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Abstract

Frequent loss or attenuation of signals in urban areas and integrity (or reliability of

system performance) are two principal challenges facing the Global Navigation Satel-

lite Systems or GNSS today. They are of critical importance especially to safety or

liability-critical applications where system malfunction can cause safety problems or has

legal/economic consequences. To deal with the problem of integrity, algorithms called

integrity monitors have been developed and fielded. These monitors are designed to

raise an alarm when situations resulting in misleading information are identified. How-

ever, they do not enhance the ability of a GNSS receiver to track weak signals. Among

several approaches proposed to deal with the problem of frequent signal outage, an

advanced GNSS receiver architecture called vector tracking loops has attracted much

attention in recent years.

While there is an extensive body of knowledge that documents vector tracking’s

superiority to deal with weak signals, prior work on vector loop integrity monitoring is

scant. Systematic designs of a vector loop-integrity monitoring scheme can find use in

above-mentioned applications that are inherently vulnerable to frequent signal loss or

attenuation. Developing such a system, however, warrants a thorough understanding

of the workings of the vector architecture as the open literature provides very few

preliminary studies in this regard.

To this end, the first aspect of this research thoroughly explains the internal

operations of the vector architecture. It recasts the existing complex vector architecture

equations into parametric models that are mathematically tractable. An in-depth

theoretical analysis of these models reveals that inter-satellite aiding is the key to

vector tracking’s superiority.

The second aspect of this research performs integrity studies of the vector loops.

Simulation results from the previous analysis show that inter-satellite aiding allows easy

propagation of errors (and faults) among satellite loops in vector tracking mode. Hence,
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the basic single fault requirement of the traditional Receiver Autonomous Integrity

Monitoring or RAIM is violated with the pseudorange measurements of the vector

architecture. This work develops a vector loop RAIM scheme that addresses above

limitation. The designed vector loop RAIM algorithm is validated via a high fidelity

simulation of an aircraft making an instrument approach.

iv



Contents

Acknowledgments i

List of Tables x

List of Figures xi

1 Introduction 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Ubiquity of GNSS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 GNSS Signal Vulnerability . . . . . . . . . . . . . . . . . . . . . . . . . 4

1.3.1 Signal Loss or Attenuation in Urban Areas . . . . . . . . . . . . 4

1.3.2 RF Interference . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.3.3 Atmospheric Disturbances . . . . . . . . . . . . . . . . . . . . . 6

1.4 Tracking Threshold of a Stand-Alone GNSS Receiver . . . . . . . . . . 7

1.5 Methods for Improving Robustness . . . . . . . . . . . . . . . . . . . . 9

1.5.1 Advanced Antenna Technology . . . . . . . . . . . . . . . . . . 9

1.5.2 Inertial Aiding . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.5.3 RF Aiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.4 Vision Aiding . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

1.5.5 Vector Tracking . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

1.6 Previous Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

1.7 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

1.8 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

1.9 Thesis Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2 Basics of GPS Signal Tracking 19

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

v



2.2 GPS Signal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2.1 Carrier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.2 Code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

2.2.3 Navigation Data . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.3 Receiver Front End Processing . . . . . . . . . . . . . . . . . . . . . . . 24

2.3.1 Receiver Antenna . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.2 Low Noise Amplifier and Noise Figure . . . . . . . . . . . . . . 26

2.3.3 Bandpass Filters . . . . . . . . . . . . . . . . . . . . . . . . . . 26

2.3.4 Amplifiers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.3.5 Frequency Down Conversion . . . . . . . . . . . . . . . . . . . . 27

2.3.6 Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

2.3.7 Conversion to Baseband . . . . . . . . . . . . . . . . . . . . . . 28

2.3.8 Reference Oscillator and Synthesizer . . . . . . . . . . . . . . . 29

2.4 Multi-Channel Digital Signal Processing . . . . . . . . . . . . . . . . . 29

2.4.1 Doppler Removal . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.4.2 Code Wipeoff and Correlation . . . . . . . . . . . . . . . . . . . 30

2.5 Signal Acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

2.6 Signal Tracking and Navigation . . . . . . . . . . . . . . . . . . . . . . 36

2.6.1 Scalar Tracking Architecture . . . . . . . . . . . . . . . . . . . . 36

2.6.1.1 Discriminators . . . . . . . . . . . . . . . . . . . . . . 38

2.6.1.2 Loop Filter . . . . . . . . . . . . . . . . . . . . . . . . 43

2.6.1.3 Noise Bandwidth . . . . . . . . . . . . . . . . . . . . . 44

2.6.1.4 NCO . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

2.6.1.5 Tracking Loop Performance Metric . . . . . . . . . . . 46

2.6.1.6 Generation of Pseudorange, Delta Pseudorange and Car-

rier Phase Measurements . . . . . . . . . . . . . . . . . 47

2.6.1.7 Navigation Processor . . . . . . . . . . . . . . . . . . . 48

2.7 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3 Basics of Vector Tracking Architecture 50

3.1 Vector Tracking Architecture . . . . . . . . . . . . . . . . . . . . . . . . 50

3.1.1 Navigation Filter . . . . . . . . . . . . . . . . . . . . . . . . . . 52

3.1.1.1 Coherent Architecture . . . . . . . . . . . . . . . . . . 54

3.1.1.2 Non-Coherent Architecture . . . . . . . . . . . . . . . 55

3.1.2 Amplitude Estimator . . . . . . . . . . . . . . . . . . . . . . . . 57

3.1.3 Code and Carrier NCO Corrections for Vector Loops . . . . . . 57

vi



3.1.4 Vector Loop Performance Metric . . . . . . . . . . . . . . . . . 60

3.2 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4 Vector Loop Parametric Models 61

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4.2 Parametric Models of Vector Tracking Loops . . . . . . . . . . . . . . . 62

4.2.1 Discrete Parametric Model . . . . . . . . . . . . . . . . . . . . . 62

4.2.1.1 VFLL Discrete Parametric Model . . . . . . . . . . . . 62

4.2.1.2 VDLL Discrete Parametric Model . . . . . . . . . . . . 69

4.2.2 Transfer Function Model . . . . . . . . . . . . . . . . . . . . . . 71

4.2.2.1 VFLL Transfer Function Model . . . . . . . . . . . . . 74

4.2.2.2 VDLL Transfer Function Model . . . . . . . . . . . . . 79

4.2.2.3 Vector Loop Noise Bandwidths . . . . . . . . . . . . . 81

4.2.2.4 Sample Transfer Function Models . . . . . . . . . . . . 103

4.2.3 Vector Tracking’s Superiority: An Explanation . . . . . . . . . . 109

4.3 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.3.1 Two Dimensional User Geometry . . . . . . . . . . . . . . . . . 115

4.3.2 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 115

4.4 Preliminary Guidelines for Achieving Better

Performance of Scalar Loops . . . . . . . . . . . . . . . . . . . . . . . . 127

4.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129

5 Integrity Analysis of Vector Tracking Architecture 131

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131

5.2 Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133

5.3 Scalar and Vector Loop RAIM Algorithms . . . . . . . . . . . . . . . . 135

5.3.1 Scalar Loop RAIM . . . . . . . . . . . . . . . . . . . . . . . . . 135

5.3.1.1 Pseudorange Error Models . . . . . . . . . . . . . . . . 136

5.3.1.2 Fault Detection Methods . . . . . . . . . . . . . . . . . 141

5.3.1.3 Vertical and Horizontal Position Errors of EKF . . . . 145

5.3.1.4 Protection Levels . . . . . . . . . . . . . . . . . . . . . 152

5.3.2 Vector Loop RAIM . . . . . . . . . . . . . . . . . . . . . . . . . 154

5.3.2.1 Coherent Architecture . . . . . . . . . . . . . . . . . . 155

5.3.2.2 Non-Coherent Architecture . . . . . . . . . . . . . . . 157

5.4 Simulation Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

5.4.1 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . 165

vii



5.5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170

6 Validation of Vector Loop RAIM with GPS Measurements 171

6.1 Motivation for Scenario Selection . . . . . . . . . . . . . . . . . . . . . 171

6.2 Key Characteristics of Simulation . . . . . . . . . . . . . . . . . . . . . 173

6.2.1 Low C/N0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . 174

6.3 Validation Results of RAIM Algorithm . . . . . . . . . . . . . . . . . . 176

6.3.1 Scalar and Vector Loop Design Parameters . . . . . . . . . . . . 177

6.3.2 Results with Spirent Data . . . . . . . . . . . . . . . . . . . . . 179

6.3.2.1 Vector and Scalar Loop Pseudorange Noise and Residuals180

6.3.2.2 Error in Code Phase Discriminator Outputs . . . . . . 183

6.3.2.3 RAIM Performance with Spirent Data . . . . . . . . . 187

6.3.3 Results with Low C/N0 Data . . . . . . . . . . . . . . . . . . . 189

6.3.3.1 Case I . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.3.3.2 Case II . . . . . . . . . . . . . . . . . . . . . . . . . . 191

6.3.3.3 Case III . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.3.3.4 Case IV . . . . . . . . . . . . . . . . . . . . . . . . . . 194

6.3.4 Sensitivity of Protection Levels to Number of Terms . . . . . . . 197

6.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198

7 Conclusions and Recommendations for Future Research 200

7.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

7.2 Future Research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 202

References 205

A 215

A.1 Derivation of σ2
IQ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

B 223

B.1 Upper Bound on LOS Rate of Change . . . . . . . . . . . . . . . . . . 223

B.2 Proof that Diagonal Elements of Gd, lKv, l are Inversely Related to Num-

ber of Satellites . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224

C 225

C.1 Upper Bound on Cumulative Distribution Function of HPE . . . . . . . 225

viii



C.2 Proof that Fault Detection Test Statistic and EKF Position Error are

Statistically Independent . . . . . . . . . . . . . . . . . . . . . . . . . . 230

C.2.1 Snapshot Fault Detection Method . . . . . . . . . . . . . . . . . 230

C.2.2 Fault Detection Method Using Current and Past Snapshot Test

Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233

D 235

ix



List of Tables

5.1 Scalar Loop Design Parameters . . . . . . . . . . . . . . . . . . . . . . 166

5.2 Vector Loop Design Parameters . . . . . . . . . . . . . . . . . . . . . . 167

5.3 Fault Detection Times Since the Onset of Fault . . . . . . . . . . . . . 169

6.1 Scalar Loop Design Parameters . . . . . . . . . . . . . . . . . . . . . . 177

6.2 Vector Loop Design Parameters . . . . . . . . . . . . . . . . . . . . . . 178

x



List of Figures

1.1 GPS Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Satellite Signals in an Urban Canyon in Downtown Minneapolis; Solid

Lines: Direct LOS Signals; Dashed Lines: Reflected Signals . . . . . . . 5

1.3 Portions of the Trip Testing Signal Outage in a Typical Urban Environ-

ment (Minneapolis/St. Paul, MN); Placemarks Show the Outbound Leg

of the Test Route, with Thick Solid Lines Indicating Data Loss . . . . . 7

1.4 Histogram Plots of C/N0 on Three Different Days. It Should be Noted

that the Vertical Axis Represents the Percentage of the Data Output by

the Receiver when the Signal was Tracked . . . . . . . . . . . . . . . . 8

1.5 Vector Loop Performance with Static GPS Measurements . . . . . . . . 11

1.6 Scalar Loop Performance with Static GPS Measurements . . . . . . . . 12

2.1 GPS Signal Structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.2 GPS C/A-Code Power Spectral Density and Correlation Functions . . . 22

2.3 High Level Schematic Diagram of a Conventional GPS Receiver . . . . 25

2.4 BPSK Code Auto-Correlation Peak for Infinite Pre-Correlation Band-

widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.5 Scalar Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

2.6 Discriminator Outputs in the Absence of Input Noise . . . . . . . . . . 39

2.7 Scalar Tracking Loop Block Diagram . . . . . . . . . . . . . . . . . . . 43

2.8 Noise Equivalent Bandwidth . . . . . . . . . . . . . . . . . . . . . . . . 45

3.1 Vector Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

3.2 Vector Algorithm Time Line . . . . . . . . . . . . . . . . . . . . . . . . 52

3.3 Doppler Frequency Corrections for Vector Loop NCOs; Vertical Steps

Correspond to NCO Frequency Updates . . . . . . . . . . . . . . . . . 59

xi



4.1 Acceleration and Jerk Components of a GPS satellite . . . . . . . . . . 64

4.2 Implementation of VDLL Code Phase Corrections . . . . . . . . . . . . 80

4.3 Graphical Representation of Vector Loop Noise Bandwidth Used for its

Performance Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

4.4 Graphical Representation of Vector Loop Noise Bandwidth Used for

Comparison and Design of Scalar Tracking Loops . . . . . . . . . . . . 85

4.5 Discrete-Domain to Continuous-Domain Noise Bandwidth Ratios of VFLL

for Different Measurement Update Rates; All Channels have the Same

Noise Variance. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.6 Discrete-Domain to Continuous-Domain Noise Bandwidth Ratios of VFLL

for Different Measurement Update Rates; In this Figure the Noise Vari-

ance Varies across Channels, unlike Figure 4.5. The Bandwidths are

Calculated Using the First Definition. . . . . . . . . . . . . . . . . . . . 96

4.7 Discrete-Domain to Continuous-Domain Noise Bandwidth Ratios of VFLL

for Different Measurement Update Rates; In this Figure the Noise Vari-

ance Varies across Channels, unlike Figure 4.5. The Bandwidths are

Calculated Using the Second Definition. . . . . . . . . . . . . . . . . . 97

4.8 Discrete-Domain and Continuous-Domain Noise Bandwidths of VFLL

for Different Measurement Update Rates . . . . . . . . . . . . . . . . . 99

4.9 Discrete-Domain and Continuous-Domain Noise Bandwidths of VFLL

for Different Measurement Update Rates; In this Figure the Noise Vari-

ance Varies across Channels, unlike Figure 4.8. The Bandwidths are

Calculated Using the First Definition. . . . . . . . . . . . . . . . . . . . 101

4.10 Discrete-Domain and Continuous-Domain Noise Bandwidths of VFLL

for Different Measurement Update Rates; In this Figure the Noise Vari-

ance Varies across Channels, unlike Figure 4.8. The Bandwidths are

Calculated Using the Second Definition. . . . . . . . . . . . . . . . . . 102

4.11 Transfer Funtion Model with Equal Noise Variance of All Channels for

T = 0.1 sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

4.12 Transfer Funtion Model with Equal Noise Variance of All Channels for

T = 0.02 sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

4.13 Transfer Funtion Model with Different Noise Variances across Channels

for T = 0.1 sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

4.14 Transfer Funtion Model with Different Noise Variances across Channels

for T = 0.02 sec . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108

xii



4.15 Velocity Constraint: All Doppler Frequencies are Generated by the Same

User Velocity and Clock Drift . . . . . . . . . . . . . . . . . . . . . . . 110

4.16 Least Squares Constraint: This Constraint Enables Internal Aiding among

Tracking Loops and Guarantees Convergence when Good Signal-Strength

Satellites or Satellites with Small Doppler Errors (e.g., Satellites 1 and 2)

Aid Low C/N0 Satellites or Satellites with Large Doppler Errors (Satel-

lite 3) in such a Way that Minimizes their Errors. . . . . . . . . . . . . 111

4.17 Description of User Geometry for Simulation Studies; PS Stands for

Ground-Based Pseudolites . . . . . . . . . . . . . . . . . . . . . . . . . 114

4.18 Doppler Plots of Scalar and Vector Tracking Loops. VTL: Vector Track-

ing Loops. STL: Scalar Tracking Loops . . . . . . . . . . . . . . . . . . 117

4.19 Evolution of VFLL Noise Bandwidths in Time for Simulation Geometry 119

4.20 Internal Aiding in Vector Tracking Loops: (a) Pseudolites 2 and 3; (b)

Pseudolites 1 and 5; (c) Pseudolites 4 and 6 . . . . . . . . . . . . . . . 122

4.21 Histogram Plots; VTL: Vector Tracking Loops; STL: Scalar Tracking

Loops . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 126

5.1 Propagation of Fault among Channels . . . . . . . . . . . . . . . . . . . 133

5.2 Scalar Loop RAIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

5.3 Chi-Square PDF (Assuming n - 4 = 1) . . . . . . . . . . . . . . . . . . 144

5.4 (a) Shows Four Quadrants of Operation on the Statistic-Position Error

Plane; (b) Pictorially Describes the Relationship between Protection

Levels and Test Statistic at a Given Epoch under Fault; PL: Protection

Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146

5.5 Vector Tracking Architecture . . . . . . . . . . . . . . . . . . . . . . . . 154

5.6 Vector Loop RAIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156

5.7 Description of User Geometry . . . . . . . . . . . . . . . . . . . . . . . 165

5.8 Evolution of Test Statistic with Time . . . . . . . . . . . . . . . . . . . 168

5.9 HPL and HPE of Scalar and Vector Loops . . . . . . . . . . . . . . . . 169

6.1 Simulated Approach Course and Signal Anomalies along the Approach 173

6.2 Skyplot of GPS Satellite Visibility during Approach . . . . . . . . . . . 175

6.3 Low C/N0 Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 176

6.4 Noise in Vector Loop Pseudorange Measurements . . . . . . . . . . . . 180

6.5 Vector Loop Pseudorange Residuals and Test Statistics Derived from

the Pseudorange Residuals . . . . . . . . . . . . . . . . . . . . . . . . . 181

xiii



6.6 Scalar Loop Pseudorange Noise and Residuals . . . . . . . . . . . . . . 182

6.7 Error in Vector Loop Code Phase Discriminator Outputs and in Scalar

Loop Pseudorange Residuals . . . . . . . . . . . . . . . . . . . . . . . . 184

6.8 Reconstructed Autocorrelation Functions of Channels 2 and 8 . . . . . 186

6.9 Error in Vector Loop Code Phase Discriminator Outputs after Correct-

ing the Slope of the Autocorrelation Function . . . . . . . . . . . . . . 186

6.10 Evolution of Scalar and Vector Loop Test Statistics for Spirent Data . . 187

6.11 Scalar and Vector Loop Horizontal Protection Levels and Position Errors

for Spirent Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188

6.12 Scalar and Vector Loop Test Statistics for Case I . . . . . . . . . . . . 189

6.13 Scalar and Vector Loop Horizontal Protection Levels and Position Errors

for Case I . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 190

6.14 Scalar and Vector Loop Test Statistics for Case II . . . . . . . . . . . . 191

6.15 Scalar and Vector Loop HPL and HPE for Case II; Note that Scalar

Loop Results under Fault are Divided into Two Subplots on the Bottom

Right Corner for Visual Clarity; The First Subplot Shows Results from

1 min to 2.5 min into Simulation and the Second One Shows Results 2.5

min onwards . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 192

6.16 Vector Loop Test Statistics for Case III . . . . . . . . . . . . . . . . . . 193

6.17 Vector Loop HPL and HPE for Case III . . . . . . . . . . . . . . . . . 193

6.18 Vector Loop Test Statistics for Case IV . . . . . . . . . . . . . . . . . . 194

6.19 Vector Loop HPL and HPE for Case IV; Note that the Entire Time

Interval is Divided into Three Sub-intervals . . . . . . . . . . . . . . . . 195

6.20 Zoom in View of Vector Loop HPL and HPE under Fault for Case IV

for Sub-interval (2.6 - 3) min into Simulation . . . . . . . . . . . . . . . 196

6.21 Sensitivity of HPL to the Number of Terms at C/N0 = (44 - 49) dB-Hz 197

6.22 Sensitivity of HPL to the Number of Terms at C/N0 = (25 - 30) dB-Hz 198

A.1 Auto Correlation Functions . . . . . . . . . . . . . . . . . . . . . . . . 218

C.1 Difference between G(k) and H(k) for Different Values of k . . . . . . . 229

D.1 Approach Plate of Runway 02L, Changi International Airport, Singapore 235

xiv



Chapter 1

Introduction

1.1 Overview

Although originally envisioned to serve the US military, the Global Positioning Sys-

tem or GPS today is used in a broad spectrum of non-military applications ranging

from civil aviation [1], highway traffic management [2], [3] to guiding visually impaired

individuals [4]. Over the years, it has evolved into an indispensable infrastructure of

society as everyday activities, such as banking operations [5], power grid control [5]

and precision agriculture [6], are increasingly dependent on its positioning, navigation

and timing (PNT) services. The reliance on GPS for navigating from one location to

another has grown so much in recent years that it is now used as a standard feature

in many consumer products such as mobile phones, netbooks and tablets, etc. [7]. Ac-

cording to Berg Insight, a Swedish research company that tracks pivotal developments

in next generation technologies, global shipments of GPS-enabled mobile phones in-

creased almost 97 percent in 2010 to 295 million units [8]. With a compound annual

growth rate of 28.8 percent, shipments will reach 940 million units in 2015, it fore-

casted. Furthermore, as the number of GPS applications grows, so are increasingly

complex user needs which, in turn, open up new frontiers of GPS usage that could not

have been imagined earlier. Remote sensing of the environment using GPS reflections

is worthy of mention in this regard [9].

The trend of using GPS everywhere, including applications where system mal-

function or disruption can cause safety problems or has legal/economic consequences,

naturally brings forth the need to improve its robustness against numerous sources of

signal degradations. Some of these include atmospheric disturbances; signal blockage

by tall buildings or trees; and intentional or unintentional interference. For example,
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a GPS-based driver-assist system that alerts the driver when another vehicle is ap-

proaching around the next corner might lead to catastrophe if it malfunctions when

needed most. Or, large position errors without warnings may result in the guidance

system telling visually impaired persons that they are safe and on the sidewalk when

they are actually a few meters in the crosswalk. Consequently, developing innovative

electronics and receiver architectures to overcome the vulnerability of GPS (and other

future Global Navigation Satellite Systems or GNSS) signals has long been the subject

of much research. Vector tracking (or vector tracking loops) is one such advanced ar-

chitecture which has attracted much attention in recent years because of its promise to

address the issue of robustness. Analyzing some of the key features of this architecture

is the focus of the work reported in this thesis.

It is well documented in the literature that vector tracking loops can track weak,

attenuated GPS signals, bridge through momentary signal outage and withstand high

user dynamics [10]. The ability of vector tracking to operate with low powered signals

and high dynamics is attributed to the fact that, unlike scalar tracking, it processes

all satellite signals in unison [11]. The conventional scalar architecture performs the

functions of satellite signal tracking and user position, velocity and time (PVT) esti-

mation independently, resulting in a two-stage, cascaded structure of parallel tracking

loops - one for each satellite channel - and a navigation filter. The vector tracking

architecture combines these two functions into one by processing all satellite signals

together inside a central navigation filter and then closing the signal tracking loops

with the filter outputs. Thus, it eliminates independent tracking loops used in the

scalar architecture.

Even though there is a large body of work documenting vector tracking’s su-

periority to deal with weak signals or high dynamics, prior work on vector loop-based

integrity monitoring is scant [12]. Integrity refers to the ability of a system to issue

timely warnings to the user when the system operation is not considered safe. Sys-

tematic designs and performance analysis of vector loop integrity monitoring schemes

deserve extensive studies. This is because the vector architecture, when equipped with

integrity monitoring, can be expected to have an edge in afore-mentioned applications.

These applications are inherently susceptible to signal attenuation as well as hazardous

and misleading information. However, owing to the fundamental difference in the way

scalar and vector tracking loops operate, the principles of scalar loop-integrity monitor-

ing may not be directly applicable to the vector architecture. This warrants a thorough

understanding of vector loop internal operations as well as reasons for its superiority
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before designing its integrity monitoring algorithm. The literature (in particular, open

literature) provides very few preliminary studies in this regard [10], [11]. Such insight

can also lead to the development of architectures that are less complex, but offer almost

all benefits of vector loops. In response to this challenge, the research in this thesis

provides a different, more intuitive perspective on the internal workings of the vector

architecture. This analysis, in parallel with explaining vector loops’ superiority, points

to an important pitfall of such complex architecture which naturally leads to extensive

integrity studies of vector tracking. Thus, the second part of this thesis provides an

in-depth integrity analysis of vector tracking. The next few sections of this chapter

describe in detail the significance and motivation behind the research in this thesis.

1.2 Ubiquity of GNSS

Over the past decade, the advent of several global and regional satellite constellations

has ushered in a new era of multiple satellite systems collectively known as GNSS.

They comprise four global systems (the United State’s GPS, the Russian Federation’s

GLONASS, the European Union’s Galileo and China’s Compass) and two regional

systems (Japan’s QZSS and India’s IRNSS). Of all, GPS is the only component of

GNSS systems that has full operational capability at the time of writing this thesis.

Consequently, GPS and GNSS will be used synonymously in this thesis.
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GPS today has expanded so widely that its civilian applications now outnum-

ber military ones, thus enabling it to become an integral part of the daily lives of

many. Figure 1.1 illustrates four key facets of GPS applications which range from

supporting transportation and communications systems, operating financial networks

to synchronizing power grid time. Some other important uses of GPS include mass

market applications (e.g., driver-assist systems, personal navigation devices), survey-

ing and geodesy [13], scientific applications such as remote sensing [9] and atmospheric

occultation measurements [14]. In addition, a new set of applications have emerged

recently which involve the use of GPS signals for authentication purposes [15]. An

example in this vein is the seamless tracking of shipments from source to destination,

thereby enhancing the efficiency of customs operations at land and maritime ports of

entry. It is now estimated that there are close to one billion GPS receivers world-

wide [16]. The GPS market worldwide (including core GPS market and GPS-enabled

market) is projected to reach about $216 billion in 2012 [17]. Thus, GPS now is so

entrenched into day-to-day activities that any disruption or malfunction of its service

can incur safety or legal/economic consequences. As a result, considerable effors are

underway in both private and public sectors to detect, identify and mitigate GPS (and

future GNSS) vulnerability to ensure robustness and integrity of the service. In what

follows, potential sources of GNSS vulnerability and proposed ways to deal with them

are discussed briefly.

1.3 GNSS Signal Vulnerability

The various sources of GNSS signal vulnerability can be categorized into three groups:

Signal loss or attenuation due to physical obstructions, radio frequency (RF) interfer-

ence and atmospheric disturbances. Each of these sources and their effects on GNSS

signals are discussed in brief below.

1.3.1 Signal Loss or Attenuation in Urban Areas

With tremendous growth of GNSS as a PNT system in numerous civilian applications,

frequent loss or attenuation of signals in urban environments has become a principal

challenge facing the system today. This is because, while using GNSS for PNT oper-

ations in urban environments, direct line-of-sight (LOS) signals can be easily blocked,

attenuated or reflected by a freeway overpass, dense foliage or high-rise buildings lined

along narrow streets. A typical example of such a challenging urban canyon signal en-
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Figure 1.2: Satellite Signals in an Urban Canyon in Downtown Minneapolis; Solid

Lines: Direct LOS Signals; Dashed Lines: Reflected Signals

vironment is illustrated in Figure 1.2. Analysis of field test data in [10] demonstrates

that carrier power to noise power density (C/N0) ratios of some of the visible satel-

lites in such signal fading environments can drop below 5 dB-Hz. In this context, it

should be noted that typical values of open-sky/good C/N0 lie in the range of 35 to 55

dB-Hz [18]. The problem of signal blockage or attenuation is even more pronounced

in indoor navigation where signals need to penetrate building materials to reach the

receiver. According to a study conducted by the National Institute of Standards and

Technology, attenuation of GPS signals caused by building walls and floors can be as

high as 29 dB [19].

1.3.2 RF Interference

Alongside ever-growing number of GPS applications, increasing incidents of intentional

and unintentional RF interference are being reported that have rendered GPS inopera-

ble for critical infrastructure operations [16]. The problem is compounded by the avail-

ablity of GPS jammers which, while illegal, can be purchased easily and the difficulty

associated with locating and mitigating the interference they cause. GNSS signals are

inherently vulnerable to in-band RF interference as the satellite signal power reaching

the Earth’s surface is very weak (on the order of 10−16 Watts). It is apparent from such

weak signals which remain buried in noise prior to code correlation that any terrestrial

RF phenomenon can easily overwhelm or interfere with GNSS service.
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Different sources of RF interference can be broadly classified into wideband

and narrowband interference depending on their bandwidths compared to the GNSS

spread spectrum bandwidth which is 2.046 MHz for the GPS L1 C/A-code. Wide-

band interference can be Gaussian (intentional jammers), phase/frequency modulated

(television transmitter harmonics), pulsed (radar transmitters) or spread-spectrum (in-

tentional spread spectrum jammers or near-field of pseudolites) in nature [20]. On the

other hand, narrowband interference includes narrowband phase/frequency modula-

tion (AM station harmonics), narrowband-swept continuous wave (CW) (FM station

harmonics) and narrowband CW (intentional CW jammers) [20]. RF interference ef-

fectively reduces the C/N0 of the GNSS signals, thereby causing the receiver to lose

track or preventing it from acquiring satellite signals. It should be noted that a little

RF interference energy from a far away RF source can jeopardize the operation of a

GNSS receiver. For example, a 10 mw jammer can prevent receivers as far as 10 km

away from acquiring the C/A-code. It can cause them to lose lock at about 1 km [21].

While intensive RF interference can deny GNSS service, a recently emerging

threat called spoofing is even more dangerous. This is because a spoofer, by simulating

fake signals, tricks the receiver into believing that it is tracking real GNSS signals [21].

However, spoofing is not as straightforward as jamming a receiver.

1.3.3 Atmospheric Disturbances

While the above are examples of man-made interference, atmospheric disturbances

can be considered unintentional interference caused by Nature. On the way from

satellites to the receiver, GNSS signals pass through the Earth’s atmosphere of which a

portion is the ionosphere. The ionosphere acts as a dispersive medium to GNSS signals,

delaying the modulating code and advancing the carrier wave. Under quiet ionospheric

conditions, code delay and carrier phase advance would not change significantly over

time, allowing the receiver to track any slowly varying change without difficulty. On

the other hand, ionospheric storms, steep electron density gradients and irregularities,

depending on their magnitude and intesity, can cause receivers to lose lock over a wide

region and, thus, render GNSS service unavailable [22]. Such widespread outages are

mainly triggered by solar flares and geomagnetic storms during high solar activity.

Besides severe space weather causing widespread blackouts, GNSS receivers op-

erating in the equatorial region can experience rapid signal amplitude and phase varia-

tions any day after sunset. Such variations are caused by the diffraction and refraction

of the radio waves as they propagate through irregular electron density patches in

6



the ionosphere formed over the equatorial region after sunset. This phenomenon is

called equatorial scintillation. It can also be viewed as a space-based multipath which

can significantly affect the receiver tracking performance by causing simultaneous deep

power fades (> 20 dB) and rapid phase variations [23]. While equatorial scintillation is

associated with electron density anomalies and can happen any day, it shows seasonal

variations and is intensified during solar maxima. Scintillation also occurs in auroral

and polar cap regions, being most intense during solar maximum periods. However,

equatorial scintillation is of more importance as it affects a latitude band that covers

about 50% of the Earth’s surface (15 to 20 degrees on either side of the geomagnetic

equator), compared to 7% for polar and auroral scintillation [24].

1.4 Tracking Threshold of a Stand-Alone GNSS Re-

ceiver

As discussed in the previous section, various sources of GNSS signal degradations

affect receiver tracking performance by lowering the C/N0 ratios. This naturally raises

questions about the tracking threshold of a stand-alone GNSS receiver or the lowest

Figure 1.3: Portions of the Trip Testing Signal Outage in a Typical Urban Environment

(Minneapolis/St. Paul, MN); Placemarks Show the Outbound Leg of the Test Route,

with Thick Solid Lines Indicating Data Loss
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C/N0 that can be tracked by a receiver. In this context, it is important to note that

tracking thresholds of a receiver depend on both receiver dynamics and noise levels and,

therefore, vary from one scenario to another. In this section, an approximate tracking

threshold of a stand-alone receiver is determined from the results of a drive test which

consisted of traveling in an urban environment while recording GPS signal strength.

This threshold is representative of that of a stand-alone conventional receiver operating

in a typical urban environment. The drive test was performed with a conventional

NovAtel receiver installed in a city bus. The trip started from the Minneapolis campus

of the University of Minnesota (near the placemark on the left corner of Figure 1.3).

The bus traveled to St. Paul, Minnesota and returned to Minneapolis. Portions of the

test route are selected from Google Earth and shown in Figure 1.3, with breaks in

position fixes indicated by thick solid lines. The data was collected on three different

days. Histogram plots of the C/N0 of all tracked satellites as recorded by the receiver

on the three days are depicted in Figure 1.4. It is important to note that the vertical

axis of the figure represents the percentage of the time when C/N0 was output by the

receiver (i.e., the percentage of the time when the signal was tracked). It is evident

from the figure that less than 5% of the time the recorded C/N0 was below 40 dB-Hz

and no C/N0 was recorded below 31 dB-Hz, indicating that the receiver lost lock on

all satellites below 31 dB-Hz. Thus, it can be concluded that the tracking threshold of

the NovAtel receiver for this drive test was around 30 dB-Hz. Note that the receiver

tracked both carrier phase and carrier frequency. With only carrier frequency tracking

the threshold can be expected to be approximately 5 dB-Hz higher i.e., 25 dB-Hz.
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Needless to say, this threshold is inadequate for dealing with the GNSS vulnerability

discussed previously and naturally calls for enhancement of receiver performance.

1.5 Methods for Improving Robustness

Several methods have been proposed to address the vulnerability of GNSS signals.

These include advanced antenna technology such as adaptive antenna array [21]; back-

ing up GNSS systems with inertial sensors [25], optical navigation sensors [26] or other

RF signals of opportunity such as cellular [27] and WiFi [28] signals; multi-sensor inte-

gration [29], [30], [31]; and other advanced signal processing techniques such as vector

tracking architecture [11] which is the subject of the research in this thesis. A brief

overview of these methods is given below.

1.5.1 Advanced Antenna Technology

An adaptive antenna array consists of many antenna elements arranged into an array.

Since a signal reaches the elements at slightly different times, the element signals sum

up constructively or destructively depending on the signal phase difference at the time

of arrival (or signal direction). Each element can also be assigned a weight to control

its signal phase relative to that of a primary element. Thus, by suitably choosing the

weight of each element, the antenna can steer nulls in the direction of a jammer (null

steering) or steer maximum gains toward satellites (beamforming). This technique

proves effective to mitigate jamming/interference as satellite and interference signals

usually come from different directions [21].

1.5.2 Inertial Aiding

Fusion of GNSS and inertial navigation system (INS) is a well-researched topic with

much heritage [25]. INS and GNSS, being complementary in nature, can be integrated

into one system that retains the benefits of both by correcting/aiding one using the

other. The integrated system uses GNSS signals to calibrate INS bias and drift while

the INS coasts through GNSS outages for time intervals in the range of few seconds

to few minutes depending on calibration and INS qualities. Different GNSS/INS inte-

gration architectures have been proposed. They are called loose, tight and ultra-tight

(deep) integrations based on the type of data fusion of GNSS and INS. From loose to

ultra-tight, better calibration and coasting performance is achieved at the price of inde-
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pendence and computational cost. The INS solution also helps in faster re-acquisition

of GNSS signals when satellite position and velocities are known and receiver clock

is calibrated. This is because user position and velocity information obtained from

inertial sensors reduces the number of code phase and Doppler frequency combina-

tions to be searched for signal re-acquisition. Reference [32] demonstrates INS-aided

re-acquisition at C/N0 down to about 10 dB-Hz. Integrated GNSS/INS systems typ-

ically find use in moving platforms to bridge signal outages and to sustain high user

dynamics.

1.5.3 RF Aiding

Backing up GNSS with other RF systems is a relatively new concept. For example,

[27] demonstrates a hybrid positioning method that blends the GPS solution with

cellular signal-based position estimates to leverage the complementary benefits of both

systems. The hybrid positioning scheme is shown to have approximately (30 - 40)%

improvement in 1-σ accuracy and more than 50% improvement in 95% accuracy over

either system alone in dense urban environments. In [28] WiFi data is integrated

with low cost inertial sensors and a pedestrian dead reckoning system to bridge GPS

outages. The integrated system is shown to have (5 - 15) meter indoor positioning

accuracy. Reference [31] demonstrates an emergency responder locator which fuses an

ultra-wideband (UWB) ranging radio and GPS with low cost dead reckoning systems

and a human motion model to achieve a 95% accuracy of 2 m.

1.5.4 Vision Aiding

Vision-based sensors have also attracted signficant attention in recent years for navi-

gation in GNSS-challenged environments. To obtain robust performance, vision data

is usually blended with INS measurements. The INS improves feature tracking per-

formance by robust feature matching. The vision data is, on the other hand, used to

estimate INS errors. Reference [26], for example, presents a tightly coupled GPS, INS

and vision system for precision geolocation. In [29] low cost inertial measurements and

image data, when integrated with a barometric altimeter, a magnetic compass and

a digital terrain elevation data (DTED) database, are shown to achieve performance

equivalent to a navigation grade INS.
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1.5.5 Vector Tracking

Over the past decade, vector tracking loops have been the subject much research be-

cause they can track weak, attenuated GPS signals, bridge through momentary signal

outage and withstand high user dynamics [10]. For example, Figure 1.5 shows the re-

sults of a simulation study where real GPS RF signals are post-processed using vector

loops operating in a weak signal environment. Different C/N0 signals for this purpose

are generated by injecting artificial noise into live GPS data collected from a static RF

signal logger. It is evident from the figure that vector loops can track signals at C/N0
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as low as 7 dB-Hz, although the navigation accuracy degrades with weak signals. It

should be noted that this simulation assumes an extreme situation where all satellite

signals are attenuated together. This does not happen unless the receiver passes under-

neath an overpass; through a tunnel; operates indoors; or is being jammed. Therefore,

good C/N0 satellites in most cases can be expected to improve the tracking perfor-

mance of low C/N0 satellites which may result in comparatively low position error.

Except for the recorded data with C/N0 in the range of 44 to 50 dB-Hz, the vector

loop error statistics (i.e., means and standard deviations of the root sum square of x, y

and z axis position errors) are shown in the last two subplots of the figure. The error

statistics are calculated from ten Monte Carlo runs whose noises are varied by changing

the initial state of the random number generator. The performance of a conventional
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scalar loop receiver with the same data sets is illustrated in Figure 1.6. It should be

noted that the scalar loop results are not shown for the lowest two C/N0 ranges as

almost all satellites lost lock for these data sets, resulting in position error of several

hundred meters. This clearly demonstrates the performance benefits of the vector loops

with respect to low powered signal tracking. Thus, this simulation reinforces the fact

documented in the literature that vector tracking architecture is a promising candidate

for dealing with GNSS signal vulnerability.

1.6 Previous Research

The concept of vector tracking was first proposed in [33] in the form of an integrated

GPS/INS system where GPS P-code tracking and navigation processing are performed

as a single integrated function. In [33] such an integrated design is considered to be

superior to a conventional cascaded approach. This is because the integrated design

combines the cascaded formulations of tracking loops and navigation filter into a single

optimal filter. Thus, the integrated approach exploits correlations among individual

tracking errors and eliminates any instability issues that arise from cascaded designs, as

concluded by the study in [33]. In [34] a detailed formulation of a coupled architecture

is presented to perform combined carrier phase tracking. Simulation results in [34]

illustrates that the coupled architecture reduces carrier phase tracking errors during

periods of signal fades/blockage caused by aircraft maneuvers. The benefits of coupled

tracking are attributed to “inter-satellite path correlations” at the receiver and shown

to be dependent on overdetermined geometry.

Although the coupled architectures mentioned above include vector tracking at

the core, the term “vector tracking” was coined first in [11]. In this reference, the

structure of a combined code tracking methodology is first explicitely described in the

form of Vector Delay Lock Loops (VDLL). The work in [11] also highlights the potential

advantages offered by VDLL and presents a brief, intuitive explanation of its superiority

over scalar loops. The explanation is as follows. Because of joint tracking of all satellite

signals, the effective C/N0 along each of the x, y and z axes of user position increases

with more satellites. This allows individual satellite signal powers to degrade more

while maintaining the same position estimation accuracy. A variant implementation

of vector tracking is provided in [35]. In this formulation individual narrow bandwidth

tracking loops which are used to track slowly changing LOS errors are aided by a wide

bandwidth common loop. The common loop is identical to vector tracking and used to
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track receiver dynamics and clock drift. This scheme, termed co-op tracking, is shown

to enable individual phase locked loops (PLL) to coast through a momentary signal

outage without cycle slips and to restore tracking quickly as signal reappears. It is also

stated in [35] that in co-op tracking strong signal satellites aid weak signal ones, but

no analysis is presented to support it. In [12] the co-op tracking technique is modified

by using individual PLLs only for the initialization of vector phase tracking denoted

in the study as Vector Phase Locked Loops (VPLL). The scalar PLLs are switched off

thereafter. In addition, the research in [12] uses an orthogonal projection method to

eliminate clock and atmospheric errors from the carrier tracking error. This is done to

increase robustness and to better optimize loop filters. The work in [12] is extended

further to perform a brief preliminary study of VPLL-based integrity monitoring to

detect multipath on low elevation satellites.

The ability of vector loops to track low powered signals has been documented

in [36], [37] and [38], to name a few. In [36] vector loops are used to estimate C/N0 as

low as 10 dB-Hz whereas [37] reports a vector loop sensitivity improvement of about

7 dB over scalar tracking methods. Reference [38] shows a (3 - 6) dB-Hz improvement

in interference performance of a VDLL receiver over a conventional receiver. In [10]

the explanation provided in [11] is extended further to show the maximum and min-

imum gains in C/N0 that can be obtained from vector tracking with various satellite

geometries. It is important to note that [10] implements vector delay and frequency

locked loops. The work in [10] also uses two implementations of vector loops (po-

sition state and pseudorange state formulations) to indirectly show that information

exchange among channels is the key to vector tracking’s performance benefits. The

ability of vector tracking loops to track weak, attenuated GPS signals; to rapidly re-

acquire blocked signals; and to sustain high maneuvers are also demonstrated. Further,

based on the rule-of-thumb tracking thresholds developed for conventional receivers,

loss-of-lock metrics for vector loops are developed and validated with simulated data.

In addition, the work in [10] compares the performance of a centralized vector architec-

ture and a federated vector architecture with coupled channels between measurement

updates to that of a federated vector architecture with decoupled channels between

measurement updates. Comparison results show (4 - 5) dB-Hz performance gains of

the former two only at high operating C/N0 (∼ 45 dB-Hz).

