
EFFICIENT DYNAMIC PROGRAM MONITORING

ON MULTI-CORE PLATFORMS

A DISSERTATION

SUBMITTED TO THE FACULTY OF THE GRADUATE SCHOOL

OF THE UNIVERSITY OF MINNESOTA

BY

GUOJIN HE

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR THE DEGREE OF

DOCTOR OF PHILOSOPHY

ANTONIA ZHAI, ADVISOR

May, 2012

c© GUOJIN HE 2012

ALL RIGHTS RESERVED

Acknowledgements

First and foremost, I would cordially thank my advisor, Professor Antonia Zhai,

for her great help, enduring patience, and invaluable advices throughout my entire

doctoral program.

I also say thank you to Professor Mats Heimdahl, Professor David J. Lilja, and

Dr. Michael Whalen for their generous help, encouragement, and suggestions during

my thesis research. I also thank them for serving as members of my examination

committee. Moreover, I would like to thank Professor Pen-Chung Yew and Professors

Wei-Chung Hsu for their encouragement and help during my Ph.D studies and studies

and for providing advice about my career.

I also appreciate my fellow co-workers: Jinpyo Kim, Shengyue Wang, Jin Lin,

Venkatesan Packirisamy, Yangchun Luo, Vineeth Mekkat, Ragavendra Natarajan,

Jieming Yin, and Anup P Holey for their friendship and technical help.

I am also indebted to my personal friends Professor Ziguo Zhong, and Dan Wang

for their enormous help and encouragement in life and in research during my Ph.D

studies.

Furthermore, I want to thank the people I have worked with during my internship

and current employment, along with friends in China. Their creative minds and ideas

inspired me in great measure.

Lastly, I would say thanks to my parents, my sister, and her family for their

unconditional love and support.

i

Abstract

Software security and reliability have become increasingly important in the mod-

ern world. An effective approach to enforcing software security and reliability is to

monitor a program’s execution at run time. However, instrumentation-based imple-

mentation of a dynamic program monitor on single-core systems suffers significant

performance overhead. As multi-core architecture becomes more mainstream, im-

plementing efficient dynamic program monitoring by assigning monitoring activities

onto separate processor cores and thus reducing performance overhead becomes not

only a feasible but an appealing way to enforce software security and reliability. To

achieve efficient and flexible multi-core based dynamic program monitoring, however,

three challenging issues must be carefully considered and adequately addressed: the

hardware support, the monitoring model, and the parallelization of monitoring tasks.

This dissertation proposes novel solutions to these challenging problems. The

hardware support proposed in this dissertation, which is referred to as extraction

logic, selectively extracts execution information from the monitored program and

forwards it to a monitor running on a separate CPU core. The extraction logic is

generic and configurable by the monitor so that it can support a large spectrum of

monitoring tasks. Based on this generic hardware support, this dissertation proposes

a novel monitoring model, referred to as the distill-based monitor model. Monitors

in this execution model is generated by special compiler supports. The distill-based

ii

monitor model is based on the observation that a monitor needs only partial informa-

tion from the monitored execution and that of this needed information, some can be

easily computed by the monitor from other information that has already been com-

municated. We implemented a code generator and optimization techniques to decide

which set of information to forward and which set to compute so as to minimize the

total execution time of the monitor. This compiler support can optimize a variety

of monitors with diverse monitoring requirements, taking as input the control flow

graph of the monitored program and the set of monitoring requirements.

To parallelize monitoring tasks, this dissertation proposes a novel paralleliza-

tion paradigm built on General-purpose Computing on Graphics Processing Unit

(GPGPU) architecture. In the following chapters, we first propose a generic, purely

software-based GPGPU monitor framework that is flexible enough to support par-

allelization of various kinds of monitoring tasks. Furthermore, we propose software-

based optimization techniques built on this framework that effectively take advantage

of various characteristics of monitoring tasks such as taint-propagation and memory-

bug detection, and thus achieve significant performance improvement.

This dissertation reports the performance improvement achieved by the proposed

monitoring model and parallelization paradigm. Relative to the performance of

traditional instrumentation-based monitor for taint-propagation and memory-bug-

detection, the proposed compiler support is able to bring down performance overhead

by 3.7 times and 2.2 times for SPEC2006INT benchmarks. The proposed GPGPU-

based monitor with optimization even achieves more for memory-bug detection, re-

ducing performance overhead by 5.2 times.

iii

Contents

Acknowledgements i

Abstract ii

List of Tables viii

List of Figures ix

List of Abbreviations x

1 Introduction 1

1.1 Background of Dynamic Program Monitoring and Its Challenges . . . 2

1.2 Multi-core-based Dynamic Program Monitoring 4

1.3 Major Research Efforts and Results in the Dissertation 6

1.4 Organization of the Manuscript . 6

2 Hardware Support for Dynamic Program Monitoring on Multi-core

Platforms 8

2.1 Overview of Hardware Support . 8

2.2 Table-Driven Extraction Logic . 11

2.3 Forward-Bit-Based Extraction Logic 13

2.3.1 Fetching Component . 13

2.3.2 Forwarding Component . 15

iv

3 Execution Models of Multi-core-based Program Monitor 18

3.1 Example of Monitor Models . 19

3.2 Dispatch-Based Monitor . 20

3.2.1 Dispatching Routine . 22

3.2.2 Monitoring Functions . 22

3.2.3 Initialization and Update Routines 23

3.3 Distill-based Monitor . 23

3.3.1 Key Idea of Distill-based Monitor 24

3.3.2 Generating Distill-based Monitor 25

3.3.2.1 Monitoring Functions 27

3.4 A Qualitative Analysis of Performance Overhead 28

3.4.1 Analysis of Performance Overhead of Distill-based Monitor . . 29

3.4.2 How Distill-based Monitor Reduces Performance Overhead . . 30

4 Optimization of Distill-based Monitor 32

4.1 General Ideas and Concepts of the Optimization 33

4.2 Algorithm Overview . 36

4.3 Information Needed by the Algorithm 37

4.3.1 Reaching Definition . 37

4.3.2 Basic Dependence Set . 39

4.3.3 Computation Stack . 40

4.4 Select OptCommu and OptCompute Set: Details of Algorithm 41

4.4.1 Select OptCommu and OptCompute Set: Forward DFA Pass . 41

4.4.2 Estimation of Benefit and Cost 43

4.5 Discussion of Complexity of the Optimization 47

4.5.1 Complexity of Information Collection DFA Passes 47

v

4.5.2 Analysis of Complexity of OptCommu and OptCompute Set

Selection . 49

4.6 Performance Evaluation . 51

4.6.1 Infrastructure . 52

4.6.2 Performance of Different Monitor Implementations 54

4.6.3 Comparison with Hardware-Based Optimizations 57

5 Parallelize Program Monitoring Using GPGPU 60

5.1 GPGPU Architecture to Parallelize Dynamic Program Monitoring . . 62

5.1.1 Integrating CPU and GPGPU Cores 63

5.1.2 Characteristics of Memory-Bug Detection and Taint Propagation 64

5.1.2.1 Memory-Bug Detection 65

5.1.2.2 Taint Propagation 65

5.2 Abstract Framework of GPGPU-based Monitor 67

5.2.1 GPGPU-based Monitoring . 67

5.2.2 Overview of the GPGPU-based Monitor 71

5.2.3 Implementation of Monitoring Thread 73

5.2.3.1 Abstract Framework of Monitoring Thread 74

5.2.3.2 Implementation of Monitoring Thread for Memory-

bug Detection . 76

5.2.3.3 Implementation of Monitoring Thread for Taint-Propagation 78

5.3 Optimization of GPGPU-based Monitors 81

5.3.1 Techniques of Optimizing GPGPU-based Monitor 84

5.3.1.1 Optimizing Memory-bug Detection Monitor on GPGPU 85

5.3.1.2 Optimizing Taint Propagation Monitor on GPGPU . 89

5.4 Performance of Optimized GPGPU-based Monitor 95

5.4.1 Infrastructure . 95

vi

5.4.2 Performance of Optimized GPGPU-based Monitors 97

5.4.3 Performance Analysis of Optimized GPGPU-based Monitors:

Taint Propagation . 99

5.4.4 Performance Analysis of Optimized GPGPU-based Monitors:

Memory-bug Detection . 101

6 Related Work 104

6.1 Instrumentation-based Monitors . 105

6.2 Monitors with Task-specific Hardware Support 107

6.3 Monitors on Multi-core Platforms . 108

6.4 Parallel Monitors . 110

7 Conclusions 112

Bibliography 114

vii

List of Tables

4.1 Benchmark Descriptions . 51

4.2 Simulation Parameters . 52

5.1 Comparisons of Characteristics of Different Implementations of Monitors 72

5.2 Dependence in Memory-bug Detection 76

5.3 Behavior and Activities of Monitored Events in Taint Propagation . . 79

5.4 Performance Statistics of Basic GPGPU-based Monitor 82

5.5 GPGPU-based Monitor Simulation Parameters 96

5.6 Statistics of Optimized GPGPU-based Taint Propagation Monitor . 100

5.7 Statistics of Optimized GPGPU-based Memory-bug Detection Monitor 102

viii

List of Figures

2.1 Extraction Logic in Table-driven Mode 10

2.2 Extraction Logic in Forward Bit Mode 17

3.1 Four different Implementations of the Memory-bug Detection Monitor. 19

3.2 Dispatch-based Monitor for Memory-bug Detection 21

3.3 Performance Comparison of Dispatch-based Dynamic Monitors on Multi-

core for Taint Propagation . 23

3.4 Overview of the Distill-based Monitoring System 25

4.1 Code Example of Using Compiler to Reduce Communication 33

4.2 Control Flow Graph of the Sample Program and Results of Reaching

Definition DFA . 34

4.3 Results of Basic Dependence Set DFA Pass for the Sample Program . 38

4.4 Results of Computation Stack DFA Pass for the Sample Program . . 40

4.5 Distill-based Monitor Optimization Algorithm 42

4.6 Results of Optimization DFA Pass . 46

4.7 Performance of Four Different Implementations of Monitors 55

4.8 Performance Comparison with Additional Hardware Support 57

5.1 A System Architecture Fusing CPU cores and GPGPU together . . . 62

5.2 Layout of a Stream Multiprocessor 64

5.3 GPGPU-based monitoring . 69

5.4 Algorithm for a GPGPU-based Monitor. 70

ix

5.5 General Framework of Monitoring Thread Implementation 73

5.6 Performance of Basic GPGPU-based Monitors 83

5.7 Algorithm of Optimized Memory-bug Detection GPGPU-based Monitor. 86

5.8 Algorithm of Optimized Taint Propagation GPGPU-based Monitor. . 90

5.9 Dependence Graph of the Instruction Sequence, Arrows come from

dependees to dependents. 92

5.10 Performance of Optimized GPGPU-based Monitors 98

5.11 Execution Time Breakdown of Optimized GPGPU-based Taint Prop-

agation Monitor . 101

x

Chapter 1

Introduction

As computer systems have become necessities in virtually all important aspects of

human life today, computer software plays an increasingly important role in the safety

and welfare of modern societies. Consequently, the security and reliability of software

are extremely critical issues in the modern world. In modern computer systems, there

are two major approaches to enforcing software security and reliability: statically

examining source code [1, 2, 4, 3] and dynamically monitoring program execution [5,

11, 12, 10, 6, 7]. The latter is becoming increasingly important and common due to

several trends that make static approaches more expensive and less effective: first,

rapid increases in the complexity of modern software systems; second, rapid increases

in data size, and last but not the least, fast-changing and unpredictable environments

where software programs are deployed.

Efficiency is the key issue for successful dynamic program monitoring systems.

Since dynamic program monitoring systems must run side by side with monitored

execution on the same hardware platform, the performance overhead of monitoring

is added to the performance of monitored program execution. In the uniprocessor

era, this overhead could be prohibitively high and thus prevented dynamic program

1

monitors from being widely deployed. Recently, however, the emergence of multi-

core architecture facilitates future dynamic program monitoring as it enables more

efficient paradigms. This dissertation reports our research efforts on the design, im-

plementation and evaluation of an efficient dynamic program monitoring system built

on multi-core platforms.

1.1 Background of Dynamic Program Monitoring

and Its Challenges

All dynamic program monitoring systems must implement the following key function-

alities:

1. extracting information about the monitored program execution.

2. maintaining meta-data a.k.a shadow data to keep track of the status of moni-

tored execution.

Based on the differences in implementation, dynamic monitoring systems can be

classified into three categories: instrumentation-based monitoring systems [5, 11, 12,

10, 6, 7]; specialized-hardware-based monitoring systems [26, 27, 28, 29, 31, 32, 33, 34]

and multi-core-based monitoring systems [53, 54].

The research reported in this dissertation falls into the multi-core-based category.

Multi-core-based monitoring addresses challenges faced by the other two categories of

dynamic program monitoring. This section briefly describes and compares basic ideas

and key features of three different approaches. Details of multi-core-based monitoring

proposed by our research is left to later chapters of this dissertation.

Instrumentation-based dynamic program monitoring tools use monitoring code

to instrument the binary or the original source code of monitored program. The

monitoring code tracks changes in the status of the monitored program and verifies

2

compliance with security or reliability rules that are defined by the monitoring re-

quirements. Many well-known instrumentation-based program monitoring tools allow

instrumentation of the user program at a fine-grained level [5, 12, 10, 6, 7]. This way,

they can support popular monitoring requirements such as taint-propagation and

memory-bug-detection that require detailed run-time information such as referred

memory addresses, sources and destinations of data movements, as well as targets of

jump instructions.

The main disadvantage of instrumentation-based dynamic program monitoring

tools is that their performance overhead is significant. Instruction-grained moni-

toring tasks such as taint-propagation or memory-bug-detection can slow monitored

programs by 10-50 times [6, 7]. This disadvantage prevents instrumentation-based

monitoring tools from being employed for wider applications. The root cause of this

high performance overhead is that instrumentation code competes with its monitored

execution for limited hardware resources during execution/monitoring time.

As an alternative to instrumentation-based approaches, researchers have pro-

posed using specialized hardware support to accelerate dynamic program monitor-

ing. [26, 27, 28, 29, 31, 32, 33, 34]. Dynamic program monitoring systems with these

specialized hardware supports do not instrument the monitored program. Instead,

the specialized hardware supports take over the tasks of information extraction, meta-

data maintaining and status checking. Depending on the monitoring requirements,

these hardware supports extend the existing micro-architecture design in different

ways: some add additional function units into the processor pipeline [26, 27], some

augment the memory hierarchy [29, 32, 33], and others introduce new type of stor-

age to accommodate meta-data [28, 32, 33]. Compared to instrumentation-based

approaches, these specialized hardware supports significantly reduce the performance

overhead of dynamic program monitoring.

3

The disadvantage of dynamic monitoring with specialized hardware support is that

its application is limited to a specific type of monitoring activity. In other words, this

approach is inflexible. Fundamentally, different monitoring tasks require different

monitoring activities, and thus specialized hardware support must be customized to

the characteristics of each monitoring activity to be effective.

1.2 Multi-core-based Dynamic Program Monitor-

ing

The research reported by this dissertation is different from previous proposals in that

it is built on multi-core platforms to keep the monitoring system both flexible and

efficient. It is different from other multi-core-based monitoring systems [34, 39, 49], as

other systems mainly rely on hardware approach to implement and accelerate moni-

toring. The research in this dissertation uses both hardware approach and software

approach to implement efficient multi-core-based monitoring. As this will be elabo-

rated upon later, in this section we focus on introducing the common characteristics

of multi-core based dynamic program monitoring.

In typical multi-core based dynamic program monitoring systems, two software

entities simultaneously execute on separate cores: the program to be monitored and

the program that monitors. In this dissertation, they are referred to as the monitored

program and the monitor, respectively. During a monitored execution, the execution

information of the monitored program such as the addresses of accessed memory, up-

dated values of registers, and branch direction are collected by a dedicated hardware

circuit, referred to as extraction logic in this dissertation. The extraction logic for-

wards every piece of collected information to the monitor on another core in real time

through a software queue implemented in the shared memory. The monitor obtains

the forwarded information from the queue and uses it to track the progress of the

4

monitored execution and to check against security or reliability rules derived from the

monitoring requirements. From the perspective of the shared memory, the monitored

program and its monitor are the producer and consumers of the software queue. In

this dissertation, the queue is referred to as the communication queue.

To make a multi-core based dynamic program monitoring system flexible, hard-

ware support must be able to supply information needed by a large spectrum of

monitoring requirements in real time. This issue is addressed by all research efforts

on multi-core based program monitoring including ours [34, 38, 54].

The performance overhead in multi-core-based monitoring systems is caused by

two types of stall in the monitored program. First, when the queue becomes full,

the monitored program must stall to prevent information in the queue from being

overwritten. Secondly, before doing a system call, the monitored program must stall

to make sure all queue entries are verified by the monitor. This stall guarantees that

the OS kernel is adequately protected by the monitor. In most heavy-load monitoring

activities, the first type of stalls occurs far more frequently than the other, and thus

is the predominant cause of performance overhead.

The research reported by this dissertation also diverges from other research pro-

posals for multi-core-based program monitoring [34, 38] in its approach to reducing

performance overhead caused by frequent queue stalls. While other proposals resort

to introducing specialized hardware support to reduce the performance overhead, this

dissertation proposes a novel monitor model that reduces communication between the

monitored program and the monitor to improve performance. Furthermore, this dis-

sertation reports our efforts on leveraging the emerging parallel architecture General

Purpose Graphics Processing Units(GPGPU) to improve the performance of dynamic

program monitoring.

5

1.3 Major Research Efforts and Results in the Dis-

sertation

The goal of this dissertation is to present following research efforts and results:

• The proposal of a generic hardware support that enables efficient and flexible

dynamic program monitoring on multi-core platforms.

• The proposal of an efficient multi-core based monitor model: the distill-based

monitor model, and the compiler support that implements and optimizes it.

• The proposal of using General Purpose Graphical Processing Units(GPGPU)

to parallelize dynamic program monitoring, and the software framework and

optimization techniques that implements the proposed idea.

• A comprehensive performance evaluation of proposed technologies on a detailed

simulation platform. Results of the performance evaluation show that the pro-

posed technologies significantly reduce the performance overhead of dynamic

program monitoring for generic monitoring requirements.

1.4 Organization of the Manuscript

The rest of this dissertation is organized as follows. Chapter 2 presents the details

of the generic hardware support used to achieve flexible monitoring on multi-core

platforms. Chapter 3 presents two different types of monitor models, referred to as

the dispatch-based model and the distill-based model on multi-core based dynamic

program monitoring systems, emphasizing the more efficient of the two, the distill-

based model. Chapter 4 describes the novel compiler support that implements code

generation and the optimization of the distill-based model. Chapter 5 illustrates the

design and implementation of parallel dynamic program monitoring with GPGPU

6

architecture. Chapter 6 lists previous research related to the scope of this dissertation,

and Chapter 7 concludes the dissertation.

7

Chapter 2

Hardware Support for Dynamic

Program Monitoring on Multi-core

Platforms

This chapter presents the generic hardware support for the multi-core based dynamic

program monitoring in the research reported by this dissertation. This hardware

support is referred to as extraction logic. The chapter begins with an overview of

the extraction logic, illustrating its functionality and its two different work modes. It

then dedicates two sections to giving a detailed description of the hardware compo-

nents that implement the two modes of the extraction logic, demonstrating how they

accelerate dynamic program monitoring for a large spectrum of monitoring tasks.

2.1 Overview of Hardware Support

The dynamic monitoring system proposed in this dissertation uses both hardware

support and software support to implement multi-core-based monitoring. In this sys-

tem, the hardware support is referred to as extraction logic, which selectively extracts

8

information from the monitored process and sends it to the monitor running on a sep-

arate core. In the on-chip multi-core system that runs the dynamic monitoring, every

core is augmented with this extraction logic so that the monitored process is not

bounded to a specific core. For each core, its extraction logic is enabled only when it

runs a monitored process.

The key feature of extraction logic is its ability to selectively forward execution

information for the monitored process. In the context of this dissertation, the dynamic

execution information includes instruction-related values such as referred memory

addresses, updated destination register values, and instruction addresses(PC). These

values are available at the commit stage of each dynamic instruction. Extraction

logic obtains this information from the processor pipeline’s Reorder Buffer (ROB)

and Load-Store Queue(LSQ) where this information is stored when an instruction

commits.

In extraction logic, selecting dynamic execution information is essentially extract-

ing values generated when the instructions of interest are executed. For example, the

extraction logic can be instructed to extract referred memory addresses for a specified

read instruction and ignore all other instructions.

There are two different approaches to direct extraction logic what instructions

should have their information extracted: one is driven by a table with a list of in-

structions and the other by per-instruction flag bit, referred to as the forward bit that

indicates whether it is of interest to the monitor. To support the two approaches, ex-

traction logic is configured to work in two different modes. The following two sections

illustrate the components of extraction logic that support the two approaches.

9

Addr Flag

Extraction
Table

E
x

tr
ac

ti
o

n
 L

o
g

ic

I/D

match
update bit

(a) Inside the extraction logic: Table-Driven Mode.

Mismatch

Valid
Bit

...

Match/

Extraction Table

...

...

Address Flag

Type
Bits

Suspension

TAG
DIRECTION

Suspension Reg

I/D

(b) Extraction table

Figure 2.1: Extraction Logic in Table-driven Mode

10

2.2 Table-Driven Extraction Logic

The key component of extraction logic in the table-driven mode is the extraction table,

as shown in Figure 2.1(a). Inputs to the extraction table are the PC of the committing

instruction or the referred address for committing memory instruction, along with a

one-bit I/D flag. For a given input, if the I/D flag is set, it means that the rest of the

input is the instruction address of a committing instruction. Otherwise, the rest of the

input is the memory address of data referred by a committing memory instruction.

Outputs of the extraction table include a one-bit valid signal and a one-bit suspension

signal. The valid signal indicates whether the input address has a match on the table;

the suspension signal indicates whether the committing instruction corresponds to a

monitored event that should suspends the use of the extraction table. We describe

the concept of suspending the extraction table later in this section.

The structure of the extraction table is shown in Figure 2.1(b). The extraction

table consists of two components. The TAG component and the DIRECTION com-

ponent. the TAG component is used to specify whether an input address is of interest,

and the DIRECTION component stores and sends output bits for all instructions that

the TAG component found of interest to the monitor.

The TAG component is implemented with content-addressable-memory (CAM) [58].

Each entry of the CAM corresponds to an address (could be a PC or data address)

and a one-bit I/D flag. The DIRECTION component of the extraction table is imple-

mented as a small cache. Each word line of this cache is driven by the corresponding

output from the CAM. When an instruction commits, the PC of this instruction is

sent to the CAM and the I/D flag is set to 1; if a block in the CAM matches the

input, the corresponding word line is set and DIRECTION bits are retrieved from

the small cache. If the instruction is a memory instruction, it goes through the same

process except the input address to the table is the referred memory address and

11

the I/D flag is set to D. By checking the valid bit output from the DIRECTION

component, the extraction logic is able to determine whether to forward the result

of the committing instruction. To support simultaneous look-ups of the table, this

structure can be extended with multiple ports.

Since the size of the extraction table is limited and many monitor activities require

monitoring contiguous memory addresses, extraction logic leverages the property of

ternary CAM [58] to accommodate the address range. In a ternary CAM, a storage

cell represents “0”,“1” or “X” indicating “dont care” [58]. For example, to monitor

all access to the elements of an array located between 0x8000a000 and 0x8000afff,

only one entry with the address of 0x8000aXXX needs to be entered to the table.

