, A3

respectively. It takes 16 registers to synthesize these edges in the folded architecture.

The linear lifetime chart for these variables is shown in Fig. 2.7. From the lifetime chart,

21456789
Cycle# y0 y1 y2 y3 y4 y5 y6 y7 Live#024442

Figure 2.7: Linear lifetime chart for the variables y0, y1, ...y7.

it can be seen that the folded architecture requires 4 registers as opposed to 16 registers

in a straightforward implementation. The next step is to perform forward-backward

register allocation. The allocation table is shown in Fig. 2.8. From the allocation

table in Fig. 2.8 and the folding equations in (2.16), the delay circuit in Fig. 2.9 can

be synthesized. Fig. 2.10 shows how node A and node B are connected in the folded

architecture. R3 R4R1 R2y4y5y6y7 y4y5y6y7
y0 y0y4y5 y1y1y4y5

y0,y4y1,y5y2,y6y3,y7
I/P456789

Figure 2.8: Register allocation table for the data represented in Fig. 2.7.

The control complexity of the derived circuit is high. Four different signals are

needed to control the multiplexers. A better register allocation is found such that the

number of multiplexers are reduced in the final architecture. The more optimized regis-

ter allocation for the same lifetime analysis chart is shown in Fig. 2.11. Similarly, we can

apply lifetime analysis and register allocation techniques for the variables x0, ..., x7 and

22

R 3R 1 R 4R 2y 7 , y 6 , y 5 , y 4y 3 , y 2 , y 1 , y 0 B o t t o m o u t p u tT o p o u t p u t
{ 6 , 7 }{ 0 , 1 }{ 0 , 1 , 7 }{ 6 }{ 4 }{ 0 , 5 , 6 , 7 } { 5 } { 6 }{ 0 , 7 }

Figure 2.9: Delay circuit for the register allocation table in Fig. 2.8.R 3
R 1 XNode

A
Node

BX

R 4
R 2

MUXMUX
MUXMUX

Figure 2.10: Folded circuit between Node A and Node B.

z0, ..., z7, inputs to the DFG and the outputs from nodes B0, B1, B2, B3 respectively

as shown in Fig. 2.5. From the allocation table in Fig. 2.11 and the folding equations

in (2.16), the final architecture in Fig. 2.12 can be synthesized.

We can observe that the derived architecture is the same as R2MDC architecture

[17]. Similarly, the R2SDF architecture can be derived by minimizing the registers on

all the variables at once.

2.4.2 Feedback Architecture

We derive the feedback architecture using the same 8-point radix-2 DIT FFT example

in Fig. 2.4. Consider the following folding sets

A = {φ, φ, φ, φ,A0, A1, A2, A3},

B = {φ, φ,B2, B3, φ, φ,B0, B1},

C = {φ,C1, φ, C2, φ, C3, φ, C0}.

Assume that the butterfly operations do not have any pipeline stages, i.e., PA = 0,

PB = 0, PC = 0. The folded architecture can be derived by writing the folding equation

23R3 R4R1 R2y4y5y6y7 y4y5y6y7
y0y1y4y5 y0y1y4y5

y0,y4y1,y5y2,y6y3,y7
I/P456789

Figure 2.11: Register allocation table for the data represented in Fig. 2.7.4 D R 3
R 1 D

DXBFI BFII BFIIIX
R 4

R 2

x [n] X (k)
X (k + 4)

MUXMUX

MUXMUX
Figure 2.12: Folded architecture for the DFG in Fig. 2.6. This corresponds to the well
known radix-2 feed-forward (R2MDC) architecture.

in (2.14) for all the edges in the DFG. The folding equations are

DF (A0 → B0) = 2 DF (B0 → C0) = 1

DF (A0 → B2) = −2 DF (B0 → C1) = −5

DF (A1 → B1) = 2 DF (B1 → C0) = 0

DF (A1 → B1) = −2 DF (B1 → C1) = −6

DF (A2 → B0) = 0 DF (B2 → C2) = 1

DF (A2 → B2) = −4 DF (B2 → C3) = 3

DF (A3 → B1) = 0 DF (B3 → C2) = 0

DF (A3 → B3) = −4 DF (B3 → C3) = 2 (2.17)

It can be seen from the folding equations in (2.17) that some edges contain negative

delays. Retiming is used to make sure that the folded hardware has non-negative number

24

45678910111213

0123Cycle# Live#
45676+06+14+24+32+42+5

0123y0 y1 y2 y3 y4 y5 y6 y7 z0 z1 z2 z3 z4 z5 z6 z7x0 x1 x2 x3 x4 x5 x6 x7

Figure 2.13: Linear lifetime chart for variables for a 8-point FFT architecture.

of delays. The pipelined DFG is the same as the one in the feed-forward example and

is shown in Fig. 2.6. The updated folding equations are shown in (2.18).

DF (A0 → B0) = 2 DF (B0 → C0) = 1

DF (A0 → B2) = 6 DF (B0 → C1) = 3

DF (A1 → B1) = 2 DF (B1 → C0) = 0

DF (A1 → B1) = 6 DF (B1 → C1) = 2

DF (A2 → B0) = 0 DF (B2 → C2) = 1

DF (A2 → B2) = 4 DF (B2 → C3) = 3

DF (A3 → B1) = 0 DF (B3 → C2) = 0

DF (A3 → B3) = 4 DF (B3 → C3) = 2 (2.18)

The number of registers required to implement the folding equations in (2.18) is 40.

The linear life time chart is shown in Fig. 2.13 and the register allocation table is shown

in Fig. 2.14. We can implement the same equations using 7 registers by using these

register minimization techniques. The folded architecture in Fig. 2.15 is synthesized

using the folding equations in (2.18) and register allocation table.

The hardware utilization is only 50% in the derived architecture. This can also be

observed from the folding sets where half of the time null operations are being executed,

i.e., hardware is idle. A family of high throughput FFT architectures have been obtained

25R3 R4R1 R2I/P R6 R7R5
456789

0123

10111213

x0 x0 x0 x0 x0x1x2x3 x1x2x3 x1x2x3 x1x2x3y4y5y6y7 y4y5y6y7 y4y5y6y7 y4y5y6y7 y4y5 y4y5

y0y1 y0y1z3z2 z3z2 z2z0z4z7z6 z7z6 z6

y0,y4y1,y5y2,y6y3,y7

x1x2x3x4x5x6x7z3z2z0z1
z7z6z4z5

Figure 2.14: Register allocation table for the data represented in Fig. 2.13.

by using the new approach using both decimation-in-frequency (DIF) and decimation-

in-time (DIT) algorithms. The parallelization can be arbitrarily chosen. Furthermore,

architectures based on radix-22 and radix-23 algorithms have been developed. The

circuits to reorder the output samples are also presented.

2.5 Architectures using DIF flow graph

2.5.1 Radix-2 FFT Architectures

In this section, we present parallel architectures for complex valued signals based on

radix-2 algorithm. These architectures are derived using the approach presented in the

previous section. The same approach can be extended to radix-22, radix-23 and other

26

BFI

R 1 R 2 R 3 R 4M U X
BFII

R 5 R 6M U X

BFIII

R 7XXx [n] X (k)
X (k + 4)

Figure 2.15: Folded architecture for the DFG in Fig. 2.6. This corresponds to the well
known radix-2 feedback (R2SDF) architecture.

radices as well. Due to space constraints, only folding sets are presented for different

architectures. The folding equations and register allocation tables can be obtained

easily. B0B1B2B3
C0C1C2C3

D0D1D2D3B4B5B6B7
C4C5C6C7

D4D5D6D7

A0A1A2A3A4A5A6A7 D

DDDD
DD
DD

D D

D
DD

Pipelining Cutset

Retiming Cutset

x0x8x1x9x2x10x3x11x4x12x5x13x6x14x7x15

X0X8X1X9X2X10X3X11X4X12X5X13X6X14X7X15

DD

Figure 2.16: Data Flow graph (DFG) of a Radix-2 16-point DIF FFT with retiming for
folding.

2-parallel Radix-2 FFT Architecture

The utilization of hardware components in the feedforward architecture is only 50%.

This can also be observed from the folding sets of the DFG where half of the time null

operations are being executed. We can derive new architectures by changing the folding

sets which can lead to efficient architectures in terms of hardware utilization and power

consumption. We present here one such example of a 2-parallel architecture which leads

to 100% hardware utilization and consumes less power.

27

Fig. 2.16 shows the DFG of radix-2 DIF FFT for N = 16. All the nodes in this

figure represent radix-2 butterfly operations. Assume the nodes A, B and C contain the

multiplier operation at the bottom output of the butterfly. Consider the folding sets

A = {A0, A2, A4, A6, A1, A3, A5, A7},

B = {B5, B7, B0, B2, B4, B6, B1, B3},

C = {C3, C5, C7, C0, C2, C4, C6, C1},

D = {D2, D4, D6, D1, D3, D5, D7, D0} (2.19)

4 D sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DX4 D BFI BFII BFIII BFIV

sw i tch X Xx (2 k)
x (2 k + 1)

X (k)
X (k + 8)

Figure 2.17: Proposed 2-parallel (Architecture 1) for the computation of a radix-2 16-
point DIF FFT.

We can derive the folded architecture by writing the folding equation in (2.14) for

all the edges. Pipelining and retiming are required to get non-negative delays in the

folded architecture. The DFG in Fig. 2.16 also shows the retimed delays on some of

the edges of the graph. The final folded architecture is shown in Fig. 2.17. The register

minimization techniques and forward-backward register allocation are also applied in

deriving this architecture as described in Section II. Note the similarity of the datapath

to R2MDC. This architecture processes two input samples at the same time instead of

one sample in R2MDC. The implementation uses regular radix-2 butterflies. Due to the

spatial regularity of the radix-2 algorithm, the synchronization control of the design is

very simple. A log2N -bit counter serves two purposes: synchronization controller i.e.,

the control input to the switches, and address counter for twiddle factor selection in

each stage.

We can observe that the hardware utilization is 100% in this architecture. In a

general case of N-point FFT, with N power of 2, the architecture requires log2(N)

complex butterflies, log2(N) − 1 complex multipliers and 3N/2 − 2 delay elements or

buffers.

28A0A1A2A3A4A5A6A7

B0B1B2B3B4B5B6B7

C0C1C2C3C4C5C6C7

D0D1D2D3D4D5D6D7
Retiming Cutset DDDD

DD DD
DDDDDD

Pipelining Cutsetx0x8x1x9x2x10x3x11x4x12x5x13x6x14x7x15

X0X8X1X9X2X10X3X11X4X12X5X13X6X14X7X15

DD

Figure 2.18: DFG of a radix-2 16-point DIT FFT with retiming for folding.4 D sw i tch sw i tch sw i tchD
D 2 D

2 D 4 D
4 D4 D BFI BFII BFIII BFIV

sw i tch X X Xx (2 k)
x (2 k + 1)

X (k)
X (k + 8)

Figure 2.19: Proposed 2-parallel (Architecture 1) for the computation of a radix-2 16-
point DIT Complex FFT.

In a similar manner, we can derive the 2-parallel architecture for Radix-2 DIT FFT

using the following folding sets. Assume that multiplier is at the bottom input of the

nodes B, C, D.

A = {A0, A2, A1, A3, A4, A6, A5, A7},

B = {B5, B7, B0, B2, B1, B3, B4, B6},

C = {C6, C5, C7, C0, C2, C1, C3, C4},

D = {D2, D1, D3, D4, D6, D5, D7, D0}

The pipelined/retimed version of the DFG is shown in Fig. 2.18 and the 2-parallel

architecture is in Fig. 2.19. The only difference in the two architectures (Fig. 2.17 and

Fig. 2.19) is the position of the multiplier in between the butterflies. The rest of the

design remains same.

29B0B1B2B3
C0C1C2C3

D0D1D2D3
A0A’0A1A’1A2A’2A3A’3

B’0B’1B’2B’3
C’0C’1C’2C’3

D’0D’1D’2D’3D

DD

DD
DD

DD
D

DD
D D

DDDDDD

Pipelining Cutset

Retiming Cutset

X0X8X1X9X2X10X3X11X4X12X5X13X6X14X7X15

x0x8x1x9x2x10x3x11x4x12x5x13x6x14x7x15
Figure 2.20: Data Flow graph (DFG) of a Radix-2 16-point DIF FFT with retiming for
folding for 4-parallel architecture.

4-parallel Radix-2 FFT Architecture

2 D sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DX2 D BFI BFII BFIII BFIV

sw i tch
X

X

2 D sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DX2 D BFI BFII BFIII BFIV

sw i tch X X

x (4 k)x (4 k + 2)
x (4 k + 1)x (4 k + 3)

X (k)
X (k + 8)X (k + 4)

X (k + 1 2)
Figure 2.21: Proposed 4-parallel (Architecture 2) for the computation of 16-point radix-
2 DIF FFT.

A 4-parallel architecture can be derived using the following folding sets.

A = {A0, A1, A2, A3} A′ = {A′0, A′1, A′2, A′3}

B = {B1, B3, B0, B2} B′ = {B′1, B′3, B′0, B′2}

C = {C2, C1, C3, C0} C ′ = {C ′2, C ′1, C ′3, C ′0}

D = {D3, D0, D2, D1} D′ = {D′3, D′0, D′2, D′1}

The DFG shown in Fig. 2.20 is retimed to get the non-negative folded delays. The

30

final architecture in Fig. 2.21 can be obtained following the proposed approach. For

a N -point FFT, the architecture takes 4(log4N − 1) complex multipliers and 2N − 4

delay elements. We can observe that hardware complexity is almost double that of the

serial architecture and processes 4-samples in parallel. The power consumption can be

reduced by 50% (see Section V) by lowering the operational frequency of the circuit.

2.5.2 Radix-22 and Radix-23 FFT Architectures

The hardware complexity in the parallel architectures can be further reduced by using

radix-2n FFT algorithms. In this section, we consider the cases of radix-22 and radix-

23 to demonstrate how the proposed approach can be used to radix-2n algorithms.

Similarly, we can develop architectures for radix-24 and other higher radices using the

same approach.

2-parallel radix-22 FFT Architecture

The DFG of radix-22 DIF FFT for N = 16 will be similar to the DFG of radix-2 DIF

FFT as shown in Fig. 2.16. All the nodes in this figure represent radix-2 butterfly oper-

ations including some special functionality. Nodes A and C represent regular butterfly

operations. Nodes B and D are designed to include the −j multiplication factor. Fig.

3.7 shows the butterfly logic needed to implement the radix-22 FFT. The factor −j is

handled in the second butterfly stage using the logic shown in Fig. 3.7b to switch the

real and imaginary parts to the input of the multiplier.

Consider the folding sets

A = {A0, A2, A4, A6, A1, A3, A5, A7},

B = {B5, B7, B0, B2, B4, B6, B1, B3},

C = {C3, C5, C7, C0, C2, C4, C6, C1},

D = {D2, D4, D6, D1, D3, D5, D7, D0} (2.20)

Using the folding sets above, the final architecture shown in Fig. 2.23 is obtained.

We can observe that the number of complex multipliers required for radix-22 architecture

is less compared to radix-2 architecture in Fig. 2.17. In general, for a N-point FFT,

radix-22 architecture requires 2(log4N − 1) multipliers.

31

- -
(a) BFI

--++-
(b) BFII

Figure 2.22: Butterfly structures for the proposed FFT architecture4 D sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DX4 D BFI BFII BFI BFII

sw i tchx (2 k)
x (2 k + 1)

X (k)
X (k + 8)

X

Figure 2.23: Proposed 2-parallel (Architecture 3) for the computation of a radix-22

16-point DIF FFT.

Similar to 4-parallel radix-2 architecture, we can derive 4-parallel radix-22 architec-

ture using the similar folding sets. The 4-parallel radix-22 architecture is shown in Fig.

2.24. In general, for a N-point FFT, 4-parallel radix-22 architecture requires 3(log4N−1)

complex multipliers compared 4(log4N − 1) multipliers in radix-2 architecture. That is,

the multiplier complexity is reduced by 25% compared to radix-2 architectures.

2-parallel radix-23 FFT Architecture

We consider the example of a 64-point radix-23 FFT algorithm [14]. The advantage of

radix-23 over radix-2 algorithm is its multiplicative complexity reduction. A 2-parallel

architecture is derived using folding sets in (2.20). Here the DFG contains 32 nodes

instead of 8 in 16-point FFT.

The folded architecture is shown in Fig. 2.25. The design contains only two full

multipliers and two constant multipliers. The constant multiplier can be implemented

322 D sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DX2 D BFI BFII BFI BFII

sw i tch
2 D sw i tch sw i tch sw i tch2 D

2 D D
D 4 D

4 DX2 D BFI BFII BFI BFII

sw i tch
x (4 k)x (4 k + 2)

x (4 k + 1)x (4 k + 3)

X (k)
X (k + 8)X (k + 4)

X (k + 1 2)

X

Figure 2.24: Proposed 4-parallel (Architecture 4) for the computation of a radix-22

16-point DIF FFT.1 6 D s w itch sw itch sw itch8 D8 D 4 D 4 D 2 D2 DX1 6D B F I B F I I B F I I I B F I V sw itch 3 2 D3 2 D B F V Isw itch DD B F VX XXsw itc hx (2 k)x (2 k + 1) C S D M u l t i p l i e r C S D M u l t i p l i e rF u l l M u l t i p l i e r

X (k)X (k + 8)

Figure 2.25: Proposed 2-parallel (Architecture 5) for the computation of 64-point radix-
23 DIF FFT.

using Canonic Signed Digit (CSD) format with much less hardware compared to a full

multiplier. For a N -point FFT, where N is a power of 23, the proposed architecture

takes 2(log8N − 1) multipliers and 3N/2 − 2 delays. The multiplier complexity can

be halved by computing the two operations using one multiplier. This can be seen in

the modified architecture shown in Fig. 2.26. The only disadvantage of this design is

that two different clocks are needed. Multiplier has to be run at double the frequency

compared to the rest of the design. The architecture requires only log8N−1 multipliers.

A 4-parallel radix-23 architecture can be derived similar to 4-parallel radix-2 FFT ar-

chitecture. A large number of architectures can be derived using the approach presented

in Section II. Using the folding sets of same pattern, 2-parallel and 4-parallel architec-

tures can be derived for radix-22 and radix-24 algorithms. We show that changing the

folding sets can lead to different parallel architectures. Further DIT and DIF algorithms

will lead to similar architectures except the position of the multiplier operation.

2.6 Architecture using DIT flow graph

The proposed architectures using decimation-in-time (DIT) flow graph reduce the num-

ber of delays in the pipelined architecture compared to DIF based designs.

33sw itc h sw itch8 D8 D 4 D 4 DXB F I B F I I B F I I I

s w itc h2 D 2 DB F I Vsw itch3 2 D 3 2 DB F V I sw itchD DB F V X
P /S S /PX1 6 D1 6 D sw itchx (2 k)x (2 k + 1) F u l l M u l t i p l i e rC S D M u l t i p l i e r C S D M u l t i p l i e rX (k)X (k + 8)

Figure 2.26: Proposed 2-parallel (Architecture 6) for the computation of 64-point radix-
23 DIF FFT.

2.6.1 4-parallel design

The proposed method can be explained using two different design approaches: adhoc

and folding approach. Further, the same method can be extended to design an eight-

parallel architecture. An example of 16-point radix-2 FFT algorithm is used to describe

the proposed method.

Ad-hoc design

Fig. 2.16 shows the flow graph of 16-point radix-2 DIT algorithm, where the nodes from

A0, ..., A3 represent the top 4 butterflies (processing even samples) in the first stage of

the FFT and A′0, ..., A′3 represent the bottom 4 butterflies (processing odd samples).

Similarly, B0, ...B4, B′0, ..., B′4, C0, ..., C3, C ′0, ..., C ′3, and D0, ..., D3, D′0, ..., D′3 rep-

resent nodes in second, third and fourth stages, respectively. It can be observed that

the even and odd samples can be processed independently until the final stage which is

illustrated in Fig. 2.16. The outputs of the two N/2 FFTs can be combined in the final

butterfly stage. We can develop a two parallel architecture for each of the N/2-point

FFTs which can process two consecutive even (4k, 4k + 2) and odd (4k + 1, 4k + 3)

samples, respectively. Further, the initial reordering delay elements are not required, if

the input buffer is available to reorder the data before FFT processor. As the outputs

of the two N/2-point FFTs arrive at the same time, the final stage does not require

reshuffling circuit (delays and switches). This will reduce the required number of delays

to implement the pipelined architecture.

The four parallel pipelined architecture for 16-point FFT is shown in Fig. 2.27.

34

2D
D

D 2D

2D

2D

BF

X X X

x(4k)

x(4k+2)

X(k)

X(k+8)

2D
D

D 2D

2D

2D

X X X

x(4k+1)

x(4k+3)

X(k+4)

X(k+12)

S

W

I

S

W

I

S

W

I

S

W

I

S

W

I

S

W

I

No need of reshuffling

Figure 2.27: Proposed 4-parallel architecture for 16-point radix-2 DIT FFT.

We can observe that there is no reshuffling circuit before the last stage of butterflies.

The implementation uses regular radix-2 butterflies. The rest of the datapath contains

switches and delay elements. The function of the switch and delay elements is to reorder

the incoming samples to provide the corresponding samples at the input of each butterfly

stage according to the data flow during every clock cycle. The control signal controls

the multiplexers which connects the input and output of the switch in two different

ways (either straight or cross paths). The control signals for switches in different stages

of the architecture can be generated by using simple counter logic.

Folding approach

The proposed approach can also be described using folding methodology [33]. The four

parallel architecture can be derived using the following folding sets.

A = {A0, A1, A2, A3} A′ = {A′0, A′1, A′2, A′3}

B = {B3, B0, B1, B2} B′ = {B′3, B′0, B′1, B′2}

C = {C1, C2, C3, C0} C ′ = {C ′1, C ′2, C ′3, C ′0}

D = {D1, D2, D3, D0} D′ = {D′1, D′2, D′3, D′1}

35

D

BF

X X X
D

X X X

D

DD

s

w

it

c

h

s

w

it

c

h

D

DD

s

w

it

c

h

s

w

it

c

h

D

BF

X X

D

X X

D

DD

s

w

it

c

h

s

w

it

c

h

D

DD

s

w

it

c

h

s

w

it

c

h

X
X

x(8k)

x(8k+4)

x(8k+2)

x(8k+6)

x(8k+1)

x(8k+5)

x(8k+3)

x(8k+7)

X(k)

X(k+8)

X(k+2)

X(k+10)

X(k+4)

X(k+12)

X(k+6)

X(k+14)

Figure 2.28: Proposed 8-parallel architecture for 16-point radix-2 FFT.

We can derive the folded architecture by writing the folding equation [33] for the edges

in the flow graph. The register minimization techniques and the forward and back-

ward register allocation scheme [35] are applied to derive the architecture. The final

architecture can be derived to be same shown as the design in Fig. 2.27.

In general, for an N-point FFT, the proposed four parallel architecture requires

N − 4 delay elements. An additional N/2 delay elements are required when the input

buffer is not in place to reorder the input samples. The proposed architecture reduces

the number of delay elements by 33% compared to the design in [11], which requires

3N/2− 4 delay elements. Further, the proposed architecture has only two parallel data

paths (each processing two samples) compared to four data paths in [25], [26]. The

proposed architecture requires 2log2N butterfly units compared to 4log2N in the prior

designs. That is, the proposed design reduces the number of complex adders by 50%

compared to the designs in [25] and [26].

2.6.2 8-parallel design

In a similar fashion, an 8-parallel architecture can be derived based on the DIT flow

graph. Now the input samples can be divided into four sections, 8k, 8k + 4, 8k +

2, 8k + 6, 8k + 1, 8k + 5, and 8k + 3, 8k + 7. These sample groups can be processed

independently until the last two stages. The 8-parallel architecture can be derived

36

8

8 4

4

BF

X

D

D 16

16

BF

X

X(k)

X(k+8)

D

D 16

16

X

X(k+4)

X(k+12)

s

w

i

t

c

h

s

w

i

t

c

h

X 2

2

s

w

i

t

c

h

BF

X
X

2

2

s

w

i

t

c

h

BF

X
X8

8 4

4

BF

X

s

w

i

t

c

h

s

w

i

t

c

h

X

Constant CSD

Multipliers

Full Complex

Multipliers

s

w

i

t

c

h

s

w

i

t

c

h

s

w

i

t

c

h

s

w

i

t

c

h

X
X

Constant CSD

Multipliers

x(4k)

x(4k+2)

x(4k+1)

x(4k+3)

16

16

16

16

s

w

i

t

c

h

s

w

i

t

c

h

Figure 2.29: Block diagram of the proposed 4-parallel 128-point FFT architecture based
on radix-24 algorithm

using folding approach. Fig. 2.28 shows the 8-parallel architecture for a 16-point radix-

2 FFT. In general, for an N-point FFT, the proposed 8-parallel architecture requires

N − 8 delay elements excluding the input buffers and 4log2N butterfly units. The

8-parallel architecture in [31] consists of 8 datapaths which leads to 8log2N butterfly

units.

2.6.3 Proposed 128-pt FFT architecture

The number of complex multipliers required depends on the underlying FFT algorithm.

In higher radix algorithms (radix-23, radix-24), only the twiddle factors will change at

each input/output stage of the butterflies. For example, in radix-22 algorithm twiddle

factor multiplication is required in every alternate stage while it is required in every stage

in radix-2 algorithm. To demonstrate that the proposed approach can be extended to

any radix-2n algorithms, we present a 4-parallel 128-point FFT architecture based on

the radix-24 algorithm.

The 128-point FFT flow graph is based on radix-24 algorithm which is decimated in

time. The higher radix algorithms lead to low multiplication complexity. For example,

radix-24 algorithm leads to only one complex multiplication every 4 stages and radix-23

algorithm leads to one complex multiplication every 3 stages. But constant multipli-

ers are required to implement trivial twiddle factors at the intermediate stages. The

proposed 128-point FFT architecture is based on the radix-24 algorithm to reduce the

number of constant multipliers. The radix-24 algorithms are described in detail in [23].

To achieve the high throughput requirement with low hardware cost, both the pro-

posed pipelining method and radix-2n algorithms are exploited in this design. The

37

proposed 4-parallel 128-point FFT architecture is shown in Fig. 2.29. It consists of

two parallel data paths processing two input samples. Each data path consists of seven

butterfly units, four constant and two full complex multipliers, delay elements and mul-

tiplexers. The function of delay elements and switches is to store and reorder the input

data until the other available data is received for the butterfly operation. The four out-

put data values generated after the first stage are multiplied by constant twiddle factors

(W 1
8 = e−j2π/8,W 3

8 = e−j2π3/8). These twiddle factors can be implemented efficiently

using canonic signed digit (CSD) approach. The outputs after the third stage are mul-

tiplied by the nontrivial twiddle factor. Another constant multiplier stage is required

before the sixth butterfly stage. The CSD complex constant multiplier processes the

multiplication of twiddle factors W 8,W 16, W 24,W 48. These twiddle factors correspond

to cos(π/8), sin(π/8), and cos(π/4).