Vector tracking loops, when integrated with inertial sensors, result in the so-

called GNSS/INS deep integration/ultra-tightly coupled (DI/UTC) architecture whose

merits over other integration architectures are well documented in the literature [39] -
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[43]. For example, [42] demonstrates continuous carrier phase tracking of GPS signals

at 15 dB-Hz when a 90 degree flight turn is executed. The receiver is aided by a

micro electromechanical system (MEMS) inertial measurement unit (IMU) using a DI

architecture and a coherent integration time of 0.4 sec is used during tracking. A

bit estimation algorithm based on maximum energy bit combination is also developed

for data bit wipe-off. The carrier phase-based relative position error is illustrated to

be within 0.1 m. Reference [43] features a prototype of UTC GNSS/INS pedestrian

navigation system (PNS) called DINGPOS. It is capable of fusing GPS L1/L5 and

Galileo E1/E5 signals with an IMU including a magnetometer and a barometer, WiFi

power readings and Zigbee-based radio navigation systems in DI mode. Field test

results using GPS C/A-code signals deeply integrated with IMU and magnetometer

data are shown to continue tracking even when seven out of nine satellite signals are

below 5 dB-Hz. However, the positioning accuracy degrades significantly at such low

C/N0. Deep integration algorithms have been developed by Aerospace Corporation

[44], Honeywell/Rockwell Collins [45], Raytheon [46], L3-Communications [47], Center

for Remote Sensing [48], Ohio University [49], the Charles Stark Draper Laboratory

[50], University of Calgary [51], QinetiQ [41] and others.

1.7 Motivation

Even though, as noted above, the benefits of vector tracking are well documented in

the open literature, comprehensive studies to illuminate its internal workings (i.e., rea-

sons behind its superiority) are lacking. References [33], [34] and [35] provide brief

discussions in this regard, but lack any theoretical analysis or simulations to prove

their hypotheses. In [11] a brief, intuitive analysis is provided. However, it is not

rigorous and its position domain explanation does not easily extend to the tracking

loop levels in which performance benefits are usually quantified. Simulation results in

[10] show that combined signal processing in vector loops leverages the redundancy of

an overdetermined system to attain higher tracking thresholds. In addition, with the

help of two different formulations of the vector architecture it reaches the following

conclusion. The coupling of channels is the key to vector tracking’s superiority. The

research also states that coupled channels allow exchange of information among chan-

nels through the off-diagonal elements of the Kalman gain matrix. However, it does

not delve deeply to thoroughly explain how such information sharing originates from

the coupling of channels and from the redundancy of user-satellite geometry and how
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it can be beneficial. The primary motivation behind seeking such insight is that it

may help design an integrity monitoring algorithm specific to the vector architecture.

Indeed, it will be explained below that vector loop integrity monitoring requires a dif-

ferent approach than that of the scalar loops owing to the fundamental difference in

their tracking methodologies. It is also well known that the benefits of vector tracking

are obtained at the cost of complexity. Another motivation for developing such insight

is, therefore, as follows: It can help design architectures that retain important benefits

of vector tracking and yet are less complex than it. The above deficiency in under-

standing is addressed in the first part of this thesis from an entirely different, thorough

and more intuitive perspective.

As mentioned previously, issues with integrity monitoring of the vector architec-

ture have yet to be explored in great depth. This is important as the vector architec-

ture, by dint of its higher tracking threshold, may provide better system availability in

applications (e.g., road user charging schemes [56]) where frequent signal outages com-

promise the availability of scalar loop-based integrity monitoring. The extensive body

of knowledge on receiver autonomous integrity monitoring (RAIM) for scalar architec-

tures [52] - [55], however, is not directly applicable to the vector architecture. This

is because, as the first part of this research will show, inter-satellite aiding or internal

aiding in vector tracking allows easy propagation of errors (and similarly faults) among

loops. Consequently, the pseudorange measurements output from a vector tracking re-

ceiver are all affected by a failure in one channel and, thus, violate the basic single

fault assumption of the traditional or scalar loop-based RAIM algorithms.

Prior work on vector loop RAIM is scant and [12] and [57] are some of the

few works in the open literature dealing with this topic. Although both references

use RAIM inputs different from the pseudorange measurements, they have other lim-

itations. An examination of the RAIM scheme presented in [57] reveals the following

shortcomings: First, the test statistic (maximum magnitude of the residual inphase

and quadrature correlator outputs among all channels) is assumed to be Gaussian

distributed when, in fact, it is Rayleigh distributed. Second, in order to compute

the vertical protection level (VPL), an approximately linear relationship between the

test statistic and the vertical position error is considered based on only simulation

results. No theoretical explanation is provided to support such an approximation. In

[12], on the other hand, phase discriminator outputs are used to perform RAIM with

VPLL. However, the study does not address an important design challenge associated

with large noises at the discriminator level. Moreover, its protection level calculation
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method based on the standard least squares estimation of receiver position does not

account for the effects of matrix filters used in vector tracking. It does not also apply

to the Kalman filter implementations of vector architecture. Further, the work lacks

a thorough performance comparison of scalar and vector loop RAIMs. Consequently,

the second part of this thesis is devoted to integrity studies of vector tracking.

1.8 Contributions

In response to the above challenges, this thesis makes the following contributions to

the GNSS literature on vector tracking:

1. It provides a thorough explanation for the performance benefits of the vector

architecture over its scalar counterparts. In this regard, it recasts the existing

complex vector architecture equations into a discrete parametric model that is

easy to analyze. Then, it performs an in-depth theoretical analysis of this model

by applying the concepts of system theory. This analysis illuminates the internal

operations of vector tracking.

2. It provides preliminary guidelines under which scalar and vector architectures can

perform comparably. It does this by using the discrete parametric model which

facilitates a novel way to derive transfer function models of vector loops under

certain assumptions. These transfer function representations are particularly

useful for theoretically and numerically computing vector loop noise bandwidths

which set the benchmark for their scalar counterparts.

3. It performs in-depth integrity studies of vector tracking. It develops a way to

apply ideas from scalar loop RAIM to vector loops. The modified scheme also

addresses the limitations of [12] and [57]. With simulation studies and proper de-

sign of pertinent scalar and vector loop parameters, it then assesses the integrity

monitoring performance of vector loops with respect to scalar loops. Follow-

ing this, it validates the vector loop RAIM algorithm with GPS measurements

generated from a Spirent simulator.

1.9 Thesis Organization

The remainder of this thesis is organized as follows: Chapter 2 provides a background

on the basics of GPS/GNSS signal tracking. These include GPS signal structure,
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receiver front end processing, signal acquisition, signal tracking and navigation algo-

rithms. Under signal tracking and navigation, details of scalar tracking architecture

are discussed. Then, Chapter 3 presents the basics of an advanced tracking loop archi-

tecture known as vector tracking. Since vector tracking is the topic of the research in

this thesis, this chapter develops the groundwork for analyses that follow in subsequent

chapters. In Chapter 4 the vector loop equations are recast into a discrete parametric

model from which transfer functions and noise bandwidths of vector loops are derived.

A theoretical analysis of the discrete model is also provided in this chapter to explain

the benefits of vector tracking. Simulation studies to support the theoretical analysis of

the discrete parametric model are then presented. Chapter 5 first provides an overview

of the scalar loop RAIM algorithm implemented in this thesis. Then, vector loop RAIM

algorithms for coherent and non-coherent architectures are presented. Next, the vector

loop RAIM algorithm for the non-coherent architecture is validated with simulation

studies. Chapter 6 discusses the validation of the vector loop RAIM algorithm devel-

oped in Chapter 5 with GPS measurements. This includes a high fidelity simulation

of an aircraft making an instrument approach. Halfway through the approach, the

receiver is subject to sub-meter level pseudorange drifts in one satellite channel and

elevated noise floor in all channels due to intentional interference. Finally, Chapter 7

summarizes the research carried out in this thesis and provides recommendations for

future work.
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Chapter 2

Basics of GPS Signal Tracking

2.1 Introduction

The medium Earth orbits of the GPS satellites vary in altitudes from 20193 km at

zenith to 25237 km on the horizon when viewed by a receiver on the Earth’s surface

[58]. While medium Earth orbits were chosen to optimize satellite visibility all over

the world, GPS signals traveling from these orbits arrive at the Earth’s surface with

an extremely low power of 10−16 to 10−17 Watts. Such weak signals remain buried in

noise during the analog signal processing of the receiver front end. Though weaker than

noise, the signals are designed to possess a remarkable correlation property by virtue

of their signal structure. This property, when exploited by the multi-channel digital

signal processor of the receiver, helps acquire multiple satellite signals simultaneously

from below the noise floor. It is based on the fact that satellite signals are modulated

with near orthogonal pseudorandom codes with high auto-correlation peak and low

cross-correlation peaks which distinguish one code from another. Code modulation

spreads the signal sprectrum, resulting in the name spread spectrum signaling. It also

allows all satellites to share the same frequency band to transmit data for position

fixing; provides ranging measurements to satellites; and offers some protection against

signal reflections. Thus, spread spectrum signaling allows the GPS satellites to offer

PNT services worldwide, although the satellite signals arrive at the antenna as mere

electromagnetic “whispers” hidden in noise.

This chapter provides an overview of conventional GPS receiver architectures.

The following are discussed briefly: GPS signal structure, analog signal processing of

receiver front end, digital signal processing of baseband software, signal acquisition,

signal tracking and navigation algorithms. This discussion serves as a basis for the
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mathematical development in subsequent chapters.

2.2 GPS Signal Structure

As illustrated in Figure 2.1, the GPS signals comprise three elements: Carrier, code

and navigation data. Each carrier component is usually bi-phase shift key (BPSK)

modulated with a bit train. Each bit train is obtained by the modulo-2 sum of a

code and navigation data [59]. While the code is used to distinguish one satellite from

another, the navigation data carries information about satellite orbits, clocks, satellite

status information, etc.. The three signal elements are clocked by the same on-board

frequency standard. In the time domain, signals broadcast from a GPS satellite are

represented as

s(t) =
n∑

j=1

AjD(t)xj(t) cos[2πfLj
t + φoj

] (2.1)

where the subscript j denotes a carrier signal; Aj is the signal amplitude; D is the

navigation data bit; xj is the code modulating the jth carrier frequency; n is number

of carrier components; fLj
is the jth carrier frequency; φoj

is the initial phase of the jth

carrier component at time t. The three signal elements are briefly discussed below.

Carrier at 1575.42 MHz (L1), 1227.60 MHz (L2) 
or 1176.45 MHz (L5)

Code at 1.023 MHz (C/A), 10.23 MHz (P(Y), I5 & Q5)
or 0.5115 MHz (L2C)

Navigation Data at 50 Hz

       6000 km

1

A

1

-1

-A

-1

Figure 2.1: GPS Signal Structure
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2.2.1 Carrier

GPS satellites transmit carrier signals at three different frequencies in the L-band: L1

(1575.42 MHz), L2 (1227.60 MHz) and L5 (1176.45 MHz). Until 2010, the satellites,

which include Block I, II, IIA, IIR and IIR-M, broadcast signals at two frequencies:

L1 and L2. Block IIF satellites, launched first in May 2010, introduced a new civil

signal at L5. The new signal at L5 was added as part of GPS modernization efforts and

will enable civil aviation users to use dual-frequency (L1 and L5) GPS measurements.

The impetus for transmitting signals at more than one frequency is primarily two-fold.

First, dual-frequency signals allow one to calculate and remove the full ionospheric

delays from the GPS measurements. Since the ionosphere is the largest source of error

after selective availability was switched off in 2000, a significant improvement of the

positioning accuracy can, thus, be achieved [60]. Second, the time required for carrier-

phase integer ambiguity resolution and verification is reduced [61].

2.2.2 Code

In broad terms, a GPS ranging code consists of a train of rectangular pulse waveforms

which is pseudorandom in nature, meaning it appears to be random over a short dura-

tion of time, but actually has a deterministic pattern that repeats after a certain time.

Such psedorandom noise (PRN) codes are generated by suitably combining the outputs

of two or more linear shift registers and have a remarkable correlation property. The

property is as follows. A code will result in a sharp correlation peak only when it is

correlated with a replica code aligned within one chip with the original code. A chip of

a code denotes an elemental rectangular pulse in the pseudorandom sequence. Thus,

by transmitting a unique ranging code, a GPS satellite can be distinctly identified from

the rest of the satellites. The word “ranging” implies that the code is used to derive

range measurements from the satellite to the user.

Three types of ranging codes are transmitted by all blocks of GPS satellites.

They are the precision (P) code, providing precision ranging to the US military and

US Department of Defense (DOD)-authorized users; the Y-code which is the encrypted

P-code (denoted as P(Y)-code) when the anti-spoofing (A-S) mode of operation is in

place; and the coarse/acquisition (C/A) code which is used for acquisition of the P(Y)-

code and provides coarse ranging for civil applications. In addition, a new military

code (M-code) at L1 and L2 is added to IIR-M and subsequent blocks. Two additional

ranging codes are transmitted from Block IIR-M onwards: The L2 civil moderate (L2
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CM) code and the L2 civil long (L2 CL) code. For IIF and subsequent blocks two new

ranging codes are transmitted at L5. They are called the in-phase (I5) code and the

quadraphase (Q5) code. Further, a new code will be broadcast at L1 from Block III

onwards for civil users.

From Block I through Block IIF satellites, the L1 link is BPSK modulated with

two bit trains which are in phase quadrature with each other. The two bit trains are the

modulo-2 sum of the C/A-code and navigation data and the modulo-2 sum of the P(Y)-

code and navigation data. For Block II/IIA and IIR the L2 link is BPSK modulated

by the modulo-2 sum of either the C/A-code and navigation data or the P(Y)-code

and navigation data; it is selected by ground command. A second modulation mode

can also be selected by ground command which uses the P(Y)-code without navigation

data. Since Block IIR-M satellites, the L2 is modulated by the modulo-2 sum of the

P(Y)-code with or without navigation data. Besides, one of the following modulation

modes is selectable by ground command: The modulo-2 sum of the C/A-code with

or without navigation data, the L2 CM-code with data time-multiplexed with the L2

CL-code with no data at a 1023 KHz rate. In addition, both L1 and L2 are modulated

by the M-code on IIR-M and subsequent blocks. The modulation method is binary
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Figure 2.2: GPS C/A-Code Power Spectral Density and Correlation Functions
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offset carrier (BOC) where a 10.23 MHz sine-phased subcarrier modulates the carrier

along with the M-code and navigation data.

The P-code is of seven days in length at a chipping rate of 10.23 MHz. The

C/A-code is much shorter, repeating every 1 ms with a chipping rate of 1.023 MHz.

The time period of a code is called code epoch. The power spectral density (PSD) of a

C/A-code chip is illustrated in Figure 2.2 (a). It is a sinc function with a null-to-null

bandwidth of 2.046 MHz which spans the main lobe of its PSD spectrum. Though not

shown in the figure, the PSD of the P-code is also a sinc function, but has 10 times

as large bandwidth. It is instructive to note that when a code modulates a sinusoidal

carrier, the code spectrum is shifted up and down to ±carrier frequency. Thus, the

code spreads the impulse spectrum of the carrier signal. The auto-correlation function

of a C/A code and its cross-correlation function with another C/A code are shown

in Figure 2.2 (b) and (c), respectively. The auto-correlation function takes on four

values (-65/1023, 1/1023, 63/1023 and 1) whereas the cross-correlation function has

three values (-65/1023, -1/1023 and 63/1023) when the delay is an integer number of

chips. The distinct main peak of the auto-correlation function allows GPS receivers to

acquire signals by aligning a receiver-generated replica code with the incoming code.

The narrower and steeper the main peak is, the better is the alignment of the replica

code with the received code and, hence, the code ranging precision. For example, GPS

receivers can measure C/A-code phase with a ranging precision of about 0.5 m and it

is much better with the P-code [58]. The sharp main peak also helps distinguish the

correlation (or shadow) peaks of the reflected signals that are delayed from the direct

signals by more than one chip. However, for short delays shadow peaks mix with the

main peak and distort it. Details of generating GPS codes can be found in [59].

The L2 CM-code is 20 ms in length while the L2 CL-code is 1.5 sec long, both

having a chipping rate of 511.5 KHz. Both I5-code and Q5-code are transmitted at

10.23 MHz and 1 ms long. They are modulated with a 10-bit and a 20-bit Neuman-

Hofman codes clocked at 1 KHz, respectively. It should be noted that new codes with

higher chipping rates and longer periods are added for higher accuracy measurements

and better correlation properties, respectively, to facilitate navigation in weak signal

environments such as dense foliage, office buildings, etc. [60]. In addition, next genera-

tion GNSS signals will be transmitted at higher power levels to penetrate areas where

current signals cannot be used reliably. The power levels of current C/A-code and

P-code signals are -130 dBm (L1), -136 dBm (L2), -133 dBm (L1) and -136 dBm (L2),

respectively.
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2.2.3 Navigation Data

Similar to the PRN codes, the navigation data is made up of a sequence of bi-phase

rectangular pulses known as bits. Each navigation bit is 20 ms long. A full navigation

data set lasts 12.5 minutes. It is structured as follows. Thrity data bits form a word.

Ten words make a subframe and five subframes make a page. Twenty five pages, also

called a superframe, result in a complete navigation data set. The first two words of

each subframe are the telemetry (TLM) word and hand over word (HOW), respectively.

The TLM word has an eight-bit preamble which is used to detect the beginning of a

subframe. The HOW contains the GPS time of week (TOW) calculated from Saturday

midnight/Sunday morning. Subframe 1 contains information about the week number,

user range accuracy (URA), satellite health, issue of data, clock (IODC), estimated

group delay differential Tgd and clock correction parameters. Subframes 2 and 3 have

the ephemeris parameters. They also include a parameter called the issue of data,

ephemeris (IODE). When the IODE does not match the last eight bits of the IODC,

it indicates that a data set cutover has occurred and new data must be used. While

subframes 1 through 3 are repeated in all 25 pages of a superframe, subframes 4 and

5 have 25 versions, with each version transmitted in one page. Subframe 4 of page

18 includes ionospheric correction parameters and universal coordinated time (UTC).

Subframe 4 of pages 2 through 5 and 7 through 10 has almanac data for satellites 25

through 32, respectively. The remaining versions of subframe 4 are either spares or

reserved. Subframe 5 contains almanac data of satellites 1 through 24 (pages 1 - 24)

and health information of all satellites (page 25). Reference [59] describes the details

of navigation data formats.

2.3 Receiver Front End Processing

As alluded to earlier, satellite signals arrive at the receiver antenna with extremely

low power and, therefore, need to be conditioned by an analog front end prior to digi-

tal baseband processing. The objectives of receiver front end processing are four-fold.

First, the signal plus noise power is amplified by approximately 100 dB to raise it to a

level within the working range of the analog to digital converter (ADC). Second, the

signal bandwidth is gradually narrowed to filter out out-of-band noise and interference

which would otherwise saturate the front end; reduces the ADC dynamic range; and-

degrade overall performance. Third, the L band carrier frequency is down converted to

an intermediate frequency (IF) which can be easily handled during front end process-
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Figure 2.3: High Level Schematic Diagram of a Conventional GPS Receiver

ing. Fourth, the signal along with noise is converted from analog to digital form for

subsequent digital processing. A high level functional block diagram of a GPS receiver

is depicted in Figure 2.3. The functional blocks that perform front end processing are

briefly described next.

2.3.1 Receiver Antenna

A GPS antenna must be able to capture satellite signals coming from all directions

above the user’s horizon. For this purpose, it is designed to be omdirectional in nature,

with its gain being constant across azimuth. The antenna gain, however, varies as a

function of elevation angle to provide some protection against RF interference and

multipath which represents indirect LOS signals reaching the antenna after reflecting

off nearby structures. This means that a signal with a given elevation angle will be

received by the antenna with the same gain regardless of its azimuth. A typical antenna

has a gain of approximately +4.5 dBic at zenith which gradually decreases by 8 to 10 dB

or more at an elevation angle of 5o [58]. dBic refers to the directive gain of an antenna

in decibels with respect to that of an isotropic antenna with the same polarization

characteristic. Sophisticated antennas are also available for applications which require

additional resistance against interference and multipath.
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2.3.2 Low Noise Amplifier and Noise Figure

An active antenna is integrated with a low noise amplifier (LNA) housed in the same

unit. A passive antenna, on the other hand, does not include an LNA which is exter-

nally connected to the antenna unit using a coaxial cable. An LNA is designed for a

high gain (∼ 30 dB) and low internal noise. Being the first component of the front

end with a high gain, it determines the effective noise figure of the entire front end,

as shown by Friis’ formula [58]. Noise figure is defined as the ratio of input C/N0 to

output C/N0. It can be shown to be related to the ratio of the effective noise tem-

perature to the input noise temperature. While specifying the noise figure of a radio

device, the input noise temperature is assumed by manufacturers as room temperature

or 290 K. Noise figure, therefore, gives a measure of the effective noise temperature

of a subsystem which is equal to the internal noise temperature divided by the sub-

sytem gain. Thus, it represents the degradation of C/N0 at the output. If the gain

of a subsystem is high i.e., it is an amplifier, the degradation is low. If the subsystem

is a passive element such as a cable or a filter, the gain is less than one. For these

components, output C/N0 is degraded more due to internal loss. For example, the

noise figure of an LNA is (2 - 3) dB and that of a cable that follows the LNA can be

as high as 10 dB [58]. However, the noise contribution of any subsystem following the

LNA is insignificant. This is because its effective noise temperature is scaled down by

the LNA and all other preceding component gains when calculating the effective noise

figure of the entire front end. Thus, the LNA not only amplifies weak signals, but also

improves the front end noise figure.

2.3.3 Bandpass Filters

The front end includes a number of bandpass filters to gradually narrow down the sig-

nal bandwidth to eliminate out-of-band noise; to filter out image frequencies that are

aliased down to the IF or baseband during mixing or sampling; and to reject spurious

frequencies generated by the amplifiers and mixers. They also generate insertion losses,

thereby contributing to the noise figure of the front end, although their noise contri-

butions are minimal. The final bandpass filter of a C/A-code receiver has a typical

one-sided bandwidth in the range of 1.25 MHz to 3 MHz. It should be noted that fil-

tering also results in loss of signal power during correlation by truncating the sidelobes

of the incoming code spectrum. However, with wideband noise the loss is within 0.5

dB if the final one-sided bandwidth is larger than the code chipping rate [63].
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2.3.4 Amplifiers

As both signal and noise are much weaker than the level that can activate the ADC,

the front end amplifies the received signal by approximately 100 dB. This is accom-

plished by judiciously distributing the amplifiers at the various stages of the front end

processing. An amplifier is generally followed by a bandpass filter which removes any

undesired frequencies generated by the amplifier.

2.3.5 Frequency Down Conversion

During down conversion, the L band carrier frequency is down converted to a suitable

IF that can be easily handled by subsequent stages of the front end. The IF is chosen

according to the receiver frequency plan. Down conversion is performed in one or two

stages by mixing (or multiplying) the incoming signal with a local oscillator-generated

reference signal, as described below.

The received satellite signal is expressed as

r(t) =
m∑

i=1

AiDi(t− tτi
)Ci(t− tτi

) cos[2π(fc + fdi
)t + φoi

] + n(t) (2.2)

where the received carrier signal cos(.) of amplitude A and initial phase φo is modulated

with a pseudorandom code Ci(t− tτi
) and binary data bit Di(t− tτi

). tτi
is the signal

transit time from satellite i to the receiver. fc and fd represent the carrier and Doppler

frequencies, respectively. n(t) is additive noise. m is the number of visible satellites.

The received signal is multiplied in a mixer by the reference signal 2 cos(2πf1t). The

output of the mixer is given by

r(t)× 2 cos(2πf1t) =
m∑

i=1

AiDi(t− tτi
)Ci(t− tτi

)(cos[2π(fc + f1 + fdi
)t + φoi

]

+ cos[2π(fc − f1 + fdi
)t + φoi

]) + n(t) (2.3)

Thus, the mixing process produces an upper sideband and a lower sideband, as

given by the first and second terms of the right hand side of Equation 2.3, respectively.

The upper sideband is eliminated via a bandpass filter that follows the mixer. As

noted previously, mixing generates harmonics which are also removed by this filter. In

addition, a filter generally precedes the mixer to remove any image frequencies that

would mix to the lower sideband and cannot, therefore, be removed at IF [62]. It should

be noted that if there are more than one stage of down conversion, they are evenly

distributed in the RF chain, meaning down conversion alternates with amplification.
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2.3.6 Sampling

After front end conditioning, the analog signal is sampled by a sample and hold circuit.

Bandpass sampling is performed in modern receivers which also aliases the IF into the

baseband. Thus, bandpass sampling combines the sampling task with down conversion.

Another advantage of bandpass sampling is that the sample rate is mainly governed by

the signal bandwidth, not by its highest frequency component as in baseband sampling

[62]. The sampling frequency of a receiver is determined by the receiver frequency

plan, IF and the front end bandwidth. The sampled signal is discrete in time, but con-

tinuous in magnitude. It is then quantized and digitized by the ADC. The rounding

or truncation error between the analog input to the ADC and the digitized output is

called quantization error. The degradation caused by the quantization error is mini-

mum when the signal plus noise is spread over full quantization levels i.e., the ratio of

the maximum analog to digital (A/D) threshold to RMS noise level varies between one

and two. The minimum value of the degradation (< 1.5 dB) decreases with increasing

number of bits and higher front end bandwidths. Modern receivers use an automatic

gain control (AGC) in front of the ADC to drive noise to the A/D threshold levels or

vice versa for quantization level control. The AGC also helps increase the dynamic

range and prevents interference from capturing the sampling process [63].

2.3.7 Conversion to Baseband

Conversion to baseband refers to the process of converting the IF signal to the in-phase

and quadraphase components of the signal envelope which remain modulated with code,

Doppler and data bits. It can be carried out by analog mixing before sampling; during

sampling (IF sampling); or after sampling i.e., during digital signal processing. In the

first two methods an intentional frequency offset may exist at baseband in addition to

the Doppler frequency to simplify front end frequency plans [63]. If baseband conversion

is performed before A/D conversion, then two ADCs are required, one for each of

the in-phase and quadraphase arms. If the in-phase and quadraphase components

are generated during sampling then only one ADC is required. There are also no

gain and phase imbalances as both components are generated in the same circuitry,

unlike analog baseband conversion. However, the ADC needs to sample at a rate twice

the sampling frequency. While hardware receivers can implement either of the three

methods, software receivers perform baseband conversion as part of the digital signal

processing since they receive digital IF samples as inputs from the front end.
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2.3.8 Reference Oscillator and Synthesizer

As illustrated in Figure 2.3, a reference oscillator drives a synthesizer which, in turn,

generates receiver frequency plans using custom chips or programmable dividers [63].

Frequency plans include generating local oscillators for down conversion and analog

baseband conversion and generating local clocks for digital signal processing circuitry.

Thus, the analog front end and multi-channel digital baseband circuits are run by

the same reference oscillator. Three types of reference oscillators are used in GNSS

receivers: Atomic clocks, temperature compensated crystal oscillators (TCXO) and

oven-controlled crystal oscillators (OCXO). TCXOs and OCXOs are more common in

GNSS receivers than atomic clocks because of their lower price and size. In TCXO the

output signal from a temperature sensor is used to vary a reactance in the oscillator

circuit to provide a stable clock signal. In OCXO, all temperature sensitive components

including the crystal are kept in an oven whose temperature is maintained at a level

where the crystal frequency versus temperature curve has a zero slope [64]. While

an OCXO can provide more than one thousand times better frequency stability than

a TCXO, its power, size, warm up time and price are more than those of a TCXO.

The frequency stability of a crystal oscillator is characterized by long term systematic

variations and short term random fluctuations. Systematic variations are caused by

aging and measured per hour, month or day. On the other hand, random fluctuations

are triggered by noise sources such as thermal, shot and flicker noise and significant

over few seconds or minutes [65]. Random variations are modeled in the frequency

domain by PSD functions and in the time domain by the Allan variances [66].

2.4 Multi-Channel Digital Signal Processing

After sampling and discretization, the digital signal processing commences. It is split

into multiple channels, with each channel tracking one satellite. The functions that

are discussed next are identical to all channels.

2.4.1 Doppler Removal

This process, when performed simultaneously with baseband conversion, is called car-

rier wipeoff as the output signal after Doppler removal has a frequency independent

of the carrier frequency (or IF) plus Doppler. Its frequency is equal to the difference

between the true Doppler (fd) and the receiver’s estimate of the Doppler (f̃d). After
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Doppler removal, the outputs of the ith in-phase and quadraphase channels are given as

AiDi, kCi, k cos[2π(fdi, k
−f̃di, k

)tk+∆φoi, k
] and AiDi, kCi, k sin[2π(fdi, k

−f̃di, k
)tk+∆φoi, k

],

respectively, where tk is the kth time instant. ∆φoi, k
is the phase error at the beginning

of time tk.

2.4.2 Code Wipeoff and Correlation

Carrier wipeoff is followed by code wipeoff. During the code wipeoff process above

in-phase and quadraphase signal samples are multiplied by the corresponding replica

code samples and accumulated over time. M accumulated samples are coherently

added over an integration time Tcoh to form the in-phase (I) and quadraphase (Q)

correlator outputs. The mathematical expressions of a correlator pair at time epoch k

and for the ith satellite are given below [63]

Imi, k
=

Ai√
2
Di, kR (τi, k + δTc)

M∑
j=1

cos[2π(fdi, j
− f̃di, j

)tj + ∆φoi, j
] + ηi, k

=
Ai√

2
MDi, k

sin(π∆fdi, k
Tcoh)

π∆fdi, k
Tcoh

R (τi, k + δTc) cos(∆Φi, k) + ηi, k

Qmi, k
=

Ai√
2
MDi, k

sin(π∆fdi, k
Tcoh)

π∆fdi, k
Tcoh

R (τi, k + δTc) sin(∆Φi, k) + ηi, k (2.4)

where A = amplitude of the digital signal; M = number of signal samples in a cor-

relation interval; D = navigation data bit; Tcoh = coherent integration time; ∆fd =

Doppler frequency error (fd - f̃d); τ = code phase error (estimated code phase - true

code phase); ∆φ = carrier phase error at the end of Tcoh. η is the correlator noise

which is normally distributed with mean zero and variance σ2
IQ. The noise statistics

remain the same across all correlators. σ2
IQ is derived in Appendix A. The derivation

relaxes the white noise assumption [63] of the bandlimited pre-correlation noise and

takes into account correlations among adjacent noise samples. However, as the pre-

correlation noise time constant is much smaller than the coherent integration time, η is

assumed to be white. The subscript m stands for E, P and L, denoting early, prompt

and late correlators, respectively. The receiver internally generates three versions of

the replica PRN code for signal tracking. The prompt code is aligned with the received

code when a satellite signal is tracked whereas the late code is shifted behind and the

early code is shifted ahead of the prompt code, as illustrated in Figure 2.4 (a). Each

code, when correlated with the in-phase and quadraphase signal samples, generates one

correlator pair. Thus, three correlator pairs (early, prompt and late) are generated.
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Figure 2.4: BPSK Code Auto-Correlation Peak for Infinite Pre-Correlation Bandwidths

Details of how satellite signals are tracked with these correlator pairs will be discussed

later in this chapter. The code phase offset δ can take on three values: −d
2
, 0, d

2
for

E, P and L, respectively. d is the early and late correlator spacing in chips. Tc is the

chip width. R is the code auto-correlation function. Figure 2.4 (b) depicts the ideal

code auto-correlation peak of an infinite bandwidth GPS receiver whose mathematical

expression is given by

R =

1− |τ |
Tc

if |τ | < Tc

0 otherwise

It should be noted that a finite pre-correlation bandwidth tends to round the corners of

the correlation peak. However, its effect is negligible if the pre-correlation bandwidth is

several times the code chipping rate which is feasible in the case of the C/A-code. But

it is generally avoided with the P(Y)-code as front end bandwidths several times the

P(Y)-code chipping rate would make the receiver very susceptible to RF interference.

The chip of a band-limited signal can be approximated as a trapezium. The correlation

function under the trapezium expression can be found in [67].

Equation 2.4 reveals that the post-correlation signal power of a channel is ap-

proximately A2M2/2 while it is A2/2 prior to correlation (assuming the pre-correlation
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bandwidth B >> 1/Tc [63]). On the other hand, if N0/2 is the PSD of the digital

noise samples, then the pre-correlation noise variance is N0B/2. The post-correlation

noise variance is shown in Appendix A to be N0M
2/(2Tcoh). For the receiver used to

collect C/A-code signals for experimental validation in Chapter 6, A of a channel at

some time instant is 200; sampling frequency, fs = 43.428 MHz; B ≈ 21 MHz; if Tcoh

is equal to one C/A-code epoch i.e., 1 ms, then M = 43428; N0/2 = 1.795. Substi-

tuting these values, pre-correlation and post-correlation signal to noise ratios (SNR)

are obtained as -31 dB and 11 dB, respectively. Thus, the signal that was below the

noise floor before correlation is raised above noise by exploiting the signal correlation

property, as elucidated earlier in this chapter. In other words, correlation serves as a

noise filter by amplifying the signal power more than that of the noise or by reducing

the post-correlation bandwidth.

When the prompt code is aligned with the received code, the auto-correlation

function of the early correlator stays on the rising edge of the correlation peak and that

of the late correlator on the falling edge of the peak, as is evident in Figure 2.4. With a

perfectly aligned prompt code, the early and late correlators are equal in magnitude in

the absence of noise. Consequently, the difference between the two correlator powers

is used by the receiver baseband software to continuously align the prompt code with

that of the incoming signal and forms the basis for code phase tracking. It will be

addressed in detail when discussing signal tracking algorithms.

The early and late correlator spacing d is an important design parameter and

typically takes values between zero and one chip width. A wide correlator spacing is

around one chip width (or d = 1). Narrow correlator spacings with d less than one are

also used. Narrow spacings improve the code ranging precision because the variance of

the code ranging error is directly related to d [58]. In addition, narrow correlators are

inherently more robust to multipath-induced peak distortions because of the following

reason. Additional delay of the multipath signal causes its correlation peak to shift

to the right of the direct-ray correlation peak. As a result, the lower regions of the

direct signal correlation function are mostly distorted by the multipath signals, with

the peak being impacted less. Narrow correlator spacings can, therefore, be selected

to operate above the largely distorted portion of the composite correlation peak which

may not be possible with a wide correlator. However, narrow correlators require wide

pre-correlation bandwidths to operate near the peak. Otherwise, the rounded corners

of the correlation peak would mute their advantages. This requirement discourages the

use of narrow correlators in P(Y)-code receivers [58].
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It is important to note that the coherent integration time (Tcoh) of the correlation

process is determined by four factors: Signal coherence, navigation data bit boundaries,

C/N0 and tracking loop bandwidths [67]. In simple words, coherent integration implies

that the signal phase error is not eliminated during the integration process. Therefore,

changing signal phase error during correlation causes the summed samples to interfere

with each other which results in the sinc function of Equation 2.4. In order to minimize

the loss in signal power due to the sinc term, a constant phase error must be maintained.

This is termed signal coherence. It may not be fully attainable in practice, however.

To limit the signal power loss to a factor of 2, the following condition is imposed: Tcoh

< 0.443/|∆fd|, where ∆fd is the Doppler error [67]. This implies that Tcoh should

be small at the beginning of tracking loop closure and increased later on as time

progresses and the Doppler error is reduced. Coherently integrating signal samples

over multiple data bits also leads to signal power loss and degraded acquisition and

tracking performance due to data bit sign changes. In addition, correlator outputs

spanning multiple data bits preclude navigation message demodulation. This results

in data bit durations placing a limit on the maximum value of Tcoh for data-carrying

signals without bit wipeoff. While longer coherent integration is desirable at low C/N0,

it is not permissible beyond a data bit interval or beyond a point where signal coherence

fails (whichever is minimum). As a result, common practice is to integrate low C/N0

signals non-coherently after coherent summation. Non-coherent integration sums the

samples I2 + Q2 and, thus, eliminates signal phase error and data bits, albeit at a

price of larger noise than coherent summation. Finally, 1/Tcoh should be at least twice

or larger than the tracking loop bandwidths to satisfy the Nyquist frequency criteria.

The correlator outputs are used for signal acquisition and tracking. In what follows,

signal acquisition and tracking methodologies are briefly discussed.

2.5 Signal Acquisition

In order to track a GPS satellite, the receiver must have knowledge of the following sig-

nal parameters: The signal code phase at the time of transmission, Doppler frequency

(and received carrier phase in the case of carrier phase tracking). Once these quantities

are known with sufficient accuracy, the receiver decodes the navigation data from the

prompt correlator outputs. It retrieves satellite ephemeris, clock parameters, status

information, etc. from the navigation data. When operating in a weak signal environ-

ment where decoding the navigation message is not feasible, the receiver can receive

33



this information via an external radio link upon request. This is called assisted-GNSS

which is finding increasing use in urban environments. Examples include phone-based

and in-car-based navigation systems [60]. The tracked code/carrier phase and Doppler

frequencies are used by the receiver to form the range and range rate measurements to

the satellites. Thus, with four or more satellites in view, the receiver can trilaterate its

position and correct its clock drift using the measurements and satellite data.

The estimation of above three signal parameters is carried out in two phases:

Acquisition and tracking. Acquisition is a one-time process that acquires the code

phase and Doppler frequency with coarse accuracy through a global search process.

Tracking, on the other hand, continuously estimates and fine-tunes these parameters

until the satellite signal is lost in the event of which signal has to be re-acquired before

tracking commences. It should be noted that the carrier phase cannot be acquired. A

coarse estimate of the Doppler frequency is generally sufficient for initiating the carrier

phase tracking operation in good signal environments.

During acquisition, the receiver conducts a search over a two-dimensional search

space comprised of the Doppler frequency and code phase error (fd, τ). Without any

prior information about satellite and user positions, it has to examine all PRN codes

and all possible combinations of the states (1023 chips for the C/A code) of each

PRN code and the Doppler frequencies (approximately ±10 KHz). This is denoted as

cold start during which the receiver may take several minutes to find visible satellites.

However, after four satellites are acquired and the satellite almanac is recovered, it

can determine which satellites are visible. When the receiver knows the user GPS

time, satellite almanac and its position within 100 km of last fix, but not the satellite

ephemeris, a warm start is executed. During a hot start, all of the time, satellite

almanac and ephemeris and receiver position (within 100 km of last fix) are known.

This is possible if the receiver is powered up within (2 - 3) hours of its previous

operation, provided it is not transported hundreds of miles when switched off.

Most receivers search the code phase in increments of 0.5 chips and the Doppler

frequency in steps of few tens to few hundreds of Hz. Acquisition can be performed in

both time and frequency domains. In the time domain the magnitude (or envelope) of

the prompt I and Q correlator outputs is determined and compared to a threshold for

each possible combination of τ and fd. The threshold is computed based on the desired

probability of false alarm and the receiver’s estimate of the noise floor. One technique

for estimating the rms noise is to correlate the signal with an unused PRN code. The

signal integration time or dwell time Tcoh per search bin can vary from less than 1 ms to
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20 ms depending on the expected C/N0. A typical search sequence is as follows. First,

the baseband process selects a Doppler frequency. Keeping the Doppler constant, it

then varies the code phase states from the first state to the last and computes the

correlation envelope for each state/search bin. If the envelope sample of a search bin

exceeds the threshold, the corresponding up/down counter for that bin is incremented

by one. Thus, after the last code phase state is reached, the Doppler frequency is

shifted to the next bin in the search pattern. This process is repeated every Tcoh sec in

the case of a multiple trial search. The signal is detected in a bin if its counter reaches

a maximum value determined by simulation. This value is a trade-off between search

speed and probability of detection [68]. It should be noted that a variable dwell time

search is faster and superior to a fixed dwell time search. When the signal is declared

present, additional high resolution search follows to find the code phase and Doppler

frequency. Some receivers use a serial search process for acquisition while others employ

a parallel or multi-correlator process to improve acquisition times. It should be noted

that low C/N0 signals can be acquired by searching multiple code phase and Doppler

frequency combinations in parallel over longer integration periods.

Modern GNSS receivers including software radios also perform a fast search

process using frequency domain methods. In this approach first the input signal sam-

ples of length one code epoch or higher (denoted as {xn}k
n=1) are transformed to the

frequency domain using the fast Fourier transform (FFT). k is the number of samples.

The FFT of {xn} is represented as {Xn}k
n=1, where half of k frequencies contains useful

information; the other half is redundant. Then the complex conjugate of {Xn} is taken

and the output becomes {X∗
n}. The receiver also generates a set of complex reference

signals {x̃n, i}k
n=1. Each set denoted by the second subscript i in x̃n, i is generated using

a candidate Doppler frequency. The complex reference signal in a given set is gener-

ated by point-by-point multiplication of the local code with the sine and cosine maps

of the locally generated continuous wave (CW) signal. Following this, a k-point mul-

tiplication operation is performed with {X∗
n} and the FFT of each set of {x̃n,i}. Next,

the inverse FFT of the result is obtained and denoted as {rn, i}. The absolute values

of {rn, i} are then computed which are k × M in numbers, M being the number of

candidate Doppler frequencies. The maximum of k×M absolute values gives the code

phase and Doppler frequency of the acquired signal when it crosses a pre-determined

threshold. In the time domain the incoming signals and the local reference signals are

correlated multiple times by sliding the replica code by each of its phase states from

start to end. In the frequency domain this time consuming operation is replaced with
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a k-point multiplication, thus expediting the search process. Interested readers may

refer to [69] for a detailed treatment of various FFT-based acquisition algorithms.

2.6 Signal Tracking and Navigation

After satellite signal acquisition, signal tracking and navigation commence. Two dif-

ferent tracking architectures have been studied in this thesis, namely scalar and vector

tracking. In the scalar architecture code tracking loops, also called delay locked loops

(DLL), are used for continuously tracking pseudorandom code phase offset (τ) from

the truth. Carrier tracking loops are used for estimating the Doppler error (∆fd) and

initial carrier phase offset (∆φo). Carrier tracking loops which estimate only ∆fd are

called frequency locked loops (FLL). Carrier tracking loops which estimate both ∆fd

and ∆φo together as a single quantity (∆φ) are called phase locked loops (PLL). Simi-

larly, for vector tracking loops there are vector DLL (VDLL), vector FLL (VFLL) [10]

and vector PLL (VPLL) [12], respectively. There is a fundamental difference in the

way scalar and vector architectures implement their signal tracking as well as PVT

estimation or navigation algorithms. The basics of the scalar architecture is discussed

in this chapter. Discussion on the vector architecture is reserved for the next chapter.

2.6.1 Scalar Tracking Architecture

As mentioned earlier and also depicted in Figure 2.5, the scalar architecture performs

signal tracking and PVT estimation separately. Scalar tracking loops in a given receiver

are independent of each other (each tracking one satellite) and have their own loop

filters. The outputs of the loop filters provide corrections to their respective numeri-

cally controlled oscillators (NCO) which are of two types - code NCO and carrier NCO.