For some segments of execution, the monitor software may require the extraction

logic to forward all instructions and thus bypass the extraction table. For example,

when the software is updating the extraction logic by loading a new set of interested

instruction or memory addresses, the extraction table becomes temporarily incon-

sistent and its use should be prohibited until the update is done. To implement

bypassing of the extraction table, Ex-Mon uses a one-bit suspension register to con-

trol the use of the extraction table, and the extraction table is bypassed when the

suspension register is set. The mechanism of updating the extraction table is the

following: when the monitoring system initializes the extraction logic, the suspension

register is initially clear. The monitor software then sets the suspension bit of ev-

ery extraction table entry that might trigger a table update. During the monitored

execution time, each time an extraction table entry is found to match the TAG com-

ponent, its suspension bit is copied by the DIRECTION component to the suspension

register. If a committing instruction matches an entry that has the suspension bit

as “1”, the extraction logic notifies the monitor software that the monitor should

start updating the extraction table. Moreover, from the next committing instruction,

the extraction logic bypasses the extraction table and forwards every instruction’s

12

PC and data memory address to the monitor until the monitor resets the suspension

register at the end of the update.

The table-driven mode is not efficient when there is a large number of instructions

that are of interest to the monitor. In that case, the monitoring system ends up

suspending the extraction table so often so that extraction table becomes less efficient.

To overcome this disadvantage, we have designed a forward bit mode of extraction

logic, as a supplementary or alternative way to select dynamic instruction information.

The following section introduces the hardware components used for that mode.

2.3 Forward-Bit-Based Extraction Logic

When the extraction logic operates in forward-bit-based mode, it assumes that the

binary of the monitored program is augmented with an annotation. The annotation

of the monitored program is an array of forward bits. Each bit corresponds to an

instruction of the monitored program, indicating whether the result generated by the

instruction should be extracted and forwarded. The extraction logic selects which

instructions’ results to forward based on their forward bit value.

Two hardware components of the extraction logic are essential to implement the

forward bit mode of extraction logic: (1) the fetching component that fetches the

forward bits from memory and matches these bits with the corresponding instructions;

and (2) the forwarding component that extracts and forwards the results of selected

instructions whose forward bits are set. The following two subsections introduce the

fetch component and the forward component in detail.

2.3.1 Fetching Component

The fetching component is integrated into the fetching stage of the CPU pipeline.

It fetches forward bits of monitored execution from user memory and copies forward

13

bit of each instruction into the pipeline at the time when the instruction is fetched

into the pipeline. Forward bits are generated by the monitoring compiler as a special

annotation section in the binary of the monitored program. Every instruction in the

code section of the binary of the monitored program has its own corresponding forward

bit in the annotation section, indicating whether the instruction should have its result

forwarded. When a monitored process is created, the content of the annotation

section is mapped into the memory space of the monitored process. As the monitored

process runs, the fetching component fetches the forward bit for each instruction that

is fetched into the pipeline. Forward bits fetched by the fetching logic are later read

by the forwarding component to decide whether the instruction should have its result

written into the communication queue on the shared memory upon its commitment.

The key to the fetching component’s reading forward bits is to calculate the ad-

dress of the forward bit for every fetched instruction. To achieve this, the fetching

component uses a special register, referred to as the Annotation Base Register (ABR),

to keep the physical address of the base of annotation section in the memory space

of the monitored process. ABR is initialized with that address when a monitored

process is created by the monitoring system, and synchronized with any change in

the annotation bases physical address.

When an instruction is fetched, its address is used as the input to a simple mapping

function implemented by the hardware to calculate the offset of its corresponding

forward bit. The fetching component adds this offset with its ABR value to compute

the address of the byte in the annotation that contains the forward bit. Several lower

bits of the instruction address are used to select the exact forward bit from the byte

of forward bits fetched from annotation .This mechanism of calculating the address

of meta-data is similar to that presented in MemTracker [32] with the exception that

we calculate the meta-data address for instructions rather than for memory locations.

Figure 2.2(a) shows the fetch logic that is implemented in SPARC architecture where

14

each instruction is 32-bit long. The example instruction has the offset 0x1a004 to the

start of the code section, and its forward bit is the bit 1 of the byte fetched from the

address from the physical address 0xf0000d00.

Some instructions executed by a monitored process, such as ones in dynamically

loaded library codes, do not have forward bits because they do not appear in the

monitored program’s binary. These instructions are either all ignored or all forwarded,

depending on monitoring requirements. If all of them ought to be forwarded, the

extraction logic has to switch to the table-driven mode because their instruction

body has to be sent to the monitor for interpretation. If they are to be ignored and

extraction logic is in the forward bit mode, thee fetching component always assumes

that their forward bits are all clear and does not calculate their address. The OS

loader is changed to notify the extraction logic when the library code is loaded and

unloaded.

Forward bit fetched by the fetching component are kept in the pipeline until

the corresponding instruction retires. In order to keep forward bits in the pipeline,

every entry of the reorder buffer (ROB) in the pipeline is augmented with a forward

bit flag. The fetching component copies the forward bit of a fetched instruction to

that flag when the instruction is inserted into ROB. For architectures such as X86

that translates an instruction into multiple micro operations in ROB, all the micro

operations have the same forward bit as the instruction’s forward bit.

2.3.2 Forwarding Component

The forwarding component is attached to the commit stage of a CPU pipeline. It

uses forward bits fetched by the fetching component to decide whether the result or

pertained memory address of an instruction should be forwarded to the monitoring

running on another core through the communication queue. The communication

queue is part of the shared memory between the monitor process and the monitored

15

process.

The key to writing the results or referred memory addresses of instructions to

the communication queue is calculating the address of the queue entry to write.

This is achieved by the forwarding component using two special registers: the queue

base register (QBR) and the rotating offset register (RQR). QBR keeps the base

physical address of the communication queue and RQR is a saturated counter that

indicates the offset of the current available entry to write and is incremented after

each forwarding. QBR and RQR are initialized at start-up time. The entries in

the communication queue are synchronized at the entry level using full/empty bits.

Figure 2.2(b) shows the implementation of the extraction logic in which each queue

entry is 8 bytes long.

16

MUX

mask

0x1a004

&0x1c 001
<<5

0xd00

Porcessor PipelineAnnotation Base Register

0xf000000

+

0xf000d00

Address of Forward Bit

Forward Bit: 1

Instruction Address

01100001
Cache

(a) Fetching Component: For each instruction, the address of its forward bit is calculated
using the Annotation-Base Register(ABR) and the offset of the instruction in the code
section. The instruction offset is calculated by masking the instruction address. In this
example, each instruction is 32 bits in size, and thus the offset of the forward bit is
calculated by left shifting the instruction offset by 5, and the highest 3 bits of the lowest 5
bits (32-bit long instruction is 4-byte aligned) of the offset are used to select the forward
bit from a byte of forward bits.

+<<3

+

Queue Base RegisterRotating Offset Register

Queue Item Address

Forward Bit
Processor Pipeline

Instruction Result

Memory System

(b) Forwarding Component: The forward bit associated with each instruction determines
whether the result of this instruction should be forwarded through the communication
queue. The address of the queue entry is calculated from the queue-base register (QBR)
and the rotating-offset register (RQR). RQR is incremented after each forwarding.

Figure 2.2: Extraction Logic in Forward Bit Mode

17

Chapter 3

Execution Models of

Multi-core-based Program Monitor

This chapter presents two main execution models for implementing the multi-core-

based dynamic program monitor: the dispatch-based model and the distill-based

model. The program monitors implemented using these two models are significantly

different from each other in the utilization of hardware support, the use of extracted

information, and the performance. We begin this chapter with an example to give

a straightforward illustration of dispatch-based and distill-based models, and show

how both of them differ from the instrumentation-based monitor that is widely used

on uniprocessor platforms. Then, we describe details of the basic execution model:

the dispatch-based model and the more advanced distill-based model. Finally, we

conclude the chapter by providing a qualitative analysis of the performance overhead

associated with the two models and reasons for why the distill-based model is more

efficient than the dispatch-based model.

18

foo(int∗ p, int y) {

int∗ q;

int i,j,k;

i = 0;

do {

q = p + i;

VERIFY LOAD(q);

k = *q;

j = k∗k + i;

VERIFY STORE(q);

∗q = j + y;

i++;

} while(i<1024)

}

(a) Instrumentation-based monitor:
calls to the verifying routines are
inserted in the original program.

do {

msg = receive();

switch(msg.type) {

...

case LOAD:

VERIFY LOAD(msg.body);

break;

case STORE:

VERIFY STORE(msg.body);

break;

default :

break;

}

} while(...)

(b) Dispatch-based monitor: dis-
patcher invokes the appropriate verifi-
cation routine based on the forwarded
record.

foo(int p, int y) {

int q;

i = 0;

do {

q = receive();

VERIFY LOAD(q);

VERIFY STORE(q);

i = receive();

} while(i<1024)

}

(c) Distill-based monitor (unop-
timized): the monitor executes a
distilled version of the program.

foo(int∗ p, int y) {

int∗ q;

p = receive();

i = 0;

do {

q = p + i;

VERIFY LOAD(q);

VERIFY STORE(q);

i++;

} while(i<1024)

}

(d) Distill-based monitor (optimized):
the monitor executes an optimized dis-
tilled version of the program.

Figure 3.1: Four different Implementations of the Memory-bug Detection Monitor.

3.1 Example of Monitor Models

In this section, we use an example to show the differences between the distill-based

monitor model, the dispatch-based monitor on multi-core, and the instrumentation-

based monitor on uniprocessor.

Figure 3.1(a) shows the sample program with instrumentation for monitoring.

The monitoring requirement is to examine all memory access through pointers to

ensure that there is no access to unallocated memory and uninitialized memory

for load operation. Therefore, instrumentation invokes monitoring functions VER-

IFY STORE and VERIFY LOAD immediately before the examined store and load.

19

Figure 3.1(b) shows the dispatch-based monitor for the sample program that

performs the same check as the instrumentation-based monitor does in Figure 3.1(a).

It features a dispatch routine that continuously reads the execution records forwarded

from the monitored code, and dispatches them to monitoring functions.

Figure 3.1(c) shows the distill-based monitor for the sample program that per-

forms the same monitoring work. The monitor comprises of invocations to the func-

tion receive that fetches the value of q and i and the monitoring functions VER-

IFY STORE and VERIFY LOAD with values of q as argument. The control flow

statement while(i<1024), upon which the invocations to monitoring functions de-

pend, is preserved.

In this example, there is a notable performance advantage of multi-core-based

monitor models over single-core-based instrumentation-based monitor. Multi-core-

based monitors, both dispatch-based and distill-based, can execute monitoring code

in parallel to the monitored execution. This fact indicates that there is no competition

with monitored execution for hardware resources in a core, such as the pipeline,

physical registers in the latter two monitors.

3.2 Dispatch-Based Monitor

A dispatch-based monitor consists of three essential elements: (i) a dispatching rou-

tine that retrieves and decodes messages and dispatches them to appropriate mon-

itoring functions that perform monitoring tasks; (ii) a set of monitoring functions;

and (iii) routines to initiate and update the extraction table so that hardware support

can capture events that are related to the monitored execution. In this section, we

describe these three elements in detail.

20

data declarations:
typedef struct message struct

{Type, Address, Value, I/D flag }
message struct msg;

List of events for initializing and

updating the extraction table.

message struct Msg List[];

algorithm DispatchRoutine:
InitializeExtractionTable(Msg List);

while (true)

msg = ReadQueue();

switch (msg.Type))

case ALLOC:

verify alloc(msg);

break;
case FREE:

verity free(msg);

break;
case LOAD:

verity load(msg);

break;
...

case UPDATE:

UpdateExtractionTable(msg);

break;
...

case EXIT:

monitor exit(msg);

break;
end switch

end while
end algorithm

(a) Dispatching routine.

verify free(message)
begin
if (AllocatedBlockLookup(message.Address))

AllocatedBlockRemove(message.Address);

return;
else
ReportIllegalFree(message);

end if
end

(b) a monitoring function to verify call to FREE.

Figure 3.2: Dispatch-based Monitor for Memory-bug Detection

21

3.2.1 Dispatching Routine

The dispatching routine is usually structured as a while loop whose body is mainly a

switch-case structure. Each iteration of the loop decodes a message fetched from the

communication queue, and processes it by dispatching it to the appropriate monitor-

ing function. Messages that are not relevant to monitoring purpose are dispatched to

the default case. When a special message EXIT is processed, that corresponds to the

termination of the monitored program, the loop will end. The algorithm that imple-

ments the dispatching routine for memory-bug-detection is shown in Figure 3.2(a).

In addition, Figure 3.2(b) shows an example of the monitoring function that checks

whether there is a double free bug. The details of the double free bug as one type of

memory bug can be found in [62, 63].

3.2.2 Monitoring Functions

Monitoring functions perform the actual monitoring tasks manually written by pro-

grammers or automatically generated by compiler according to the monitoring re-

quirements. Monitoring requirements can be specified in the format of mathematical

logic rules that unequivocally express the requirements an execution has to satisfy for

safety and reliability reasons. For example, in the task of memory-bug-detection, in

order to prevent memory leakage, we may have the following requirement statement:

an address passed as an argument to a free function call must be the return value of

a function of allocation. This statement can be formalized as a CTL(Computational

Tree Logic) [46, 47] rule as the following: AG(free(addr) → addr = alloc()). Here

A and G are operators of CTL-FV, indicating that the formula it follows must be

true on all possible execution paths of the program. addr is a free variable that can

be substituted by all applicable addresses. alloc() can represent any function with

any type of parameter that does memory allocation.

22

3.2.3 Initialization and Update Routines

There are two types of routines in a dispatch-based monitor that are in charge of

instructing the hardware support in the table-driven mode to extract information

that is relevant to the monitoring purposes. In this dissertation, we refer to these as

InitializeExtractionTable and UpdateExtractionTable, respectively. InitializeExtrac-

tionTable initializes the extraction table and fills it with addresses or address ranges

of PCs and data memory locations that are interested by monitor. UpdateExtrac-

tionTable is used to update the extraction table as described in Chapter 2.

0

2

4

6

8

10

12

14

communication

through shared L2

cache

zero-cost

communication

�ormalize Execution Time

0

2

4

6

8

10

12

14

communication

through shared L2

cache

zero-cost

communication

�ormalize Execution Time

Figure 3.3: Performance Comparison of Dispatch-based Dynamic Monitors

on Multi-core for Taint Propagation:left bar represents performance with com-
munication through a shared L2 cache, right bars represent performance of zero-cost
communication

3.3 Distill-based Monitor

This section presents a different monitor model, referred to as the distill model, that

takes full advantage of the extraction logic, described in Chapter 2. Monitors in the

distill model, referred to as distill-based monitors, achieve significant performance

23

improvements, compared to the dispatch-based monitors.

We start this section with an brief introduction to the key idea of the distill-based

monitor model, elucidating how it accelerates dynamic program monitoring. After

that we demonstrate how to generate distill-based monitor from monitored code.

3.3.1 Key Idea of Distill-based Monitor

The key idea of the distill-based monitor model is that the compiler could generate

monitor code targeting individual monitored program. This way, the monitor is cus-

tomized to the monitored program by the monitoring compiler as it has the knowledge

of what values are needed to conduct the monitoring activity during the execution

of the monitored code. With this knowledge, the monitoring system can instruct the

extraction logic to forward only the values that are relevant to monitoring purpose.

As a result, the distill-based monitor model is able to reduce communication between

the monitored and monitoring cores, and in turn improve performance significantly

for heavy load monitoring tasks that require a large quantity of information.

24

Application Source

Compiler

P P P P

Shared Memory

Monitor Specifications

Monitor Generator

Distill−based Monitor

Hardware Support
for event extraction
and forwarding

C
o

m
p

il
e
 T

im
e

R
u

n
 T

im
e

Forward Bits

Application Binary

Figure 3.4: Overview of the Distill-based Monitoring System: the shaded
boxes represent monitor related components. From user-defined monitor specifica-
tions, the monitor generator creates the distill-based monitor. The monitored appli-
cation is annotated with forward bits, that are interpreted by the underlying hardware
support to forward results of selected instructions.

3.3.2 Generating Distill-based Monitor

The distill-based monitor is generated by distilling the monitored code. In this sec-

tion, we focus on how the monitor code generator generates the distill-based monitor

without optimization, and we introduce the optimization in the next section.

The workflow of generating the distill-based monitor is illustrated in Figure 3.4.

The input to the monitor code generator consists of two parts: the original source code

of the monitored program and the monitoring specifications. These specifications can

be expressed as annotations to the original monitored program marking where and

what instrumentation of the monitoring function would occur if an instrumentation-

based monitor was implemented. The output of the monitor code generator is the

distill-based monitor and an annotation section in the monitored code’s binary where

25

each instruction has a bit indicating whether the result of the instruction needs for-

warding.

The monitor code generator generates code at the procedure level. For each proce-

dure, it identifies invocations to the monitoring functions and all branch instructions

on which the invocations depend. For each argument used in the invocation of mon-

itoring functions, if its value cannot be known at compilation time, a fetch from the

communication queue operation is inserted as an invocation to receive() function in

the distill-based monitor. The code generator also marks each instruction that gen-

erates a value that should be fetched, indicating that the result of the instruction

should be forwarded during the monitored execution. Similarly, for each value used

to decide the direction of an identified branch, a receive() is generated and the in-

struction generating the value is marked, as well. Finally, the code is distilled by

removing instructions other than the identified branch instructions, the invocations

to monitoring functions and the receive() operations. This distilled code is the moni-

tor used in the distill-based monitoring system. The marks that are generated by the

monitor code generator form an annotation section and is inserted into the binary of

monitored program.

The distill-base monitor generated by the code generator (without optimization)

consists of two types of operations: invocations of the monitoring functions and in-

vocations of the communication function, a.k.a receive() function. The monitoring

functions perform monitoring operations and the communication function fetches

values for monitoring functions from the communication queue. In addition, a value

returned by the communication function could used to decide the outcome of a branch

instruction that controls the invocation of monitoring functions.

26

3.3.2.1 Monitoring Functions

In this chapter, for the purpose of performance evaluation, we report the implemen-

tation of monitoring functions for two intensive monitoring tasks: taint-propagation

and memory-bug-detection.

The details of taint-propagation can be found in [64, 65]. In our implementation,

the distill-based monitor maintains a taint status bit for each byte of the monitored

program’s user memory space, as well as a taint status bit for each architectural

register used in the program. These taint status bits are kept in the monitor’s mem-

ory space as a shadow memory of the memory space of the monitored execution. A

monitored execution may invoke system calls such as read or recv that writes to user

memory with data from untrustworthy sources. When such invocations occur, the

monitor invokes the Taint Init function to set the corresponding taint status bits in

the shadow memory. For each dynamic instruction in the monitored execution, the

monitor executes a corresponding status propagation operation to propagate taint

status around shadow locations accordingly. Taint status bits of indirect jump tar-

gets, format strings, and system call arguments are checked by the monitor to detect

potential security breaches. Overall, the monitor needs to know all the referred data

memory addresses and the directions of all conditional branches in the monitored

program to conduct correct verification without false negative and false positive.

It is noteworthy that using the distill-based taint-propagation monitor, a large

amount of monitoring function invocations do not need to be forwarded because

their parameters are register numbers that are known at compile time. For exam-

ple, arithmetic operations such as Add$R1, $R2, can be translated into corresponding

taint-propagation monitoring functions such as TaintRegProp(1, 2), that propagates

the taint bit of register R1 to the taint bit of register R2. Since the parameters are the

register numbers known at compilation time, this type of monitoring function requires

27

no communication. In contrast, a dispatch-based monitor has to generate communi-

cation for these operations. This optimization alone gives a significant performance

advantage to the distill-based taint-propagation monitor since a large portion of taint

propagation are between registers.

We also implemented monitoring functions for memory-bug-detection. The mon-

itoring functions are similar to those used in the MemTracker [32], except that the

state bits in our implementation are maintained at word granularity rather than bit

granularity. Moreover, when there is a read to uninitialized data, our monitoring func-

tion issues a warning immediately rather than wait until the value read is actually

used.

The distill-based program monitoring system enables users to apply their knowl-

edge about the code to make monitors even more efficient. For the example program

in Figure 3.1(c), if the user knows in advance that pointer q points to an area

whose size is always greater than the size of 512 integers, then half of the monitoring

activities and their correspondent communication can just be eliminated.

3.4 A Qualitative Analysis of Performance Over-

head

In this section, we start with a qualitative analysis of performance overhead associ-

ated with the dispatch-based model, pointing out sources of the performance over-

head. Then we show how the distill-based monitor eliminates some of the sources of

performance overhead and the distill-based model. The result of the analysis indi-

cates that the performance overhead of the distill-based model should be lower than

the dispatch-based model. This conclusion will be vindicated by the experimental

results presented in Chapter 4.

28

3.4.1 Analysis of Performance Overhead of Distill-based Mon-

itor

Performance overhead caused by a dispatch-based monitor is lower than that of

instrumentation-based monitor, because a separate processor core is used and thus the

monitor runs in parallel to the monitored execution. However, this overhead is still

fairly significant. The causes of this high performance overhead are the unnecessary

communication and dispatching related to irrelevant messages. In a dispatch-based

monitoring system, the monitored process may forward data that are irrelevant by the

monitor. In the sample program in Figure 3.1, if we are interested only in verifying

memory operations by the pointer, the monitor does not need execution results from

other types of operations, thus communication for these results is unnecessary. It is

true that a dispatch-based monitor can use the extraction table of the hardware sup-

port to select data to be forwarded, but at a cost of possibly frequent updating of the

extraction. The more frequent the extraction table is updated, the more the irrelevant

information to be forwarded because the extraction logic forwards everything during

the period of update. Furthermore, in the dispatch-based monitor model, the type of

information of the message has to be communicated, which is solely for dispatching

purpose and thus can be considered unnecessary.

Communication is the bottleneck of performance. Figure 3.3 presents the results

of a study on the impact of communication on the performance for multi-core-based

program monitoring using dispatch-based monitors. Here monitors perform taint

propagation [64, 65] and memory-bug-detection [66, 62, 66, 67] for SPEC2006INT

[68] benchmarks, respectively. The bars represent the execution time of monitors

normalized to that of the benchmarks without monitoring. The communication queue

between cores is implemented in shared memory and resides in the shared L2 cache

most of time during monitoring. We also assume that each core has a private L1

29

data cache, and therefore communication of a value may incur a coherence miss that

requires a fetch of the data from the shared L2 cache. This causes L2 cache access

latency. Using the above assumptions, the slowdown to the benchmarks with the

two-process dispatch-based monitoring is represented by the left bars. The right bars

represent the slowdown of the dispatch-based monitoring in an ideal situation where

the communication is latency-free. The figure suggests that a significant portion of

performance overhead is caused by communication.

In addition to the communication cost, dispatching a message consumes a certain

number of CPU cycles of the monitor core. It involves decoding a message to get

its type, extracting the value from the message, and jumping to the place where the

appropriate monitoring is invoked.

3.4.2 How Distill-based Monitor Reduces Performance Over-

head

Figure 3.1(c) demonstrates, with an example, how the distill-based monitor reduces

communication for dynamic program monitoring. The sample program communicates

only values of q and i. It leverages the forward-bit mode of the hardware support

extraction logic to selectively forward values. Communication of values that are not

relevant to the monitoring purpose is eliminated in the distill-based monitor. Since

most, if not all, monitoring tasks need only a portion of all values generated by the

monitored execution, this reduction is significant.

The distill-based monitor is optimized by replacing the communication operation

with less expensive computation operations on the monitor side. For example, in

Figure 3.1(c), the communication of data value q and i can be replaced by local

computations of simple integer add operations. If the monitor compiler initiates only

the communication of the value of p, then all subsequent values of q and i can be

30

computed locally in the monitor code. Therefore, in Figure 3.1(d) the number of

invocations to the communication function receive() for the while loop is reduced

from 2048 to 1. As communication is a notable source of performance overhead, this

optimization leads to an even greater performance overhead. This optimization of

distill-based monitor is the main focus of the next chapter, Chapter 4.