2.7 Reordering of the Output Samples

Reordering of the output samples is an inherent problem in FFT computation. The

outputs are obtained in the bit-reversal order [17] in the serial architectures. In general

the problem is solved using a memory of size N . Samples are stored in the memory in

natural order using a counter for the addresses and then they are read in bit-reversal

order by reversing the bits of the counter. In embedded DSP systems, special memory

addressing schemes are developed to solve this problem. But in case of real-time systems,

this will lead to an increase in latency and area.

The order of the output samples in the proposed architectures is not in the bit-

reversed order. The output order changes for different architectures because of different

folding sets/scheduling schemes. We need a general scheme for reordering these samples.

One such approach is presented in this section.

The approach is described using a 16-point radix-2 DIF FFT example and the cor-

responding architecture is shown in Fig. 2.17. The order of output samples is shown in

Fig. 2.30. The first column (index) shows the order of arrival of the output samples.

The second column (output order) indicates the indices of the output frequencies. The

goal is to obtain the frequencies in the desired order provided the order in the last

column. We can observe that it is a type of de-interleaving from the output order and

380123456789101112131415

0821019311412614513715

0123891011456712131415

0123456789101112131415

OutputOrder Intermediate Order Final OrderIndex

Figure 2.30: Solution to the reordering of the output samples for the architecture in
Fig. 2.17.

the final order. Given the order of samples, the sorting can be performed in two stages.

It can be seen that the first and the second half of the frequencies are interleaved. The

intermediate order can be obtained by de-interleaving these samples as shown in the

table. Next, the final order can be obtained by changing the order of the samples. It

can be generalized for higher number of points, the reordering can be done by shuffling

the samples in the respective positions according to the final order required.

A shuffling circuit is required to do the de-interleaving of the output data. Fig.

2.31 shows a general circuit which can shuffle the data separated by R positions. If the

multiplexer is set to ”1” the output will be in the same order as the input, whereas setting

it to ”0” the input sample in that position is shuffled with the sample separated by R

positions. The circuit can be obtained using lifetime analysis and forward-backward

register allocation techniques. There is an inherent latency of R in this circuit.

The life time analysis chart for the 1st stage shuffling in Fig. 2.30 is shown in Fig.

2.32 and the register allocation table is in Fig. 2.33. Similar analysis can be done for the

2nd stage too. Combining the two stages of reordering in Fig. 2.30, the circuit in Fig.

2.34 performs the shuffling of the outputs to obtain them in the natural order. It uses

39

seven complex registers for a 16-point FFT. In general case, a N -point FFT requires a

memory of 5N/8 − 3 complex data to obtain the outputs in natural order.

R D01 10
Figure 2.31: Basic circuit for the shuffling the data.

45678910
0123Cycle#

33333+02+11+2
0123Live#0 8 2 10 1 9 3 11

Figure 2.32: Linear lifetime chart for the 1st stage shuffling of the data.

2.8 Comparison and Analysis

A comparison is made between the previous pipelined architectures and the proposed

ones for the case of computing an N -point complex FFT in Table 2.1. The comparison

is made in terms of required number of complex multipliers, adders, delay elements and

twiddle factors and throughput.

The proposed architectures are all feed-forward which can process 2 samples in

parallel, thereby achieving a higher performance than previous designs which are serial

in nature. When compared to some previous architectures, the proposed design doubles

the throughput and halves the latency while maintaining the same hardware complexity.

The proposed architectures maintain hardware regularity compared to previous designs.

The proposed DIT based 4-parallel and 8-parallel architectures require 3N/2−4 and

40R3R1 R2I/P
456789

0123

10

19311

08210 0 0 08 8 88 8 8
2 2 210 10109 9 910 10 1011 11 11

Figure 2.33: Register allocation table for the 1st stage shuffling of the data.

3D01 10 4D01 10
Figure 2.34: Structure for reordering the output data of 16-point DIF FFT.

3N/2 − 8 delay elements, respectively for an N-point FFT. The 4-parallel architecture

based on DIF algorithm requires 2N − 4 delay elements [11]. This number does not

depend on the radix of the algorithm, i.e., it will remain same for all radix-2n algorithms.

In general, delay feedback based architectures require N − 4 delay elements compared

to 3N/2 − 4 in the proposed architecture. Even though there is a difference of N/2

delay elements, these are required at the input stage to reorder the samples according

to the flow graph. These delays are not required if we can reorder the samples before

feeding them to the FFT processor (in general applications, memory will be used to

store the input samples and we can read the samples in the required order instead

41

Table 2.1: Comparison of pipelined hardware architectures for the computation of N-
point FFT

Architecture # Multipliers # Adders # Delays Throughput
R2MDC 2(log4N − 1) 4log4N 3N/2 − 2 1
R2SDF 2(log4N − 1) 4log4N N − 1 1
R4SDC (log4N − 1) 3log4N 2N − 2 1
R22SDF (log4N − 1) 4log4N N − 1 1
R23SDF* (log8N − 1) 4log4N N − 1 1

Proposed Architectures
Arch 1 (radix-2) 2(log4N − 1) 4log4N 3N/2 − 2 2
Arch 2 (radix-2) 4(log4N − 1) 8log4N 2N − 4 4
Arch 3 (radix-22) 2(log4N − 1) 4log4N 3N/2 − 2 2
Arch 4 (radix-22) 3(log4N − 1) 8log4N 2N − 4 4
Arch 5 (radix-23)* 2(log8N − 1) 4log4N 3N/2 − 2 2
Arch 6 (radix-23)* log8N − 1 4log4N 3N/2 − 2 2
* These architectures need 2 constant multipliers as described in Radix-23algorithm

of natural order). Further, the proposed architecture requires 4log2N complex adders

compared to the 8log2N − 8 complex adders in delay feedback designs. The proposed

architectures, however, can be pipelined at any level since these do not contain feedback

loops. In contrast, the delay feedback architectures cannot be pipelined at any arbitrary

level. The hardware cost of the proposed 128-point FFT architecture is summarized as

follows:

• number of complex multipliers: 4+0.41, where the complexity of the constant

multipliers is only 41% of the complex multiplier [26]

• number of complex adders: 28

• number of complex registers: 124, additional 64 registers are needed if an input

buffer is needed.

Table 2.2 compares the hardware requirement, FFT algorithm, and throughput rate

of the proposed and prior architectures for computing 128-point FFT. The hardware

complexity is measured in terms of required number of complex multipliers (C.M.),

adders (C.A.), and delay elements (REG) and throughput (TP). We can observe that

the number of adders required in the proposed design is only 50% of those in the MDF

architectures [25], [26]. The number of complex multipliers is almost the same compared

42

Table 2.2: Comparison of architectures for the computation of 128-point FFT
C.M. # REG # C.A. TP

Proposed 4+0.41 124 28 4
[11] 4+0.41 190 28 4
[25] 2+4*0.62 124 48 4
[26] 4+0.41 252 52 4
[27] 7 220 48 4
[28] 2+4*0.62 148 42 4

to the previous designs as this depends on the underlying algorithm. The number of

delay elements required in the proposed design is only 65% of those DIF based designs

in [11]. When compared to the design in [25] including the input buffers, the proposed

design requires extra 64 delay elements while the former design [25] requires another

20 complex adders. The cost of these two additional requirements will be comparable.

The throughput of proposed architecture can be increased by adding more pipelining

stages to increase the frequency of operation which is not possible in the design of [25].

2.8.1 Power Consumption

We compare power consumption of the serial feedback architecture with the proposed

parallel feedforward architectures of same radix. The dynamic power consumption of a

CMOS circuit can be estimated using the following equation,

Pser = CserV
2fser, (2.21)

where Cser denotes the total capacitance of the serial circuit, V is the supply voltage

and fser is the clock frequency of the circuit. Let Pser denotes the power consumption

of the serial architecture.

In an L-parallel system, to maintain the same sample rate, the clock frequency

must be decreased to fser/L. The power consumption in the L-parallel system can be

calculated as

Ppar = CparV
2 fser

L
, (2.22)

where Cpar is the total capacitance of the L-parallel system.

For example, consider the proposed architecture in Fig. 2.17 and R2SDF architec-

ture [18]. The hardware overhead of the proposed architecture is 50% increase in the

43

number of delays. Assume the delays account for half of the circuit complexity in serial

architecture. Then Cpar = 1.25Cser which leads to

Ppar = 1.25CserV
2 fser

2
= 0.625Pser (2.23)

Therefore, the power consumption in a 2-parallel architecture has been reduced by 37%

compared to the serial architecture.

Similarly, for the proposed 4-parallel architecture in Fig. 2.21, the hardware com-

plexity doubles compared to R2SDF architecture. This leads to a 50% reduction in

power compared to serial architecture.

2.9 Conclusion

We presented a novel approach to derive the FFT architectures for a given algorithm.

The proposed approach can be used to derive partly parallel architectures of any arbi-

trary parallelism level. Using this approach parallel architectures have been proposed

for the computation of complex FFT based on radix-2n algorithms. The DIT approach

reduces the number of delay elements by 33% compared to DIF based designs. Further,

a novel four parallel 128-point FFT architecture has been developed using proposed

method. The hardware costs of delay elements and complex adders are reduced by

using proposed scheduling approach. The number of complex multipliers is reduced

using higher radix FFT algorithm. The throughput can be further increased by adding

more pipeline stages which is possible due to the feed-forward nature of the design.

The power consumption can be reduced by 37% and 50% in proposed 2-parallel and

4-parallel architectures, respectively.

Chapter 3

FFT Architectures for real-valued

signals

In this chapter we present two approaches to design parallel-pipelined FFT architectures

for real-valued signals (RFFT). Section 3.2 provides a brief review of prior work on FFT

computation for real-valued signals. Section 3.3 presents a simple method to design

RFFT architectures based on complex FFT architectures. This is followed by Section

3.4 which presents a novel methodology to design RFFT architectures using hybrid

datapaths. Section 3.5 presents the proposed architectures based on radix-23 and radix-

24 algorithms. In Section 3.6, the hardware complexity of the proposed architectures

are compared with the prior art along with some simulation results.

3.1 Introduction

Fast Fourier Transform (FFT) is one of the widely used algorithms in digital signal

processing and has been of interest for many years. Many FFT algorithms have been

proposed following the essential idea of decimation either in the frequency or in time

domain [12] - [17]. Numerous architectures have been developed based on these algo-

rithms for different radices [16] - [37]. Most of these architectures assume the input

signal to be complex.

There has been an increasing interest in the computation of FFT for real valued

signals (RFFT), since virtually most of the physical signals are real. The real valued

44

45

signals which are of prime importance in real-time signal processing exhibit conjugate

symmetry giving rise to redundancies. This property could be exploited to reduce both

arithmetic and memory complexities.

The RFFT plays an important role in different fields such as communication sys-

tems, biomedical applications, sensors and radar signal processing. In multi-carrier

modulation schemes FFT and IFFT are core functions discrete multi-tone (DMT) based

transmission systems, which usually consume significant silicon area [38], [39]. A dedi-

cated RFFT processor architecture will reduce the hardware complexity in DMT based

technologies like very high bit-rate digital subscriber line (VDSL) [40] and asymmetric

digital subscriber line (ADSL) [41].

In the area of sensor signal processing, the FFT is used in frequency domain beam-

forming, source tracking, harmonic line association and classification [42], [43]. On the

other hand RFFT is one of the key algorithms in analyzing biomedical signals such

as electrocardiography (ECG), and electroencephalography (EEG) [44]. Frequency do-

main based features like power spectral density (PSD) can identify and/or predict the

abnormalities in these signals. A low complexity implementation of RFFT can reduce

the power consumption in implantable or portable devices.

Even though specific algorithms for the computation of the RFFT [45] - [50] have

been proposed in the past, these algorithms lack regular geometries to design pipelined

architectures. These approaches are based on removing the redundancies of the complex

FFT (CFFT) when the input is real and can be efficiently used in in-place architectures

[51] or digital signal processors (DSP). A novel approach to design efficient pipelined

architectures for RFFT was presented for the first time in [52].This architecture is based

on modifying the radix-2 flow graph to achieve real datapaths and processes 4 samples

in parallel. This approach is specific to radix-2 algorithm and was limited to a 4-parallel

architecture. A general approach which can be extended to other radix-2n algorithms

is needed to take advantage of less number of multiplication operations.

The main contribution of this theis is a novel general methodology for designing

pipelined FFT architectures for real valued signals. Unlike in prior design [52], this

approach accommodates arbitrary level of parallelism and arbitrary power-of-2 radix

designs. We introduce a combination of real and complex datapaths (referred to as

46

hybrid datapath) to achieve a generalized approach which can be extended to all radix-

2n algorithms. Further, folding approach in [11] can be used to design architectures for

any arbitrary level of parallelism. The use of hybrid datapath allows us to use the same

folding methods of [11]. The resulting architectures are very similar to the architectures

for complex signals except for datapaths. This style of datapath deviates from that

in [52] where all the datapaths are real. Novel 2-parallel and 4-parallel architectures

are derived for radix-23, and radix-24 algorithms. The proposed architectures based

on radix-23 and radix-24 algorithms require less multiplication complexity compared to

prior RFFT architectures.

3.2 Prior RFFT Approaches

3.2.1 Algorithms for Computing RFFT

The CFFT architecture can be efficiently used to compute RFFT using two different

algorithms. One such algorithm is the doubling algorithm [45], where an existing CFFT

is used to calculate two RFFTs simultaneously. Another one is the packing algorithm

[45], which forms a complex sequence of length N/2 taking the even and odd indexed

samples of a real input sequence of length N , and computes the N/2-point CFFT of the

complex sequence. In these algorithms, additional operations are necessary to obtain

the final results.

Specific algorithms for the computation of RFFT can be used to reduce more number

of operations. The first proposed algorithms were based on decimation in time (DIT)

decomposition [46]. The basic idea of the algorithm is to compute only one half of the

intermediate outputs, while the rest can be obtained by conjugating them. This will

save almost half of the computations. This idea is extended to higher radices as well

as split-radix [48], [49]. In [50], an algorithm for RFFT is proposed for decimation in

frequency (DIF) decomposition making use of linear phase sequences.

3.2.2 Architectures for computing RFFT

The RFFT can be computed using the CFFT architecture (by setting the imaginary

part to zero) which is the trivial solution. Further, doubling and packing algorithms can

47

be used to compute the RFFT in an efficient manner using CFFT architecture. Few

architectures have been proposed for RFFT in the literature. An in-place architecture

is proposed using the packing algorithm in [53]. In-place computation and memory

schemes are developed to implement a variable size radix-4 RFFT processor [40].

An approach to design of VLSI architectures for RFFT is presented in [52]. In [52],

the radix-2 flow graph is modified after removing the redundant operations to obtain a

regular geometry. A 4-parallel pipelined architecture is derived based on the modified

flow graph. The flow graph is modified such that all the data paths are real. Although

it achieves a low complexity architecture, the design requires an additional memory of

N real samples for the reorder buffer when the input samples arrive in natural order.

The 4-parallel architecture is shown in Fig. 3.1. Further, the approach is a 4-parallel

design specific to radix-2.

The higher radix algorithms lead to low multiplication complexity. For example,

radix-24 algorithm leads to only one complex multiplication every 4 stages and radix-23

algorithm leads to one complex multiplication every 3 stages. But constant multipliers

are required to implement trivial twiddle factors at the intermediate stages. To take

advantage of higher radix algorithms, we propose a new approach to modify the FFT

flow graph of any radix to obtain a regular geometry. The modified flow graph consists

of both real and complex data paths. Further, 2-parallel and 4-parallel architectures

are derived based on the modified flow graph using folding methodology [11]. Due to

space constraints, the folding sets and corresponding derivations are not presented.sw i tch sw i tch2 D
2 D

D
DBFI BFII BFIV

sw i tch sw i tch2 D
2 D

D
DX BFIV

BFI

BFI BFI

sw i tch

X

Figure 3.1: 4-parallel architecture for the computation of 16-point RFFT based on
radix-2 algorithm [52].

48

3.3 Proposed Method 1

For RFFT, the input sequence is assumed to be real, i.e., ∀n, x[n] ∈ <. It is easy to

show that, if x[n] is real, then the output X[k] is symmetric, i.e.,

X[N − k] = X∗[k]

Using this property, N
2 − 1 outputs can be removed which are redundant. Most of

the approaches in literature obtain the frequencies with indices k = [0, N/2] or k =

[0, N/4]
∪

[N/2, 3N/4]. A new approach to find the redundant samples, which simplifies

the hardware implementation has been proposed in [52]. We use this approach [52], to

find the redundant samples in the flow graph. The shaded regions in Fig. 3.2 can be

removed and only N/2 + 1 outputs of the FFT are needed.

The other simplification is that Im(x[n]) = 0, since inputs are real. According to

this, every piece of data is real until it is multiplied by a complex number. Thus, the

additions performed on this data are real. Thus we can save few adders required in

implementing the FFT in hardware. We propose novel pipelined architectures based on

these modifications which can process two samples in parallel. Two of these architectures

are proposed in [54], which are derived using the new approach. Further this idea is

extended to radix-23 algorithm.

3.3.1 2-parallel Radix-2 Architecture

The DFG of the radix-2 DIF FFT is shown in Fig. 2.16. The pipelined architecture for

RFFT can be derived with the following folding sets similar to the CFFT architecture.

A = {A0, A2, A4, A6, A1, A3, A5, A7},

B = {B5, B7, B0, B2, B4, B6, B1, B3},

C = {C3, C5, φ, C0, C2, C4, φ, C1},

D = {D2, D4, φ,D1, φ,D5, φ,D0} (3.1)

The architecture will be similar to the radix-2 DIF CFFT architecture shown in Fig.

2.17 except that the first two stages of the butterfly will contain a real datapath. The

hardware complexity of this architecture is similar to the CFFT architecture. Although

the proposed architecture and the architecture in [52] have same hardware complexity,

49

the proposed architecture is more regular. By extending the same approach to higher

radices, multiplier complexity can be reduced.x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)x(8)x(9)x(10)x(11)x(12)x(13)x(14)x(15)

X(0)X(8)X(4)X(12)X(2)X(10)X(6)X(14)X(1)X(9)X(5)X(13)X(3)X(11)X(7)X(15)
-j-j-j-j

-j
-j
-j
-j

W2W4W6W1W2W3W3W6W9
Figure 3.2: Flow graph of a radix-22 16-point DIF FFT. The boxed regions are redun-
dant operations for RFFT.

sw i tch sw i tch sw i tch2 D
2 D D

D 4 D
4 DXBFIr BFIIr BFIc BFIIc

REAL DataPath Complex DataPath4 D
4 D

sw i tchx (2 k)
x (2 k + 1)

X (k)
X (k + 8)

Figure 3.3: Proposed 2-parallel for the computation of 16-point radix-22 DIF RFFT.

3.3.2 2-parallel Radix-22 Architecture

The direct mapping of the radix-22 DIF FFT algorithm to a hardware architecture is

simple. We can simply use the Radix-22 Single-path Delay Feedback (R22SDF) approach

presented in [13], with just modifying the first complex butterfly stage into real. But,

this cannot exploit the properties of the RFFT, where almost half of the output samples

50

are redundant. In R22SDF architecture, we can also observe that the utilization of

multipliers will be 50% after the redundant operations are removed. Therefore, we

propose a novel architecture for computing real FFT based on the flow graph shown

in Fig. 3.2. The proposed architecture can process two input samples in parallel as

opposed to serial architectures proposed in the literature. Two different architectures

are derived using two different scheduling approaches, i.e., changing the folding order

of the butterfly nodes.

Scheduling Method 1x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)x(8)x(9)x(10)x(11)x(12)x(13)x(14)x(15)

X(0)X(8)X(4)X(2)X(10)
X(1)X(9)X(5)X(13)-j-j-j-j

-j

-j
W2W4W6W1W2W3

48596107114859610711

610711
812915

913913

1111151212
13131717

610711
711711812

Figure 3.4: Simplified flow graph of a 16-point radix-22 DIF RFFT along with the
proposed scheduling 1

Fig. 3.3 shows the proposed parallel-pipelined architecture for a 16-point DIF RFFT

obtained from the flow graph in Fig. 3.2. The architecture can be derived using the

51

following folding sets.

A = {A0, A2, A4, A6, A1, A3, A5, A7},

B = {B5, B7, B0, B2, B4, B6, B1, B3},

C = {C3, C5, φ, C0, C2, C4, φ, C1},

D = {D2, D4, φ,D1, φ,D5, φ,D0}

The nodes from A0, ...A7 represent the 8 butterflies in the first stage of the FFT and

B0, ...B7 represent the butterflies in the second stage and so on. Assume the butterflies

B0, ..., B7 have only one multiplier at the bottom output instead of on both outputs.

This assumption is valid only for the RFFT case due to the redundant operations. This

radix-22 feedforward pipelined architecture maximizes the utilization of multipliers and

processes 2 input samples per clock cycle. As shown in the flow graph, all the edges in

the first two stages carry real samples and later stages carry complex samples. Therefore,

the radix-2 butterflies in the first two stages process two real inputs and they consist

of only a real adder and a real subtractor. The butterflies and the multipliers in the

remaining stages operate on complex inputs. In a general case of N-point RFFT, with

N power of 2, the architecture requires log2(N)−1 real butterflies, log4(N)−1 complex

multipliers and 9N/8 − 2 delay elements or buffers.

The scheduling for the proposed architecture in Fig. 3.3 is shown in Fig. 3.4. The

numbers on the edges indicate the clock cycle numbers in which those intermediate

samples are computed. The first two stages compute only real butterflies. According

to the input order of the data, the first butterfly computes the pairs of samples in the

following order:(0,8), (2,10), (4,12), (6,14), (1,9), (3,11), (5,13), (7,15). This circuit first

processes the even samples and then the odd samples.

sw i tch sw i tch sw i tch4 D
4 D 2 D

2 D D
DXD e l a y s a n d m u l t i p l e x l o g i c B F I r B F I I r B F I c B F I I c

RE A L Dat aP at h Com plex Dat aP at h X (k)
X (k + 8)

x (2 k)
x (2 k + 1)

Figure 3.5: Proposed 2-parallel for the computation of 16-point radix-22 DIF RFFT.

52

-
(a) BF2Ir

- 0
0

(b) BF2IIr

Figure 3.6: Butterfly structure for the proposed FFT architecture in the real datapath

We can observe the similarity of the data-path to Radix-2 Multipath delay commu-

tator (R2MDC) and the reduced number of multipliers. The implementation uses four

types of butterflies as shown in the architecture. BF2Ir and BF2Ic are regular butter-

flies which handle real and complex data, respectively as shown in Fig. 3.6 and 3.7.

Although there is a multiplicative factor ”− j” after the first stage, the first two stages

consists of only real-valued datapath. We need to just combine the real and imaginary

parts and send it as an input to the multiplier in the next stage. For this, we do not

need a full complex butterfly stage. The factor −j is handled in the second butterfly

stage using a bypass logic which forwards the two samples as real and imaginary parts to

the input of the multiplier. The adder and subtractor in the butterfly remains inactive

during that time. Fig. 3.6b shows BF2IIr, a regular butterfly which handles real data

and also contains logic to implement the twiddle factor ”−j” multiplication after the

first stage. Fig. 3.7b shows the complex butterfly structure for BF2IIc and contains

logic to implement the twiddle factor (−j) multiplication.

Scheduling Method 2

Another way of scheduling is proposed which modifies the architecture slightly and also

reduces the required number of delay elements. In this scheduling, the input samples

53

- -
(a) BF2Ic

--++-
(b) BF2IIc

Figure 3.7: Butterfly structures for the proposed architecture in the complex datapath

are processed sequentially, instead of processing the even and odd samples separately.

This can be derived using the following folding sets.

A = {A0, A1, A2, A3, A4, A5, A6, A7},

B = {B4, B5, B6, B7, B0, B1, B2, B3},

C = {C2, C3, C4, C5, φ, φ, C0, C1},

D = {D1, D2, φ,D4, D5, φ, φ,D0}

The nodes from A0, ...A7 represent the 8 butterflies in the first stage of the FFT and

B0, ...B7 represent the butterflies in the second stage. Assume the butterflies B0, ..., B7

have only one multiplier at the bottom output instead of both outputs.

Fig. 3.5 shows the modified architecture and the corresponding scheduling is shown

in Fig. 3.8. In a general case of N-point RFFT, with N power of 2, the architecture

requires log2(N) − 1 real butterflies, log4(N) − 1 complex multipliers and N − 2 delay

elements or buffers. We can observe that the savings in number of delay elements is due

to the last stage. In the last stage, we need to store complex samples, i.e., double delay

elements are required to store both real and imaginary parts. By decreasing the number

of delay elements in this stage, we are able to reduce the total number of delay elements

54x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)x(8)x(9)x(10)x(11)x(12)x(13)x(14)x(15)

X(0)X(8)X(4)X(2)X(10)
X(1)X(9)X(5)X(13)-j-j-j-j

-j

-j
W2W4W6W1W2W3

45678910114567891011

891011
12131415

14151415

1111121313
15151616

891011
101110111213

Figure 3.8: Simplified flow graph of a 16-point radix-22DIF RFFT along with the pro-
posed scheduling 2

required. The control logic becomes slightly complex for this scheduling as shown in the

first stage. Register minimization techniques [55] are used to find the optimal number

of registers required for this scheduling. N/2 registers are needed in the first stage to

achieve the required scheduling.

3.3.3 Radix-23

The approach of radix-22 RFFT architecture can be extended to radix-23 algorithm

which has low multiplier complexity. The radix-23 FFT algorithm is shown in Fig. 3.9.

The shaded regions show the redundant operations for RFFT. We can observe that only

one multiplier is required at the end of the third butterfly column due to redundancy.

Two multipliers are required for a complex FFT as shown in Fig. 2.25.