The code NCO outputs the code phase to the code generator/coder which produces

three shifted versions of the replica code (E, P , L). The carrier NCO generates in-

phase and quadraphase components of the baseband CW signal envelope through the

cosine and sine mapping functions, respectively. The replica code and carrier signals

are correlated with incoming signals, resulting in three correlator pairs (IE, QE, IP ,

QP , IL, QL), as discussed previously. The correlator pairs are then passed to discrim-

inator functions to generate estimates of the code phase and Doppler shift (or carrier

phase) errors. The estimated errors drive their respective tracking loop filters. Thus,

a code/carrier tracking loop can be modeled as a closed loop feedback control system

which continuously tracks the code phase offset/Doppler shift (or carrier phase offset)
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of a visible satellite. Once the code and carrier tracking loops are locked (indicated by

the estimated C/N0 for DLL and FLL and by the phase lock indicator for PLL [63]),

the navigation data can be recovered by the receiver baseband software. From the

signal transmit time retrieved using the navigation data and tracked code phase and

the signal receive time determined by the navigation process, the code pseudorange

measurements to the satellite are computed. The estimated Doppler frequency pro-

vides pseudorange rate measurements. If the PLL is in lock, then the carrier phase (or

accumulated delta range) measurements are also generated with an integer ambiguity

which is resolved in the navigation filter. It should be noted that all measurements are

generated by the navigation process. It receives the signal transmit time and carrier

phase or carrier Doppler from the receiver baseband process corresponding to a mea-

surement epoch. Then it forms the code pseudoranges (or carrier phase measurements)

and pseudo range rates of all tracked satellites and processes them together to estimate

the user position, velocity, clock bias and clock drift. This completes the basic signal

tracking and PVT estimation methodology of a conventional GPS receiver with scalar
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tracking loops.

A DLL is usually aided by the Doppler estimate of the carrier tracking loop

so that it needs to track only the residual code phase error. This simplifies the DLL

loop filter design, making a narrow bandwidth first order DLL sufficient in most cases.

The term “bandwidth” is a key loop design parameter and will be discussed later in

this section. The PLL, although the most fragile component of the tracking loops,

produces highly accurate Doppler estimates [68]. An FLL-generated Doppler is noisier

than that from a PLL, but FLLs are more robust than PLLs when tracking weak signals

and high user dynamics. A well-designed GNSS receiver, therefore, closes the carrier

tracking loop as a wideband FLL. Then, it gradually reduces the FLL bandwidth and

transitions to a wideband PLL. The PLL bandwidth is narrowed as tracking proceeds.

When the PLL loses lock, the receiver switches back to FLL and stays in this mode

until signal strength/receiver dynamics once again becomes conducive to carrier phase

tracking. Weak signal tracking being a primary objective of this research, both first

and second order FLLs as well as first and second order DLLs are considered herein.

It is important that a GNSS receiver is equipped with a means to detect code

and carrier lock. This is to avoid contaminating the navigation processor with incorrect

measurements. It also allows the receiver to transition from FLL to PLL and vice versa.

In addition, code tracking depends on carrier frequency tracking as the latter ensures

signal coherence over a coherent integration interval, meaning the phase error remains

almost constant over that interval. Code lock is determined by estimating C/N0 and

comparing it to a minimum value. The minimum C/N0 can be obtained by matching

the discriminator pull-in range to the 3-σ tracking noise jitter [67]; both pull-in range

and jitter are discussed later in this chapter. Different C/N0 measurement techinques

have been thoroughly discussed in [70]. The estimated C/N0 also serves as a frequency

lock detector. The C/N0 level needed to maintain carrier frequency tracking is similar

to that needed for code tracking [67]. Carrier phase lock can be detected by a phase lock

indicator [63] and also by the estimated C/N0 if loss of lock is caused by weak signals

[67]. The key components of a tracking loop and the navigation filter are described in

brief next.

2.6.1.1 Discriminators

It is evident from Equation 2.4 that the correlators are a function of all of three param-

eters of interest τ , ∆fd and ∆φ. Therefore, linear/nonlinear mathematical functions

are applied to the correlator outputs to produce quantities that are proportional to
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either τ , ∆fd or ∆φ. These functions are called discriminators. Each tracking loop

has its own discriminator functions which are discussed below. It should also be noted

that both scalar and vector loops use discriminators.

DLL Discriminators: As mentioned earlier, the code tracking loop attempts to

zero out the difference between E and L correlator powers to align the prompt code

with that of the received signal. The E and L correlator outputs are processed by

a DLL discriminator function to form a code phase error signal which is fed to the

DLL loop filter, as illustrated in Figure 2.5. It is apparent from Equation 2.4 that

the unknown nuisance parameters D and ∆φ need to be eliminated to extract τ from

the E and L correlators. If ∆φ and D are well known, they can be easily removed

before discriminator processing. The corresponding DLL is called a coherent DLL as

the receiver’s estimate of the baseband CW signal is assumed to be coherent with

the received signal [62]. For a coherent DLL, the early-minus-late discriminator is

used which requires only the in-phase E and L correlators [58]. While noise of this

discriminator is lowest of all DLL discriminators, coherent code tracking is reliant on

carrier phase tracking and cannot, therefore, be performed when carrier phase lock is

lost. As code tracking is more robust than carrier phase tracking, non-cohrenet DLLs
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have been devised which estimate the code phase error regardless of carrier phase

tracking and knowledge of data bits. This is accomplished by eliminating the nuisance

parameters (D and ∆φ) through a non-linear operation which also operates on the

received noise, thus resulting in additional discriminator noise termed squaring loss

[62]. Various non-coherent DLL discriminators include dot product, early-minus-late

power, early-minus-late envelope and early-minus-late envelope normalized. They are

illustrated in Figure 2.6 (a). Their mathematical expressions can be found in [68].

For a unit chip correlator spacing all of these discriminators except the dot product

are linear when the input code phase error is within ±0.5 chips, assuming no noise

in the correlator samples. The normalized envelope discriminator is independent of

the signal amplitude unlike others. It also remains constant at an error input between

|0.5| chips and |1.5| chips, thus providing a greater working range. It becomes unstable

at ±1.5 chip error. Extended range discriminators are also possible. For example,

[39] discusses two non-coherent DLL discriminators, flattop and linear, which have an

extended operating range of ±5 chips.

The noise variances (σ2
τ ) at the output of the early-minus-late (or coherent), dot

product and early-minus-late power discriminators can be derived theoretically and are

given below [71]

σ2
τ =

d

4C/N0T
, (early-minus-late)

σ2
τ =

d

4C/N0T

[
1 +

1

C/N0T

]
, (dot product)

σ2
τ =

d

4C/N0T

[
1 +

2

(2− d)C/N0T

]
, (early-minus-late power) (2.5)

where d is early and late correlator spacing in chips and Tcoh is the coherent integration

time. The term within square brackets is called squaring loss. The early-minus-late

power discriminator is implemented in this research for both DLL and VDLL. Its math-

ematical expression is DR = (I2
E+Q2

E)−(I2
L+Q2

L) = (AM)22(2−d)τ + ζ. The subscript

R stands for range because the DLL discriminator outputs are proportional to the dif-

ference between the true pseudorange measurements and the receiver’s estimate of the

pseudorange measurements, as discussed later in this thesis. ζ is the discriminator

noise. A is the signal amplitude. M is the number of samples in a coherent integration

interval Tcoh.
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Carrier Frequency Discriminators: A carrier frequency discriminator extracts

the Doppler frequency error by operating on two adjacent pairs of prompt I and Q

samples. Different types of carrier frequency discriminators include the cross prod-

uct, decision-directed cross product, cross-over-dot product, two-quadrant and four-

quadrant ATAN discriminators [67]. Three of them are depicted in Figure 2.6 (b).

The decision-directed cross product, cross-over-dot product and two-quadrant ATAN

discriminators are Costas discriminators. They are insensitive to the phase reversals in

the I and Q signals due to bit transitions, provided each of the two sample pairs does

not straddle data bit boundaries. With the cross product and four-quadrant ATAN

discriminators both pairs of the I and Q samples should be collected within the same

data bit period to eliminate errors caused by bit sign changes. References [67] and [68]

summarize the key characteristics of these discriminators.

It is important to note that the pull-in range of a carrier frequency discriminator

(i.e., the range of frequency error within which the error would reduce to zero in the

absence of noise) varies with the coherent integration interval Tcoh of an I and Q sample

pair. The discriminator input-output curves also repeat every 1/4Tcoh or 1/2Tcoh Hz,

resulting in multiple crossings of the frequency error axis, each at an integer multiple of

±1/4Tcoh Hz. With a small Tcoh, the second null point occurs at a large frequency offset

which will result in the loss of code lock [63]. However, with a long coherent interval,

the discriminator output reduces to zero at a relatively small frequency offset. For

example, when Tcoh is equal to 10 ms, the second null point of the ATAN discriminator

occurs at 25 Hz which results in a false lock. This means a frequency error larger than

25 Hz converges to 25 Hz instead of approaching zero. After transitioning from FLL

to PLL, the PLL would also false lock at this frequency offset. However, a false lock

will lead to continuous parity failure during frame synchronization. False lock can also

be detected by a discrepancy between code and carrier Doppler [63]. To avoid false

locks, an FLL can be closed with a small coherent interval (i.e., a higher pre-detection

bandwidth) which is increased as tracking progresses. It should be noted that this

work uses the cross product discriminator for both FLL and VFLL. If (IP1 , QP1) and

(IP2 , QP2) denote two adjacent paris of correlator samples taken at time t1 and t2,

respectively, with t2 > t1, then the mathematical form of the cross discriminator is

given by DRR = (IP1QP2 − IP2QP1)/(t2 − t1) = π(AM)2∆fd + ξ. The subscript

RR represents range rate as Doppler frequencies are proportional to the range rate

measurements. ξ is the discriminator noise.
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Carrier Phase Discriminators: As is evident, a carrier phase discriminator deter-

mines total carrier phase error at the end of a coherent integration interval by using

a non-linear function of the prompt correlator pair. To eliminate errors due to data

bit transitions, the I and Q samples should not be formed across bit boundaries for

navigation message-modulated signals. Commonly used carrier phase discriminators

and their characteristics are discussed in [67] and [68]. Among them, the Q-channel

and four quadrant ATAN discriminators are linear over the entire input error range

of ±180o. Their noise variances do not include squaring loss and are, therefore, in-

dependent of the coherent integration time unlike their counterparts. However, they

are not Costas discriminators which include IQ product, decision-directed Q, Q-over-I

and two-quadrant ATAN discriminators (Figure 2.6 (c)). Costas discriminators can

track phase errors between ±90o. For pilot signals without modulated data bits the

non-Costas Q-channel and four-quadrant ATAN discriminators are preferred as they

are sensitive to the full range of phase error [67].

Apart from a few discriminators such as the normalized envelope for DLLs,

cross-over-dot and ATAN for FLLs and Q-over-I and ATAN for PLLs, discriminator

outputs are dependent on the signal amplitude. Consequently, knowledge of the in-

coming signal amplitude is required for these discriminators. This is to normalize

their outputs so that tracking loop gains and bandwidths do not vary with signal am-

plitudes. Such variations are undesirable because they affect the noise rejection and

dynamic performance of the tracking loops and may even cause higher order (≥ 3)

loops to become unstable [63]. The signal amplitude of each channel can be estimated

using a Kalman filter (KF) and a separate amplitude discriminator, as described in

[47].

It should be noted that the discriminator input-output characteristics are linear

over a finite range of values of τ , ∆fd or ∆φ. When the error input lies within this

linear region, non-linear correlation and discriminator operations can be replaced with

a simple summation for subsequent analysis of tracking loop performance. One input

to the summation block would be the received signal code/carrier phase or Doppler

frequency minus its acquired value (zero for the carrier phase). The other input would

be the reverse of its tracking loop estimate. The output of the summation block would,

therefore, be τ , ∆fd or ∆φ. Thus, under the assumption of linearity, a tracking loop can

be represented by a transfer function block diagram which is illustrated in Figure 2.7.

The quotation marks in the first summation block of the figure stand for linearization
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Figure 2.7: Scalar Tracking Loop Block Diagram

of the non-linear correlators and discriminators. The structure of the tracking loop

filter is discussed below.

2.6.1.2 Loop Filter

As depicted in Figure 2.7, the discriminator output is fed to a loop filter with transfer

function F (s). The objectives of the loop filter are two-fold. First, it filters noise in

the discriminator outputs. Second, it shapes the output transient and steady state re-

sponse. Loop filters of type zero, first and second are normally used in GNSS receivers.

More specifically, F (s) takes on the following form:

∑n
i=1 ci−1s

i−1

sn−1
for DLL/PLL, where

n = 1, . . . , 3 and

∑n
i=1 ci−1s

i−1

sn
for FLL, where n = 1, 2. Higher order filters are

generally avoided because a higher order loop becomes unstable after a certain noise

bandwidth which is defined later. For example, a third order tracking loop is stable

for noise bandwidths larger than 18 Hz [68]. Typical values of the filter coefficients

({ci−1}) that are used in GNSS receivers can be determined from the steady state gain

and error covariance of a KF of the same order as that of the tracking loop. The loop

filter is, therefore, sub-optimal in nature [18] and its coefficients can be specified using

the loop order and noise bandwidth. While a higher order loop is prefereble for better

dynamic performance, choosing a suitable loop noise bandwidth is a trade off between

noise rejection and dynamic response. This is because narrowing the noise bandwidth

results in better noise rejection, but compromises the loop’s ability to handle user

dynamics. It is important to note that the NCO in Figure 2.7 receives a frequency

input and provides a frequency output for an FLL and a code/carrier phase output

for a DLL/PLL. Thus, it is modeled as an integrator for a DLL/PLL and as unity for
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an FLL. As a result, an FLL has the same order as that of its loop filter whereas a

DLL/PLL is of one order higher than that of its loop filter.

A first order loop is generally sufficient for a DLL aided by a PLL/FLL. For

carrier tracking, the loop order and noise bandwidth are chosen based on application.

For example, if the carrier tracking loop is not externally aided and is subject to high

dynamics, then a third-order PLL is selected for carrier phase tracking which can

withstand acceleration stress with zero steady state error. To minimize its jerk stress,

the noise bandwidth should be as wide as possible i.e., 18 Hz for a third-order loop

[68]. However, if it also needs to operate in weak signal environments, then an optimal

design would be to vary its noise bandwidth adaptively as a function of C/N0. This can

be performed either by changing the noise bandwidth based on a lookup table which

will list desired noise bandwidths for different C/N0s or by implementing a KF for each

loop. The bandwidth of a KF is adjusted automatically through the Kalman gain as its

measurement noise covariance matrix is a function of C/N0. Reference [72] describes

such an extended Kalman filter (EKF)-based tracking algorithm that estimates code

phase, carrier phase, Doppler frequency, rate of change of Doppler, signal amplitude

and data bit sign. Another approach to maintaining carrier tracking at lower C/N0 is to

reduce the carrier tracking loop bandwidths by deriving external Doppler aiding from

an INS. This type of GNSS/INS integration is called tight integration where the INS

tracks most of the user dynamics [25]. Thus, the GNSS tracking loop needs to track only

residual dynamics due to INS error and colored noises such as clock jitter, vibration-

induced noise, etc.. This allows it to reduce the noise bandwidth further at low C/N0

environments. While varying the noise bandwidth adaptively with C/N0, however,

caution must be exercised to ensure that the Kalman filter gain of the integration

filter/navigation processor is matched to the tracking loop bandwidth. External aiding

of code tracking is used when the carrier cannot be tracked as the code is usually aided

by the carrier. The noise bandwidth of a tracking loop is discussed next.

2.6.1.3 Noise Bandwidth

The closed loop transfer function of a tracking loop under linear operating conditions

is given by (Figure 2.7)

H(s) =
F (s)G(s)

1 + F (s)G(s)
(2.6)

The lower panel of Figure 2.8 shows a representative frequency response of |H(jω)|2

which has gradual roll offs, unlike the sharp edges of a boxcar filter shown in the upper
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panel of the same figure. If N0 is the PSD of the white noise input to H(jω), then the

noise power at the tracking loop output is given as N0/π
∫∞

ω = 0
|H(jω)|2dω. For ease

of representation and analysis, the term tracking loop noise bandwidth is introduced

and defined as follows. It is the bandwidth of a boxcar filter with the same DC gain

as that of the scalar tracking loop that would allow the same amount of white noise as

H(jω) [62]. Assuming the boxcar filter has the same DC gain as that of H(jω), the

one-sided noise bandwidth of H(jω) becomes

BL =
1

2π|H(j0)|2

∫ ∞

ω = 0

|H(jω)|2dω (2.7)

Similarly, in the discrete domain the noise bandwidth is given by

BL =
1

2π|Hd(ej0T )|2

∫ π/T

0

Hd(e
jωT )×Hd(e

−jωT )dω (2.8)

where Hd(z) is the discrete closed loop transfer function.

A tracking loop with one-sided noise bandwidth BL will have an output noise

power of 2|H(j0)|2N0BL, with N0 representing the input white noise PSD. Thus, the

noise bandwidth quantitatively represents the tracking loop’s ability to reject noise.

It also has a one-to-one correspondence with the loop natural frequency [18] which

enables it to control the loop dynamic response. In traditional scalar tracking loops

the noise bandwidth together with the loop order determines all of loop characteristics

including transient response and steady state tracking error.
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2.6.1.4 NCO

The loop filter output drives an NCO which accumulates phase at its clocking rate

based on its input frequency. When its accumulator overflows, a new cycle is generated.

Minimum phase increment of an N-bit NCO over time 1/fc is 2−N rad, where fc is the

clocking frequency. Therefore, the phase increment caused by an input frequency f

over time 1/fc is 2−N ×bf/fc× 2Nc rad. bac denotes the largest integer not exceeding

a. The maximum frequency that can be generated by an NCO is half of its clocking

frequency. This is determined by the Nyquist criteria. For the carrier NCO sine

and cosine mapping functions convert the NCO phase into appropriate trigonometric

functions. On the other hand, the phase of the code NCO is directly used to generate

the code phase. When the code NCO overflows, subsequent code generator output is

incremented by one chip. Thus, the code generator keeps track of the integer number of

chips of the current code epoch and the code NCO provides the fractional chip phase

of the current epoch. Typically, the frequency generated in the carrier NCO is the

Doppler frequency plus an intentional frequency offset (if applicable) whereas the code

NCO generates the entire code frequency i.e., the code chipping rate plus Doppler [63].

2.6.1.5 Tracking Loop Performance Metric

While the true tracking loop performance can be determined by Monte Carlo simula-

tions under various user dynamics and C/N0 conditions, total phase (for DLL/PLL)

or frequency (for FLL) jitter is generally used to predict tracking loop error based on

theory [68]. The standard deviation of tracking error caused by white noise is called

white noise jitter. If σwi
is the standard deviation of the input white noise, then the

white noise jitter σwo is
√

2BLσwi
, where BL is the one-sided loop noise bandwidth.

The standard deviation of tracking error caused by colored noises is called colored noise

jitter. Different sources of colored noises include short term frequency instability of

the receiver oscillator, vibration-induced oscillator error, satellite clock instability and

error due to propagation delay in the ionosphere [64]. If Scj
(f) is the PSD of the ith

colored noise, then the corresponding jitter σcj
is given by

σ2
cj

= 2

∫ ∞

0

|1−H(j2πf)|2Scj
(f)df (2.9)

Thus, the colored noise jitter σco due to all colored noises is the root sum square of

all σcj
. A close observation of the mathematical expressions of the white and colored

noise jitters reveals the following. The white noise jitter arises from the tracking
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loop’s inability to eliminate white input noise. On the other hand, the colored noise

jitter results from the tracking loop’s inability to track colored noises. Additionally,

the tracking loop’s inability to quickly respond to abrupt changes in user motion or

any steady state error inflicted by user dynamics is quantified by the term dynamic

stress error σdyn. For example, the peak transient error resulted from a phase velocity,

phase acceleration or phase jerk step in the third order loop is approximated by the

steady state error of a first, second or third order loop due to a phase velocity, phase

acceleration or phase jerk step function, respectively. Total 1-σ phase/frequency jitter

is obtained by adding one third of dynamic stress error to the root sum square of white

and colored noise jitters. Mathematically, it is represented by

σtr =
√

σ2
wo

+ σ2
co

+
σdyn

3
(2.10)

Rules of thumb threshold of total jitter at which a tracking loop loses lock are

defined in [68]. For the PLL the 1-σ threshold is 15o while for the FLL it is 0.0833/Tcoh.

The DLL 1-σ threshold is d/6 in chips. They are determined by the respective discrim-

inator pull-in ranges. It is shown in [75] that total phase jitter is a reliable metric for

assessing tracking loop performance when the loop noise bandwidth is not too small

(> 5 Hz). That is, total phase jitter can reliably predict the tracking threshold C/N0

which is very close to that predicted by bit error rate when the bandwidth is not too

small.

2.6.1.6 Generation of Pseudorange, Delta Pseudorange and Carrier Phase

Measurements

The receiver baseband process uses code and carrier accumulators to keep track of

code and carrier phases of all visible satellites. These accumulator outputs are used

to form the pseudorange, delta pseudorange and carrier phase (integrated Doppler)

measurements.

Code Accumulator: Each channel of the receiver keeps track of the correspond-

ing satellite signal transmit time by using a code accumulator which accumulates the

receiver-generated replica code phase [68]. The code accumulator has three counters.

The first counter, also called the Z counter, increments every 1.5 sec. The second

counter increments with each replica code chip and the third counter tracks fractions

of a chip. The code accumulator is updated after each NCO update. As there is a one-

to-one relationship between the transmitted code phase and satellite signal transmit
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time, the code accumulator provides signal transmit time corresponding to the time

at which the signal is received (or processed). This is because the receiver-generated

replica code is synchronized to the transmitted code using DLLs. However, the code

accumulator needs to be propagated to the desired receiver time epoch to obtain the

transmit time for that epoch. This is needed to account for a time skew between the

NCO update schedule and receiver time epochs. The baseband process sends the sig-

nal transmit time and receive time tag to the navigation process which generates the

pseudorange measurements [68].

Carrier Accumulator: The carrier accumulator tracks the integer number of carrier

cycles and fractions of a cycle since carrier lock is established. It is updated at the

NCO update rate. The delta pseudorange measurements are derived from the change

in phase in the carrier accumulator during a specified time. The delta pseudorange can

also be extracted from the code tracking loop, but it is about a thousand times and

a hundred times less noisy when obtained from a PLL and an FLL, respectively [68].

Usually, the receiver baseband processor propagates the carrier phase output of the

accumulator forward to the nearest measurement epoch; forms the delta pseudorange

measurements; and then sends delta pseudorange and carrier phase measurements (if

the PLL is locked) to the navigation processor.

2.6.1.7 Navigation Processor

The pseudorange (ρi) and pseudorange rate (ρ̇i) measurements between the user and

satellite i as generated by the navigation processor at receive time t̂r have the following

form [73]:

ρi = c(t̂r − t̂τi
) = |ri − ru|+ b + εpi

(2.11)

ρ̇i = λ/(∆t)× (φ̂t̂r − φ̂t̂r−∆t))

= (ṙi − ṙu).
ri − ru

|ri − ru|
+ ḃ + ερ̇i

= (ṙi − ṙu).ũi + ḃ + ερ̇i
(2.12)

where c is the speed of light; t̂τi
is the transmit time obtained from the code accumu-

lator; the “hat” sign of t̂r indicates that it is a receiver-generated estimate of actual

tr; λ is the carrier wavelength; φt̂r and φt̂r−∆t are carrier phases output by the car-

rier accumulator corresponding to times t̂r and t̂r −∆t, respectively. ri is the satellite

position vector at transmit time; ru is the user position vector at receive time; ũi is
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the unit vector from satellite i to the user; b is the receiver clock bias in m; and ερi

represents the error due to satellite clock, ionospheric and tropospheric delays, receiver

noise, etc.. The (.) operation in Equation 2.12 represents the scalar product. ḃ is the

receiver clock drift in m/s. ερ̇i
denotes unmodeled error and noise in ρ̇i. The navigation

processor predicts the ρ and ρ̇ for each tracked satellite based on its knowledge of ri, ṙi,

ru, b, ερi
, ṙu, ḃ and ερ̇i

. It then subtracts the predicted values from the measurements

to form the pseudorange and pseudorange rate residuals, as given below

∆ρi = ρ− ρ̃i = [−ũT
i 1]

[
∆r

∆b

]
+ ∆ερi

(2.13)

∆ρ̇i = ρ̇− ˜̇ρi = [−ũT
i 1]

[
∆ṙ

∆ḃ

]
+ ∆ερ̇i

(2.14)

where ∆r = r − r̃, ∆ṙ = ṙ − ˜̇r, ∆b = b - b̃, ∆ḃ = ḃ - ˜̇b. The superscript tilde rep-

resents the receiver’s a priori estimate of user position, velocity and clock parameters.

Satellite position error is usually ignored or taken into account in ∆ερ. Satellite clock

error is corrected using the clock coefficients transmitted in the navigation message.

The navigation processor employs a least squares estimator or an EKF algorithm to

estimate ∆r, ∆b, ∆v and ∆ḃ. Then, the estimated ∆ terms are used to correct the a

priori estimate of user PVT. It should be noted that the ∆ε terms are generally mod-

eled as Gaussian noises with appropriate means and variances based on residual error

models. Representative error models can be obtained from the user equivalent range

error (UERE) given in [76]. As the work in this thesis processes code pseudorange

and Doppler measurements, processing of carrier phase measurements is not addressed

here.

2.7 Conclusion

In this chapter a brief overview of the basics of GPS signal tracking has been provided.

The following topics have been touched upon: GPS signal structure, receiver front

end signal processing, signal acquisition and tracking. Under signal tracking the key

components of the conventional tracking loop architecture, namely scalar tracking have

been discussed. In the next chapter an advanced tracking loop architecture called vector

tracking which is the focus of the research in this thesis is covered.
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Chapter 3

Basics of Vector Tracking

Architecture

The previous chapter discussed the basics of a conventional GPS receiver architecture.

In this chapter the key features of an advanced architecture called vector tracking (or

vector tracking loops) are presented. The primary objective of this chapter is to lay

the foundation for subsequent analyses of vector loops in Chapters 4 through 6. It also

highlights the differences between scalar and vector tracking architectures.

3.1 Vector Tracking Architecture

Figure 3.1 shows a high level schematic and implementation of a vector tracking loop

architecture. As is evident in the figure, the cascaded structure of tracking and navi-

gation filters of the conventional receiver is replaced in this architecture with a central

navigation filter. The number of loops shown is for illustration purposes. At least

four loops are required and as many as possible can be added depending on processor

capability. It should be noted that at least four satellites must be acquired and tracked

independently to estimate the user position and velocity with sufficient accuracy before

closing the vector tracking loops [63]. In other words, the vector loops are initialized

by the scalar loops. In the vector architecture the navigation filter closes the signal

tracking loops by generating corrections for the code and carrier NCOs. Having re-

ceived frequency corrections, the NCOs operate the same way as that in scalar loops.

The navigation filter accepts either correlator or discrminator outputs as its inputs,

unlike the traditional scalar loop filter which receives inputs only from the discrimina-

tor functions. Based on the input to the navigation filter, two different architectures
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can be realized: Coherent and non-coherent architectures. The coherent architecture

can have two implementations: Centralized coherent architecture where the navigation

filter receives three correlator pairs as input from each satellite channel; Federated

coherent architecture where the navigation filter is preceded by a bank of pre-filters.

In the non-coherent architecture the navigation filter inputs averaged discriminator

outputs. Different possible inputs to the navigation filter are shown in Figure 3.1. A

brief discussion of vector tracking loop filters, NCO corrections for vector loops and

vector tracking loop jitter is provided below. It should be noted that the non-coherent

vector architecture is implemented in this thesis with the same discriminator functions

(early-minus-late power discriminator for VDLL and cross discriminator for VFLL) as
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its scalar counterparts. The mathematical models of non-coherent VDLL and VFLL

are also presented.

3.1.1 Navigation Filter

The vector loop navigation filter is an EKF which combines information from all satel-

lites to estimate the following state vector: ∆X =[∆x ∆ẋ ∆ẍ ∆y ∆ẏ ∆ÿ ∆z ∆ż ∆z̈

∆b ∆ḃ]T . The vector [x, y, z, b]T represents the x, y, z components of user position and

clock bias and [ẋ, ẏ, ż, ḃ]T denotes three components of user velocity and clock drift,

respectively. [ẍ, ÿ, z̈]T are three components of acceleration. The ∆ denotes errors or

deviations of these variables from their true values. All positions and bias are in units

of m; velocities and drift are in units of m/s. The acceleration is expressed in m/s2.

The position, velocity, acceleration and receiver clock parameters are predicted every

data bit interval (∆t = 20 ms) to apply NCO corrections and updated every T sec

using the estimated EKF states, as shown by the vector algorithm time line in Figure

3.2. T usually varies from 20 ms to 1 sec depending on implementations, noise levels
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and user dynamics. The estimated position, velocity and clock terms are predicted

over time T sec using the following equation:

x̃−k+1

˜̇x
−
k+1

˜̈x
−
k+1

ỹ−k+1

˜̇y
−
k+1

˜̈y
−
k+1

z̃−k+1

˜̇z
−
k+1

˜̈z
−
k+1

b̃−k+1

˜̇b
−

k+1
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ỹ+
k

˜̇y
+

k

˜̈y
+

k

z̃+
k

˜̇z
+

k

˜̈z
+

k

b̃+
k

˜̇b
+

k


or, X̃−

k+1 = FX̃+
k (3.1)

where k and k + 1 stand for kth and (k + 1)th time epochs. Xk = true user position,

velocity, clock bias and clock drift at time k; X̃
(−/+)
k = predicted/estimated user po-

sition, velocity and clock variables at tk. (∆X̃−
k+1) and (∆X̃+

k+1) denote a priori and

a posteriori estimates of the filter state vector ∆Xk+1, respectively, where ∆Xk+1 =

Xk+1 - X̃−
k+1. ∆X̃−

k+1 is given by

∆X̃−
k+1 = X̃−

k+1 − X̃−
k+1

= 0

The a posteriori error covariance matrix Σ+
k at tk is predicted over time T as

follows:

Σ−k+1 = FΣ+
k F T + Q (3.2)

Where Q is the process noise covariance matrix and accounts for uncertainties in the

kinematic prediction model F . Q can be determined by trial and error or from the

expected level of variations in the acceleration, clock bias and drift [10]. The above two

equations indicate that the mean of the filter state vector is zero until the measurement

update; only the covariance is updated during the time update.

It should be noted that the time update intervals of different satellites are

skewed with respect to one another as they are synchronized with their respective data
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bit intervals. But the measurement updates take place at fixed receiver epochs. In

other words, the small vertical lines in Figure 3.2 are skewed relative to one another

when observed across satellite channels whereas the long vertical lines are the same for

all satellites.

With data-modulated signals the coherent integration time of the E & L cor-

relators and that of the P correlator in the coherent implemetation is 20 ms. In the

non-coherent implementation the P correlator generates two pairs of I and Q outputs

in 20 ms, with each pair having a coherent integration time of 10 ms. The two pairs

of the P correlator are required by the Doppler frequency discriminator to generate

the Doppler frequency error. Depending on the filter input, two implementations are

feasible, namely coherent (centralized and federated) and non-coherent. Although this

thesis uses a non-coherent implementation, a brief discussion of the coherent archite-

cure is provided below.

3.1.1.1 Coherent Architecture

In the coherent architecture, all of code phase, carrier phase and Doppler frequency

are tracked and code tracking relies on carrier phase tracking. Three correlator pairs

of each channel are input to the navigation filter. The observation matrix is derived

by differentiating Equation 2.4 with respect to τ , ∆fd and ∆φ0 and then relating τ

and ∆fd to user position, velocity and clock error. It should be noted that in coherent

VFLL ∆φ0 is estimated independently for each channel or in scalar mode while ∆fd

is estimated in vector mode. To maintain carrier phase tracking, the filter should be

updated at 20 ms or faster [74]. Thus, a distinct problem with coherent tracking is high

processing load resulted from large measurement vector (six inputs per channel) and

fast update rates. As an alternative, a bank of signal tracking pre-filters - one for each

channel - are used (Figure 3.1). Each pre-filter inputs E, P and L correlator pairs at 20

ms and estimates code phase tracking error, carrier frequency error and initial carrier

phase offset. At a slower rate (on the order of one or two Hz) it generates pseudorange

and pseudorange rate residuals from the estimated code phase and Doppler frequency

errors, respectively, and input them to the navigation filter. The pre-filter states are

reset to zero after each measurement update of the navigation filter to avoid cascading

problems. This is known as federated-zero-reset architecture [74]. In the federated

architecture ∆φ0 of a channel is estimated by its pre-filter. In the centralized coherent

architecture the navigation filter state vector defined above is augmented by ∆φ0s of

all channels, although they are estimated in scalar mode. The major benefits of the
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coherent architecture are the absence of unmodeled non-linearities due to discriminator

functions and lower measurement noise covariance. However, it necessitates carrier

phase tracking which makes it unsuitable for low C/N0 applications.

3.1.1.2 Non-Coherent Architecture

In the non-coherent architecture code phase and Doppler frequency are tracked. In

this thesis the non-coherent architecture is implemented. In this architecture non-

linear code phase and carrier frequency discriminator outputs are accumulated every

20 ms and a number of such outputs are averaged over T sec before using for the

measurement updates. The averaged discriminator outputs are indirectly related to

the errors in the position, velocity and clock parameters through the code phase errors

(τ) and carrier Doppler frequency errors (∆fd), as given by the equation below



DR1, k+1
/c1, k+1

...

DRj, k+1
/cj, k+1

DRR1, k+1
/d1, k+1

...

DRRj, k+1
/dj, k+1


=



τ1, k+1

...

τj, k+1

∆fd1, k+1

...

∆fdj, k+1


= C̃k+1



xk+1 − x̃−k+1

ẋk+1 − ˜̇x−k+1

ẍk+1 − ˜̈x−k+1

yk+1 − ỹ−k+1

ẏk+1 − ˜̇y−k+1

ÿk+1 − ˜̈y−k+1

zk+1 − z̃−k+1

żk+1 − ˜̇z−k+1

z̈k+1 − ˜̈z−k+1

bk+1 − b̃−k+1

ḃk+1 − ˜̇b−k+1



+



ε1, k+1

...

εj, k+1

ξ1, k+1

...

ξj, k+1



ek+1 = C̃k+1[Xk+1 − X̃−
k+1] + [ε1, k+1 . . . ξj, k+1]

T (3.3)

where j = number of visible satellites

ζi and ξi are the code and Doppler measurement noise samples

DRi
= averaged code phase or DLL discriminator output of satellite i

DRRi
= averaged carrier frequency discriminator output of satellite i

ci = scaling constant of DRi
= −(AM)2

i (2− d)

di = scaling constant of DRRi

= −π
(AM)2

i

2
R2(τi)

∆t

2
, i=1, ..., j
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A/
√

2 = signal amplitude

M = number of signal samples over a code epoch

d = spacing between early and late correlators

R(τ) = C/A-code autocorrelation function

∆t = accumulation interval for E & L correlators = 20 ms

C̃k+1 = [C̃x, k+1 C̃y, k+1 C̃z, k+1 C̃clk]

C̃m, k+1 =



ũm1, k+1
× (fcode/c) 0 0

...
...

...

ũmj, k+1
× (fcode/c) 0 0

0 ũm1, k+1
× (fcarr/c) 0

...
...

...

0 ũmj, k+1
× (fcarr/c) 0


2j×3

m = x, y, z

C̃clk =



−fcode/c 0

...
...

−fcode/c 0

0 −fcarr/c

...
...

0 −fcarr/c


2j×2

ũmi, k+1
= m component of the unit LOS vector from satellite i to user at tk+1

=
msi, k+1 − m̃−

k+1

R̃−
i, k+1

m = x, y, z

R̃−
i, k+1 = predicted geometric range of satellite i at time k + 1

fcode = code chipping rate

fcarr = carrier frequency

c = speed of light

If W ′′
k, 2j×2j is appropriately scaled measurement noise covarience matrix as given

in [47], ek+1 is the residual measurement vector from Equation 3.3 and Kk+1 is the

Kalman gain, then the measurement update equations at (k + 1)th time epoch are as
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follows:

Kk+1 = Σ−k+1(C̃
−
k+1)

T (C̃−
k+1Σ

−
k+1(C̃

−
k+1)

T + W ′′
k )−1 (3.4)

∆X̃+
k+1 = Kk+1ek+1

Σ+
k+1 = (I11×11 −Kk+1C̃

−
k+1)Σ

−
k+1 (3.5)

So, the predicted and estimated user position, velocity, acceleration, clock bias

and clock drift at tk+1 are

X̃−
k+1 = FX̃+

k

X̃+
k+1 = X̃−

k+1 + ∆X̃+
k+1 (3.6)

As an alternative to non-coherent averaging, a pre-filter can be used in each

channel prior to the navigation filter to reduce the discriminator noise levels [10]. In

this thesis, however, discriminator outputs are averaged to reduce noise. The averaging

interval or measurement update time T of the VDLL is varied in this work from 0.1

sec to 6 sec while the VFLL update interval is fixed at 0.1 sec. It is also important

to note that the navigation filter state in this thesis does not include the acceleration

terms.

3.1.2 Amplitude Estimator

A separate EKF algorithm with a measurement model described in [47] is used to

estimate the signal amplitudes of all satellite channels. Both the initial error covariance

and process noise covariance matrices are assumed to be the identity matrix. As for

the prediction model, the estimated amplitude is considered constant between two

successive measurement updates.

3.1.3 Code and Carrier NCO Corrections for Vector Loops

The predicted/estimated state vector is used to form the pseudo ranges and range rates

to generate the following clock corrections every ∆t sec. These corrections ensure that

the code and carrier NCO frequencies are aligned with the predicted and estimated

states of the navigation filter. It should be noted that the NCO correction times of

a satellite are aligned with its data bit intervals whereas measurement updates take

place at suitably determined receiver time epochs. The NCO frequency corrections are

∆fcarri, k+1
=

fcarr

c
(− ˜̇R+

i, k+1 −
˜̇b+

k+1 + ḃsi, k+1) + ∆t× ˜̇f+
di, carrk+1

(3.7)
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= f̃+
di, carrk+1

+ ∆t× ˜̇f+
di, carrk+1

∆fcodei, k+1
= f̃+

τi, codek+1
+

fcode

fcarr

×
(

f̃+
di, carrk+1

+
∆t

2
× ˜̇f+

di, carrk+1

)
(3.8)

where
i = satellite index

f̃+
τi, codek+1

=
1

∆t

fcode

c
(ρreci, k+1

− ρ̃+
i, k+1); ∆t = 20 ms

=
1

∆t

fcode

c
× [c(t̂ri, k+1

− t̂τi, k+1
)− c(t̂ri, k+1

− t̃τi, k+1
)]

=
1

∆t

fcode

c
× [c(t̃τi, k+1

− t̂τi, k+1
)]

ρreci, k+1
= receiver-generated ith code pseudorange at tk+1. It is derived using

the signal transmit time output from the code accumulator

and the signal receive time

ρ̃+
i, k+1 = filter-estimated pseudorange of satellite i at tk+1

f̃+
di, carrk+1

= estimated ith carrier Doppler frequency at tk+1

˜̇f+
di, carrk+1

= estimated rate of change of carrier Doppler at tk+1

˜̇R+
i, k+1 = estimated geometric range rate of satellite i at tk+1

ḃsi, k+1 = ith satellite clock drift at tk+1

t̂ri, k+1
= signal receive time at tk+1 as determined by the receiver

t̂τi, k+1
= receiver-generated transmit time of the signal received at tri, k+1

; it

is derived from the code accumulator

t̃τi, k+1
= estimated signal transmit time

Here, superscript (+) denotes corrections after a measurement update. It is replaced

with (−) when applying corrections after a time update. The above carrier frequency

correction closes the carrier tracking loop in the form of VFLL since no corrections are

applied to compensate the carrier phase offset. For coherent implementations correc-

tions corresponding to ∆φ0 are fed back to the carrier NCO separately. It should be

noted that the code clock correction has two components. The second term is the code

Doppler frequency plus the change in Doppler in ∆t/2 sec while fτ, codei, k+1
aligns the

code phase corresponding to that of the estimated transmit time in ∆t sec. The terms

∆t× ˜̇f+
di, carrk+1

and ∆t/2× ˜̇f+
di, carrk+1

in ∆fcarri, k+1
and ∆fcodei, k+1

, respectively, ensure

that the receiver-generated pseudorange and range rate measurements correspond to

the predicted states of the navigation filter at the time of measurement updates. This
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Figure 3.3: Doppler Frequency Corrections for Vector Loop NCOs; Vertical Steps

Correspond to NCO Frequency Updates

is illustrated in Figure 3.3 by the propagation of the Doppler frequency from tk+1 to

tk+2. In the figure f̃+
d, k+1 and f̃−d, k+2 represent the Doppler frequencies of a channel

corresponding to the estimated and predicted state vectors of the navigation filter at

tk+1 and tk+2, respectively. Since the Doppler corrections are applied to the NCO at

∆t sec, the upper step corrections to the NCO in yellow will align the carrier NCO

Doppler frequency at the time of the measurement update with that obtained from the

predicted state vector. On the other hand, the bottom step corrections in dark blue

will be less than the desired value by the amount ∆t × ˜̇f+
d, k+1. Likewise, the middle

step corrections in green after scaling properly for the code Doppler will align the code

phase at the time of measurement updates with that predicted from the navigation

filter. This is because the area under the ramp change in Doppler and that under the

green line are equal over each ∆t sec interval. Thus, the Doppler frequency is prop-

agated ∆t sec and ∆t/2 sec ahead of current time before applying NCO corrections.