31

Chapter 4

Optimization of Distill-based

Monitor

The distill-based monitor can be optimized by eliminating the communication of

values that can be computed by the monitor locally. In this chapter, we present

details of algorithms that implement this optimization of reducing communication by

computing values locally. The chapter starts with an introduction to general ideas

and concepts about the optimization, then we give an overview of the algorithm

that implements the optimization. Following that, we describe the different kinds

of information needed by the algorithm and the ways in which they are collected.

After that, we describe the details of the algorithm along with discussion of the

optimality and complexity of the algorithm. Finally, we present detailed results of

the performance evaluation of the optimized distill-based monitor, comparing it with

the basic distill-based monitor, the dispatch-based monitor and the instrumentation-

based monitor. To illustrate the optimization in a more lucid way, we use a sample

program shown in Figure 4.1 that is slightly more sophisticated than the example

shown in 3.1. The sample program with instrumentation, the unoptimized distill-

based monitor, and optimized version of the distill-based monitor are shown in Figure

32

foo(int∗ a, int y) {

int ∗p;

int i=0,j=0;

do {

p = a + i;

VERIFY STORE(p);

*p = i;

j = j + i;

if (i==y) {

p = a + j;

VERIFY STORE(p);

*p = 0;

}

else {

j = y + i;

p = a + j;

VERIFY STORE(p);

*p = y;

}

i++;

} while (i<1024)

}

(a) Sample monitored code: original
code with instrumentation

foo(int∗ a, int y) {

int ∗p;

int i=0,j=0,;

y = receive();

do {

p = receive();

VERIFY STORE(p);

if (i==y) {

p = receive();

VERIFY STORE(p);

}

else {

p = receive();

VERIFY STORE(p);

}

i = receive();

} while (i<1024)

}

(b) Unoptimized monitoring code

foo(int∗ a, int y) {

int ∗p;

int i=0,j=0;

a = receive();

y = receive();

do {

p = a + i;

VERIFY STORE(p);

if (i==y) {

p = receive();

VERIFY STORE(p);

}

else {

j = y + i;

p = a + j;

VERIFY STORE(p);

}

i++;

} while (i<1024)

}

(c) Optimized monitoring code:
communication are replaced by lo-
cal computations

Figure 4.1: Code Example of Using Compiler to Reduce Communication

4.1(a), 4.1(b), and 4.1(c) ,respectively.

4.1 General Ideas and Concepts of the Optimiza-

tion

Essentially, the optimization of the distill-based monitor in the context of this thesis

reduces overall communication volume between cores by replacing the communica-

tion of some values required by monitoring purposes with local computation on the

monitor side. In this section, we introduce ideas and concepts that lead to a better

33

Exit

def_3: p = a + i

def_4: j = j + i

y

def_1:

def_2:

a

Entry

def_5: p = a + j
def_6: j = y + i

def_7: p = a + j

B5

def_8: i++

IN[B5] = {def_1,def_2,def_5,def_6,def_7,def_8}

B2

B1

OUT[B1] = {def_1,def_2}

IN[B2] = {def_1,def_2,def_5,def_6,def_7,def_8}

OUT[B2] = {def_1,def_2,def_3,def_4,def_8}

OUT[B3] = {def_1,def_2,def_4,def_5,def_8}

IN[B4] = {def_1,def_2,def_3,def_4,def_8}

OUT[B5] = {def_1,def_2,def_5,def_6,def_7,def_8}

B3

OUT[B4] = {def_1,def_2,def_6,def_7,def_8}

B4

IN[B3] = {def_1,def_2,def_3,def_4,def_8}

Figure 4.2: Control Flow Graph of the Sample Program and Results of Reaching
Definition DFA

understanding of the optimization.

We start with studying the correctness requirement and the effectiveness require-

ment of the optimization. In the context of dynamic program monitoring, the cor-

rectness of the optimization means that the optimized distill-based monitor must

perform exactly the same monitoring operations in exactly the same order as the

monitor without optimization. Thus, if a value is communicated in the unoptimized

monitor, it must be either computed or communicated in its corresponding optimized

monitor. In a program, values are generated at points of variable definitions. In this

section, we use BasicCommu set to denote the set of variable definitions whose values

are communicated in the unoptimized distill-based monitor. For the sample program

34

in Figure 4.1 with its control flow graph shown in Figure 4.2, the BasicCommu set

is {def 2, def 3, def 5, def 7, def 8}.

Making the optimization effective means that optimized monitors must outper-

form their corresponding unoptimized monitors. To guarantee this, two constraints

must be met: first, computations introduced in the optimized monitor must com-

pute only those variable definitions that one or more variable definitions in the

BasicCommu set are directly or indirectly dependent. For example, in Figure 4.2,

def 3 and def 8 are in BasicCommu and are dependents of def 8, therefore, com-

puting def 8 on the monitor side may eliminate communication for def 3 and def 8.

In this dissertation, we use OptCompute set to denote the set of these computed

definitions. Second, the cost of computing values locally must not exceed the cost

of communicating them. This is guaranteed by comparing the cost of computations

involved in deducing those values against the cost of communicating them. It is wor-

thy pointing out that the optimization may replace a communicated value with local

computations and communication of a value that is not defined in the BasicCommu

set. This may seem like a performance degradation at the first glance. It is possible

for the additional communication to achieve better performance by eliminating other

communications. In this dissertation, we refer to the set of the communicated variable

definitions in an optimized monitor as the OptCommu set.

Thus, in the context of this dissertation, to optimize the distill-based monitor is

to find the OptCompute set and the the OptCommu set that minimize the overall

performance overhead associated with the monitor. In the example shown in Figure

4.2, these two sets are:

OptCompute = {def 3, def 6, def 7, def 8}

OptCommu = {def 1, def 2, def 5}

35

4.2 Algorithm Overview

The algorithm that implements the optimization is based on the data flow analysis

(DFA) framework. Inputs of the algorithm are the control flow graph (CFG) of

the monitored program and the BasicCommu set of the monitored program. The

algorithm traverses CFG, visiting each basic block to decide the OptCompute and

OptCommu sets for the entire CFG. While visiting each basic block, the algorithm

examines every variable definition in the block, decides whether it should go into the

OptCompute, the OptCommu set, or be ignored if it does not contribute to any value

needed by monitoring function.

The algorithm makes decisions for all variable definitions in a basic block cor-

porately rather than individually. It actually evaluates the cost and the benefit of

combinations of possible choices for each variable definitions and choose the combina-

tion with the highest overall benefit as its decision for the basic block. In the context

of the algorithm, the benefit and the cost of the decision are measured in the exe-

cution time of the monitor. Since the optimization reduces monitor execution time

solely through reducing communication, a decision’s benefit is estimated by counting

the number of communications that can be eliminated by the decision. The cost is

the cost of additional computations and communications the optimization introduces

into the monitor.

Through the DFA framework, the decision made for a basic block will be propa-

gated to successor basic blocks to help them make decisions. All the variable defini-

tions on CFG marked for communication form the OptCommu set, and those marked

for computation form the OptCompute set. For all definitions in the OptCommu set,

the compiler generates communication functions in the optimized monitor and sets

the forward bit of the corresponding instructions in the monitored program. Compu-

tation instructions that generate definitions in the OptCompute are preserved in the

36

distill-based monitor program, and all other instructions are removed.

4.3 Information Needed by the Algorithm

The key to the algorithm is accurately estimating benefit and cost of decision combi-

nations for basic blocks. In this section, we describe information that is necessary to

the estimation and present the algorithm that collects it.

There are three types of information needed for accurate cost-benefit estimation.

First, the algorithm needs the reaching definition information. Reaching definition

information shows at any given program point [76], for any variable, which defini-

tion may reach there. Second, to estimate a decision’s benefit, the algorithm needs

to identify a subset of BasicCommu. This subset includes all variable definitions

whose communication might be eliminated for better monitor performance . If the

decision is at a basic block n, using v to represent one of the available definitions,

this subset is called the Basic Dependent Set of v at the exit of n, or BDS(n, v) in

short. Lastly, the final type of information is the estimation of the computation cost

associated with a decision, or in other words, the information of what computation

operations are indispensable to the elimination of communication of every definition

in BasicCommu. This type of information is obtained by maintaining a computation

stack for each definition in BasicCommu.

We have implemented three different Data Flow Analysis (DFA) passes to collect

these three types of information, as discussed below.

4.3.1 Reaching Definition

The first pass obtains reaching definition information using the classic Reaching Def-

initions DFA(Data Flow Analysis) [77]. The result of Reaching Definitions DFA

gives a picture of which definitions may reach any given program point in the CFG.

37

def_3: p = a + i

def_4: j = j + i

y

def_1:

def_2:

a

Entry

def_6: j = y + i

def_7: p = a + j

def_5: p = a + j

def_8: i++

Exit

B2

B1

B3 B4

B5

BDS(def_2) = {def_2.def_7}

BDS(def_1) = {def_3,def_5,def_7}

BDS(def_4) = {def_5}

BDS(def_3) = {def_3}

BDS(def_5) = {def_5}

BDS(def_6) = {def_6}

BDS(def_7) = {def_7}

BDS(def_8) = {def_3,def_5,def_7}

Figure 4.3: Results of Basic Dependence Set DFA Pass for the Sample Program

In the research reported in this dissertation, we store only the information per basic

block, that is the set of definitions that may reach to the entry and the exit of a

basic block. This saves storage space usage without losing accuracy because the set

of reaching definitions at any program point within a basic block can be computed

by the reaching definition set at the block entry. The result of reaching definitions

DFA for the sample program in Figure 4.1 is shown in Figure 4.2.

Reaching definition DFA can serve as the basic means of computing use-def and

def-use chain information. This information depicts the dependence relations among

variable definitions on CFG, and which are used by other DFA passes we introduce

below.

38

4.3.2 Basic Dependence Set

After the reaching definition DFA pass, the compiler computes the Basic Dependent

Set (BDS) for all reaching definitions using a backward DFA analysis. The purpose

of the BDS pass is to collect basic information about the potential benefit of making

a variable definition available when making decisions for basic blocks of a CFG.

The domain of the BDS DFA is the power set of the BasicCommu set. The

following dataflow equation computes BDS(n, v) at the exit of the basic block n for

variable v:

BDS(n, v) =



















∅; if n = exit

∏

m∈succ(n)

transfer(m, v, BDS(m, v)); otherwise

The meet operator
∏

is set union. Before the Basic Dependent Set Analysis

begins, all nodes are initialized to ⊥ , which represents the empty set. The transfer

function is defined as the following:

• If v ∈ Gen(m), then transfer(m, v, BDS(m, v)) = ∅.

• If v /∈ Reach(m), then transfer(m, v, BDS(m, v)) = ∅.

• If a definition w in Gen(m) depends on v, then every element of BDS(m,w) is

added into transfer(m, v, BDS(m, v)).

• If a definition v is an argument to a monitoring function call in node m, v is

added into transfer(m, v, BDS(m, v))

Here Gen(m) is the set of definitions generated in the basic blockm and Reach(m)

is the set of definitions reaching to the entry of m. For the sample program, the BDS

computed at the exit of each basic block is shown in 4.3. Due to space limits, the

figure shows only the BDS of the definitions generated in a basic block, though in

the implementation we maintain BDS for all definitions reaching to the entry and the

39

def_3: p = a + i

def_4: j = j + i

y

def_1:

def_2:

a

Entry

def_6: j = y + i

def_7: p = a + j

def_8: i++

Exit

def_5: p = a + j

B2

B1

B4

B5

Compu_Stack(def_2) = {}

Compu_Stack(def_3) = {def_1,def_8}

Compu_Stack(def_8) = {}

Compu_Stack(def_1) = {}

B3

Compu_Stack(def_6) = {def_2,def_8}

Compu_Stack(def_7) = {def_1,def_2,def_6,def_8}

Compu_Stack(def_4) = {def_4,def_6,def_8}

Compu_Stack(def_5) = {def_1,def_2,def_4,def_6,def_8}

Figure 4.4: Results of Computation Stack DFA Pass for the Sample Program

exit of a basic block.

4.3.3 Computation Stack

A decision for a basic block may choose to compute a variable definition in the opti-

mized monitor. In a program, to compute the value of a variable from a given program

point, usually there is a sequence of interdependent computations are necessary. This

sequence of computations can be best formatted as a stack of computations, referred

to as the computation stack in this dissertation. Therefore, to know the cost of com-

puting a variable definition from a program point, a DFA pass is needed to compute

the computation stack for the variable definition at that program point.

The computation stack for variable definition is originally defined in [69]. This

40

DFA pass is a backward DFA that builds a computation stack at every basic block for

every definition in BasicCommu that reaches the basic block. The implementation

of computation stack DFA is similar that presented in [70], where readers can find

details of the algorithm. The result of computation stack DFA is that at any given

basic block n, for each definition u in BasicCommu set, this DFA pass builds a stack

Stack(n, u) that records all the computations needed to get the value of u from the

exit of the basic block n. For the sample program, the result of this DFA pass is

shown in Figure 4.4.

4.4 Select OptCommu and OptCompute Set: De-

tails of Algorithm

After running all three information-collecting DFA passes, all the necessary informa-

tion that the algorithm needs is ready. The compiler then runs the algorithm to find

the OptCommu set and OptCompu set. The sets contain values to be communicated

and computed in the optimized monitor for the given CFG. In this section, we present

details of the algorithm and discuss its complexity.

In this section we first illustrate the whole algorithm using the concepts of DFA as

it is a DFA pass. Then, we describe the core part of the algorithm: the estimation of

the benefit and cost of a decision for a basic block. Finally, we discuss the complexity

and practical use of the algorithm.

4.4.1 Select OptCommu and OptCompute Set: Forward DFA

Pass

The OptCommu/OptCompute problem is solved as a forward dataflow problem,

where the solution at each node corresponds the optimal communication/computation

41

begin algorithm
OptCommuout[ENTRY] = ∅;
OptComputeout[ENTRY] = ∅;
foreach (basic block B other than ENTRY)

OptCommuout[ENTRY] = ∅;
OptComputeout[ENTRY] = ∅;

end foreach
while (changes to any OutCommu or OutCompute set occur)

foreach (basic block other than ENTRY)

OptCommuin[B] =
⋃

P∈Bpred
OptCommuout(P);

OptComputein[B] =
⋃

P∈Bpred
OptComputeout(P);

(OptCommuout[B], OptComputeout[B]) = transfer(OptCommuin[B], OptComputein[B]);
end foreach

end while
end algorithm

(a) Select OptCommu and OptCompute: Forward DFA

data declarations:
typedef struct message struct

{Type, Address, Value, I/D flag }
message struct msg;

List of events for initializing and

updating the extraction table.

message struct Msg List[];

transferB(OptCommuin[B],OptComputein[B])
begin
DecisionCandidateList = AllV alidCombination(OptCommuin[B],OptComputein[B]);
CurrentBest = DecisionCandidateList.first;

CurrentNetBenefit = BenefitCurrentBest - CostCurrentBest;

foreach candi on DecisionCandidateList;

NetBenefitcandi = Benefitcandi - Costcandi;

if (NetBenefitcandi > CurrentNetBenefit)

CurrentBest = candi;

CurrentNetBenefit = NetBenefitcandi;

end if
end foreach
OptCommuout[B] = OptCommuin[B]

⋃

(candi.commu set)

OptComputeout[B] = OptComputein[B]
⋃

(candi.compute set)

end

(b) Transfer function of the algorithm.

Figure 4.5: Distill-based Monitor Optimization Algorithm

42

decision that minimizes the performance overhead of the monitor. This optimal deci-

sion as well as decisions that are propagated to B from its predecessors, are then prop-

agated to successors of B in the format of two sets of definitions: OptCommuout(B)

and OptComputeout(B). OptCommuout(B) is the set of variable definitions decided

to be communicated before the exit of B. OptComputeout(B) is the set of defini-

tions decided to be computed before the exit of B. Correspondingly, the dataflow

values at the entry of B are denoted as OptCommuin(B) and OptComputein(B).

The meet operator of the DFA is set union which means that OptCommuin(B) and

OptComputein(B) should consider all the definitions reaching to B that are commu-

nicated or computed in previously visited basic blocks. A more formal description

of the algorithm in the form of standard DFA iterative algorithm can be found in

Figure 4.5(a).

As Figure 4.5(a) shows, it is the transfer function that decides which variable

definitions in the block should be included in the OptCompute set, and what should

be included in the OptCommu set. To achieve this, the transfer function examines

every variable definition in the block. For each variable definition, there are at most

three choices: it can be communicated, it can be computed if the correspondent

instruction has all the source operands available, or it can simply be ignored as long

as it is not in BasicCommu. The transfer function enumerates and evaluates the

benefit and cost of all valid combinations of choices for variable definitions generated

in the basic block. A valid combination is referred to as a decision candidates for

the basic block. A formal description of the transfer function can be found in Figure

4.5(b).

4.4.2 Estimation of Benefit and Cost

The key for making the optimal decision for a basic block in this algorithm is to

estimate the net benefit of each decision candidate. The net benefit is calculated

43

by subtracting the cost from the benefit that are measured in CPU cycles. Specif-

ically, benefit is measured as the potentially saved CPU cycles from the reduction

of communication, and cost as the additional cycles spent on the introduced local

computations and extra communication. In this section, we describe details of how

the benefit and the cost for a decision candidate are calculated, respectively.

The benefit of a decision candidate is the product of the number of eliminated

invocations to communication functions and the average latency of a communication.

The average latency of communication in the monitoring system reported in this dis-

sertation is estimated as the latency to serve a L2 cache request. This is because

reading a value from the communication queue incurs a L1 cache coherence miss and

is served from L2 Cache. The number of communications eliminated by the decision

is the sum of the frequency of the variable definitions whose communication can be

eliminated by the decision. The variable definitions whose communication is elimi-

nated by a decision constitutes a subset of BasicCommu. The algorithm computes

this subset with the following steps. First, the algorithm computes the union set of

the BDSs of all the reaching definitions that are decided to be computed or commu-

nicated by the decision. Next, the algorithm computes another union set of all the

BDSs of all the definitions that are not made available by the decision. The relative

complement set of the latter computed set with respect to the former computed set

is the set of definitions whose communications can be eliminated by the decision.

The frequency of variable definitions can be obtained from either static analysis or

dynamic profiling information, which is provided by most modern compilers.

The cost of a decision candidate is estimated as the total number of CPU cycles

spent on the local computations and extra communications introduced by the deci-

sion. Extra communications are communications of those variable definitions that

are not included in the BasicCommu set. In other words, these communications are

introduced to potentially improve overall performance better. Therefore, the extra

44

communication cost can be calculated by simply estimating the cycles spent on the

communication of the definitions generated by the decision but not included in the

BasicCommu set. To compute the cost of introduced local computations, we use

the results from the Computation Stack DFA pass. For all BasicCommu definitions

whose communication maybe eliminated by the decision, the algorithm counts all the

operations in their computation stacks in the basic block. The total cycles spent on

these operations are the cost of the local computations introduced. The sum of the

cost of extra communications and the cost of computations is the cost of the deci-

sion candidate. While calculating the cost of a decision candidate, the frequency of

variable definitions is considered as it is in calculating the benefit.

The transfer function then tries to finds the best decision for a basic block by

comparing the estimated benefit and cost of all decision candidates. The candidate

that has the greatest net benefit is considered the best decision for the basic block.

The decision indicates which among the variable definitions that are generated in

the basic block should go into OptCompute and which should go into OptCommu.

When the DFA converges, the union set of OptCompute sets of all basic blocks is the

OptCompute for the CFG, and the union set of OptCommu sets of all basic blocks

is the OptCompute for the CFG.

For the example code shown in Figure 4.1, the result of the optimization DFA

pass is shown in Figure 4.6. OptCommuout and OptComputeout sets of each basic

block in the figure show only decisions of each basic block, and thus is only the subset

of real OptCommuout and OptComputeout sets used in the algorithm. We illustrate

subsets only because the real OptCommuout and OptComputeout sets for most basic

blocks after the final iteration of this DFA pass are all the same and thus not clear for

the purpose of illustration. In addition, BDS info is added to help readers understand

the benefit and cost estimation of decisions.

As Figure 4.6 demonstrates, the final decision made by the optimization pass for

45

def_3: p = a + i

def_4: j = j + i

y

def_1:

def_2:

a

Entry

def_6: j = y + i

def_7: p = a + j

def_5: p = a + j

def_8: i++

Exit

B2

B1

B3 B4

B5

OptCOMMU_out = {}

OptCOMPUTE_out = {def_8}

OptCOMMU_out = {}
OptCOMPUTE_out = {def_6,def_7}

OptCOMMU_out = {def1,def_2}

BDS(def_2) = {def_2.def_7}

OptCOMPUTE_out = {}

BDS(def_1) = {def_3,def_5,def_7}

OptCOMPUTE_out = {def_3}

OptCOMMU_out = {}

BDS(def_4) = {def_5}

BDS(def_3) = {def_3}

OptCOMPUTE_out = {}

OptCOMMU_out = {def_5}

BDS(def_5) = {def_5}

BDS(def_6) = {def_7}

BDS(def_7) = {def_7}

BDS(def_8) = {def_3,def_5,def_7,def_8}

Figure 4.6: Results of Optimization DFA Pass: results of the forward DFA pass
that selects OptCommu and OptCompute Set, which implements the optimization
algorithm. For the purpose of clear presentation, the figure includes only results at
end of every basic block, and result of each basic block shows only decisions made for
definitions of that basic block. Results of BDS are also included to show the benefit
of the decision. The Out-OptCommu set and Out-OptCompute set of a basic block
B used in the DFA transfer function should include results shown in the figure and
the results that B inherits from its predecessors.

the entire CFG is the followingOptCompute = {def 3, def 6, def 7, def 8}OptCommu =

{def 1, def 2, def 5} It is noteworthy that def 5 is selected to be communicated be-

cause it is in the infrequent basic block B3, and that to compute it, computation

def 4 has to be made available, and def 4 is in the frequent basic block B2. Thus,

the optimization algorithm finds it more beneficial to communicate def 5, and thus

ignore def 4. This example shows the role that frequency plays in the algorithm.

46

4.5 Discussion of Complexity of the Optimization

The optimization essentially consists of four DFA passes: reaching definition, BDS,

computation stack, and the OptCommu and OptCompute Set Selection algorithm.

Therefore, to know the complexity of the optimization, we need to analyze the time

and space complexity of each individual DFA pass. In this section, we analyze the

time and space complexity of every DFA pass using big O notation.

Throughout this section, we use d as the total number of variable definitions in

the CFG, n as the number of basic blocks (nodes) in the CFG, and m as the number

of variable definitions in the BasicCommu set.

4.5.1 Complexity of Information Collection DFA Passes

The worst-case space complexity of reaching definition DFA is O(dn) in big O no-

tation, as each basic block may store up to d definitions in its In and Out sets. In

the reaching definition DFA framework, the algorithm traverses the CFG to compute

reaching definition sets. It keeps traversing until no reaching definition set for any

CFG node changes. Based on this fact, the time complexity of the reaching definition

is the product of two parts: the number of traversals over the CFG and the time that

the algorithm spends in each traversal. In each traversal, the algorithm visits every

CFG node once, in each CFG node it processes no more than d definitions, and for

each definition it spends constant time to process it. Therefore, the time complexity

of each traversal is O(dn). As to the number of traversals of the DFA, using the

concepts and the proof presented in [76], it is bounded by the DFA lattice height

and n. In the reaching definition DFA, as the DFA only increases In and Out sets

as it traverses the CFG, the DFA is a monotone framework. Each definition has only

two states (in a set or not), so the height of the lattice is 1. Therefore, the number

47

of traversals is O(n), and thus the worst-case time complexity of the reaching defini-

tion DFA is O(dn2). However, for most realistic programs, the algorithm settles to a

fixed-point solution after a few traversals with the CFG. Thus we bound the number

of traversals with a constant, and the time complexity of this DFA is O(dn).