The parallel architecture can be derived using the same kind of folding sets described

in Scheduling Method I. The folded architecture is shown in Fig. 3.10. For an N -point

RFFT with N power of 23, the architecture requires log8(N) − 1 complex multipliers

and N − 2 delay elements or buffers. It also requires constant multipliers to perform

55

-j-j-j-j
-j-j-j-j
-j-j-j-j
-j-j-j-j

-j-j-j-j
-j-j-j-j

-jW8-jW8-jW8-jW8-jW8-jW8-jW8-jW8
W8W8W8W8W8W8W8W8

-j-j
-j-j
-j-j
-j-j
-j-j
-j-j
-j-j
-j-j

-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8-jW8W8

W35W30W25W20W10W15W5
W42W36W30W24W12W18W6W14W12W10W8W4W6W2W28W24W20W16W8W12W4

W7W6W5W4W2W3W1

W49W42W35W28W14W21W7W21W18W15W12W6W9W3

x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)x(8)x(9)x(10)x(11)x(12)x(13)x(14)x(15)x(16)x(17)x(18)x(19)x(20)x(21)x(22)x(23)x(24)x(25)x(26)x(27)x(28)x(29)x(30)x(31)x(32)x(33)x(34)x(35)x(36)x(37)x(38)x(39)x(40)x(41)x(42)x(43)x(44)x(45)x(46)x(47)x(48)x(49)x(50)x(51)x(52)x(53)x(54)x(55)x(56)x(57)x(58)x(59)x(60)x(61)x(62)x(63)

X(0)X(32)X(16)X(48)X(8)X(40)X(24)X(56)X(4)X(36)X(20)X(52)X(12)X(44)X(28)X(60)X(2)X(34)X(18)X(50)X(10)X(42)X(26)X(58)X(6)X(38)X(22)X(54)X(14)X(46)X(30)X(62)X(1)X(33)X(17)X(49)X(9)X(41)X(25)X(57)X(5)X(37)X(21)X(53)X(13)X(45)X(29)X(61)X(3)X(35)X(19)X(51)X(11)X(43)X(27)X(59)X(7)X(39)X(23)X(55)X(15)X(47)X(31)X(63)
Figure 3.9: Flow graph of a 64-point radix-23 DIF RFFT

sw itch sw itch sw itch8 D8 D 4 D 4 D 2 D2 DXB F I r B F I I r B F I I c B F I c s w it ch 1 6 D1 6 D B F I I csw itc h DD B F I I cX X

Real Dat aP at h Com plex Dat aP at h1 6 D1 6D sw itchx (2 k)x (2 k + 1) C S D M u l t i p l i e r C S D M u l t i p l i e rF u l l M u l t i p l i e r

X (k)X (k + 8)

Figure 3.10: Proposed 2-parallel for the computation of 64-point radix-23 DIF RFFT.

56x(0)x(1)x(2)x(3)x(4)x(5)x(6)x(7)x(8)x(9)x(10)x(11)x(12)x(13)x(14)x(15)

X(0)X(8)X(4)X(12)X(2)X(10)X(6)X(14)X(1)X(9)X(5)X(13)X(3)X(11)X(7)X(15)
-j-j-j-j

-j
-j
-j
-j

W2W4W6W1W2W3W3W6W9
Figure 3.11: Flow graph of a 16-point radix-22 DIF FFT.

the trivial multiplication operations. The advantage of this architecture is its reduced

multiplier complexity.

Similar to 4-parallel radix-2 CFFT, 4-parallel radix-22 and radix-23 architectures for

RFFT can be derived using the folding sets of the same pattern.

3.4 Proposed Methodology 2

We propose a novel methodology to develop pipelined architectures based on removing

the redundant operations. The proposed methodology consists of three steps which are

explained below.

3.4.1 Modifying the flow graph

In the first step, the FFT flow graph is modified by removing the redundant samples.

Most of the approaches in literature compute the frequencies with indices k = [0, N/2] or

k = [0, N/4]
∪

[N/2, 3N/4]. We use the approach proposed in [52] to find the redundant

samples in the flow graph. Fig. 3.11 shows the flow graph of 16-point FFT decimated in

57

frequency. The boxed regions show the redundant samples which can be removed from

the flow graph. These samples and the corresponding computations can be removed

from the flow graph. The flow graph after removing the redundant samples will be

irregular. It could be used to implement efficient in-place architectures, but not to

efficient pipelined architectures.

We need to modify the flow graph to obtain a regular geometry to simplify the

hardware implementation. Fig. 3.12 shows the modified flow graph which is obtained

by scheduling the imaginary operations in place of redundant operations. All the edges

in Fig. 3.12 are real, i.e., the data have been separated into real and imaginary parts.

The continuous edges compute the real parts and the broken edges represent the com-

putations of the imaginary parts. The output samples of the flow graph include a letter

(r or i) to indicate if the value corresponds to the real part or the imaginary part of the

output.

Further, in higher point FFTs, a complex sample (real and imaginary components

computed separately) may need to be multiplied by a complex twiddle factor, i.e., a

full complex multiplier is required. In that situation, the proposed modifications will

not lead to a regular flow graph. This problem can be solved by reordering the data

before the multiplier to have corresponding samples at the input of the multiplier at

the same time. At the architecture level, this problem can be solved by introducing an

extra stage of reordering circuit before the multiplier. We modify the multiplier stage

similar to that of the butterfly stage by adding a reordering circuit. This will increase

the latency by a few cycles and the number of delay elements depending on the stage

at which multipliers are required. This situation will be described with an example in

Section IV.

3.4.2 Hybrid datapaths

It can be seen that the modified flow graph involves both real and complex operations.

Some of these paths which involve real and complex numbers are pointed out in Fig.

3.12. The multiplication operation at each stage determines whether the datapath is

real or complex. For example, in the radix-22 algorithm, multiplication operation is

required at every alternate stage and the datapath will be complex at every other stage.

Further, we can observe that the butterfly operations sometimes consist of both

58

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)
x(10)
x(11)
x(12)
x(13)
x(14)
x(15)

X(0)
X(8)

-j
-j
-j
-j

-j

-j

-j

W2

W4

W6

W1

W2

W3

Xi(1)
Xi(9)

Xr(2)
Xr(10)

Xr(4)

Xr(5)
Xr(13)

Xi(2)
Xi(10)
Xr(1)
Xr(9)

Xi(5)
Xi(13)

Xi(4)

No need of butterfly operation

Process two complex samples but
needs only addition operation

Figure 3.12: Modified flow graph of a 16-point radix-22 DIF FFT.

59

real and complex numbers. We propose new butterfly structures to handle these real

and complex operations as the regular butterfly structure can handle only either the

real or complex numbers. We identify three different possible scenarios in the modified

flow graphs of radix-2n algorithms. The first scenario is the straightforward one which

involves only real inputs. Fig. 3.13 shows the basic butterfly structure (BFI) which

operates on two real inputs, and thus, only consists of a real adder and real subtractor.

The second scenario is when the butterfly needs to compute a regular butterfly

operation or just pass through the input samples without any processing. This scenario

can be observed in the second stage of the flow graph in Fig. 3.12. We can observe

that the butterfly unit in this stage needs to work as regular butterfly half the time and

transfer the input samples to the output for remaining half the time. Fig. 3.14 shows

the new butterfly structure (BFII) which operates on real inputs along with the possible

outputs. BFII butterfly processes two real inputs and generates two real outputs (real

and/or imaginary components). Thus, it requires only two real adders.

The third scenario is when the butterfly needs to operate on real inputs and complex

inputs at different time instances. The example of such a scenario can be observed in

the third stage of the flow graph in Fig. 3.12. The third stage of operations consists

of complex data in the second quarter. During this time, the butterfly needs to add

only two complex inputs. The subtraction is not required in contrast to the regular

butterfly due to the removal of redundant operations. Two real adders are sufficient

to add two complex numbers. The remaining operations in the third stage are regular

butterfly operations which process only real or imaginary data. Fig. 3.15 shows the

butterfly structure (BFIII) which can operate as regular butterfly with real inputs or a

modified butterfly with complex inputs. BFIII also requires only two real adders. The

possible outputs of the butterfly are also shown in the Fig. 3.15. The control signal to

the multiplexers will define the output.

3.4.3 Folding

The data flow graph (DFG) can be derived by identifying the correct butterflies in the

modified flow graph. As an example, consider the modified flow graph shown in Fig.

3.12. The corresponding DFG is shown in Fig. 3.16. The DFG consists of both real

and complex datapaths. The bold lines represent the complex datapath while the rest

60

-

a

b

a+b

a-b

Figure 3.13: Butterfly structure BFI for the proposed FFT architecture

-

a

b

a+b
or
a

a-b
or
b

Figure 3.14: Butterfly structure BFII for the proposed FFT architecture

+/-

ar+br

ai+bi
or

ar-br

ar

ai

br

bi

Figure 3.15: Butterfly structure BFIII for the proposed FFT architecture

61B0B1B2B3
C0C1C2C3

D0D1D2D3B4B5B6B7
C4C5C6C7

D4D5D6D7

A0A1A2A3A4A5A6A7

x0x8x1x9x2x10x3x11x4x12x5x13x6x14x7x15

X0X8

Xi1Xi9

Xr2Xr10Xr4

Xr5Xr13
Xi2Xi10Xr1Xr9
Xi5Xi13

Xi4

Figure 3.16: Modified flow graph of a 16-point radix-22 DIF FFT.

represent real datapath. The nodes in the DFG can be mapped to different butterfly

structures described earlier. The nodes A, B, C, D can be mapped to BFI, BFIV, BFIII,

BFI respectively. Now, folding technique can be used to derive the pipelined architecture

from the data flow graph. The folding approach is used in [11] to optimize the datapath.

A similar approach is followed in this paper to derive the proposed architectures.

2-parallel architecture To derive the 2-parallel architecture, consider the folding sets:

A = {A0, A2, A4, A6, A1, A3, A5, A7},

B = {B5, B7, B0, B2, B4, B6, B1, B3},

C = {C3, C5, C7, C0, C2, C4, C6, C1},

D = {D2, D4, D6, D1, D3, D5, D7, D0} (3.2)

4-parallel architecture To derive the 4-parallel architecture divide the nodes into two

groups. The nodes in the same group are processed by the same computation unit. A

62

4-parallel architecture can be derived using the following folding sets.

A = {A0, A2, A4, A6} A′ = {A1, A3, A5, A7}

B = {B1, B3, B0, B2} B′ = {B5, B7, B4B6}

C = {C2, C1, C3, C0} C ′ = {C6, C5, C7, C4}

D = {D3, D0, D2, D1} D′ = {D7, D4, D6, D5} (3.3)

The mapping of nodes to different butterfly structures can be different in the case

of 4-parallel architecture. The nodes {B4, ..., B7} can be implemented with only a

complex multiplier instead of BFIV structure, as these nodes consists of only complex

multiplication operation. The reader can refer to [11] for the complete folding equations

and register minimization techniques needed to derive the pipelined architecture.

3.5 Proposed Architectures

In this section, we present 2-parallel and 4-parallel architectures for real FFT com-

putation based on radix-23 and radix-24 algorithms using the proposed methodology.

Further, folding sets can be modified to derive L-parallel architectures of any N -point

RFFT. To illustrate the proposed architectures, we consider examples of N = 64,

N = 128.

3.5.1 Radix-23

The proposed radix-23 based architectures are described using the example of N =

64 point FFT. The flow graph is modified by removing the redundant samples and

rescheduling the imaginary operations in place of the removed operations. The modified

flow graph is shown in Fig. 3.17. The broken lines represent the imaginary parts of

the computation, while continuous lines represent the real part of the computation. We

can observe that the flow graph is regular and leads to a pipelined architecture. The

intermediate samples need to be reordered (swapped) so that the real and imaginary

components are aligned correctly before multiplied by a twiddle factor. For example,

the output samples at the 3rd stage should be multiplied by a twiddle factor, but the

real and imaginary components are computed separately. This problem is solved by

63

reordering the samples before the multiplier. Fig. 3.18 shows the design of multiplier

block used in the proposed architectures. The multiplexers on the left can either pass

through the samples or swap the samples separated by n clock cycles. The multiplexers

on the right will control the output depending on whether the input samples need to be

multiplied by a twiddle factor.

The multiplication with the ”-j” factor can be implemented in a similar way except

that we do not need a multiplier. The real and imaginary parts need to be interchanged.

We introduce a swap block whenever only a ”-j” operation in required. We observed

that ”-j” twiddle factors occur only at the bottom outputs of the butterflies in radix-23

and radix-24 algorithms. Fig. 3.19 shows the design of the swap block used in the

proposed architectures. The swapping of real and imaginary parts is required only at

the bottom output of butterflies as shown in the Fig. 3.19.

2-parallel architecture

The next step is to determine the butterfly structures required to design the pipelined

architecture. In a 2-parallel design, all the butterfly computations in one stage are

executed using one computation unit. The folding sets for this example are similar

to (3.2), except extending them for 64-point. The first stage is straightforward as it

processes real inputs and BFI structure can be used. In the second stage, the butterflies

process real samples for half the time and complex samples for the rest of the time.

The complex samples consists of only either a real or a imaginary component and

only passthrough operation is sufficient instead of a regular butterfly operation. BFII

butterfly structure is used as the computation unit for the second stage. Similarly, BFII,

BFIII, BFII, BFII butterfly structures are used for 3rd, 4th, 5th stage and 6th stages,

respectively. Further, the multiplier after the 3rd stage is modified similar to that of

a butterfly stage to enable the dataflow according the flow graph. An extra reordering

circuit is inserted before the complex multiplier to reorder the samples into required

order as shown in Fig. 3.18. The final architecture can be derived by folding the flow

graph using the above computation units.

Fig. 3.20 shows the proposed 2-parallel pipelined architecture for a 64-point DIF

FFT derived from the flow graph of Fig. 3.17. This radix-2 feedforward structure

achieves 100% utilization of the hardware components, and achieves a throughput of

64

-j
-j
-j
-j

-j
-j
-j
-j

-j
-j
-j
-j

-j
-j
-j
-j

-j
-j
-j
-j

-j
-j
-j
-j

W8
W8
W8
W8

W8

W8

W8
W8

-j
-j

-j
-j

-j
-j

-j
-j

-j
-j

-j
-j

-j
-j

-jW8

W8

-jW8

W8

-jW8

W8

-jW8

W8

-jW8

W8

-jW8

W8

-jW8

W8

-jW8

W8

W35
W30
W25
W20

W10

W15

W5

W14
W12
W10
W8

W4

W6

W2

W28
W24
W20
W16

W8

W12

W4

W7
W6
W5
W4

W2

W3

W1

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)
x(10)
x(11)
x(12)
x(13)
x(14)
x(15)
x(16)
x(17)
x(18)
x(19)
x(20)
x(21)
x(22)
x(23)
x(24)
x(25)
x(26)
x(27)
x(28)
x(29)
x(30)
x(31)
x(32)
x(33)
x(34)
x(35)
x(36)
x(37)
x(38)
x(39)
x(40)
x(41)
x(42)
x(43)
x(44)
x(45)
x(46)
x(47)
x(48)
x(49)
x(50)
x(51)
x(52)
x(53)
x(54)
x(55)
x(56)
x(57)
x(58)
x(59)
x(60)
x(61)
x(62)
x(63)

X(0)
X(32)
X(16)

X(8)
X(40)

X(4)
X(36)
X(20)
X(52)

X(2)
X(34)
X(18)
X(50)
X(10)
X(42)
X(26)
X(58)

X(1)
X(33)
X(17)
X(49)
X(9)
X(41)
X(25)
X(57)
X(5)
X(37)
X(21)
X(53)
X(13)
X(45)
X(29)
X(61)

W35
W30
W25
W20

W10

W15

W5

W7
W6
W5
W4

W2

W3

W1 X(1)
X(33
X(17
X(49
X(9)
X(41
X(25
X(57
X(5)
X(37
X(21
X(53
X(13)
X(45)
X(29
X(61

X(2)
X(34)
X(18)
X(50)
X(10)
X(42)
X(26)
X(58)

X(4)
X(36)
X(20)
X(52)

X(8)
X(40)

X(16

Figure 3.17: Modified flow graph of 64-point radix-23 DIF FFT. The samples at the
continuous and broken lines indicate real components and imaginary components re-
spectively.

65

n
X
n 01controln

n01control X 0110 control1
Figure 3.18: Structure of the multiplier block in the proposed architectures

SWAPn 01 10
nn

Figure 3.19: Structure of the swap block in the proposed architectures

X
4
X
4

S
W
A
P
2

2
X
2

B F
I

16

s
w
i
t
c
h

16
B F
II

8

s
w
i
t
c
h

8
B F
II

4

s
w
i
t
c
h

4
B F
III

2

s
w
i
t
c
h

2
B F
II

1

s
w
i
t
c
h

1
B F
II

16

s
w
i
t
c
h

16

CSD
Multiplier

CSD
Multiplier

Full
Multiplier

x(2k)

x(2k+1)

X(k)

X(k+32)

Figure 3.20: Proposed 2-parallel architecture for radix-23 64-point DIF FFT. The bold
lines indicate complex data paths.

66

2 samples per clock cycle. The design consists of both real and complex datapaths as

shown in Fig. 3.20. The bold lines represent the complex datapath while the rest repre-

sent real datapath. Three different butterfly structures (BFI, BFII and BFIII) are used

to handle the complex and real datapaths. It requires only one full complex multiplier

and two constant multipliers. The constant multipliers involve the multiplication of

the input with the special twiddle factor W 8. It can be implemented with 2 addition

operations and a scaling operation by a constant (1/
√

(2)). The constant scaling op-

eration can be implemented using canonic signed digit (CSD) multiplication [55]. ’−j’

operation can be handled either in the multiplier or using a swap block shown in Fig.

3.19. Fig. 3.20 shows a swap block after 4th stage to handle ”-j” operation. The swap

block just interchange the corresponding real and imaginary components.0110 control4D
4D6 4 2 0

7 5 3 1
14 12 10 8
15 13 11 9

6 4 2 07 5 3 1
14 12 10 815 13 11 9

Figure 3.21: Reordering structure (switch and delay elements) of the pipelined archi-
tecture. This example shows the reordering in the first stage of a 16-point RFFT.

The rest of the datapath consists of delay elements and switch components (multi-

plexers) for reordering the samples according to the flow graph. The data flow of the

switch and delay elements is shown in Fig. 3.21. The function of the switch and delay

elements is to reorder the incoming samples to provide the corresponding samples at

the input of each butterfly stage according to the data flow during every clock cycle.

X X
S
W
A
P

XB F
I

N /
4

s
w
i
t
c
h

N /
4

B F
II

N /
8

s
w
i
t
c
h

N /
8

B F
II

N/
1 6

s
w
i
t
c
h

N/
1 6

B F
III

N/
3 2

s
w
i
t
c
h

N/
3 2

B F
II

1

s
w
i
t
c
h

1
B F
II

N /
4

s
w
i
t
c
h

N /
4

CSD
Multiplier

CSD
Multiplier

Full
Multiplier

S
W
A
P

XB F
II

s
w
i
t
c
h

s
w
i
t
c
hCSD

Multiplier

XB F
II

B F
III

s
w
i
t
c
hFull

Multiplier

x(2k)

x(2k+1)

Figure 3.22: Proposed N-point 2-parallel architecture for radix-23 DIF FFT, where N
is a power of 8. The bottom structure will be repeated depending on N .

67

The control signal controls the multiplexers which connects the input and output of

the switch in two different ways (either straight or cross paths). The control signals for

switches in different stages of the architecture can be generated by using simple counter

logic. Fig. 3.21 shows the switch and delay elements in the third stage of the 64-point

RFFT architecture along with the input and output order of the samples. The control

signal should be 0 for 4 clock cycles and 1 for the next 4 clock cycles, i.e., signal needs to

toggle every 4 clock cycles to generate the output order. Thus, 3rd-bit of a 5-bit counter

can be used as the control signal in this example. In a similar fashion, other bits in the

5-bit counter can be used as the control signals for the remaining switch components.

Fig. 3.22 shows a general N-point 2-parallel architecture based on radix-23 algo-

rithm, where N is a power of 8. The bottom part will be repeated log8N − 2 times. In

general, for an N -point RFFT, with N power of 2, the 2-parallel architecture requires

2log2N real adders, log8N − 1 complex multipliers, 2(log8N − 1) CSD (W 8) multipliers

and 3N/2 − 4 real delay elements. Few extra delays are required for interchanging real

and imaginary components before twiddle factor multiplications.

X
1
X
1

B F
I

8

s
w
i
t
c
h

8
B F
I

4

s
w
i
t
c
h

4
B F
II

2

s
w
i
t
c
h

2
B F
III

1

s
w
i
t
c
h

1
B F
II

8s

s
w
i
t
c
h

8
B F
II

4

s
w
i
t
c
h

4

X
2
X
2

1
X
1

B F
I

8

s
w
i
t
c
h

8

4

s
w
i
t
c
h

4
B F
I

2

s
w
i
t
c
h

2
B F
I

1

s
w
i
t
c
h

1
B F
I

8s

s
w
i
t
c
h

8
B F
I

4

s
w
i
t
c
h

4

CSD
Multiplier

CSD
Multiplier

Full
Multiplier

x(4k)

x(4k+2)

x(4k+1)

x(4k+3)

Figure 3.23: Proposed 4-parallel architecture for radix-23 64-point DIF FFT.

4-parallel architecture

A 4-parallel architecture can be derived from the flow graph shown in Fig. 3.17. We

need to determine the folding sets and the computation units. Two computation units

are available for each stage. The first stage can be computed using two BFI units since

all the operations involve only real components. In the second stage, the top half can

be computed using a BFI unit and the bottom half does not need a butterfly operation.

Similarly, the rest of the computation units can be determined. The proposed 4-parallel

architecture for radix-23 64-point FFT is shown in Fig. 3.23. This architecture processes

68

X XB F
I

N /
8

s
w
i
t
c
h

N /
8

B F
I

N /
16

s
w
i
t
c
h

N /
16

B F
II

N /
32

s
w
i
t
c
h

N /
32

B F
III

N /
64

s
w
i
t
c
h

N /
64

B F
II

N /
8

s
w
i
t
c
h

N /
8

B F
II

N /
16

s
w
i
t
c
h

N /
16

X X XB F
I

N /
8

s
w
i
t
c
h

N /
8

N /
16

s
w
i
t
c
h

N /
16

B F
I

N /
32

s
w
i
t
c
h

N /
32

B F
I

N /
64

s
w
i
t
c
h

N /
64

B F
I

N /
8

s
w
i
t
c
h

N /
8

B F
I

N /
16

s
w
i
t
c
h

N /
16

CSD
Multiplier

CSD
Multiplier

Full
Multiplier

XB F
II

s
w
i
t
c
h

B F
II

s
w
i
t
c
h

XB F
I

s
w
i
t
c
h

B F
I

s
w
i
t
c
h

CSD
Multiplier

X B F
III

s
w
i
t
c
h

X B F
I

s
w
i
t
c
h

Full
Multiplier

S
W
A
P

S
W
A
P

x(4k)

x(4k+2)

x(4k+1)

x(4k+3)

Figure 3.24: Proposed N-point 4-parallel architecture for radix-23 DIF FFT, where N
is a power of 8. The bottom structure will be repeated depending on N .

B F
I

1
6

s
w
i
t
c
h

1
6

B F
III

4

s
w
i
t
c
h

4
B F
II

2

s
w
i
t
c
h

2
B F
III

1

s
w
i
t
c
h

1
B F
II1

6
s

s
w
i
t
c
h

16

B F
I

1
6

s
w
i
t
c
h

1
6

B F
I

4

s
w
i
t
c
h

4
B F
I

2

s
w
i
t
c
h

2
B F
I

1

s
w
i
t
c
h

1
B F
I1

6
s

s
w
i
t
c
h

1
6

B F
II

8

s
w
i
t
c
h

8

B F
I

8

s
w
i
t
c
h

8

B F
I

8

s
w
i
t
c
h

8

X
8

s
w
i
t
c
h

8

X

S
W
A
P
2

1
X
1

1
X
1

1
X
1

1
X
1

CSD
Multiplier

CSD
MultiplierFull

Multiplier

x(4k)

x(4k+2)

x(4k+1)

x(4k+3)

Figure 3.25: Proposed 4-parallel architecture for radix-24 128-point DIF FFT.

4 consecutive samples in parallel. The upper butterfly operates on even samples, i.e.,

(0, 32), (4, 36), (8, 40) and so on and the lower butterfly processes the odd samples, i.e.,

(1, 33), (5,37), (9, 41), etc. Similar to the 2-parallel design, this architecture consists of

both real and complex data paths.

The 4-parallel architecture requires three types of butterfly structures (BFI, BFII,

and BFIII) to handle different combinations of real and complex data. Only two full

multipliers are required in this design. The rest of the three multipliers can be im-

plemented using CSD logic. Fig. 3.22 shows a general N-point 2-parallel architecture

based on radix-23 algorithm, where N is a power of 8. The bottom part will be repeated

log8N −2 times. In a general case of N-point RFFT, the 4-parallel architecture requires

4log2N real adders, 2(log8N −1) complex multipliers, 4log8N −5 CSD (W 8) multipliers

and 7N/4 − 8 delay elements.

69

3.5.2 Radix-24

The proposed radix-24 2-parallel architecture is explained using N = 128 point FFT.

The advantage of radix-24 algorithm is that it needs only one full multiplier every four

stages. The radix-24 algorithms are described in detail in [23]. We can modify the flow

graph similar to the other radices. We schedule the imaginary operations of the required

frequencies in place of redundant operations.

4-parallel architecture

The folding sets similar to (3.2) are used to derive the 4-parallel architecture. Three

different butterfly structures are necessary to handle the real and complex datapaths.

Similar to radix-23 architectures, complex multipliers need to operate on samples com-

puted at different time instances. Multipliers with reordering circuits shown in Fig. 3.18

are required at these stages to have corresponding samples at the input of the multiplier.

Fig. 3.25 shows the 4-parallel architecture for computing RFFT based on radix-

24 algorithm. We can observe that the architecture needs three different butterfly

structures (BFI, BFII, BFIII). It consists of two parallel data paths processing two

input samples. Each data path consists of seven butterfly units, four constant and

two full complex multipliers, delay elements and multiplexers. The function of delay

elements and switches is to store and reorder the input data until the other available

data is received for the butterfly operation. The four output data values generated

after the first stage are multiplied by constant twiddle factors (W 1
8 = e−j2π/8, W 3

8 =

e−j2π3/8). These twiddle factors can be implemented efficiently using canonic signed

digit (CSD) approach. The outputs after the third stage are multiplied by the nontrivial

twiddle factor. Another constant multiplier stage is required before the sixth butterfly

stage. The CSD complex constant multiplier processes the multiplication of twiddle

factors W 8,W 16,W 24,W 48. These twiddle factors correspond to cos(π/8), sin(π/8),

and cos(π/4).

70

Table 3.1: Comparison of architectures for the computation of N-point RFFT
Architecture # C.M # Real Adders # Real Delays Throughput
R2MDC 2(log4N − 1) 4log2N 2(3N/2 − 2) 1
R2SDF 2(log4N − 1) 4log2N 2(N − 1) 1
R4SDC (log4N − 1) 3log2N 2(2N − 2) 1
R4MDC (log4N − 1) 3log2N 2(2N − 2) 1
R22SDF (log4N − 1) 4log2N 2(N − 1) 1
R23SDF (log8N − 1) 4log2N 2(N − 1) 1
radix-2 [52] 2(log4N − 1) 4log2N 2N 4
radix-22

[54]
log4N − 1 4log2N − 2 2(N − 1) 2

Proposed Architectures
radix-23 (2-
parallel)

log8N − 1 2log2N < 2N 2

radix-23 (4-
parallel)

2(log8N − 1) 4log2N − 2 < 2N 4

radix-24 (4-
parallel)

2(log16N − 1) 4log2N − 2 < 2N 4

C.M - Complex Multipliers

3.6 Comparison and Analysis

Table 7.3 compares the hardware complexity and the throughput of the previous archi-

tectures and the proposed ones for computing an N -point RFFT. The hardware com-

plexity of the architectures depend on the required number of multipliers, adders, delay

elements. The performance is represented by throughput. Three different multipliers

are necessary to implement the proposed architectures. The proposed design and the

designs in [52] and [54] are the only specific approaches for the computation of RFFT.