However, this can be avoided if ˜̇f+
d, k+1 is negligible compared to f̃+

d, k+1. It is also im-

portant to note that the above corrections assume that the change in ˜̇f+
d, k+1 from tk+1

to tk+2 is insignificant. This is a reasonable assumption as it will be shown in the next

chapter that ˜̈f+
d, k+1 is negligible.
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3.1.4 Vector Loop Performance Metric

In [10] VFLL tracking error at steady state is calculated in terms of frequency jitter

(due to white noise and clock error) and dynamic stress. For this purpose, the satellite

geometry is assumed to be fixed because vector loop tracking error is a function of

satellite geometry. To compute the frequency jitter, first the steady state Kalman gain

is computed for a given level of user dynamics represented by the acceleration terms

of the process noise covariance matrix. Then, the dynamics are removed by reducing

the acceleration process noise terms to zero. Next, the steady state error covariance

matrix is determined by using the computed steady state Kalman gain and the general

equation for covariance update. The general update equation is used as the filter is no

longer optimal with the process noise acceleration terms reduced to zero. The diagonal

terms of the steady state error covariance matrix obtained this way represents the

state error variances only due to measurement noise and receiver clock error. Hence,

by projecting the velocity and clock drift variances onto the LOS, the frequency jitter

of each channel is calculated. Since the frequency jitter of one channel varies from

that of another, the maximum of all frequency jitters is used to determine vector loop

tracking thresholds due to white noise and oscillator frequency instabilities. In this

regard, it should be noted that the vector loop threshold is the C/N0 at which the

maximum frequency jitter crosses the rule-of-thumb threshold defined in [68]. Unlike

scalar tracking, it is a function of satellite geometry and user dynamics. With regard

to dynamic stress error, the work in [10] assumes two separate EKFs. One has perfect

knowledge of user dynamics while the other does not. Then the steady state error

between the states of the two EKFs is calculated. This error is the dynamic stress

error of the EKF with imperfect knowledge of user dynamics.

3.2 Conclusion

This chapter has discussed the basics of vector tracking. The mathematical model

of the vector loop navigation filter presented in this chapter serves as a framework

for the analyses of subsequent chapters. In the next chapter vector loop parametric

models are developed from the existing vector architecture equations and performance

benefits of the vector loops are explained with the help of these models. Subsequently,

preliminary guidelines to obtain comparable performance of scalar and vector tracking

architectures are presented.
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Chapter 4

Vector Loop Parametric Models

4.1 Introduction

Chapters 2 and 3 discussed two basic types of GPS signal tracking architectures: Scalar

and vector. It is apparent from their tracking methodologies that the vector architec-

ture eliminates independent (or scalar) tracking loops by processing all satellite signals

in unison. As shown in [10] and [11], such combined signal processing in vector track-

ing loops leverages the redundancy of an overdetermined system (when more than

four satellites are in view) to attain higher tracking thresholds. However, the current

literature (in particular, open literature) lacks a comprehensive analysis which could

illuminate detailed internal workings of the vector architecture. In response to this

challenge, the existing vector architecture equations are recast in this chapter into

mathematical models that are easy to analyze. These models are then used as an anal-

ysis tool to offer a different, more intuitive perspective on the workings of the vector

architecture. More importantly, they are used to explain why the vector architecture

exhibits superior performance in low C/N0 or GNSS-distressed environments.

The remaining chapter is organized as follows: The vector loop equations are

first recast into a discrete parametric model from which transfer functions and noise

bandwidths of vector loops are derived. Following this, a theoretical analysis of the

discrete model is provided to explain the benefits of vector tracking. Next, simulation

studies to support the theoretical analysis of the discrete parametric model are pre-

sented. Finally, preliminary guidelines for achieving comparable performance of scalar

and vector loops are developed.
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4.2 Parametric Models of Vector Tracking Loops

The navigation filter model and NCO corrections of the vector loops as described

by Equations 3.3 through 3.8 in the previous chapter are rearranged into a discrete

parametric model to gain insights into vector tracking’s superiority. Then, under the

assumption of quasi-stationary geometry, the discrete model is recast into a transfer

function formulation. The phrase “quasi-stationary” geometry is taken to mean that

the LOS vectors to satellites do not change over a multiple of T sec of Figure 3.2. The

transfer function model derived in this manner is particularly useful for calculating

vector loop noise bandwidths which serve as a good starting point for designing scalar

loop noise bandwidths and, thus, facilitates a fair performance comparison of the two

architectures. Furthermore, a close study of the discrete model reveals the key roles

LOS geometry and the filter gain play in deciding several important properties of vector

loops.

4.2.1 Discrete Parametric Model

The discrete parametric model has two components: The VFLL discrete parametric

model and the VDLL discrete parametric model. Each of them is explained in detail

below.

4.2.1.1 VFLL Discrete Parametric Model

The VFLL parametric model is described by the following equations.

˜̇f
−

d, carrk+1
= ˜̇f

+

d, carrk
+ T ˜̈f

−

d, carrk+1
(4.1)

˜̇f
+

d, carrk+1
= ˜̇f

−

d, carrk+1
+ ˙̃Gd, k+1Kv, k+1ek+1 + G̃d, k+1Ka, k+1ek+1 (4.2)

f̃
−
d, carrk+1

= f̃
+

d, carrk
+ T ˜̇f

−

d, carrk+1
− 1

2
T 2 ˜̈f

−

d, carrk+1
(4.3)

f̃
+

d, carrk+1
= f̃

−
d, carrk+1

+ G̃d, k+1Kv, k+1ek+1 (4.4)

where
f̃

+

d, carrk+1
= estimated Doppler frequency vector at k + 1

= [f̃+
d1, carrk+1

. . . f̃+
dj , carrk+1

]T

j = number of visible satellites

62



f̃
−
d, carrk+1

= predicted Doppler frequency vector at k + 1

˜̇f
(−/+)

d, carrk+1
= predicted/estimated rate of change of the Doppler at k + 1

˜̈f
−

d, carrk+1
= predicted Doppler acceleration at k + 1

G̃d, k+1 =
fcarr

c
× geometry or LOS matrix; fcarr = carrier frequency

˙̃Gd, k+1 =
(G̃d, k+1 − G̃d, k)

T
= rate of change of G̃d, k+1

Kv, k+1 = rows of the Kalman gain matrix Kk+1 corresponding to the

velocity states

Ka, k+1 = rows of the Kalman gain matrix Kk+1 corresponding to the

acceleration states

ek+1 = residual measurement vector at k + 1 (Equation 3.3)

T = measurement update interval

Equations 4.1 through 4.4 form the discrete parametric model for VFLL, parameterized

by the geometry matrix and Kalman gain. As the Kalman gain depends on P , Q, W

and C matrices (Equations 3.1 through 3.4), the model parameters include estimated

state uncertainties, a priori knowledge of model dynamics, C/N0 and LOS geometry.

It is instructive to observe from the ek+1 term of Equation 4.4 that the nonzero off-

diagonal elements of the G̃d,k+1 and Kv, k+1 matrices allow one satellite to aid another.

A detailed discussion of this internal aiding among loops (which, in part, explains the

better performance of the vector tracking architecture) is reserved for the latter part

of this chapter.

Derivation of VFLL Discrete Parametric Model

In order to develop a parametric model for the VFLL, the following assumptions are

made. First, the model is valid over a small time interval which usually lasts few

seconds. Furthermore, T is small enough to assume G̃d k+1 - G̃d, k = T ˙̃Gd k+1. This is a

valid assumption as T generally varies between 0.1 sec and 1 sec for the VFLL. Second,

the geometry matrices obtained using the predicted and estimated user positions are

equal or G̃−
d, k+1 = G̃+

d, k+1 = G̃d, k+1. Third, the user and satellite accelerations are

constant over the time period during which the model is valid i.e., ak+1 = ak and

asi, k+1 = asi, k. a is a 4×1 column vector containing the x, y and z components of

user acceleration and the rate of user clock drift. The rate of drift of the user clock is
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Figure 4.1: Acceleration and Jerk Components of a GPS satellite

usually not modeled, reducing the fourth element of a to zero. asi
is a 4-tuple column

vector comprising the acceleration and clock drift rate of a GPS satellite, with i being

the satellite index. As the GPS satellites are run by precise atomic clocks which are

corrected on a regular basis by ground monitoring stations, their clock drift rates are

assumed to be zero. Figure 4.1 depicts the acceleration and jerk of a GPS satellite in

the earth centered earth fixed (ECEF) coordinate frame, as calculated from its precise

ephemeris. It is evident from the figure that the satellite jerk magnitude is in the sub-

millimeter level, thereby justifying the assumption of constant satellite acceleration

over a short duration. It should be noted that the accelerations of all GPS satellites,

although not shown here, vary within the range shown in the figure.

Next, the Doppler frequency for the ith carrier NCO, as given by the first term

of Equation 3.7, is rewritten as

∆f̃+
carri, k+1

=
fcarr

c
(− ˜̇R+

i, k+1 −
˜̇b+

k+1 + ḃsi, k+1)

or, f̃+
di, carrk+1

=
fcarr

c
[ũxi, k+1

ũyi, k+1
ũzi, k+1

− 1]


˜̇x+

k+1 − ẋsi, k+1

˜̇y+
k+1 − ẏsi, k+1

˜̇z+
k+1 − żsi, k+1

˜̇b+
k+1 − ḃsi, k+1
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or, f̃+
di, carrk+1

= G̃di, k+1(Ṽ
+
k+1 − Vsi, k+1)

or, f̃+
di, carrk+1

= G̃di, k+1Ṽ
+
k+1 − cvi, k+1 (4.5)

where
G̃di, k+1 = fcarr/c× ith row of the geometry matrix

ũmi, k+1
= m component of the LOS unit vector from satellite i to

user at time k + 1

=
msi, k+1 − m̃−

k+1

R̃−
i, k+1

, m = x, y, z

Vk+1 = a column vector containing the x, y and z

components of user velocity and user clock drift

Vsi, k+1 = a column vector containing the x, y and z

components of the velocity and clock drift of satellite i

cvi, k+1 = G̃di, k+1Vsi, k+1

Now, stacking all Doppler frequencies together in vector f
d
, Equation 4.5 can be ex-

pressed in a more compact form

f̃
+

d, carrk+1
= G̃d, k+1Ṽ

+
k+1 − Cv, k+1 (4.6)

Similarly, the predicted Doppler frequencies are given as

f̃
−
d, carrk+1

= G̃d, k+1Ṽ
−
k+1 − Cv, k+1 (4.7)

where Cv, k+1 = [cv1, k+1 . . . cvj , k+1]
T ; cvi, k+1 = G̃di, k+1Vsi, k+1; j is the number of

visible satellites. Next, taking the first derivative of the expression f
d

= GdV − Cv,

the predicted and estimated rates of change of the Doppler at k + 1 are given by

˜̇f
−

d, carrk+1
=

(G̃d, k+1 − G̃d, k)

T
Ṽ −

k+1 + G̃d, k+1ã
+
k −

∆Cv, k+1

T
− Ca, k+1 (4.8)

˜̇f
+

d, carrk+1
=

(G̃d, k+1 − G̃d, k)

T
Ṽ +

k+1 + G̃d, k+1ã
+
k+1 −

∆Cv, k+1

T
− Ca, k+1 (4.9)

where ∆Cv, k+1 = [∆cv1, k+1 ... ∆cvj , k+1]
T ; ∆cvi, k+1 = (G̃di, k+1 - G̃di, k)Vsi, k+1. Ca, k+1

= [ca1, k+1 ... caj , k+1]
T ; cai, k+1 = G̃di, k+1asi, k+1. It should be noted that as the user

acceleration is assumed to be constant, ã−k+1 of Equation 4.8 is replaced with ã+
k .

Subtracting Equation 4.8 from Equation 4.9, the following equation is obtained

˜̇f
+

d, carrk+1
= ˜̇f

−

d, carrk+1
+

(G̃d, k+1 − G̃d, k)

T
(Ṽ +

k+1 − Ṽ −
k+1) + G̃d, k+1(ã

+
k+1 − ã+

k ) (4.10)
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The Kalman gain rows (Equation 3.4) corresponding to user position, velocity and

acceleration are extracted into three matrices Kp, k+1, Kv, k+1 and Ka, k+1, respectively.

Since the rate of user clock drift is usually not modeled, Ka, k+1 is augmented with a

fourth row whose all elements are zero. This is required to match the dimensions of

G̃d, k and Ka, k+1 for matrix multiplication purposes. Thus, the velocity and acceleration

components of Equation 3.6 can be written as

Ṽ +
k+1 = Ṽ −

k+1 + Kv, k+1ek+1 (4.11)

ã+
k+1 = ã+

k + Ka, k+1ek+1 (4.12)

Substituting the above two equations into Equation 4.10, the expression of Equation

4.2 is obtained below

˜̇f
+

d, carrk+1
= ˜̇f

−

d, carrk+1
+

(G̃d, k+1 − G̃d, k)

T
Kv, k+1ek+1 + G̃d, k+1Ka, k+1ek+1

˜̇f
+

d, carrk+1
= ˜̇f

−

d, carrk+1
+ ˙̃Gd, k+1Kv, k+1ek+1 + G̃d, k+1Ka, k+1ek+1 (4.13)

Next, Equation 4.1 is derived as follows. The rate of change of the Doppler at time k

is given by

˜̇f
+

d, carrk
=

(G̃d, k − G̃d, k−1)

T
Ṽ +

k + G̃d, kã
+
k −

∆Cv, k

T
− Ca, k (4.14)

Subtracting Equation 4.14 from Equation 4.8 and assuming (G̃d, k−G̃d, k−1)≈ (G̃d, k+1−
G̃d, k) = T ˙̃Gd, k+1 lead to

˜̇f
−

d, carrk+1
= ˜̇f

+

d, carrk
+ ˙̃Gd, k+1(Ṽ

−
k+1 − Ṽ +

k ) + T ˙̃Gd, k+1ã
+
k

− 1

T
(∆Cv, k+1 −∆Cv, k)− (Ca, k+1 − Ca, k) (4.15)

Now, using Ṽ −
k+1 − Ṽ +

k = T ã+
k , the above equation reduces to

˜̇f
−

d, carrk+1
= ˜̇f

+

d, carrk
+ 2T ˙̃Gd, k+1ã

+
k −

1

T
(∆Cv, k+1 −∆Cv, k)− (Ca, k+1 − Ca, k) (4.16)

Next, utilizing the assumption (G̃d, k − G̃d, k−1) ≈ (G̃d, k+1 − G̃d, k) = T ˙̃Gd, k+1 and

definitions of ∆Cv on page 65, the third term of Equation 4.16 becomes

1

T
(∆Cv, k+1 −∆Cv, k) =


˙̃Gd1, k+1Vs1, k+1

...

˙̃Gdj , k+1Vsj , k+1

−


˙̃Gd1, k+1Vs1, k

...

˙̃Gdj , k+1Vsj , k
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=


˙̃Gd1, k+1(Vs1, k+1 − Vs1, k)

...

˙̃Gdj , k+1(Vsj , k+1 − Vsj , k)



= T


˙̃Gd1, k+1as1, k+1

...

˙̃Gdj , k+1asj , k+1

 (4.17)

Since the satellite acceleration is assumed to be constant (i.e., as1, k ≈ as1, k+1), the

fourth term of Equation 4.16 reduces to

(Ca, k+1 − Ca, k) = T


˙̃Gd1, k+1as1, k+1

...

˙̃Gdj , k+1asj , k+1

 (4.18)

Thus, the last three terms of Equation 4.16 are combined as

2T ˙̃Gd, k+1ã
+
k −

1

T
(∆Cv, k+1 −∆Cv, k)− (Ca, k+1 − Ca, k)

= 2T ˙̃Gd, k+1ã
+
k − 2T


˙̃Gd1, k+1as1, k+1

...

˙̃Gdj , k+1asj , k+1

 (4.19)

Now, taking the first derivative of the expression ḟ
d

= ĠdV + Gda − Ċv, ignoring

second and higher derivatives of Gd and assuming the user accleration (a) and satellite

acceleration (asi
) are constant, one obtains the following

f̈
d

= 2Ġda− 2


Ġd1as1

...

Ġdj
asj

 (4.20)

Comparing the above two equations, the last three terms of Equation 4.16 reduce to

2T ˙̃Gd, k+1ã
+
k −

1

T
(∆Cv, k+1 −∆Cv, k)− (Ca, k+1 − Ca, k) = T ˜̈f

−

d, carrk+1
(4.21)

It is important to note that ˜̈f
−

d, carrk+1
is obtained by ignoring the second and higher

order changes in the LOS vectors. Stated differently, it is assumed that the LOS vectors
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change linearly over time. This assumption is reasonable given the slow change of the

LOS/geometry matrix. An upper bound on the change in LOS is derived in Appendix

B. Thus, Equation 4.16 results in Equation 4.1

˜̇f
−

d, carrk+1
= ˜̇f

+

d, carrk
+ T ˜̈f

−

d, carrk+1
(4.22)

Following this, Equations 4.3 and 4.4 are derived. For this purpose, Equation 4.8 is

rearraned as follows:

˜̇f
−

d, carrk+1
=

(G̃d, k+1 − G̃d, k)

T
Ṽ −

k+1 + G̃d, k+1ã
+
k −

∆Cv, k+1

T
− Ca, k+1

or, G̃d, k+1Ṽ
−
k+1 = G̃d, kṼ

−
k+1 + T ˜̇f

−

d, carrk+1
− TG̃d, k+1ã

+
k + ∆Cv, k+1 + TCa, k+1

or, G̃d, k+1Ṽ
−
k+1 − Cv, k+1 = (G̃d, kṼ

+
k − Cv, k) + T ˜̇f

−

d, carrk+1
+ (G̃d, kṼ

−
k+1 − G̃d, kṼ

+
k )

−TG̃d, k+1ã
+
k + (∆Cv, k+1 + TCa, k+1 + Cv, k − Cv, k+1)

Using Equations 4.6 and 4.7 and Ṽ −
k+1 − Ṽ +

k = T ã+
k , one gets

or, f̃
−
d, carrk+1

= f̃
+

d, carrk
+ T ˜̇f

−

d, carrk+1
+ (TG̃d, kã

+
k − TG̃d, k+1ã

+
k )

+ (∆Cv, k+1 + TCa, k+1 + Cv, k − Cv, k+1)

or, f̃
−
d, carrk+1

= f̃
+

d, carrk
+ T ˜̇f

−

d, carrk+1
− T 2 ˙̃Gd, k+1ã

+
k

+ (∆Cv, k+1 + TCa, k+1 + Cv, k − Cv, k+1) (4.23)

With the help of the definitions of its elements given on page 65, The last term of the

above equation is given by

∆Cv, k+1 + TCa, k+1 + Cv, k − Cv, k+1 = ∆Cv, k+1 + TCa, k+1 − (Cv, k+1 − Cv, k)

= ∆Cv, k+1 + TCa, k+1−
G̃d1, k+1Vs1, k+1 − G̃d1, kVs1, k

...

G̃dj , k+1Vsj , k+1 − G̃dj , kVsj , k


or, ∆Cv, k+1 + TCa, k+1 + Cv, k − Cv, k+1 = ∆Cv, k+1 + TCa, k+1−

(G̃d1, k+1 − G̃d1, k)Vs1, k+1 + G̃d1, k(Vs1, k+1 − Vs1, k)

...

(G̃dj , k+1 − G̃dj , k)Vsj , k+1 + G̃dj , k(Vsj , k+1 − Vsj , k)
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or, ∆Cv, k+1 + TCa, k+1 + Cv, k − Cv, k+1 = ∆Cv, k+1 + TCa, k+1−
(G̃d1, k+1 − G̃d1, k)Vs1, k+1 + TG̃d1, kas1, k+1

...

(G̃dj , k+1 − G̃dj , k)Vs1, k+1 + TG̃dj , kasj , k+1


As asi, k+1 ≈ asi, k

∆Cv, k+1 + TCa, k+1 + Cv, k − Cv, k+1 = ∆Cv, k+1 + TCa, k+1−

T


˙̃Gd1, k+1Vs1, k+1

...

˙̃Gdj , k+1Vsj , k+1

− T


G̃d1, kas1, k

...

G̃dj , kasj , k


or, ∆Cv, k+1 + TCa, k+1 + Cv, k − Cv, k+1 = ∆Cv, k+1 + TCa, k+1 − (∆Cv, k+1 + TCa, k)

(4.24)

Substituting the above into Equation 4.23 and using Equations 4.18, 4.19 and 4.21

result in Equation 4.3 below

f̃
−
d, carrk+1

= f̃
+

d, carrk
+ T ˜̇f

−

d, carrk+1
− T 2 ˙̃Gd, k+1ã

+
k + (∆Cv, k+1 −∆Cv, k+1)

+ T (Ca, k+1 − Ca, k)

= f̃
+

d, carrk
+ T ˜̇f

−

d, carrk+1
− T 2 ˙̃Gd, k+1ã

+
k + T (Ca, k+1 − Ca, k)

= f̃
+

d, carrk
+ T ˜̇f

−

d, carrk+1
− T 2 ˙̃Gd, k+1ã

+
k + T 2


˙̃Gd1, k+1as1, k+1

...

˙̃Gdj , k+1asj , k+1


= f̃

+

d, carrk
+ T ˜̇f

−

d, carrk+1
− 1

2
T 2 ˜̈f

−

d, carrk+1
(4.25)

Next, taking the difference between Equations 4.6 and 4.7 and using Equation 4.11,

Equation 4.4 is obtained as follows:

f̃
+

d, carrk+1
= f̃

−
d, carrk+1

+ G̃d, k+1(Ṽ
+
k+1 − Ṽ −

k+1)

= f̃
−
d, carrk+1

+ G̃d, k+1Kv, k+1ek+1 (4.26)

4.2.1.2 VDLL Discrete Parametric Model

It should be noted that the code NCO corrections given by Equation 3.8 have two

components: A frequency correction to align the code phase to the corresponding
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predicted or estimated pseudorange and the code Doppler frequency. Since the code

Doppler can be obtained by appropriately scaling the carrier Doppler, it is assumed

that the VDLL is aided by the VFLL loop. Thus, a parametric model of only the first

component is developed for the VDLL. Mathematically, the first component f+
τi, codek+1

is given by

f̃+
τi, codek+1

=
∆c̃pi, k+1

∆t
=

1

∆t

fcode

c
(ρreci, k+1

− ρ̃+
i, k+1) (4.27)

c̃pi, k+1 is the receiver-predicted code phase of satellite i at tk+1 and ∆c̃pi,k+1 denotes

its change over time ∆t sec. After some algebra (see the derivation next for details),

the above equation reduces to

f̃
+

τ, codek+1
=

∆c̃p
k+1

∆t
=

1

∆t
G̃τ, k+1Kp, k+1ek+1 (4.28)

where
f̃

+

τ, codek+1
=[f̃+

τ1, codek+1
. . . f̃+

τj ,codek+1
]T

j = number of visible satellites

c̃p
k+1

= receiver-predicted code phase vector of all satellites

G̃τ, k+1 = fcode/fcarrG̃d, k+1; fcode = code chipping rate

Kp, k+1 = rows of the Kalman gain matrix Kk+1 corresponding to the position

states

Again from Equation 4.28 it can be seen that the error in one channel contributes

to correcting other channels, resulting in internal aiding among loops. Later, Equations

4.1 - 4.4 and 4.28 are used to develop a transfer function representation of the vector

architecture and subsequently an approximate expression of its noise bandwidths is

derived.

Derivation of VDLL Discrete Parametric Model

First, Equation 4.27 is rewritten below

f̃+
τi, codek+1

=
∆c̃pi, k+1

∆t
=

1

∆t

fcode

c
(ρreci, k+1

− ρ̃+
i, k+1) (4.29)

c̃pi,k+1 is the receiver-predicted code phase of satellite i at tk+1 and ∆c̃pi, k+1 denotes

its change over time ∆t. Since the NCO command is applied at every ∆t sec based on

the predicted states of the navigation filter, ρreci, k+1 in the above equation is equal to
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the navigation filter-predicted pseudorange at tk+1. Hence, the above equation reduces

to

f̃+
τi, codek+1

=
1

∆t

fcode

c
(ρ̃−i, k+1 − ρ̃+

i, k+1)

Now, considering only the first order term of the Taylor series expansion of (ρ̃−i, k+1 −
ρ̃+

i, k+1), the following equation is obtained

f̃+
τi, codek+1

= − 1

∆t
(−G̃τi, k+1)(P̃

+
i, k+1 − P̃−

i, k+1) (4.30)

where

G̃τi, k+1 = fcode/fcarrG̃di, k+1; G̃di, k+1 is defined below Equation 4.5

P̃i, k+1 = [x̃k+1 ỹk+1 z̃k+1 b̃k+1]
T

−[xsi, k+1 ysi, k+1 zsi, k+1 bsi, k+1]
T

or, P̃i, k+1 = P̃u, k+1 - Psi, k+1

P̃u = predicted/estimated user position and clock bias

Psi
= position and clock bias of the ith satellite

Note that Psi, k+1 in Equation 4.30 cancels out as it is the same for both predicted and

estimated pseudoranges. Substituting Equation 3.6 into Equation 4.30 and considering

only the position related part of the Kalman gain i.e., Kp, one can obtain

f̃+
τi, codek+1

=
∆c̃pi, k+1

∆t
=

1

∆t
G̃τi, k+1Kpi, k+1ek+1

It is important to note that the above equation holds only after measurement

updates. If the NCO corrections are generated as discussed in Chapter 3, then the

receiver-generated pseudorange measurement and the predicted pseudorange measure-

ment of the navigation filter will match each other after a time update, resulting in

zero f̃
−
τi, codek+1

.

Now, representing all channels together by f̃
+

τ, codek+1
and all c̃pis by c̃p, Equation

4.28 is obtained

f̃
+

τ, codek+1
=

∆c̃p
k+1

∆t
=

1

∆t
G̃τ, k+1Kp, k+1ek+1 (4.31)

4.2.2 Transfer Function Model

The transfer function representation of vector loops is particularly useful for deriving

the vector loop noise bandwidths. Vector loop bandwidths are an important design
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parameter. This is because they can be used as a good starting point for designing

scalar loop noise bandwidths to achieve scalar loop performance comparable to that of

vector architecture. The bandwidths also help understand some of the key features of

the vector architecture, as will be discussed later in this chapter.

A close observation of the discrete parametric models reveals that the model

parameters vary with changes in satellite visibility, C/N0 ratios and LOS geometry.

In order to derive a transfer function formulation from such a time varying model for

offline analysis, the entire time interval of interest can be divided into a number of

sub-intervals, with each sub-interval having a separate transfer function model. The

duration (Tsub) of each sub-interval is chosen such that the following conditions are

satisfied:

1. Number of satellites (j) does not change in Tsub.

2. If u̇avg denotes the average of all element absolute values of the rate of change

of the geometry matrix ˙̃G and uavg represents the mean of the absolute values of

all elements of the geometry matrix G̃, then Tsub is chosen such that u̇avgTsub is

less than uavg/10. The factor of 10 is an empirical value based on observation of

LOS dynamics. In a qualitative sense, Tsub is chosen such that the LOS vectors

do not change significantly over that sub-interval. Thus, the G̃ matrix can be

represented by a set of piecewise constant matrices. Each matrix is valid over a

sub-interval and obtained by calculating G̃ at the beginning of that sub-interval.

3. C/N0 does not vary more than (2 - 3) dB-Hz over Tsub.

To formulate transfer function models in real time, Tsub can be chosen to be a few

(v 5) seconds over which all the above conditions will generally be valid. Further, the

following assumptions apply, which help formulate the transfer function models:

1. If the initial transients have died down and all the above conditions are satisfied,

then the Kalman gain matrix can be approximated to be a constant matrix over

a sub-interval. The constant matrix is equal to the actual Kalman gain at the

beginning of Tsub.

2. It is assumed that ḟ
d

>> f̈
d

so that the last term of Equations 4.1 and 4.3 can

be ignored. A justification for this assumption is provided next. For this purpose

the mathematical expressions of ḟ
d

and f̈
d

from page 67 are rewritten below

ḟ
d

= ĠdV + Gda − Ċv (4.32)
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f̈
d

= 2Ġda− 2


Ġd1as1

...

Ġdj
asj

 (4.33)

where Gd =
fcarr

c
× LOS/geometry matrix; Gdi

= fcarr/c× ith row of the geometry

matrix; c is the speed of light; fcarr = carrier frequency; V is a 4 × 1 column

vector containing the x, y and z components of user velocity and clock drift; asi
is

a 4×1 column vector consisting of the x, y and z components of the acceleration

and clock drift rate of ith satellite; a is a column vector of user acceleration and

clock drift rate; Cv is defined below Equation 4.7. The user clock drift rate is

assumed to be zero and user acceleration is modeled as a constant vector.

It should be noted that ĠdV in ḟ
d

is usually very small due to slow rate of change

of the LOS vectors. A conservative upper bound on the elements of the rate of

change of the LOS vectors is derived in Appendix B as 4.78 × 10−4 sec−1. It

becomes 0.0025 Hz/m when multiplied by the factor fcarr/c for the L1 carrier

frequency. Hence, ĠdV is not significant unless the magnitude of V is on the

order of the speed of sound which is unlikely in most cases. The last term (Ċv)

of ḟ
d

is the rate of change of Doppler due to satellite motion. It is less than 1

Hz/sec for a stationary receiver [69] and depending on the LOS rate of change it

can be a few Hz/sec (< 15) for a moving receiver. Thus, ḟ
d

is mainly determined

by Gda and Ċv when it is not small (i.e., when each element >> 1 Hz/sec).

Substituting the upper bound for the LOS rate of change and the maximum

satellite acceleration (Figure 4.1) into the second term of f̈
d

(Equation 4.33), an

upper bound for all elements of this term can be obtained. More specifically, each

element of the second term is a dot product of its rate of change of the LOS vector

multiplied by
fcarr

c
and the corresponding satellite acceleration vector. Thus, it

is bounded by the product of the magnitude of the
fcarr

c
×LOS rate vector and

the magnitude of satellite acceleration. An upper bound for the magnitude of the
fcarr

c
×LOS rate vector is

√
3×0.0025 Hz/m and that of the satellite acceleration

is 0.5 m/sec2. Hence, each element of the second term of Equation 4.33 is bounded

by the value 0.0044 Hz/sec2. Being very small, the second term of Equation 4.33

can be ignored for all practical purposes. With regard to the first term of f̈
d
,

it should be noted that it depends on user acceleration a. However, as argued

above, since the rate of change of the fcarr/c×LOS vector is very small (each
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element is less than 0.0025 Hz/m), this term is not significant unless a is on the

order of few g (= 9.81 m/s2). Moreover, each component of the LOS vector is

typically much larger than its rate of change, resulting in the elements of Gda of

ḟd being much larger in magnitude than the corresponding elements of Ġda of

f̈d. So, ḟd and f̈d (≈ 2Ġda) can be comparable (i.e., on the same order) if (ĠdV

- Ċv) of ḟd almost cancels out Gda. However, Ċv and ĠdV cannot be large, as

discussed before. This implies that the elements of Gda are of small to moderate

values (v 15) for ḟd and f̈d to be comparable. Since the elements of Ġda are

much smaller than those of Gda, both ḟd and f̈d will be small when comparable

and can be ignored. Therefore, the assumption ḟd >> f̈d is a valid assumption.

3. As stated before, the elements of Ġd are always less than 0.0025 Hz/m which

is a highly conservative upper bound. The term ˙̃Gd, k+1Kv, k+1ek+1 of Equation

4.2 can, thus, be neglected assuming each element of the Kv, k+1ek+1 vector re-

mains within a few meters which are again conservative if dynamics are correctly

modeled.

4. Finally, it is found from the simulation studies discussed later in this chapter

and from experimental data (chapter 6) that the contributions of the code phase

errors DRi to correcting the Doppler frequencies (see ek+1 of Equations 3.3 and

4.4) are at least an order or two less than that of the Doppler frequency errors

DRRi
. Likewise, DRi supersedes DRRi

when updating τ (Equations 3.3 and 4.28).

Consequently, the VDLL and VFLL are decoupled by assuming that DRi corrects

only τ and DRRi
corrects only fd.

Next, the VFLL and VDLL transfer function models for each sub-interval are

developed below.

4.2.2.1 VFLL Transfer Function Model

Applying the above assumptions and replacing f̃
d, carrk+1

with f̃
d, k+1

for ease of nota-

tion, the VFLL paramtric model (Equations 4.1 - 4.4) reduces to

˜̇f
−

d, k+1
= ˜̇f

+

d, k
(4.34)

˜̇f
+

d, k+1
= ˜̇f

−

d, k+1
+ Gd, lKa, led, k+1 (4.35)

f̃
−
d, k+1

= f̃
+

d, k
+ T ˜̇f

−

d, k+1
(4.36)

f̃
+

d, k+1
= f̃

−
d, k+1

+ Gd, lKv, led, k+1 (4.37)
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where ed, k+1 consists of only the frequency error components of ek+1 i.e., ed,k+1 =

[∆fd1, k+1 . . . ∆fdj , k+1]
T and j = number of visible satellites. Gd, l is the G̃d matrix

for any lth sub-interval spanning time instants, say [k + 1, . . . , k + n]; Gd, l = G̃d, k+1.

The Kalman gain matrices for the lth sub-interval are denoted as Ka, l and Kv, l; Kv, l

= Kv, k+1 and Ka, l = Ka, k+1. It should be noted that Kv, l and Ka, l have only those

elements that correspond to ∆fd. Next, substituting Equation 4.34 into Equation 4.35

and Equations 4.34 and 4.36 into Equation 4.37, the following equations are obtained

˜̇f
+

d, k+1
= ˜̇f

+

d, k
+ Gd, lKa, led, k+1 (4.38)

f̃
+

d, k+1
= f̃

+

d, k
+ T ˜̇f

+

d, k
+ Gd, lKv, led, k+1 (4.39)

Now, dropping the superscripts from above equations and expanding ed, k+1, one gets

˜̇f
d, k+1

= ˜̇f
d, k

+ Gd, lKa, l(fd, k+1
− f̃

d, k
− T ˜̇f

d, k
) (4.40)

f̃
d, k+1

= f̃
d, k

+ T ˜̇f
d, k

+ Gd, lKv, l(fd, k+1
− f̃

d, k
− T ˜̇f

d, k
) (4.41)

where f
d, k+1

is the incoming Doppler frequency vector. When T , the time interval

between two updates (tk+1 − tk), is small (i.e., T → 0), the continuous Kalman gains

are given as Kvcont, l = Kv, l/T and Kacont, l = Ka, l/T [78]. Next, rearranging the

terms of the above equations and taking the limit on both sides lead to

lim
T→0

˜̇f
d, k+1

− ˜̇f
d, k

T
= lim

T→0

Gd, lKa, l

T
(f

d, k+1
− f̃

d, k
− T ˜̇f

d, k
)

˙̇̃
f

d
= Gd, lKacont, l(fd

− f̃
d
) (4.42)

lim
T→0

f̃
d, k+1

− f̃
d, k

T
= ˜̇f

d,k
+ lim

T→0

Gd, lKv, l

T
(f

d, k+1
− f̃

d, k
− T ˜̇f

d, k
)

˙̃f
d

= ˜̇f
d
+ Gd, lKvcont, l(fd

− f̃
d
) (4.43)

Taking the Laplace transform of the above equations, one obtains

s ˜̇f
d
(s) = Gd, lKacont, l(fd

(s)− f̃
d
(s)) (4.44)

sf̃
d
(s) = ˜̇f

d
(s) + Gd, lKvcont, l(fd

(s)− f̃
d
(s)) (4.45)

Substituting Equation 4.44 into Equation 4.45 and rearranging the terms, the VFLL

transfer function model for the lth sub-interval is obtained as follows:

sf̃
d
(s) =

Gd, lKacont, l

s
[f

d
(s)− f̃

d
(s)] + Gd, lKvcont, l[fd

(s)− f̃
d
(s)]
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or,

[
sIj×j +

Gd, lKacont, l

s
+ Gd, lKvcont, l

]
f̃

d
(s) =

[
Gd, lKacont, l

s
+ Gd, lKvcont, l

]
f

d
(s)

or, f̃
d
(s) =

[
sIj×j +

Gd, lKacont, l

s
+ Gd, lKvcont, l

]−1 [
Gd, lKacont, l

s
+ Gd, lKvcont, l

]
f

d
(s)

or, f̃
d
(s) = [HV FLLcont, l]j×jfd

(s)

(4.46)

HV FLLcont, l in Equation 4.46 represents the j × j transfer function matrix of VFLL

in the continuous domain for sub-interval l. It maps the true Doppler f
d
(s) to the

estimated Doppler f̃
d
(s). It is instructive to note that it represents a sub-optimal

implementation because of the underlying assumptions that are used to determine the

transfer function models.

Equations 4.40 and 4.41 indicate that the discrete-domain or z-domain repre-

sentation of the transfer function matrix requires that ˜̇f
d, k+1

and f̃
d, k+1

are grouped

together as a single vector and, thus, a joint transfer function model of ˜̇f
d, k+1

and

f̃
d, k+1

can be derived. This is shown below.f̃
d, k+1

˜̇f
d, k+1

 =

[
Ij×j −Gd, lKv, l T (Ij×j −Gd, lKv, l)

−Gd, lKa, l Ij×j − TGd, lKa, l

]f̃
d, k

˜̇f
d, k

+

[
Gd, lKv, l

Gd, lKa, l

]
f

d, k+1

Taking the Z transform gives

z

[
f̃

d
(z)

˜̇f
d
(z)

]
=

[
Ij×j −Gd, lKv, l T (Ij×j −Gd, lKv, l)

−Gd, lKa, l Ij×j − TGd, lKa, l

][
f̃

d
(z)

˜̇f
d
(z)

]
+ z

[
Gd, lKv, l

Gd, lKa, l

]
f

d
(z)

or,

[
(z − 1)Ij×j + Gd, lKv, l −T (Ij×j −Gd, lKv, l)

Gd, lKa, l (z − 1)Ij×j + TGd, lKa, l

][
f̃

d
(z)

˜̇f
d
(z)

]
= z

[
Gd, lKv, l

Gd, lKa, l

]
f

d
(z)

or,

[
f̃

d
(z)

˜̇f
d
(z)

]
=

[
(z − 1)Ij×j + Gd, lKv, l −T (Ij×j −Gd, lKv, l)

Gd, lKa, l (z − 1)Ij×j + TGd, lKa, l

]−1

z

[
Gd, lKv, l

Gd, lKa, l

]
f

d
(z)

(4.47)

Using the following matrix inverse formula [77], the z-domain transfer function formu-

lation of the VFLL is obtained.[
A D

C B

]−1

=

[
[A−DB−1C]−1 −E∆−1

−∆−1F ∆−1

]
(4.48)

if A−1 and B−1 exist, where ∆ = B − CA−1D, E = A−1D and F = CA−1. Thus,

VFLL transfer function matrix in the z-domain becomes

f̃
d
(z) = [(z − 1)Ij×j + Gd, lKv, l + T (I −Gd, lKv, l)((z − 1)Ij×j+
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TGd, lKa, l)
−1Gd, lKa, l]

−1zGd, lKv, lfd
(z) +

[T ((z − 1)Ij×j + Gd, lKv, l)
−1(Ij×j −Gd, lKv, l)((z − 1)Ij×j + TGd, lKa, l+

TGd, lKa, l((z − 1)Ij×j + Gd, lKv, l)
−1(Ij×j −Gd, lKv, l))

−1]zGd, lKa, lfd
(z)

or, f̃
d
(z) = [H

(1)
V FLLdiscr, l + H

(2)
V FLLdiscr, l]j×jfd

(z)

or, f̃
d
(z) = [HV FLLdiscr, l]j×jfd

(z) (4.49)

It is apparent that the above formulation would be complex to deal with when calculat-

ing noise bandwidths numerically. As an alternative, the s-domain formulation can be

used for numerically calculating the noise bandwidths. It will be shown later that the

noise bandwidths calculated from s and z-domain transfer function matrices converge

to each other for very small T . For a medium value of T (∼ 0.1 sec) the z-domain

bandwidths can be approximately found by scaling up the s-domain bandwidths by an

empirical factor.

It is imperative to note that the primary objective of this chapter is to illuminate

the internal workings of the vector architecture and to validate the findings of the

theoretical analysis discussed later in this chapter with simulation studies. While this

can be accomplished with the above complex VFLL model, it is possible to remove some

complexities for simulation purposes and yet to validate the theoretical analysis. To

this end, simulation studies are performed with a slowly changing user geometry with

pseudolites. It will also be evident later that adopting a simplified model allows one to

gain insights into some features of the vector architecture which would not have been

easy to do with the above complex model. Transfer function model for the simulated

user-pseudolite geometry is derived below from Equations 4.41 and 4.46. Details of

this geometry will be discussed during simulation studies.

VFLL Transfer Function Model for Slowly Changing Geometry

The following aspects of the simulation geometry need to be taken into account for

developing a transfer function representation. First, the signals are transmitted by

ground-based pseudolites that are stationary. This is a reasonable approximation for

the following reasons. While not strictly true, satellite motion alone over a short time

interval will not affect the LOS appreciably. Moreover, the contributions of satellite

motion to the Doppler frequency and its rate of change can be calculated using the

satellite ephemeris known from the Navigation message and removed. In addition,

the ed, k+1 term in Equations 4.35 and 4.37, being the difference between the received

and predicted Doppler frequencies, is not affected by the Doppler component due to
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satellite motion. This is true, however, provided the Doppler due to satellite motion is

predicted correctly.

Second, the user velocity is constant and the rate of change of the LOS vectors

due to user motion is insignificant. Thus, the user acceleration and the rate of change

of the Doppler frequency are not modeled with this geometry and the
Gd, lKacont, l

s
term of Equation 4.46 reduces to zero. With this the transfer function model for this

geometry becomes

f̃
d
(s) = [sIj×j + Gd, lKvcont, l]

−1Gd, lKvcont, lfd
(s)

f̃
d
(s) = [H ′

V FLLcont, l]j×jfd
(s) (4.50)

where (′) in the superscript denotes the transfer function matrix for the simulation

geometry.