The Basic Dependence Set (BDS) DFA has the maximum domain size as the

size of the BasicCommu set, therefore, the worst-case space complexity for the DFA

is O(mn). As to the worst-case time complexity, BDS DFA also keeps traversing

the CFG until all BDS sets are settled. In each traversal, it also visits every node

and processes no more than d definitions, each within constant time. Therefore, we

can apply the same analysis that we used for the reaching definition DFA to deduce

its worst-case time complexity out of the time on each traversal and the number

of traversals. For one traversal, BDS DFA spends O(dn) time. BDS DFA pass is a

monotone framework, as traversals only put more elements into BDS sets. In addition,

since whether a definition is in a BDS is independent to that of another definition, the

lattice height of the BDS DFA is also 1. Therefore, the number of traversals is O(n),

and the time complexity of BDS DFA is O(mn2). Again, if we bound the number of

traversals with a constant, the time complexity of this DFA is O(mn).

A similar analysis can be applied to the computation stack DFA pass. The com-

putation stack pass has its domain size as the total number of all computation opera-

tions, which is O(d). The framework is also a monotone framework as the algorithm

only increases computation stack as it traverses over the CFG. Hence, its worst-case

space complexity is O(dn) and the time complexity is O(dn2) or O(dn) with traversal

times bounded with a constant.

48

4.5.2 Analysis of Complexity of OptCommu and OptCom-

pute Set Selection

The OptCommu and OptCompute Set Selection DFA pass, a.k.a the optimization

algorithm DFA traverses the CFG until OptCommu and OptCompute sets for all CFG

nodes are settled. As the algorithm only increases the OptCommu and OptCompute

sets as it traverses over the CFG, this DFA pass is also a monotone framework.

Therefore, for each variable definition, the height of its lattice is 1, which means that

the number of traversals is bounded by O(n). However, unlike other DFA passes

mentioned above, in each traversal, for each definition in a CFG node, the transfer

function spends non-constant time to process it. The time the transfer function

spends in each traversal can presented as the following expression.

n
∑

i=1

T (f(Bi)) (4.1)

Here, n is the total number of basic blocks in the CFG, Tf(Bi) is the time that transfer

function spends on ith basic block. The algorithm of the transfer function can be

found in Figure 4.5(b). The algorithm enumerates all possible decision combinations,

and for each combination, evaluates its net benefit. Each variable definition has

at most three options: being communicated, being computed, and being ignored.

Therefore, the number of possible combinations, in the worst case is 3x as x denotes

the number of variable definitions defined in the basic block. For each combination,

it takes at most O(d) time to evaluate its net benefit because evaluation involves

examining all elements in BDS and compuatation stack, and the sizes of BDS and

computation stack are bounded by d. Thus, the time complexity of the transfer

function for a basic block can be expressed as follows:

T (f(Bi)) = O(3xid) (4.2)

49

So, we have the time that the transfer function spends in each traversal as follows:

n
∑

i=1

O(3xid) (4.3)

It can be further deduced to:

O(3xmaxdn) (4.4)

Here, xmax is the maximum number of definitions a basic block in the CFG holds.

The challenge is that xmax could be d in the extreme case, which would make the

optimization a NP-hard problem if there is no other optimal solution. Moreover, since

valid combinations have to be stored during the execution of the transfer function,

the extreme case brings space complexity up to the exponential level, as well.

To solve this challenge, we trade some optimality for time and space efficiency. We

put a cap on the number of valid combinations to be evaluated for a basic block, thus

bringing down the number of valid combinations 3xmax to a constant. As a result, the

worst-case time complexity of the practical implementation of optimization algorithm

DFA pass becomes the following:

O(dn)O(n) = O(dn2) (4.5)

It is worthwhile to point out that for the benchmarks we have evaluated, the xmax

never exceeds the cap we set up, which is 36. Therefore, we do not lose optimality

for the evaluation that is reported in the following section.

As to the space complexity, as we put a cap on the number of valid combinations to

be evaluated, the storage requirement of the transfer function becomes constant. On

the other hand, the pass has the maximum cardinality of d for each OutCommu(B)

and OutCompute(B). Therefore, its worst-case space complexity can be just O(dn).

50

Table 4.1: Benchmark Descriptions

Benchmark Description

401.bzip2 Data compression and decompression

429.mcf Public transportation scheduling. It uses

a network simplex algorithm

445.gobmk An application of Artificial Intelligence in game of Go.

456.hmmer A tool that searches gene sequence. It uses profile

hidden Markov models.

458.sjeng Chess play game. It is an application of AI in chess game.

462.libquantum Quantum computer simulator. It runs Shor’s polynomial-time

factorization algorithm

464.h264ref Stream video encoder. It implements H.264, a state-of-the-art

video compression standard.

4.6 Performance Evaluation

This section presents the results of the performance evaluation of the dynamic pro-

gram monitors on multi-core platforms, including the dispatch-based and the distill-

based model. Performance evaluation is conducted using Simics simulation platform

[95] with GEMS simulator [96] to simulate memory hierarchy. The performance eval-

uation adopts SPEC2006INT [68] as monitored programs with taint-propagation and

memory-bug-detection as monitoring tasks. We have implemented a binary rewriter

to implement code generation and optimization of the distill-based monitors.

In this section we first describe the infrastructure used in the performance evalu-

ation. After that, we demonstrate the performance results of different software-based

monitor models, including instrumentation-based monitors, dispatch-based monitors,

distill-based monitors without optimization and optimized distill-based monitors. Fi-

nally, we highlight the effect of the distill-based model and its optimization by com-

paring the performance of the optimized distill-based monitor with the performance

of the dispatch-based monitor with hardware-based optimization.

51

Table 4.2: Simulation Parameters

CPU Parameters

Instruction Set Sparc-v9

Clock Rate 1.5 GHz

Number of Cores 4

Number of Chips 1

Register File 64 Integer, 64 FP

Memory Parameters

Cache Line Size 64 Bytes

Instruction Cache 64KB,4-way set-assoc, 4 banks

Data Cache 64KB,4-way set-assoc, 4 banks

Unified L2 Cache 4MB, 4-way set-assoc, 8 banks

Coherency Protocol MSI(Modified-Shared-Invalid).

L2 Cache latency 12 cycles

Main Memory Size 4 GB

Main Memory Latency 100 cycles.

4.6.1 Infrastructure

The performance evaluation reported in this dissertation is conducted on a full-system

simulator built on Simics simulation platform [95]. On top of Simics, GEMS [96] is

used to simulate memory hierarchy in details. The simulated machine has a quad-core

CMP Sparc-v9 processor [59]. Each core is equipped with a separate 64K L1 data and

64K L1 instruction cache, and an unified inclusive L2 Cache shared between all cores.

The MSI(Modified-Shared-Invalid) cache coherence protocol [61] is implemented to

keep the caches coherent. Detailed simulation parameters can be found in Table 4.2.

The multi-core-based monitors evaluated are configured to run as follows. The

monitored program and its monitor are assigned to separate cores during their exe-

cutions. Information about the execution of the monitored program is sent from the

monitored core via a 64K-entry communication queue to the monitor. The communi-

cation queue is implemented in the shared memory. Each queue entry is 64 bytes in

size in the dispatch-based model since it has to carry all aspects of information and

52

only 8 bytes in the distill-based model. To prevent security breaches from tampering

with the OS kernel, before the monitored execution switches to the kernel mode, the

execution is stalled until items on the queue are completely processed by the monitor.

The same technique has been reported by Chen et.al [35].

We have implemented taint propagation and the memory-bug detection monitors

that monitor execution of SPEC2006INT benchmarks with test input sets. A brief

description of the benchmarks used in the experiment can be found in Table 4.1. A

more detailed description can be found in [93] for each benchmark except 429.mcf

and 462.libquantum. The first two to ten billion instructions are fast-forwarded as the

initialization phase and the following one billion instructions are simulated. 429.mcf

and 462.libquantum have a high Cycle Per Instruction (CPI) ratio, and thus we only

simulated the 200 million instructions after their initialization.

We have developed a binary rewriter to implement the compiler techniques de-

scribed in this dissertation. The tool takes the binaries of the monitored benchmark

programs as inputs and generates taint propagation and memory-bug detection mon-

itors. Both monitors need information on a large percentage of instructions, and thus

serve as a good pressure test for the efficiency of the underlying hardware/software

support.

In the performance evaluation reported in this chapter, we have evaluated the

performance of four different implementations of the dynamic program monitor: the

instrumentation-based, the dispatch-based, the unoptimized distill-based and the op-

timized distill-based monitors. We have chosen to evaluate the instrumentation-based

implementation because it is the dominant approach of dynamic monitoring on single-

core systems. The dispatch-based approach and the distill-based approach are built

on similar extensions of multi-core architecture and rely on inter-core communication.

The dispatch-based approach and the distill-based approach have the same ability to

support a large spectrum of monitoring tasks. The dispatch-based approach is the

53

state-of-the-art implementation of dynamic program monitor on multi-core platforms

prior to the distill-based approach. Compared with the distill-based approach, it is a

more straightforward approach that requires an excessive amount of communication.

The distill-based approach is exclusively proposed by us and is the most efficient

among the four.

4.6.2 Performance of Different Monitor Implementations

Performance of four different implementations of dynamic program monitors perform-

ing taint propagation and memory-bug detection is demonstrated in Figure 4.7(a)

and Figure 4.7(b), respectively. The bars represent the execution time of the mon-

itors normalized to that of the execution without monitoring. T bars represent the

instrumentation-based monitor running on a single-core platform, D bars represent

the dispatch-based monitor on multi-core, S bars represent the unoptimized distill-

based monitor on multi-core platforms, and O bars represents the optimized distill-

based monitor on multi-core platforms. D, S and O bars are broken into the time on

fetching from the communication queue, time on executing monitoring functions and

time on local computations on the monitor side (this is zero for D and S bars).

The results show that using a multi-core platform and assigning monitored code

and monitor onto separate cores can significantly improve the performance of monitor-

ing. As T bars indicate, the instrumentation-based monitor causes a 10.6x slowdown

for taint-propagation and a 9.0x slowdown for memory-bug-detection on average. In

contrast, D bars indicate that the dispatch-based monitor causes only 7.6x and 6.5x

slowdowns for those two monitor tasks, respectively. There are two major factors

that contribute to this performance improvement. First, separating the monitor and

monitored code onto different cores allows them to execute in parallel so that they do

not wait for each other all the time. Second, more hardware resources, such as reg-

isters and caches, become available in the multi-core environment, so the monitored

54

0

2

4

6

8

10

12

14

16

18

local computation

communication

monitoring

Normalized Execution Time

0

2

4

6

8

10

12

14

16

18

local computation

communication

monitoring

T D S O T D S O T D S O T D S O T D S O T D S O T D S O T D S O

Normalized Execution Time

(a) Implementations of taint-propagation monitor

0

2

4

6

8

10

12

14

16

18

local computation

communication

monitoring

Normalized Execution Time

0

2

4

6

8

10

12

14

16

18

local computation

communication

monitoring

T D S O T D S O T D S O T D S O T D S O T D S O T D S O T D S O

Normalized Execution Time

(b) Implementations of memory bug detection monitor

Figure 4.7: Performance of Four Different Implementations of Monitors: T
bars represent the instrumentation-based monitor running on a single-core platform,
D bars represent the dispatch-based monitor on a multi-core platform, S bars rep-
resent the unoptimized distill-based monitor on a multi-core platform, and O bars
represents the optimized distill-based monitor on a multi-core platform. D, S and
O bars are broken into the time on fetching from the communication queue, time on
executing monitoring functions, and time on local computations.

55

code does not compete with its monitor.

The performance of dynamic program monitoring is further improved on a multi-

core platform when the dispatch-based monitor is replaced by the distill-based moni-

tor. As D bars demonstrate, the unoptimized distill-based monitor causes only a 3.1x

and a 2.6x slowdown for the taint propagation and memory-bug detection monitoring

tasks. This performance improvement is ascribed mainly to the achievement of com-

munication reduction. The reduction in communication is reflected as the difference

in the time breakdown between the D bars and the S bars. Unlike dispatch-based

monitors that forward the results of all instructions in the monitored code, distill-

based monitors forward only the results that are relevant to the monitoring purposes.

Thus, the communication volume is dramatically reduced.

The differences between the O bars and S bars demonstrate the performance im-

pact of the optimization described in this chapter. As the char shows, the optimization

of replacing communication with local computations reduces the slowdown factors to

2.36x for taint-propagation, and 2.18x for memory bug detection. The performance

improvement is achieved by eliminating communication of the values that are less ex-

pensively locally computed. Specifically, results show that for the S bars and the D

bars, the percentage of time spent on communication is reduced by 28% and 22% for

taint propagation and memory-bug detection, respectively, but local communication

increases by 23% and 20%, respectively. Overall, the proposed optimization leads to

a 22% speedup for taint-propagation and a 16% speedup for memory-bug-detection.

429.MCF has shown a relatively lower performance overhead. The optimized

dispatch-based monitors show only 1.33x and 1.37x slowdowns for taint-propagation

and memory bug detection, respectively. This is because 429.MCF by its very nature

suffers a high data cache miss rate even without monitoring. In contrast, its monitor

does not suffer a heavy cache miss penalty so that it can easily keep up with the mon-

itored execution without frequently stalling it. The reason monitors have less cache

56

miss penalty is that though the distill-based monitor is distilled from the monitored

program, it does not access the memory space of the monitored program. Instead, it

maintains only one or two bits for each byte of the monitored program’s memory and

thus usually has a much smaller memory footprint than its monitored program.

0

2

4

6

8

10

12

14

Normalized Execution Time

0

2

4

6

8

10

12

14

Normalized Execution Time

N H O W N H O W N H O W N H O W N H O W N H O W N H O W N H O W

Figure 4.8: Performance comparison with additional hardware support:N
bars represent the dispatch-based monitor without the two hardware supports; H bars
represent the dispatched monitor with the hardware supports; O bars represent the
optimized distill-based monitor without the hardware supports; andW bars represent
the optimized distill-based monitor with the hardware supports.

4.6.3 Comparison with Hardware-Based Optimizations

Research prior to this dissertation has proposed using specialized hardware supports

to optimize dispatch-based dynamic program monitors on multi-core platforms [37,

36, 38]. We have implemented some of those hardware-based optimizations that

facilitates communication reduction in our simulation infrastructure and evaluated

their performance in comparison to the optimized distill-based implementation. We

implemented and evaluated two such hardware supports: inheritance tracking table

[34] and communication queue compression [36]. We chose only these two hardware

57

supports because other proposed hardware supports aim to optimize other aspects of

dynamic monitoring systems [38] than communication.

A hardware inheritance tracking table is proposed in [34] to optimize the dispatch-

based taint propagation monitor. The key idea is inspired by the fact that the taint

status of the register is inherited from the taint status of memory location. Therefore,

the taint status of the register does not need to be the actual taint value but the

memory address whose taint status the register inherits. Since memory addresses can

be known at the monitored code side, the taint status of registers does not need to

be forwarded to the monitor if a table is used to keep track of inheritance changes

in the taint status of registers. This table is referred to as the inheritance tracking

table. The number of entries in the table is the number of architectural registers.

Each entry, representing a register’s taint status, is actually a memory address. If the

new content of a register originates from a memory location, the taint status of that

register inherits becomes that memory address, if the new content originates from one

register, the taint status of the destination register is copied from the source register

when the content of a register is written into the memory. The inheritance tracking

table proposed in [34] does not take care of instructions with multiple sources. Since

this taint status tracking for registers is done by the table, the communication for the

register to register and the memory to register instructions are eliminated. The large

percentage of communication eliminated by using the inheritance tracking table for

the dispatch-based monitor is just a subset of those eliminated by the distill-based

monitor. In the distill-based monitor, register-register taint-propagation is always

performed locally by the monitor program without any communication, and since

memory addresses are computed with local computations, most of the memory to

register instructions do not need communication as well.

Another hardware-based optimization we have implemented is to reduce the cost

of communication by compressing forwarded messages. This idea is proposed by Chen

58

[36]. The core idea is that a hardware logic of compressing/decompressing forwarded

messages is incorporated into each CPU core. The communicated messages are com-

pressed on the monitored core, and decompressed on the monitor core so that the

average size of messages is reduced. Consequently, the total workload of communi-

cation is reduced. Compared to this approach of reducing average message size, the

distill-based monitors reduce the size of messages through a more deterministic and

effective way: in a distill-based monitor, a message contains only the result produced

by the relevant instruction ,while in a dispatch-based monitor a message contains not

only the result but also the instruction body.

To evaluate the effects of the two hardware supports, we measured the performance

overhead of four different configurations of the taint-propagation monitor. Figure 4.8

shows the execution time of these monitors normalized to that of the original program

without monitoring. In this figure, N bars represent the dispatch-based monitor

without the two hardware supports; H bars represent the dispatch-based monitor

with the hardware supports; O bars represent the optimized distill-based monitor

without the hardware supports; and W bars represent the optimized distill-based

monitor with the hardware supports. The results show that the hardware supports

improve the performance of the dispatch-based monitor significantly, bringing the

slowdown factor from 7.6x to 3.6x.

59

Chapter 5

Parallelize Program Monitoring

Using GPGPU

To improve the performance of multi-core-based dynamic program monitoring, the

key is to accelerate the monitor running on the monitor core. The hardware support

and compiler support reported in previous chapters significantly improve the perfor-

mance of monitors on the monitor core, thus improving the efficiency of multi-core

based dynamic programming. However, as all the monitors presented in previous

chapters used only one monitor core, they did not benefit from the potential perfor-

mance improvement that comes from the parallelization of monitors. In this chap-

ter, we fill this gap by reporting our research on implementing the parallelization of

dynamic program monitors in multi-core-based monitoring systems and report the

performance improvement gained from this work.

Recently, GPGPU has become an effective architecture for accelerating generic-

purpose stream processing programs [80, 81, 82, 83], and the major dynamic program

monitors are classic examples of such programs. In a conceptual stream processing

program, a small kernel program is applied to many elements of an input stream, and

the results of instances of the kernel are independently written to different elements

60

of the output. In dynamic program monitoring, such as memory-bug detection or

taint propagation, the input stream consists of the events of the monitored execution,

the kernel program is one of the monitoring functions that performs verification of

monitored events, and the output stream is the shadow memory data that record the

states of the monitored execution.

The most recent GPGPU design features the integration of GPGPUs and CPU

into one die [86], which makes communication latency between CPU and GPGPU

cores much smaller. This feature facilitates fine-grained parallelization of dynamic

program monitoring that is descried in detail in the rest of this chapter.

The rest of this chapter begins by introducing the particular system architecture

that integrates the CPU cores and GPGPU into one die. On this system architecture,

we have built the parallelized monitor. We also analyze characteristics of representa-

tive monitoring tasks to demonstrate the feasibility of parallelizing dynamic program

monitoring. Following that, we present an abstract parallelization framework for

dynamic program monitors on GPGPU, as well as its application in implementing

GPGPU-based monitors for taint-propagation and memory-bug-detection monitors.

After that, we describe how the basic implementation of GPGPU-based monitors can

be optimized by customizing them to peculiar characteristics of monitoring tasks,

using taint propagation and memory-bug detection as examples. Finally, we con-

clude this chapter by presenting results of our performance evaluations of optimized

GPGPU-based monitors.

61

GPGPU

Cores

CPU

Unified L2 Cache

Main Memory on Bus

Figure 5.1: A System Architecture Fusing CPU cores and GPGPU together:
The figure illustrates the system architecture on which we build parallelized dynamic
program monitors. All components shown in the figure are integrated into one die.
Streaming Processors and CPU cores share a Unified L2 Cache through which CPU
cores communicate with the GPGPU.

5.1 GPGPU Architecture to Parallelize Dynamic

Program Monitoring

The research work reported in this dissertation simulates a GPGPU architecture.

The simulated GPGPU architecture incorporates features of existing GPGPU archi-

tectures that effectively serve the need for common applications and are desirable

for parallelizing program monitors. In the rest of this section, we begin with an in-

troduction to the architecture, highlighting the features it inherits from Fermi and

Fusion. Following that, we discuss characteristics of dynamic program monitoring

tasks, showing how we can take advantage of the architectural design presented here

to help parallelize them. This discussion uses memory-bug detection and taint prop-

agation as representative monitoring tasks.

62

5.1.1 Integrating CPU and GPGPU Cores

Figure 5.1 gives an overview of the system architecture. In this system, CPU cores and

GPGPU are integrated into the same chip. The idea of fusing CPU cores and GPGPU

streaming processors together is proposed and implemented in AMD’s APU [86]. The

detailed architecture of AMD’s Fusion can be found in [86]. However, unlike Fusion,

which uses system memory and a special block transfer engine to transfer data from

CPU to GPGPU, the architecture proposed here uses a unified L2 cache to transfer

data between the GPGPU processors and CPU cores.

The GPGPU side of the architecture contains multiple streaming multiprocessors.

A close-up view of a streaming multiprocessor is given in Figure 5.2. The design of the

streaming multiprocessor in this architecture refers to Nvidia’s Fermi [84]. It contains

8 streaming processor cores that can perform arithmetic and branching operations,

and 8 load/store units that perform memory operations. These functional units share

a big register file that can have thousands of registers. A streaming multiprocessor also

includes 64KB of configurable fast memory, which can be configured as a combination

of L1 cache and software-manageable shared memory such as that is in the Fermi

architecture.

In the GPGPU architecture described above, CPU cores and GPGPU cores are on

the same die area, and thus communication queue entries can be transferred into the

GPGPU SMs at a fast rate without much intervention of the CPU core. Moreover,

because in the architecture CPU cores are integrated with the GPGPU and its host

interface on the same die, thread creation should have a smaller overhead than that

in most existing GPGPUs on the market that use a motherboard bus to transfer data

from CPU to GPGPU [82].

63

64 KB L1 Cache/Shared Memory

Unified L2 Cache

 core

 core

 core

 core

 core

 core

 core

 core

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

LD/ST

File
Register

Instruction Cache

Thread Dispathcing Logic Thread Dispathcing Logic

Figure 5.2: Layout of a Stream Multiprocessor: The figure illustrates the system ar-
chitecture on which we build parallelized dynamic program monitors. All components
shown in the figure are integrated into one die. Streaming Processors and CPU cores
share a unified L2 cache through which CPU cores communicate with the GPGPU.

5.1.2 Characteristics of Memory-Bug Detection and Taint

Propagation

Two common characteristics of taint propagation and memory-bug detection mon-

itoring tasks make them suitable to be parallelized and accelerated using GPGPU

architecture. The first is that the core of both tasks are a few small monitoring

functions that are invoked repeatedly on different elements of input data, and the

second is that invocations of monitoring functions are often parallel. In the rest of

this section, we discuss the available parallelism in these two monitoring tasks.

64

5.1.2.1 Memory-Bug Detection

The monitoring task of memory-bug detection have only two types of monitoring

functions to perform all the work of maintaining a shadow of monitored memory

space to detect potential memory-related bugs. The first type includes two monitoring

functions that set and clear allocation status bits in the shadow memory, which are

invoked when library function calls allocate or free heap memory. The other type

is the monitoring function that checks the safety of the memory load and stores

instructions.

The first type of monitoring function is highly parallel because setting and clear-

ing contents of a shadow memory area is a Single Instruction Multiple Data (SIMD)

operation. With many streaming processor cores available in the GPGPU architec-

ture, we can achieve a significant and scalable speedup for this type of monitoring

function. Furthermore, as GPGPU cores share register file and L1 cache, reading and

writing to shadow memory is much faster than other parallel architectures in which

cores share data at L2 cache level.

The second type of monitoring function checks the safety of each memory access

and is a good candidate for parallelization. This monitoring function is invoked for

each memory access instruction of the monitored execution when the monitor fetches

a communication queue entry that represents monitored load or store instruction.