The other approaches are not specific and can be used to compute FFT with complex

inputs. The number of delays in [52] is N/2 complex delays and requires another N/2

delays for the input buffers. The proposed architectures include input buffers, for fair

comparison, we add extra N/2 complex delays in the Table 7.3. The proposed

architectures are feed-forward. Further pipelining stages can be added as necessary to

increase the frequency of operation. We can observe that the number of multipliers

required in the radix-23 and radix-24 architectures are less compared to the previous

designs. Further to get a better picture of the hardware complexities, we present the

71

Table 3.2: Multipliers required for the computation of different N-point RFFTs
Architecture 64-point 128-point 1024-point

[54](2-parallel) 2 3 4
radix-23 (2-parallel) 1.2 2.2 3.3

[52](4-parallel) 4 5 8
radix-23 (4-parallel) 2.3 4.3 6.5
radix-24 (4-parallel) - 2.6 5
* Fractional parts represent the complexity of CSD multipliers
compared to one full complex multiplier

examples of 64, 128 and 1024-point RFFT computations to get a better comparison

of the hardware complexity. Table 3.2 show the comparison of multipliers required in

the proposed architectures and the prior designs for the case of 64, 128 and 1024-point

RFFT, respectively. We can observe that the proposed radix-23 architectures have less

hardware complexity compared to the previous designs. Compared to [52], the proposed

radix-23 and radix-24 4-parallel designs save 2 and 3 complex multipliers, respectively,

for 64 and 1024 point FFTs.

--

XX

XX

R(n)
I(n)

R(N/2-n)
I(N/2-n)

Xr(n)

Xi(n)

N/2-CFFT
Reorder

ing
buffer

x(2k)

x(2k+1)

Figure 3.26: RFFT computation using packing algorithm along with the additional
stage required.

Many parallel pipelined architectures to compute FFT with complex inputs have

been proposed in the literature based on radix-2n algorithms. Packing algorithm can be

used to compute N-point RFFT using an N/2-point CFFT architecture. To compute

the outputs of the RFFT from N/2-complex FFT, extra addition and multiplication

operations are required. Fig. 3.26 shows the additional stage required to compute

the RFFT outputs from the N/2-point CFFT. It can be observed that it requires 8

real adders (equivalent to 2 complex butterflies) and 4 real multipliers. Further, extra

delays and multiplexers are required for reordering the CFFT outputs before the addi-

tional stage. The number of delays depends on the CFFT architecture. In general, the

72

RFFT computation using packing algorithm requires log2N +1 complex butterfly stages

compared to log2N real butterfly stages in the proposed architectures which leads to a

saving of more than 50% of the adders in the proposed architecture. Further 4 extra

real multipliers are also required for the packing algorithm. Thus, the proposed RFFT

architectures lead to low hardware complexity compared to the architectures based on

the packing algorithm.

Table 3.3: Synthesis Results
Algorithm radix-24

FFT size 128
Frequency 500MHz

Area 57565µm2

Power 11.9mW

The proposed 4-parallel 128-point radix-24 architecture was implemented using STMi-

croelectronics 65nm CMOS technology. Verilog RTL descriptions were synthesized using

Synopsys Design Compiler to obtain a gate-level netlist. The functionality is verified

both at the verilog and gate-level simulations. The synthesis results for a 128-point

RFFT are presented in Table 3.3.

The hardware complexity overhead due to the multiplixers in the new butterfly

structures will be nominal. The number of additional multiplexers in the proposed

architectures and prior CFFT architectures will be almost similar. The CFFT archi-

tectures based on radix-2n algorithms consists of multiplication ”-j” factor, which is

computed in the butterfly stage by exchanging the real and imaginary components us-

ing extra multiplexers [13].

3.7 Conclusion

We proposed a generalized approach to design efficient architectures for the computation

of RFFT. The approach can be extended to radix-25 and higher radix algorithms. In

particular, novel 2-parallel and 4-parallel pipelined architectures are developed based

on the modified flow graph and hybrid datapath design using radix-23 and radix-24

algorithms. Folding methodology is used to optimize the data path. The proposed

architectures lead to low hardware complexity compared to the prior designs. Further

73

higher parallel architectures can be developed using the proposed approach. Parallel

pipelined architectures can also be derived for decimation-in-time (DIT) algorithms.

In case of complex FFT, it was observed that for higher-level parallelism, the DIT

architectures require less delay elements than DIF [56]. While not proven, the same

observation is expected to hold good for RFFT as well.

Chapter 4

In-Place FFT Architectures

This chapter presents memory-based FFT architectures for both complex and real-

valued signals. Section 4.2 discusses the proposed architecture for complex signals using

radix-22 butterfly as the processing element. In Section 4.3, the proposed architecture

for real-valued signals is presented. Afterwards, Section 4.4 presents the addressing

scheme to compute inverse FFT of Hermitian-symmetric data. The proposed architec-

tures are compared with prior designs in Section 4.5.

4.1 Introduction

Much research has been carried out on designing pipelined architectures for computa-

tion of FFT of complex (CFFT) and real-valued signals (RFFT) for high throughput

applications [25] - [32]. The hardware complexity of the pipelined architectures depends

on the size of FFT. In general, pipelined architectures relatively consume large area due

to multiple butterfly and multiplier units. Numerous memory-based architectures have

been proposed to achieve smaller area [57]-[62]. These architectures require many com-

putation cycles to complete one whole FFT computation. Higher radix butterfly units

and/or parallel processing can be utilized to increase the throughput [60], [62]. Very

few architectures have been proposed for real-valued signals [63], [64]. However, these

architectures are developed based on the packing algorithm, which computes a complex

FFT and requires additional operations for post-processing.

74

75

We propose a novel conflict free memory access scheme for mixed-radix 2/22 algo-

rithm. This scheme can be extended to the scenario with parallel processing elements. A

continuous flow FFT processor is proposed based on the new memory addressing. Fur-

ther, we propose a novel memory-based FFT architecture which computes the RFFT

based on the modified radix-2 algorithm in [52]. The algorithm computes only half of

the output samples and removes the redundant operations from the flow graph. The

modified flow graph contains only real data paths as opposed to complex data paths

in a regular flow graph. Therefore, the word length in the memory units of the pro-

posed FFT processor is W, where W is the word length chosen to represent either

real/imaginary component. A new processing element is proposed to efficiently imple-

ment the operations in the modified flow graph. The processing element consists of two

radix-2 butterflies and can process four samples in parallel. A new addressing scheme

is proposed for conflict-free memory accesses. Further, it is shown that the proposed

scheme can be extended to support parallel processing elements.

4.2 Complex-FFT Architecture

Fig. 5.12 shows the high level architecture of the proposed FFT processor with L

processing elements (PE). Each memory module can store N words of length W . The

number of banks with in a memory module depends on L as shown in the figure. The

data streams are multiplexed between the I/O interface and the processing element.

When I/O interface communicates with memory module 1, the PE reads and writes to

Memory Bank 2. When Memory Bank 1 is full of new data, the PE can begin reading

and working on the data stored there. The I/O must now write to Memory Bank 2.

The PE thus alternates between the memory banks, and as long as new data are sent

to the memory bank not being used by PE, memory conflicts are avoided.

The PE block consists of mixed-radix FFT butterfly as shown in Fig. 4.2. The PE

computes four butterfly outputs based on the radix-22 algorithm. The PE unit has three

complex multipliers and eight complex adders. The multiplexers are used to support

radix-2 computation. The PE can either compute two radix-2 butterflies or one radix-4

butterfly in once clock cycle. Dual-port SRAMs are necessary to read input data and

write output data simultaneously for the butterfly operation.

76

Memory 1
(4L banks)

Memory 2
(4L banks)

Address
Generation Unit

4L X 4L Commutator

I/O Interface

Processing Element
(PE) #1

Control unit

Processing Element
(PE) #L

Figure 4.1: Proposed memory-based FFT architecture.

+

+-

+

+--j

+-

+-

X

X

X

Figure 4.2: Processing element with mixed radix-2/22 butterfly

77

0
0
0
0
0
0
0
0

0 0
0 1
0 2
0 3
0 4
0 5
0 6
0 7
1 0
1 1
1 2
1 3
1 4
1 5
1 6
1 7
2 0
2 1
2 2
2 3
2 4
2 5
2 6
2 7
3 0
3 1
3 2
3 3
3 4
3 5
3 6
3 7

0 0
0 1
1 2
1 3
2 4
2 5
3 6
3 7
1 0
1 1
2 2
2 3
3 4
3 5
0 6
0 7
2 0
2 1
3 2
3 3
0 4
0 5
1 6
1 7
3 0
3 1
0 2
0 3
1 4
1 5
2 6
2 7

0
0

0 0
2 5
1 2
3 7
2 4
0 1
3 6
1 3

0
0

0 6
2 3
1 0
3 5
2 2
0 7
3 4
1 1

0
0

0 4
2 1
1 6
3 3
2 0
0 5
3 2
1 7

0
0

0 2
2 7
1 4
3 1
2 6
0 3
3 0
1 5

Column 1
Bank Address

Column 2
Bank Address

Column 3
Bank Address

Figure 4.3: Data flow graph of mixed radix 32-point FFT.

4.2.1 Proposed Addressing Scheme

In this section a novel addressing scheme is proposed for mixed radix FFT computa-

tion. We will illustrate the solution of conflict free memory addressing scheme for one

processing element. The proposed addressing strategy works similar to a pipelined FFT

architecture. In a pipelined architecture, the intermediate values between the stages

are stored in the registers which act as FIFOs. The number of registers depends on the

stage of the computation. As an example, in the feed-forward pipelined architecture of

a radix-2 16-point FFT computation, after the 1st stage the intermediate computations

are stored in groups of 4 in two different memory units. Further, the size of the group

goes down by 2 with every stage of computation. In a similar way, the logic can be

extended to radix-4 algorithm. The size of the group changes by a factor of 4 in the

case of radix-4 algorithm.

Fig. 4.3 shows the data flow graph of 32-point mixed radix FFT. The memory

78

is partitioned into four banks for concurrent read and write operations. Four inputs

can be read concurrently and four outputs can be written concurrently to compute the

radix-4 butterfly. The proposed addressing scheme can provide these concurrent reads

and writes without bank conflicts. Each column at every stage in Fig. 4.3 indicate the

memory bank and address assignments. The data is allocated into four banks as shown

in the figure. As a result, four inputs can be read from different banks and four outputs

can be written to different banks in all the butterfly operations.

Column 1 shows the order in which the host processor writes the input data. The

input data is written in the natural order into the memory banks. The data is read one

by one from four banks concurrently to compute each butterfly. After the computation,

the output data is written to the same locations, but in a different order. This is to avoid

bank conflicts during the computation of butterflies in the next stage. The order should

be changed after the computation of 4 butterflies. Column 2 shows the order in which

the data is written after the first stage of computation. We can observe that there are

no memory conflicts, i.e., four inputs of all the butterflies are stored in different banks

which can be read concurrently. Similarly, column 3 shows the corresponding address

and memory bank of the data written after stage 2.

Fig. 4.4 shows the proposed addressing map for a 64-point FFT. The three columns

show the locations at which the data is stored at each stage. The numbers correspond

to the indices of the input/output at each stage. For example, the data with indices (0,

16, 32, 48), (1, 17, 33, 49) and soon are read to compute the butterflies in the first stage.

Similarly, data with the index patterns (0,4,8,12) and (0,1,2,3) are read to compute the

butterflies in second and third stage respectively.

We can observe that the first stage of FFT is composed on 16 radix-4 butterflies

within a single group. The address pattern takes the form of b3b2b1b0. The second stage

consists of 4 radix-4 butterflies within a single group and address pattern looks like

g1g0b1b0. The third stage also consists of 4 groups, each consisting of 4 butterflies. The

address pattern is similar to the second stage but with an offset. Table 4.1 shows the

address patterns of all stages for computing different N-point FFTs. It can be seen that

each stage has a different group counter and a butterfly counter. The values of these

address are derived from a primary counter. Addresses rotates in groups of four after

the first stage. The butterfly inputs are addressed in such a way as to avoid memory

79

0 16 32 48

1 17 33 49

2 18 34 50

3 19 35 51

4 20 36 52

5 21 37 53

6 22 38 54

7 23 39 55

8 24 40 56

9 25 41 57

10 26 42 58

11 27 43 59

12 28 44 60

13 29 45 61

14 30 46 62

15 31 47 63

13 29 45 61

10 26 42 58

7 23 39 55

52 4 20 36

49 1 17 33

62 14 30 46

59 11 27 43

40 56 8 24

37 53 5 21

34 50 2 18

47 63 15 31

28 44 60 12

25 41 57 9

22 38 54 6

19 35 51 3

0 16 32 48

1 17 33 49

2 18 34 50

3 19 35 51

4 20 36

5 21 37

6 22 38

7 23 39

52

53

54

55

40 56

41 57

42 58

43 59

8 24

9 25

10 26

11 27

28 44 60

29 45 61

30 46 62

31 47 63

12

13

14

15

0 16 32 48

Stage 1
Bank0 Bank1 Bank2 Bank3

Stage 2
Bank0 Bank1 Bank2 Bank3

Stage 3
Bank0 Bank1 Bank2 Bank3

Figure 4.4: Addressing scheme for computing 64-point FFT.

80

Table 4.1: Address patterns for different N-point FFT computation
Stage N = 32 N = 64 N = 128 N = 256

1 b2b1b0 b3b2b1b0 b4b3b2b1b0 b5b4b3b2b1b0

2 g1g0b0 g1g0b1b0 g1g0b2b1b0 g1g0b3b2b1b0

3 g1g0b0 g1g0b1b0 g1g0f1f0b0 g1g0f1f0b1b0

4 g1g0f1f0b0 g1g0f1f0b1b0

access conflicts.

4.2.2 Address generation unit

The address generation scheme employed in the architecture is described in Section II.

Fig. 4.5 shows the block diagram of address generation unit based on the proposed

scheme. The core units are n-bit counter, where n = log2N − 2, up-to-down converter

and modulo-2 adder (⊕). The schematic here shows the example of address generation

unit for 1024-point FFT computation. The up-to-down converter unit converts the

original counter value to a corresponding down counter value at that particular instant.

This conversion is required from the 2nd stage of FFT computation. We can observe

from Fig. 4.4 that a down counter is required to generate the group number. The

up-to-down counter simply requires a two’s complement function which can be realized

with few gates in the hardware.

The module-2 adders are required to add the offset between the addresses of different

banks. The offset values depend on the stage of the FFT computation. As an example,

the offset for the group counter is 1, while the butterfly counter is 0 during the 2nd stage

computation of 64-point FFT. The control unit generates the offset values depending

on the computation stage.

4.3 Real-FFT Architecture

4.3.1 RFFT and Prior Work

The Fourier transform of the real valued signals exhibit conjugate symmetry giving rise

to redundancies. Due to this only half the samples need to be computed. This prop-

erty could be exploited to reduce both arithmetic and memory complexities. Specific

81

Counter

U/D

2 2 2 2

Bank1 Address Bank 2 Address Bank 3 Address Bank 4 Address

Figure 4.5: Address generation unit.

algorithms for the computation of RFFT have been proposed to reduce the number of

operations. The basic idea of the algorithm is to compute only one half of the interme-

diate outputs, while the rest can be obtained by conjugating them. This idea has been

extended to higher radices as well as split-radix [49]. In [50], an algorithm for RFFT is

proposed for decimation in frequency (DIF) decomposition making use of linear phase

sequences.

Different methods have been proposed to compute the FFT of real-valued signals

based on a complex FFT architecture. The FFT architecture for complex inputs can

be efficiently used to compute FFT for real signals using two different algorithms. One

such algorithm is the doubling algorithm [45], where an existing architecture is used

to calculate two real FFTs simultaneously. Another one is the packing algorithm [45],

which forms a complex sequence of length N/2 taking the even and odd indexed samples

of a real input sequence of length N , and computes the N/2-point FFT of the complex

sequence. In these algorithms, additional operations for post-processing are necessary

to obtain the final results. In-place architectures have been proposed using the packing

algorithm in [63], [64]. In [63], in-place computation and memory schemes are developed

to implement a variable size radix-4 RFFT processor.

Further, a low complexity algorithm is proposed in [52] to compute the RFFT. This

algorithm requires less number of operations compared to the packing algorithm. The

radix-2 flow graph is modified after removing the redundant operations to obtain a

regular geometry. The modified data flow graph of 32-point RFFT is shown in Fig. 4.6.

The flow graph computes only 17 output samples instead of all 32 samples. Further,

82

W0

W0

W0

W0

W0

W4

W8
W1
2

W0

W2

W4

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)
x(10)
x(11)
x(12)
x(13)
x(14)
x(15)
x(16)
x(17)
x(18)
x(19)
x(20)
x(21)
x(22)
x(23)
x(24)
x(25)
x(26)
x(27)
x(28)
x(29)
x(30)
x(31)

W6

W0

W1

W2

W3

W4

W5

W6

W7

W0

W0

W0

W8

W0

W0

W0

W8

W0

W0

W0

W8

W0

W4

X(0)
X(16)

Xr(4)
Xr(20)

Xr(8)

Xr(10)
Xr(26)

Xi(4)
Xi(20)
Xr(2)
Xr(18)

Xi(8)

Xi(10)
Xi(26)

Xi(2)
Xi(18)

Xr(9)
Xr(25)

Xr(1)
Xr(17)

Xr(13)
Xr(29)

Xr(5)
Xr(21)

Xi(9)
Xi(25)

Xi(1)
Xi(17)

Xi(13)
Xi(29)

Xi(5)
Xi(21)

Figure 4.6: Data flow graph of 32-point FFT for real-valued signals.

entire datapath is real. We can observe that at any stage of computation, we need to

store only N real samples instead of complex samples. Further, all the butterflies in the

flow graph process only real samples which require two real adders instead of complex

adders. We propose a novel memory-based FFT processor based on the algorithm in

[52].

Fig. 5.12 shows the high level architecture of the proposed FFT processor with L

processing elements (PE). Each memory module can store N words of length W . The

number of banks with in a memory module depends on L as shown in the figure. The

data streams are multiplexed between the I/O interface and the processing element.

When I/O interface communicates with memory module 1, the PE reads and writes to

Memory Bank 2. When Memory Bank 1 is full of new data, the PE can begin reading

and working on the data stored there. The I/O must now write to Memory Bank 2.

The PE thus alternates between the memory banks, and as long as new data are sent

to the memory bank not being used by PE, memory conflicts are avoided.

A new processing element is proposed based on the modified FFT flow graph [52].

Fig. 4.7 shows the proposed processing element (PE) for the RFFT processor. The PE

consists of two butterflies and one complex multiplier. The PE processes 4 samples in

83

+-

X
-

In1

In2

In3

In4

Out1

Out2

Out3

Out4

Figure 4.7: Processing element for real-valued signals.

s
w
i t
c
h

s
w
i t
c
h

s
w
i t
c
h

4 D

4 D 2 D

2 D D

DX

BF BF BF BF

x[n]

x[n+8]

Figure 4.8: 2-parallel pipelined architecture for a 16-point FFT computation.

parallel to increase the throughput. The PE operates in three different modes depending

on the computation stage. In mode 1, the multiplier unit is bypassed to compute the

butterflies for the first and last stages of the FFT only. The bottom butterfly unit is

bypassed for the computation of stage 2 of the FFT. The bottom butterfly will act as

a pass through unit, i.e., the top butterfly unit processes the top two inputs and the

multiplier processes the two bottom inputs. The two butterflies and the multiplier unit

will be utilized in mode 3 to compute the butterfly and multiplication operations during

the remaining computation stages. Dual-port SRAMs are necessary to read input data

and write output data simultaneously for the butterfly operation.

4.3.2 Addressing Scheme

We present a novel addressing scheme for the RFFT computation similar to the one in

[59]. We first illustrate the conflict-free memory addressing scheme for one processing

element. Then, we extend the approach to an architecture with multiple processing

elements.

The proposed addressing strategy works similar to a pipelined FFT architecture.

84

0 16

1 17

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25

10 26

11 27

12 28

13 29

14 30

15 31

0 16

1 17

2 18

3 19

420

521

622

723

8 24

9 25

10 26

11 27

1228

1329

1430

1531

22

23

30

31

16

17

24

25

14

15

10

11

0

1

4

5

20

21

28

29

18

19

26

27

8

9

12

13

6

7

2

3

20

23

28

31

16

19

24

27

12

15

8

11

0

5

2

7

22

21

30

29

18

17

26

25

10

9

14

13

6

3

4

1

Stage 1
Bank1 Bank2 Bank3 Bank4

Stage 3
Bank1 Bank2 Bank3 Bank4

Stage 4
Bank1 Bank2 Bank3 Bank4

Stage 5
Bank1 Bank2 Bank3 Bank4

0 16

1 17

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25

10 26

11 27

12 28

13 29

14 30

15 31

Stage 2
Bank1 Bank2 Bank3 Bank4

Figure 4.9: Illustration of proposed addressing scheme for one processing element. The
arrows show how the data is read/write into the memory banks during the various stages
of the RFFT computation.

In a pipelined architecture, the intermediate values between the stages are stored in

the registers which act as FIFOs. The number of registers depends on the stage of

the computation. As an example, the feed-forward pipelined architecture of a radix-2

16-point FFT computation is shown in Fig. 4.8. We can observe that after the 1st stage

the intermediate computations are stored in groups of 4 in two different memory units.

Further, the size of the group goes down by 2 with every stage of computation. We

read/write the intermediate computations in groups in the proposed RFFT processor.

The size of the group depends on the FFT computation stage.

The addressing scheme for the proposed RFFT architecture is shown in Fig. 4.9

for a 32-point RFFT. The memory is partitioned into four banks for concurrent read

and write operations. Four inputs can be read concurrently and four outputs can be

written concurrently to compute the two radix-2 butterflies. The proposed addressing

scheme enables these concurrent reads and writes without bank conflicts. Each column

corresponds to one memory bank and shows how the data is stored in the memory

bank at that stage of computation. The numbers correspond to the indices of the

input/output at each stage. For example, the data with indices (0, 8, 16, 24), and (1, 9,

17, 25) are read in order to compute the butterflies in the first stage. The stage 1 shows

the order in which the I/O interface writes the input data. The input data is written

in the natural order into the memory banks. The data is read one by one from the four

85

0 16

1 17

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25

10 26

11 27

12 28

13 29

14 30

15 31

0 16

1 17

2 18

3 19

420

521

622

723

8 24

9 25

10 26

11 27

1228

1329

1430

1531

22

23

30

31

16

17

24

25

14

15

10

11

0

1

4

5

20

21

28

29

18

19

26

27

8

9

12

13

6

7

2

3

20

23

28

31

16

19

24

27

12

15

8

11

0

5

2

7

22

21

30

29

18

17

26

25

10

9

14

13

6

3

4

1

Stage 1
Bank1 ….. Bank6 Bank7 Bank8

0 16

1 17

2 18

3 19

4 20

5 21

6 22

7 23

8 24

9 25

10 26

11 27

12 28

13 29

14 30

15 31

Stage 2
Bank1 ….. Bank6 Bank7 Bank8

Stage 3
Bank1 ….. Bank6 Bank7 Bank8

Stage 4
Bank1 ….. Bank6 Bank7 Bank8

Stage 5
Bank1 ….. Bank6 Bank7 Bank8

Figure 4.10: Illustration of proposed addressing scheme for two processing elements.

banks concurrently to compute each butterfly. After the computation, the output data

are written to the same locations. The order in which they are written back depends

on the computation stage. This is to avoid bank conflicts during the computation of

butterflies in the next stage.

Fig. 4.9 also shows how the data are accessed with arrows inside the columns.

We can observe that read/write patterns of memory banks 1 and 2 are the same for

all stages. The data is read/write in a serial order from address location 0 to 7 at

every stage and a simple counter can generate the read/write address for these banks.

The address pattern can be represented as b2b1b0. Further, the addressing patterns of

memory banks 3 and 4 are also the same but the pattern varies across the stages. The

data are stored in groups after stage 2, similar to a pipelined architecture. The size

of the group depends on the FFT stage. The size of the group is 4 at stage 3 for a

32-point RFFT computation. The size of the group goes down by a factor of 2 with

every subsequent stage as shown in the Fig. 4.9. The data is accessed from the first

location of the bottommost group. Table 4.2 shows the read/write address patterns of

memory banks 3 and 4 for different N-point FFTs. These patterns can be derived from

the primary counter. It can be seen that each stage has a different group counter and

a butterfly counter. The values of these addresses are derived from a primary counter.

Recall that the outputs of the processing element are written to the same memory

locations as the input data so the addresses for memory writes are the same as that for

reads.

86

Table 4.2: Address patterns for different N-point RFFT computation
Stage N = 32 N = 64 N = 128

1 b2b1b0 b3b2b1b0 b4b3b2b1b0

2 b2b1b0 b3b2b1b0 b4b3b2b1b0

3 g0b1b0 g0b2b1b0 g0b3b2b1b0

4 g1g0b0 g1g0b1b0 g1g0b2b1b0

5 g2g1g0 g2g1g0b0 g2g1g0b1b0

6 g3g2g1g0 g3g2g1g0b0

7 g4g3g2g1g0

Further, the proposed addressing scheme can be extended to an architecture with

multiple processing elements. We demonstrate this with an example of 2 processing

elements. Fig. 4.10 shows the proposed addressing scheme for two processing elements.

Eight data samples need to be read/written in each clock cycle. The memory module

consists of 8 memory banks to enable parallel processing of two PEs. We can observe

that the read/write address patterns for the first three stages is the same. Similar to

the scheme with one PE, the data will be divided into groups from the 4th stage of the

FFT. As the addressing order for memory banks 0-3 and memory banks 4-7 are the

same, and only two different addresses need to be generated. The address generation

circuit for this case is similar to the circuit shown in Fig. 4.11 except for the offset

values.

4.3.3 Address generation unit

Fig. 4.11 shows the block diagram of the address generation for the computation of 32-

point RFFT. The ⊕ represents an XOR gate in this case. The XOR gates are required to

add the offset values between the addresses of different banks. The offset values depend

on the stage of the FFT computation. The memory banks 1 and 2 are accessed in a

serial fashion and the counter output itself can be used as the address. For the memory

banks 3 and 4, an offset needs to added depending on the computation stage. The

offset values required for 1st to 5th stages are ”000”, ”000”, ”100”, ”110” and ”111”,

respectively. The control unit generates the offset values depending on the computation

stage.

87

Counter

Bank1 and 2
Address

Bank 3 and 4
Address

Figure 4.11: Address generation unit of the proposed RFFT processor.