In addition to the s-domain transfer function model, the z-domain formulation

for the slowly changing geometry is provided below. Since ˜̇f
d

is zero, Equation 4.41

becomes

f̃
d, k+1

= f̃
d, k

+ Gd, lKv, l(fd, k+1
− f̃

d, k
) (4.51)

Taking the Z transform, the above equation reduces to

zf̃
d
(z) = f̃

d
(z) + Gd, lKv, l(zfd

(z)− f̃
d
(z)) (4.52)

After rearranging terms, the z-domain transfer function matrix for sub-interval l is

given by

f̃
d
(z) = [(z − 1)Ij×j + Gd, lKv, l]

−1zGd, lKv, lfd
(z)

f̃
d
(z) = [H ′

V FLLdiscr, l]j×jfd
(z) (4.53)

Equations 4.50 and 4.53, in addition to facilitating numerical calculation of vector

loop noise bandwidth, allows the derivation of a theoretical expression of the noise

bandwidth. Note that the transfer function model derived here represents a sub-optimal

vector architecture which is used as an analysis tool during simulation studies. It is

also verified during simulation studies that the sub-optimal architecture closely follows

the original optimal implementation with continuously changing geometry matrix and

Kalman gains. While the above model is developed for stationary pseudolites, it can

be valid for the GPS satellites. This requires that the satellite contributions to the

Doppler frequencies as calculated using the geometry matrix and satellite ephemeris

are removed. The transfer function model is then developed only for the remaining

Doppler component which results from user motion with a constant velocity.
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4.2.2.2 VDLL Transfer Function Model

The VDLL transfer function model is derived for sub-interval l which spans time in-

stants [k + 1, k + 2, . . ., k + n]. In order to derive the transfer function model, it is

important to take a close look at the implementation of Equation 4.31 in the vector

architecture. For this purpose, Equation 4.31 is first rewritten below

f̃
+

τ, codek+1
=

∆c̃p
k+1

∆t
=

1

∆t
G̃τ, k+1Kp, k+1ek+1 (4.54)

For the decoupled VDLL (assumption 4 on page 74) ek+1 comprises only the DLL dis-

criminator outputs i.e., ek+1 = τ k+1 = cp
k+1

− c̃p
k+1

, where cp
k+1

is the true code phase

vector at tk+1 and c̃p
k+1

is the receiver-predicted code phase vector at tk+1. Substitut-

ing ek+1 into the above equation, replacing Kp, k+1 with Kp, l and using G̃τ, k+i = Gτ, l,

where 1 ≤ i ≤ n, one can write

∆c̃p
k+1

= Gτ, lKp, l(cpk+1
− c̃p

k+1
) (4.55)

It should be noted that Kp, l contains only those elements of the previous Kp, k+1 (see

the definition below Equation 4.28) that correspond to the code phase error. The solid

green line in Figure 4.2 depicts how code phase corrections are applied for any satellite

i in the vector architecture. The navigation filter generates the code phase correction

after every measurement update (i.e., at tk, tk+1 and so on). However, since only a

frequency correction can be applied to the NCO, the code phase correction is divided by

∆t to generate a frequency correction. This frequency correction steers the code phase

to the desired value after ∆t sec. This is depicted in the figure by the slanted portions of

the green line. So, the estimated code phase vector at tk+1 (c̃p
k+1

+∆c̃p
k+1

) is obtained

∆t sec later i.e., at (tk+1 + ∆t). After this, no more code phase correction is applied

until the next measurement update. This is because, as explained above Equation 4.31,

the receiver-generated and the navigation filter-predicted pseudorange measurements

equal each other after time updates. As a result, f̃
−
τ, codek+1

is zero, where superscript

(-) denotes corrections after time updates. This is indicated by the flat segments of

the green line. The inclined light brown line shows the ramp change in code phase

from c̃p
k

as determined by the code NCO frequency. Thus, the receiver-predicted code

phase vector at tk+2 is given by

c̃p
k+2

= [c̃p
k+1

+ ∆c̃p
k+1

] + ∆c̃p
doppk+2

= [c̃p′
k+1

+ ∆c̃p
doppk+1

+ ∆c̃p
k+1

] + ∆c̃p
doppk+2

79



k

∆t

k+2 k+3T

i, k+1
cp~

i, k
cp~

i, k
cp~

i, k
cp~

i, k+2
cp~

∆ i, k+2cp~

{ { {
{

{

t k+1t t t

i, k+2
cp~ ′ i, k+3

cp~ ′
i, k+1

cp~′

′ ~∆cpdoppi, k+1

~∆cpdoppi, k+2

i: Satellite Index

=

∆ i, k+1cp~

Figure 4.2: Implementation of VDLL Code Phase Corrections

= [c̃p′
k+1

+ ∆c̃p
k+1

] + ∆c̃p
doppk+1

+ ∆c̃p
doppk+2

= c̃p′
k+2

+ ∆c̃p
doppk+1

+ ∆c̃p
doppk+2

(4.56)

where c̃p′
k+2

= (c̃p′
k+1

+ ∆c̃p
k+1

), c̃p′
k+1

= (c̃p′
k

+ ∆c̃p
k
) and c̃p′

k
= c̃p

k
. ∆c̃p

doppk+1
and

∆c̃p
doppk+2

denote increments in the receiver-predicted code phase vector from tk to

tk+1 and from tk+1 to tk+2, respectively, depending on the code NCO frequencies. It

should be noted that the code NCO frequencies are updated at every ∆t sec based on

the VFLL-predicted Doppler frequencies.

The incoming code phase vector at tk+2 is given as

cp
k+2

= cp
k
+ [∆cp

doppk+1
+ ∆cp

doppk+2
]

= cp
k
+ [∆cp

doppk+1
+ ∆cp

doppk+2
]− [∆c̃p

doppk+1
+ ∆c̃p

doppk+2
]

+ [∆c̃p
doppk+1

+ ∆c̃p
doppk+2

] (4.57)

It is important to note that the Delta terms without tilde in the above equation denote

increments in the received code phase due to the code Doppler frequency. Hence, the

second and third terms together represent the accumulated code phase error due to the

error in the predicted Doppler frequency. Next, Replacing the first three terms with

cp′
k+2

, the above equation reduces to

cp
k+2

= cp′
k+2

+ ∆c̃p
doppk+1

+ ∆c̃p
doppk+2

(4.58)
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Now, substituting Equations 4.56 and 4.58 into Equation 4.55 for time step tk+2, one

gets

∆c̃p
k+2

= Gτ, lKp, l(cp
′
k+2

− c̃p′
k+2

) (4.59)

Replacing ∆c̃p
k+2

with c̃p′
k+3

−c̃p′
k+2

(see Figure 4.2), the following equation is obtained

c̃p′
k+3

− c̃p′
k+2

= Gτ, lKp, l(cp
′
k+2

− c̃p′
k+2

) (4.60)

Similar to the VFLL the continuous Kalman gain for sub-interval l is given as Kpcont, l =

Kp, l/(T ) as T → 0. Now, allowing T to go to zero, Equation 4.60 can be written as

lim
T→0

c̃p′
k+3

− c̃p′
k+2

T
= lim

T→0
Gτ, l

Kp, l

T
(cp′

k+2
− c̃p′

k+2
)

˙̃cp
′
=Gτ, lKpcont, l(cp

′ − c̃p′) (4.61)

Taking the Laplace transform and following the same steps as in the VFLL, the fol-

lowing VDLL transfer function matrix results

c̃p′(s) =

(
Ij×j +

Gτ, lKpcont, l

s

)−1
Gτ, lKpcont, l

s
cp′(s)

c̃p′(s) =[HV DLLcont, l]j×jcp
′(s) (4.62)

Thus, Equation 4.62 represents the VDLL transfer function model for the lth time

interval. It is sub-optimal in nature as it replaces the geometry matrix and Kalman

gains with piecewise constant matrices.

Next, the z-domain transfer function is developed from Equation 4.60. Taking

the Z transform of Equation 4.60, the following transfer function model is obtained

zc̃p′(z)− c̃p′(z) = Gτ, lKp, l(cp
′(z)− c̃p′(z))

or, [(z − 1)Ij×j + Gτ, lKp, l]c̃p
′(z) = Gτ, lKp, lcp

′(z)

or, c̃p′(z) = [(z − 1)Ij×j + Gτ, lKp, l]
−1Gτ, lKp, lcp

′(z)

or, c̃p′(z) = [HV DLLdiscr, l]j×jcp
′(z) (4.63)

It should be noted that the same transfer function models hold for the slowly

changing geometry used for simulation studies. Equations 4.53 and 4.63 are used to

numerically and theoretically calculate the vector loop noise bandwidths next.

4.2.2.3 Vector Loop Noise Bandwidths

Two definitions of vector loop noise bandwidths are proposed in this thesis. One is

for vector loop performance analysis and the other is for designing the scalar loops
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and comparing them with vector loops. The basic difference between them is as fol-

lows: The first definition considers the noise contributions of all channels to a specific

channel i.e., the output channel is fixed. The second definition takes into account the

noise contributions of a specific channel to all channels i.e., the input channel is fixed.

However, both definitions become equivalent if the transfer function matrix is a sym-

metric matrix. This is possible only if all channels have equal noise variances. Both

definitions are provided below.

Vector Loop Noise Bandwidth for Performance Analysis

For performance analysis of the vector architecture, the one-sided vector loop noise

bandwidth of satellite i in the continuous domain for sub-interval l is defined as follows:

BLmcont, l(i) =
1∑j

n=1 N0m, nn

× 1

2π

∫ ∞

0

[Hmcont, l(jω)]i(N0m)[Hmcont, l(−jω)]Ti dω

or, BLmcont, l(i) =
1∑j

n=1 N0m, nn

× 1

2π

j∑
n

N0m, nn

∫ ∞

0

|H(i, n)
mcont, l(jω)|2dω

=
1∑j

n=1 N0m, nn

×
j∑
n

N0m, nnBw
(i, n)
cont (4.64)

where

m = VFLL or VDLL

Hmcont, l(jw) = VFLL or VDLL transfer function matrix in the continuous

domain for sub-interval l

=



H
(1, 1)
mcont, l(jw) . . . H

(1, n)
mcont, l(jw) . . . H

(1, j)
mcont, l(jw)

...
. . .

...

H
(i, 1)
mcont, l(jw) . . . H

(i, n)
mcont, l(jw) . . . H

(i, j)
mcont, l(jw)

...
. . .

...

H
(j, 1)
mcont, l(jw) . . . H

(j, n)
mcont, l(jw) . . . H

(j, j)
mcont, l(jw)


j = number of visible satellites; note that j in the argument of H(.)

denotes the complex operator

[Hmcont, l(jw)]i = ith row of Hmcont, l(jw) = [H
(i, 1)
mcont, l(jw) . . . H

(i, j)
mcont, l(jw)]

N0m = PSD matrix for m = VFLL or VDLL; it is a diagonal matrix

of dimension j × j
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N0m, nn = nth diagonal element of N0m

N0m = Wmd
T , where Wmd

is the navigation filter measurement noise

covariance and T is the measurement update interval

A close observation of the above equation reveals that the second part of the

equation is equal to the output noise power of channel i in vector tracking mode. It

is divided by the sum of the input noise PSDs of all channels to obtain the noise

bandwidth of that channel. It is also evident that the noise bandwidth of one channel

in vector tracking mode depends on all other channels and their noise levels (unless

all noise variances are the same). A graphical representation of the above equation

is provided in Figure 4.3. It shows that the above-defined noise bandwidth is the

bandwidth of a boxcar filter whose input noise PSD is the sum of the PSD of all noise

inputs to the vector loops and output noise power is the same as that of channel i in

vector tracking mode.

H
(i, 2)
mcont, l(jω)

...

...

............

N0m, 11 = Wmd, 11T

N0m, 22 = Wmd, 22T

H
(i, 1)
mcont, l(jω)

∑j
n N0m, nn

Assuming Bw
(i, n)
cont =

1

2π

∫ ∞

0 |H
(i, n)
mcont, l

(jω)|2dω

O/P Noise Power

∑j
n N0m, nnBw

(i, n)
cont

BLmcont, l
(i)

=
∑j

n N0m, nnBw
(i, n)
cont

N0m, jj = Wmd, jjT
H

(i, j)
mcont, l(jω)

Figure 4.3: Graphical Representation of Vector Loop Noise Bandwidth Used for its

Performance Analysis
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Similarly, the vector loop noise bandwidth in the discrete domain is given as

BLmdiscr, l(i) =
1∑j

n=1 Wmd, nnT
× 1

2π

∫ π/T

0

[Hmdiscr, l(e
jωT )]i(Wmd

T )[Hmdiscr, l(e
−jωT )]Ti dω

=
1∑j

n=1 Wmd, nnT
×

j∑
n

(Wmd, nnT )Bw
(i, n)
discr (4.65)

It should be noted that the subscript “cont” in Equation 4.64 is replaced with “discr”

in the above equation. Wmd
represents the discrete-time measurement noise covariance.

The above definition is used to numerically and theoretically calculate the vector loop

noise bandwidth for performance analysis.

The reason for choosing the above definition of noise bandwidth for vector loop

performance analysis is that it reflects the amount of noise filtered through a given

channel in vector tracking mode for a given set of input noise PSDs. However, as will

be shown later in this chapter, a channel that has a high input noise PSD may not

have a small noise bandwidth. Therefore, this definition of noise bandwidth cannot

be used for designing the scalar loops because it may assign a higher bandwidth to

a channel with higher noise PSD. It cannot also be used as the noise bandwidth of a

scalar tracking loop when comparing it with its vector counterpart. This is because

this bandwidth is calculated considering the noise contributions of all channels to a

particular channel. To properly select the noise bandwidth of a scalar tracking loop

for comparison purposes, one needs to find the noise bandwidth that the vector loops

assign to the input noise of that channel alone. In view of this, the following definition

of vector loop noise bandwidth is adopted for comparing scalar loops with vector loops

and for designing scalar loop noise bandwidths for better performance.

Vector Loop Noise Bandwidth for Comparison and Design of Scalar Loops

The vector loop noise bandwidth used for selecting the appropriate scalar loop noise

bandwidth is defined as follows:

B′
Lmcont, l(i) =

1

j
× 1

2π

j∑
n

∫ ∞

0

|H(n, i)
mcont, l(jω)|2dω

=
1

j

j∑
n

Bw
(n, i)
cont (4.66)

A pictorial representation of the above definition is given in Figure 4.4. Let

H
(n, i)
mcont, l be the (n, i)th element of the transfer function matrix Hmcont, l(jω), where
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.........

H
(1, i)
mcont, l

(jω)

H
(2, i)
mcont, l

(jω)

H
(j, i)
mcont, l

(jω)

N0m, ii ×Bw
(1, i)
cont

N0m, ii ×Bw
(2, i)
cont

N0m, ii ×Bw
(j, i)
cont

N0m, ii = Wmd, iiT

B′
Lmcont, l

(i) =
1

j

∑j
n Bw

(n, i)
cont

N0m, ii
B′

Lmcont, l
(i)

where Bw
(n, i)
cont =

1

2π

∫ ∞

0 |H
(n, i)
mcont, l

(jω)|2dω

O/P Noise Power =

= Average bandwidth of all Bw
(n, i)
cont

Figure 4.4: Graphical Representation of Vector Loop Noise Bandwidth Used for Com-

parison and Design of Scalar Tracking Loops

n is the row index and i is the column index. H
(n, i)
mcont, l is multiplied with the in-

put to channel i to determine a fraction of the output of channel n. Bw
(n, i)
cont =

1/(2π)
∫∞

0
|H(n, i)

mcont, l(jω)|2dω is, therefore, the noise bandwidth of H
(n, i)
mcont, l which deter-

mines how much of the noise in channel i will filter through channel n and contribute

to its output noise power. Likewise, Bw
(k, i)
cont determines the contribution of the noise in

channel i to determining the output noise power of channel k. Therefore, the average

of all Bw
(n, i)
cont , where n = 1, ..., j, yields the average noise bandwidth of the vector

loops with respect to the noise in channel i. It will be verified later with simulations

that this noise bandwidth varies inversely with the input noise variance. It is proposed

in this thesis that the corresponding scalar loop noise bandwidth is set to this value

for comparison with vector loops. The scalar loop noise bandwidth can also be varied

in the vicinity of this value to obtain best possible performance. Thus, the above vec-

tor loop noise bandwidth not only provides a framework for systematic performance

comparison of both tracking loops, but can be used as a good candidate for designing

the scalar loop noise bandwidth.
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The discrete equivalent of Equation 4.66 is

B′
Lmdiscr, l(i) =

1

j
× 1

2π

j∑
n

∫ π/T

0

|H(n, i)
mdiscr, l(e

jωT )|2dω

=
1

j

j∑
n

Bw
(n, i)
discr (4.67)

It is important to note that the two definitions of vector loop noise bandwidths

are identical if all channels are assumed to have the same noise variance. This is because

the first definition is the weighted average of the noise bandwidths of individual transfer

function elements in a row of the transfer function matrix. On the other hand, the

second definition takes the average of the noise bandwidths of all transfer function

elements in a column of the transfer function matrix. If the noise variance is identical

in all channels, it can be easily shown that the transfer function matrix reduces to a

symmetric matrix. This results in the same noise bandwidth from both definitions.

Numerical Computation of Noise Bandwidth

For simulation purposes the vector loop noise bandwidths are numerically calculated.

This is done by substituting vector loop transfer functions (Equations 4.53 and 4.63)

into Equations 4.65 and 4.67; calculating the integrand; and then integrating it nu-

merically from 0 to π/T . As the transfer function model includes a matrix inverse

operation, it is reduced to the following form to simplify the calculation of the matrix

inverse. The simplified form is derived for the discrete transfer function models. It also

holds for the continuous-domain transfer function models.

HV DLLdiscr, l = ((z − 1)Ij×j + Gτ, lKp, l)
−1Gτ, lKp, l (4.68)

=
1

(z − 1)

(
Ij×j −

Gτ, lKp, l

(z − 1)
+

(Gτ, lKp, l)
2

(z − 1)2
− . . .

)
Gτ, lKp, l

=
1

(z − 1)

(
Gτ, lKp, l −

(Gτ, lKp, l)
2

(z − 1)
+

(Gτ, lKp, l)
3

(z − 1)2
− . . .

)
=

1

(z − 1)
Gτ, l

(
Kp, l −

(Kp, lGτ, l)Kp, l

(z − 1)
+

(Kp, lGτ, l)
2Kp, l

(z − 1)2
− . . .

)
=

1

(z − 1)
Gτ, l

(
I4×4 −

Kp, lGτ, l

(z − 1)
+

(Kp, lGτ, l)
2

(z − 1)2
− . . .

)
Kp, l

=
1

(z − 1)
Gτ, l

(
I4×4 +

Kp, lGτ, l

(z − 1)

)−1

Kp, l

= Gτ, l ((z − 1)I4×4 + Kp, lGτ, l)
−1 Kp, l (4.69)
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In the above equations j (> 4) represents the number of visible satellites. The dimen-

sion of Gτ, l is j × 4 and that of Kp, l is 4 × j. Four rows of the Kalman gain matrix

correspond to the x, y and z components of user position and clock bias. So, the

dimension of Gτ, lKp, l is j× j which means the original transfer function model (Equa-

tion 4.68) requires the inverse of a j × j matrix and it increases with the number of

visible satellites. On the other hand, the dimension of Kp, lGτ, l is 4× 4 and it remains

constant for any number of visible satellites. Thus, the computational load involved is

greatly reduced when using Equation 4.69 instead of Equation 4.68 for calculating the

noise bandwidth.

Using the same steps as above, Equation 4.53 for the VFLL reduces to

H ′
V FLLdiscr, l = [(z − 1)Ij×j + Gd, lKv, l]

−1zGd, lKv, l

= Gd, l ((z − 1)I4×4 + Kv, lGd, l)
−1 zKv, l (4.70)

Note that the dimensions of Gd, l and Kv, l are j × 4 and 4 × j, respectively, where j

is the number of visible satellites. Equations 4.69 and 4.70 are used to numerically

calculate the vector loop noise bandwidths for the simulation geometry.

Next, a simplified form of Equation 4.49 which is the general discrete trans-

fer function model of VFLL is derived below, although it is not used for bandwidth

calculation in this thesis. The first part of the equation is simplified as

H
(1)
V FLLdiscr, l = [(z − 1)Ij×j + Gd, lKv, l + T (I −Gd, lKv, l)((z − 1)Ij×j+

TGd, lKa, l)
−1Gd, lKa, l]

−1zGd, lKv, l (4.71)

where the dimension of Ka, l is 4 × j. Following the same steps as in Equation 4.69,

the third term within square brackets reduces to

H
(1)
V FLLdiscr, l = [(z − 1)Ij×j + Gd, lKv, l + T (I −Gd, lKv, l)Gd, l((z − 1)I4×4+

TKa, lGd, l)
−1Ka, l]

−1zGd, lKv, l (4.72)

Next, with some algebra the following simplified form is obtained:

H
(1)
V FLLdiscr, l = [(z − 1)Ij×j + Gd, lKv, l + T (I −Gd, lKv, l)Gd, l((z − 1)I4×4+

TKa, lGd, l)
−1Ka, l]

−1zGd, lKv, l

= [(z − 1)Ij×j + Gd, lKv, l + T (Gd, l −Gd, lKv, lGd, l)((z − 1)I4×4+

TKa, lGd, l)
−1Ka, l]

−1zGd, lKv, l

= [(z − 1)Ij×j + Gd, lKv, l + TGd, l(I4×4 −Kv, lGd, l)((z − 1)I4×4+
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TKa, lGd, l)
−1Ka, l]

−1zGd, lKv, l

Replacing T (I4×4 −Kv, lGd, l)((z − 1)I4×4 + TKa, lGd, l)
−1 with A4×4, one gets

H
(1)
V FLLdiscr, l = [(z − 1)Ij×j + Gd, lKv, l + Gd, lA4×4Ka, l]

−1zGd, lKv, l

= [(z − 1)Ij×j + Gd, l(Kv, l + A4×4Ka, l)]
−1zGd, lKv, l

Substituting B4×j for (Kv, l + A4×4Ka, l) yields

H
(1)
V FLLdiscr, l =

1

(z − 1)

[
Ij×j +

Gd, lB4×j

(z − 1)

]−1

zGd, lKv, l

Again, using the same steps as in Equation 4.69 gives

H
(1)
V FLLdiscr, l =

1

(z − 1)
Gd, l

[
I4×4 +

BGd, l

(z − 1)

]−1

zKv, l (4.73)

Next, substituting B and A into the above equation the final simiplifed form results,

as shown below

H
(1)
V FLLdiscr, l = Gd, l[(z − 1)I4×4 + (Kv, lGd, l + T (I4×4 −Kv, lGd, l)((z − 1)I4×4+

TKa, lGd, l)
−1Ka, lGd, l)]

−1zKv, l (4.74)

Using similar steps, the second part of Equation 4.49 reduces to

H
(2)
V FLLdiscr, l = TGd, l[(z − 1)I4×4 + Kv, lGd, l]

−1(I4×4 −Kv, lGd, l)[(z − 1)I4×4 +

TKa, lGd, l + TKa, lGd, l[(z − 1)I4×4 + Kv, lGd, l]
−1(I4×4 −Kv, lGd, l)]

−1zKa, l

(4.75)

A close observation of the above equations indicates that they involve the inverse of

4× 4 matrices instead of j × j matrices, unlike the original form.

Approximate Theoretical Expression of Vector Loop Noise Bandwidth for

Performance Analysis

An approximate theoretical expression of the vector loop noise bandwidth for the trans-

fer function model with constant-velocity user motion can be derived. This helps better

understand the operating principles of vector loops. In order to do this, the following

approach is adopted.
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Theoretical Expression for Discrete-Domain Noise Bandwidth: To derive

an approximate theoretical expression for the discrete-domain noise bandwidth, the

Kalman gains of Equations 4.53 and 4.63 are first replaced with least squares estimation

gains over time interval l as

Kv, l =(GT
d, lGd, l)

−1GT
d, l (4.76)

Kp, l =(GT
τ, lGτ, l)

−1GT
τ, l (4.77)

Thus, Gd, lKv, l and Gτ, lKp, l are projection operators on <Gd, l
and <Gτ, l

, respectively,

where < stands for the range or column space of a matrix. It should also be noted that

they are idempotent matrices. Hence, mathematically,

Gd, lKv, l = (Gd, lKv, l)
2 = . . . = (Gd, lKv, l)

n (4.78)

Gτ, lKp, l = (Gτ, lKp, l)
2 = . . . = (Gτ, lKp, l)

n (4.79)

Using Equation 4.78, the VFLL transfer function model of Equation 4.53 for constant

velocity user motion reduces to

[H ′
V FLLdiscr, l]j×j =[(z − 1)Ij×j + Gd, lKv, l]

−1zGd, lKv, l

=

(
I +

Gd, lKv, l

(z − 1)

)−1
z

(z − 1)
Gd, lKv, l

[H ′
V FLLdiscr, l]j×j =

(
I − Gd, lKv, l

(z − 1)
+

(
Gd, lKv, l

(z − 1)

)2

− . . .

)
z

(z − 1)
Gd, lKv, l

=

(
Gd, lKv, l

(z − 1)
−
(

Gd, lKv, l

(z − 1)

)2

+

(
Gd, lKv, l

(z − 1)

)3

− . . .

)
z

Applying the idempotent property of Gd, lKv, l

=

(
Gd, lKv, l

(z − 1)
− Gd, lKv, l

(z − 1)2
+

Gd, lKv, l

(z − 1)3
− . . .

)
z

=

(
I − I

(z − 1)
+

I

(z − 1)2
− . . .

)
z

(z − 1)
Gd, lKv, l

=

(
I +

I

(z − 1)

)−1
z

(z − 1)
Gd, lKv, l

=
(z − 1)

z
I

z

(z − 1)
Gd, lKv, l

=Gd, lKv, l (4.80)

Substituting the above mathematical expression of the VFLL transfer function model

into Equation 4.65, using Equation 4.78 and assuming all channels have the same
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noise variance σ2, the one-sided VFLL noise bandwidth for channel i over interval l is

obtained as follows:

BWV FLLdiscr, l(i) =
1∑j

n=1 WV FLLd, nnT
×

1

2π

∫ π/T

0

[H ′
V FLLdiscr, l(e

jωT )]i(WV FLLd
T )[H ′

V FLLdiscr, l(e
−jωT )]Ti dω

=
1

2π × jσ2

∫ π/T

0

[Gd, lKv, l]iσ
2I[Gd, lKv, l]

T
i dω

=
1

2π × j
[Gd, lKv, l]ii

∫ π/T

0

dω

=
1

2T × j
[Gd, lKv, l]ii

where j is the number of visible satellites. [Gd, lKv, l]i represents the ith row of Gd, lKv, l

and [Gd, lKv, l]ii is the ith diagonal element of Gd, lKv, l. The idempotent property of

Equation 4.78 results in [Gd, lKv, l]ii = [Gd, lKv, l]i[Gd, lKv, l]
T
i . Thus, the VFLL band-

widths for all channels are given by

[BWV FLLdiscr, l]j×1 =
diag(Gd, lKv, l)

2T × j
(4.81)

Likewise, for the VDLL

[HV DLLdiscr, l]j×j =[(z − 1)Ij×j + Gτ, lKp, l]
−1Gτ, lKp, l

=
Gτ, lKp, l

z
(4.82)

[BWV DLLdiscr, l]j×1 =
diag(Gτ, lKp, l)

2π × j

∫ π/T

0

1

ejωT

1

e−jωT
dω

=
diag(Gτ, lKp, l)

2T × j
(4.83)

As the elements of the last column of Gd, l (or Gτ, l) are identical, it can be

shown that the diagonal elements of (Gd, lKv, l) or (Gτ, lKp, l) are inversely related to

the number of satellites. A simple proof of this is given in Appendix B. The above

property of (Gd, lKv, l) or (Gτ, lKp, l) implies that the output noise power of each channel

and the noise bandwidth of vector loops are narrowed down when more satellites are

visible. In addition, it was noted earlier (see below Equations 4.4 and 4.28) that

satellites aid each other in vector tracking mode. Thus, drawing a parallel with tight

and ultra-tight integration [41], it can be concluded that narrower noise bandwidths

along with aiding from more satelites would result in higher tracking thresholds of the
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vector loops as more satellites are visible. However, in practice, noise in individual

satellite channels would place a limit to the tracking threshold improvements which

was not considered in this analysis.

The above analysis assumes that all satellite channels have the same noise vari-

ance. This assumption can be relaxed by replacing the Kalman gains with weighted

least squares gains. That is

Kv, l =(GT
d, lW

−1
V FLLd

Gd, l)
−1GT

d, lW
−1
V FLLd

Kp, l =(GT
τ, lW

−1
V DLLd

Gτ, l)
−1GT

τ, lW
−1
V DLLd

where WV FLLd
is the discrete-time measurement noise covariance for the VFLL. Since

the weighted least squares gains also satisfy the idempotent property, the same transfer

function models as Equations 4.80 and 4.82 can be obtained with these gains. Then,

following the same steps as before, the VFLL noise bandwidths can be derived as

follows:

[BWV FLLdiscr, l]j×1 =
diag(Gd, l(G

T
d, lW

−1
V FLLd

Gd, l)
−1GT

d, l)

2T
∑j

i=1 WV FLLd, ii

=
diag(Gd, l(G

T
d, lW

−1
V FLLd

Gd, l)
−1GT

d, lW
−1
V FLLd

WV FLLd
)

2T
∑j

i=1 WV FLLd, ii

where WV FLLd, ii is the ith diagonal element of WV FLLd
. Substituting Kv, l for

(GT
d, lW

−1
V FLLd

Gd, l)
−1GT

d, lW
−1
V FLLd

gives

[BWV FLLdiscr, l]j×1 =
diag(Gd, lKv, lWV FLLd

)

2T
∑j

i=1 WV FLLd, ii

As WV FLLd
is a diagonal matrix, the above equation can be written as

[BWV FLLdiscr, l]j×1 =
diag(WV FLLd

)

2T
∑j

i=1 WV FLLd, ii

∗ diag(Gd, lKv, l) (4.84)

where the operator (∗) denotes element-by-element multiplication of two vectors. Like-

wise, for the VDLL

[BWV DLLdiscr, l]j×1 =
diag(WV DLLd

)

2T
∑j

i=1 WV DLLd, ii

∗ diag(Gτ, lKp, l) (4.85)

It is non-trivial to theoretically prove that the above noise bandwidths reduce

with more number of visible satellites. An alternative approach to confirming this is

through simulation. Preliminary simulations have shown that both the numerator of

the above equation (i.e., output noise power) and the noise bandwidths reduce with

more satellites in view.
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Theoretical Expression for Continuous-Domain Noise Bandwidth: An ap-

proximate theoretical expression of the continuous-domain VFLL noise bandwidth is

also derived below for constant-velocity user motion with pseudolites. For this purpose

Equation 4.51 is rewritten as follows:

f̃
d, k+1

= f̃
d, k

+ Gd, lKv, l(fd, k+1
− f̃

d, k
)

Using the first order Taylor series expansion for small T

f̃
d, k

+ T ˙̃f
d, k

≈ f̃
d, k

+ Gd, lKv, l(fd, k
+ T ḟ

d, k
− f̃

d, k
)

Since the signals are assumed to be transmitted by stationary pseudolites; the user

velocity is constant; and the rate of change of LOS due to user motion is negligible,

ḟ
d, k

≈ [0 0 ... 0]T . Thus, the above equation becomes

T ˙̃f
d, k

≈ Gd, lKv, l(fd, k
− f̃

d, k
)

Taking the Laplace transform, Equation 4.50 is obtained below, where the continuous

Kalman gain Kvcont, l is replaced with Kv, l/T

Tsf̃
d
(s) ≈ Gd, lKv, l(fd

(s)− f̃
d
(s))

f̃
d
(s) ≈

(
sIj×j +

Gd, lKv, l

T

)−1
Gd, lKv, l

T
f

d
(s) (4.86)

Next, using the idempotent property of Gd, lKv, l as before, the above equation reduces

to

f̃
d
(s) ≈

(
Ij×j +

Gd, lKv, l

Ts

)−1
Gd, lKv, l

Ts
f

d
(s)

≈
(

I +
I

Ts

)−1
1

Ts
Gd, lKv, lfd

(s)

≈ Gd, lKv, l

1 + Ts
f

d
(s) (4.87)

Thus, the VFLL noise bandwidths for identical noise variance across channels are

[BWV FLLcont, l]j×1 ≈
diag(Gd, lKv, l)

2π × j

∫ ∞

0

1

1 + (ωT )2
dω

≈ diag(Gd, lKv, l)

4T × j
(4.88)

where j is the number of visible satellites. It is important to note that the above

bandwidths are half of the discrete-domain noise bandwidths given by Equation 4.81.

Similarly, the VDLL noise bandwidths can be derived by assuming Kpcont, l ≈ Kp, l/T

and by using the idempotent property of Gτ, lKp, l. They are also half of their discrete-

domain counterparts.
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Discrete-Domain and Continuous-Domain Noise Bandwidths: Few Impor-

tant Properties

Although the noise bandwidth calculated using the discrete transfer function model is

the actual noise bandwidth, calculating the VFLL noise bandwidth using Equations

4.74 and 4.75 is complex as it involves the inverse of five 4 × 4 matrices in the z

domain. As an alternative, this work proposes to calculate the VFLL noise bandwidth

from its Laplace transfer function model and to multiply with it an empirical factor to

approximately determine the actual discrete-domain noise bandwidth. In order to find

the factor, it is important to investigate how the continuous-domain noise bandwidth

differs from its discrete equivalent. To this end, the noise bandwidths calculated from

the continuous and discrete transfer function models for the simulation geometry with

pseudolites are compared below for different values of the navigation filter measurement

update interval T . While the comparison results in a value for the above-mentioned

multiplication factor, it is important to note the limitation of that. The transfer

function model considered in this analysis is valid for constant-velocity user motion.

Therefore, it is different from the transfer function given by the sum of Equations

4.74 and 4.75 which holds for user motion with a constant acceleration. So, the factor

proposed below may not hold for Equations 4.74 and 4.75 and the actual factor can only

be found by comparing the noise bandwidths from Equations 4.46 and those from the

sum of Equations 4.74 and 4.75. Nevertheless, it is worth studying how the continuous-

domain and discrete-domain noise bandwidths are related to each other and vary with

T in the case of transfer functions models developed for constant-velocity user motion.

It should be noted that the continuous Kalman gains are required to calculate

the noise bandwidth from the Laplace transfer function model. Since the continuous

gains are unknown, they are approximated by dividing the discrete Kalman gains by

T . The continuous-domain noise bandwidths obtained this way are approximate unless

T is small enough compared to the channel noise variance WV FLLd, ii. i is the channel

index and ii stands for the ith diagonal element of the discrete-time measurement noise

covariance WV FLLd
.

Figure 4.5 depicts the ratio of the discrete-domain noise bandwidth to the ap-

proximate continuous-domain noise bandwidth as a function of T . The results of six

different channels, each representing one pseudolite, are shown in six sub-figures. Each

sub-figure is plotted with continuous-time noise PSD (N0V FLL, i) as a running parame-

ter. The subscript i represents the ith channel. N0V FLL, i is assumed to be the same for

all i. The steps for obtaining these results are as follows. First, the value of WV FLLd, ii
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for T = 0.1 sec is multiplied by 0.1 to obtain N0V FLL, i
. The reason behind selecting

the value of WV FLLd, ii at T = 0.1 sec is that 0.1 sec is considered the measurement

update interval for simulation studies. Hence, an estimate of WV FLLd, ii for T = 0.1 sec

is readily available from the vector loop implementation. Following this, WV FLLd, ii for

different values of T is calculated by dividing N0V FLL, i
by the corresponding T . Next,

the continuous-time process noise PSD is calculated from the discrete-time process

noise covariance Q at T = 0.1 sec. From this, Q for other values of T is determined.

Then, using the discrete-time process and measurement noise covariances for a given

T and the filter models, the discrete-time steady state Kalman gain is calculated for a

particular geometry matrix and the initial error covariance as the identity matrix. This

Kalman gain is used in the transfer function models to calculate the discrete-domain

noise bandwidths for that T using Equation 4.65 or 4.67 (note that both equations are

equivalent in this case because of the same noise variance in all channels). Similarly,

the continuous-domain noise bandwidths can be calculated using Equation 4.64 or 4.66.

Ideally, the Kalman gains should be derived from the vector loop implementation with

different update rates corresponding to the respective geometry matrix. However, in

view of the fact that the geometry matrix does not change much over the simulation

duration, above sub-optimal method is a reasonable approximation. It is easy to im-

plement and serves the purpose of understanding the sensitivity of noise bandwidths

to different underlying parameters such as noise covariance and update rates.

In this analysis T is varied from 0.01 sec to 0.2 sec. Values of T less than 0.01

sec are not considered because T is larger than 0.02 sec in vector loops. On the other

hand, for T larger than 0.2 sec, the bandwidth ratio can be predicted from Figure

4.5 to approach 2. Hence, results for those values of T are also omitted. In order to

consider the effect of noise levels, WV FLLd, ii at T = 0.1 sec is varied in Figure 4.5 from

0.01 (C/N0 v 50 dB-Hz) to 100 (C/N0 v 10 dB-Hz) in steps of 10, each giving one

value of N0V FLL, i
.

It is evident from Figure 4.5 that the ratio of discrete-domain to approxi-

mate continuous-domain noise bandwidths depend on the magnitudes of T as well

as N0V FLL, i
. For a fixed T the bandwidth ratio is closer to one as N0V FLL, i

increases.

However, for all combinations of T and N0V FLL, i
the ratio remains between 1 and 2

and decreases as T decreases for a given N0V FLL, i
.

From the results of Figure 4.5, the following rule of thumb is proposed to deter-

mine the factor that relates the discrete-domain noise bandwidth to the approximate

continuous-domain noise bandwidth. For T larger than 0.15 sec the factor is 2 if

94



0.05 0.1 0.15 0.2

1.2

1.4

1.6

1.8

D
is

cr
 to

 C
on

t B
W

 R
at

io
 

   
 f

or
 C

ha
nn

el
 1

Measurement Update Interval (sec)
0.05 0.1 0.15 0.2

1.2

1.4

1.6

1.8

D
is

cr
 to

 C
on

t B
W

 R
at

io
 

   
 f

or
 C

ha
nn

el
 2

Measurement Update Interval (sec)

0.05 0.1 0.15 0.2

1.2

1.4

1.6

1.8

D
is

cr
 to

 C
on

t B
W

 R
at

io
 

   
 f

or
 C

ha
nn

el
 3

0.05 0.1 0.15 0.2

1.2

1.4

1.6

1.8

D
is

cr
 to

 C
on

t B
W

 R
at

io
 

   
 f

or
 C

ha
nn

el
 4

0.05 0.1 0.15 0.2

1.2

1.4

1.6

1.8

D
is

cr
 to

 C
on

t B
W

 R
at

io
 

   
 f

or
 C

ha
nn

el
 5

 

 

0.05 0.1 0.15 0.2

1.2

1.4

1.6

1.8

D
is

cr
 to

 C
on

t B
W

 R
at

io
 

   
 f

or
 C

ha
nn

el
 6

 

 

N
o

VFLL, i

: 0.001; i = 1, ..., 6

N
o

VFLL, i

: 0.01

N
o

VFLL, i

: 0.1

N
o

VFLL, i

: 1.0

N
o

VFLL, i

: 5.0

N
o

VFLL, i

: 10.0

W
VFLL

d
, ii

 at T = 0.1 sec: 0.01

W
VFLL

d
, ii

 at T = 0.1 sec: 0.1

W
VFLL

d
, ii

 at T = 0.1 sec: 1

W
VFLL

d
, ii

 at T = 0.1 sec: 10.0

W
VFLL

d
, ii

 at T = 0.1 sec: 50.0

W
VFLL

d
, ii

 at T = 0.1 sec: 100.0

Figure 4.5: Discrete-Domain to Continuous-Domain Noise Bandwidth Ratios of VFLL

for Different Measurement Update Rates; All Channels have the Same Noise Variance.
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Figure 4.6: Discrete-Domain to Continuous-Domain Noise Bandwidth Ratios of VFLL

for Different Measurement Update Rates; In this Figure the Noise Variance Varies

across Channels, unlike Figure 4.5. The Bandwidths are Calculated Using the First

Definition.
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Figure 4.7: Discrete-Domain to Continuous-Domain Noise Bandwidth Ratios of VFLL

for Different Measurement Update Rates; In this Figure the Noise Variance Varies

across Channels, unlike Figure 4.5. The Bandwidths are Calculated Using the Second

Definition.
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N0V FLL, i
is less than 5. For T between 0.02 sec and 0.15 sec it is 1.5 if N0V FLL, i

is

greater than 0.1 and less than 5. For T between 0.02 sec and 0.15 sec it is 2 if N0V FLL, i

is less than or equal to 0.1. For N0V FLL, i
greater than 5 the factor is 1 for all values of

T . It is important to note that the value of the factor obtained from the theoretical

expressions of the noise bandwidths is two. This factor is multiplied with the VFLL

noise bandwidth calculated from the Laplace transfer function model to obtain the

approximate discrete-domain VFLL noise bandwidth. The analysis above, however,

considered only one LOS geometry i.e, a particular Gd, l and the same noise variance

for all channels. Thorough studies with different geometries and different noise levels

across channels are, therefore, needed to validate this rule of thumb. To this end,

preliminary results for a set of different noise variances across channels are provided

in Figures 4.6 and 4.7 for two types of bandwidths, respectively. WV FLLd
at T = 0.1

sec in this case is n×diag([0.1 5.0 10.0 2.0 0.1 4.0]), where n = 0.01, 0.1, 1.0, 10.0

and 50. These figures support the rule of thumb developed above for determining the

bandwidth ratio.

In addition to the bandwidth ratios, the actual values of the approximate

continuous-domain and discrete-domain bandwidths are worthy of study. They are

shown in Figure 4.8 for the first case with identical noise variance across channels. In

this figure WV FLLd, ii at T = 0.1 sec is varied from 0.01 to 10, encompassing a C/N0

variation from about 50 dB-Hz to about 20 dB-Hz. The process noise covariance is

diag([0.1 0.1 0.1]) at T = 0.1 sec. Three observations from this figure are worth not-

ing. First, for a given noise level the noise bandwidth decreases as T increases. For

small noise levels the rate of decrease is fast up to T = 0.05 sec and slows down after

that. The change in the rate of decrease diminishes for larger noise. Second, the noise

bandwidth becomes less sensitive to changes in the input noise variance as the value of

T goes up, meaning the noise bandwidth for higher values of T is mainly determined

by T . Third, all channels have more or less similar bandwidths in this case because of

identical measurement noise variance across channels.

In addition, a preliminary sensitivity analysis of the noise bandwidth with re-

spect to different process noise levels is performed. It shows that the noise bandwidths

increase slowly as the process noise covariance is made higher for a given measurement

noise level and small T. For instance, a hundredfold increase in the first two diagonal

elements of the process noise covariance at T = 0.1 sec from 0.1 to 10 results in 6 times

as large noise bandwidth when T = 0.02 sec whereas the increase is 3 times when T =

0.1 sec. Both times WV FLLd, i is 30 at T = 0.1 sec (C/N0 v 15 dB-Hz). It is also
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Figure 4.8: Discrete-Domain and Continuous-Domain Noise Bandwidths of VFLL for

Different Measurement Update Rates
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noted that the bandwidth increase is more at higher measurement noise levels.