Therefore, using GPGPU, the monitor can fetch a number of communication entries

simultaneously, and it can create the same number of GPGPU threads running in

parallel to verify the corresponding memory access operations.

5.1.2.2 Taint Propagation

Monitoring the task of taint-propagation maintains a shadow memory of the taint

status of the monitored core’s user memory and architectural registers. Three types

of monitoring functions constitute the monitor. The first is the monitoring function

65

that sets the taint status of affected memory locations whenever a library function call

that copies data from untrustworthy sources to user memory during the monitored

execution. The second includes the register move, arithmetic and memory instructions

of the monitored execution invoke the monitoring function of taint propagation. The

propagation function essentially propagates the taint status of one or a few sources of

the instruction to the taint status of the destination of the instruction. Finally, there

is the monitoring function that checks whether a jump target is tainted whenever an

indirect jump instruction is executed in the monitored program.

An invocation to the first type of monitoring function can be implemented as a

launch of monitoring threads, each of which sets the shadow taint status bits for a

memory word in the monitored execution. In the simulated GPGPU architecture, the

thread can be as fast as a cache write. In addition, this type of monitoring function

is invoked when memory copy occurs. Therefore, because the copy operation of each

memory cell is independent of others, the monitoring thread that sets the taint status

of each individual memory word is also independent of each other. In other words,

there is no need to check dependence for this type of monitoring function.

The second type of monitoring function does taint propagation work. In moni-

toring time, it is invoked for each monitored instruction that might propagate taint

from its source to its destination. Therefore, naturally, in GPGPU-based monitoring,

the propagation monitoring function can be implemented as a kernel, making each

invocation to the function a thread of the kernel. As entries in the communication

queue of taint propagation monitor correspond to monitored instructions, this design

makes sense in that our fused GPGPU architecture for GPGPU threads can fetch en-

tries directly from the communication queue in the shared memory hierarchy, which

most of the time is the unified L2 cache.

The last type of monitoring function checks the targets of indirect jumps. To make

the check accurate, the invocation to the monitoring function must not occur until

66

all monitored instructions before the indirect jump instruction have had their taints

properly propagated. On the other hand, for the same reason, no taint status change

should happen before the invocation to this monitoring function is finished. Failing

to meet these requirements leads to inaccurate checking that could be fatal to the

monitored execution. Considering that this type of monitoring function essentially

does only a comparison, it is neither worthwhile nor safe to make it parallel itself or

run it parallel to other type of monitoring function invocations.

5.2 Abstract Framework of GPGPU-based Moni-

tor

In this section, we present a generic abstract framework for implementing a GPGPU-

based monitor for various monitoring tasks. We begin with the typical workflow

of GPGPU-based monitoring, followed by an overview of GPGPU-based monitoring

through three different perspectives. Then, we give a detailed description of the core

part of the generic GPGPU-based monitor, the execution of invocations to monitoring

functions, referred to in the following text as the monitoring thread. Finally, we give a

brief performance analysis to identify the challenges a GPGPU-based monitor might

have to solve to make it useful, which serves as a prelude for the next section focusing

on implementation of GPGPU-based monitors for memory-bug detection and taint

propagation.

5.2.1 GPGPU-based Monitoring

At the top level of the entire monitoring system, the workflow of the GPGPU-based

monitoring are not different than other conventional multi-core-based monitoring sys-

tems except that the monitoring core offloads the major part of the monitoring job to

67

the GPGPU. The top-level workflow is illustrated in Figure 5.3. It is noteworthy that

on the CPU core side, the GPGPU-based monitor uses exactly the same hardware

support (i.e. extraction logic) described in previous chapters as other multi-core-based

monitors.

Figure 5.3 demonstrates three important aspects in GPGPU-based monitor-

ing: monitoring information extraction, monitoring thread creation, and monitoring

thread execution. These aspects reflect the chronological order of processing a moni-

tored event using GPGPU-based monitoring. The first aspect, information extraction

is performed by the same extraction logic as the conventional multi-core-based mon-

itors described in previous chapters. The second aspect, monitoring thread creation,

is executed by a CPU core, referred to as the monitor core. The monitor core keeps

polling the communication queue; when the number of valid entries in the queue

reaches a threshold, the monitor core creates threads running on the GPGPU, and

each GPGPU thread, referred to as monitoring thread in the following text, processes

a queue entry. The third aspect, execution of monitoring thread, is performed in the

GPGPU cores.

68

Create Monitoring Threads

Monitoring Information

Extraction

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitring

Thread

Monitor Core

Communication Queue

Extraction Logic

GPGPU Device

Figure 5.3: GPGPU-based Monitoring: Information extraction is done by extraction
logic on the monitored core side. The monitor core fetches only information from
the queue, copies it to GPGPU, and launches monitoring threads on the GPGPU to
perform checking.

As the Figure 5.3 demonstrates, the role that the monitor core plays in GPGPU-

based monitoring is different from that in other multi-core-based monitors mentioned

in previous chapters. Here the monitor core works as a bridge between the monitored

core and the GPGPU. Although this might introduce extra overhead to GPGPU-

based monitoring, it is dispensable to GPGPU-based monitoring because state-of-

the-art GPGPU cannot create and launch GPGPU threads by itself.

69

data declarations:
enum MONITOR FLAG

{POLL,ERROR...,EXIT }
typedef struct message struct

{Type, Address, Value, I/D flag }
\\ messages fetched from the queue

message struct msg array [Q LENGTH/2];

static MONITOR FLAG mon flag;

message struct *specialMsg = NULL;

algorithm GPGPU-based monitor:
\\ Initialize monitor flag

mon flag = POLL;

while (mon flag == POLL)

msg array = ReadQueue();

if (msg array != NULL)

\\ create and launch monitoring threads

CudaConfigureCall(launchParameters,...,ShadowMem, msg array)

CudaLaunch("mon func thread");

\\ barrier to make sure monitoring threads are all done

cudaThreadSynchronize();

end if
\\ Special message may require additional processing

if (specialMsg != NULL)

ProcessSpecialFlag(specialMsg, msg array);

end ifend while
ProcessErrorOrExit(mon flag);

end algorithm

Figure 5.4: Algorithm for a GPGPU-based Monitor.

70

5.2.2 Overview of the GPGPU-based Monitor

The GPGPU-based monitor is the software part of the GPGPU-based monitoring

system that implements all steps except the information extraction which is the re-

sponsibility of the hardware support. Figure 5.4 gives an algorithm view of the

GPGPU-based monitor code running on the monitor core. The core of the monitor

is a while loop of which each iteration fetches items of half the communication queue

and launches the same number of monitoring threads that each verifies a fetched

item. In the following paragraphs, we will introduce the GPGPU-based monitor from

the perspective of the hardware usage, the way it is programmed and its monitoring

model. In addition, we compare the GPGPU-based monitor with other multi-core

based monitors introduced in previous chapters.

The GPGPU-based monitor shown in Figure 5.4 uses both a CPU core and a

GPGPU. The pseudo-code shown in Figure 5.4 is the code running on the monitor

CPU core. This code creates and launches monitoring threads on a GPGPU. An

abstract description of the monitoring thread of the kernel function mon func thread

can be found in Figure 5.5, which we will describe in detail later.

The GPGPU-based monitor shown here is written by programmers based on mon-

itoring requirements in the pseudo-code of CUDA-C [91]. CUDA-C is an extension

of C programming language that provides programming interfaces to implement ker-

nel threads running on the GPGPU and coordinate activities on the CPU core and

the GPGPU. CUDA APIs used in the GPGPU-based monitor shown in Figure 5.4

are: cudaThreadSynchronize which sets up a barrier to ensure all previous activities

on GPGPU-device are finished; CudaConfigure which configures the parameters of

a CUDA launch of monitoring threads; and CudaLaunch, which creates and starts

monitoring threads running on the GPGPU. Notice that because we use the fused

71

GPGPU architecture, we include no concept of device memory and no call to cud-

aMemcpy. At the stage of research reported by this dissertation, the compiler support

described in chapter 4 is not yet used in the GPGPU-based monitor.

The GPGPU-based monitoring model resembles the dispatch-based monitoring

model in the way that it uses the table-driven mode of the extraction logic, takes

typed items from the communication queue and dispatches them to invoke moni-

toring functions. However, compared with conventional dispatch-based monitoring,

GPGPU-based monitoring is parallel in every step on the monitor side: it fetches

queue items en masse, decodes items with monitoring threads that run parallel in

the GPGPU, and executes monitoring functions embodied in monitoring threads in

parallel. Because of this full-scale parallelization, the GPGPU-based monitor intro-

duces elements that are specific to parallelization, such as barriers. In addition, due

to the GPGPU’s limits, when a monitoring thread finds an error or detects the end

of monitoring, it cannot handle this by itself and thus just ask code on the monitor

processor core to handle it.

Table 5.1 summarizes important aspects of GPGPU-based monitoring and com-

pares it to other monitor models mentioned in previous chapters.

Table 5.1: Comparisons of Characteristics of Different Implementations of Monitors

Monitor Model Hardware Usage Programming Model Parallel Monitor Compiler Support

Instrumentation-based Single Core Instrument monitored
program No No

Dispatch-based Dual Core with Written separately according
extraction logic to monitoring requirements No No

Distill-based Dual Core with Distilled from the monitored
extraction logic with monitoring requirements No Yes

GPGPU-based Dual Core with Written separately in
extraction logic language supporting GPGPU
and GPGPU Yes No

72

��
��
��
��

��

��

flag is special?

Terminate

N
Y

flag is special?

Terminate

N
Y

flag is special?

Terminate

N
Y

flag is special?

N
Y

for all items

for item 0

Do verification

flag is special?

N
Y

for item 1

Do verification

Idle

flag is special?

N
Y

for item N

Do verification

Idle

Thread 0 Thread 1

......

Stage 1: Decoding Types, Set flag as special if found a special type

Thread N

Stage 2: Detect Dependence, If dependence is found, set flag special

Do verification

......

Stage 3: Verification, If error is found, set flag with error code.

Figure 5.5: General framework of monitoring thread implementation. The
framework features three phases of execution. Phases are bound by synchronization
barriers represented by shaded bars in the diagram. The first phase decodes message
items sent from the extraction logic of the monitored core. If there is a message in
special type that requires redoing the launch of threads, all threads terminate. The
second phase detects dependence among items. If there is no dependence, each thread
verifies an item in parallel to one another. Otherwise, thread 0 verifies for all items
while other threads become idle. The final phase collects results of the verification.
If any error is reported by any thread, the flag will be set with error code and thus
return to the GPGPU-based monitor.

5.2.3 Implementation of Monitoring Thread

In the context of this dissertation , the monitoring thread refers to the implementation

of the monitoring function that runs on the GPGPU. The monitoring thread is not

merely a simple migration of monitoring functions in other multi-core-based monitors

73

to GPGPU architecture. The implementation of monitoring thread must solve two

challenging problems: dependence resolution and parallel decoding. Dependence res-

olution involves detecting and resolving dependences among monitoring threads that

are launched in the same batch, referred to as a grid in CUDA and the following text.

Parallel decoding is a challenge because some messages that are initially assigned to

one monitoring thread may actually require multiple monitoring threads for better

performance. For instance, events in types of alloc and free in memory-bug detection

changes the shadow memory states of many independent memory locations simulta-

neously. Therefore, by their nature they should get multiple monitoring threads for

each event of these types even though it has just one entry on the communication

queue.

The rest of this section is organized as follows: First, we begin with the general

framework of a monitoring thread implementation that could be adapted to most

monitoring tasks. Then, we describe in detail how this framework can be applied to

implement monitoring threads for two representative monitoring tasks: memory-bug

detection and taint propagation.

5.2.3.1 Abstract Framework of Monitoring Thread

Though implementation of the monitoring thread could vary across monitoring re-

quirements, it follows a common general framework that features a phase-by-phase

procedure. Figure 5.5 demonstrates the common framework of monitoring thread im-

plementation. As the figure shows, a monitoring thread is divided into three chrono-

logical phases: type decoding, dependence detection and verification. Phases are

divided by thread synchronization primitives to guarantee that all threads are in the

same phase all the time. The design of this monitoring thread framework provides

an effective solution to the challenges of dependence resolution and parallel decoding.

In the following paragraphs, we describe the activities of these three phases in detail.

74

During the type decoding phase, each monitoring thread decodes a queue item

assigned to it. In a general monitoring thread implementation, each queue item

is decoded by one and only one monitoring thread in this phase. If a monitoring

thread decodes an item and finds that it is a special type message (for instance, an

alloc in memory-bug detection) that requires multiple monitoring threads of a special

type to execute its corresponding monitoring activity, the monitoring thread sets a

special word with the address of the queue item. This special flag is shared among

all monitoring thread. When multiple special items are detected, the one that has

the lower thread ID gets the priority to write its queue item address into the flag.

At the end of this stage, after all threads come to the synchronization barrier where

the special word is checked. It the word contains a valid queue item address, all

threads are terminated, and the address is copied to the GPGPU-based monitor’s

main function so that the monitor will know which queue item represents a special

event and thus redo the monitoring thread creation in a special way.

The second phase is to detect and solve dependences among monitoring threads.

The details of dependence detection are specific to monitoring tasks since the defi-

nition of dependence varies across monitoring tasks. A monitoring thread should be

notified if another thread is accessing the same entry in the shadow memory. The

first step of dependence detection for each monitoring thread is to detect if there

are multiple threads accessing the same shadow memory location. Once a conflict is

detected, a shared flag is set to indicate that there is a conflict among monitoring

thread and all the items must be verified sequentially. At the end of the dependence

detection phase, all threads are synchronized at a barrier. Therefore, in this phase,

we solve the problem of dependence detection.

The last phase verifies items in the queue simultaneously if no dependence is

detected; otherwise thread 0 verifies all queue items. By this mechanism, we solved

the problem of dependence resolution.

75

Table 5.2: Dependence in Memory-bug Detection

Dependence Type of Is a Dependence Activities
Monitored Operations of Monitoring Threads on Shadow Memory

Read After Read Both checks the alloc and
False the init status

Read After Write Write reads the alloc status and
True might set the init status, Read

reads both.
Write After Read

True Same as above
Write After Write Both operations read alloc status and

False might set init status

5.2.3.2 Implementation of Monitoring Thread for Memory-bug Detection

In this section, we describe details of monitoring thread implementation for memory-

bug-detection, strictly following the general framework mentioned above without any

optimization. We begin the section by introducing data structures used by memory-

bug-detection monitoring thread, then discuss implementation details of each phase

in memory-bug detection monitoring thread implementation that use and maintain

these data structures.

The data structure used by the memory-bug detection monitoring thread consists

of three types of shadow memory. Like other memory-bug detection monitors men-

tioned in previous chapters, the monitoring threads of GPGPU-based memory-bug

detection monitor maintain two types of shadow memory: allocation state shadow

memory and initialization state shadow memory. Each shadow memory bit of shadow

memory records the state of a memory word in the monitored program’s user memory

space. For the allocation state shadow, these are the allocation status, the initial-

ization state shadow, the initialization state. These two shadow memory areas are

designed for verification purposes. In addition, the GPGPU-based memory-bug de-

tection monitor introduces an additional type of shadow memory for the purpose of

dependence detection: touch shadow memory. Each bit of touch shadow memory

76

corresponds to a memory word in the monitored program’s user memory space, in-

dicating for a particular grid of monitoring thread, whether other two shadow states

of corresponding memory word might be changed or not. We will further explain the

use of touch bit in detail when we discuss dependence detection.

We dedicate the rest of this section to three technical details that are particular

to the monitoring task of memory-bug detection: events of special type, definition

of dependence, and implementation of verification. These details are the technical

content the of three phases of monitoring thread for memory-bug detection.

Special Type Events in Memory-bug Detection:Allocation and Free

In memory-bug detection, special type events are invocation of allocation and free

functions . When a memory-bug detection monitor detects an allocation event, it

sets corresponding allocation bits and clear corresponding initialization bits. For free

event, the monitor checks if the corresponding allocation bits are set to detect a

double-free bug and clears the bits if no bug is detected. Allocation and free events

usually involve multiple memory words and multiple status bits. Therefore, to take

full advantage of parallelism, each allocation and free event should be handled by as

many monitoring threads as the number of monitored memory words it touches.

Dependence of Monitoring Thread for Memory Read and Write in

Memory-bug Detection

In the context of memory-bug detection, dependence detection is solely designed

for monitored operations of memory read and write because allocation and free are

detected by the earlier phase. Each monitored memory read or write operation in

monitored execution has one and only one monitoring thread. Different monitored

memory read/write operations may access the same memory address that translated

into accesses to same shadow memory location, which might cause dependence vio-

lation and thus incorrectness of monitoring threads. However, dependence between

monitored operations of memory read and write may not translate into dependence of

77

their correspondent monitoring thread. Table 5.2 describes the types of dependences

for monitored memory read and write in the context of memory-bug detection. The

table shows that monitoring threads for memory read or write may change only ini-

tialization status bit so that dependence seems to be decided by the order of read and

write on the initialization bit. However, unlike conventional dependence definition,

WAW is not considered as a true dependence in the context of memory-bug detection

because the content to be written to the initialization status bit is the same.

Touch shadow memory is used to detect dependence of a monitoring thread in

memory-bug detection. Each bit of touch shadow memory corresponds to a monitored

memory word. During the dependence detection phases of the monitoring thread, if

a thread changes the initialization shadow bit of a monitored memory word, it sets

the corresponding touch shadow bit as well. After the phase of dependence detection,

each thread comes to a synchronization barrier that guarantees that every thread

finishes deciding whether to set its correspondent touch bit. Right after this barrier,

at the beginning of the next phase of verification, every thread checks whether the

touch bit of its corresponding monitored memory word is set. If a monitoring thread

for monitored memory read finds that the touch bit is set, this means there is an ini-

tialization status change by another monitoring thread for a monitored write. As this

suggests a possible RAW or WAR hazard among monitoring threads, the verification

work of monitored threads should be serialized. At the end of the execution of all

monitoring threads, touch bits are cleared to prevent them from affecting the next

grid of monitoring threads.

5.2.3.3 Implementation of Monitoring Thread for Taint-Propagation

This section gives details of the implementation of monitoring threads for taint-

propagation. As in the previous section, we begin by introducing shadow memories,

then focus on the technical details of three different phases of the monitoring thread:

78

Table 5.3: Behavior and Activities of Monitored Events in Taint Propagation

Event Type Taint Status Change Cause Security Breach Monitoring Activity

area-taint change taint status of set taint bits of
multiple memory words not directly affected memory area

indirect jump may directly cause check taint status
no taint status change security breach of the jump target area

propagation event change taint status of
single item not directly propagate taint

special events, dependence definition, and implementation of verification.

The data structure used by a taint propagation monitoring thread consists of

two types of shadow memory: taint shadow memory and touch shadow memory.

Taint shadow memory keeps taints of memory words and registers in the monitored

execution. A bit of taint shadow memory is set when the corresponding memory word

or register is tainted by being written with the content from non-trusted sources. In

contrast, a taint bit is cleared when a constant value is written into the correspondent

memory word or register. In addition to these cases, taint bits are propagated during

a program’s execution. For example, an unary instruction copies the taint bit of the

source to that of the destination, and a multiple-source instruction should set the

taint bit of the destination as the result of or of taint bits of all sources. Taint bits

are examined for targets of indirect jumps because executing code that originates

from untrustworthy sources might pose a security breach. A detailed description

about taint-propagation shadow memory use can be found in chapter 3 or other

literature [6, 13]. The touch shadow memory in taint-propagation serves for purpose

of dependence detection and is similar to the touch shadow memory in memory-bug

detection.

Special Type Events in Taint-Propagation: Area-taint and Indirect

jump

There are two types of special events in taint-propagation: area-taint and indirect

jump. In this context, area-taint event refers to those library calls that receive data

79

from untrustworthy sources to the monitored execution’s memory space. The area-

taint event requires the monitor to set taint bits of an area of shadow memory. Indirect

jump event refers to monitored jump instructions whose target might be a tainted

memory and thus the monitor must check the taint bit of the target for safety.

Area-taint event and indirect jump event are special in taint-propagation because

for all other events the monitor propagates one single taint bit. For area-taint event,

the GPGPU-based monitor creates one or more grids of monitoring threads to set

multiple taint bits in parallel. For indirect-jump event, the monitor creates only one

monitoring thread in the grid to check the target address.

Dependence of Monitoring Thread in Taint Propagation

To detect dependence among taint-propagation monitoring threads, the monitor uses

a touch shadow memory. Each bit of shadow memory corresponds to a memory word

or register in the monitored program. During the dependence detection phase, each

monitoring thread sets the touch bit of the destination register or destination memory

word of its corresponding taint propagation event, which could be a memory reference

instruction, arithmetic instruction or data movement instruction. A synchronization

barrier at the end of this phase guarantees that all monitoring threads finish setting

their touch bit. Right after the barrier, each thread checks whether the touch bits

of any source or the destination of the corresponding monitored instruction is set.

If any such touch bit is set, that indicates that the monitoring thread might have

a dependence with some other thread in the same grid. In this case, the entire

grid of threads has to be executed sequentially by thread 0. At the end of each

monitoring thread, each monitoring thread clears the touch bit of the destination of

its corresponding monitored instruction to prevent it from confusing the next grid of

monitoring threads.

80

5.3 Optimization of GPGPU-based Monitors

The performance overhead of the basic version of GPGPU-based monitor for taint-

propagation and memory bug detection is prohibitively high due to the high volume

of dependence detected. Figure 5.6 presents a measurement of the performance over-

head of the basic version of GPGPU-based monitors for both memory-bug detection

and taint propagation. The performance statistics shown in Figure 5.6 are collected

using the same simulation infrastructure reported in chapter 4. The GPGPU in-

tegrated with CPU cores is simulated using the GPGPU-Sim simulator [97] with

parameters described in Table 5.5. Figure 5.6 compares the performance overhead

of the basic version of GPGPU-based monitors for taint propagation and memory-

bug detection with other implementations including the instrumentation-based, the

dispatch-based, and the optimized distill-based monitor we have described in previ-

ous chapters. Bars represent the execution times of the monitors normalized to that

of the execution without monitoring. The performance of the basic GPGPU-based

monitor is significantly worse than any of the other monitor implementations. For

taint-propagation, its reaches 18.97x, and 13.21x for memory-bug-detection.

This huge performance overhead of the basic GPGPU-based monitor is caused by

the excessive amount of dependence detected among monitoring threads. Dependence

among monitoring threads, once detected, causes all monitoring threads to run se-

quentially. In sequential mode, the GPGPU-based monitor not only completely loses

its advantage of verifying multiple queue items in parallel, but also performs signifi-

cantly slower than CPU-based monitors in the verification of individual verification

job. This is due to several factors. First, in CPU-based monitor, the shadow memory

content and queue items can be cached in L1 cache. In contrast, the GPGPU-device

has no cache to cache shadow memory content, and thus every access to shadow

memory and queue item in a monitoring thread is actually a device memory access

81

that is much slower than CPU cache access. Second, the state-of-the-art CPU cores

usually have a faster clock rate than GPGPUs, in our simulation, the CPU core runs

at 1.5GHz, while GPGPU runs at 1.0GHz. Last but not least, another important

factor is that CPU core has a super-scalar pipeline with sophisticated features like

branch predication, speculative execution, etc. In contrast, GPGPU execution en-

gines usually come with a much simpler design. All these factors make individual

monitoring threads much slower than their CPU-based counterparts. Moreover, be-

sides verification, GPGPU-based monitor perform phases of special type detection

and dependence detection that are not needed in CPU-based monitors. The per-

formance overhead caused by these phases, though usually lightweight, is an extra

burden on the GPGPU-based monitor.