W0

W0

W0

W4

W0

W2

W0

W2

W4

W6

X(0)
X(8)

Xi(1)
Xi(9)

Xr(2)
Xr(10)

Xr(4)

Xr(5)
Xr(13)

Xi(2)
Xi(10)
Xr(1)
Xr(9)

Xi(5)
Xi(13)

Xi(4)

x(0)
x(1)
x(2)
x(3)
x(4)
x(5)
x(6)
x(7)
x(8)
x(9)
x(10)
x(11)
x(12)
x(13)
x(14)
x(15)

Figure 4.12: Flow graph of the 16-point inverse FFT for hermitian symmetric input.

4.4 Hermitian-symmetric IFFT processor

The IFFT of a hermitian-symmetric signal can be computed using only half the samples.

The flow graph can be modified in a way similar to the RFFT flow graph. We can derive

the IFFT flow graph by transposing the RFFT flow graph. Fig. 4.12 shows the flow

graph of 16-point IFFT of a Hermitian-symmetric sequence. It can be seen that only 9

input samples are utilized to compute the 16-point real sequence. Further, all the data

paths carry real signals. Due to this, the word length of the required memory can be

W instead of 2W, where W is the word length of either real/imaginary component.

The IFFT can be computed using the proposed processing element shown in Fig. 4.7.

The architecture of the IFFT processor will be same as the RFFT except the addressing

strategy. Similar to the RFFT case, the processing element operates in three different

modes. The units in the PE are fully utilized, i.e., all the butterfly and multiplier units

are working during the first (log2N − 3) computation stages. The multiplier unit is

bypassed in the (log2N −2) and log2Nth stages. In the (log2N −1)th stage, the bottom

88

0 0

4 5

8 8

10 11

1 2

6 7

12 12

14 15

2 1

5 4

9 9

11 10

3 3

7 6

13 13

15 14

00

1R2

10R1

11R5

48

5I2

14I1

15I5

3R4

2R10

9R9

8R13

7I4

6I10

13I9

12I13

Stage 1 & Stage 2
Bank1 Bank2 Bank3 Bank4

Stage 4
Bank1 Bank2 Bank3 Bank4

Stage 3
Bank1 Bank2 Bank3 Bank4Corresponding indices

Figure 4.13: Addressing scheme for the proposed 16-point hermitian-symmetric IFFT
processor.

butterfly unit acts as pass through unit to compute the only multiplication operation.

The addressing scheme for the computation of IFFT is also similar to the RFFT

computation. Fig. 4.13 shows the addressing scheme for a 16-point IFFT computation.

The second column shows the initial order in which the data needs to be stored. The

corresponding data indices are shown in the first column. As an example, R4 and I4

correspond to the real and imaginary components of X(4) sample. We can observe that

the data are accessed in serial manner from memory banks 1 and 2 throughout the

whole computation. The read/write patterns are the same for memory banks 3 and 4

but differ with the computation stage. We can see that the read/write strategy is the

same in the first two stages. After that, the data are divided into groups similar to

the addressing in the RFFT computation. Fig. 4.13 also shows the how the data are

accessed with the arrows. The address patterns for the IFFT computation are similar

to the RFFT as shown in the Table 4.2. The only difference comes in when adding the

offset values to generate the correct address. The offset values required for 1st to 4th

stages are ”00”, ”00”, ”01” and ”11”, respectively. Therefore, by configuring the offset

values, we can either compute RFFT or IFFT by using the same processor.

4.5 Comparisons

Table 7.3 compares the computation cycles of various memory-based FFT processors

with their respective addressing schemes. The hardware complexity is also provided. We

can observe that the proposed addressing scheme with two parallel processing elements

reduces the computation cycles of the memory-based architecture compared to prior

work. The reduction comes at the cost of increase in hardware complexity.

89

Table 4.3: Comparison of memory-based FFT architectures
Proposed Proposed

(2 PEs)
[62] [57] [58] [59] [61]

Complex Adders 8 16 12 8 12
Complex Multipliers 3 6 3* 3 3
Computation Cycles N

4 log4N
N
8 log4N

N
4 log8N

N
4 log4N -

256 256 128 256 512 256 271 256
512 640 320 512 1152 640 783 512
1024 1280 640 1024 2560 1280 1305 1024
2048 3072 1536 2048 5632 3072 3609 2048
4096 6144 3072 4096 12288 6144 6174 4096

In Table 4.4, we compare the hardware complexity and computation cycles of a prior

memory-based RFFT processor with the proposed design. The radix and the number

of memory banks required are also provided. It can be seen that the proposed design

with a single PE requires the same number of computational cycles as the one in [40].

This is achieved with a PE of two real butterflies and one complex multiplier, while the

prior design requires a complex radix-4 butterfly consisting of 12 complex adders and

three complex multipliers. Further, the proposed design with 2 PEs outperforms the

prior approach in terms of both computational cycles and hardware complexity.

Further, the proposed processor would be efficient in terms of energy consumption

compared to [40]. In every computation cycle, the proposed processor reads/writes four

real samples, while the prior design accesses four complex samples. The prior design

computes a complex radix-4 butterfly while the proposed design computes two real

radix-2 butterflies in every cycle. Based on these observations, we conclude that the

proposed architecture consumes less energy compared the architecture in [40].

4.6 Conclusion

We proposed a novel continuous-flow FFT processor for real-valued signals. The pro-

posed computation scheme is based on a modified algorithm which removes the redun-

dant operations from the flow graph. A new processing element is proposed to reduce

the hardware complexity and can process 4 samples in parallel. A conflict-free address-

ing scheme is developed which can be extended to support parallel processing elements.

90

Table 4.4: Comparison of the RFFT processors
Proposed Proposed (2-PEs) [40]

Radix radix-2 radix-2 radix-4
Complex Adders 2 4 12

Complex Multipliers 1 2 3
Memory N/4 x

W
N/8 x W N/8 x 2W

Memory modules 4 8 4
N Computational Cycles

256 512 256 512
512 1152 576 768
1024 2560 1280 2560
2048 5632 2816 3854
4096 12288 6144 12288

The proposed RFFT processor reduces the number of computational cycles with low

hardware complexity. Further, the proposed processor consumes less energy compared

to prior work based on packing algorithm.

Chapter 5

Power Spectral Density

Computation

This chapter presents a low-complexity algorithm and architecture to compute power

spectral density based on Welch method. Section 5.2 provides an introduction to Welch

method to compute power spectral density. The proposed low-complexity algorithm

for PSD computation is described in Section 5.3. In Section 5.4, the performance and

complexity analysis of the proposed algorithm are presented. Section 5.5 presents a

new architecture to compute PSD based on the proposed algorithm. Sections 5.6 and

5.7 presents an approach to reduce the computational complexity in overlapped block

processing and short-time Fourier transform computation, respectively.

5.1 Introduction

Spectral analysis is widely used in signal processing for distinguishing and tracking

signals of interest [65] [66] (e.g., analysis of radar and sonar signals [67]), spectrum

sensing [68], [69] and for extracting information from the relevant data (e.g., biomedical

signal analysis [44]). Power spectral density or spectral power represents the power of

the input signal over a range of frequencies. Wiener-Khintchine theorem proves that

the power spectral density of a signal is the Fourier transform of the auto-correlation of

91

92

the signal [70].

S(w) =
∞∑

l=−∞
φxx[l]e−jwl

However, the above equation is not useful in computing the PSD in practice. Differ-

ent estimation methods have been developed in the literature to compute PSD which

can be divided into two groups: parametric methods and non-parametric methods.

Parametric methods assume a stationary stochastic process which generates the un-

derlying signal. Some of the parametric approaches include autoregressive-moving av-

erage (ARMA) model identification, minimum-variance distortionless response method

(MVDR) and eigen decomposition based methods [71]. Non-parametric methods do

not assume any stochastic model. Two examples of non-parametric methods include

periodogram based methods and multiple-window method. In general parametric ap-

proaches are computationally intensive compared to the non-parametric methods. The

periodogram based methods involve the computation of the Fourier transform of the

signals. The computation of the Fourier transform has been well explored in the liter-

ature. Fast Fourier transform (FFT) algorithms have been developed over the years.

Due to the availability of computationally efficient FFT algorithms, the periodogram

approach is often preferred to the parametric approaches.

This thesis presents novel modifications to the Welch PSD method to derive a low-

complexity architecture suitable for low-power embedded systems. Biomedical signal

analysis [44] is one such application where a dedicated hardware can be used in low-cost

and low-power systems. Constraints like area, performance and power consumption

should be taken into consideration while trying to incorporate PSD computation into

biomedical monitoring systems. Such systems impose strict constraints on power con-

sumption.

There has not been much research in developing architectures for PSD computation

except for the designs on short-time Fourier transform [73] - [74]. A systolic architecture

has been proposed in [67] based on the ARMA model approach. These designs are

straightforward and no new optimizations were proposed. The widely used method to

compute PSD is the Welch method [72] which is a modified periodogram approach.

FFT is the core part of the Welch method. In general, an overlap of 50% is used when

dividing the input signal into multiple segments. That is, half of the samples are the

93

same over two consecutive FFT operations.

We propose a PSD architecture based on this observation that leads to a reduction

in the number of operations required to compute the PSD. The proposed architecture

requires a N/2-point FFT instead of an N -point FFT block, where N is the length of

the window. The main idea is to reuse the N/2-point FFT from the previous segment by

moving the windowing operation into the frequency domain. This is only practical when

the window functions are represented by raised cosine functions. The windows based on

raised cosine functions, such as Hamming, Hanning etc., have only very few significant

coefficients in the frequency domain. The window operation in frequency domain is a

convolution operation which can be implemented by a symmetric 3-tap or 5-tap FIR

filter. The low-complexity of the frequency domain convolution with a short filter is

the key to reduction in complexity of the PSD computation. The proposed approach

is extended to reduce the computational complexity in overlapped block processing of

the signals like speech, when a rectangular window is used. Further, a low complexity

architecture to compute a special case of the short-time Fourier transform (STFT) based

on the proposed modifications is also presented.

5.2 PSD Computation

PSD estimation based on the Welch method involves dividing the signal into multiple

segments, taking modified periodograms of these segments and averaging these modified

periodograms. The complete algorithm is described as follows:

• The input signal x[n] is divided into L overlapping segments.

• The specified window is applied to each segment.

• FFT is applied to the windowed data.

• The modified periodogram of each windowed segment is computed.

• The modified periodograms are averaged to obtain the spectral estimate S(k).

To describe the Welch method in a mathematical form, let

xl(n) = x(n + (l − 1)M), n = 0, ..., N − 1

l = 1, ..., L (5.1)

94

N/2

0 N-1

Block of x[n]

Figure 5.1: Illustration of the segmentation of a given block of x[n] into 8 overlapping
segments, i.e., L = 8.

denote the lth data segment. In (5.1), (l− 1)M is the starting point for lth sequence of

observations. The value recommended for M in the Welch method is M = N/2, i.e., the

data segments contain 50% overlap between successive segments [65]. The windowed

periodogram corresponding to xl(n) is computed as

Al(k) =
N−1∑
n=0

xl(n)w(n)e−j 2π
N

nk

φl(k) =
1

NP
|Al(k)|2, l = 1, ..., L

where Al is the FFT of windowed segment, φl is the periodogram, and P denotes the

power of the window (w(n)):

P =
1
N

N−1∑
n=0

|w(n)|2.

The Welch estimate of PSD is the average of these periodograms, i.e.,

S(k) =
1
L

L∑
l=1

φl(k) (5.2)

It can seen that the Welch method computes periodograms of overlapped segments

with 50% overlap. We need to compute L N -point FFTs, assuming that the input

signal is divided into L segments of length N . With an overlap of 50%, half the samples

over two consecutive segments will be the same. If we can combine two consecutive

N/2-point FFTs into one N -point FFT, the number of computations can be reduced

to (L + 1) N/2-point FFTs. We propose a modified Welch algorithm based on this

observation to reduce the number of computations required.

95

5.3 Low-complexity PSD Computation

The proposed low-complexity Welch algorithm is presented in this section. The main

idea is to compute FFT of the individual non-overlapped parts (i.e., half of the original

segments) and obtain the FFT of the overlapped segments by combining those of the

non-overlapped segments. The window function for these non-overlapped parts will be

different over two consecutive segments. Therefore, the windowing operation has to be

performed in frequency domain.

The proposed modifications include two new steps in the algorithm: perform the

windowing operation in the frequency domain, and merge two N/2-point FFTs into an

N -point FFT.

0 5 10 15 20 25 30 35
0

0.2

0.4

0.6

0.8

1
Hamming window in time domain

0 5 10 15 20 25 30 35
0

5

10

15

20
Hamming window in Frequency domain

Figure 5.2: Hamming window in time and frequency domains.

5.3.1 Windowing in the frequency domain

The window function will be applied in the frequency domain instead of the time do-

main to take advantage of the overlapped segments. Mathematically, the multiplication

operation in the time domain will be transformed into convolution in the frequency

domain.

F{x[n]w[n]} < −− >
1
2π

X(k) ∗ W (k)

The convolution operation is computationally complex compared to simple multiplica-

tion operation. However, the window functions used in the PSD computation typically

96

Table 5.1: Non-zero coefficients in frequency domain for different window functions
Window # Significant coefficients
Hamming 3
Hanning 3
Kaiser 3

Blackman 5

represent raised cosine functions and these can be represented by 3 or 5 non-zero coeffi-

cients in the frequency domain. Fig. 5.2 shows the 256-point Hamming window (w[n])

and its frequency domain counterpart (W (k)). We can observe that W (k) has only 3

significant coefficients, while the rest of them are close to zero. The convolution oper-

ation can be implemented using a 3-tap FIR filter in the frequency domain. Further

the filter is symmetric, i.e., two of the filter coefficients are equal. Therefore, the convo-

lution operation can be implemented using 2 multiplication and 2 addition operations.

Table 5.1 shows the number of non-zero coefficients in frequency domain for different

window functions used in the PSD computation. It may be noted that the use of a short

FIR filter in frequency domain is the key to the derivation of the low-complexity PSD

computation.

N/2- FFT
(computed in previous

cycle)

N/2- FFT

Merge

x[0]
to

x[N/2 -1]

x[N/2]
to

x[N-1]

Figure 5.3: Illustration of the combining two consecutive N/2-point FFTs into an N-
point FFT.

5.3.2 Merging of 2 N/2-point FFTs

Due to frequency domain windowing, half the samples are the same in the two consec-

utive windows. The computational complexity can be reduced if we can compute the

97

N -point FFT by combining two N/2-point FFTs, i.e., instead of computing an N -point

FFT for each window, compute an N/2-point FFT and combine it with the previous

N/2-point FFT. Using this approach, (L + 1) N/2-point FFTs need to be computed

instead of L N -point FFTs for every frame of the signal. Fig. 5.3 illustrates the idea

of merging two FFTs into one FFT to form an overlapped segment. The mathematical

derivation to merge the FFTs is presented below.

Consider a signal x[n], n = 0, ..., N − 1 of length N .

X(k) =
N−1∑
n=0

x[n]e−j 2π
N

nk (5.3)

Substituting, k = s + 2u and n = l + mM in (5.3), where M = N/2, s = {0, 1},
u = 0, ...,M − 1, m = {0, 1} and l = 0, 1, ..,M − 1, we get,

X(s + 2u) =
1∑

m=0

M−1∑
l=0

x[l + mM]e−j 2π
N

lse−j 4π
N

lue−jπms (5.4)

For s = 0,

X(2u) =
1∑

m=0

M−1∑
l=0

x[l + mM]e−j 2π
M

lu (5.5)

and for s = 1,

X(2u + 1) =
1∑

m=0

M−1∑
l=0

x[l + mM]e−j 2π
N

le−j 2π
M

lue−jπm (5.6)

Define X1(k) and X2(k) as:

X1(k) =
M−1∑
n=0

x[n]e−j 2π
M

nk

X2(k) =
M−1∑
n=0

x[n + M]e−j 2π
M

nk

(5.7)

From (5.5), (5.6) and (5.7), we get,

X(2u) = X1(u) + X2(u)

X(2u + 1) = X1(u +
1
2
) − X2(u +

1
2
)

(5.8)

98

Two N/2-point FFTs can be merged into one FFT using (5.8). We can observe

that the even samples can be computed exactly, but the odd samples can only be

approximated due to fractional delay shift. Fig. 5.4 shows the direct implementation of

(5.8). The circuit requires a z
1
2 block which is non-causal. A pipeline stage as shown

in the figure is required to the make it causal. We can implement a half sample delay

filter to estimate the odd samples.

-

X1(u)

X2(u) Z1/2

X(2u)

X(2u+1)

Figure 5.4: Implementation of (5.8) in hardware. A pipeline stage is required to make
it a causal system.

5.3.3 Fractional delay filter

We briefly present the digital filter design techniques for the approximation of a frac-

tional delay. There are plenty of design methods for both finite impulse response (FIR)

and infinite impulse response (IIR) fractional delay (FD) filters [75], [76]. FD filters are

widely utilized in digital signal processing like speech coding and synthesis, arbitrary

sampling-rate conversion, timing adjustment in digital modems etc.

Consider a delay element whose purpose is to delay the incoming discrete time signal

x[n] by D samples, where D is a non-integer. The output signal can be expressed as

y[n] = x[n − D].

The transfer function of the system is

H(z) = z−D.

The ideal impulse response for this system would be

hid[n] =
sin(π(n − D))

π(n − D)
= sinc(n − D)∀n.

99

It is evident that with a finite-order causal FIR or IIR filter the ideal response can only

be approximated. Different approaches have been published in the literature [75]. The

least-squared integral error design approach is considered in this work. The impulse

response h[n] of an N th order least square FD FIR filter can be expressed as

h[n] = {
sinc(n − D) , 0 ≤ n ≤ N

0 , otherwise
(5.9)

Fig. 5.5 shows the implementation of (5.8) based on least square FD filter design.

A delay is added to make it a causal system. The figure also shows the illustration

of filtering operation along with filter coefficients. The filter will estimate the output

X(2u − 1) based on the current sample Y (u) and previous samples Y (u − 1), Y (u − 2)

and Y (u − 3).

We can observe from the ideal impulse response (hid) of z−1/2 that the system

depends on both the current and future samples. We can get a better estimate by

including the future samples in the computation. This is a non-causal system which is

infeasible. This can be converted into a causal system by adding the required number

of pipeline stages. The number of pipeline stages depends on the number of future

samples required during the estimation. We propose a bidirectional estimator which

processes both past and future samples to compute the output. Fig. 5.6 shows the

implementation of the bidirectional estimator. Two extra delays were added to include

two future samples in the estimation process. The figure also shows how the filter

coefficients overlap during the estimation of the output. Here X(2u − 5) is computed

using past samples Y (u− 3), Y (u− 4), Y (u− 5) and future samples Y (u− 2), Y (u− 1)

and Y (u). Fig. 5.7 shows the coefficients of bidirectional estimator of length 6 for

D = 1/2.

The block diagram of the proposed bidirectional estimator of length 6 is shown in

Fig. 5.8. The filter is given by h[n] = {0.1273,−0.2122, 0.6366, 0.6366,−0.2122, 0.1273}.
We can observe that it is a symmetric filter and the number of multipliers required is

half the length of the filter. Fig. 5.9 shows the result of merging two 128-point FFTs

(consecutive samples) into a 256-point FFT. A 6-tap fractional delay FIR filter based

on least squared error given in (5.9) is used to estimate the half sample delay. We can

observe that fractional delay approximation introduces some errors. The error between

the estimated and the original spectrum is less, as half the samples (even) are computed

100

-

X1(u)

X2(u)

X(2u-2)

X(2u-1)

Y[u] Y[u-3]Y[u-1]

Z-1

Z-1 Z1/2

Y(u)=X1(u)-X2(u)

X(2u-1)

Figure 5.5: Merging two FFTs using half sample delay filter. The signal X(2u − 1) is
computed using a 4-tap FIR filter.

-

X1(u)

X2(u)

X(2u-6)

X(2u-5)

Z-3

Z-3 Z1/2

Y(u)=X1(u)-X2(u)

Y[u] Y[u-3]Y[u-2]
X(2u-5)

Y[u-5]

Figure 5.6: Bidirectional estimator for half sample delay.

1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6
-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Figure 5.7: Coefficients of the filter h[n] for D = 1
2 of length 6.

101

+

D DD

DD

+ +

+ +

X X X

Y[u+3]

Y[u]Y[u-2]

Figure 5.8: Proposed bidirectional estimator using 6-tap FIR filter.

exactly, while only the odd samples are estimated. The reader can refer to [75] for more

details and derivations on fractional delay filter design.

5.3.4 Proposed PSD computation

The modified algorithm for computing power spectral density computation based on

the proposed modifications is described as follows.

• The input signal vector x[n] is divided into (L + 1) non-overlapping segments of

length N/2.

• An N/2-point FFT is applied to each segment.

• N -point FFT is computed by merging two consecutive N/2-point FFTs.

• The specified window is applied in the frequency domain to form the overlapped

segment.

• The (modified) periodogram of each windowed segment is computed.

• The modified periodograms are averaged to form the spectrum estimate S(k).

The flow chart of the modified Welch algorithm is shown in Fig. 5.10 along with

possible outputs at each stage. The final two steps of computing the periodograms and

averaging are the same as in the original Welch method.

102

0 50 100 150 200 250 300
0

50

100

150

200

250

300
N-point FFT using regular approach

Frequency in Hz

0 50 100 150 200 250 300
0

50

100

150

200

250

300
N-point FFT computed by combining two N/2-point FFTs

Frequency in Hz

Figure 5.9: Effect of fractional delay approximation on merging two FFTs. The top one
shows the 256-point FFT computed in a regular way. The bottom one is computed by
merging two 128-point FFTs.

5.4 Analysis

In this section, we present the performance and complexity analysis of the proposed

approach and compare it with the original Welch method.

5.4.1 Performance

The proposed approach is evaluated using EEG signals from the Freiburg database

[89]. The performance of the proposed approach is gauged by percentage of change in

spectral power defined as ∆PSD = |PSDorig−PSDprop|
PSDorig

, where PSDorig is defined as the

total spectral power computed using Welch method and PSDprop is the total spectral

power computed using the proposed method. Table 5.2 summarizes the ∆PSD values

simulated using least square FD filter for different lengths using both bidirectional

and unidirectional filtering. The #Multiplications column represent the number of

multiplication operations required to compute one output sample of the filter. As an

example, unidirectional filter of length 4 and bidirectional filter of length 6 requires 3

multiplication operations. The PSD is computed by dividing the signal into 8 segments

of length 1024. The original Welch method computes 8 1024-point FFTs, while the

proposed method computes 9 512-point FFTs. We can observe that the bidirectional

103

N/2-FFT

Periodogram

Average

Windowing

x[n]

Divide into frames
of length N/2

xk[n]

Xk*W

Xk = F{xk[n]}

|Xk|2

PSD= (1/K)∑|Xk|2

Merge with previous
N/2-FFT

Xk = F{xk[n]}

Figure 5.10: Flow chart of the proposed modified Welch algorithm.

estimator shown in Fig. 5.6 gives a better approximation compared to the uni-directional

fractional delay filter shown in Fig. 5.5.

Fig. 5.11 shows the PSD of an EEG signal computed using both original and the

modified method with a bidirectional estimator. A 4−tap FD filter is used to estimate

the half sample delay. We can observe from Table 5.2 that a small error is introduced in

the proposed method. This is due to the fact that all the even samples can be computed

exactly and the odd samples are computed using fractional delay filters.

5.4.2 Complexity

Table 5.3 shows the number of additions and multiplications required to compute PSD

using the original Welch method and the proposed approach, where N is the size of

the FFT and N ′ is the length of the fractional delay filter. The operations required in

computing the periodogram and averaging are the same in the two approaches and are

104

Table 5.2: Performance of the proposed method using least squares FD filter of different
lengths

#Multiplications ∆PSD
(%) (uni-
direc-
tional)

∆PSD
(%) (bidi-
rectional)

2 19.11 7.87
3 17.41 5.82
4 16.98 4.13
5 16.83 3.78

Table 5.3: Computational complexity of the proposed approach
Original Proposed

Additions NlogN N
2 log(N

2) + 3N + N
2 (N ′ − 1)

Multiplications N
2 logN + N N

4 log(N
2) + 2N + N

2
N ′

2

Table 5.4: Comparison of computational complexity for different N values
Multiplications Additions

N Original Proposed
(N ′=2)

Proposed
(N ′=4)

Original Proposed
(N ′=2)

Proposed
(N ′=4)

1024 6144
(100%)

4736
(77.08%)

4864
(79.17%)

10240
(100%)

8192
(80%)

9216
(90%)

2048 13312
(100%)

9856
(74.04%)

9984
(75%)

22528
(100%)

17408
(77.27%)

19456
(86.36%)

4096 28672
(100%)

20608
(71.88%)

20736
(72.32%)

49152
(100%)

36864
(75%)

40960
(83.33%)

105

0 50 100 150
30

40

50

60

70

80

90
PSD using welch method

Frequency in Hz

S
pe

ct
ra

l P
ow

er
 in

 d
B

0 50 100 150
30

40

50

60

70

80

90
PSD using proposed approach

Frequency in Hz

S
pe

ct
ra

l P
ow

er
 in

 d
B

Figure 5.11: PSD computed using Welch method (left) and proposed method (right).

N/2-point
FFT

Buffer
(N/2 samples)

N-point
FFT

estimator

Window Filter

Control Block

AMAC

N-point
FFT

Buffer
(N/2 samples)

Control Block
AMAC

Input
signal

Input
signal

a) b)
Windowing

Figure 5.12: Block level architecture for PSD computation. a) Using original Welch
method b) Using proposed approach.

not included in these results. We can observe that the proposed approach reduces the

number of computations compared to the original Welch method.

Table 5.4 shows the comparison for different values of N to give a clear picture

with the use of 2nd order and 4th order FD filters. The number of multiplications

and additions are estimated using the radix-2 algorithm to compute the FFT. Only the

number of multiplications will change using a different FFT algorithm. It can be seen

that the proposed method requires 25% and 20% less multiplications and additions,

respectively, for a 2nd order FD filter on an average. The overall power consumption

will be less even though the number of addition operations are more for higher-order

FD filters. This is due to the reduction in the number of multiplication operations

106

and the reduction in the size of the FFT that needs to be computed. The memory and

multiplication operations are most power consuming compared to an addition operation.

This is illustrated by comparing the energy estimates in the next section.

5.5 Proposed Architecture

Fig. 5.12a shows the block level architecture for PSD computation using the Welch

method. We can observe that the core components include FFT and absolute-square

multiple accumulator (AMAC) circuits. The function of AMAC circuit is to compute

the periodograms and average them over L segments. AMAC is similar to the multiply

multiple-accumulator (MMAC) in [78]. Fig. 5.13 illustrates an architecture for the

AMAC block for a completely sequential computation. In this figure, the AMAC block

stores the values of L different periodograms. The number of registers depends on the

size of the FFT used in the PSD computation. The control block controls the address

decoder and multiplexer to correctly accumulate the periodogram outputs over different

segments. When N is large, an SRAM based design is efficient compared to shift register

implementation in terms of both power and area.