Next, Figures 4.9 and 4.10 illustrate the actual values of the continuous-domain

and discrete-domain noise bandwidths as calculated from the two definitions of noise

bandwidths, respectively, for the second case with different noise variances across chan-

nels. Two values of n are considered: 0.01 and 10. The process noise covariance is

retained the same as the previous case. While the figures show the same monotonically

decreasing trend as in Figure 4.8, the following points deserve a mention. Figure 4.9

shows that the noise bandwidths calculated from the first definition (i.e., Equations

4.64 and 4.65) can be more for channels with higher input noise PSD. For example,

channel 3 has the highest input noise variance of all channels. Its bandwidth is higher

than all channels except channel 6. There also are exceptions as channel 6 has a higher

noise bandwidth than that of channel 3. Channel 4 whose noise variance is lower than

that of channel 2 has a higher noise bandwidth than that of channel 2. The above

findings lead to the following conclusion. A channel that has a high input noise vari-

ance may or may not have a small noise bandwidth when it is calculated using the

first definition of noise bandwidths. This is possible because the noise bandwidth of

a channel, in addition to its own noise, Kalman gains and LOS geometry, depends on

noise contributions from all other channels. It is, therefore, evident that Equations 4.64

and 4.65 are not suitable for designing the corresponding scalar loop noise bandwidths.

Figure 4.10 depicts the noise bandwidths that are obtained from Equations

4.66 and 4.67 i.e., from the second definition. It is clear from the figure that a channel

with high input noise variance is assigned a lower noise bandwidth, thus enabling this

bandwidth to be a good candidate for designing the scalar loop noise bandwidth. The

inverse relationship between the bandwidth and input noise could be achieved in this

case because the input channel is fixed, unlike the previous definition where all channel

inputs contribute to determining the noise bandwidth. Thus, the noise bandwidth

obtained from the second definition is a function of the LOS geometry and Kalman

gains only that decrease with larger noise and increase with higher uncertainties in the

dynamic model. Consequently, this bandwidth can be expected to shrink with higher

noise levels and expand with large dynamics. It is also important to note the difference

in a channel noise bandwidth when its noise level is different from those of the other

channels. For example, consider the top right plots of Figures 4.8 and 4.10. While all

channels in that plot of Figure 4.8 have a bandwidth of about 0.5 Hz at T = 0.1 sec,

channel 1 in the top right plot of Figure 4.10, which has the same noise level as that

of the channels in the corresponding plot of Figure 4.8, has a bandwidth of 4 Hz at
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Figure 4.9: Discrete-Domain and Continuous-Domain Noise Bandwidths of VFLL for

Different Measurement Update Rates; In this Figure the Noise Variance Varies across

Channels, unlike Figure 4.8. The Bandwidths are Calculated Using the First Definition.
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Figure 4.10: Discrete-Domain and Continuous-Domain Noise Bandwidths of VFLL

for Different Measurement Update Rates; In this Figure the Noise Variance Varies

across Channels, unlike Figure 4.8. The Bandwidths are Calculated Using the Second

Definition.
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T = 0.1 sec. Thus, the bandwidth assigned to a channel not only depends on its own

noise level, but also on the noise levels of other channels.

The above analysis of vector loop noise bandwidths reveals some interesting

properties which not only shed light on the internal workings of the vector architecture,

but also justify the worth of vector loop noise bandwidths to design the scalar loops.

For simulation studies discussed in the next section, all channel inputs are assumed to

have the same noise variance. Hence, both definitions of vector loop noise bandwidths

result in the same bandwidths. In the simulation studies the discrete-domain vector

loop noise bandwidths are used to select the scalar loop noise bandwidths for fair

performance comparison of two architectures. However, the FLL noise bandwidths

are not set equal to the vector loop values. Instead, they are varied to obtain the

best possible scalar loop performance while not moving far away from the VFLL noise

bandwidths. This is prompted by the fact that vector loops benefit from internal aiding

among channels while individual scalar loops do not.

4.2.2.4 Sample Transfer Function Models

To conclude the discussion of transfer function models, four VFLL models in the con-

tinuous domain which are obtained with approximate continuous Kalman gains are

displayed below. They pertain to the constant-velocity user motion with pseudolites.

The first two transfer function models each have identical noise variance across chan-

nels. Their measurement update intervals (T ) are 0.1 sec and 0.02 sec, respectively.

Individual channel noise variances of the two models are 0.01 and 0.05, both having

the same continuous-time noise PSD of 0.001. These models correspond to the upper

left plot of Figure 4.8. The third and fourth transfer function models are illustrated for

the same two measurement update intervals, but with different noise variances across

channels. The continuous-time noise PSDs of both models are N0V FLLd
= diag([0.01

0.5 1.0 0.2 0.01 0.4])×0.1. They correspond to the upper left plots of Figures 4.9 and

4.10. From these models the following important observations are made:

1. The update interval has a direct bearing on the locations of poles and zeros of each

transfer function element as they are close to 1/T in each model. In addition, the

magnitudes of poles and zeros vary inversely with measurement noise variances

when T is small. In this context, the difference in pole and zero locations in the

second and fourth transfer function models where T = 0.02 sec is noteworthy. As

an aside, it is instructive to note that the magnitudes of poles and zeros increase

slowly with higher process noise for small T (v 0.02 sec).
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2. Although each transfer function element is of third order because of three inde-

pendent states (x and y coordinates of user velocity and clock drift), two zeros are

located very close to two poles, resulting in effectively first order transfer func-

tion elements. The pole-zero cancelation can probably be attributed to the nearly

idempotent property of the Gd, lKv, l matrix. With least squares gains the idem-

potent property results in the theoretical expression of the continuous-domain

transfer function matrix having a single pole at 1/T (Equation 4.87). Since the

Kalman gains are not significantly different from the least squares gains in this

case, Gd, lKv, l is approximately idempotent up to some power, resulting in closely

located poles and zeros.

3. In the first two transfer function models the amplitude of a transfer function

element can be large or small in any row or column i.e., large amplitudes are

evenly distributed. This is because the channel noise variances are identical. In

contrast, the amplitude of each transfer function element of the remaining two

models is inversely related to the corresponding channel input noise variance. For

example, columns 1 and 5 of these models have large amplitudes in almost all

transfer function elements while those of columns 2 and 3 are substantially small

(note their PSDs above). This is reflected in higher noise bandwidths of channels

1 and 5 when they are derived using the second definition (see Figure 4.10).

4. Both absolute and relative magnitudes of measurement noise variances affect the

locations of transfer function poles and zeros at small T while the relative mag-

nitudes have a strong influence on determining the transfer function amplitudes.

Having discussed the vector loop parametric models and noise bandwidths, an expla-

nation for vector loops’ superior performance is provided next using the developed

discrete parametric model.
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Figure 4.11: Transfer Funtion Model with Equal Noise Variance of All Channels for T

= 0.1 sec
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Figure 4.12: Transfer Funtion Model with Equal Noise Variance of All Channels for T

= 0.02 sec
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Figure 4.13: Transfer Funtion Model with Different Noise Variances across Channels

for T = 0.1 sec
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Figure 4.14: Transfer Funtion Model with Different Noise Variances across Channels

for T = 0.02 sec
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4.2.3 Vector Tracking’s Superiority: An Explanation

A close study of the vector loop discrete parametric model shows that the vector track-

ing architecture derives its benefits from two types of constraints: Position/velocity

constraint and least squares constraint. In what follows, these constraints are explained

in the context of VFLL using Figures 4.15 and 4.16 and Equation 4.4. The same treat-

ment can also be repeated with VDLL after some modifications.

Figure 4.15 provides an intuitive explanation of the following concepts: Velocity

constraint of the Doppler frequencies and tracking thresholds of both scalar and vector

architectures. The Doppler frequency of each satellite is represented in the figure by

a vector in the three dimensional coordinate system. The three orthogonal axes of

the coordinate frame are the norm of user velocity, user clock drift and the norm of

satellite velocity, respectively. It should be noted that velocity norms are used and

satellite clock drifts are ignored in this analysis to reduce the dimensionality of the co-

ordinate frame. Since, at a given instant of time, all Doppler frequencies have the same

horizontal coordinates, the frequency vectors in Figure 4.15 are ideally constrained to

lie on a straight line perpendicular to the horizontal plane. This is termed the velocity

constraint of the Doppler frequencies. By estimating user velocity and clock drift, the

vector architecture makes use of this constraint while independent scalar tracking loops

do not. However, because of noise in the received signals, the actual Doppler frequency

is assumed to lie on an uncertainty sphere centered on the true Doppler as shown in

Figure 4.15 by the outermost solid circle. Tracking loops, therefore, include low pass

filters to reduce noise in the estimated Doppler. The low pass filters, in turn, define

loop noise bandwidths which can be varied to achieve a trade off between good noise

rejection and fast dynamic response. Thus, for a given C/N0 it is always possible to

find an optimum noise bandwidth for which the tracking jitter or error in the estimated

Doppler is minimum.

In the figure the dashed circle represents the minimum error sphere for a scalar

tracking loop whereas the innermost solid circle represents the same for an individual

loop in vector tracking mode. The solid circle on the borders of the two differently

shaded regions denotes the rule-of-thumb tracking threshold. Therefore, the shaded

region inside this circle depicts locked loops, implying that loss of lock occurs if the

estimated Doppler lies outside this region. Since a scalar tracking loop requires to track

full signal dynamics, narrowing its noise bandwidth improves resistance to noise at the

expense of dynamic response. This trade off limits its ability to track low C/N0 signals

and high dynamics at a given C/N0. On the other hand, Equation 4.4 shows that
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Figure 4.15: Velocity Constraint: All Doppler Frequencies are Generated by the Same

User Velocity and Clock Drift

the vector tracking architecture allows tracking loops to aid each other. Therefore,

their noise bandwidths can be reduced further without incurring as large dynamic

stresses as in scalar loops. Thus, internal aiding in vector loops helps maintain lock

at a lower C/N0. It also helps withstand high user dynamics. User dynamics cause

different Doppler shifts to different satellites depending on LOS geometry. Satellites

with large Doppler errors are aided by others to maintain tracking while satellites with

small Doppler errors may or may not require aiding depending on noise levels. The

superiority of vector loops is summarized in the figure by showing the smallest solid

circle in the locked region at a certain C/N0 whereas the dashed circle lies outside it.

Now with the help of Figure 4.16 it will be shown intuitively how internal aiding

is materialized in the vector architecture and under what scenarios it will help maintain

lock. First, however, some clarifications of Figure 4.16 are in order to better understand

subsequent theory of internal aiding. The figure provides a graphical interpretation of

the correction term (= G̃d, k+1Kv, k+1ed, k+1) of Equation 4.4. It will subsequently be

referred to as δf . For clarity a hypothetical case of only three visible satellites is

considered, although the minimum number should be more than four. The elements
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Figure 4.16: Least Squares Constraint: This Constraint Enables Internal Aiding among

Tracking Loops and Guarantees Convergence when Good Signal-Strength Satellites or

Satellites with Small Doppler Errors (e.g., Satellites 1 and 2) Aid Low C/N0 Satellites

or Satellites with Large Doppler Errors (Satellite 3) in such a Way that Minimizes their

Errors.

of ed, k+1, in spite of being linearly dependent, are represented as orthogonal axes for

simplicity. The large contour on the bottom right corner represents the range space of

the geometry matrix G̃d, k+1 and shows different projection regions of δf . It is assumed

for this analysis that the contributions of satellite motion to the Doppler frequency,

being known, have been removed from the f̃
−
d, carrk+1

and f̃
+

d, carrk+1
terms of Equation

4.4. With this background the reasons of internal aiding and its effectiveness in certain

scenarios is explained below.

In an over determined system where the number of measurements (i.e., num-

ber of visible satellites) exceeds the number of independent variables to be estimated

(number of user velocity components and clock drift = 4), the Doppler frequencies (af-
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ter removing the contributions of satellite motion) are linearly dependent. They are,

therefore, constrained to lie in a subspace defined by the range space of the geometry

matrix. This constraint is exploited by the recursive least squares algorithm of the

Kalman filter and, hence, termed least squares constraint here. It will be shown that

this constraint along with previously mentioned velocity constraint enables internal

aiding among vector loops. This is clarified by explaining below the contributions of

the correction term (δf) of Equation 4.4.

δf : Internal aiding in VFLL is realized through the term δf . In order to show

this, first the expression of δf is rewritten below:

δf = [f1...fn]T

δṼk+1 = Ṽ +
k+1 − Ṽ −

k+1 = Kv, k+1ed, k+1

δf = G̃d, k+1δṼk+1

= (G̃d, k+1Kv, k+1)ed, k+1

= Aed, k+1 (4.89)

fij = A(i, j)ed, k+1(j) (4.90)

fi =
n∑

j=1

fij, 1 ≤ j ≤ n

where Ṽ
−/+
k+1 = predicted/estimated user velocity and clock drift at tk+1; n = number

of visible satellites; fi is the ith element of δf ; fij is the contribution or aiding of jth

loop to the correction of ith loop. In the figure the length of fi denotes its relative

magnitude and for clarity fij is shown to be added as vectors. A close observation of

the above equations reveals the following. First, a velocity correction term δṼk+1 is

estimated and then, it is projected onto <G̃d, k+1
to find δf . Since G̃d, k+1 is a four-

column rectangular matrix with more than four rows, the elements of δf are linearly

dependent and belong to a particular subspace defined by <G̃d, k+1
. In this context,

note that the residual measurement vector ed, k+1 should ideally be in <G̃d, k+1
as the

true Doppler frequency vector f
true,dk+1

∈ <G̃d, k+1
and f̃

−
d, carrk+1

∈ <G̃d, k+1
, where

contributions of satellite motion to the Doppler vectors are assumed to be removed.

However, the elements of ed, k+1 usually lie away from <G̃d, k+1
mainly due to noise or

sometimes due to discriminator nonlinearities. So, δf is the least squares projection

of ed, k+1 on <G̃d, k+1
. The recursive least squares algorithm of the EKF ensures that,

given an ed, k+1, δf is the best possible estimate of the true frequency correction vector

(= f
true,dk+1

− f̃
−
d, carrk+1

) on <G̃d, k+1
. This implies that the elements of ed, k+1 which
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closely satisfy the linear dependence of <G̃d, k+1
will define the projection region on

<G̃d, k+1
. Because for a given ed, k+1, those elements would change less after projection

to obtain the best possible estimate δf on <G̃d, k+1
. As a result, the remaining outlying

elements of ed, k+1 are pulled into that projection region, resulting in internal aiding.

A geometric interpretation of the above explanation is as follows. By definition,

fii and ed, k+1(i) are related as fii = ced,k+1(i), where from Equation 4.90 c = A(i, i).

It follows from the definition and the positive definite property of A that 0 < c < 1

and hence ed, k+1(i) > fii. So, in the figure fii is drawn in the direction of ed, k+1(i)

and smaller in length than ed, k+1(i). It is assumed that satellites 1 and 2 correspond

to either good C/N0 satellites or satellites with small frequency errors or errors that

are corrupted by relatively small noise samples. As a consequence, ed, k+1(i), i = 1, 2

closely satisfy the linear dependence of the Doppler frequencies and, therefore, f1 and

f2 change marginally from ed, k+1(1) and ed, k+1(2), respectively, after projection. On

the other hand, satellite 3 does not satisfy the linear dependence due to either of

the two reasons: First, more noise or second, a large frequency error. Sometimes

the error can even be large enough to lie outside the discriminator pull-in range and,

thus, produces a wrong discriminator output. This is possible with a long coherent

integration time (≥ 10 ms) which reduces noise, but at the same time narrows down

the pull-in range. This will be explained in detail later with simulation studies. In

order to show that more noise results in smaller c as Kv, k+1 is inversely related to

measurement noise, f33 is drawn as a small fraction of ed, k+1(3). Now note that, with

the help of aiding from satellites 1 and 2, f3 is significantly “bent” from ed, k+1(3) to be

pulled onto <G̃d, k+1
. However, such internal aiding guarantees convergence if there is a

sufficient number of satellites which correctly define the projection region (cases 1 and

2) and pulls the outlying ones into that region. Case 2 indicates that some satellites

may be in the divergence region in the beginning, but are pulled later in the correct

direction. Finally, case 3 illustrates an extreme situation when none of the satellites

lie near the correct region and hence vector loops, in spite of having internal aiding,

do not maintain lock.

Thus, from the above analysis the following conclusion is made: In the vector

architecture a low C/N0/blocked satellite is aided by good signal strength satellites

to bridge a momentary outage. In the presence of multiple low C/N0 satellites vector

tracking narrows down the noise bandwidths by allowing longer integration times of

all channels and decreasing the Kalman gain adaptively with enhanced noise levels.

However, this does not affect its dynamic performance as satellites with large Doppler
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offsets are aided by others to satisfy the linear dependence of all Doppler frequencies.

Finally, the same explanation of inter loop aiding also applies to tracking high user

dynamics.

PS2PS1

PS3

o

45 o
60 o

o

  67.5

67.5 o
X

60 

22
.9

5 
km

30 km

       30 km

30 km

30 km

Y

    user location
           Initial

60 o 60 o

60 o

60 

60 

o

o

o

60 

30 km
30 km

30 km

30 km
PS4

PS5

User trajectory   
User velocity: 40 m/s 
Simulation duration: 15 s

PS6
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4.3 Simulation Studies

Since the vector tracking algorithm is too complex to analyze with real data and, as

shown earlier when explaining vector tracking’s superiority, LOS geometry is one of

the key parameters that has an effect on vector loop performance, simulation studies

involving pseudolites used in navigation of a ground vehicle (i.e., two dimensional

motion) are considered. This allows easy control of LOS and user geometry which is

described below. Note that both scalar and vector architectures are implemented with

this user geometry.

4.3.1 Two Dimensional User Geometry

The user geometry shown in Figure 4.17 involves six ground-based pseudolites and

a ground vehicle navigating in a straight line towards the second pseudolite. The

pseudolites are assumed to have the same signal structure as GPS except that they

include only dummy navigation message to simulate the adverse effect of data bit

transitions in tracking loop performance. In this context, note that decoding the

navigation message is not required since the pseudolite locations are precisely known.

As shown in the figure, all six pseudolites are evenly distributed around the user to

provide a low dilution of precision (v 2). The user, on the other hand, moves with a

constant velocity of 40 m/s, resulting in the following initial Doppler frequencies for the

six pseudolites, respectively: [76 210 102 -210 166 -108] Hz. Although 40 m/s is high for

ground applications, this velocity is considered in the simulation studies to obtain fairly

large Doppler frequencies that are easy to analyze. Since the pseudolites are stationary,

the user motion alone causes a slow change in LOS geometry, with the maximum rate

of change of the Doppler frequency given as 0.3 Hz/sec. An important advantage of

such benign, slowly changing geometry is that it allows one to use the VFLL transfer

function models described by Equations 4.50 and 4.53. The noise bandwidths of the

VFLL and VDLL transfer function models set the benchmark for the scalar loop noise

bandwidths and, thus, serve as a way to systematically compare the two architectures.

4.3.2 Simulation Results

For simulation purposes a high fidelity RF front end simulator has been developed

which allows generation of GPS signals with different C/N0s. Using this simulator, 17

dB-Hz IF data is generated for the user geometry described above. Only wide band
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Gaussian thermal noise is added to IF samples and a total of sixty Monte Carlo runs are

simulated. Each run is with a different initial state from a random number generator.

At 17 dB-Hz the FLL thermal jitter with the cross frequency discriminator, a 2 Hz

noise bandwidth and a 10 ms accumulation interval exceeds the rule-of-thumb tracking

threshold of [68], implying that longer accumulation intervals or non-coherent averaging

is required to maintain lock at this C/N0. Furthermore, in an effort to create a situation

where scalar loops with a 10 ms or a longer accumulation interval will never pull in

to the truth, the following initial Doppler errors for pseudolite 1 through pseudolite 6

are considered: [27, 59, 33, -44, 48, -18] Hz. These errors are obtained by projecting

a velocity error of 7 m/s on the LOS. Since the frequency pull-in range with a 10 ms

accumulation interval is ±50 Hz [67], it is apparent that the second loop will not be able

to maintain lock because a smaller accumulation interval will increase the thermal jitter

and a longer one narrows the pull-in range. In addition, the fourth and fifth pseudolites

can also cross the 50 Hz threshold because of noise. The purpose of this study is to show

how vector tracking loops, with identical design parameters as in the scalar tracking

loops, can maintain lock at 17 dB-Hz and to validate the previous theoretical analysis of

vector loop internal aiding. The afore-mentioned design parameters include nonlinear

discriminator types, accumulation intervals, noise bandwidths and loop update rates.

Figure 4.18 shows the Doppler frequency tracking performance of the scalar and

vector architectures for a particular Monte Carlo run. The thick solid line in the figure

denotes the actual Doppler frequency after RF front end processing. It includes the

receiver clock drift which is added to the geometric Doppler frequency during frequency

down conversion. The thin black line represents the actual vector loop performance.

The thin solid green line shows the performance of the vector tracking loops with

constant parameters (i.e., a sub-optimal vector architecture with the decoupled VDLL

and VFLL, piecewise constant geometry matrices and constant Kalman gain). It should

be noted that in this study Kv, l of Equation 4.51 and Kp, l of Equation 4.60 are replaced

with Kv and Kp, respectively, for any sub-interval l. The constant Kalman gains (Kv

and Kp) are obtained by averaging the steady state Kalman gains over a time interval

of 5 sec. The reason for replacing all sub-interval Kalman gains with constant gains

is that the Kalman gains are found to remain almost constant due to slowly changing

user-pseudolite geometry after initial transients have died down (the maximum rate of

change of the Doppler frequency is only 0.3 Hz/s). Each piecewise constant geometry

matrix is assumed to be valid for Tsub = 1 sec (i.e., for ten update intervals). All

underlying assumptions discussed before to select Tsub are satisfied.
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The line with ‘X’ markers represents first order scalar loops and the one with ‘+’

markers illustrates the performance of second order scalar loops. Note that a 10 (20)

ms accumulation interval for P (E & L) correlators and a non-coherent averaging

time/loop update rate of 0.1 sec to reduce the thermal jitter in the scalar tracking loops

are used. The dashed line, on the other hand, shows the performance of the vector

architecture without internal aiding (i.e., a sub-optimal architecture where corrections

from other loops are dropped by zeroing the off-diagonal matrix entries of Equation

4.37).

The following conclusions are drawn from Figure 4.18:

1. the close proximity of the thin solid green and black lines justifies that, with re-

spect to quasi-stationary geometry, the sub-optimal architecture is a valid approx-

imation to the actual implementation. This validates the use of the sub-optimal

architecture as subsequent analysis tool. An advantage of the sub-optimal archi-

tecture is that, in the continuous and discrete domains, it can be represented by

a set of transfer function matrices (Equations 4.50, 4.53, 4.62 and 4.63), where

each set corresponds to one piecewise constant geometry matrix. Thus, instead

of a single transfer function for each loop, a 6× 6 transfer function matrix for all

six loops together is obtained. Consequently, the noise bandwidth of an individ-

ual loop in vector tracking is determined by averaging the noise bandwidths of

all transfer function elements in the corresponding row of the transfer function

matrix. This noise bandwidth is identical with two definitions of vector loop

noise bandwidths discussed earlier and valid only when all loops have similar

noise statistics as is the case in this simulation. Now considering all transfer

function matrices over the simulation duration of 15 sec, 15 noise bandwidths are

obtained. With quasi-stationary geometry the 15 values do not differ significantly

from each other. For example, the VFLL noise bandwidth of the first loop varies

from 0.42 Hz to 0.32 Hz over 10 sec, as illustrated in Figure 4.19. This allows

one to determine an effective noise bandwidth of each loop by averaging the 15

values.

The significance of the vector loop noise bandwidths lies in the fact that they

set the benchmark for the scalar loop noise bandwidths which are actually var-

ied in the vicinity of vector loop prescribed values to obtain the best possible

performance. This ensures similar scalar and vector loop noise bandwidths while

comparing the two architectures. The FLL bandwidths in the continuous domain

are selected as [0.5 1.0 0.5 1.0 1.0 0.5] Hz for pseudolites 1 through 6, respec-
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Figure 4.19: Evolution of VFLL Noise Bandwidths in Time for Simulation

Geometry

tively. In the discrete domain the FLL noise bandwidths become 0.55, 1.24, 0.55,

1.24, 1.24 and 0.55 for first order loop channels, respectively. They become 0.47,

0.88, 0.47, 0.88, 0.88 and 0.47 for second order loop channels, respectively. It is

important to note that the FLLs for channels 1, 3 and 6 have noise bandwidths

very close to the corresponding VFLL values whereas the FLLs for the remaining

channels have noise bandwidths two to four times the VFLL values. The reason

is as follows: It is observed that channels 1, 3 and 6 do not need internal aiding

in vector tracking mode in almost all of 60 simulations while channels 2, 4 and 5

need aiding from other channels. So, the FLL noise bandwidths of channels 1, 3

and 6 are set close to vector loop values while those of channels 2, 4 and 5 are set

to 1 Hz (i.e., almost two to four times the VFLL values). All DLL bandwidths

are also matched to the VDLL bandwidths (∼ 0.06 Hz).

119



2. The dashed line is equivalent to a first order scalar DLL and FLL except that,

unlike the line with ‘X’ markers, its noise bandwidths are not varied in accordance

with vector loop prescribed values. Since it is obtained by turning off inter loop

aiding in the sub-optimal parametric model, this implies that the sub-optimal

model allows switching back and forth between vector and scalar implementa-

tions.

3. The optimal and sub-optimal vector architectures perform better than their scalar

equivalents except for pseudolite 6 for which vector loops exhibit large transients

before settling down.

Figure 4.18 shows that both scalar loops fail to converge for pseudolites 2 and 4

because the Doppler frequency errors exceed the nonlinear discriminator pull-in range.

Figure 4.20 explains the reasons for vector tracking loop performance with the help

of its sub-optimal parametric model described by Equation 4.37. Using this equation,

the effect of aiding from different loops is quantitatively shown and, thus, the role

of internal aiding in vector tracking is validated with simulations. For simplicity of

notation first the equation for the quasi-stationary simulation geometry is rewritten as

follows:

f̃
+

d, k+1
= f̃

−
d, k+1

+G̃d, lKv, led, k+1

Since f̃
−
d, k+1

=f̃
+

d, k
within any lth sub-interval and Kv, l = Kv

f̃
+

d, k+1
= f̃

+

d, k
+G̃d, lKved, k+1

f̃
+

d, k+1
= f̃

+

d, k
+Aed, k+1 (4.91)

where A is a square matrix of dimension n×n and n is the number of visible satellites.

It is imperative to note that within a sub-interval f̃
−
d, k+1

= f̃
+

d, k
because the geometry

matrix is constant within a given sub-interval and the user velocity is constant. When

transitioning from one sub-interval to another, the geometry matrix is assumed to

remain unchanged till the first time update of the new sub-interval, thus, still satisfying

f̃
−
d, k+1

= f̃
+

d, k
. This approximation is reasonable as the change in f̃

−
d, k+1

from f̃
+

d, k

due to the change in the geometry matrix during sub-interval transitions is negligible

compared to the correction from the measurement update. The new geometry matrix

is used from the first measurement update of the new sub-interval i.e., with the term

G̃d, lKved, k+1.
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Figure 4.20: Internal Aiding in Vector Tracking Loops: (a) Pseudolites 2 and 3; (b)

Pseudolites 1 and 5; (c) Pseudolites 4 and 6

For any pseudolite i the Doppler frequency is given by

f̃
+

d, k+1
(i) = f̃

+

d, k
(i)+

6∑
j

A(i, j)ed,k+1(j)

f̃
+

d, k+1
(i) = f̃

+

d, k
(i) +

6∑
j

∆fij (4.92)

∆fij is referred to as the correction term of ith loop contributed by jth loop.

The actual estimated Doppler frequency which is generated by combining corrections

from all loops is depicted in Figure 4.20 (a) - (c) by the thin solid green line. The line

with ‘+’ markers would be the estimated Doppler frequency if only the contribution of
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an individual loop to correcting its own error was considered and those of others were

ignored (i.e., ∆fii for pseudolite i in Equation 4.92 is only considered). The black line,

on the other hand, results from considering the total corrections of all loops except the

one being estimated. The dashed line shows the estimated Doppler when considering

corrections from only those two loops that are most correlated with the loop under

interest. The two most correlated loops are determined by the two elements of a row

of G̃d, lKv which are second and third largest after its diagonal entry. Mathematically,

for the ith pseudolite the solid green and black lines and the line with ‘+’ markers are

obtained by the following equations, respectively

f̃
+

d, k+1
(i) =f̃

+

d, k
(i) +

6∑
j=1

∆fij

f̃
+

d, k+1
(i) =f̃

+

d, k
(i) +

6∑
j=1, j 6=i

∆fij

f̃
+

d, k+1
(i) =f̃

+

d, k
(i) + ∆fii

Since ∆fii = fii = ced,k+1(i), where 0 < c < 1 (Equation 4.90), all the flat

segments of the line with ‘+’ markers indicate that the corresponding ed, k+1(i) is neg-

ligible. Further, as ∆fij ∝ ed, k+1(j), this implies that the loop not only has negligible

self-corrections in those segments, but also its contributions to other loops are then

insignificant. This interpretation will be used in the explanation below. If lth and mth

pseudolites are most correlated with ith pseudolite, then the dashed line follows the

equation given below

f̃
+

d, k+1
(i) = f̃

+

d, k
(i) +

∑
j=l, j=m

∆fij

It is imperative to observe that none of these lines except the one corresponding

to the actual estimated Doppler frequency converge to the true value as they apply

only partial corrections. The significance of these lines, in particular, lies during the

transient period. Since all of them start with the same initial guess, the proximity

of the solid green line to a particular line during a transient illustrates which loop is

instrumental in driving the actual estimated Doppler (solid green line) to the truth. For

example, the solid green, black and dashed lines for pseudolite 2 are nearly coincident

with each other which implies that the loop is aided by the ones that are most correlated

with it (i.e. pseudolites 3 and 5). Since pseudolite 5 generates almost negligible self-

corrections in the beginning, as reflected by the initial flat portions of the line with ‘+’

markers for this pseudolite (i.e. ∆f55 and ed,k+1(5) ≈ 0), it can be concluded that most
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of the corrections for pseudolite 2 are generated by pseudolite 3 which also shows rapid

convergence. Thus, internal aiding drives the Doppler frequency of the second loop

within its pull-in range. Later, the second loop aids itself to ensure fast convergence.

Likewise, pseudolite 1 helps pseudolite 5 (notice the jump in its dashed line around the

same time the line with ‘+’ markers of pseudolite 1 starts to move downward).

The adverse effect of internal aiding is evident when the diverging 4th element

of ed,k+1 (see its effect on the line with ‘+’ markers for pseudolite 4) propagates into

pseudolite 6 and delays its convergence. This explains why in Figure 4.18 vector loops

show large transients with pseudolite 6. Further, note that the diverging 4th element of

ed,k+1 prevents scalar loops from pulling in as it causes the Doppler error to cross the 50

Hz threshold while at the same time vector loops pull in due to internal aiding. Figure

4.20, therefore, supports the theoretical analysis presented with the help of Figures 4.15

and 4.16. It also clearly illustrates the drawback of internal aiding in vector tracking

loop performance.

Next, the histogram plots of Figure 4.21 summarize the Doppler tracking per-

formance of the scalar and vector architectures with sixty Monte Carlo runs. As for

the legend, “fast convergence” implies convergence of the estimated Doppler frequency

to the true Doppler frequency within the first five senconds. “Fixed offset” means a

fixed bias from the truth as illustrated by the first order scalar loop performance of

pseudolites 2 and 4 in Figure 4.18. “Divergence” denotes monotonically increasing

errors similar to the ones for the second order scalar loops in pseudolites 2 and 4 in

Figure 4.18. The histogram plots reinforce earlier observations that the optimal and

sub-optimal vector architectures are both significantly better than the scalar loops

when the initial Doppler errors are large. Although the performance of the optimal

and sub-optimal architectures is almost comparable, the optimal architecture results

in divergence in a small number of runs but the sub-optimal architecture does not.

While the actual reason behind such inconsistency is unknown, this may be caused by

weakly coupled VDLL and VFLL in the optimal architecture, which results in slighly

higher chance of error propagation among channels. In the sub-optimal architecture

VDLL and VFLL are decoupled. It is noteworthy that the first order scalar loops

perform better than the second order scalar loops. A probable explanation for this is

that the transfer function elements of the vector loops are of first order. So the vector

loop prescribed noise bandwidths may be better matched to the first order scalar loops

than to the second order scalar loops. It is found that the number of divergence in the

scalar loops is reduced if the noise bandwidths are increased.
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4.4 Preliminary Guidelines for Achieving Better

Performance of Scalar Loops

The theoretical analysis and simulation results discussed before illuminate two key

features of the vector architecture which can be leveraged to design a more robust

scalar tracking loop. They are inter-satellite or internal aiding of channels in vector

tracking mode and vector loops’ ability to adjust noise bandwidths with input noise

levels, user dynamics and number of visible satellites.

As demostrated earlier in Chapter 1, the conventional scalar receiver architec-

ture loses track of signals in low C/N0 and/or high dynamic environments. Among

various approaches used to deal with the problem of frequent signal outage, adaptive

tightly coupled GNSS/INS integration is one where Doppler information derived from

the INS is used to aid GNSS tracking loops [79]. The tracking loop bandwidths, on the

other hand, are varied adaptively depending on C/N0 to facilitate better INS calibra-

tion. Further, to ensure that the GNSS/INS integration Kalman filter is not destabi-

lized by colored noise, the Kalman filter noise bandwidth is tuned to the tracking loop

noise bandwidth by appropriate design. This is done by scaling up the Kalman filter

measurement noise covariance using tracking loop bandwidth when the bandwidth is

below a certain threshold. Although not detailed in [79], the threshold bandwidth can

be selected to correspond to the filter measurement update rate.

The guidelines proposed in this thesis for achieving better performance of the

scalar architecture are akin to tight GNSS/INS integration in that they attempt to

replicate the effect of vector loop internal aiding in the scalar architecture. The pro-

posed method, however, offers a departure from the usual approach that selects the

tracking loop noise bandwidth somewhat heuristically (wide at good C/N0 and narrow

at low C/N0). It proposes a more systematic way of selecting the bandwidth. This

is achieved by setting the vector loop-derived noise bandwidth as the corresponding

scalar loop bandwidth for a given noise level, user dynamics and tracking loop update

rate.

Recall from the discussion under vector loop transfer function models that for

a given level of user dynamics and measurement noise, the vector loop transfer func-

tion models can be derived over a number of sub-intervals in a given time interval.

The duration of each sub-interval is determined using some criteria for offline analysis.

For real-time implementation the duration of a transfer function model can be a few

seconds. From these transfer function models vector loop noise bandwidths can be
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obtained using the second definition of noise bandwidths. For a given level of measure-

ment noise and dynamic uncertainties, the noise bandwidth is a function of the order of

vector loop transfer function elements (or the number of independent states (velocity,

acceleration, jerk) estimated), measurement update rate and user-satellite geometry.

The following parameters of the scalar tracking loops are proposed to be de-

signed with the help of vector loop transfer function models. The FLL bandwidths

are adjusted corresponding to the FLL update rate which is set as 20 ms. The FLL

filter order can also be set equal to that of the corresponding diagonal element of the

vector loop transfer function matrix (after canceling closely located poles and zeros).

The DLLs are generally aided by the FLLs. So, their bandwidths are set inside the

tracking algorithm. The selection of FLL bandwidths can be carried out in the scalar

loop navigation filter at each filter measurement update and fed back to the tracking

loops. Since this is done at a relatively low rate (few seconds), individual scalar loop-

estimated C/N0 should be used to scale the scalar loop bandwidth if C/N0 changes

between two successive updates from the navigation filter.

The preliminary guidelines for designing a scalar loop which possesses some of

the attractive features of vector loops and not all the complexity are presented below.

This leverages vector loop transfer function models developed earlier:

1. The vector loop Kalman gain and noise bandwidths are calculated in real time

using a separate algorithm inside the scalar loop navigation filter routine. A rough

description of the algorithm inputs and outputs is as follows: At each filter update

interval the algorithm inputs the geometry matrix, process noise covariance (from

the expected level of dynamics) and receiver estimated C/N0s for calculating the

measurement noise covariance. Then it computes the steady state VFLL Kalman

gain corresponding to the FLL update rate. This Kalman gain is used in the

VFLL transfer function model. The initial error covariance is assumed to be

the identity matrix for computing the Kalman gain of the first VFLL transfer

function model and equal to the steady state error covariance of the previous

model after that. Since C/N0s and geometry matrix are available only at the

filter measurement update rate which is lower than the FLL update rate, the

computation of VFLL Kalman gain assumes that C/N0s and geometry matrix

do not change between two successive filter updates. Thus, the time interval over

which the VFLL transfer function model is valid is automatically determined by

the scalar loop navigation filter measurement update rate. The algorithm outputs

the FLL filter order as determined from the VFLL transfer function matrix and

128



the vector loop noise bandwidths corresponding to the FLL update rate. The

navigation filter sends out this information to the tracking loops. The previous

analysis of vector loop noise bandwidths suggests that for an update rate of 20

ms the continuous and discrete bandwidths are almost similar (within 1.5 times

of each other). As a result, it is sufficient to calculate the continuous-domain

noise bandwidths instead of complex discrete-domain bandwidths.

2. The navigation filter also predicts the Doppler frequencies by projecting the satel-

lite and user velocity and acceleration on the LOS vectors and feeds back the pre-

dicted Dopplers and Doppler rates to individual scalar tracking loops as aiding.

The Doppler rates are used to predict the Doppler frequencies used for aiding.

When there is a change in user dynamics, good C/N0 channels are likely to track

it. If poor C/N0 channels are unable to track the change, they may lose lock

but can be expected to restore tracking after the next Doppler update from the

navigation filter. The Doppler information can also be derived from an external

source to better track user dynamics, as is done in tightly coupled GNSS/INS

integration.

3. To avoid cascading problems i.e., positive feedback caused by destabilized naviga-

tion Kalman filter, the filter noise bandwidths are matched to the scalar tracking

loop bandwidths using the method of [79].

It is instructive to note that the above modifications can be carried out on receivers that

allow tracking bandwidths and NCO inputs to be controlled externally. This should

not be too costly as most receiver tracking loops are now implemented in software.

While it can be expected that the above designed scalar loops will be less complex in

terms of implementation and yet will offer performance comparable with vector loops

to some extent, the latter will always have an edge. This is because, unlike vector

loops, individual scalar loops will handle any residual error on their own. In addition,

the measurement update rate of the scalar loop navigation filter is lower than that of

the vector loops, resulting in less accurate Doppler information between two updates.

4.5 Conclusion

This chapter presented a methodology for analyzing vector tracking loops and compar-

ing their performance to scalar architectures. Based on this comparison, the following

conclusions are reached: First, vector tracking is superior to scalar tracking because of
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internal aiding among loops which enables better performance of the vector tracking

architecture. This implies that Doppler aiding can be used to achieve similar perfor-

mance with scalar loops. Furthermore, vector loop noise bandwidths as derived from

their transfer function model can also be a good starting point for designing scalar

loops with equivalent performance. Based on these findings, preliminary guidelines to

achieve comparable scalar and vector loop performance are developed. Second, internal

aiding, in addition to being responsible for good dynamic/noise rejection performance,

points to an important pitfall of such a coupled architecture; an error developed in one

loop can easily propagate into others and corrupt them. Such propagation of errors is,

to some extent, apparent in some of the simulation results where the scalar loops settle

down in the vicinity of the true value, but individual vector tracking loops have wider

variations or settle down late due to errors in others. Therefore, an extensive study of

the integrity risk posed by vector tracking is of paramount importance and will be the

focus of the next two chapters of this thesis.
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Chapter 5

Integrity Analysis of Vector

Tracking Architecture

5.1 Introduction

While the vector tracking architecture has proved to be an effective solution for dealing

with the challenge of frequent loss or attenuation of GPS signals in urban areas, issues

with its fault detection capability or integrity monitoring have yet to be explored in

great depth. The integrity studies of the vector architecture in this chapter, therefore,

aim at making contributions towards enabling its use in high-integrity navigation sys-

tems which lie in the heart of all safety and liability-critical applications. The use of

vector tracking architecture with integrity monitoring will hold promise in applications

such as driver-assist systems [80], law enforcement operations, road tolling/congestion

charging schemes [81], etc..

In broad terms integrity relates to the level of trust placed in a system. It is

an important navigation performance parameter in safety and liability-critical opera-

tions. Integrity is quantitatively represented by three sub-parameters: Integrity risk,

alert limits and time-to-alert. Integrity risk is the the probability of occurring an event

when a navigation system will generate misleading information (MI). In more con-

crete terms, this is an event where the system generates a solution with larger than

acceptable position error without issuing a timely alert. Depending on the severity

of consequences, it is also called hazardously misleading information (HMI) in certain

applications. Integrity risk is mathematically expressed by the probability of HMI (or

MI). The second sub-parameter is called alert limits which are of two types: Verti-

cal alert limits (VAL) and horizontal alert limits (HAL). Alert limits are maximum
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position errors that are permissible in a given application from a safety or liability

standpoint. The third sub-parameter time-to-alert is the maximum allowable time

between the instant when position error exceeds either or both alert limits and the in-

stant when an alarm is issued to the user. Once these sub-parameters are specified for

an application, an intergrity monitoring system can be designed to continuously check

system anomalies. The monitoring system also outputs position error bounds called

protection levels that protect the actual position error with a certain probablity and

must remain below the alert limits for integrity monitoring to be available. Among

different architectures that have been proposed over the years, receiver autonomous

integrity monitoring (RAIM) is a solely receiver-based integrity monitoring technique

that uses redundant pseudorange measurements to satellites to perform consistency

checks.

Although there is an extensive body of knowledge on RAIM for scalar architec-

tures [52]- [55], it is not directly applicable to the vector architecture. This is because,

as shown in the previous chapter, satellites aid each other in vector tracking mode,

meaning an individual satellite tracking loop not only applies correction to its own

error, but also to those of other loops. Such inter-satellite aiding or internal aiding, in

addition to being responsible for vector loops’ superior performance, allows easy prop-

agation of errors (and similarly faults) among loops. Consequently, the pseudorange

measurements output from a vector tracking receiver are all affected by a failure in one

channel and, thus, violate the basic single fault assumption of the traditional or scalar

loop-based RAIM algorithms. Such propagation of errors/faults among the pseudor-

ange measurements of a vector tracking receiver is demonstrated in Figure 5.1. The

fault and the intermediate frequency data for this purpose are generated using a high

fidelity receiver front end simulator. The figure shows the pseudorange measurement

noise in four channels of a vector tracking receiver before and after a ramp error of

slope 1 m/sec is injected into channel 2 at t = 20 sec. It is clearly evident from the

figure that the fault not only affects the measurements in channel 2, but also manifests

itself in the measurements of other channels.