We conducted experiments to measure the amount of dependence in basic GPGPU-

based monitors. In these experiments, for each benchmark, we count the number of

monitored events that are verified sequentially for each benchmark, along with the to-

tal number of monitored events sent to monitors to verify out of 100 millions executed

instructions. The results for taint propagation and memory-bug detection monitors

are listed in Table 5.4.

Table 5.4: Performance Statistics of Basic GPGPU-based Monitor

benchmark taint-propagation: taint-propagation: memory-bug detection: memory-bug detection:
percentage of Basic percentage of Basic

sequentially executed GPGPU-based monitor sequentially executed GPGPU-based monitor
threads performance overhead threads performance overhead

401.bzip2 99.88% 24.69x 99.96% 5.84x
429.mcf 95.90% 23.87x 100.00% 13.28x
445.gobmk 97.98% 14.40x 69.03% 10.45x
456.hmmer 99.80% 23.02x 99.69% 22.48x
458.sjeng 74.41% 16.00x 96.58% 8.90x
462.libquantum 73.55% 13.23x 78.91% 13.22x
464.h264ref 99.98% 15.56x 99.62% 18.34x

Dependence detected by the general monitoring framework is extremely high for

most of the benchmarks: for both monitoring tasks, almost all benchmarks have over

70% of monitored events being verified sequentially. Actually, except 458.sjeng and

82

0

5

10

15

20

25

30

401.bzip2 429.mcf 445.gobmk 456.hmmer 458.sjeng 462.libquantum 464.h264ref Average

Instrumentatio

n-based

Dispatch-based

Optimized

Distill-based

GPGPU-based

Basic

Normalized Execution Time

I D O G I D O G I D O G I D O G I D O G I D O G I D O G I D O G

(a) Performance of Basic Version of GPGPU-based Taint Propaga-
tion Monitor

0

5

10

15

20

25

401.bzip2 429.mcf 445.gobmk 456.hmmer 458.sjeng 462.libquantum 464.h264ref Average

Instrumentatio

n-based

Dispatch-based

Optimized

Distill-based

GPGPU-based

Basic

Normalized Execution Time

I D O G I D O G I D O G I D O G I D O G I D O G I D O G I D O G

(b) Performance of Basic Version of GPGPU-based Memory-bug De-
tection Monitor

Figure 5.6: Performance of basic GPGPU-based monitors in Comparison to Other
Taint Propagation Monitors: Performance is measured in execution time of monitors
normalized to the execution of monitored program without monitoring. For each
benchmark, four bars represent normalized execution time of four different types of
monitors:I bars represent the instrumentation-based monitor; D bars represent the
dispatch-based monitor; O bars represent the distill-based monitor with optimization;
and G bars represent basic the GPGPU-based monitor without optimization

83

462.libquantum in taint propagation and 462.libquantum and 445.gobmk in memory-

bug detection, all other benchmarks in both monitoring tasks have 95% of monitored

events being sequentially verified.

5.3.1 Techniques of Optimizing GPGPU-based Monitor

Based on the above analysis of performance bottleneck, the key to optimize GPGPU-

based monitor is reducing the amount of dependence detected by the monitor. As we

cannot change the definition of dependence inherent in monitoring requirements, one

effective way to reduce the amount of dependence is to identify monitoring threads

whose verification work could be ignored and thus cannot cause true dependence

violations.

In the context of this dissertation, verification of a monitored operation includes

two parts: verifing the safeness of the operation the thread represents and changing

shadow bit(s) of the memory word or register that the operation accesses. Therefore,

if an operation is proven to be safe and does not change the status of the memory

word or register it accesses, there is no need for it to be verified. In summary, a

monitoring thread is considered redundant if it meets two requirements:

• The monitored event represented by the thread is guaranteed to be safe by the

existing program state.

• The monitored event represented does not change the shadow status of any

monitored memory word or register.

If a monitoring thread meets both requirements, ignoring it does not affect the cor-

rectness of the monitor. Monitoring threads that perform redundant verification work

should be prevented from entering dependence detection and verification phases, i.e.,

redundant monitoring threads should terminate earlier. However, whether a moni-

toring thread meets two requirements is decided solely by the characteristics of the

84

monitoring task. Hence the abstract framework described in Figure 5.5 does not

contain detection of the redundancy, nor other additional ingredients of monitoring

threads that exploit specific characteristics of monitoring tasks. In the following text,

we analyze the monitoring tasks of memory-bug detection and taint propagation re-

spectively, and propose ideas to reduce the amount of dependence detected.

5.3.1.1 Optimizing Memory-bug Detection Monitor on GPGPU

Optimization of the memory-bug detection monitor can be achieved by detecting

redundant monitoring threads. In the context of memory-bug detection, the require-

ments for redundancy listed above are embodied in the following statements.

• Read from a memory word with a set initialization bit is always safe.

• Read from a memory word does not change any shadow status of the word.

• Store to a memory word that is initialized is always safe.

• Store changes initialization status only if it is not previously set.

To detect redundant monitoring thread in memory-bug detection, we add the concept

of redundancy detection into the monitoring thread framework described in Figure

5.5. This redundancy detection checks redundancy according to the four statements

listed above. If a monitoring thread is found to be redundant, it should be terminated

earlier and not change the shadow touch bit of its corresponding memory word. This

way, a redundant monitoring thread will never be considered in any dependence.

However, examining the statements in the monitoring thread individually cannot

detect all redundant threads. To be complete, redundancy detection has to consider

the chronological order of threads in the same grid. For example, suppose in a moni-

toring thread launch, there are two monitoring threads m and n with m < n, which

means that thread m is earlier than thread n; the monitoring thread m represents a

85

data declarations:
enum MONITOR FLAG

{NORMAL,ALLOC ERR, INIT ERR,EXIT }
typedef struct message struct

{Type, Address, Value, I/D flag }
message struct msg array[Q LENGTH/2];

\\ flag used in this phase

MONITOR FLAG mon flag = NORMAL;

algorithm
...

\\ check if the memory address is allocated

if (allocShadow[msg array[thread id].Address] is not set)

mon flag = ALLOC ERR;

return
end if
cudaThreadSynchronize();

\\ if an error is detected, all threads stop

if (mon flag != NORMAL)

return
end if
\\ reset touch Shadow

touchShadow[msg array[thread id].Address] = MAX;

\\ if previously initialized, no need for verification

if (initShadow[msg array[thread id].Address])

return
end if
cudaThreadSynchronize();

\\ a write operation may change initialization bit

if (msg array[thread id].Type == WRITE)

if (touchShadow[msg array[thread id].Address] > thread id)

\\ touchShadow should always be the earliest thread ID

touchShadow[msg array[thread id.Address] = thread id

end if
Set initialization bit of initShadow[msg array[thread id].Address];

return
end if
\\ all threads synced to make sure touchShadow has the earliest ID

cudaThreadSynchronize();

if (touchShadow[msg array[thread id].Address] < thread id)

\\ initialized by an early thread, this thread is redundant

return
else
\\ this is the case of uninitialized read

mon flag = INIT ERR;

end if
end algorithm

Figure 5.7: Algorithm of Optimized Memory-bug Detection GPGPU-based Monitor.

86

write operation to a memory word v, and the monitoring thread n represents a read

operation to the same memory word v. If the initialization bit of v is not set before

the launch of the grid, individually examining the four statements for thread n would

not consider n redundant. However, in reality, since the thread n comes after the

thread m that sets the initialization bit, the verification of monitoring thread n is

redundant. Since this type of redundancy is caused by monitoring threads inside the

same launch, we refer to this type of redundancy as in-grid redundancy.

In order to detect redundancy completely, we change the design of the touch

shadow memory to incorporate information on the ordering of the monitoring thread.

To each monitored memory word, we store a monitoring thread ID instead of a

touch bit in the touch shadow memory. This monitoring thread ID is the ID of

the earliest monitoring thread that writes to the corresponding memory word in a

monitoring thread grid. Furthermore, in the context of memory-bug detection, since

the earliest write operation makes all following operations to the same memory word

safe regardless of what those operations are, this earliest thread ID information is

even sufficient for the monitoring thread to perform verification without dependence

detection.

Therefore, based on this new design of touch shadow memory, we redesigned the

monitoring thread of memory-bug detection. Now we change all phases after the

special-type detection phase with the algorithm shown in Figure 5.7. The algo-

rithm can be divided into four stages: detection of unallocated access (a.k.a dangling

pointer), detection of redundancy, setting touch shadow memory, and detection of

in-grid redundancy and uninitialized access. These stages are demarcated by syn-

chronization barriers implemented as calls to API cudaThreadSynchronize to make

sure all threads are always in the same stage.

The first stage of the algorithm detects the bug of unallocated access, a.k.a dan-

gling pointer. Since the algorithm starts after the special-type detection phase, all

87

monitoring threads executing this algorithm are of a common type, represent either

a write operation or a read operation, and not set the allocation status of the mem-

ory word. Therefore, the dangling pointer bug can be detected by looking up the

existing allocation shadow bit that corresponds to the memory word that each thread

accesses. If there is a thread that accesses a memory word without the allocation bit

set, it represents an access to unallocated memory, which causes a dangling pointer

bug. The algorithm then assigns the error code ALLOC ERR to the monitor flag

that corresponds to the dangling pointer bug.

At the beginning of the second stage, the monitor flag is checked to see if a dangling

pointer bug is detected by the previous stage. A detected bug should stop execution

of all monitoring threads. After this check, the algorithm initializes the touch shadow

for the accessed memory word, setting it to a number, referred as MAX ID, that

is always greater than any executing thread ID. If an accessed memory word has its

touch shadow as the MAX ID, it means that no thread in the current grid has changed

the shadow status of it. Finally, this stage also checks the initialization bit in the

initialization shadow memory for the accessed memory word. If the initialization bit

is set, the thread is redundant because the operation it represents is safe and will not

change any shadow status of the accessed word. A redundant thread should return

immediately once it is detected.

The third stage sets up touch shadow memory. Accessed memory words will have

the ID of the earliest monitoring thread that changes its initialization bit stored in

its shadow memory after the stage. Only threads that represent write operations

may change the initialization bit, and thus the algorithm compares just the thread

ID of each one of those monitoring threads with the ID stored in the touch shadow,

and sets the shadow with the smaller of the two IDs. After all threads have finished

this comparison and setting, the thread ID in the touch shadow that corresponds

to the accessed memory word is the ID of the earliest thread that truly changes its

88

initialization bit, because operations that access previously initialized memory word

have already quit as early detected redundant threads in the previous stage. Also in

this stage, the initialization bits of accessed memory words of those write operation

threads are all set, and all write monitoring threads return at the end of the stage.

Threads that remain in the last stage all represent read operations. They are

either redundant or represent a bug. A remaining read thread is redundant if there

is early write thread that initializes the memory word this thread reads; a remaining

thread represents a bug if the corresponding initialization bit is not set. Redundant

threads safely return with the monitor flag remaining normal, but a buggy monitoring

thread sets the monitor flag with the error code INIT ERR, indicating it has found

an uninitialized read.

In summary,the optimized GPGPU-based monitoring of memory-bug detection

using the algorithm is fully parallel, and, compared to the generic monitoring thread

algorithm using the abstract framework, has no sequential verification in it at all.

Moreover, though it has four stages, it is very likely that all monitoring threads will

finish as early as the end of the second stage, because it should not be uncommon for

a monitored program to have a sequence of read and write instructions that access

only initialized memory.

5.3.1.2 Optimizing Taint Propagation Monitor on GPGPU

The performance of basic taint propagation monitoring on GPGPU can be improved

by redesigning monitoring threads to exploit the characteristics of the monitoring

task. Nevertheless, applying the idea of eliminating redundancy does not work for

taint-propagation. Suppose we refer to redundant monitoring threads in the con-

text of taint-propagation as those threads that propagate to their destinations the

same taint value as their previous taint value. In taint propagation, it is difficult

if not altogether impossible to improve performance by detecting and terminating

89

data declarations:
typedef struct message struct

{Operand1, Operand2, Destination }
message struct msg array[Q LENGTH/2];

\\ flag used in this phase

bool taintOP1, taintOP2, taintDest;

algorithm Optimized Taint-propagation GPGPU-based Monitor:
...

touchShadow[msg array[thread id].Destination] = MAX;

cudaThreadSynchronize();

while(true)
\\ set touch shadow to the earliest ID that may change it

if (touchShadow[msg array[thread id].Destination] > thread ID)

touchShadow[msg array[thread id].Destination] = thread ID;

end if
\\ taint status of source operands

taintOP1 = taintShadow[msg array[thread id].Operand1];

taintOP2 = taintShadow[msg array[thread id].Operand1];

cudaThreadSynchronize();

\\ test whether this thread depends on others

\\ if not, this thread can finish now

if (touchShadow[msg array[thread id].Operand1 >= thread ID)

&& touchShadow[msg array[thread id].Operand2] >= thread ID)

\\ finish propagation here

taintShadow[msg array[thread id].Destination] = (taintOP1 || taintOP2);

\\ reset touch Shadow to MAX

touchShadow[msg array[thread id].Destination] = MAX;

return;
end if
cudaThreadSynchronize();

end while
end algorithm

Figure 5.8: Algorithm of Optimized Taint Propagation GPGPU-based Monitor.

90

early redundant monitoring threads. Unlike memory-bug detection monitoring, most

redundant monitoring threads in taint-propagation cannot be detected by examining

monitoring threads simultaneously. The reason is that for most monitored events

(usually instructions), the taint values to be propagated to the destination are calcu-

lated from taint values of source operands. As the taint values of sources might be

changed by one or more earlier monitoring threads in the same grid, it is hard to even

predict the right taint value to propagate, let alone give a definite answer. Moreover,

in the context of taint-propagation, knowing a thread is redundant does not benefit

performance for we can know only that the thread is redundant until the propagated

taint is correctly calculated.

However, we can improve performance of the GPGPU-based taint-propagation

without violating dependence by applying CPU design’s superscalar pipeline to the

GPGPU-based monitor software. Here we use the following monitored instruction

sequence to explain the idea:

I1 : Add$R1, $R2, $R5

I2 : Add$R3, $R4, $R6

I3 : Add$R3, $R1, $R3

I4 : Mul$R5, $R6, $R1

I5 : Mul$R3, $R4, $R3

(5.1)

This instruction sequence contains five instructions, that are in the 3-operand format

with destination as the last. A GPGPU-based monitor should generate five mon-

itoring threads for these five instructions, performing their correspondending taint

propagation. The dependence graph of this instruction sequence, as shown in Fig-

ure5.9, also reflects dependence among their corresponding monitoring threads. A

superscalar processor would issue these five instructions in just two cycles rather than

91

five cycles given enough hardware resources: first, I1,I2,I3, second, I4,I5. Similarly,

the optimized GPGPU-based monitor could execute five corresponding monitoring

threads in two iterations instead of executing them all sequentially.

 I4

I1 I3I2

 I5

Figure 5.9: Dependence Graph of the Instruction Sequence, Arrows come from de-
pendees to dependents.

Inspired by this observation, we can design monitoring threads to adopt a well

scheduled scheme to execute monitoring threads in iterations. Each iteration executes

and finishes monitoring threads whose source operand taints are not changed by

any other remaining monitoring thread. i.e. we always execute monitoring threads

that are independent of all remaining threads. After an iteration of threads finishes,

more monitoring threads become ready to execute, executes another iteration, and

repeat this process until all monitoring threads in the launch grid finish. Just like a

superscalar processor needs a scoreboard to keep track of the readiness of instructions,

here we can extend the touch memory to contain thread ID information to decide when

to have monitoring threads execute.

To implement this optimization, we change the design of the touch shadow memory

in a fashion similar to the optimized memory-bug detection monitor. Now, touch

shadow memory records a thread ID for each monitored memory word and each

monitored register. That thread ID represents the earliest monitoring thread that may

change the taint status of the monitored memory word or register in a monitoring

thread launch. Unlike memory-bug detection, where the earliest thread certainly

changes its initialization bit, the earliest thread recorded by the touch shadow memory

92

in taint-propagation may not necessarily change the taint bit, but is just the earliest

thread whose destination is the correspondending memory word or register.

Based on this new touch shadow memory design, we replace all phases after the

special-type detection phase with the algorithm shown in Figure 5.7. The algo-

rithm features a while loop of which each iteration has some monitoring threads

finished. The algorithm terminates when all monitoring threads in the grid are fin-

ished. Threads that finish in an iteration are those that do not depend on any other

remaining thread to calculate the taint value of its destination. Therefore, the num-

ber of iterations of the loop is the length of the longest dependence chain of the

instructions that are represented by monitoring threads in the launch. For example,

the monitoring threads as the example sequence of instructions should finish in 2

iterations, which exploits full parallelism without making any speculation. In the

following text, we introduce the algorithm in detail.

The algorithm operates on a grid of monitoring threads in which, each thread

works on a message fetched from the queue, which represents a monitored instruc-

tion. The algorithm starts with the initialization before its main body which is a

loop. During this initialization, the touch shadows of the destinations of instructions

represented by the monitoring threads are all initialized with the MAX ID, which

are equal to the biggest thread ID plus one. As the thread ID stored in the shadow

memory is replace by the ID of the earliest thread that may change the taint in living

threads, this initialization guarantees that all monitoring threads replace the thread

ID properly. After this initialization, all threads are synchronized to make sure they

enter into the loop at the same time.

The loop body consists of two stages: setting touch memory and calculating taints.

These two stages are demarcated by thread synchronization. In the first stage, moni-

toring threads compare their thread ID with the thread ID stored in the touch shadow

that is associated with the destination, and replace the stored ID if the thread ID is

93

smaller. As a result, at the end of this stage, the touch shadow for the destination

has the ID of the earliest thread that may change its taint. Also in this stage, the

taint values of source operands are fetched for the preparation for the next stage.

The second stage calculates the taint value for those thread whose taints of source

operands are ready, which means that both source operand taints are not changed by

any remaining thread. Once a ready monitoring thread has its taint value calculated

and propagated into taint shadow, it resets the touch shadow of the destination to

MAX and returns. The next iteration of the loop will then begin with fewer threads

to execute. As the loop iterates, all monitoring threads soon or later become ready

to calculate and to propagate taint in this stage, and eventually all threads are guar-

anteed to finish.

For a monitoring thread grid, the number of iterations of the loop is exactly the

length of the longest dependence chain of the instructions represented by monitoring

threads in the grid. The most desired case of the algorithm is that all monitoring

threads are thus ready to finish in the first iteration of the loop, which happens when

all monitoring threads are independent of each other. The worst case of the algorithm

is that all monitoring threads are in the same dependence chain and thus one iteration

can finish only one thread. However, the performance of this worst case is equal to

that of running all monitoring threads sequentially, and happens only when there is

absolutely no single bit of instruction level parallelism among instructions represented

by threads in a grid. For most real-world programs, this worst case should happen

rarely. Therefore, the optimized taint-propagation GPGPU-based monitor should

gain significant performance improvement compared to the basic version.

94

5.4 Performance of Optimized GPGPU-based Mon-

itor

In this section, we present the results of our performance evaluation of GPGPU-based

monitors. As the performance of the basic version of the GPGPU-based monitor is

reported in Figure 5.6, this section focuses on the performance of optimized GPGPU-

based monitors. Since we use an architecture that is not yet on market, the perfor-

mance evaluation is conducted through simulation. The CPU core part of the sys-

tem architecture is simulated by using Simics simulation platform [95] with GEMS

simulator [96] to simulate the memory hierarchy. The GPGPU is simulated using

GPGPU-Sim simulator [97]. Using this infrastructure, we have evaluated the perfor-

mance of the optimized GPGPU-based monitors for SPEC2006INT [68] benchmarks

with memory-bug-detection and taint-propagation monitoring tasks. The measured

performance shows a significant improvement compared with the basic GPGPU-based

monitors.

This section is organized as follows: We begin with the description of the in-

frastructure used in the performance evaluation. After that, we demonstrate the

performance of optimized GPGPU-based monitors in comparison to basic GPGPU-

based monitors, and optimized distill-based monitors. We also analyze the statistics

of the optimized GPGPU-based monitors to reveal the source of the improvement.

5.4.1 Infrastructure

The simulation infrastructure used to evaluate the performance of GPGPU-based

monitors consists of two parts: CPU core simulation and GPGPU simulation. The

CPU core simulation uses Simics simulation platform [95] with GEMS simulator [96]

to simulate memory hierarchy; the simulation parameters of CPU and memory are the

same as in chapter 4, Table 4.2. The communication queue between the monitored

95

Table 5.5: GPGPU-based Monitor Simulation Parameters

Shader Parameters

Number of shader cores 8

Core clock rate 800 MHz

Number of DRAM channels 8

Number of blocks per core 8

Maximum thread per core 1024

Warp size 32

Number of registers per core 16384

Memory Parameters

Shared memory per Core 16KB, partitioned from L1 Cache

L1 Cache 64KB, 4B lines, 4-way, LRU

L2 Cache 4MB, 4-way set-assoc, 8 banks

DRAM bus bandwidth 4 Bytes per DRAM cycle

DRAM size 4GB

Number of DRAM banks 8

core and the monitor core has a size of 2048 items, each of 32 bytes.

The GPGPU part of the architecture is simulated using GPGPU-Sim simulator

[97]. Detailed simulation parameters can be found in Table 5.5. The GPGPU-based

monitors are written in CUDA 2.1 [92]. In these monitors, each grid is configured with

1024 monitoring threads, processing 1024 items at one time. Since we configured the

communication queue size to 2048 items, which is double the maximum of GPGPU

concurrently running threads, the extraction logic on the monitored CPU core side

can keep writing to the queue during the execution of monitoring threads.

The performance evaluation adopts SPEC2006INT [68] as monitored programs

with taint propagation and memory-bug detection as monitoring tasks. Benchmarks

are compiled with Gcc4.2.3 with O3 optimization level. Due to limits in the simulation

speed, we simulated 100M instructions for each benchmark, and these instructions

were sampled from different phases of the benchmark’s execution.

96

5.4.2 Performance of Optimized GPGPU-based Monitors

Figure 5.10(a) and Figure 5.10(b) show the results of the performance evaluation of

optimized GPGPU-based monitors for taint propagation and memory-bug detection,

respectively. The bars represent the execution time of the monitors normalized to that

of the execution without monitoring. For each benchmark, three bars represent three

different versions of GPGPU-based monitors: the left-hand bars represent the basic

GPGPU-based version without optimization, the bars in the middle represent the

optimized multi-core based monitor using optimized distill-based monitoring model,

and the right-hand bars optimized GPGPU-based monitors.

These performance results demonstrate the power of the optimizations for taint

propagation and memory-bug detection described in the previous section. For taint-

propagation, the optimization is able to bring the slowdown factor from the 18.97x

of the basic version down to 2.39x on average, and for memory-bug detection, from

13.21x to 1.51x. In the following, we analyze the reasons behind these performance im-

provements in taint propagation and memory-bug detection, respectively. The perfor-

mance results also indicate that even without using the compiler support from which

the optimized distill-based monitors benefit, the optimized GPGPU-based monitor

can achieve a comparable performance for taint-propagation(2.39x of the GPGPU-

based versus 2.367x of the distill-based), and significantly better (1.51x versus 2.18x)

for memory-bug detection. Considering that the compiler support is orthogonal to

GPGPU-based optimizations and parallelization, the future of GPGPU-based moni-

toring looks even more promising.