Fig. 5.12b shows the architecture based on the proposed approach. It can be seen

that two new blocks, an N -point FFT estimator and a window filter, are required in

contrast to the original method. Fig. 5.6 and Fig. 5.14 show the internal circuitry of

the FFT estimator and window filter, respectively. The FFT estimator block consists

of a butterfly structure and a FD FIR filter. The adder in the butterfly structure

computes the even samples while the subtractor along with the FD filter estimates the

odd samples. The window filter is a 3-tap symmetric FIR filter as shown in Fig. 5.14.

The filter coefficients are the three significant samples of the Hamming or Hanning

window represented in the frequency domain. These filters are given by hHamming =

{−0.23 + 0.0007i, 0.54,−0.23 − 0.0007i} and hHanning = {−0.25 + 0.0008i, 0.5,−0.25 −
0.0008i}, for N = 1024. The multipliers in these two blocks can be implemented using

CSD approach to reduce the area and power consumption.

107

+

Address decoder

Multiplexer

ACC1 ACC2 ACCN

|.|2

Figure 5.13: Absolute square-multiple accumulator (AMAC) circuit.
+

X

+

X

D DInput

Output

Figure 5.14: Filter circuit for windowing in frequency domain.

Energy Estimation

The energy consumption and area of the proposed architecture are estimated using

65nm technology. The logic components are implemented using STMicroelectronics

65nm libraries. The power and area of the SRAMs are estimated using CACTI tool

[93]. Table 5.5 shows the area and energy estimates of the proposed architecture with

wordlength of 12 bits. The energy is estimated assuming that the signal will be divided

into 8 overlapping segments of length 1024 each, i.e., 1024-point FFT is computed for

every segment and a 4-tap FD filter is used. We can observe that the proposed approach

consumes 33% less energy compared to the original Welch method.

Most of the energy savings come from the FFT block, as the FFTs are dominant

108

Table 5.5: Energy estimates
Energy Area

Original Proposed Original Proposed
FFT 430.56 224.55 125684 84884

Memory* 85.20 85.20 175200 175200
Logic # 12.53 43.62 2440 12654
Total 528.28

(100%)
353.36
(66.89%)

303324
(100%)

272738
(89.92%)

* memory in buffer and AMAC
includes rest of the logic circuitry

Table 5.6: Energy estimates for real input
Energy Area

Original Proposed Original Proposed
FFT 261.84 137.52 66789 46884

Memory* 42.59 50.79 87600 116800
Logic # 11.02 21.81 2440 12654
Total 315.4556

(100%)
210.12
(66.61%)

158769
(100%)

176338
(111.07%)

* memory in buffer and accumulator
includes rest of the logic circuitry

power consuming operations. In the proposed design, we need to compute only 9 512-

point FFTs instead of 8 1024-point FFTs. Various FFT architectures have been pro-

posed in the literature based on different radix algorithms [26] - [32]. The FFT energy

consumption is estimated based on the radix-2 algorithm. These estimates will change

depending on the radix of the underlying algorithm and architecture. The two architec-

tures require a buffer to store N/2 samples and an N word memory to store intermediate

values during the averaging operation in the AMAC circuit. Further, we can observe

the overhead in energy consumption due to the FFT estimator and windowing filter

block. This is shown in ”Logic” category in Table 5.5. The overhead is not very high

as these blocks contain only adders and constant multipliers. The hardware complexity

(area) of the proposed architecture is 10% less compared to the original method.

The energy estimates in Table 5.5 are presented assuming the input signal is complex.

When the input signal is real, the spectrum of the signal is symmetric. Therefore, these

estimates will be different as we need to compute only N/2 + 1 samples instead of N .

109

Further, the FFT architecture can also be optimized for the real signals. Different FFT

architectures for real-valued signals have been proposed recently [52], [54]. We consider

the algorithm in [52] to estimate the energy and area in this work. Table 5.6 shows the

energy and area estimates for the case of real input. We can observe that an overall

energy saving of 33% can be achieved using the proposed architecture. Most of the

savings again come from the FFT block.

Further, we can observe that the complexity of the memory blocks is different in

this case. In the original method, we need to save only the input samples (real in this

case), while the proposed method requires storing the output samples from the FFT

which are complex. The buffer size required in the proposed architecture will be doubled

compared to the original method. Due to this, the overall hardware complexity of the

proposed architecture is 11% more than the original architecture. We can observe from

Table 5.2 that 33% energy reduction can be achieved with an error of 8%.

5.6 Overlapped Block Processing

It is common to process signals like speech, electroencephalogram (EEG), electrocardio-

gram (ECG) in blocks due to their slow varying nature in time. The properties of these

waveforms is assumed to be constant over very short time intervals. These signals are

processed block by block in overlapping intervals (50% overlap in general). The illus-

tration of block processing and the segmentation of each block using the Welch method

is shown in Fig. 5.15. The number of segments in the Welch computation should be

an odd number for exactly half overlap between the two consecutive blocks. The figure

shows the splitting of each block into 7 segments. The proposed

modifications will further reduce the computational complexity in such overlapped block

processing when rectangular windowing is used. We can observe from Fig. 5.15 that

almost half the computations are common between the consecutive blocks. These com-

mon computations are circled in the figure and need to be evaluated only once over the

two blocks.

Table 5.7 shows the computational complexity for processing one block. The compu-

tations for computing periodograms and averaging are not included which are common

in both approaches. In this analysis, each block is divided into 7 overlapped segments

110

0 N-1

Block
Processing

Segmentation in
Welch computation

0 6N-1

x[n]

N/2

N/2

Figure 5.15: Illustration of block processing with 50% overlap. The circled computations
are common over the two blocks. Each block contains 7 segments.

N/2-point
FFT

Buffer
(N/2 samples)

N-point
FFT

estimator

Window Filter

Control Block

Abs-square (|.| 2)N-point
FFT

Buffer
(N/2 samples)

Control Block

Abs-square (|.| 2) Input
signal

Input
signal

a) b)

Windowing

Figure 5.16: Block level architecture for STFT computation. a) Original method b)
Proposed approach.

111

Table 5.7: Computational complexity of processing one block
Regular Proposed

Additions 7NlogN 2Nlog(N
2) + 6N

Multiplications 7N
2 logN + 7N Nlog(N

2) + 4N

and a 4-tap filter is used to compute the half sample delay in merging the FFTs. We

can observe that for N ≥ 128 almost 30% of the computations can be saved using the

proposed method.

5.7 STFT computation

The short-time Fourier transform of a signal x[n] is defined as

X(n, k) =
N−1∑
m=0

x[n + m]w[m]e−j 2π
N

km (5.10)

where w[n] is a window sequence of length N , and is commonly a Hamming or

Hanning window that represents a raised cosine function. The data to be transformed

will be divided into segments which usually overlap with each other to reduce artifacts at

the boundary. Not much research has been done on implementing STFT computation in

hardware [73], [74]. In [73], a fully parallel STFT processor is presented based on radix-

22 FFT algorithm. An optimization based on window symmetry is proposed to reduce

the number of multipliers. A straightforward implementation of (5.10) is presented

in [74]. The proposed modifications for PSD computation can also be applied for the

STFT computation when n is moved N/2 samples, i.e., the overlap is 50%.

The short-time Fourier transform with a 50% overlap can be computed as follows:

• The input signal vector x[n] is divided into non-overlapping segments of length

N/2.

• An N/2-point FFT is applied to each segment.

• N -point FFT is computed by merging two consecutive N/2-point FFTs.

• The specified window is applied in the frequency domain to form the overlapped

segment.

112

Fig. 5.16 shows the block level architecture of the short-time Fourier transform

computation circuit. The PSD computation and STFT computation circuits are very

similar except in the last stage. The short-time Fourier transform does not require

averaging over multiple segments. Two blocks of FFT estimator and window filter are

required in the proposed architecture as shown in Fig. 5.16b. The internal circuit of

the FFT estimator and window filter are the same for STFT and PSD computation,

and are shown in Fig. 5.6 and Fig. 5.14, respectively. The length of the FD filter is

dictated by the application and depends on the input signal.

5.8 Conclusion

We proposed a low complexity approach to compute power spectral density using the

Welch method. The computational complexity is reduced at the cost of slight perfor-

mance degradation. The proposed approach computes the even samples exactly, while

the odd samples need to be shifted by half sample delay. A fractional delay filter is

used to estimate the odd samples which leads to a small error. The difference in the

spectral power computed using proposed and original methods is approximately 8%

with a 4-tap FD filter. A novel architecture is proposed based on the modified method.

The proposed architecture with 4-tap FD filter consumes 33% less energy compared to

the original method. Future work will be directed towards reducing the complexity of

PSD computation with overlapped block processing and windowing with raised cosine

windows.

Chapter 6

Support Vector Machines

Computation

This chapter presents techniques for reducing the energy consumption in the archi-

tectures for support vector machines computation. Section 6.2 briefly discusses the

mathematical background on support vector machines (SVM). Section 6.3 presents the

complexity analysis of SVM computation with three popularly used kernels. Afterwards,

Section 6.4 discusses the proposed techniques to reduce the energy consumption. Section

6.5 presents a new configurable SVM architecture based on the proposed optimizations.

In Section 6.6, the proposed architecture is analyzed using simulation results.

6.1 Introduction

Support Vector Machine (SVM) is a powerful machine learning method that provides

excellent performance for a wide range of regression and classification tasks based on

the structural risk minimization induction principle [70]. In recent years, SVMs have

been effectively used as a classification tool in a wide range of problems including pat-

tern recognition, image analysis, and communications [8], [9]. While the SVM training

can be considered as an offline task, the classification is mostly performed in real-time

on newly obtained data. Face detection, speech recognition, biomedical signal analysis

require online classification and have real-time constraints. However, the SVM classifi-

cation is a computationally expensive task. The complexity is linearly dependent on the

113

114

classification data load, the population of the support vectors and the dimensionality

of the feature set.

Even though SVMs are widely used on general purpose computer systems, the inher-

ent complexity of the algorithm hinders its application in embedded systems. Biomedical

signal classification [80], [81] is one such application where a dedicated hardware can

be of great help because of the computational intensive load. Constraints, like area,

performance and power consumption should be taken into consideration while trying to

incorporate SVMs into biomedical monitoring systems. The power consumption should

be at very low levels (e.g., 1-10mW for wearable devices and 10-100µW for implantable

devices) for biomedical applications [82].

SVM architectures employing different kernels have been proposed in the recent lit-

erature either for FPGA or ASIC. Highly parallel designs have been proposed for FPGA

platforms to speed up the computation [83], [84]. ASIC based designs have been limited

to linear and polynomial kernels [8], [82], [85], [86]. SVM with linear kernel function

requires only a dot-product computation which has straightforward implementation [8].

A programmable SVM platform with polynomial kernel has been presented in [82]. The

design exploits parallelism and voltage scaling to minimize the energy consumption.

Not much research has been published on optimizing the implementation of radial basis

function (RBF) kernel either for area or energy minimization.

SVM computations are inherently error resilient as the decision function depends

on the sign but not on the magnitude of the final value. We propose to reduce the

precision of the computations for energy minimization which has not been exploited

earlier in the case of SVM design. The advantage of the proposed methodology will also

lead to low hardware complexity while methods based on VOS need extra hardware for

compensating the errors.

In this thesis, we propose a general-purpose architecture for SVM computation that

takes advantage of inherent error resiliency of the SVM algorithms. We consider the

common SVM kernels used in biomedical signal analysis and multimedia recognition

applications and propose design techniques and optimizations to minimize power con-

sumption. We present the computational complexity analysis of SVM computation of

commonly used kernels and optimize the kernel implementations using two techniques:

fixed-width multiplier and non-uniform quantization. Fixed-width multiplier can reduce

115

both area and power consumption with little effect on the performance. A novel non-

uniform quantization technique is also presented to optimize the implementation of the

exponent function. Further, we propose a programmable architecture which can evalu-

ate three different SVM kernels (linear, 2ndorder polynomial, and RBF). The hardware

design is reconfigurable to vary the precision according to the needs.

6.2 SVM Theory

SVM is a binary classification algorithm where each sample in the data set is viewed

as a d-dimensional vector. The SVM takes a data set that contains samples from

two classes (labeled 1 and −1), and constructs separating hyperplanes between them.

The separating hyperplane that best separates the two classes is called the maximum-

margin hyperplane and forms the decision boundary for classification. The margin

(shown in Fig. 6.1) is defined as the distance between two parallel hyperplanes that

lie at the boundary of each class. The data samples, that lie at the boundary of each

class and determine how the maximum-margin hyperplane is formed, are called support

vectors (SVs). The SVs are obtained during the training phase and are then used for

classifying new (unknown) data. When two data classes are not linearly separable, a

kernel function is used to project data to a higher dimensional space (feature space),

where linear classification is possible. This is known as the kernel trick and allows an

SVM to solve nonlinear problems [71].

Given a set of training data {xi, yi}, where xi is an input pattern and yi ∈ {−1, 1}
is the corresponding label. The training an SVM for classification (finding an optimal

hyperplane) is equivalent to solving the following quadratic optimization problem.

minimize
1
2
||w||2, (6.1)

subject to the constraints yi(w.xi + b) ≥ 1,∀i

116wTx+b =0wTx+b = -1wTx+b = 1

Figure 6.1: SVM separating hyperplanes

This dual of the quadratic optimization problem can be formulated as follows:

n∑
i=1

αi −
1
2

n∑
i,j=1

αiαjyiyjK(xi,xj) (6.2)

subject to the constraints
n∑

i=1

yiαi = 0,

0 ≤ αi ≤ C/n,∀i

The final decision function is

f(x) = sign(
n∑

i=1

αiyiK(xi,x) + b) (6.3)

where x is the new feature vector, xi are the support vectors, αi are the Lagrangian

coefficients and b is the threshold. The parameters xi, αi and b are computed during

the training process. K is the kernel function. It can seen that the computational

complexity depends on the kernel computation and the number of support vectors. We

next describe how the computational complexity varies for three different kernels that

are commonly used.

117

6.3 SVM Complexity Analysis

Linear Kernel: The linear kernel is given by K(x,xi) = xT
i x. The decision function

can be simplified as follows:

f(x) = sign(wTx + b), where w =
∑

i

αiyixi. (6.4)

Polynomial Kernel: The polynomial kernel is given by,

K(x,xi) = [xT
i x + 1]p,

where p is the degree of the polynomial. For the case of a second degree polynomial

kernel, p = 2, K(x,xi) can be rewritten as

K(x,xi) = [zT
i z]2, where z = [x 1]T (6.5)

= zT zizT
i z.

The decision function can simplified as follows:

f(x) = sign(zTWz + b), where W =
∑

i

αiyizizT
i . (6.6)

RBF Kernel: The non-linear RBF kernel is given by,

K(x,xi) = exp

(
−||x − xi||2

σ2

)
.

The decision function can be written as,

f(x) = sign

(
Nsv∑
i=1

αiyiexp(
−||x − xi||2

σ2
) + b

)
. (6.7)

The decision function cannot be further simplified because of the exponent function in

the kernel.

Table 7.1 show the computational complexity and memory requirements for eval-

uating the decision function with three kernel functions. We can observe that the

complexity depends only on the feature set dimensionality for both linear and polyno-

mial (p = 2) kernels. However, the complexity of the classifier with RBF kernel depends

on both feature dimensionality (d) and the number of support vectors (Nsv). For large

118

Table 6.1: Computational complexity of SVM Classifier
Kernel # ADD # MUL # WORDS
Linear d d d

Polynomial
(p=2)

d2 d(d + 1) d2

RBF 2Nsvd Nsvd Nsv(d + 1)
*RBF kernel requires additional Nsv exponent operations

L2-NormExponentDot-Product
SVs TV Dot-ProductDot-ProductW TV

TV Dot-Productw TV

a) b) c)
Figure 6.2: Overview of the SVM computation with (a) RBF, (b)2nd order polynomial
and (c) linear kernels

datasets, training will lead to large number of support vectors which in turn increases

the computational complexity. The complexity of the classifier can be minimized by

decreasing Nsv and/or d, i.e., number of support vectors and number of features per

vector respectively. The reader can refer to reduced SVM (RSVM) algorithm [87] and

feature selection algorithms [88] to reduce the Nsv and d, respectively, at the algorithm

level.

6.4 Proposed Circuit Optimizations

Fig. 6.2 shows an overview of the SVM computation using different kernels. It can be

observed that the core components of the SVM computation are dot-product, L2-norm

and exponent (needed only for evaluating RBF kernel) operations (see Fig. 6.3). The

power consumption of these individual circuits will dictate the total power consumption

119X X * YACCUMULATORDOT-PRODUCT
Y X * YACCUMULATORDOT-PRODUCT

X X - Y Y

a) b)
Figure 6.3: Architecture of (a) dot-product and (b) L2-norm

MP LP
Approximate carry

Figure 6.4: Structure of the 12-bit fixed-width multiplier

of the SVM architecture. In this section, we describe the proposed optimizations to scale

the precision in these circuits which can effectively minimize the energy required. The

performance analysis of the SVM computation is based on seizure prediction algorithm

in [80] using the patient data from the Freiburg database [89].

6.4.1 Fixed-width MAC

The multiply-accumulator is the core component of dot-product and L2-norm functions.

It is known that the multiplier hardware dominates area and power consumption com-

pared to an adder. The area and power consumption of a multiplier increase quadrati-

cally with the wordlength. Fig. 6.4 shows the design of a fixed-width multiplier

which is an integral part of both dot-product and L2-norm functions. Fixed-width mul-

tiplier involves dividing the partial products of the multiplier into two groups (most

120

95.5
96

96.5
97

97.5
98

98.5
99

99.5
100

100.5

12-bit 16-bit

Full width

FW- [15]

FW- [14]

Figure 6.5: Effects of fixed-width multiplier on classifier accuracy using 12-bit and 16-bit
wordlengths

significant part (MP) and least significant part (LP)) as shown in Fig. 6.4. The carry

from the partial products in LP group can be approximated instead of computing the

exact carry. The simplest method is to discard all the partial products, i.e., an approx-

imate carry would be zero. However, this method may lead to significant errors. To

overcome this problem, different approximation schemes [90], [91] have been proposed

in the literature to generate the approximate carry from LP group with little hardware

overhead. The partial products in MP group are added using Wallace or Dadda tree

along with the compensation to get the final output. The fixed-width multiplier design

serves two purposes: a)it reduces the area and power consumption, and b) it reduces the

critical path of the MAC, allowing voltage scaling without aggressive scaling of clock

frequency.

The main aspect that needs to be addressed in relation to fixed-width multiplier im-

plementation is performance degradation of the overall SVM architecture. We analyzed

the performance of the SVM computation using two existing compensation techniques.

The performance of these techniques on seizure prediction algorithm is shown in Fig.

6.5 for 12-bit and 16-bit multipliers in terms of classification accuracy. We can ob-

serve that the the performance of two compensation techniques using 16-bit wordlength

is same, while [90] performs better using 12-bit wordlength. The savings in area and

power consumption of the 12-bit fixed-width MAC are shown in Fig. 6.6. The 12-

bit fixed-width multiplier reduces the area and power consumption by 35% and 37%,

121

0
0.2
0.4
0.6
0.8

1
1.2

Power Area

Full
FW [14]

Figure 6.6: Area and power comparison of the 12-bit regular and fixed-width multiplier
[90]

respectively, compared to a full multiplier.

6.4.2 Exponent Function

The LUT based implementation of the exponent function requires 2q words of memory

for a q-bit input. The memory requirement grows exponentially with the word length

of the input. Therefore, we propose a novel scheme which can reduce the memory

requirement by half. From Fig. 6.7, we can observe that e−x function is non-

linear and its slope decreases with the increase in x. The function saturates to zero,

at x = 8 and the output of the function lies between 0 and 1 (0 ≤ e−x ≤ 1, x > 0).

Therefore, only three bits are required for the integer part and the remaining bits can

be used for fractional part. It is intuitive that the larger the slope, the smaller the

quantization step should be used for a good performance. Thus, under the same total

quantization bits q, a non-uniform quantization scheme will outperform the uniform one.

Therefore, we propose a novel quantization scheme to implement a look-up table. The

proposed scheme applies different quantization step sizes according to the magnitude of

the input to the exponent function.

Consider a (q : f) uniform quantization scheme in which totally q bits are used, of

which f bits are used for its fractional part.The range and the step size that are capable

of being expressed by (q : f) quantization scheme are from −2(q−f−1) to 2(q−f−1) and

122

0 1 2 3 4 5 6 7 8 9
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 6.7: Curve of function f(x) = e−x(x > 0)

2−f , respectively for signed numbers. The proposed quantization scheme is as follows:

(q : f), for 0 ≤ |x| < 2 (6.8)

(q − 1 : f − 1), for 2 ≤ |x| < 4

(q − 2 : f − 2), for 4 ≤ |x| < 8

Table 6.2 shows a conversion table between unsigned 4-bit uniformly quantized variables

and 3-bit non-uniformly quantized variables. In this example, interval [0, 2) is considered

instead of [0, 8) for demonstration.

It can be observed that the total number of different words quantized is reduced

from 2q to 2q−1, which can be implemented with the (q − 1)-bit word length by insert-

ing additional conversion circuits. We need to design the conversion circuit to access

the correct word in the LUT. From Table 6.2, non-uniform quantization data can be

generated from uniform quantized data as described and can be implemented with a

small size of combinational logic [92]. One possible combinational logic equation can be

formulated as

y2 = x3 + x2 (6.9)

y1 = x3 + x2x1

y0 = x3x2 + x2x1 + x3x2x0

123

Table 6.2: Conversion between uniform quantization and proposed quantization scheme
Decimal (4:3)

uni-
form
quan.

non-
uniform
quant.

3-bit
format

0 0000 0000 000
0.125 0001 0001 001
0.25 0010 0010 010
0.375 0011 0011 011
0.5 0100

0100
100

0.675 0101
0.75 0110

0110
101

0.875 0111
1 1000

1000
110

1.125 1001
1.25 1010
1.375 1011
1.5 1100

1100
111

1.625 1101
1.75 1110
1.875 1111

where x3x2x1x0 represents a 4-bit uniformly quantized number and y2y1y0 represents

the equivalent 3-bit data for accessing the LUT. The conversion circuit is shown in Fig.

6.8. This hardware overhead is small. Table 6.3 shows the area and power consumption

of the conventional (requires only memory) and proposed look-up tables. The power

and area of memory (SRAM) are estimated using CACTI tool [93]. We can observe that

for a 10-bit quantization, the proposed design can save up to 35% and 37% of power

consumption and area, respectively. Further, some errors will be introduced as only half

of the required data are stored in the memory. It is revealed in our analysis that these

errors will not affect the performance of the SVM classifier.

6.5 Proposed Architecture

In this section, we present the proposed programmable SVM architecture which has

the flexibility in selecting the kernel function and precision of the computation. The

124

Table 6.3: Area and power comparison of conventional and proposed LUT schemes
Power (µW) Area (µm2)

Quantization Memory Overhead Total Memory Overhead Total
10-bit 2.77 0 2.77 49315 0 49315

10-bit Proposed 1.71 0.058 1.76 29226 54 30951
12-bit 6.07 0 6.07 162256 0 162256

12-bit Proposed 4.84 0.0722 4.91 98173 65 98238
16-bit 27.78 0 27.78 2.76e06 0 2.76e06

16-bit Proposed 18.94 0.1 19.04 1.59e06 88 1.59e06x3x2x1x0
y2y1y0

Figure 6.8: Conversion circuit for implementing the proposed quantization scheme

two design techniques, fixed width multiplier and proposed non-uniform look-up table

(for exponent function) are employed to reduce the energy consumption. The proposed

architecture for the SVM classifier is shown in Fig. 6.9. The proposed design mainly

consists of an adder engine, a multiply-add engine and address conversion unit for

exponent look-up table. Hardware parallelism is employed through an array of adder

and MAC units, each of which is associated with a weight vector buffer (represents

weights for linear and polynomial kernels and support vectors for RBF kernel). The

weight vectors obtained during offline training and the test vector are loaded into buffers.

125

6.5.1 Variable precision MAC

The precision requirements of the classifier computation are assumed to be variable

to support a wide range of support vectors across different applications. Different ap-

proaches have been reported for variable-precision multipliers [82]. We designed a new

variable precision MAC with fixed-width multiplier. The architecture is shown in Fig.

6.10. The partial product generator only computes the necessary partial products using

Booth encoding. The common partial products required for 12/14/16 precison bits are

added using half and full adders in Dadda tree. The compensation scheme is based on

the design in [90]. The vector merging operations after the Dadda tree require only

12/14/16-bit adders respectively, due to the fixed-width nature of the multiplier. The

output of the selection multiplexer is accumulated into the output register using an

18-bit adder.

6.5.2 Programmable Kernel

Non-linear kernels have been shown to achieve good performance in biomedical signal

classification and multimedia applications. The proposed design incorporates linear,

polynomial (2nd order) and RBF kernels, which are widely used SVM kernels. To

compute linear or polynomial kernel, the weight vectors and test vectors are fed to the

MAC engine in order to perform the dot-product operations in equations (2) or (4). To

compute the RBF kernel, the buffer outputs are routed to the adder engine to perform

L2-norm operations. The final dot-product is computed once multiplication over all the

dimensions is complete and is stored in a temporary register. This process is repeated

for all the row vectors of the W matrix and support vectors in the case of polynomial

and RBF kernel computations, respectively. The results are scaled and accumulated in

a register. The sign of the final value determines the classification result.

6.6 Simulation Results

In this section, we present results of post-layout simulations that demonstrate the ben-

efits of the proposed design techniques. We implemented the proposed design in STMi-

croelectronics 65nm CMOS technology. Verilog RTL descriptions were synthesized using

126

Multiply-AddEngine
Add/SubEngineWeight Vector & Test Vector Buffers Registers

Control Block
Alpha values(for SVM-RBF)

Addr Conversion
Figure 6.9: Proposed programmable SVM architecture

12-bit adder14-bit adder16-bit adderPartial Produc
t Generator ADDER Shift RegisterCompensation

Figure 6.10: Proposed variable-precision MAC unit with fixed-width multiplier and
compensation

127

Synopsys Design Compiler to obtain a gate-level netlist. Cadence Soc Encounter is used

to place and route the gate-level design. The MAC engine consists of 4 multiply-add

units. The memory (SRAM) required to store the look-up table is not implemented

in this design. The energy consumption of the SRAM are estimated using CACTI

tool [93]. Table 7.3 shows the energy consumption for linear and polynomial kernels

from post-layout simulations using 16-bit wordlength. Voltage scaling and parallelism

(adding more MAC units) can be used to save more energy. It can be seen that the

proposed schemes reduce the energy consumption by 30%.

Table 6.5 shows the energy consumption using RBF kernel with different levels of

optimizations. The non-uniform LUT and fixed-width MAC will save the energy by

13% and 20%, respectively, on average. The two optimizations when combined will

reduce the energy consumption by 31%. Further, we can observe that the classification

energy scales roughly linearly with Nsv and d. We can extrapolate these estimates

for larger values of Nsv. The total energy for seizure prediction per test vector using

spectral features (d = 36 and Nsv = 5000) is 109.2nJ at Vdd of 0.5 V. The bottom of

the table shows the energy for various classifier kernels. It can be seen that the energy

consumption of linear kernel is very low compared to polynomial and RBF kernels.