While one can argue that independent scalar loop-based RAIM algorithms can

run alongside vector loops, this architecture will not work under weak signal environ-

ments. In these environments scalar loops, unlike their vector counterpart, easily lose

the ability to track GPS signals. Further, with multiple GNSS Systems on the hori-

zon, the vector architecture holds potential for tracking very weak satellite signals by

fusing multi-GNSS signals. This is attributed to its inherent ability to improve track-
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Figure 5.1: Propagation of Fault among Channels

ing thresholds adaptively when more satellites are visible, as concluded in Chapter 4.

Hence, in view of these issues, studies of integrity risk in vector tracking are warranted

as the literature offers meagre information about it [12], [57].

The remaining chapter is organized as follows: First the objectives of this chap-

ter are highlighted. After that the scalar loop RAIM algorithm which will be used as

a benchmark later in the chapter is discussed. Then, vector loop RAIM algorithms for

coherent and non-coherent architectures are presented. Following this, the vector loop

RAIM algorithm for the non-coherent architecture is validated with simulation studies.

Finally, a summary and concluding remarks close the chapter.

5.2 Objectives

The objectives of this chapter are twofold. First, it is to design a RAIM algorithm

for vector tracking. Second, it is to assess the performance of vector loop RAIM by
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comparing it to a traditional RAIM (scalar loop RAIM) with simulation studies. With

respect to the first objective, the approach in this thesis involves the use of correlator

or nonlinear discriminator outputs to form test statistics for the vector loop RAIM

algorithms. The advantage of this approach is that the discriminator outputs (for non-

coherent architecture) or the code phase errors extracted from the correlator outputs

(for coherent architecture) directly translate to the pseudorange residuals. This is be-

cause they are proportional to the code phase alignment errors of the replica code with

the received code. While the received code corresponds to the actual pseudorange mea-

surements, the phase of a replica code in vector tracking mode is adjusted based on the

predicted pseudorange output of the vector loop navigation filter. In addition, similar

to the pseudorange measurements of scalar architectures, the assumption of a single

failure applies to the vector loops at the correlator or discriminator level. Therefore,

the test statistics of the vector loop RAIM algorithms can be formed by appropriately

using the discriminator or correlator outputs or, in other words, from the difference

between the actual and the receiver-predicted pseudorange measurements. Moreover,

it will be shown that the protection levels can be calculated for the federated coherent

and non-coherent vector architectures in a way similar to the scalar architectures. This

implies that schemes equivalent to the standard scalar loop RAIM [52] - [54] will hold

true for the vector architecture when implemented with the discriminator or correla-

tor outputs. In this context, it is important to note that [12] uses the discriminator

outputs as inputs to its vector loop RAIM algorithm. But neither does it point out

the drawbacks of vector loop pseudorange measurements, nor does it address the chal-

lenges associated with using the discriminator outputs. Further, it lacks a thorough

performance comparison of scalar and vector loop RAIMs.

With respect to the second objective, this chapter focuses on identifying con-

ditions under which scalar and vector loop RAIM algorithms can be studied system-

atically and comparably. In this regard, the tracking loop noise statistics are related

to those of the pseudorange noise used in scalar loop RAIM because the tracking loop

noise statistics are used in the vector loop RAIM. Correlator noise statistics are also

derived in Appendix A removing the white noise assumption [63] of the bandlimited

pre-correlation noise (when the two-sided pre-correlation bandwidth is less than the

sampling frequency). Next, the calculation of protection levels is modified to account

for Kalman filter implementations as opposed to least squares estimation of user PVT.

It should be noted that the protection level calculation with the Kalman filter imple-

mentation presents a challenge that past faults affect the present state estimate, unlike
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least squares estimation. This is compounded by the fact that user position is updated

at a slower rate than the user velocity to perform integrity monitoring in the vector

architecture with relatively noisy discriminator outputs. The discriminator outputs

need to be averaged over a few seconds to reduce noise. All this results in faults in the

pseudorange rate measurements contributing to the position error even when the po-

sition is not updated, thus making the computation of protection levels complicated.

It is addressed in detail later in this chapter. Then, for given probabilities of false

alarm and missed detection (or integrity risk) the performance of both non-coherent

scalar and vector algorithms is studied with different values of the following parame-

ters: Ramp type faults and C/N0. To compare performance, the fault detection times

since the onset of the fault and protection levels of the two tracking architectures are

noted. Finally, based on the performance results of simulation studies, conclusions

are drawn on the integrity monitoring capability of vector tracking as compared to

its scalar counterpart. Thus, this chapter lays the groundwork for further research on

vector loop integrity monitoring algothims. In the next chapter the vector loop RAIM

algorithm will be validated with GPS measurements.

5.3 Scalar and Vector Loop RAIM Algorithms

In this chapter and the next chapter, the scalar loop RAIM algorithm is used as a

benchmark against which vector loop RAIM performance is evaluated. Therefore,

first, the scalar loop RAIM algorithm is described. Following the scalar loop RAIM, a

discussion of the vector loop RAIM algorithms is provided.

5.3.1 Scalar Loop RAIM

The RAIM algorithm performs the following functions. First, it employs a fault de-

tection test to detect system anomalies. Second, it provides vertical and horizontal

position error bounds called vertical protection level (VPL) and horizontal protection

level (HPL), respectively. When no fault is present, the VPL and HPL guarantee that

true position errors are bounded with a certain probability. The protection levels are

determined from the integrity risk and must be bounded by the corresponding alert

limits for RAIM to be considered available. The time-to-alert requirement also needs

to be met by the RAIM algorithm. In what follows, pseudorange error models; fault

detection methods employed in this thesis; and methods to calculate vertical and hor-

izontal position errors and protection levels pertaining to EKF-based navigation filter
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Figure 5.2: Scalar Loop RAIM

are presented. While they are discussed in the context of scalar loop RAIM, it will be

justified later that the same formulations generally hold for the vector architecture if

the vector loop RAIM inputs are suitably chosen. Only major changes required for the

vector architecture will be addressed when discussing the vector loop RAIM.

5.3.1.1 Pseudorange Error Models

The linearized pseudorange measurement vector or pseudorange residual vector (∆ρ
k
)

at time epoch k is defined as

∆ρ
k

= Hk(Xpk
− X̃−

pk
) + εk (5.1)

where ∆ρ
k

= ρ
k

- ρ̂
k
. ρ

k
is the pseudorange measurement vector output by the scalar

tracking loops and ρ̂
k

is the predicted pseudorange measurement vector of the navi-

gation filter. They are depicted in Figure 5.2. Hk is the pseudorange measurement

model matrix. Xpk
is the 4 × 1 vector of true user position and clock bias and X̃−

pk
is

an a priori estimate of Xpk
. εk is the n× 1 vector of pseudorange error with mean zero

under fault-free conditions and error covariance Wk. Each element of εk corresponds to

one satellite and comprises unmodeled propagation delays (i.e., unmodeled ionospheric

and troposheric errors along the LOS), residual satellite clock and ephemeris errors,

multipath and receiver noise. Typical error budgets for stand-alone single-frequency

GPS receivers (without external differential corrections) can be found in [76] while
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the same for differentially corrected receivers can be found in [82]. The approach to

representing unmodeled errors as uncorrelated Gaussian distributions works well for

a snapshot fault detection test statistic. It also works for the test statistic that is

formed with past and present measurement residuals provided measurement samples

are sufficiently spaced apart to treat time-correlated errors as uncorrelated.

Unmodeled atmospheric delays, errors in broadcast satellite ephemeris and clock

can also be modeled based on prior knowledge and estimated along with user position

and clock bias using the approach of [83]. Accounting for these unmodeled time-

correlated errors is particularly helpful when forming the vector loop fault detection test

statistic using past and present pseudorange residuals derived from the discriminator

outputs. This is because in the vector architecture successive measurements cannot be

adequately spaced apart to counteract the effect of time-correlated errors as the user

position has to be updated within few seconds to maintain code tracking. Furthermore,

mitigating the effect of multipath at the navigation filter level with short measurement

update intervals presents its own challenge. The measurement differencing method of

[11] cannot be adopted to deal with multipath because, with this method, the statistical

independence of test statistic and position error cannot be established. The method

of state augmentation to deal with multipath is also not desirable as the number of

states will be more than the number of measurements. It is, therefore, imperative to

mitigate multipath as much as possible using advanced antenna design or enhanced

receiver design [84] to perform integrity monitoring with vector loops. Time-correlated

errors are assumed to be negligible in this thesis, however. Analyzing vector loop RAIM

performance in the presence of time-correlated errors will be part of future work. Thus,

Wk in this thesis comprises only receiver noise variances.

When comparing the scalar and vector architectures, the variances and models

of all the above error sources except that of receiver noise remain the same. The receiver

noise differs in the two architectures because of the fundamental difference in the way

they implement their signal tracking algorithms. Therefore, to ensure a systematic

performance comparison of the two architectures, pseudorange noise statistics from

C/N0 and various other tracking loop parameters are derived. Thus, this method

allows the tracking loop noises to directly relate to their pseudorange counterparts, as

described below.

In a scalar receiver architecture independent code tracking loops are used to

align the locally generated replica C/A-codes with the corresponding received C/A-

codes. Such alignments allow the receiver to obtain coarse and fine estimates of the
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signal transmit time from the decoded navigation message and the replica code phase

output of the tracking loops, respectively [62]. Then, from the difference between the

signal receive and transmit times it generates the pseudorange measurements. This

has been discussed in Chapter 2. Assuming zero error in the time derived from the

navigation message, the standard deviation of the pseudorange noise is given by the

code phase jitter of the tracking loop in the units of meters. Similar to the carrier

phase jitter defined in [64], the code phase jitter is expressed in chips as

στi,k
=
√

σ2
woi,k

+ σ2
coi,k

+
σdyni,k

3
(5.2)

where i is the satellite number, k is the time epoch. σwo is the jitter on the output of

the code tracking loop due to white noise, σco is the jitter due to colored noises and

σdyn, also known as the dynamic stress error, represents the code phase tracking error

from abrupt LOS dynamics. Each of these terms specific to the scalar loop architecture

used in this thesis is described below.

White Noise Jitter

In this thesis a non-coherent scalar tracking architecture is implemented. It uses the

early-minus-late power discriminator to estimate the code phase error (τ) and the cross

discriminator to estimate the residual Doppler shift (∆fd) [68]. As for the tracking loop

filters, a zero order code tracking loop or DLL loop filter and a second order FLL loop

filter are considered in this chapter.

Recall from Chapter 2 that the tracking loop generated replica code and carrier

signals are correlated with incoming signals to generate three correlator pairs (IE, QE,

IP , QP , IL, QL), where I and Q stand for the inphase and quadrature components

of a correlator pair, respectively. The subscripts E, P and L represent early, prompt

and late versions of the corrletor pairs, respectively. The mathematical expressions of

a correlator pair at time epoch k and for the ith satellite are given below [63]

Imi, k
=

Ai√
2
MDi, k

sin(π∆fdi, k
Tcoh)

π∆fdi, k
Tcoh

R (τi, k + δTc) cos(∆Φi, k) + ηi, k

Qmi, k
=

Ai√
2
MDi,k

sin(π∆fdi, k
Tcoh)

π∆fdi, k
Tcoh

R (τi, k + δTc) sin(∆Φi, k) + ηi, k (5.3)

where m = E, P , L. A = amplitude of the digital intermediate frequency (IF) signal,

M = number of IF samples in a correlation interval, D = navigation data bit, Tcoh =

coherent integration time, R = C/A-code autocorrelation function. ∆φi, k = kth carrier
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phase error at the end of Tcoh. The code phase offset δ can take on three values: −d
2
,

0, d
2

for E, P , L, respectively, where d is the early and late correlator spacing. Tc is

the code chip width. η is the correlator noise which is normally distributed with mean

zero and variance σ2
IQ. The noise statistics remain the same across all correlators. σ2

IQ

is derived in Appendix A. The derivation relaxes the white noise assumption [63] of the

bandlimited pre-correlation noise and takes into account correlations among adjacent

IF noise samples. However, as the pre-correlation noise time constant is much smaller

than the coherent integration time, η is assumed to be white.

A coherent averaging time of Ta ms is chosen in this implementation. The early

(and late) correlator outputs derived every 1 ms are averaged over Ta ms to smooth

noise, thus, producing one pair of averaged early (and late) correlator outputs every

Ta ms. On the other hand, two pairs of prompt correlator outputs are generated every

Ta ms, with each pair having a smoothing/averaging time of Ta/2 ms. The averaged

correlator noise variances are: σ2
mi,k

=
σ2

IQi,k

Ta
, m = E, L and σ2

pi,k
=

2σ2
IQi,k

Ta
.

With a non-coherent tracking architecture, the averaged correlator pairs are

passed to nonlinear discriminator functions to generate independent estimates of the

code phase and Doppler shift errors. The nonlinear discriminator outputs are accumu-

lated every Ta ms and l such outputs are averaged over lTa ms before sending to the

tracking loop filters. Therefore, the early-minus-late power discriminator output Dτi,k

at time epoch k (tk - tk−1 = lTa ms) for the ith satellite is

Dτi,k
=A2M2(2− d)τi,k + ζi,k

or, Dτi,k
/(A2M2(2− d)) = τi,k + ζi,k/(A

2M2(2− d))

or, D̄τi,k
= τi,k + ζ̄i,k (5.4)

It can be shown that the normalized discriminator (D̄τi,k
) noise variance is σ2

ζ̄i,k
=

(4/l)d(2 − d)[(2 − d)
A2M2

4
+ 2σ2

ELi,k
]σ2

ELi,k
/(A2M2(2 − d))2. It is important to note

that, although ζ is derived from a nonlinear discriminator operation, it remains white

as the correlator noise samples used to derive ζ in any two intervals are independent of

one another. Now if BL is the one-sided noise bandwidth of the DLL, the code phase

jitter due to white noise is given by σ2
woi, k

= 2BL(lTa)σ
2
ζ̄i,k

.

Colored Noise Jitter

The code phase error τ in Equation 5.4 has both colored noise ζco and the part of the

white noise ζ̄ that is filtered through the tracking loop, denoted as ζwo . The colored
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noise arises from the satellite clock phase jitter, receiver clock jitter, vibration and

ionospheric delay [64]. Following the approach of [64], an analytical error model for

each of these sources can be used to calculate the total colored noise jitter in DLLs.

While this approach provides an accurate estimate of the colored jitter, it requires good

knowledge of each of the error sources. As an alternative, a variant of the phase jitter

estimation methodology developed in [64] is used. It is assumed that the dynamic

stress error is zero as it will be shown later that the dynamic stress error in carrier

aided DLLs is usually negligible.

The jitter estimation method is based on measuring the tracking error power

σ2
D at the discriminator output. In a locked DLL the tracking power is governed only

by noises, as shown below

D̄τk
= ζ̄k − ζwok−1

− ζcok−1

σ2
Dk

= E[(ζ̄k − ζwok−1
− ζcok−1

)T (ζ̄k − ζwok−1
− ζcok−1

)]

σ2
Dk

= E[ζ̄T
k ζ̄k] + E[ζT

wok−1
ζwok−1

]− E[ζ̄T
k ζwok−1

]

− E[ζ̄kζ
T
wok−1

] + E[ζT
cok−1

ζcok−1
]

σ2
Dk

= σ2
ζ̄k

+ σ2
wok−1

− 2E[ζ̄T
k ζwok−1

] + σ2
cok−1

(5.5)

For simplicity of notation the satellite index i has been dropped from the above

equations. As there is no correlation between the white and colored noises, the colored

and white noise correlation terms are zero. At steady state σ2
cok−1

= σ2
cok

and σ2
wok−1

= σ2
wok

. E[ζ̄T
k ζwok−1

] = 0 as ζ̄k and ζwok−1
are independent. σ2

ζ̄k
and σ2

wok
were defined

when deriving the white jitter. Now re-arranging Equation 5.5, the colored jitter is

found as

σ2
cok

=σ2
Dk
− σ2

ζ̄k
− σ2

wok
(5.6)

Samples of the normalized discriminator outputs are collected after the loop has

reached steady state and these samples are used to compute σ2
D. Then from σ2

D σ2
c is

computed using the above equation.

Dynamic Stress

It is stated in [68] that the dynamic stress error of a carrier aided code tracking loop

can usually be neglected. To justify this claim, an upper bound for the dynamic stress

error (σdynu
) of an FLL-aided DLL is derived. It is assumed that the FLL is of second

order and experiences a constant jerk stress error equal to its tracking threshold defined
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in [68]. So, the FLL dynamic stress error is 0.25/Ta = 25 Hz, where Ta = 10 ms. An

FLL-aided DLL, therefore, needs to track a scaled down value of 25 Hz i.e., 25×C/A-

code chipping rate/carrier frequency which reduces to 25× 1.023× 106/1.575× 109 =

0.0162 Hz for L1 carrier frequency and C/A-code. The corresponding dynamic stress

error (σdu) of a first order DLL with 1 Hz noise bandwidth is 0.0162/(1/0.25) = 0.00406

chip (or 1.191 m) while that for a higher order DLL is zero. Note that 1/0.25 is the loop

natural frequency of a first order loop. The rule-of-thumb tracking threshold of a DLL

is equal to the early-late correlator spacing d, in chips [68]. Hence, with the standard

correlator spacing of 1 chip, σdyn of a first order DLL is only 1.12% of its tracking

threshold. It should also be noted that the above upper bound is fairly conservative.

This is because the actual dynamic stress error of an FLL would be smaller than its

tracking threshold in order for it to maintain lock. The dynamic stress error of a

first order DLL, though small, can be computed explicitly when infomation about the

receiver’s motion is available from another sensor such as an INS [64].

5.3.1.2 Fault Detection Methods

The fault detection method for RAIM is usually designed as a binary hypothesis test in

which a test statistic is compared against a pre-determined threshold to detect faults.

While there is a large body of work on least squares estimation-based RAIM algorithms

[52]- [55], [85] is one of the few works dealing with KF-based RAIM. The test statistic

in [85] is derived recursively using the Kalman gain and state error covariance matrix

and is shown to follow a generalized chi-squared distribution. Although this thesis uses

EKF implementations for both scalar and vector loop navigation filters, the weighted

least squares-based fault detection method is adopted here. The pseudorange residuals

for the weighted least squares method used in this thesis are formed by projecting the

EKF-predicted position error onto the LOS vectors. Then, the weighted least squares

estimate of the error in the predicted position is used for fault detection purposes rather

than the EKF-estimated position error. The EKF-estimated position error computed

from the same pseudorange residuals is used to update the user position and, therefore,

to calculate the protection levels.

The rationale behind using the weighted least squares method for fault detection

purposes is as follows. A fault detection test relies on statistical consistency checks

rather than on the accuracy of the position estimate. So, even for an EKF a least

squares estimation-based fault detection test can be formulated provided the protection

level calculations account for the EKF position error. It can be argued that as long
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as the underlying error distributions are modeled correctly and the test statistic and

position error are statistically independent, either method (KF or least-squares) should

detect fault and allow integrity risk computation. While it is not clear at this point if

the performance (e.g., fault detection time) of the KF method will be superior to that of

the least squares method, the latter is favored here because of the following advantages:

First, under no fault, the statistical properties of the test statistic based on weighted

least squares method are independent of measurement noise statistics whereas those

of the KF-based test statistic in [85] are not. Second, the weighted least squares test

statistic and its noise parameters are easier to compute. Additionally, the statistical

independence between the weighted least squares test statistic and EKF position error

can be proven easily using the recursive implementation of the EKF, unlike the batch

method needed in [85].

Two fault detection methods based on current (snapshot) and past residuals are

considered in this thesis. Each method will have a different approach to bounding the

EKF position error, as will be discussed later.

Snapshot Fault Detection Method: In this method the weighted RAIM algorithm

presented in [53] is considered for fault detection purposes. It uses a scalar test statistic

to flag system fault. The statistic is determined using a snapshot approach. This means

that, at a given time epoch, the statistic relies on the pseudorange measurement outputs

of only that epoch. The pseudorange measurements are also appropriately weighted to

improve fault detection performance. The test statistic z in weighted RAIM is defined

as the square root of a scalar measure called the weighted sum of the squared errors

(WSSE). WSSE at time epoch k is given by

WSSEk = z2
k = ∆ρT

k
W−1

k (I −Dk)∆ρ
k

(5.7)

where ∆ρ
k

is the n×1 vector of linearized pseudorange measurement residuals at time

epoch k and n is the number of visible satellites. They are formed by taking the dif-

ference between the pseudorange measurements and the EKF-predicted pseudoranges.

W−1
k is the inverse of the pseudorange error (εk) covariance matrix. I is the n×n iden-

tity matrix. Dk = Hk(H
T
k W−1

k Hk)
−1HT

k W−1
k and Hk is the pseudorange measurement

model matrix at the kth time instant. The derivation of Equation 5.7 is given next.

∆ρ
k

is related to the error (∆Xk) in the predicted position vector as follows:

∆ρ
k

= Hk∆Xk + εk (5.8)
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So, the weighted least squares estimate of ∆X is

∆X̃k = (HT
k W−1

k Hk)
−1HT

k W−1
k ∆ρ

k
(5.9)

Thus, the test statistic is given as

WSSEk =(∆ρ
k
−Hk∆X̃k)

T W−1
k (∆ρ

k
−Hk∆X̃k)

Substituting for ∆X̃k

WSSEk =(∆ρ
k
−Hk(H

T
k W−1

k Hk)
−1HT

k W−1
k ∆ρ

k
)T×

W−1
k (∆ρ

k
−Hk(H

T
k W−1

k Hk)
−1HT

k W−1
k ∆ρ

k
)

=(∆ρ
k
−Dk∆ρ

k
)T W−1

k (∆ρ
k
−Dk∆ρ

k
)

=∆ρT

k
(I −Dk)

T W−1
k (I −Dk)∆ρ

k

=∆ρT

k
(W−1

k −DT
k W−1

k −W−1
k Dk + DT

k W−1
k Dk)∆ρ

k

Since DT
k W−1

k = W−1
k Dk = DT

k W−1
k Dk, the above equation is simplified as

WSSEk = ∆ρT

k
W−1

k (I −Dk)∆ρ
k

(5.10)

It can be shown that, under fault-free conditions, WSSEk is chi-squared dis-

tributed with n − 4 degrees of freedom (DOF). When a fault of magnitude b occurs

in the ith satellite, WSSEk has a non-central chi-square distribution with (n − 4)

DOF and non-centrality parameter λ = Siib
2, where Sii is the ith diagonal element of

W−1
k (I −Dk).

As noted earlier, the fault detection test is designed as a binary hypothesis test

with the following decision rule. At a given time if the test statistic z is below a certain

threshold T , there is no fault, as shown in Figure 5.3. Conversely, if the statistic is above

the threshold, system operation is considered unsafe. The threshold is determined from

the system continuity requirement. That is, under fault-free conditions and over an

intended period of operation, z can exceed the threshold with a given probability of

false alarm PFA. Mathematically, PFA is expressed as [53]

1− PFA =
1

2aΓ(a)

∫ T 2

0

e−x/2xa−1dx (5.11)

where a is (n−4)/2; Γ is the Gamma funtion. T 2 is obtained from the chi-square table

using PFA and a.
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T
Error Distribution of WSSE

Chi Square PDF; DOF = n - 4

No fault Fault

2

Figure 5.3: Chi-Square PDF (Assuming n - 4 = 1)

Fault Detection Method Using Current and Past Snapshot Test Statistics:

As will be shown later, the mean of EKF position error under fault depends on current

as well as past fault magnitudes, in contrast with the least squares position estimation

method. Therefore, to bound the mean of the position error for computing protection

levels, an assumption that the fault magnitude remains constant or grows with time is

made. This is needed so that the previously described snapshot method can be used

to compute protection levels. This approach is employed in the simulation studies of

this chapter. Further, in an effort to relax this assumption, a fault detection method

can be used whose test statistic is the sum of the snapshot test statistics of current

epoch plus a number of past epochs. The number of past epochs (N −1) is determined

by the number of epochs required to calculate the mean position error discussed later.

The test statistic is given by

z2
k =

k∑
i=k−(N−1)

∆ρT

i
W−1

i (I −Di)∆ρ
i

(5.12)

where ∆ρ
i
, Wi and Di are defined below Equation 5.7. Note that each term of the

above equation is chi-squared distributed under no fault conditions and non-central

chi-squared distributed under fault. They are independent of one another as the pseu-

dorange measurement noise vector εi at time ti is assumed to be Gaussian-distributed
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and uncorrelated in time. The assumption of uncorrelated noise holds when the time

interval between two successive measurement vectors (ti − ti−1) is chosen to be longer

than the scalar tracking loop time constant. In addition, time correlated errors such as

atmospheric delays, ephemeris errors and multipath must be appropriately modeled,

as discussed before. Thus, the underlying Gaussian noise vector in each term of the

above equation is independent of the other, making individual terms independent of

one another. As a result, z2
k is chi-squared distributed with DOF N × (n − 4) under

no fault and non-central chi-squared distributed under fault with DOF N × (n − 4)

and non-centrality parameter given by the sum of the non-centrality parameters of all

terms.

5.3.1.3 Vertical and Horizontal Position Errors of EKF

An EKF algorithm is used as the scalar loop navigation filter to estimate the errors or

deviations of position, velocity and clock parameters from their true values. It should be

noted that the user acceleration is not modeled in the filter. If Xk = true user position,

velocity, clock bias and clock drift at time k and X̃
(−/+)
k = predicted/estimated user

position, velocity and clock variables at tk, then (∆X̃−
k ) and (∆X̃+

k ) denote a priori

and a posteriori estimates of filter state vector ∆Xk, respectively. ∆Xk is defined as

follows: ∆Xk = Xk - X̃−
k = [∆x ∆ẋ ∆y ∆ẏ ∆z ∆ż ∆b ∆ḃ]Tk . The vector [x, y, z, b]T

represents the x, y, z components of user position and clock bias and [ẋ, ẏ, ż, ḃ] denotes

three components of user velocity and clock drift, respectively. Similar to the vector

loop navigation filter described in Chapter 3, ∆X̃−
k and ∆X̃+

k are given by

∆X̃−
k = 0 (5.13)

∆X̃+
k = Kstlk [∆ρT

k
∆ρ̇T

k
]T (5.14)

where Kstlk represents the EKF Kalman gain for the scalar architecture and [∆ρT
k
∆ρ̇T

k
]T

is the linearized measurement or innovations vector. The measurement noise covariance

matrix at time tk for ∆ρ
k

is given by Wk which is defined in relation to the discussion

of Equation 5.1 earlier. The measurement noise covariance matrix for ∆ρ̇
k

is denoted

by W ′
k. W ′

k is determined by the FLL jitter defined in [75]. The initial state error

covariance matrix is the identity matrix of dimension 8×8. The process noise covariance

matrix Q is chosen to optimize filter performance. Time-correlated errors are not

modeled in this thesis. This assumption holds for the simulation studies of this chapter

as well as for the GPS data of the next chapter which was generated by a Spirent

simulator using broadcast ephemeris and clock of satellites and standard atmospheric
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Figure 5.4: (a) Shows Four Quadrants of Operation on the Statistic-Position Error

Plane; (b) Pictorially Describes the Relationship between Protection Levels and Test

Statistic at a Given Epoch under Fault; PL: Protection Level
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models.

The x, y and z axes position errors are εmk
= ∆mk−∆X̃+

k (l), where m = x, y, z

and l = 1, 3, 5, respectively. If Σ+
k is the a posteriori error covariance matrix at tk,

then the variances of the x, y and z axes position errors are given by σ2
mk

= Σ+
k (l, l);

m = x, y, z and l = 1, 3, 5, respectively. Thus, under fault-free conditions and

at time tk, the vertical position error (VPE) is Gaussian-distributed with zero mean

and variance σ2
zk

. For purposes of calculating the horizontal protection level (HPL),

which will be discussed later, the horizontal position error (HPE) at no fault is usually

approximated to be Gaussian-distributed with zero mean and variance (σ2
xk

+ σ2
yk

)

[55]. To justify this approximation, it is shown in Appendix C that, beyond a certain

M , the probability that the HPE is greater than k (> M) is bounded above by the

corresponding probability of a Gaussian random variable with zero mean and variance

(σ2
xk

+σ2
yk

). This implies that the HPL calculated using the above Gaussian distribution

assumption would bound the actual HPL (obtained from the true distribution) because

the HPL is larger than M . Thus, the use of a Gaussian distribution for the HPE in

place of a complex non-Gaussian one is justified. Moreover, the Gaussian assumption

does not exhibit any numerical problems that may arise with the actual non-Gaussian

distribution.

It can be shown from Equations 5.7 and 5.14 that the distribution of operation

points in the statistic-position error plane (for both vertical and horizontal dimensions)

is an ellipse [55]. Under no fault, the ellipse is centered near the origin (see Figure 5.4

(a)). When fault occurs in any one satellite, the center of the ellipse moves up along

a straight line depending on the fault magnitude, satellite geometry and the failed

satellite. This is shown in Figure 5.4 (b). The slope of the line (also called failure mode

slope) is determined by the mean of VPE (or HPE) and the square root of the non-

centrality parameter of WSSE. For a fault of magnitude b in satellite i, b2Siik is the non-

centrality parameter of WSSEk or z2
k; Siik is the ith diagonal element of W−1

k (I −Dk).

bK̃stlk(5, i) and b(
√

K̃2
stlk

(1, i) + K̃2
stlk

(3, i)) are defined as upper bounds on the means

of the VPE and HPE, respectively, which are used to calculate the maximum failure

mode slopes and protection levels. The derivations of K̃stlk(l, i), l = 1, 3, 5 and bounds

on the means of VPE and HPE are given below.

K̃stlk(l, i) and Bounds on Means of VPE and HPE under Fault

In order to derive K̃stlk(l, i), it is assumed that a failure has occurred in satellite i.

The failure started at tm and bi is the fault magnitude (or bias) at tk+m−1 for the pse-
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dorange measurement and ḃi is the corresponding fault magnitude of the pseudorange

rate measurement. Due to the failure, the pseudorange measurement noise at tk is dis-

tributed as N (bk−m+1, Wk). With these assumptions the mean µ
k

of the a posteriori

state estimate error (εXk
) will be derived for tk (> tm). Let Fk−1 and Ck be the state

transition and measurement model matrices of the EKF, respectively. Now using the

filter time and measurement update equations, the mean of εXk
can be written as [86]

µ
k

= (I −KstlkCk)Fk−1µk−1
−Kstlk [0 . . . 0 bk−m+1 . . . 0 ḃk−m+1 . . . 0]T

= Akµk−1
−Kstlkf i, k−m+1

(5.15)

where f
i, k−m+1

is a column vector such that f
i, k−m+1

(i) = bk−m+1; f
i, k−m+1

(i + n) =

ḃk−m+1 and f
i, k−m+1

(j) = 0 for j 6= i and j 6= i+n; n is the number of visible satellites.

It is assumed that the filter estimate was unbiased under no-fault conditions. So, µ
m−1

= 0, µ
m

= −Kstlmf
i, 1

and so on. Thus, µ
k

becomes

µ
k

=AkAk−1 . . . Am+1(−Kstlmf
i, 1

) + Ak . . . Am+2(−Kstlm+1f i, 2
)+

. . . + Ak(−Kstlk−1
f

i, k−m
) + (−Kstlkf i, k−m+1

)

=
m+1∏
j=k

Aj(−Kstlmf
i, 1

) +
m+2∏
j=k

Aj(−Kstlm+1f i, 2
) + . . .

+ Ak(−Kstlk−1
f

i, k−m
) + (−Kstlkf i, k−m+1

) (5.16)

Since for a stable filter |eig(Aj)| < 1 for any j,
∏m+1

j=k Aj → 0 as k → ∞. This implies

that the last N terms of the above equation will effectively determine µ
k
, where N is

determined by (|eig(Aj)|) and is inversely related to C/N0. Thus, considering the last

N terms of the above equation gives

µ
k

=−
N−2∑
j=0

([
k−j∏
p=k

Ap

]
Kstlk−j−1

)
f

i, k−m−j
−Kstlkf i, k−m+1

=−
N−2∑
j=0

Bk−jf i, k−m−j
−Kstlkf i, k−m+1

(5.17)

N is obtained from the following inequality in this thesis:

maxi=1, 3, 5{|eig(Ak)|i}
p

> max
i=1, 3, 5

{|eig(

k−(N−2)∏
j=k

Aj)|i} (5.18)

That is, (maximum of absolute eigenvalues of Ak corresponding to the position states)/p

> maximum of absolute eigenvalues of (
∏k−(N−2)

j=k Aj) corresponding to the position
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states. p is heuristically selected as 200 for C/N0 > 40 dB-Hz and 600 otherwise. A

lower value of p is chosen at high C/N0 because (
∏k−(N−2)

j=k Aj) → 0 faster when C/N0

is high. The eigenvalues corresponding to the position states are obtained by matching

the eigenvalues to the matrix diagonal elements. Thus, µ
k

is computed over a moving

window of length N . The reason for choosing the eigenvalues to determine N is that

the eigenvalues are a measure of how fast (
∏k−(N−2)

j=k Aj) → 0.

Note that the disadvantage of past faults affecting the current state error is that

past bias rates will also contribute to determining the current position error, although

their effect is attenuated by the term (I−KstlkCk). If bi is the fault magnitude (or bias)

at ti+m−1, its rate of change ḃi is approximated as follows: ḃi = (bi − bi−1)/(ti+m−1 −
ti+m−2) = (bi − bi−1)/T , where T is a few seconds; and ḃk−m−(N−2) = ḃk−m−(N−3) i.e.,

the bias rates of the last two time epochs in the calculation of µ
k

are identical. The

above approximation is reasonable for step faults, ramp faults and sinusoidal faults

with time periods on the order of hours, which can be approximated by a piecewise

ramp or step over a few seconds. The lth element of µ
k

is given by

µ
k
(l) =−

N−2∑
j=0

(Bk−j(l, i)bk−m−j + Bk−j(l, i + n)ḃk−m−j) −

(Kstlk(l, i)bk−m+1 + Kstlk(l, i + n)ḃk−m+1)

=− (Bk−(N−2)(l, i)bk−m−(N−2) + Bk−(N−2)(l, i + n)ḃk−m−(N−2)) −
N−3∑
j=0

(Bk−j(l, i)bk−m−j + Bk−j(l, i + n)ḃk−m−j) −

(Kstlk(l, i)bk−m+1 + Kstlk(l, i + n)ḃk−m+1)

Substituting for ḃ

µ
k
(l) =−Bk−(N−2)(l, i)bk−m−(N−2) −

Bk−(N−2)(l, i + n)/T (bk−m−(N−3) − bk−m−(N−2)) −
N−3∑
j=0

(Bk−j(l, i)bk−m−j + Bk−j(l, i + n)/T (bk−m−j − bk−m−(j+1))) −

(Kstlk(l, i)bk−m+1 + Kstlk(l, i + n)/T (bk−m+1 − bk−m))

Denoting the coefficient of bias bk−m−j in µ
k
(l) as hl, j+2, the above equation reduces

to

µ
k
(l) =

N−2∑
j=−1

hl, j+2bk−m−j (5.19)

149



where

For N >= 4

hl, N =− (Bk−(N−2)(l, i)−Bk−(N−2)(l, i + n)/T ) + Bk−(N−3)(l, i + n)/T

hl, N−1 =−Bk−(N−2)(l, i + n)/T − (Bk−(N−3)(l, i) + Bk−(N−3)(l, i + n)/T ) +

Bk−(N−4)(l, i + n)/T

hl, j+2 =− (Bk−j(l, i) + Bk−j(l, i + n)/T ) + Bk−(j−1)(l, i + n)/T ; j = 1, . . . , N − 4

hl, 2 =− (Bk(l, i) + Bk(l, i + n)/T ) + Kstlk(l, i + n)/T

hl, 1 =− (Kstlk(l, i) + Kstlk(l, i + n)/T )

For N = 3

hl, 3 =− (Bk−1(l, i)−Bk−1(l, i + n)/T ) + Bk(l, i + n)/T

hl, 2 =−Bk−1(l, i + n)/T − (Bk(l, i) + Bk(l, i + n)/T ) + Kstlk(l, i + n)/T

hl, 1 =− (Kstlk(l, i) + Kstlk(l, i + n)/T )

For N = 2

hl, 2 =− (Bk(l, i)−Bk(l, i + n)/T ) + Kstlk(l, i + n)/T

hl, 1 =− (Kstlk(l, i) + Kstlk(l, i + n)/T )−Bk(l, i + n)/T

For N = 1

hl, 1 =−Kstlk(l, i)

As stated earlier, Equation 5.19 holds if the bias rate does not change over the time

interval between two position updates, which typically varies between (2 - 6) sec for

integrity monitoring with the vector architecture. It can be argued that a bias whose

rate is changing fast is more likely to be detected soon and, therefore, presents a lower

integrity risk. Next, one of the following approaches can be used to derive a bound on

µk(l) and K̃stlk(l, i).

1. This approach is suitable for the snapshot fault detection method described ear-

lier. It is used in the simulation studies of this chapter. In this method it is

assumed that the fault magnitude remains constant or increases with time i.e.,

|b1| 6 |b2| 6 . . . 6 |bk−m| 6 |bk−m+1|, where bi is the fault magnitude (or bias)

at ti+m−1. With this assumption an upper bound on the absolute value of the

lth element of µ
k

is determined and K̃stlk(l, i) is obtained from that bound. The

bound is

|µ
k
(l)| 6

N−2∑
j=−1

|hl, j+2||bk−m+1|
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From the above bound K̃stlk(l, i) is defined as (
∑N−2

j=−1 |hl, j+2|). bworst
k−m+1 is deter-

mined by assuming P{(z < T )|fault in sat i} = PMD; z is the test statistic; T is

the detection threshold and PMD is the probability of missed detection defined

later. The failure mode slope for the VPE is K̃stlk(5, i)/
√

Siik and for the HPE is√
K̃stlk(1, i)2 + K̃stlk(3, i)2/

√
Siik ; Siik(b

worst
k−m+1)

2 is the non-centrality parameter

of WSSE corresponding to the probability P{(z < T )|fault in sat i} = PMD.

The drawback of this method is that it makes an assumption on the temporal

patterns of the fault.

2. The second method is more general in the sense that, unlike the first method,

it does not make any assumption on the temporal characteristics of fault. In

this method the worst case fault magnitudes for epochs k − (N − 1) through

k are obtained using the approach of [87] and [88]. It maximizes the failure

mode slope µ
k
(5)2/bT Λb for VPE and (µ

k
(1)2 + µ

k
(3)2)/bT Λb for HPE, where b

= [bk−m−(N−2) ... bk−m+1]
T , Λ = diag([Siik−(N−1)

, ..., Siik ]); Siij is the ith diagonal

element of W−1
j (I − Dj), assuming satellite i is faulty; Wj is the pseudorange

measurement noise covariance at tj; Dj = Hj(H
−1
j W−1

j Hj)
−1HT

j W−1
j ; Hj is the

pseudorange measurement model matrix at tj. At any time epoch tk the worst

case bias vector with respect to VPE maximizes the corresponding failure mode

slope, as given below

(maximum failure mode slope)2 =
µ

k
(5)2

max

bT Λb = s
= max

bT Λb=s

bT Lb

bT Λb
(5.20)

where s is the non-centrality parameter of z2 corresponding to the probability

P{(z < T )|fault in sat i} = PMD; z is obtained using the second fault detection

method (i.e., using current snapshot test statistic and (N −1) past snapshot test

statistics). The solution to the above equation is the maximum eigenvalue of

LΛ−1 and the worst case bias vector bworst is the corresponding eigenvector times
√

s. K̃stlk(5, i) = µ
k
(5)max/b

worst
k−m+1. The L matrix is formed from the coefficients

of Equation 5.19 as follows: L = [h5, N ... h5, 1]
T [h5, N ... h5, 1].

The same approach is also used for the HPE. The only difference is that the L

matrix for the HPE is

L =

[
h1, N . . . h1, 1

h3, N . . . h3, 1

]T

×

[
h1, N . . . h1, 1

h3, N . . . h3, 1

]
(5.21)

Then similar to K̃stlk(5, i), (K̃stlk(1, i)2 + K̃stlk(3, i)2) are obtained from (µ
k
(1)2+

µ
k
(3)2)max and bworst

k−m+1.
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For calculating the protection levels, the above upper bound of µ
k

is used to find the

means of the VPE and HPE. Thus, the mean of the VPE (= εXk
(5)) is K̃stlk(5, i)b

worst
k−m+1.

Using the Taylor series expansion of the mean of the HPE (=
√

εXk
(1)2 + εXk

(3)2), it

can be shown that the mean is approximately equal to bworst
k−m+1×

√
K̃2

stlk
(1, i) + K̃2

stlk
(3, i).

It is important to note that the approximation made to the bias rate on page 149

can be relaxed if test statistics formed by the pseudorange rate residuals and velocity

states are added to the test statistic of the fault detection method on page 144 and

then the second approach above is used to determine the worst case bias and bias rate

vector. However, this has not been implemented in this work as the underlying faults

for both simulation studies and GPS measurements are assumed to have a ramp profile

for which the approximation is valid.

In addition, note that the above method of bounding the position error assumes

that the user position and velocity are updated at the same rate. This may not be true

with the vector architecture. Any additional change made to the vector architecture for

different position and velocity update rates will be discussed under vector loop RAIM.

This modification cannot be applied to the scalar architecture. This is because the

underlying assumption for that is that the velocity update rates are much faster than

the position update rates, which is applicable only to the vector architecture.

5.3.1.4 Protection Levels

As illustrated in Figure 5.2, the scalar loop RAIM algorithm provides the following

outputs: Result of the binary hypothesis fault detection test discussed earlier and pro-

tection levels when no fault is detected. In the terminology of statistics, a protection

level bounds true position error with a given probability. Thus, protection levels to-

gether with the threshold T of the fault detection test divide the statistic-position error

plane into four quadrants. Each quadrant is assigned a name which is shown in Figure

5.4 (a).