97

24.72

23.66

14.54

23.05

16.01

13.31

17.62

18.99

10

15

20

25

30

Basic GPGPU-based

Optimized distill-based

Optimized GPGPU-based

Normalized Execution Time

2.70

1.34

3.08 2.90

1.64
2.23 2.68 2.367

1.63

4.69

1.51 1.76
2.20

1.68

3.27
2.39

0

5

401.bzip2 429.mcf 445.gobmk 456.hmmer 458.sjeng 462.libquantum 464.h264ref Average

(a) Performance of Optimized GPGPU-based Monitors: Taint Prop-

agation

5.85

13.31

10.46

22.48

8.96

13.27

18.34

13.24

5

10

15

20

25

Basic GPGPU-based

Optimized distill-based

Optimized GPGPU-based

Normalized Execution Time

2.60

1.38

2.74 2.90

1.42
1.97

2.25
2.18

1.35 1.48 1.41 1.32
1.58 1.54

1.91
1.51

0

5

401.bzip2 429.mcf 445.gobmk 456.hmmer 458.sjeng 462.libquantum 464.h264ref Average

(b) Performance of Optimized GPGPU-based Monitors: Memory-

bug Detection

Figure 5.10: Performance of Optimized GPGPU-based Monitors: Performance is
measured in execution time of monitors normalized to the execution of monitored
program without monitoring. For each benchmark, three bars represent normalized
execution time of three versions of GPGPU-based monitors: left-hand bars represent
the basic version of GPGPU based monitor; middle bars represent the optimized
distill-based monitors; and the right-hand bars optimized GPGPU-based monitors

98

5.4.3 Performance Analysis of Optimized GPGPU-based Mon-

itors: Taint Propagation

For taint-propagation, the optimization is effective because it exploits instruction-level

parallelism among monitored instructions. In the basic version, since most of the time

monitoring threads are dependent on another thread in the same grid, most grids wind

up executing monitoring threads sequentially in 1024 iterations at the verification

stage. In contrast, an optimized taint-propagation GPGPU-based monitor executes

all monitoring threads in fewer iterations, and the number of iterations is the length

of the longest dependence chain among monitoring threads. With this optimization

technique, for the selected SPEC benchmark programs, the average iteration number

is reduced to 154.

The performance charts also reveal a discrepancy in performance across bench-

marks. This should not be surprising as the benchmark simulations vary in the total

number of monitored events, in its memory behavior, and in the degree of instruc-

tion level parallelism (ILP). The total number of monitored events contributes to the

communication cost and monitoring cost of the monitor. The memory behavior of

the benchmark affects not only the ommunication cost, but also the cache behavior

of monitoring threads, as the monitored CPU core, monitor CPU core, and GPGPU

cores all share a unified L2 cache. And most of all, the degree of instruction level par-

allelism (ILP) determines the number of loop iterations to execute all 1024 monitoring

threads in a grid of optimized taint propagation monitoring threads, which is the key

factor in the effectiveness of the optimization. Table 5.6 presents the statistics of

iteration number per grid for each benchmark. The average number of independent

instructions that are monitored can be calculated by dividing the number of threads

in a grid (1024) by the number of iteration. The table also shows the performance

overhead, which reveals a strong correlation between the average number of iterations

99

in a grid and the performance overhead.

Table 5.6: Statistics of Optimized GPGPU-based Taint Propagation Monitor

benchmark average number of performance

iterations per grid overhead

401.bzip2 87.37 1.60x

429.mcf 255.57 4.70x

445.gobmk 99.21 1.49x

456.hmmer 102.0 1.74x

458.sjeng 177.60 2.13x

462.libquantum 105.68 1.68x

464.h264ref 253.98 3.25x

429.mcf has the highest performance overhead in these benchmarks. There are two

factors in this: low instruction-level parallelism and poor cache behavior in shadow

memory. The core of 429.mcf features a linked-list traverse where it tends to have a

long data dependence chain, and this characteristic is reflected in the table statistics

as a high per grid iteration number. In addition, as the touch shadow memory used

in the optimized monitor is one integer (implemented as 16 bytes in our case) per

monitored memory word (which is 64 bytes in the simulated architecture), as opposed

to one bit per monitored word in the basic version, the cache miss problem starts

showing on GPGPU as the monitored program suffer high cache misses.

We have also measured the breakdown of the execution time of the optimized

GPGPU-based monitor. The details are shown in Figure 5.11. In the table, the

execution time of the optimized GPGPU-based monitor is broken down into the time

spent on different activities of the monitor. The statistics show that the percentage

of time spent on special-type detection (including time spent on monitoring special-

type events) is rather fixed, at 3.74% on average. This should not be a surprise

considering that both detection and verification of special-type events are fully par-

allelized. Moreover, the statistics show that a large percentage of time is spent on

100

0.00% 10.00% 20.00% 30.00% 40.00% 50.00% 60.00% 70.00% 80.00% 90.00% 100.00%

401.bzip2

429.mcf

445.gobmk

456.hmmer

458.sjeng

462.libquantum

464.h264ref

Average

Special type detection

Thread Scheduling

Verification

Figure 5.11: Execution Time Breakdown of Optimized GPGPU-based Taint Propa-
gation Monitor

thread scheduling for the optimized GPGPU-based taint propagation monitor. This

portion of execution time is additional, but necessary overhead to pay in order to

exploit the parallelism of taint propagation monitoring threads.

5.4.4 Performance Analysis of Optimized GPGPU-based Mon-

itors: Memory-bug Detection

Thanks to the characteristics of the memory-bug detection monitoring requirements,

the effects of optimization for memory-bug detection GPGPU-based monitors is more

significant than for taint-propagation, as it completely eliminates the possibility of

sequential execution. Furthermore, by detecting redundant threads, it terminates a

large number of monitoring threads early even before they access the touch shadow

memory.

The performance overhead of the optimized memory-bug detection GPGPU-based

monitor comes from three sources: first, communication cost, which is the time spent

101

on transferring the communication queue entries from shared memory to GPGPU

streaming multiprocessors’ private cache; second, time spent on detecting dangling

pointer error and testing whether a thread is redundant, which is the cost all mon-

itoring threads have to pay; and finally, time spent on setting the shadow memory,

and possibly, actual change in init bits. This cost is paid only by a few threads as

most of the threads exit early.

Table 5.7: Statistics of Optimized GPGPU-based Memory-bug Detection Monitor

benchmark non-redundant performance

percentage overhead

401.bzip2 1.18% 1.18x

429.mcf 1.68% 1.41x

445.gobmk 1.48% 1.41x

456.hmmer 0.26% 1.30x

458.sjeng 2.14% 1.45x

462.libquantum 0.72% 1.48x

464.h264ref 1.941% 1.60x

Table 5.7 gives an indirect quantitative measurement of the influence of these three

sources of performance overhead. In this table, for each benchmark, the table gives

the total number of monitoring threads, as well as the number of those monitoring

threads that are not redundant and thus did not exit early. The percentage of non

redundant threads for all benchmarks is negligibly low, which means most of monitor-

ing threads did terminate early. The total number of monitoring threads reflects the

communication cost for each monitoring thread processes a communicated message.

The statistics reveal the reason for slight differences in performance overhead

across benchmarks. Benchmarks with a high number of monitoring threads such

as 462.libquantum and 464.h264ref have higher performance overhead, as they have

to pay more for communication, thread creation and launch. On the other hand,

benchmarks that have a relatively higher percentage of non-redundant threads such

102

as 458.sjeng and 464.h264ref have a higher overhead too, because they execute more

thread synchronization and have to access touch shadow memory more often than

the others.

103

Chapter 6

Related Work

The demand for architectural and system software support for software reliability and

security has significantly increased in the past decade. A growing body of research

efforts has appeared to meet this demand [71, 72, 73, 74, 75, 25]. In this chapter, we

discuss the currently available research on enhancing software security and reliability

by dynamically monitoring a program’s execution. These research efforts are closely

related to the research reported in this dissertation and have either inspired us or

serve as a complements or alternatives to our proposed solutions.

The chronology of these efforts reflects the evolution of proposed methods of soft-

ware reliability and security monitoring: purely software-based monitors built on in-

strumentation have evolved into ideas for using hardware support customized to mon-

itoring tasks; the idea of special hardware support has spun off ideas for more generic

type of hardware support; proposals based on single-core systems have evolved into

multi-core-based systems; proposals using either pure hardware support or software

support have inspired hybrid approaches such as the one reported in this dissertation.

Following this evolution, the rest of this chapter is organized as follows. We start

with instrumentation-based proposals, introducing representative research efforts tak-

ing this approach, as well as some recent efforts in it. Next, we introduce proposals

104

that implement software security and reliability monitoring based on hardware sup-

port specific to monitoring tasks, that target the inefficiency of the instrumentation-

based approach. Following this, we briefly illustrate efforts that take advantage of

multi-core platforms to facilitate software security and reliability monitoring. Fi-

nally, we describe research efforts on parallelizing dynamic program monitoring, and

highlight the differences between the GPGPU-based monitoring proposed in this dis-

sertation and earlier efforts.

6.1 Instrumentation-based Monitors

Instrumentation-based monitoring inserts monitoring code into monitored program to

monitor their execution at run time. Based on the timing of the instrument monitor-

ing code, there are two categories of instrumentation-based monitors: static instru-

mentation monitors and dynamic instrumentation monitors. Representative static

instrumentation monitors include Eraser [9], which rewrites the monitored program’s

binary to insert monitoring code before each shared memory reference to detect data

race; Ccured [12], which checks type safety of C programs by inserting checking code

while the monitored program is being compiled; Purify [5], which insert checking code

into a compiled monitored program before its execution to detect memory-related

bugs, and a taint analysis tool developed by [6].

Instrumentation-based monitors are usually implemented on the basis of a generic

dynamic instrumentation tool. There are a number of well-known dynamic instru-

mentation tools such as PIN [14, 15], DynamoRIO [16], and Valgrind [7]. Valgrind

is the most representative one of those designed to support dynamic program mon-

itoring for security and reliability. What makes Valgrind a good fit for security and

reliability monitoring is that it implements the idea of shadow memories for the mon-

itored program’s memory. This feature makes implementation of heavy-load security

105

and reliability monitors [17, 6, 18, 19] much easier. Because of this feature, however,

monitors built on Valgrind usually suffer high performance overhead.

A few instrumentation-based monitors adopt various technologies to reduce per-

formance overhead. LIFT [20], which is built on PIN, optimizes the instrumentation

code by eliminating unnecessary taint propagation operations, merging taint checking

and simplifying the context switch between the instrumentation code and monitored

code. A more generic optimization for instrumentation code is proposed by Saxena et

al. [21] which uses static binary analysis to enable optimization. The optimization fea-

tures a fine-grained instrumentation to the monitored program. In addition to these

efforts, SHIFT [22] leverages the existing instructions for speculation in Itanium [60]

processor to generate efficient instrumentation code for taint analysis purposes. The

work done by Ruwase et al. [24] take advantage of multi-core and speculatively run

multiple versions of instrumented programs to accelerate dynamic monitoring.

Compared to instrumentation-based monitors most of which are built on single-

core systems, the dynamic monitor proposed in this dissertation has a performance

advantage as it taps more hardware resources to help monitoring and uses different

approach to optimize monitoring. It is true that the optimized GPGPU-based mon-

itor bears a resemblance to LIFT [20] in eliminating redundant taint checking work,

but the two approaches are used in significantly different frameworks and have dif-

ferent implementations. Like Speck [23] and the work done by Ruwase et al. [24],

the GPGPU-based monitor is also an effort to parallelize monitoring on multi-core

platforms. However, the GPGPU-based monitor proposed in this dissertation is fun-

damentally different from earlier proposals in two aspects: it does not use any spec-

ulation; and it uses GPGPU cores instead of CPU cores. The latter difference makes

the GPGPU-based monitor a more scalable approach to parallelize monitoring tasks.

106

6.2 Monitors with Task-specific Hardware Support

Researchers have also proposed hardware supports that are customized to various

monitoring tasks to improve the performance of software security and reliability mon-

itoring. Compared to instrumentation-based monitors, monitors built with hardware

support are efficient and less intrusive to the monitored program because they require

little or no instrumentation of monitoring code. Instead of monitoring code, most of

the monitoring work is done by special hardware in those monitors. For heavy-load

monitoring tasks, this special hardware support is worth considering because heavy-

load instrumentation causes a prohibitively high performance overhead [7, 6].

Among heavy-load monitoring tasks, memory-bug detection and taint propagation

have drawn most attention. As a result, most of the representative task-specific

hardware support proposals build monitors for these two tasks. Of these proposals,

representative memory-bug detection monitors include the following: Memtracker [32]

which associates each word of data in memory with state bits, and uses a state

transition table to keep track of state changes to detect memory reference violations;

Hardbound [40] which proposes a hardware bounded pointer architectural primitive

that serves as an under hood implementation pointer arithmetic in programming

language constructs so that memory bugs are detected at run time without affecting

monitored execution; SafeMem [41], which takes advantage of existing ECC bits in

memory to store states and adds additional hardware logic managing them to detect

memory bugs; and AccMon [42] which proposes a statistics-based hardware support to

detect memory references by outlier PC that likely links to a memory bug. According

the statistics reported in these related publications, all these proposals are capable of

keeping performance overhead of memory-bug detection low.

Representative proposal of special-hardware-based taint-propagation monitors in-

clude the followings: RIFLE [44] that proposes a new instruction set architecture

107

(ISA) which supports taint-propagation monitoring, and define architectural support

that translate binaries in conventional ISA into this new ISA at runtime;Raksha [31]

that adds a few tag bits to registers and memory words, and changes definition of

every instruction to make them support taint-propagation and check safety of them

based on user specified security rules;FlexiTaint [33] proposes an in-order addition to

the back-end of the processor pipeline, which computes taints for every committed

instructions and store taint values into an aggregated taint bits array for all moni-

tored memory words; and Caisson [43] that is essentially a new design of hardware

description language that can be used to design processors with taint-propagation

monitoring feature.

Compared to these memory-bug detection and taint propagation monitors men-

tioned above, the proposed monitors in this dissertation do not use any hardware

support customized to any particular monitoring task. The architectural support

proposed in this dissertation, referred to as extraction logic, extracts only runtime

information of the monitored execution and forwards it into another core or GPGPU

device. By its function definition, it is generic and can serve a large spectrum of mon-

itoring tasks. As a result of this flexibility, the performance of the monitors proposed

in this dissertation is not as good that of the ones that use special hardware support.

However, because of this generality, the monitors proposed in this dissertation are

more acceptable to hardware manufacturers.

6.3 Monitors on Multi-core Platforms

Multi-core architecture has in recent years become the mainstream design of pro-

cessor, and researchers have already started investigating the idea of using multi-

core systems to facilitate dynamic monitoring for software security and reliability.

108

iWatcher [29], one of earliest efforts of this kind proposes a set of architectural sup-

ports that monitor the accesses to memory locations and invoke monitoring functions

when specified reference patterns are detected. This design by itself offers a way of

monitoring functions to be executed in a separate core and iWatcher implemented

this by using TLS to accelerate invocation to monitoring functions.

The first full-fledged dynamic program monitor on a multi-core platform was pro-

posed by Chen et al [35]. Although the performance of that research is not appealing

enough, it established the idea of assigning the monitored execution and the monitor

onto different cores, as well as generic hardware support that extracts information

only from the monitored execution. To improve the performance of multi-core based

monitoring, recent research efforts can be categorized into two main approaches: us-

ing software support and using additional hardware support. In the following, we

introduce some representative research efforts in each of these categories.

Among research efforts on software support, those reported in chapter 4 of this dis-

sertation and [53] represent efforts to use compiler support to reduce communication

and redundant monitoring work. They achieved performance improvement on multi-

core systems without sacrificing the flexibility of monitors; decoupled lifeguards [48]

which are built upon the work reported in [35], propose using a dynamic optimizer

JIT to optimize monitor functions to eliminate redundant monitoring and shortcut

verification. Orthrus [49] provides another perspective on accelerating dynamic pro-

gram monitoring on multi-core systems. It uses LLVM compiler [79] to generate

optimized replicas of the monitored program that are coated with monitoring code,

and to run them in different cores to perform verification simultaneously.

Besides efforts on multi-core-based monitoring acceleration by software support,

other research ideas have been proposed to use hardware support to accelerate multi-

core based monitoring. Chen et al. [34] propose a series of architectural supports

109

to accelerate the multi-core-based monitor reported in [35]. These architectural sup-

ports include an inheritance tracking table for taint propagation, idempotent filters

for memory-bug detection, and Metadata-TLBs for reducing latency to access shadow

memory a.k.a metadata. Other representative proposals of this kind are as follows:

OASES [38, 39] focuses on the common activities of monitoring tasks: for access to

shadow memory, it provides architectural support (in the form of ISA support and

exposed cache events) and corresponding OS support to support efficient implemen-

tation of shadow memory. Work by Hari Kannan [45] proposes a hardware solution

that helps monitors keep track of the access ordering of monitored memory in their

corresponding shadow memory locations.

6.4 Parallel Monitors

To take full advantage of multi-core platforms to improve the performance of dynamic

monitoring, in recent years researchers have proposed various schemes to parallelize

dynamic program monitoring. The work by Oplinger et al. [50, 51] is an early repre-

sentative proposal of slicing the monitored program for parallelization of monitoring.

In Oplinger’s monitor, each monitoring function call spawns a new thread of the

monitored execution to resume the monitored execution in parallel to the monitoring

function. The spawned thread may invoke another monitoring function call, and thus

another thread of monitored execution, and which goes on so that full parallelism is

exploited. The proposal also relies on a Thread Level Speculation (TLS) mechanism

to ensure thread safety. A similar idea is later applied in Pulse [52] to monitor con-

currency bugs among processes by speculatively creating new slices of them to help

the monitor predict buggy behavior. Recent representative work includes Speck [23],

which proposes a relay monitor that pairs monitor threads with slices of monitored

execution, so that not only can monitored execution go speculatively ahead as a new

110

slice when the previous slice is still executing, but the new slice also has its own

monitor thread.

The GPGPU-based monitor proposed in this dissertation is different from all pre-

vious proposals to parallelize dynamic program monitoring. To our best knowledge,

it is the first effort to use GPGPU many-core architecture to parallelize dynamic pro-

gram monitoring for security and reliability. It does not slice monitored programs,

but completely separates monitor code from monitored execution, and it does not use

special hardware support for the purpose of parallelization. These differences have a

profound impact on dynamic program monitoring, as all previous parallelization pro-

posals are based on multiple CPU-core architecture and thus bound by constraints

of availability of resources and power consumption, while using GPGPU is a much

more scalable and environmentally-friendly approach.

111

Chapter 7

Conclusions

Dynamic program monitoring is an effective and powerful approach to enforce soft-

ware security and reliability. As dynamic program monitoring is performed along

side with the monitored program, its efficiency is key to its usability and applicabil-

ity. This dissertation contributes to the research in dynamic program monitoring by

proposing novel technologies to improve the efficiency of dynamic program monitoring

using state-of-the-art multi-core architecture.

In this dissertation, we have proposed a generic hardware support, referred to as

extraction logic, to enable the separation of monitored execution and its monitor.

The extraction logic implements a basic functionality of multi-core dynamic program

monitoring: extracting runtime information of the monitored program. The imple-

mentation is achieved with a desirable design: flexible and configurable to support a

broad spectrum of monitoring tasks, it does not require any change to ISA or CPU

pipeline design or any instrumentation to the monitored program. Extraction logic

serves as the only architectural support for all other techniques reported in this dis-

sertation, and it can be extended to support other research efforts on multi-core-based

dynamic program monitoring.

112

Based on the extraction logic as the architectural support, we have proposed com-

piler support to implement efficient multi-core-based dynamic program monitoring.

The compiler support can automatically generate optimized monitor code from the

monitored program’s source based on monitoring requirements. The generated mon-

itor is referred to as the distill-based monitor. The distill-based monitor not only re-

duces the demand for communication between the monitored core and its monitor, but

also eliminates the dispatching cost incurred by other types of multi-core-based moni-

tor. The performance evaluation of the compiler support shows that the optimization

techniques used in the compiler support can significantly improve the efficiency of

dynamic program monitors in multi-core systems. Compared to other types of multi-

core-based monitor systems that require information forwarding for all instructions,

using the proposed compiler support can improve the performance for memory-bug

detection and taint propagation by a factor of 3 on average for SPEC2006 INT pro-

grams. The performance achieved by the proposed compiler support is comparable

even to that achieved by using dedicated hardware support.

We have also proposed a promising approach for parallelizing dynamic program

monitoring using emerging GPGPU architecture. We first proposed a generic soft-

ware framework on GPGPU that is flexible enough to serve as a guideline to develop

GPGPU-based monitoring for various kinds of monitoring tasks. On top of the generic

framework, we have also developed customized optimization techniques for memory-

bug detection and taint propagation. The performance evaluation shows that the op-

timized GPGPU-based monitors significantly improve performance of the monitoring

tasks taint propagation and memory-bug detection for SPEC2006INT benchmarks.

Compared to traditional instrumentation-based monitoring, the performance over-

head of monitoring is improved by 3.1 times and 5.2 times for taint propagation and

memory-bug detection, respectively.

113

Bibliography

[1] G. Necula and P. Lee. Safe kernel extensions without run-time checking. In Proc.
2nd USENIX Symposium on Operating System Design and Implementation., pages
229-243, 1996.

[2] P. Pratikakis, J. S. Foster, and M. Hicks. Locksmith: Context-Sensitive Cor-
relation Analysis for Race Detection. In ACM SIGPLAN 2006 Conference on
Programming Language Design and Implementation , pages 320-331, Ottawa,
Canada, June 2006.

[3] Yit Phang Khoo, Bor-Yuh Evan Chang, and Jekrey S. Foster. Mixing type check-
ing and symbolic execution. In In ACM SIGPLAN 2010 Conference on Program-
ming Language Design and Implementation, pages 436-447, 2010.

[4] Hongxu Cai, Zhong Shao, and Alexander Vaynberg. Certified Self-Modifying
Code. In Proc. 2007 ACM SIGPLAN Conference on Programming Language De-
sign and Implementation (PLDI’07), San Diego, CA, pages 66-77, June 2007

[5] R. Hastings, B. Joyce, Purify: Fast detection of memory leaks and access errors,
in: the Winter 1992 USENIX Conference, San Francisco, California, pp. 125C138.

[6] J. Newsome, D. X. Song, Dynamic taint analysis for automatic detection, analy-
sis, and signaturegeneration of exploits on commodity software, in: Network and
Distributed Systems Security 2005 (NDSS 2005).

[7] N. Nethercote, J. Seward, Valgrind: A framework for heavyweight dynamic binary
instrumentation, in: ACM SIGPLAN 07 Conference on Programming Language
Design and Implementation (PLDI’07), San Diego, California, USA.

[8] Nicholas Nethercote and Julian Seward. 2007. How to shadow every byte of mem-
ory used by a program. In Proceedings of the 3rd international conference on
Virtual execution environments (VEE ’07).

[9] Stefan Savage, Michael Burrows, Greg Nelson, Patrick Sobalvarro, and Thomas
Anderson. 1997. Eraser: a dynamic data race detector for multithreaded programs.
ACM Transaction of Computer Systems 15, 4 (November 1997), 391-411

114

[10] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all
pointer and array access errors. In ACM SIGPLAN 94 Conference on Program-
ming Language Design and Implementation (PLDI’94), 1994.

[11] Sudheendra Hangal and Monica S. Lam. Tracking down software bugs using
automatic anomaly detection. In ACM SIGSOFT 2002 International Conference
on Software Engineering (ICSE’02), Orlando, Florida, 2002.

[12] J. Condit, M. Harren, S. McPeak, G. Necula, and W. Weimer. Ccured in the
real world. In ACM SIGPLAN 03 Conference on Programming Language Design
and Implementation (PLDI’03), pages 232-244, San Diego,California, 2003.

[13] Andrei Sabelfeld and Andrew C. Myers. Language-based information-flow secu-
rity. IEEE Journal on Selected Areas in Communications, 21(1), January 2003.

[14] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser, Geoff
Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim Hazelwood. 2005. Pin:
building customized program analysis tools with dynamic instrumentation. In
Proceedings of the 2005 ACM SIGPLAN conference on Programming language
design and implementation (PLDI ’05)

[15] Steven Wallace and Kim Hazelwood. 2007. SuperPin: Parallelizing Dynamic
Instrumentation for Real-Time Performance. In Proceedings of the International
Symposium on Code Generation and Optimization (CGO ’07).