Table 6.4: Energy consumption of the proposed architecture per test vector
Vdd (V) Nsv d Energy(pJ)

w opt
Energy(pJ)
w/o opt

Frequency

Linear
32 49.1 70.92

1.0 64 81.8 118.2 10 MHz
128 147.3 212.76

2nd order Polynomial
32 1570.6 2269.44

1.0 64 5235.2 7564.8 10 MHz
128 18847.14 27223.28

Vdd (V) Nsv d Energy
(pJ)

Kernel

81.8 118.2 Linear
1.0 100 64 5235.2 7564.8 Poly

10633.61 15523.67 RBF

128

Table 6.5: Energy consumption of the RBF kernel per test vector
Nsv d Energy(pJ)1 Energy(pJ)2 Energy(pJ)3 Energy(pJ)4

10 8 675.7 576.03 565.68 466.01
25 16 2002.37 1745.12 1635.61 1378.36
50 32 5257.1 4710.36 4156.83 3610.08

1 with no optimizations 2 with only non-uniform LUT
3 with only fixed-width MAC 4 with both optimizations

6.7 Conclusion

We proposed a low-energy architecture based on approximate computing exploiting the

inherent error resilience in the SVM computation. The proposed design is programmable

to evaluate three different kernels. Two design techniques, fixed-width multiply-add

and non-uniform look-up table for exponent function are proposed to minimize energy

consumption. A non-uniform quantization scheme is proposed to reduce the size of the

look-up table to implement the exponent function. The memory required is reduced by

50% compared to the uniform quantization method while achieving the same classifier

performance. This design is very suitable for applications in implantable and embedded

systems because of its low power consumption and area.

Chapter 7

Low-power Seizure Prediction

Algorithm

In this chapter we present a low-power seizure prediction algorithm using spectral power

features and Adaboost algorithm. Section 7.1 provides an introduction of epilepsy

and seizure prediction. In Section 7.2 we present the prior work on seizure prediction

algorithm development. Section 7.3 presents a brief review of Adaboost algorithm. This

is followed by Section 7.4 which presents the proposed seizure prediction algorithm. The

performance and complexity analysis of the proposed algorithm are discussed in Section

7.6.

7.1 Introduction

Epilepsy is the one of the most common serious neurological disorders in the world.

Approximately, 1% of the world’s population experience sporadic seizures. The qual-

ity of lives of the epileptic patients will be significantly improved with an automated

seizure prediction device. Recently, there has been great progress in seizure suppres-

sion methods. Some of these approaches include deep brain stimulation therapy, etc. A

closed-loop therapy system can be developed, where a seizure prediction device monitors

and triggers the seizure treatment.

Recently, much of the research has been carried out on predicting and detecting

seizures based on real-time analysis of electroencephalogram (EEG) data from multiple

129

130

channels. Research on seizure prediction is focussed on finding features that discriminate

between pre-ictal (period of time before the onset of seizure) and inter-ictal (period of

time between the seizures) periods. These features include power spectral density, auto

regressive coefficients, wavelets and cross-correlation measures.

Even though a lot of research has been done, these results cannot be used to realize

an implantable device which can predict seizures in real-time due to their inability to

achieve 1) High sensitivity and low false positive rate, and 2) Low power consumption

and hardware complexity. The power consumption of a reliable seizure prediction device

should be in the range of 50 µW [124]. High sensitivity and low false positive rates can

be achieved using signal processing and machine learning techniques [125]. These cannot

be adopted for a possible real-time implementation of seizure prediction device due to

their high computational complexity. The number of features and the type of classifier

used to make a prediction can have a dramatic effect on power consumption.

In this thesis, we propose a seizure prediction algorithm with low computational

complexity, which achieves high sensitivity and low false positive rate at the same time.

The proposed seizure prediction system will be suitable for real-time implementation

on an implantable device.

7.2 Epilepsy and Seizure Prediction

Epilepsy is one of the most common neurological diseases. Approximately 5% of the

population experiences a seizure within their lifetime, and 1% suffers from multiple

seizures, classifying them as epileptic [95] - [97]. This disease affects nearly 3 million

Americans with an estimated annual cost of $15.5 billion in direct and indirect costs

per year [97]. A difficult aspect of epilepsy is the unpredictable nature of seizures.

Many epileptics live in constant worry that a seizure could strike at an inopportune

time resulting in humiliation, social stigma, and/or injury. Therefore, an implantable

device that could predict a seizure by even a few seconds could dramatically change the

lives of these patients by alerting them to the impending seizure or triggering a device

to abate or suppress the seizure.

Deep brain stimulation therapy has been demonstrated to abate seizures in clini-

cal trials, where electrical stimulation is applied to deep brain structures in open-loop

131

manner [94]. More experimental approaches have been used to suppress seizures by-

optically uncaging inhibitory neurotransmitters [98] or by focal cooling of the cortex

[99]. The efficacy of these methods may be improved by a closed-loop therapy, where

a seizure prediction device monitors and triggers the seizure abatement. The design

and implementation of responsive, closed-loop devices to treat seizures is an exciting

new development in epilepsy therapy. Analogous to the feedback control in automatic

implantable cardiac defibrillators, closed-loop devices actively record electroencephalo-

gram (EEG) signals, process these signals in real time to detect evidence of imminent

seizure onset, and then trigger an intervention. The central need of the closed-loop

systems [100] is the ability to detect specific physiological states of interest from the

signals such as EEG and electrocardiogram (ECG). It is challenging to find the signal

correlations to relevant physiological states of interest and further these correlations

often varies from patient to patient [101]. Machine learning based modeling is emerging

as a powerful approach to overcome these challenges. This has been prompted by the

recent large-scale availability of the data in healthcare domain and the development of

learning techniques to efficiently model the data.

A closed-loop intervention system is expected to have higher efficacy and lower possi-

bility for side effects than the open-loop approach [95], [102]. The close-loop intervention

system is a future seizure control system, which can alarm a seizure occurrence in ad-

vance, generate warnings for the patient, and further trigger rescue therapy and abort

the development of the seizure, such as by injecting fast-acting medication or turning

on a neuro-stimulator [95], [96], [102]. The closed-loop systems are always superior to

any open-loop systems in terms of efficacy and safety, because they can help the rescue

therapy by turning on effectively at certain necessary times and thus will always reduce

the amount of unnecessary medication or side-effects [95].

7.3 Prior Work

Seizure prediction based on EEG or intracranial EEG (iEEG) is complicated by two

factors. The first is that preictal and interictal EEG/iEEG patterns across patients

vary substantially; there may be no single generic algorithm that can be applied to all

patients that can achieve high sensitivity and specificity. The second is that EEG/iEEG

132

Feature
extraction Classification Post-

processing

Spectral power
Wavelets

Auto-regressive
coefficients

Linear SVM
Non-linear SVM

Adaboost
Moving avearge

Kalman

prediction
Electrodes Drug Delivery

System

Figure 7.1: Block diagram of a seizure prediction device.

is highly complex and varies over time and no single measure of EEG/iEEG has yet

been predictive on its own. It has been shown that a patient-specific classification

method based on multiple features extracted from iEEG can achieve high sensitivity and

specificity [103]. Fig. 7.1 shows a generalized block diagram of the seizure prediction

device. The three major steps of the prediction system include feature extraction,

classification and post-processing. Feature extraction step identifies (computes) features

(indicators) which can differentiate normal and the abnormal signals. Classification step

assigns the computed features into two classes (preictal and interictal). The outliers will

be removed in the post-processing stage to make a final prediction.

Our patient-specific approach to seizure prediction is based on binary classification

of iEEG using a machine learning algorithm. A machine learning algorithm classifies

samples of iEEG as either preictal (immediately prior to a seizure) or interictal (between

seizures) based on their multivariate features (see Fig. 7.2). When an epoch of iEEG

is classified as preictal, the device can trigger an alarm or a seizure prevention device.

Seizure prediction using electroencephalogram (EEG) with high sensitivity and speci-

ficity has been elusive, despite numerous claims that a proposed algorithm or measure

has provided significant predictive power. For example, nonlinear measures taken from

chaos theory and applied to intracranial EEG (iEEG) demonstrated promising predic-

tive power. However, when compared to linear features, the nonlinear features were not

significantly better and their computational intensiveness made them prohibitive to be

calculated in real-time. Furthermore, nonlinear features that seemed promising were

not predictive at all when tested on long time series.

In [104] Viglione et. al. did early work on seizure prediction in 1975. They attempted

133

-4 -2 0 2 4 6 8 10 12

-3

-2

-1

0

1

2

3x 10
4

Time (min)

Preictal Ictal Interictal

At least
1-hr gap

µV

Figure 7.2: Pre-ictal, ictal and inter-ictal iEEG signals.

to extract seizure symptoms from EEG recordings using linear approaches. Another

group monitored the spike occurrence rate of EEG, and tried to extract the predictive

value [105]. Different kinds of estimation indices ([106] - [111]) and nonlinear dynamics

system analyses series ([112] - [117]) have been proposed to model the algorithmic system

in seizure prediction. In ([106], [107]) a method to measure the dynamical similarity

between different parts of the time series in long-term non-stationary EEG signals is

presented. Mormann et. al. [108] measured the phase synchronization of EEG in

different brain and proved that the procedure of seizure occurrence is associated with

an abnormal synchronization of neurons. In [109], a prediction rule is defined based

on comparing energy accumulation and baseline in EEG signals. Direito et al. [110]

presented a prediction method based on energy measurement using wavelet coefficients.

Alessandro et al. [111] proposed an intelligent genetic search process for EEG signals,

which is trained and validated on both series of baseline and pre-seizure records.

In [112], the short-term largest Lyapunov exponent (STLmax) is used as an indicator

of chaos system from temporal lobe epilepsy (TLE) patients, and it was found that the

chaotic level would decrease minutes prior to seizure. Furthermore, in ([112] - [114])

EEG or electrocorticogram (ECoG) data are analyzed as multi-dimensional systems on

time, frequency and space domain with chaotic estimation. However, their study’s focus

134

of interest was entirely limited to the preictal period without processing the interictal

recordings. Iasemidis et al. [118] described an adaptive seizure prediction algorithm

(ASPA) based on the convergence and divergence of STLmax.

Further in the recent years, features based on power spectral density [103], auto

regressive coefficients [119], wavelets [120], [121] and cross-correlation measures [121],

[122]. In [119] coefficients of auto-regressive (AR) models are used as features. The

prediction is based on SVM classifier. Williamson et. al., [122] presented a method

based on multivariate signal coherence. The algorithm uses space-delay correlation and

covariance matrices to extract the spatiotemporal correlation structure from multichan-

nel electrocorticogram (ECoG) signals. Wavelet decomposition and cross-correlation

techniques are used to predict a seizure event in [120] and [121]. Features based on

spectral power in different subbands along with SVM classifier is proposed in [123] to

predict a seizure onset.

7.4 Adaboost

Adaboost is a machine learning algorithm, formulated by Freund and Schapire [128]. It

is a meta-algorithm, and can be used in conjunction with many other learning algorithms

to improve their performance. Adaboost is adaptive in the sense that subsequent clas-

sifiers built are tweaked in favor of those instances misclassified by previous classifiers.

It can be less susceptible to the overfitting problem than most learning algorithms. The

classifiers it uses can be weak (i.e., display a substantial error rate), but as long as their

performance is not random (resulting in an error rate of 0.5 for binary classification),

they will improve the final model.

The algorithm takes as input a training set where each xi belongs to some domain or

instance space X of dimension d, and each label yi is in some label set Y . Pseudo code

for Adaboost is given below. Adaboost calls a given weak or base learning algorithm

135

repeatedly over T iterations.

Adaboost Algorithm:

Given: (x1, y1), ..., (xm, ym)

where xi ∈ X, yi ∈ Y = {−1,+1}

Initialize D1(i) = 1/m

For t = 1, ..., T :

• Train weak learner using distribution Dt

• Get weak hypothesis ht : X → {−1, +1} with error

εt = PrDt [ht(xi) 6= yi]

• Choose αt =
1
2
ln(

1 − εt

εt
)

• Update Dt+1(i) =
Dt(i)exp(−αtyiht(xi))

Zt

where Zt is normalization factor (chosen such that

Dt+1(i) will be a distribution)

Output the final hypothesis: F (x) = sign(
T∑

t=1

αtht(x))

7.5 Proposed Algorithm

7.5.1 Dataset

The proposed algorithm is evaluated on the Freiburg database [126] which contains elec-

trocorticogram (ECoG) or intracranial electroencephalogram (iEEG) recordings from 21

patients who suffer from epilepsy. The data consists of six channels sampled at 256 Hz

with 16 bit analog-to-digital converters. The data records for each patient are divided

into ictal and interictal records by certified epileptologists. We have chosen 16 out of

the available datasets of 20 patients, who have four or more seizures. Each 20-second

long window of iEEG recordings has been categorized as interictal and preictal. Fig.

7.3 shows the steps involved in training and testing phases.

136

Feature
extraction Classification Post-

processing

Spectral power Linear SVM
Non-linear SVM

Adaboost
Moving avearge

Electrodes Prediction

ONLINE DETECTION

OFFLINE TRAINING

Feature
extraction

Recordings from
Freiburg
Database

Classifier
Training

Classifier Model

Feature
selection

Selected feature set

Figure 7.3: Flow chart of the proposed seizure prediction algorithm

7.5.2 Feature Extraction

Preprocessing step is done to remove the artifacts such as line noise, electrical noise,

and movement artifacts in iEEG data. When features are extracted, the spectral power

in the bands of 47-53 Hz and 97-103Hz are excluded to remove the power line noise.

Further, bipolar and time-differential methods have been used to reduce the effect of

other types of artifacts in iEEG recordings [123]. The space-differential measurement

provides common-mode rejection to reduce line noise and movement artifacts that are

common to all the electrodes. Time-differential method is used to normalize the spectral

power in high and low frequency bands (refer to Fig. 7.4).

Feature extraction consists of computing the spectral power in different frequency

bands in a 20-second long window of iEEG with 50% overlap. This provides a prediction

of a seizure every 10 seconds. Spectral bands are selected based on standard iEEG

frequency bands but the wide gamma band is split into four bands: delta (0.5-4Hz),

theta (4-8Hz), alpha (8-13Hz), beta (13-30Hz), gamma bands (30-47Hz, 53-75Hz, 75-

97Hz, 103-128Hz). The power in each band is normalized by the total power and is

included as the last feature. Features are extracted from 4 space-differential signals,

which makes a total of 36 features for a 20-second window.

7.5.3 Feature Selection

The complexity of the seizure prediction algorithm is proportional to the number of fea-

tures required to make a prediction. We propose to find a subset of most discriminating

137

features out of 36 features through the process of feature selection. Feature selection

has been known in the machine learning community for many decades. It finds a subset

of features which contain essentially most of the relevant information for making deci-

sions. This subset of features may result in an increase in the performance accuracy of

the model as irrelevant features are not taken into consideration [127]. Adaboost [128]

based feature selection algorithms have been proposed in the literature [129]-[131]. Most

of these algorithms did not provide a method to sort the features, but instead used the

implicitly selected features in each iteration. We propose a simple criterion based on

which features will be ranked.

Algorithm 1 Adaboost

Given : (x1, y1), ..., (xN , yN)
where xi ∈ X, yi ∈ Y = {−1, +1}
Initialize: T , ht

model = Adaboost(X,y,ht, T)
model contains αt, 1 ≤ t ≤ T
decision = sign(

∑T
t=1 αtht(x))

Adaboost algorithm takes input data (training set: (xi, yi), 1 ≤ i ≤ N), where each

xi belongs to some domain or instance space X, and each label yi is in the label set

Y = {−1, +1}. Adaboost calls a given weak or base learning algorithm repeatedly over

T iterations. Algorithm 1 shows the basic flow of the Adaboost algorithm. The reader

may refer to [128] for the complete algorithm. The base classifier for feature ranking

process [132] is defined as follows:

h(x) = {
−1 if xk < v

1 if xk ≥ v
(7.1)

where k is a parameter indicating the input variable used to create the split and v is

the splitting value. That is, k indicates the feature and v denotes the threshold to

differentiate between the two classes. This base classifier is called a ”decision stump” as

it consists of a classification tree with tree depth of one (a single split decision and two

terminal nodes). Parameters k and v are selected to minimize the cost function using a

greedy optimization strategy.

138

Ranking Algorithm

Adaboost with decision stumps as the base classifier inherently performs feature selec-

tion. In each iteration, the algorithm selects the most discriminating feature (one with

the lowest weighted error) for the corresponding weights. Further, adaboost algorithm

generates weight (α) for that particular classifier which signifies the performance of

that individual base classifier. In this case, as the base classifier is a decision stump, α

signifies the discriminating power of that particular feature used in that iteration. We

propose a ranking algorithm based on this observation. Features are sorted by assigning

a weight (wt) for each feature. The weight of each feature is computed using α values

the algorithm has generated. The outline of the ranking algorithm in presented in Al-

gorithm 2. If a particular feature is not selected at all, then the corresponding weight

will be zero.

Algorithm 2 Feature ranking

Given : (x1, y1), ..., (xm, ym)
where xi ∈ X, yi ∈ Y = {−1, +1}
Initialize: T , ht to be decision stump
model = Adaboost(X,y)
for f = 1 →d do

id = index of the iteration feature(f) is selected
wt(f) = αt(id)2

end for
rank = index(sort(wt))

7.5.4 Classification

In this step, the computed (selected) features are classified into two classes, preictal

(+1) and interictal (-1) using a machine learning algorithm. Even though SVMs have

demonstrated impressive performance in seizure prediction [123], [119], [122], the com-

putational complexity of the final decision function depends on the type of kernel used

during the training process. Table 7.1 presents the complexity analysis of SVMs with

three popular kernels [132] (linear, 2nd order polynomial and RBF), where d denotes

the number of features and Nsv denotes the number of support vectors generated during

the training process. We can observe that among three kernels, RBF kernel requires

139

the highest number of computations while linear kernel requires the lowest. The high

computational complexity of the RBF kernel makes it unsuitable for implementing in an

implantable device. The best choice would be linear-SVM for reducing the complexity

of the seizure prediction algorithm.

Even though, the complexity of the linear-SVM is low, the performance may be

degraded if the features used are not linearly separable. We propose to build a non-

linear decision function using a combination of linear decision functions (in general linear

decision functions are less computationally complex). The decision stumps can act as

linear classifiers and can be boosted using the Adaboost algorithm. The main motivation

of using Adaboost is its low complexity hardware implementation and the final decision

boundary can be non-linear as well. Further, model selection is not required for the

Adaboost algorithm which is an advantage compared to the SVM.

Table 7.1: Complexity Analysis of SVM and Adaboost classifiers
Classifier # ADD # MUL # WORDS
SVM Lin-
ear

d d d

SVM Poly-
nomial
(p=2)

d2 d(d + 1) d2

SVM RBF 2Nsvd Nsvd Nsv(d + 1)
Adaboost
(decision
stumps)

T 0 2T

*SVM-RBF requires extra Nsv exponent operations
Adaboost requires extra T comparison operations

7.5.5 Post-processing

We have observed some isolated false positives at the end of classification step as shown

in Fig. 7.5. Post-processing is applied to eliminate these isolated false positives and

false negatives. We applied 5-tap moving average filter to smoothen out these isolated

events. The final prediction will be made using the filter output.

140

7.6 Results and Discussion

Fig. 7.3 shows the block diagram for seizure prediction system along with training

process. During the training process, features are ranked using the proposed ranking

algorithm. Different classification models are built using SVM-Linear and Adaboost

classifier with decision stumps for different sizes of feature sets (ranging from 1 to

36). We use double-cross validation to ensure in-sample optimization and out-of-sample

testing.

Table 7.2: Comparison of Seizure Prediction Algorithms
Pat # Sz Sens

(%)
FP/hr Feature # Features Classifier

[122] 19 83 90.8 0.094 Corr. 20 SVM-RBF
[119] 9 18 100 0.17 AR 36 SVM-RBF
[123] 18 80 97.5 0.27 S.P 36 SVM-RBF

Proposed 16 71 94.375 0.13 S.P 36 Adaboost
Proposed 16 71 91.25 0.27 S.P 36 SVM-Linear
Proposed 16 71 94.375 0.14 S.P 4.8125 Adaboost
Proposed 16 71 67.1825 0.15 S.P 5 SVM-Linear
Proposed 16 71 85.625 0.19 S.P 10 SVM-Linear
Corr. - Correlation
AR - Autoregressive coefficients
S.P - Spectral Power

7.6.1 Performance Analysis

Table 7.2 lists sensitivity, false positive % and number of false positives per hour for

16 patient data sets containing 4 or more seizures. Using all the 36 features and the

Adaboost classifier, we achieved an average sensitivity of 94.375 and average FP% of 6.48

as measured by on-duration with 30-min on period for each prediction [123]. The results

reported here compare favorably to previously published results. The algorithms from

the prior literature requires SVM-RBF which is very computationally complex while the

proposed algorithm achieves similar results with low complexity Adaboost classifier.

We can observe that using an average of 5 features, the proposed algorithm is able to

achieve high sensitivity and low false positive rate. The detailed feature selection results

are presented in Table 7.3. The # Features column represent the number of features

141

it required to achieve the given sensitivity and false positive rate. Further, Table 7.2

also shows the results with SVM-Linear using best 5 and 10 features. It can seen that

the performance using SVM classifier with linear kernel degrades the performance. The

chosen features may not be linearly separable which leads to the lower performance with

linear kernel.

7.6.2 Complexity Analysis

Table 7.2 also analyzes the seizure prediction algorithms from the recent literature in

terms of number, type of features and the classifier used. The number of features used

is more than 20 in the prior art using SVM-RBF classifier. The hardware complexity of

the SVM-RBF classifier is proportional to Nsv ∗ d, where Nsv is the number of support

vectors and d is the dimensionality of the feature vector. The number of support vectors

(Nsv) depends on the size of the training data set. We observed Nsv varying anywhere

between 1000 to 3000 during the training process. The computational complexity of

SVM-Linear and Adaboost with decision stumps are similar except that the former

requires multiplication operation and the later requires comparison operation. The

power consumption and the hardware area of these two classifiers are shown in Fig. 7.6.

We can observe that Adaboost is a better option between the two when operating at

same conditions.

7.6.3 Power estimation

We estimated the power consumption of the proposed algorithm using 65nm technology

libraries and HP cacti tool. Table 7.4 summarizes the energy estimates for processing one

20sec window of all 6 channels to make a prediction. The proposed seizure prediction

requires only three ADC as we are processing only bipolar signals and using only 5

features. Therefore, only three analog front-end processors as opposed to six. The

total energy estimated to make a prediction on one window is 26uJ. A new window is

processed every 10s, which leads to a power consumption of 2.6uW on an average.

142

Table 7.3: Perfomance of the proposed seizure prediction algorithm
Patient # Sen% FP/hr FP % # Features

1 100 0 0 3
3 100 0 0 4
4 100 0 0 2
5 60 0.7917 36.3657 8
6 100 0.0833 4.1667 4
7 100 0 0 2
9 100 0.25 12.5 4
10 100 0.1667 8.33 4
11 75 0 0 4
12 100 0 0 5
14 75 0.0833 4.1667 8
15 100 0.1667 8.333 8
16 100 0.1667 8.333 8
17 100 0.125 6.25 5
18 100 0.1667 8.33 3
21 100 0.1667 8.333 5

Mean 94.375 0.135 6.487 4.8125

7.7 Conclusion

A low complexity patient specific algorithm is proposed that extracts spectral power

based features from EEG recordings. A new feature ranking algorithm is proposed to

rank the features. Non-linear classifier is built using Adaboost with decision stumps as

base classifier, which makes it computationally less expensive compared to non-linear

SVMs. The algorithm achieves high sensitivity and low false positive rate comparable to

the previously published results but at a much lower computational complexity. Future

Table 7.4: Energy estimates
Supply Voltage 1V

Technology 65nm
Frequency 1MHz

Digital Processing 2µJ

Analog Front-end 8µJ

Bipolar channels 3
Total energy 26µJ

143

work will focus on reducing the complexity in the feature extraction step.

144

Ch1-2

Ch2-3

Ch3-6

Ch4-5

Ch1-2

Ch2-3

Ch3-6

Ch4-5

Figure 7.4: Pre-ictal (top), inter-ictal (middle) and their power spectral density (bot-
tom).

145

a)

b)

Inter-ictalPre-ictal

Figure 7.5: Post processing the classifier output with 5-tap moving average filter. a)
Classifier output b) After post-processing.

0

500

1000

1500

2000

2500

3000

Adaboost SVM-Linear

Area (um2)
Power (nW)

Figure 7.6: Comparison of power and area of SVM-Linear and Adaboost circuits. Cir-
cuits are synthesized using 65nm technology operating at 1V Vdd and 1MHz clock
frequency.

References

[1] A. Csavoy, G. Molnar, and T. Denison, ”Creating support circuits for the nervous

system: Considerations for brain-machine interfacing,” International Symposium

on VLSI Ciruits, pp. 4-7, Jun. 2009.

[2] A. Shoeb, B. Bourgeosis, S. T. Treves, S. C. Schachter, and J. Guttag, ”Impact

of patient-specificity on seizure onset detection performance,” IEEE Int. Conf. on

EMBS, pp. 4110-4114, Aug. 2007.

[3] G. Meyfroidt, F. Guiza, J. Ramon, and M. Bruynooghe, ”Machine learning tech-

niques to examine large patient databases,” Best Practive and Research Clinical

Anaestiesiology, vol. 23, pp. 127-143, Mar. 2009.

[4] K. Hung, Y. T. Zhang, B. Tai, ”Wearable devices for tele-home healthcare”, IEEE

Conference on Engineering in Medicine and Biology Society, vol.2, no., pp.5384-

5387, Sept. 2004

[5] M. Scheffler, E. Hirt, ”Wearable devices for emerging healthcare applications,”

IEEE Conference on Engineering in Medicine and Biology Society, vol.2, no., pp.

3301- 3304, Sept. 2004

[6] V. N. Vapnik, The Nature of Statistical Learning Theory, Springer Verlag, 1995.

[7] C. Burges, ”A tutorial on support vector machines for pattern recognition,” Data

Mining and Knowledge Discovery 2, 121-167 (1998)

[8] C. F. Hsu, M.-K. Ku, L.-Y. Liu, ”Support vector machine FPGA implementation

for video shot boundary detection application,” IEEE International SOC Confer-

ence, pp.239-242, Sept. 2009.

146

147

[9] K. Cao, H. Shen, ”Scalable SVM Processor and Its Application to Nonlinear Chan-

nel Equalization,” Pacific-Asia Conference on Circuits, Communications and Sys-

tems, pp.206-209, May 2009.

[10] T. Netoff, Yun Park, K. K. Parhi, ”Seizure prediction using cost-sensitive support

vector machine,” Ann. Int. Conf. EMBS, pp. 3322 - 3325, Sept. 2009.

[11] M. Ayinala, M. Brown, K. K. Parhi, ”Pipelined parallel FFT architectures via

folding transformation,” IEEE Transactions on VLSI Systems,pp. 1068-1081, vol.

20, no. 6, June 2012.

[12] J. W Cooley and J. Tukey, ”An algorithm for machine calculation of complex fourier

series,” Math. Comput., vol. 19, pp. 297-301, Apr. 1965

[13] S. He and M. Torkelson, ”A new approach to pipeline FFT processor,” Proc. of

IPPS, 1996, pp. 766 - 770.

[14] S. He and M. Torkelson, ”Design and Implementation of 1024-point pipeline FFT

processor,” in Proc. Custom Integr. Circuits Conf., SantaClara, CA, May 1998, pp.

131-134.

[15] A. V. Oppenheim, R. W. Schafer, J. R. Buck, Discrete-Time Singal Processing,

2nd ed. Englewood Cliffs, NJ: Prentice Hall 1998.

[16] P. Duhamel, ”Implementation of split-radix FFT algorithms for complex, real, and

real-symmetric data,” IEEE Trans. on Acoust., Speech Signal Process., vol. 34, no.

2, pp. 285-295, Apr. 1986

[17] L. R. Rabiner, B. Gold, Theory and Application of Digital Signal Processing. Pren-

tice Hall Inc., 1975.

[18] E. H. Wold and A. M. Despain, ”Pipeline and parallel-pipeline FFT processors for

VLSI implementation,” IEEE Trans. Computers, C-33(5): 414-426, May 1984.

[19] A. M. Despain, ”Fourier transfom using CORDIC iterations,” IEEE Trans. Com-

put., C-233(10): 993-1001, Oct. 1974.

148

[20] E. E. Swartzlander, W. K. W. Young, S.J. Joseph, ”A radix-4 delay commutator

for fast Fourier transform processor implementation,” IEEE Journal of Solid-state

Cir., SC-19(5): 702-709, Oct. 1984.

[21] E. E. Swartzlander, V.K. Jain, H. Hikawa, ”A radix-8 wafer scale FFT processor,”

Journal. VLSI Signal Process., 4(2,3): 165-176, May 1992.

[22] G. Bi, E.V. Jones, ”A pipelined FFT processor for word-sequential data,” IEEE

Trans. Acoust., Speech, Signal Process., 37(12):1982-1985, Dec. 1989.

[23] J. Lee, H. Lee, S. I. Cho, S. S. Choi, ”A High-Speed two parallel radix-24 FFT/IFFT

processor for MB-OFDM UWB systems,” IEICE Trans. on Fundamentals of Elec-

tronics, Communications and Computer Sciences, pp. 1206-1211, April 2008.

[24] J. Palmer, B. Nelson, ”A parallel FFT architecture for FPGAs”, Lecture Notes in

Computer Science, vol. 3203, pp. 948-953, 2004.

[25] Y. W. Lin, et al., ”A 1-GS/s FFT/IFFT processor for UWB applications,” IEEE

Journal of Solid-state Circuits, vol. 40, no.8 pp. 1726-1735, Aug. 2005.

[26] M. Shin and H. Lee, ”A high-speed four parallel radix-24 FFT/IFFT processor for

UWB applications”, IEEE ISCAS 2008, pp. 960 - 963, May 2008.

[27] Z. Wang et al., ”A Novel FFT Processor for OFDM UWB Systems,” Proc. IEEE

APCCAS, pp. 374-377, Dec. 2006.

[28] S. Qiao et al., ”An Area and Power Efficient FFT Processor for UWB Systems,”

Proc. IEEE WICOM, Sept. 2007, pp. 582-585.

[29] C.-P. Fan, M.-S. Lee, and G.-A. Su, ”A Low Multiplier and Multiplication Costs

256-Point FFT Implementation with Simplified Radix-24 SDF Architecture,” Proc.

IEEE APCCAS, Dec. 2006, pp. 1935-1938.

[30] Y. Jung, H. Yoon, and J. Kim, ”New Efficient FFT Algorithm and Pipeline Imple-

mentation Results for OFDM/DMT Applications,” IEEE Trans. Consumer Elect.,

vol. 49, no. 1, Feb. 2003, pp. 14-20.

149

[31] S.-N Tang, J. Tsai, T.-Y. Chang, ”A 2.4-GS/s FFT Processor for OFDM-Based

WPAN Applications,” IEEE Transactions on Circuits and Systems II: Express

Briefs, vol.57, no.6, pp.451-455, June 2010.

[32] T. Cho, H. Lee, J. Park, C. Park, ”A high-speed low-complexity modified radix-25

FFT processor for gigabit WPAN applications,” ISCAS, pp. 1259-1262, 2011.

[33] K. K. Parhi, C. Y. Wang, A. P. Brown, ”Synthesis of control circuits in folded

pipelined DSP architectures,” IEEE Journal Solid State Circuits, vol. 27, no. 1,

pp. 29-43, 1992.

[34] K. K. Parhi, ”Systematic synthesis of DSP data format converters using lifetime

analysis and forward-backward register allocation,” IEEE Trans. on Circuits and

Systems - II, vol. 39, no. 7, pp. 423-440, July 1992.

[35] K. K. Parhi, ”Calculation of minimum number of registers in arbitrary life time

chart,” IEEE Trans. on Circuits and Systems - II, vol. 41, no. 6, pp. 434-436, June

1995.

[36] C. Cheng, K. K. Parhi, ”High-Throughput VLSI Architecture for FFT Computa-

tion,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol.54, no.10,

pp.863-867, Oct. 2007.

[37] Y.-N. Chang and K.K. Parhi, ”An Efficient Pipelined FFT Implementation”, IEEE

Trans. on Circuits and Systems: Part-II: Analog and Digital Signal Processing, Vol.

50(6), pp. 322-325, June 2003.

[38] N. Weste, D. J. Skellern, ”VLSI for OFDM,” IEEE Communications Magazine,

vol.36, no.10, pp.127-131, Oct 1998.

[39] J. A. C. Bingham, ”Multicarrier modulation for data transmission: an idea whose

time has come,” IEEE Communications Magazine, vol.28, no.5, pp.5-14, May 1990.

[40] H. Chi, Z. Lai, ”A cost-effective memory-based real-valued FFT and Hermitian

symmetric IFFT processor for DMT-based wire-line transmission systems,” IEEE

International Symposium on Circuits and Systems, pp. 6006- 6009 vol. 6, May 2005.

150

[41] W. Ko, J. Kim, Y. Park, T. Koh, D. Youn, ”An efficient DMT modem for the

G.LITE ADSL transceiver,” IEEE Transactions on VLSI Systems, vol.11, no.6,

pp.997-1005, Dec. 2003.

[42] A. Wang, A. Chandrakasan, ”Energy-efficient DSPs for wireless sensor networks,”

IEEE Signal Processing Magazine, vol.19, no.4, pp.68-78, Jul 2002.

[43] S. F. Reddaway, P. Bruno, P. Rogina, R. Pancoast, ”Ultra-high performance, low-

power, data parallel radar implementations,” IEEE Aerospace and Electronic Sys-

tems Magazine, vol.21, no.4, pp. 3- 7, April 2006.

[44] Y. Park, L. Luo, K. Parhi, T. Netoff, ”Seizure Prediction with Spectral Power of

EEG using Cost-Sensitive Support Vector Machines,” Epilepsia, vol. 52, pp. 1761-

1770, Oct. 2011 .

[45] W. W. Smith and J. M. Smith, Handbook of Real-Time Fast Fourier Transforms,

:Wiley-IEEE Press, 1995.

[46] H. Ziegler, ”A fast Fourier transform algorithm for symmetric real-valued series,”

IEEE Trans. Audio Electroacoust. vol. AU-20, pp. 353-356, Dec. 1972.

[47] J. B. Martens, ”Discrete Fourier transform algorithms for real valued sequence,”

IEEE Trans. Acoust., Speech, Sig. Proc. , vol. ASSP-32, pp. 390-396, Apr. 1984.

[48] H. Sorensen, D. Jones, M. Heideman, C. Burrus, ”Real-valued fast Fourier trans-

form algorithms,” IEEE Transactions on Acoustics, Speech and Signal Processing,

vol.35, no.6, pp. 849- 863, Jun 1987.

[49] J. Chen, H. Sorensen, ”An efficient FFT algorithm for real-symmetric data,” IEEE

International Conference on Acoustics, Speech, and Signal Processing, vol.5, pp.17-

20 Mar 1992.

[50] B. R. Sekhar, and K. M. M. Prabhu, ”Radix-2 decimation in frequency algorithm

for the computation of the real-valued FFT,” IEEE Trans, Signal Process., vol. 47,

no. 4, pp. 1181-1184, Apr. 1999.

[51] B. M. Baas, ”A low-power, high-performance, 1024-point FFT processor,” IEEE

Journal of Solid-State Circuits, vol. 34, n0. 3, pp. 380-387, Mar. 1999.

151

[52] M. Garrido, K. K. Parhi, J. Grajal, ”A pipelined FFT architecture for real-valued

signals,” IEEE Trans. Cir. Sys. I, Reg. Papers, vol. 56, no. 12, pp. 2634 - 2643,

Dec. 2009.

[53] A. Wang, A. P. Chandrakasan, ”Energy-aware architectures for a Real-Valued FFT

implementation,” International Symposium on Low Power Electronics and Design,

pp. 360- 365, Aug. 2003.

[54] M. Ayinala and K. K. Parhi, ”Parallel-Pipelined radix-22 FFT architecture for real

valued signals,” Asilomar conference on signals, systems and computers, pp. 1274

- 1278, Nov. 2010.

[55] K. K. Parhi, VLSI Digital Signal Processing Systems: Design and Implementation.

Hoboken, NJ: Wiley, 1999.

[56] M. Ayinala and K.K. Parhi, ”Parallel Pipelined FFT Architectures with Reduced

Number of Delays,” ACM Great Lakes Symp. on VLSI, pp. 63-66, May 2012.

[57] R. Radhouane, P. Liu, and C. Modin, ”Minimizing the memory requirement for

continuous flow FFT implementation: Continuous flow mixed mode FFT (CFMM-

FFT),” IEEE Int. Symp. Circuits and Systems, pp. 116-119, May 2000.

[58] B. G. Jo and M. H. Sunwoo, ”New continuous-flow mixed-radix (CFMR) FFT

processor using novel in-place strategy,” IEEE Trans. Circuits and Systems I, Reg.

Papers, vol. 52, no. 5, pp. 911-919, May 2005.

[59] A. T. Jacobson, D. N. Truong, and B. M. Baas, ”The design of a reconfigurable

continuous-flow mixed-radix FFT processor,” IEEE Int. Symp. Circuits and Sys-

tems, pp. 1133-1136, May 2009.

[60] W. Chao and H. Y. Peng, ”Twin butterfly high throughput parallel architecture

FFT algorithm,” Int. Symp. on Information Science and Engineering, pp. 637-640,

Dec. 2008.

[61] C. F. Hsiao, Y. Chen and C. Y. Lee, ”A generalized mixed-radix algorithm for

memory-based FFT processors,” IEEE Trans. on Circuits and Systems II, Exp.

Briefs, vol. 57, no. 1, pp. 26-30, Jan. 2010.

152

[62] P.-Y Tsai and C.-Y Lin, ”A Generalized Conflict-Free Memory Addressing

Scheme for Continuous-Flow Parallel-Processing FFT Processors With Reschedul-

ing,” IEEE Transactions on Very Large Scale Integration Systems, vol.19, no.12,

pp.2290-2302, Dec. 2011.

[63] H. Chi and Z. Lai, ”A cost-effective memory-based real-valued FFT and Hermitian

symmetric IFFT processor for DMT-based wire-line transmission systems,” IEEE

International Symposium on Circuits and Systems, pp. 6006- 6009 vol. 6, May 2005.

[64] A. Wang and A. P. Chandrakasan, ”Energy-aware architectures for a Real-Valued

FFT implementation,” International Symposium on Low Power Electronics and

Design, pp. 360- 365, Aug. 2003.

[65] P. Stoica, and R.L. Moses, Introduction to Spectral Analysis, Prentice-Hall, 1997.

[66] M. Hayes, Statistical Digital Signal Processing and Modeling, John Wiley & Sons,

1996.

[67] F. El-Hawary, T. Richards, ”A Systolic Computer Architecture For Spectrum Anal-

ysis,” Proceedings OCEANS, vol.4, pp.1061-1065, Sep 1989.

[68] T.-H. Yu, C. -H. Yang; D. Cabric, D. Markovic, ”A 7.4mW 200MS/s wideband

spectrum sensing digital baseband processor for cognitive radios,” Symposium on

VLSI Circuits, pp.254-255, June 2011.

[69] T. Yucek, H. Arslan, ”A survey of spectrum sensing algorithms for cognitive radio

applications,” IEEE Communications Surveys & Tutorials, vol.11, no.1, pp.116-

130, 2009.

[70] A. Oppenheim, R. Schafer, Discrete Time Signal Processing, 2nd edition, Prentice-

Hall.

[71] S. Haykin, Adaptive Filter Theory, 4th edition, Prentice-Hall.

[72] Welch, P.D, ”The Use of Fast Fourier Transform for the Estimation of Power Spec-

tra: A Method Based on Time Averaging Over Short, Modified Periodograms,”

IEEE Trans. Audio Electroacoustics, Vol. AU-15 (June 1967), pp.70-73.

153

[73] S. Zhang, D. Yu, S. Sheng, ”A Discrete STFT Processor for Real-time Spectrum

Analysis,” IEEE Asia Pacific Conference on Circuits and Systems, pp.1943-1946,

2006.

[74] A. Sanchez, M. Garrido, L. Vallejo, J. Grajal, C. Lopez-Barrio, ”Digital channelised

receivers on FPGAs platforms,” IEEE International Radar Conference, pp. 816-

821, 2005.

[75] T. I. Laakso, V. Valimaki, M. Karjalainen, U. K. Laine, ”Splitting the unit delay

[FIR/all pass filters design],” IEEE Signal Processing Magazine, vol.13, no.1, pp.30-

60, Jan 1996.

[76] E. Hermanowicz, ”Explicit formulas for weighing coefficients of maximally flat tun-

able FIR delayers”, Electron. Letters, vol. 28, no. 20, pp. 1936-1937, Sept. 1992.

[77] Freiburg EEG database. Available from: https://epilepsy.uni-freiburg.de/freiburg-

seizureprediction-project/eeg-database.

[78] V. Sundararajan and K.K. Parhi, ”A Novel Multiply Multiple Accumulator Com-

ponent for Low Power PDSP Design”, IEEE Int. Conf. on Acoustics, Speech and

Signal Processing, Vol. 6, pp. 3247-3250, June 2000.

[79] S. Thoziyoor, N.Muralimanohar, J. H. Ahn, and N. P. Jouppi, ”CACTI 5, Advanced

architecture laboratory HP Laboratories,” HPL-2007-167, 2007. [Online]. Available:

http://www.hpl.hp.com/ techreports/2008/HPL-200820.html

[80] Y. Park, L. Luo, K.K. Parhi and T. Netoff, ”Seizure Prediction with Spectral

Power of EEG Using Cost-Sensitive Support Vector Machines,” Epilepsia, 52(10),

pp. 1761-1770, Oct. 2011.

[81] Y. Can, M. T. Coimbra, B. Vijaya Kumar, ”Arrhythmia detection and classification

using morphological and dynamic features of ECG signals,” IEEE EMBC, pp.1918-

1921, 2010.

[82] M. Shoaib, N. Jha, N. Verma, ”A low-energy computation platform for data-driven

biomedical monitoring algorithms,” ACM/IEEE Design Automation Conference

(DAC), pp.591-596, June 2011.

154

[83] S. Cadambi, I. Durdanovic, V. Jakkula, et. al, ”A Massively Parallel FPGA-Based

Coprocessor for Support Vector Machines,” 17th IEEE Symposium on FCCM,

pp.115-122, April 2009.

[84] M. Papadonikolakis and C. Bouganis, ”A novel FPGA-based SVM classifier,” Intl.

Conf. on Field-Programmable Technology, pp.283-286, Dec. 2010.

[85] D. Mohapatra, V.K. Chippa, A. Raghunathan and K. Roy, ”Design of voltage-

scalable meta-functions for approximate computing,” Design, Automation & Test

in Europe Conference (DATE), pp.1-6, March 2011.

[86] V .Chippa, D. Sohapatra, A. Raghunathan, K. Roy, S. T. Chakradhar, ”Scal-

able effort hardware design: Exploiting algorithmic resilience for energy efficiency,”

ACM/IEEE Design Automation Conference, pp.555-560, June 2010.

[87] Y. Lee and O. L. Mangasarian, ”RSVM: Reduced support vector machines,” Data

Mining Institute, Computer sciences Department, University of Wisconsin, 2001.

[88] G. H. John, R. Kohavi, and K. Pfleger, ”Irrelevant features and the subset selection

problem,” Intl. Conf. on Machine Learning, pp. 121-129, 1994.

[89] Freiburg EEG database. Available from: https://epilepsy.uni-freiburg.de/freiburg-

seizureprediction-project/eeg-database.

[90] K.-J. Cho, K.-C. Lee, J.-G. Chung, and K.K. Parhi, ”Design of Low-Error Fixed

Width Modified Booth Multiplier”, IEEE Trans. on VLSI Systems, 12(5), pp. 522-

531, May 2004.

[91] S. J. Jou and H. H.Wang, ”Fixed-width multiplier for DSP application,” Int. Conf.

Computer Design (ICCD), Sept. 2000, pp. 318-322.

[92] D. Oh, K. K. Parhi, ”Min-Sum Decoder Architectures With Reduced Word Length

for LDPC Codes,” IEEE Transactions on Circuits and Systems I: Regular Papers,

vol.57, no.1, pp.105-115, Jan. 2010.

[93] S. Thoziyoor, N.Muralimanohar, J. H. Ahn, and N. P. Jouppi, ”CACTI 5, Advanced

architecture laboratory HP Laboratories,” HPL-2007-167, 2007. [Online]. Available:

http://www.hpl.hp.com/ techreports/2008/HPL-200820.html

155

[94] R. Fisher, V. Salanova, T. Witt, R. Worth, T. Henry, R. Gross, K. Oommen, I.

Osorio, J. Nazzaro, and D. Labar, ”Electrical stimulation of the anterior nucleus

of thalamus for treatment of refractory epilepsy,” Epilepsia, vol. 51, pp. 899-908,

2010.

[95] B. Schelter, J. Timmer, and A. Schulze-Bonhage, Seizure prediction in epilepsy:

from basic mechanisms to clinical applications: Vch Pub, 2008.

[96] F. Mormann, R. Andrzejak, C. Elger, and K. Lehnertz, ”Seizure prediction: the

long and winding road,” Brain, vol. 130, p. 314, 2007.

[97] J. F. Annegers, The epidemiology of epilepsy, 1996. Available:

http://www.epilepsyfoundation.org/about/statistics.cfm

[98] X. Yang, B. Schmidt, D. Rode, and S. Rothman, ”Optical suppression of experi-

mental seizures in rat brain slices,” Epilepsia, vol. 51, pp. 127-135, 2009.

[99] S. Rothman, M. Smyth, X. Yang, and G. Peterson, ”Focal cooling for epilepsy:

an alternative therapy that might actually work,” Epilepsy & Behavior, vol. 7, pp.

214-221, 2005.

[100] A. Csavoy, G. Molnar, and T. Denison, ”Creating support circuits for the nervous

system: considerations for brain- machine interfaceing,” Proc. Int. Symp. VLSI

Circuits, pp. 4-7, 2009.

[101] A. Shoeb, et. al., ”Impact of patient-specificty on seizure onset detection perfor-

mance, ” IEEE EMBS, pp. 4110-4114, Aug. 2007.

[102] B. Litt and J. Echauz, ”Prediction of epileptic seizures,” Lancet Neurology, vol.

1, pp. 22-30, 2002.

[103] Y. Park, T. Netoff, K. Parhi, ”Seizure prediction with spectral power of

time/space-differential EEG signals using cost-sensitive support vector machine,”

IEEE ICASSP, pp.5450-5453, March 2010.

[104] S. S. Viglione and G. O. Walsh, ”Proceedings: Epileptic seizure prediction,” Elec-

troencephalogr Clin Neurophysiol, vol. 39, pp. 435-6, Oct 1975.

156

[105] H. H. Lange, J. P. Lieb, J. Engel, Jr., and P. H. Crandall, ”Temporospatial

patterns of pre-ictal spike activity in human temporal lobe epilepsy,” Electroen-

cephalogr Clin Neurophysiol, vol. 56, pp. 543-55, Dec 1983.

[106] M. L. Van Quyen, J. Martinerie, M. Baulac, and F. Varela, ”Anticipating epileptic

seizures in real time by a non-linear analysis of similarity between EEG recordings,”

Neuroreport, vol. 10, pp. 2149-2155, 1999.

[107] V. Navarro, J. Martinerie, M. L. V. Quyen, S. Clemenceau, C. Adam, M. Baulac,

and F. Varela, ”Seizure anticipation in human neocortical partial epilepsy,” Brain,

vol. 125, pp. 640-655, March 1, 2002 2002.

[108] F. Mormann, T. Kreuz, R. G. Andrzejak, P. David, K. Lehnertz, and C. E.

Elger, ”Epileptic seizures are preceded by a decrease in synchronization,” Epilepsy

Research, vol. 53, pp. 173-185, Mar 2003.

[109] B. Litt, R. Esteller, J. Echauz, M. D’Alessandro, R. Shor, T. Henry, P. Pennell,

C. Epstein, R. Bakay, M. Dichter, and G. Vachtsevanos, ”Epileptic Seizures May

Begin Hours in Advance of Clinical Onset: A Report of Five Patients,” Neuron,

vol. 30, pp. 51-64, 2001.

[110] B. Direito, A. Dourado, M. Vieira, and F. Sales, ”Combining Energy and Wavelet

Transform for Epileptic Seizure Prediction in an Advanced Computational System,”

in International Conference on BioMedical Engineering and Informatics, pp. 380-

385, 2008.

[111] M. D’Alessandro, R. Esteller, G. Vachtsevanos, A. Hinson, J. Echauz, and B. Litt,

”Epileptic seizure prediction using hybrid feature selection over multiple intracra-

nial EEG electrode contacts: a report of four patients,” IEEE Transactions on

Biomedical Engineering, vol. 50, pp. 603-615, 2003.

[112] L. D. Iasemidis, J. Chris Sackellares, H. P. Zaveri, and W. J. Williams, ”Phase

space topography and the Lyapunov exponent of electrocorticograms in partial

seizures,” Brain Topography, vol. 2, pp. 187-201, 1990.

[113] L. D. Iasemidis, S. Deng-Shan, J. C. Sackellares, P. M. Pardalos, and A. Prasad,

”Dynamical resetting of the human brain at epileptic seizures: application of

157

nonlinear dynamics and global optimization techniques,” IEEE Transactions on

Biomedical Engineering, vol. 51, pp. 493-506, 2004.

[114] L. D. Iasemidis, J. C. Principe, and J. C. Sackellares, ”Measurement and quan-

tification of spatio-temporal dynamics of human epileptic seizures,” in Nonlinear

Biomedical Signal Processing, vol. 2, pp. 294-318, 2000.

[115] K. Lehnertz and C. E. Elger, ”Spatio-temporal dynamics of the primary epilep-

togenic area in temporal lobe epilepsy characterized by neuronal complexity loss,”

Electroencephalography and Clinical Neurophysiology, vol. 95, pp. 108-117, 1995.

[116] I. Osorio, M. A. Harrison, Y. C. Lai, and M. G. Frei, ”Observations on the ap-

plication of the correlation dimension and correlation integral to the prediction of

seizures,” Journal of Clinical Neurophysiology, vol. 18, pp. 269-74, May 2001.

[117] L. D. Iasemidis, ”Epileptic seizure prediction and control,” IEEE Transactions on

Biomedical Engineering, vol. 50, pp. 549-558, 2003.

[118] L. D. Iasemidis, S. Deng-Shan, W. Chaovalitwongse, J. C. Sackellares, P. M.

Pardalos, J. C. Principe, P. R. Carney, A. Prasad, B. Veeramani, and K. Tsakalis,

”Adaptive epileptic seizure prediction system,” IEEE Transactions on Biomedical

Engineering, vol. 50, pp. 616-627, 2003.

[119] L. Chisci, A. Mavino, G. Perferi, et. al., ”Real-Time epileptic seizure prediction

using AR models and support vector machines,” IEEE Transactions on Biomedical

Engineering, vol.57, no.5, pp.1124-1132, May 2010.

[120] C. C. B. Suarez, E. T. Fonoff, et. al., ”Wavelet transform and cross-correlation as

tools for seizure prediction,” IEEE EMBC, pp.4020-4023, Sept. 2010.

[121] S. Hung, C. Chao, S. Wang, et. al., ”VLSI implementation for epileptic seizure

prediction system based on wavelet and chaos theory,” IEEE Region Conference

TENCON, pp.364-368, Nov. 2010.

[122] J. R. Williamson, D. W. Bliss, D.W. Browne, ”Epileptic seizure prediction us-

ing the spatiotemporal correlation structure of intracranial EEG,” IEEE ICASSP,

pp.665- 668, May 2011.

158

[123] Y. Park, L. Luo, K.K. Parhi and T. Netoff, ”Seizure prediction with spectral

power of EEG using cost-sensitive support vector machines,” Epilepsia, 52(10), pp.

1761-1770, Oct. 2011.

[124] A. Shoeb, et al., ”A micro support vector machine based seizure detection archi-

tecture for embedded medical devices,” IEEE EMBS,pp. 4202-4205. Sept 2009.

[125] P. W. Mirowski, et al., ”Comparing SVM and convolutional networks for epileptic

seizure prediction from intracranial EEG,” IEEE Workshop on MLSP, pp.244-249,

Oct. 2008.

[126] Freiburg EEG database. Available from: https://epilepsy.uni-

freiburg.de/freiburg-seizureprediction-project/eeg-database.

[127] G. H. John, R. Kohavi, and K. Pfleger, ”Irrelevant features and the subset selec-

tion problem,” International Conference on Machine Learning, pp. 121-129, 1994.

[128] Y. Freund, R. Schapire, ”Experiments with a new boosting algorithm,” Interna-

tional Conference on Machine Learning, pp. 148-156, 1996.

[129] L. Furst, S. Fidler, A. Leonardis, ”Selecting features for object detection using

an Adaboost-compatible evaluation function,” Patter recognition letters, pp. 1603-

1612, 2008.

[130] P. Silapachote, D. R. Karuppiah, A. R. Hanson, ”Feature selection using adaboost

for face expression recognition,” Intl. Conference on Visualization, Image, and

Image Processing, Spain, Sept. 2004.

[131] D. D. Le, ”Feature selection by adaBoost for SVM-based face detection,” Forum

on Information Technology, pp. 183-186, 2004.

[132] V. Cherkassky, F. Mulier, Learning from data, Concepts, Theory and Methods,

Wiley.