[16] Derek L. Bruening. 2004. Efficient, Transparent, and Comprehensive Runtime
Code Manipulation. Ph.D. Dissertation. Massachusetts Institute of Technology,
Cambridge, MA, USA

[17] Michael D. Bond, Nicholas Nethercote, Stephen W. Kent, Samuel Z. Guyer, and
Kathryn S. McKinley. 2007. Tracking bad apples: reporting the origin of null
and undefined value errors. In Proceedings of the 22nd annual ACM SIGPLAN
conference on Object-oriented programming systems and applications (OOPSLA
’07).

[18] I. K. Isaev and D. V. Sidorov. 2010. The use of dynamic analysis for generation of
input data that demonstrates critical bugs and vulnerabilities in programs. ACM
Journal of Programming and Computing Software. 36, 4 (July 2010), 225-236

[19] Alex Groce , Rajeev Joshi, Extending model checking with dynamic analysis, In
Proceedings of the 9th international conference on Verification, model checking,
and abstract interpretation, p.142-156, January 07-09, 2008, San Francisco, USA

[20] Feng Qin, C. Wang, Z. Li, H. seop Kim, Y. Zhou, Y. Wu, Lift: A low-overhead
practical information flow tracking system for detecting security attacks, Microar-
chitecture, 2006. MICRO-39. 39th Annual IEEE/ACM International Symposium
on (Dec. 2006)

115

[21] Prateek Saxena, R Sekar, and Varun Puranik. 2008. Efficient fine-grained binary
instrumentationwith applications to taint-tracking. In Proceedings of the 6th an-
nual IEEE/ACM international symposium on Code generation and optimization
(CGO 2008)

[22] Haibo. Chen, X. Wu, L. Yuan, B. Zang, P.-c. Yew, F. T. Chong, From specula-
tion to security: Practical and efficient information flow tracking using speculative
hardware, in Proceedings of the 35th International Symposium on Computer Ar-
chitecture (ISCA 2008)

[23] Edmund B. Nightingale, Daniel Peek, Peter M. Chen, and Jason Flinn. 2008.
Parallelizing security checks on commodity hardware. In Proceedings of the 13th
international conference on Architectural support for programming languages and
operating systems (ASPLOS 2008)

[24] Olatunji Ruwase, Phillip B. Gibbons, Todd C. Mowry, Vijaya Ramachandran,
Shimin Chen, Michael Kozuch, and Michael Ryan. 2008. Parallelizing dynamic
information flow tracking. In Proceedings of the twentieth annual symposium on
Parallelism in algorithms and architectures (SPAA ’08)

[25] Hossain Shahriar and Mohammad Zulkernine. 2011. Taxonomy and classification
of automatic monitoring of program security vulnerability exploitations. ACM
Journal of System Software 84, 2 (February 2011), 250-269.

[26] E. Witchel, J. Cates, K. Asanovic, Mondrian memory protection, in: 10th In-
ternational Conference on Architectural Support for Programming Languages and
Operating Systems (ASPLOS-X).

[27] J. R. Crandall, F. T. Chong, Minos: Control data attack prevention orthogonal
to memory model, in: MICRO 37: Proceedings of the 37th annual IEEE/ACM
International Symposium onMicroarchitecture, IEEE Computer Society, Washing-
ton, DC, USA, 2004, pp. 221-232

[28] G. E. Suh, J. W. Lee, D. Zhang, S. Devadas, Secure program execution via
dynamic information flow tracking, in: ASPLOS-XI: Proceedings of the 11th in-
ternational conference on Architectural support for programming languages and
operating systems, ACM, New York, NY, USA, 2004, pp 85-96.

[29] P. Zhou, F. Qin, W. Liu, Y. Zhou, J. Torrellas, iwatcher: Simple, general archi-
tectural support for software debugging, in: 31st Annual International Symposium
on Computer Architecture (ISCA’04).

[30] R. Shetty,M. Kharbutli, Y. Solihin,M. Prvulovic, Heapmon: a helper-thread
approach to programmable, automatic, and low-overhead memory bug detection,
IBM Journal of Research and Development archive Volume 50 Issue 2/3, March
2006.

116

[31] M. Dalton, H. Kannan, C. Kozyrakis, Raksha: A flexible information flow archi-
tecture for software security, in: 34th Annual International Symposium on Com-
puter Architecture (ISCA’07).

[32] G. Venkataramani, B. Roemer, Y. Solihin, M. Prvulovic, Memtracker: Efficient
and programmable support for memory access monitoring and debugging, in: 13th
International Symposium on High-Performance Computer Architecture (HPCA-
13).

[33] G. Venkataramani, I. Doudalis, Y. Solihin, M. Prvulovic, Flexitaint: A pro-
grammable accelerator for dynamic taint propagation, in: 14th International Sym-
posium on High-Performance Computer Architecture (HPCA-14).

[34] S. Chen, M. Kozuch, T. Strigkos, B. Falsafi, P. B. Gibbons, T. Mowry, et al.,
Flexible hardware acceleration for instruction-grain program monitoring, in: 34th
Annual International Symposium on Computer Architecture (ISCA-08).

[35] Shimin Chen, Babak Falsafi, Phillip B. Gibbons, Michael Kozuch, Todd C.
Mowry, Radu Teodorescu, Anastassia Ailamaki, Limor Fix, Gregory R. Ganger,
Bin Lin, and Steven W. Schlosser. 2006. Log-based architectures for general-
purpose monitoring of deployed code. In Proceedings of the 1st workshop on
Architectural and system support for improving software dependability (ASID
’06). ACM, New York, NY, USA,

[36] Shimin Chen, Michael Kozuch, Theodoros Strigkos, Babak Falsafi, Phillip B.
Gibbons, Todd C. Mowry, Vijaya Ramachandran, Olatunji Ruwase, Michael
Ryan, Evangelos Vlachos. ”Flexible Hardware Acceleration for Instruction-Grain
Lifeguards”. IEEE Micro, Jan/Feb 2009 Special Issue

[37] Shimin Chen, Phillip B. Gibbons, Michael Kozuch, Todd C. Mowry. ”Log-
Based Architectures: Using Multicore to Help Software Behave Correctly”. ACM
SIGOPS Operating Systems Review, Volume 45 Issue 1, January 2011 (OS Re-
view’11).

[38] V. Nagarajan, R. Gupta., Runtime monitoring on multicores via oases, SIGOPS
Operating System Review 43 (2009) 15-24.

[39] Vijay Nagarajan and Rajiv Gupta. 2009. Architectural support for shadow mem-
ory in multiprocessors. In Proceedings of the 2009 ACM SIGPLAN/SIGOPS in-
ternational conference on Virtual execution environments (VEE ’09)

[40] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. 2008.
Hardbound: architectural support for spatial safety of the C programming lan-
guage. In Proceedings of the 13th international conference on Architectural support
for programming languages and operating systems (ASPLOS XIII)

117

[41] Feng Qin, Shan Lu, and Yuanyuan Zhou. 2005. SafeMem: Exploiting ECC-
Memory for Detecting Memory Leaks and Memory Corruption During Production
Runs. In Proceedings of the 11th International Symposium on High-Performance
Computer Architecture (HPCA ’05)

[42] Pin Zhou, Wei Liu, Long Fei, Shan Lu, Feng Qin, Yuanyuan Zhou, Samuel
Midkiff, and Josep Torrellas. 2004. AccMon: Automatically Detecting Memory-
Related Bugs via Program Counter-Based Invariants. In Proceedings of the 37th
annual IEEE/ACM International Symposium on Microarchitecture (MICRO 37)

[43] Xun Li, Mohit Tiwari, Jason K. Oberg, Vineeth Kashyap, Frederic T. Chong,
Timothy Sherwood, and Ben Hardekopf. 2011. Caisson: a hardware description
language for secure information flow. In Proceedings of the 32nd ACM SIGPLAN
conference on Programming language design and implementation (PLDI ’11)

[44] Neil Vachharajani, Matthew J. Bridges, Jonathan Chang, Ram Rangan, Guil-
herme Ottoni, Jason A. Blome, George A. Reis, Manish Vachharajani, and
David I. August. 2004. RIFLE: An Architectural Framework for User-Centric
Information-Flow Security. In Proceedings of the 37th annual IEEE/ACM Inter-
national Symposium on Microarchitecture (MICRO 37)

[45] Hari Kannan. 2009. Ordering decoupled metadata accesses in multiprocessors.
In Proceedings of the 42nd Annual IEEE/ACM International Symposium on Mi-
croarchitecture (MICRO 42)

[46] Michael Huth and Mark Ryan (2004). Logic in Computer Science (Second Edi-
tion). Cambridge University Press. p. 207. ISBN 0-521-54310-X.

[47] E. M. Clarke, E. A. Emerson, and A. P. Sistla. 1986. Automatic verification of
finite-state concurrent systems using temporal logic specifications. ACM Trans.
Program. Lang. Syst. 8, 2 (April 1986), 244-263

[48] Olatunji Ruwase, Shimin Chen, Phillip B. Gibbons, and Todd C. Mowry. 2010.
Decoupled lifeguards: enabling path optimizations for dynamic correctness check-
ing tools. In Proceedings of the 2010 ACM SIGPLAN conference on Programming
language design and implementation (PLDI ’10)

[49] Ruirui Huang, Daniel Y. Deng, and G. Edward Suh. 2010. Orthrus: efficient
software integrity protection on multi-cores. In Proceedings of the fifteenth edition
of ASPLOS on Architectural support for programming languages and operating
systems (ASPLOS ’10)

[50] Jeffrey Oplinger and Monica S. Lam. 2002. Enhancing software reliability with
speculative threads. In Proceedings of the 10th international conference on Archi-
tectural support for programming languages and operating systems (ASPLOS-X)

118

[51] Jeffrey Thomas Oplinger. 2004. Enhancing Software Reliability with Speculative
Threads. Ph.D. Dissertation. Stanford University, Stanford, CA, USA. Advisor(s)
Monica S. Lam. AAI3145591

[52] Tong Li, Carla S. Ellis, Alvin R. Lebeck, and Daniel J. Sorin. 2005. Pulse: a dy-
namic deadlock detection mechanism using speculative execution. In Proceedings
of the annual conference on USENIX Annual Technical Conference (ATEC ’05).

[53] Improving the Performance of Program Monitors with Compiler Support in
Multi-Core Systems Guojin He and Antonia Zhai, in the Proc. the IEEE In-
ternational Parallel & Distributed Processing Symposium (IPDPS), 2010

[54] Guojin He and Antonia Zhai. 2011. Efficient dynamic program monitoring on
multi-core systems. Journal of System Architecture 57, 1 (January 2011), 121-133

[55] G.Hilton et. Al, The Microarchitecture of the Pentium 4 Processor, Intel Tech-
nology Journal Q1, 2001

[56] R. Varada, M. Sriram, K. Chou, and J. Guzzo. Design and Integration Methods
for a Multi-threaded Dual Core 65nm Xeon Processor. In International Conference
on Computer-Aided Design, Nov 2006

[57] Balaram Sinharoy. 2009. POWER7 multi-core processor design. In Proceedings
of the 42nd Annual IEEE/ACM International Symposium on Microarchitecture
(MICRO 42). ACM, New York, NY, USA

[58] Kostas Pagiamtzis and Ali Sheikholeslami. Contentaddressable memory (CAM)
circuits and architectures:A tutorial and survey. IEEE Journal of Solid-State Cir-
cuits, 41(3):712-727, March 2006.

[59] The SPARC ArchitectureManual, Version 9 .Sun Microsystems Inc., 1994.

[60] Intel Corporation, Intel Itanium 2 Processor Refer-
ence Manual For Software Development and Optimization.
ftp://download.intel.com/design/Itanium2/manuals/25111003.pdf, May 2004,
Section 11.

[61] James Archibald and Jean-Loup Baer. 1986. Cache coherence protocols: evalu-
ation using a multiprocessor simulation model. ACM Transactions on Computer
Systems. 4, 4 (September 1986), 273-298.

[62] Andy Chou, Junfeng Yang, Benjamin Chelf, Seth Hallem, and Dawson Engler.
2001. An empirical study of operating systems errors. In Proceedings of the eigh-
teenth ACM symposium on Operating systems principles (SOSP ’01). ACM, New
York, NY, USA, 73-88

[63] William A. Arbaugh, William L. Fithen, John McHugh, ”Windows of Vulnera-
bility: A Case Study Analysis,” IEEE Computer, pp. 52-59, December, 2000.

119

[64] A. Sabelfeld and A. C. Myers, ”Language-based information-flow security”, IEEE
Journal on Selected Areas in Communications, 2003.

[65] Gerard Boudol. 2009. Secure Information Flow as a Safety Property. In Formal
Aspects in Security and Trust, Pierpaolo Degano, Joshua Guttman, and Fabio
Martinelli (Eds.). Lecture Notes In Computer Science, Vol. 5491. Springer-Verlag,
Berlin, Heidelberg 20-34.

[66] Dinakar Dhurjati and Vikram Adve. 2006. Efficiently Detecting All Dangling
Pointer Uses in Production Servers. In Proceedings of the International Confer-
ence on Dependable Systems and Networks (DSN ’06). IEEE Computer Society,
Washington, DC, USA, 269-280.

[67] Gene Novark, Emery D. Berger, and Benjamin G. Zorn. 2009. Efficiently and
precisely locating memory leaks and bloat. In Proceedings of the 2009 ACM SIG-
PLAN conference on Programming language design and implementation (PLDI
’09).

[68] Cloyce D. Spradling. 2007. SPEC CPU2006 benchmark tools. SIGARCH Com-
put. Archit. News 35, 1 (March 2007), 130-134.

[69] Antonia Zhai, Christopher B. Colohan, J. Gregory Steffan, and Todd C. Mowry.
2002. Compiler optimization of scalar value communication between speculative
threads. In Proceedings of the 10th international conference on Architectural sup-
port for programming languages and operating systems (ASPLOS-X)

[70] Antonia Zhai, J. Gregory Steffan, Christopher B. Colohan, and Todd C. Mowry.
2008. Compiler and hardware support for reducing the synchronization of specu-
lative threads. ACM Trans. Archit. Code Optim. 5, 1, Article 3 (May 2008)

[71] Nicolas Palix et al., 2011. Faults in linux: ten years later. In Proceedings of
the sixteenth international conference on Architectural support for programming
languages and operating systems (ASPLOS ’11). ACM, New York, NY, USA,
305-318.

[72] Gernot Heiser, June Andronick, Kevin Elphinstone, Gerwin Klein, Ihor Kuz, and
Leonid Ryzhyk. 2010. The road to trustworthy systems. In Proceedings of the fifth
ACM workshop on Scalable trusted computing (STC ’10). ACM, New York, NY,
USA

[73] David Monniaux. 2007. Verification of device drivers and intelligent controllers:
a case study. In Proceedings of the 7th ACM & IEEE international conference on
Embedded software (EMSOFT ’07).

[74] Andrew S. Tanenbaum, Jorrit N. Herder, and Herbert Bos. 2006. Can We Make
Operating Systems Reliable and Secure? ACM Computer 39, 5 (May 2006), 44-51.

120

[75] Cristiano Giuffrida, Lorenzo Cavallaro, and Andrew S. Tanenbaum. 2010. We
crashed, now what?. In Proceedings of the Sixth international conference on Hot
topics in system dependability (HotDep’10). USENIX Association, Berkeley, CA,
USA, 1-8

[76] A. Aho, M. Lam, R. Sethi, J. Ullman, Compilers: Principles Techniques and
Tools. 2007. second ed., Pearson Addison Wesley, 2007

[77] Frances E. Allen. 1970. Control flow analysis. In Proceedings of a symposium on
Compiler optimization. ACM, New York, NY, USA

[78] John Ban Nang Kam. 1976. Monotone Data Flow Analysis Frameworks: A
Formal Theory of Global Computer Program Optimization.. Ph.D. Dissertation.
Princeton University, Princeton, NJ, USA. AAI7622636

[79] Chris Lattner and Vikram Adve. 2004. LLVM: A Compilation Framework for
Lifelong Program Analysis & Transformation. In Proceedings of the international
symposium on Code generation and optimization: feedback-directed and runtime
optimization (CGO ’04)

[80] Mark Harris. 2005. Mapping computational concepts to GPUs. In ACM SIG-
GRAPH 2005 Courses (SIGGRAPH ’05), John Fujii (Ed.). ACM, New York, NY,
USA, , Article 50

[81] Krste Asanovic, Rastislav Bodik, James Demmel, Tony Keaveny, Kurt Keutzer,
John Kubiatowicz, Nelson Morgan, David Patterson, Koushik Sen, John
Wawrzynek, David Wessel, and Katherine Yelick. 2009. A view of the parallel
computing landscape. Communications of ACM 52, 10 (October 2009)

[82] Victor W. Lee, Changkyu Kim, Jatin Chhugani, Michael Deisher, Daehyun Kim,
Anthony D. Nguyen, Nadathur Satish, Mikhail Smelyanskiy, Srinivas Chennupaty,
Per Hammarlund, Ronak Singhal, and Pradeep Dubey. 2010. Debunking the 100X
GPU vs. CPU myth: an evaluation of throughput computing on CPU and GPU.
SIGARCH Computer. Architecture News 38, 3 (June 2010)

[83] J. Tolke and M. Krafczyk. 2008. TeraFLOP computing on a desktop PC with
GPUs for 3D CFD. International Journal of Computational Fluid Dynamics. 22,
7 (August 2008), 443-456

[84] Craig M. Wittenbrink, Emmett Kilgariff, and Arjun Prabhu. 2011. Fermi
GF100 GPU Architecture. IEEE Micro 31, 2 (March 2011), 50-59.
DOI=10.1109/MM.2011.24 http://dx.doi.org/10.1109/MM.2011.24

[85] Nvidia Quadro fx5800 http://www.nvidia.com/object/product quadro fx 5800 us.html

[86] AMD Fusion http://sites.amd.com/us/fusion/apu/pages/fusion.aspx

121

[87] Mayank Daga, Ashwin M. Aji, and Wu-chun Feng. 2011. On the Efficacy of a
Fused CPU+GPU Processor (or APU) for Parallel Computing. In Proceedings of
the 2011 Symposium on Application Accelerators in High-Performance Computing
(SAAHPC ’11). IEEE Computer Society, Washington, DC, USA, 141-149

[88] Hadi Esmaeilzadeh, Emily Blem, Renee St. Amant, Karthikeyan Sankaralingam,
and Doug Burger. 2011. Dark silicon and the end of multicore scaling. In Proceed-
ings of the 38th annual international symposium on Computer architecture (ISCA
’11).

[89] AMD. OpenCL: The Open Standard for Parallel Pro-
gramming of GPUs and Multi-core CPUs. http://ati.
amd.com/technology/streamcomputing/opencl.html.

[90] John Nickolls, Ian Buck, Michael Garland, and Kevin Skadron. 2008. Scal-
able Parallel Programming with CUDA. ACM Queue 6, 2 (March 2008), 40-53.
DOI=10.1145/1365490.1365500 http://doi.acm.org/10.1145/1365490.1365500

[91] NVIDIA. 2007. CUDA Technology; http://www.nvidia.com/CUDA.

[92] NVIDIA. 2009. http://developer.nvidia.com/content/cuda-toolkit-21-january-
2009

[93] John L. Henning. 2006. SPEC CPU2006 benchmark descriptions.
SIGARCH Computer. Architecture. News 34, 4 (September 2006), 1-17.
DOI=10.1145/1186736.1186737

[94] John B. Kam and Jeffrey D. Ullman. 1976. Global Data Flow Analysis and
Iterative Algorithms. Journal of ACM 23, 1 (January 1976), 158-171

[95] Peter S. Magnusson, Magnus Christensson, Jesper Eskilson, Daniel Forsgren,
Gustav Hallberg, Johan Hogberg, Fredrik Larsson, Andreas Moestedt, and Bengt
Werner. 2002. Simics: A Full System Simulation Platform. ACM Computer 35, 2
(February 2002), 50-58

[96] Milo M. K. Martin, Daniel J. Sorin, Bradford M. Beckmann, Michael R. Marty,
Min Xu, Alaa R. Alameldeen, Kevin E. Moore, Mark D. Hill, and David A. Wood.
2005. Multifacet’s general execution-driven multiprocessor simulator (GEMS)
toolset. SIGARCH Computer Architecture News 33, 4 (November 2005), 92-99

[97] Ali Bakhoda, George Yuan, Wilson W. L. Fung, Henry Wong, and Tor M.
Aamodt. Analyzing cuda workloads using a detailed gpu simulator. In IEEE Inter-
national Symposium on Performance Analysis of Systems and Software (ISPASS),
Boston, MA, USA, April 2009.

122

	Acknowledgements
	Abstract
	List of Tables
	List of Figures
	List of Abbreviations
	Introduction
	Background of Dynamic Program Monitoring and Its Challenges
	Multi-core-based Dynamic Program Monitoring
	Major Research Efforts and Results in the Dissertation
	Organization of the Manuscript

	Hardware Support for Dynamic Program Monitoring on Multi-core Platforms
	Overview of Hardware Support
	Table-Driven Extraction Logic
	Forward-Bit-Based Extraction Logic
	Fetching Component
	Forwarding Component

	Execution Models of Multi-core-based Program Monitor
	Example of Monitor Models
	Dispatch-Based Monitor
	Dispatching Routine
	Monitoring Functions
	Initialization and Update Routines

	Distill-based Monitor
	Key Idea of Distill-based Monitor
	Generating Distill-based Monitor
	Monitoring Functions

	A Qualitative Analysis of Performance Overhead
	Analysis of Performance Overhead of Distill-based Monitor
	How Distill-based Monitor Reduces Performance Overhead

	Optimization of Distill-based Monitor
	General Ideas and Concepts of the Optimization
	Algorithm Overview
	Information Needed by the Algorithm
	Reaching Definition
	Basic Dependence Set
	Computation Stack

	Select OptCommu and OptCompute Set: Details of Algorithm
	Select OptCommu and OptCompute Set: Forward DFA Pass
	Estimation of Benefit and Cost

	Discussion of Complexity of the Optimization
	Complexity of Information Collection DFA Passes
	Analysis of Complexity of OptCommu and OptCompute Set Selection

	Performance Evaluation
	Infrastructure
	Performance of Different Monitor Implementations
	Comparison with Hardware-Based Optimizations

	Parallelize Program Monitoring Using GPGPU
	GPGPU Architecture to Parallelize Dynamic Program Monitoring
	Integrating CPU and GPGPU Cores
	Characteristics of Memory-Bug Detection and Taint Propagation
	Memory-Bug Detection
	Taint Propagation

	Abstract Framework of GPGPU-based Monitor
	GPGPU-based Monitoring
	Overview of the GPGPU-based Monitor
	Implementation of Monitoring Thread
	Abstract Framework of Monitoring Thread
	Implementation of Monitoring Thread for Memory-bug Detection
	Implementation of Monitoring Thread for Taint-Propagation

	Optimization of GPGPU-based Monitors
	Techniques of Optimizing GPGPU-based Monitor
	Optimizing Memory-bug Detection Monitor on GPGPU
	Optimizing Taint Propagation Monitor on GPGPU

	Performance of Optimized GPGPU-based Monitor
	Infrastructure
	Performance of Optimized GPGPU-based Monitors
	Performance Analysis of Optimized GPGPU-based Monitors: Taint Propagation
	Performance Analysis of Optimized GPGPU-based Monitors: Memory-bug Detection

	Related Work
	Instrumentation-based Monitors
	Monitors with Task-specific Hardware Support
	Monitors on Multi-core Platforms
	Parallel Monitors

	Conclusions
	Bibliography