Protection levels are determined from the maximum allowable integrity risk

(i.e., probability of MI or HMI). HMI (or MI) exists when the position error exceeds

the protection levels without a timely alert to the user. More specifically, HMI exists

if the VPE (and/or HPE) exceeds the protection levels for a period longer than the

specified time-to-alert. This can happen in two ways. A fault is not detected or it is

detected but annunciation takes longer than the time-to-alert limit. While the second

possiblity is addressed by suitable system design (e.g., reducing communication lag,

etc.), the calculation of protection levels ensures that the probability that a fault can
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cause integrity risk is always less than the required probability of HMI. Mathematically,

the probability of HMI PHMI is expressed as [82]

P{(|PE| > PL)|no fault}P{(z < T )|no fault}(1− PF)+

P{(|PE| > PL)|fault in a sat}P{(z < T )|fault in a sat}PF

= PHMI (5.22)

where PE is either the HPE or VPE and the corresponding PL is HPL or VPL. PF

is the prior probability of a satellite failure over a specified time multiplied by the

number of visible satellites. P{(z < T )|no fault}(1− PF) ≈ 1. As defined earlier, z is

the test statistic used for fault detection and T is the statistic threshold determined

from PFA. z and EKF PE are statistically independent, as proved in Appendix C based

on the derivation of [89]. The events “no fault” and “fault in a satellite” are mutually

exclusive and exhaustive. Now considering the VPE and following the method of [82],

the integrity risk PHMI is allocated between the two terms of the above equation as

follows:

P{(|VPE| > VPL)|no fault} = 0.5PHMI (5.23)

P{(|VPE| > VPL)|fault in a sat}P{(z < T )|fault in a sat}PF

= PMDPF = 0.5PHMI (5.24)

Equation 5.23 denotes the probability that the VPE exceeds the VPL under no fault.

On the other hand, Equation 5.24 stands for the probability that the VPE exceeds the

VPL under fault, but no alarm is issued i.e., z is less than T . The first two terms of

this equation together are known as the probablity of missed detection or PMD.

Above two equations are used to determine the protection levels. If VPLNF is

the VPL derived from Equation 5.23 and VPLF is the VPL obtained from Equation

5.24, then the final VPL is max{VPLNF, VPLF} [82]. VPLNF and VPLF are obtained

using the following method. VPLNF is determined from the distribution of position

error under fault-free conditions using Equation 5.23. The procedure for finding VPLF

is schematically shown in Figure 5.4 (b). A close observation of Equation 5.24 reveals

that determining the maximum VPL from this equation is an iterative process. Hence,

a conservative approach is adopted which first finds the maximum failure mode slope

using one of the methods described on pages (150 - 151). Then, the mean of the VPE

is found by multiplying the maximum failure mode slope with the test statistic non-

centrality parameter corresponding to PMD. Next, to account for noise, the mean VPE

is inflated by the term Kσz, where P{(|VPE| >Kσz) = PMD; σz = standard deviation
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of vertical position error. Thus, the VPL for each of the visible satellites is calculated

and the maximum of all these VPLs is set as VPLF. Note that the same approach also

applies to calculating the HPL.

5.3.2 Vector Loop RAIM

Having outlined the scalar loop RAIM algorithm implemented in this work, now a

test statistic for the vector tracking architecture will be defined. It will also be shown

that the same relationship between the test statistic and position error as in scalar

loop RAIM is preserved in this formulation. Moreover, position error and protection

level computations discussed under scalar loop RAIM will apply to vector loops for

federated coherent and non-coherent architectures.

Figure 5.5 shows a simplified representation of vector tracking architecture. As

is evident in the figure, the navigation filter accepts inputs from all channels and

processes them together to generate the pseudorange and pseudorange rate residuals.

These residuals, in turn, correct the code and carrier NCOs of the tracking loops. Thus,

the replica code phase of an individual channel is adjusted based on the corresponding

pseudorange output of the navigation filter. As discussed earlier, a distinct problem

with such an implementation is that the pseudorange measurements generated by the

navigation filter are not suitable for fault detection purposes. This is because the

combined processing of signals in the navigation filter allows a fault in one channel

to easily corrupt all the pseudorange measurements, as noted earlier. Thus, the basic

single fault assumption of RAIM is violated when it is implemented with the filter

generated pseudorange measurements. To circumvent this problem, a function of the

correlator outputs instead of the pseudorange measurements is used as input to vector
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loop RAIM. The motivation behind using the I and Q outputs is that the noise at

the correlator level conforms to the single fault assumption of the RAIM algorithms.

In what follows, a way to apply the traditional RAIM algorithms to vector loops is

developed using the I and Q outputs.

5.3.2.1 Coherent Architecture

The coherent vector tracking architecture has two variants depending on the types

of inputs sent to the navigation filter. The centralized coherent architecture directly

inputs the I and Q measurements to the navigation filter at a rate of 50 Hz or more. A

RAIM scheme for this architecture has been proposed in [57]. However, this approach

has the following limitations: The test statistic (maximum magnitude of the residual

I and Q outputs among all channels) is assumed to be Gaussian-distributed. This is

incorrect as it can be easilty shown that the residuals have a Rayleigh distribution.

The relationship between the statistic and the VPE is approximated to be linear based

on only simulations. As an alternative, the following scheme is proposed which can

overcome the above limitations. Recall from Equation 5.3 that the correlator outputs

are a nonlinear function of the code phase alignment errors (τ) of the replica code

with the received code and the Doppler frequency offsets (∆fd). Of the two, τ is of

particular interest because it is proportional to the difference between the actual and

the receiver-predicted pseudorange measurements. Mathematically, it is expressed in

meters as follows:

τm = Hm[Xpm − X̃−
pm

] + εvector, m (5.25)

where Hm and Xpm are defined below Equation 5.1. εvector, m is identical with εm

except that the vector receiver noise is different from the scalar architecture. The above

equation shows that τm has the same mathematical model as the linearized pseudorange

measurements of the scalar architecture (Equation 5.1). The only difference is that

its measurements have a different noise variance than that of its scalar counterpart.

Therefore, for fault detection purposes, τ is first extracted from the I and Q outputs

using a non-linear discriminator function, as described by Equation 5.4. Then, the same

method as that of the non-coherent vector architecture (discussed later) is followed to

form a test statistic for the centralized coherent architecture. However, it is not clear

at this point how the protection levels will be calculated for this architecture. This

is because the inputs to the navigation filter are correlator outputs (six per channel)

which are non-linear functions of τ and ∆fd and, therefore, non-linear functions of the

fault.
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A second variant of the coherent architecture is called federated coherent archi-

tecture. Despite having some loss in performance, it is usually preferred to a centralized

one. This is because it partially gets rid of the high computational load of the cen-

tralized formulation by distributing computations into a two-stage cascaded structure.

Depicted in Figure 5.6 by the top white block on the right, a bank of signal tracking

pre-filters - one for each channel - precedes the navigation filter in the federated archi-

tecture. They receive the I and Q measurements at 50 Hz and output the pseudorange

and pseudorange rate residuals at a slower rate (typically 1 - 2 Hz) to the navigation

filter. The pre-filter pseudorange residuals and their error variances can be utilized

to design a fault detection algorithm. In other words, these residuals and their error

variances are substituted in Equations 5.7 and 5.12 for ∆ρ
k

and Wk, respectively, to

obtain a test statistic for the federated coherent architecture. Note that, in order to re-

duce noise, the residuals may need to be averaged over a period of time before they are

used for fault detection. The various issues pertaining to the averaging operation are

discussed under the non-coherent architecture below. The protection level calculations
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will also be the same as the non-coherent architecture.

5.3.2.2 Non-Coherent Architecture

In the non-coherent architecture the I and Q measurements are fed to a pair of non-

linear discriminator functions (see Figure 5.6) which generate independent estimates of

τ and ∆fd (see Equation 5.4 for τ). Recalling the one-to-one correspondence between τ

and the pseudorange residuals, τ (i.e., the code phase discriminator outputs) in meters

is used to form a test statistic for the non-coherent vector architecture. In this regard,

the code phase discriminator outputs (converted into meters) of all channels are stacked

into a vector ∆ρ̄
m

, with m being the time index. The advantages of ∆ρ̄
m

are twofold:

It is a vector of pseudorange residuals and complies with the single fault assumption of

RAIM. However, unlike its scalar loop counterpart ∆ρ
m

, it is corrupted by large noise.

The reason for this is that ∆ρ̄
m

is derived from the input of the navigation filter before

the navigation filter would bring its noise levels down. Therefore, to reduce noise so as

to make ∆ρ̄
m

on par with ∆ρ
m

, the following method is used.

Similar to the non-coherent scalar architecture described previously, the discrim-

inator outputs in the vector architecture are produced every Ta ms. M such outputs

(i.e., M samples of ∆ρ̄
m

) are averaged over MTa ms, where m = j − M + 1, . . ., j

and the difference between the time points of the first and last samples is tk - tk−1

= MTa × 10−3 sec= T . Thus, the interval between tk and tk−1 has M samples and,

therefore, k = j/M + 1. M is a trade off between LOS dynamics and noise levels. The

receiver noise variance of the ith element of the averaged vector (∆ρ̂
k
) is (l/M)σ2

ζ̄i,k
. Re-

call that σ2
ζ̄i,k

is the averaged normalized discriminator input noise variance described

in relation to Equation 5.4 earlier and l is the number of discriminator outputs aver-

aged in scalar loops. It is also important to observe that the input noise (vm) of ∆ρ̄
m

is white i.e., it does not have any colored components or dynamic stress. Therefore, if

M is chosen such that (l/M)σ2
ζ̄i,k

is less than the white noise jitter plus colored noise

jitter of the scalar loops, ∆ρ̂
k

will have lower noise levels than ∆ρ
k
. But the choice of

a large M is always constrained by high LOS dynamics. This is explained by writing

the mathematical expression of ∆ρ̂
k

below

∆ρ̂
k

= 1/M

j∑
m=j−M+1

∆ρ̄
m

= 1/M

j∑
m=j−M+1

[Hm(Xpm − X̃pm) + vm]
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= 1/M

j∑
m=j−M+1

[Hm∆Xpm + vm] (5.26)

where Hm and ∆Xpm are defined after Equation 5.1. If both ∆Xpm and Hm in the

above equation change significantly during the averaging interval, the mathematical

model of ∆ρ̄
k

cannot be retained in ∆ρ̂
k
, needed to form the test statistic. Since the

velocity is updated multiple times between two subsequent position updates i.e., over

the averaging interval T , velocity error can be assumed to move up and down the zero

line unless there is a modeling error. As a result, ∆Xpm remains almost constant over

the averaging interval. If the constant vector is ∆Xpj
, the above equation becomes

∆ρ̂
k

= 1/M [

j∑
m=j−M+1

Hm]∆Xpj
+ 1/M

j∑
m=j−M+1

vm (5.27)

To replace the term [
∑j

m=j−M+1 Hm] with Hj, the following condition is imposed on

the value of M . Considering only the first order variations of the LOS vectors i.e.,

constant Ḣ, Equation 5.27 reduces to

≈ Hj∆Xpj
+ 1/M [−ḢTa{∆Xpj

+ 2∆Xpj
+ . . . + (M − 1)∆Xpj

}+

j∑
m=j−M+1

vm]

= Hj∆Xpj
+ 1/M [−ḢTa{1 + 2 + . . . + (M − 1)}∆Xpj

+

j∑
m=j−M+1

vm]

= Hj∆Xpj
+ 1/M [−(ḢTa)M

(M − 1)

2
∆Xpj

+

j∑
m=j−M+1

vm]

= Hj∆Xpj
− (ḢTa)

(M − 1)

2
∆Xpj

+ 1/M

j∑
m=j−M+1

vm (5.28)

To ensure that the first term of the above equation is much greater than the second

term, the following condition is imposed: ‖Hj‖ >> (M − 1)/2‖ḢTa‖, where ‖.‖ is

the matrix L2 norm which is the maximum singular value of a matrix. From this an

empirical upper bound on M is determined as Mu1 = 2× (1/100)‖Hk‖/‖ḢTa‖+ 1.

Next, an upper bound on M is derived by taking into account a more stringent

condition that due to unmodeled dynamics velocity error is biased i.e., it moves back

and forth a constant value and remains bounded over an averaging interval. Bounded

velocity error is achieved by injecting fictitious process noise. Using Hm = Hj − Ḣ(j−
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m)Ta, Equation 5.26 becomes

∆ρ̂
k

= 1/M

j∑
m=j−M+1

[Hm∆Xpm + vm]

=
1

M

j∑
m=j−M+1

[Hj − Ḣ(j −m)Ta]∆Xpm +
1

M

j∑
m=j−M+1

vm

=
1

M
×Hj

j∑
m=j−M+1

∆Xpm −
1

M
× ḢTa[(M − 1)∆Xpj−M+1

+

(M − 2)∆Xpj−M+2
+ . . . + ∆Xpj−1

] +
1

M

j∑
m=j−M+1

vm

Substituting ∆Xpm = ∆Xpj
− (j −m)bTa, where b is the upper bound on the velocity

error, one can write

∆ρ̂
k

=
1

M
×Hj

j∑
m=j−M+1

[
M∆Xpm −

M(M − 1)

2
bTa

]
+

1

M
× ḢTa

[
−M(M − 1)

2
∆Xpm +

M(M − 1)(2M − 1)

6
bTa

]
+

1

M

j∑
m=j−M+1

vm (5.29)

To make sure the second term is negligible compared to the first term so that the

mathematical model Hj

∑j
m=j−M+1 ∆Xpm can be preserved, M is chosen such that

‖Hj‖ >> (M − 1)/2 × ‖ḢTa‖ and 1/2×‖Hj‖ >> (2M − 1)/6 × ‖ḢTa‖. If M ′
u1

=

2 × (1/100)‖Hj‖/‖ḢTa‖ + 1 and M ′′
u1

= 1/2 × (3/(100)‖Hj‖/‖ḢTa‖ + 1), the upper

bound on M (Mu1) is given by min{M ′
u1

, M ′′
u1
} = M ′′

u1
. It should be noted that M ′

u1

is the same as previously defined Mu1 .

Further, note that both the test statistic and the user position are estimated

at time interval MTa. In the vector architecture the estimated user position is also

fedback to correct any code phase alignment error of the replica C/A-code with the

received C/A-code. Hence, a second upper bound on M is given by the minimum

required update rate or maximum update interval of the code NCOs. For deriving this

bound the LOS vectors are assumed to be constant; the position error is assumed to be

increasing with time; and the velocty error is assumed to remain mostly on one side of

the zero line. This bound accounts for a bias in the velocity error which is smaller than

its standard deviation. The minimum update rate is determined using the assumption

that the maximum code phase error is one tenth of the early-late correlator spacing d

(discriminator pull-in range). Let σdcode, i
be the standard deviation of the error in Hz
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in the estimated code Doppler frequency of channel i and σpcode, i
be the correponding

standard deviation of the code phase error in sec after a position update. Then the

maximum update interval Tmax is given by mini{d/10/code chipping rate− σpcode, i
)×

(code chipping rate/σdcode, i
)}, where (σdcode, i

/code chipping rate) is the ith code phase

alignment error in sec over 1 sec [69]. So, Tmax is the time in which the error in the

estimated Doppler will misalign the replica and received codes of one of the channels by

d/10 chips. Thus, a second upper bound on M is Mu2 = Tmax/Ta and the final upper

bound on M is min{Mu1 , Mu2}. In addition to the above bounds, a lower bound on

M is chosen by trial and error such that the position update interval is at least 1 sec.

It is apparent that at high C/N0 M will remain well between the prescribed bounds.

However, as C/N0 degrades, M needs to increase, but Mu2 will decrease, placing a

constraint on M . It is important to note that the Doppler frequencies are estimated

by projecting the estimated user velocity and clock drift on individual LOS. Therefore,

σdcode, i is the standard deviation of the projection of the error vector in the estimated

velocity and clock drift on ith LOS. σpcode, i
is found the same way using the position

and clock bias error standard deviations.

The averaged ∆ρ̂
k

and its error covariance are substituted in Equations 5.7 and

5.12 to form a test statistic for vector loops. Note that other scalar loop-based RAIM

algorithms (e.g., parity space RAIM) can also be used with ∆ρ̂
k
. Furthermore, the

pseudorange residual model of ∆ρ̂
k

ensures the same relationship between the statistic

and position error as in scalar loops when a failure occurs in a satellite. The previous

definition of protection levels and the method for calculating them also remain valid

for this formulation except for the following change that needs to be made to account

for different position and velocity update rates: Different update rates are required to

reduce noise in the code phase discriminators for fault detection purposes, as elucidated

above.

Modification to the Calculation of Vector Loop Position Error Bounds: The

method to bound the means of VPE and HPE discussed under the scalar loop RAIM

assumes that user position and velocity are updated at the same rate. Unfortunately,

in order to perform integrity monitoring, this assumption needs to be relaxed for the

vector architecture for which the same method applies otherwise. The vector loop

position update interval, however, is a few seconds and the velocity update interval is

a fraction of a second (0.1 sec in this thesis). Hence, it can be assumed that the mean

velocity error between two position update intervals remains almost constant at the
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value corresponding to the previous position update epoch, although it is not accurate.

However, this enables implementation of the previous formulation for different position

and velocity update rates.

Alternatively, the following modification can be applied to Equation 5.16 to ac-

count for different update rates. It complies with the previous assumption of piecewise

ramp faults. All notations defined under the scalar loop RAIM hold except that the

subscript “stl” is changed to “vtl.” Recall that the fault in satellite i started at tm.

Thus, the mean state error at tm is given by

µ
m

= −Kvtlmf
i, 1

(5.30)

where f
i, 1

is a column vector such that f
i, 1

(i) = b1; f
i, 1

(i + n) = ḃ1 and f
i, 1

(j) = 0

for j 6= i and j 6= i + n; n is the number of visible satellites. b1 is a bias at tm and ḃ1

is its rate of change. Collecting the velocity terms of the above equation yields

µ
m, v

= −Kvtlm, v1b1qi −Kvtlm, v2 ḃ1qi (5.31)

where qi is an n×1 column vector whose ith row is 1 and all other rows are zero. If there

are p velocity updates between tm and tm+1; (Kvtlm, v2Cm, v) is not changed significantly

during velocity updates; and ḃ1 remains approximately constant over T = (tm+1− tm),

then the mean velocity error µ
mp, v

after p velocity updates is recursively obtained as

µ
mp, v

= (I −Kvtlm, v2Cm, v)
p(−Kvtlm, v1b1qi)

+

(
I +

p∑
j=1

(I −Kvtlm, v2Cm, v)
j

)
(−Kvtlm, v2 ḃ1qi) (5.32)

where Cm, v contains the portion of the measurement model matrix Cm corresponding to

the velocity states and pseudorange rate measurements. User velocity is modeled as a

constant vector, resulting in the identity state transition matrix for the velocity vector.

Since the eigenvalues of (I−Kvtlm, v2Cm, v) are less than one for this implementation of

the EKF, (I −Kvtlm, v2Cm, v)
p → 0 if p is sufficiently large. Thus, the above equation

reduces to

µ
mp, v

≈

(
I +

p∑
j=1

(I −Kvtlm, v2Cm, v)
j

)
(−Kvtlm, v2 ḃ1qi)

= A′m(−Kvtlm, v2 ḃ1qi) (5.33)

As the mean velocity error changes over T , the change in the mean position error

over this time interval can be obtained as (δt/2)µ
m, v

+ (T − δt/2)(µ
mp, v

), assuming
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the mean velocity error changes almost linearly over δt before reaching the steady

state value µ
mp, v

i.e., (I − Kvtlm, v2Cm, v)
j → 0 in δt. δt is chosen such that the

eigenvalues of (I −Kvtlm, v2Cm, v) are at least 100 times the corresponding eigenvalues

of (I−Kvtlm, v2Cm, v)
j and is found to be inversely related to C/N0. Note that p should

be large to ensure that (I −Kvtlm, v2Cm, v)
p ≈ [0]n×n. The value of p is in the range of

20 to 60 in the vector loop implementation of this thesis where velocities are updated

at 0.1 sec and position update intervals vary from 2 sec to 6 sec depending on C/N0. At

very low C/N0 (v 15 dB-Hz) δt is sometimes found to be greater than T and assumed

equal to T then. But the (I − Kvtlm, v2Cm, v)
p(−Kvtlm, v1) term, being small, can still

be ignored for this case.

Next with both position and velocity updates the mean state error at tm+1 is

µ
m+1

= −Kvtlm+1f i, 2
+ (I −Kvtlm+1Cm+1)



1 δt/2 . . . 0

0 0 . . . 0

0 0 1 . . . 0

...
... δt/2

0 0 . . . 0


(−Kvtlmf

i, 1
) +

(I −Kvtlm+1Cm+1)


0 T − δt/2 . . . 0

0 1 . . . 0

...
... T − δt/2

0 0 . . . 1

×


0 0 0 0 0 0 0 0

0 A′m(1, 1) 0 A′m(1, 2) 0 A′m(1, 3) 0 A′m(1, 4)

0 0 0 0 0 0 0 0

0 A′m(2, 1) 0 A′m(2, 2) 0 A′m(2, 3) 0 A′m(2, 4)

0 0 0 0 0 0 0 0

0 A′m(3, 1) 0 A′m(3, 2) 0 A′m(3, 3) 0 A′m(3, 4)

0 0 0 0 0 0 0 0

0 A′m(4, 1) 0 A′m(4, 2) 0 A′m(4, 3) 0 A′m(4, 4)



(−K ′
vtlmf

i, 1
)

or, µ
m+1

= (I −Kvtlm+1Cm+1)F
′
mf

i, 1
−Kvtlm+1f i, 2

= µ′
m+1

−Kvtlm+1f i, 2
(5.34)
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The difference between K ′
vtlm

and Kvtlm is that in K ′
vtlm

the elements of the velocity

rows of Kvtlm corresponding to the pseudorange measurements are zero. This is needed

because Equation 5.33 shows that the mean velocity error after p velocity updates

depends only on the bias rate ḃ1. It should be noted that the second component of

F ′
m first accounts for p velocity updates in T . The above arrangement of the elements

of A′m in F ′
m is required because, in the filter, each position state is followed by the

corresponding velocity state. The change in the mean position error is calculated.

Following the same steps as with µ
mp, v

, µ
m+1p, v

results as

µ
m+1p, v

= (I −Kvtlm+1, v2Cm+1, v)
p(µ′

m+1, v
−Kvtlm+1, v1b2qi) + A′m+1(−Kvtlm+1, v2 ḃ2qi)

≈ A′m+1(−Kvtlm+1, v2 ḃ2qi) (5.35)

The change in mean position error is (δt/2)µ
m+1, v

+ (T − δt/2)(µ
m+1p, v

). Thus, µ
m+2

is given by

µ
m+2

=(I −Kvtlm+2Cm+2)F
′′
m+1(I −Kvtlm+1Cm+1)F

′
mf

i, 1
−

(I −Kvtlm+2Cm+2)F
′
m+1f i, 2

−Kvtlm+2f i, 3
(5.36)

where F ′′
m+1 in the first term is the same as the state transition matrix Fm+1 except

that the element T is replaced with δt/2 and the elements of its velocity rows are all

zero. This is because the mean velocity error before the measurement update at tm+2

is given by the second term; no contribution comes from the first term (see Equation

5.35). Repeating the above steps and replacing Fk−1 in Ak’s of Equation 5.16 with

F ′′
k−1, one can write

µ
k

=
m+2∏
j=k

Aj(I −Kvtlm+1Cm+1)F
′
mf

i, 1
+

m+3∏
j=k

Aj(I −Kvtlm+2Cm+2)F
′
m+1f i, 2

+ . . .

+ (I −KvtlkCk)F
′
k−1f i, k−m

+ (−Kvtlkf i, k−m+1
)

=
m+2∏
j=k

Aj(−K ′′
vtlmf

i, 1
) +

m+3∏
j=k

Aj(−K ′′
vtlm+1

f
i, 2

) + . . .

+ (−K ′′
vtlk−1

f
i, k−m

) + (−Kvtlkf i, k−m+1
) (5.37)

where K ′′
vtlj

= −(I −Kvtlj+1
Cj+1)F

′
j . The above equation is used to find the bounds of

the mean VPE and HPE instead of Equation 5.16 for different position and velocity

update rates.
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5.4 Simulation Studies

In order to validate the vector loop RAIM algorithm discussed above, simulation stud-

ies involving pseudolites used in navigation of a ground vehicle (i.e., two dimensional

motion) are performed. Simulation studies are resorted to because, to begin with, the

vector architecture-based RAIM would be complex to analyze with real data. There-

fore, at this point two-dimensional simulation studies with a simple, benign geometry

will help gain better insights into the integrity monitoring capability of this archi-

tecture. The same user-pseudolite geometry as described in Chapter 4 is considered.

According to this geometry six pseudolites are evenly distributed around a ground ve-

hicle that is moving along a straight line towards pseudolite 2 (Figure 5.7). A vehicle

speed of 40 m/sec, though high for ground application, is chosen to generate fairly

large Doppler frequencies that are easy to analyze. The pseudolite locations are fixed

and assumed to be precisely known, thereby obviating the need for decoding the nav-

igation message. The pseudolites have the same signal structures as GPS L1 signals.

For simulation purposes a high fidelity RF front end simulator has been developed

which allows generation of GPS signals with different C/N0s. Using this simulator,

separate 50 dB-Hz and 30 dB-Hz IF data for the user geometry mentioned above are

generated. It is also assumed that all pseudolite signals have the same C/N0 at the

receive end, neglecting the signal propagation loss. Only wide band Gaussian thermal

noise is added to IF samples to simulate different C/N0 signals.

To simulate a threat model or failure mode for this geometry, the clock of pseu-

dolite 2 is assumed to exhibit a ramp error that starts in the middle of the simulation

and continues till the end. Two drift magnitudes are considered: 0.5 m/sec and 1

m/sec. The onset times of the fault at 50 dB-Hz and 30 dB-Hz are 20 sec and 16

sec, respectively. As it is noticed from the simulation results that a longer time is

needed to detect fault at lower C/N0, simulation durations of 30 sec and 40 sec at 50

dB-Hz and 30 dB-Hz, respectively, are used. Thus, 30 Monte Carlo runs are simulated

for each combination of C/N0 and drift. For fault detection purposes the following

RAIM parameters are used: Probability of false alarm PFA = 10−5; probability of HMI

PHMI = 10−7; prior probability of pseudolite failure PF = 10−4. To compare the per-

formance of scalar and vector loop RAIM algorithms, the fault detection times from

the onset of the fault and the HPLs of the two architectures are calculated.
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Figure 5.7: Description of User Geometry

5.4.1 Simulation Results

As mentioned earlier, non-coherent scalar and vector architectures are implemented in

this thesis. Tables 5.1 and 5.2 list the values of the various scalar and vector loop design

parameters that allow a systematic performance comparison of the two tracking loops.

A two-sided DLL bandwidth of 2 Hz is assumed. Hence, the scalar loop pseudorange

measurements are sampled at a rate equal to the inverse of the DLL bandwidth i.e.,

0.5 sec to avoid the effect of time-correlated noise. σ2
ζ̄i,k

is the normalized discriminator

noise variance defined below Equation 5.4. Since the atmospheric delays, satellite

clock jitter or mutipath are not simulated, receiver dynamics (ramp in Doppler) are

fully tracked by the second order FLLs, and receiver clock instabilities are small, no

colored jitter or dynamic stress is assumed to be present in the scalar loop pseudorange

residuals. With Ta = 20 ms Mu1 is found to be 867. The value of Mu2 is 1331 at 50

dB-Hz and 541 at 30 dB-Hz. The mathematical expressions of Mu1 and Mu2 are given

below Equation 5.29. Based on the calculated Mu1 and Mu2 , M is chosen to be 50

and 150 at 50 dB-Hz and 30 dB-Hz, respectively, which also satisfy the lower bound
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Table 5.1: Scalar Loop Design Parameters

Design STL

parameters 50 dB-Hz 30 dB-Hz

Discriminator output interval (Ta) 20 ms 20 ms

Discriminator averaging interval (lTa) 0.1 sec 0.1 sec

1 sec 3 sec

Position update rate DLL BW (2Bn): 2 Hz DLL BW: 2 Hz

Pseudorange sample Pseudorange sample

rate (Tρ): 0.5 sec rate: 0.5 sec

Velocity update rate 0.5 sec 0.5 sec

Test statistic derived from Pseudorange residuals Pseudorange residuals

Statistic update interval or averaging 1 sec 3 sec

interval of pseudorange residuals (pTρ)

Channel i statistic noise

variance at epoch k

(
2BnlTaσ

2
ζ̄i,k

p

)
2× 0.1

2
σ2

ζ̄i,k

2× 0.1
6

σ2
ζ̄i,k

constraint.

The test statistic is calculated using the snapshot fault detection method de-

scribed in Section 5.3.1.1. The threshold T of the test statistic is determined from

the chi-square table as 5.089 This corresponds to a PFA = 10−5 and DOF = number

of pseudolites - number of variables to be estimated = 3. Note that since a two-

dimensional motion is simulated, the estimated variables have three elements: The x

and y coordinates of user position and clock bias.

Figure 5.8 shows the mean and 1-σ bound of the test statistic as it evolves in

time. Table 5.3 summarizes the mean and standard deviation of the fault detection

times of the two architectures for each pair of C/N0 and drift. A close observation of

the test statistic in Figure 5.8 reveals that, for the threshold chosen in this analysis,

there is no statistically significant difference in the fault detection times of the two

architectures, as is evident from Table 5.3. It is imperative to note the difference

(more noticeable at 30 dB-Hz) in the time at which the mean test statistic crosses
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Table 5.2: Vector Loop Design Parameters

Design VTL

parameters 50 dB-Hz 30 dB-Hz

Discriminator output interval (Ta) 20 ms 20 ms

Discriminator averaging interval Code (MTa): 1 sec Code: 3 sec

Doppler (lTa): 0.1 sec Doppler: 0.1 sec

Position update rate 1 sec 3 sec

Velocity update rate 0.1 sec 0.1 sec

Test statistic Discriminator Discriminator

derived from outputs outputs

Statistic update interval (MTa) 1 sec 3 sec

Channel i statistic noise
1

10
σ2

ζ̄i,k

1

30
σ2

ζ̄i,k

variance at epoch k (
l

M
σ2

ζ̄i,k
)

the threshold and the mean fault detection time reported in Table 5.3. This occurs

because the mean fault detection time in Table 5.3 is the mean of all times at which

the tests statistics of individual runs cross the threshold. On the other hand, the mean

test statistic of Figure 5.8 is obtained by averaging the test statistics of all runs at

a particular time epoch. So, for the mean test statistic, averaging is done along the

vertical axis whereas for the mean fault detection time averaging is performed along

the horizontal threshold.

For calculating the protection level, Equation 5.22 and the slope of the statistic

and position error as discussed earlier are used. The mean velocity error between

position update intervals is assumed constant i.e., the modification (see Section 5.3.2.2)

due to different position and velocity update rates is not applied. As for the vector

architecture, any scalar loop parameters are replaced with their vector loop equivalents

as it was explained earlier that the scalar loop definition of protection levels and the

statistic-position error relationship hold for the vector loop RAIM. Figure 5.9 shows the

HPE and the corresponding HPL for both architectures. It is important to note that

for both C/N0s the HPL is determined by the second part of Equation 5.22. However,
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Figure 5.8: Evolution of Test Statistic with Time

the difference in the two HPLs obtained from the first and second parts of Equation

5.22 is small at 50 dB-Hz.

Figure 5.9 also shows the HPE before the fault is detected. Note that the mea-

surement update intervals at 50 dB-Hz and 30 dB-Hz are 1 sec and 3 sec, respectively

and the HPEs are calculated accordingly. As a result, the HPEs are spaced apart at

30 dB-Hz by 3 sec whereas because of faster update rates they appear to be clustered

together at 50 dB-Hz. Also note that the HPE does not cross the HPL in any of

the simulations for both architectures. Figures 5.8 and 5.9 illustrate that by suitably

choosing the design parameters of the scalar and vector architectures, similar integrity

monitoring performance of the two architectures is achieved. However, it should be

noted that the receiver clock jitter of the scalar loops is not accounted for in this pre-

liminary study because simulated clock instabilities are small. Accounting for receiver

clock jitter may result in different protection levels of the two architectures especially
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Table 5.3: Fault Detection Times Since the Onset of Fault

STL FDT (sec) VTL FDT (sec)

Drift (mean ± std dev) (mean ± std dev)

(m/sec) 50 dB-Hz 30 dB-Hz 50 dB-Hz 30 dB-Hz

0.5 5.23 ± 0.63 19.26 ± 3.43 4.76 ± 0.63 18.83 ± 3.63

(no detection (no detection

in 16 runs) in 12 runs)

1.0 3.27 ± 0.52 14.1 ± 2.01 3 ± 0.45 12 ± 2.13
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Figure 5.9: HPL and HPE of Scalar and Vector Loops
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at higher C/N0. In this context, it is important to observe that the scalar loop HPEs

are larger than the vector loop HPEs, although their white input noise covariances are

matched to each other. Calculating the variance of the HPE from all Monte Carlo

runs, it is found that the scalar loop sample variance is higher than the EKF-estimated

variance. For the vector loops the sample variance and EKF values are consistent.

Using the Scalar loop sample variance for protection levels, an increase of about 0.9 m

in the protection level is noted at 50 dB-Hz. At 30 dB-Hz the increase is about 0.3 m.

A possible explanation for such a discrepancy in the scalar loop EKF variance could be

that the scalar loop clock jitter was not taken into account, whose effect, being small

in this simulation, is more pronounced at higher C/N0. During the validation of the

vector loop RAIM algorithm with GPS measurements in the next chapter, the colored

jitter of the scalar loops will be computed.

5.5 Conclusion

The scalar loop RAIM is not directly applicable to the vector architecture as the

pseudorange measurements output from a vector tracking receiver are all affected by

a failure in one channel. In this chapter an alternative way to apply ideas from scalar

loop RAIM to the vector architecture is developed. This is achieved by deriving the

input to the RAIM algorithm from the input (i.e., the correlator outputs) of the vector

loop navigation filter rather than from its output (i.e., pseudorange measurements). In

addition, protection level calculations are modified for the EKF implementation of the

navigation filter. Next with simulation studies and proper design of the pertinent scalar

and vector loop parameters, similar fault detection performance of both architectures

is demonstrated.

The next step is validate this algorithm with GPS measurements which will help

make a definitive statement about the integrity monitoring capability of the vector

loops. In addition, the following aspects associated with vector loop RAIM will be

explored: The gain in vector loop RAIM performance because of the ability of the

vector loops to bridge through momentary satellite blockage and the issues of large

noise involved with vector loop RAIM. Large noise may, in fact, preclude the use of

vector loop RAIM at very low C/N0, even though the vector loops continue to track

signals at such low C/N0. Therefore, the prospect of using vector loop RAIM at low

C/N0 requires further analysis and will be carried out in greater detail in the next

chapter.

170



Chapter 6

Validation of Vector Loop RAIM

with GPS Measurements

In this chapter the vector loop integrity monitoring algorithm developed in the pre-

vious chapter is validated with GPS measurements. For this purpose, a scenario of

an aircraft approach is created using Spirent’s SimGEN software package [90]. The

scenario simulates an aircraft making a non-precision or lateral navigation (LNAV)

approach to a runway. Only the final approach phase of the aircraft is simulated. The

simulation duration is about 5 minutes. The RF signals are assumed to be healthy

during the first one and a half minutes of the simulation, thereby ensuring that the

receiver tracking loops have sufficient time to reach steady state. Over the remaining

duration, the receiver is subjected to adverse conditions resulting from pseudorange

drifts with/without elevated noise floor caused by intentional interference. This en-

ables testing the receiver performance under deep signal fades and signal anomalies.

This chapter is organized as follows: First, the motivation behind scenario se-

lection is discussed. Then, the key features of the simulation including generation of

low C/N0 data are discussed. Subsequently, results with the high and low C/N0 data

are presented, which highlight key elements of vector loops and vector loop RAIM

performance in GPS-distressed environments.

6.1 Motivation for Scenario Selection

As noted above, the final approach phase of an aircraft making an instrument ap-

proach to a runway is considered for validation of vector loop integrity monitoring.

The safety-critical application of an aircraft approach is chosen because well-defined
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RAIM parameters are available for this application. Additionally, the noise floor is as-

sumed to be elevated halfway through the approach due to intentional interference. In

their November 2010 report, the national space-based PNT advisory board committee

of the USA described interference to GPS as a serious threat and called for immedi-

ate countermeasures to locate, mitigate and shut down a source of interference [16].

Among a number of recommended actions to counter the threat of RF interference,

they proposed hardening of GPS antennas and receivers which includes algorithms

that can quickly recover from RF interference. In the report it was emphasized that

these receivers should be equipped with integrity algorithms to “insure they do not

display Hazardous and Misleading Information during periods of interference.” Within

this context, low C/N0 data during an approach is generated in this study by adding

wideband Gaussian noise caused by intentional interference. These data sets are used

to study the vector loop integrity monitoring algorithm developed in this thesis.

While incidents of deliberate jamming of GPS receivers on-board an aircraft are

unknown to the author, an indepedent GPS risk assessment study conducted by the

John Hopkins University Applied Physics Laboratory (JHU/APL) concluded that its

possibility cannot be dismissed unless advanced mitigation techniques are employed

[92]. The six-month long study was carried out under cosponsorship from the Federal

Aviation Administration (FAA), the Air Transport Association (ATA) and the Aircraft

Owners and Pilots Association (AOPA). In the study, an example aircraft trajectory

was created at John F. Kennedy Airport, New York and the GPS receiver technology

was assumed consistent with the Wide Area Augmentation System (WAAS) specifica-

tion. The analysis showed that a hundred watt jammer placed under the flight path

at approximately 20 nautical miles away from the landing point will deny GPS for the

entire approach and landing trajectory and a one watt jammer can deny GPS within

a ten-nautical mile radius.

The simuated approach path considered in this study and injection of fault and

noise along the approach are depicted in Figure 6.1. The entire approach path is shown

in black in the top sub-figure. Only the green segment of the path i.e. the final approach

phase is simulated in this study. The bottom sub-figure shows the injection of fault

and one case of elevated noise floor along the approach course. Four cases of elevated

noise floor are considered in this analysis, which are discussed later in this chapter.
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Figure 6.1: Simulated Approach Course and Signal Anomalies along the Approach

6.2 Key Characteristics of Simulation

Important features of the simulation are as follows:

• Date of simulation: 17th April, 2010.

• Time: (7:20 - 7:25:11) pm.

• Aircraft: Cessna Caravan.

• Location: Changi International Airport, Singapore.

• Aircraft Trajectory: The final approach phase to runway 02L (from final approach

fix to decision height) is described by a number of waypoints in the SimGEN

scenario. The instrument approach chart for this runway is provided in Appendix

D.

• GPS satellite orbits and clocks are simulated using the navigation message for the

above date as obtained from a continuously operating reference station (CORS).
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• Atmospheric delays: The tropospheric delay is modeled by the STANAG model.

The model type for the ionospheric delay is chosen as Terrestrial [90].

• The aircraft antenna pattern is input as a comma separated variable (CSV) file

in SimGEN. It is generated by combining a Cessna Caravan’s roll and pitch

plane antenna patterns given in [91]. The patterns are illustrated in [91] for

four different azimuth angles. To determine the antenna gains for all values of

azimuth and elevation, the following is done. Each of the four vertical halves -

two from each of roll and pitch plane patterns - determines a quarter segment of

the entire 3D pattern. That is, each quarter segment of the 3D antenna pattern

is obtained by revolving the corresponding vertical half about its vertical axis by

45o on either side of its horizontal axis.

• As for signal anomaly or fault, pseudorange ramps of 0.5 m/s and 1 m/s are

injected at two and a half minutes into the simulation.

• C/N0 of the healthy signals varies between (44 - 49) dB-Hz. In order to simu-

late intentional interference, the noise floor is elevated at various points in the

approach by adding artificial Gaussian noise to the collected IF data.

• IF data was collected using a custom receiver front end with an IF of 12.012 MHz

and a sampling frequency of 43.428 MHz. The two-sided front end bandwidth is

approximately 21 MHz.

• The limitations of the simulation are that the vibration-induced PSD of the

receiver clock and multipath signals are not simulated.

GPS satellite visibility during the approach is shown in Figure 6.2. A total of

six data sets are collected - two without fault, two with a ramp fault of slope 1 m/s and

two with a ramp fault of slope 0.5 m/s. The fault is injected into the highest elevation

satellite PRN 28 because it was judged that it would have the most detrimental effect

on protection levels. In all data sets signals have C/N0 in the range of 44 dB-Hz to 49

dB-Hz. Low C/N0 data are then generated by adding artificial Gaussian noise to the

digital IF data, as discussed below.

6.2.1 Low C/N0 Data

It is assumed that the GPS receiver is subject to intentional interference halfway

through the approach. This results in elevated noise floor in the data. In this analysis
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four cases of signal degradation/elevated noise floor and their effect on scalar and vector

loop RAIMs are evaluated. The degraded C/N0s are illustrated in Figure 6.3. Cases

I and II have a C/N0 degradation of about 20 dB-Hz while cases III and IV assume a

degradation of 30 dB-Hz. In cases I and III the noise floor is enhanced about a minute

before fault initiation and held constant at the low value until the end. In cases II and

IV C/N0 is first ramped down to a low value; held constant at that value for about

a minute; and then ramped back up to the original level. Restoration of signal power

is immediately followed by fault onset in these cases. The change in the C/N0 level

is assumed to take place over a period of six seconds in all cases. Five Monte Carlo

runs are created for each of cases I and III - one without fault and four with faults

(two with 1 m/s ramp fault and two with 0.5 m/s ramp fault). Noting the sensitivity

of the test statistics and HPLs to the changing noise floor during the restoration of

C/N0 levels, ten simulations are created for each of cases II and IV - two without fault

(one from each data set collected from the Spirent simulator) and four with each fault

magnitude (two from each data set). Thus, the elevated noise floor accompanied with
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Figure 6.3: Low C/N0 Data

faults subjects the scalar and vector receiver algorithms to an extremely adverse situ-

ation to test the performance of their integrity monitoring algorithms under degraded

signal environments.

6.3 Validation Results of RAIM Algorithm

In this section results with the collected Spirent data and the above-mentioned low

C/N0 data are presented. RAIM performance of the scalar and vector architectures

are compared with respect to fault detection times and HPL. It is assumed that the

aircraft executes an LNAV approach. According to International Civil Aviation Or-

ganization (ICAO) specifications, RAIM parameters for an LNAV approach are as

follows: Probability of false alarm PFA = 1×10−5/hr, PHMI = 1×10−7/hr, HAL = 556

m. In addition, the prior probability of satellite failure PF is assumed 10−5/satellite/hr

[82]. From the above specifications PFA, PHMI and PF are calculated for a duration of

5 minutes and for the number of satellites visible during the approach after applying

a masking angle of 5o above the local horizon. For calculating the HPL, method 1 on

page 150 (section 5.3.1.3) of Chapter 5 is used.
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6.3.1 Scalar and Vector Loop Design Parameters

The scalar loop and vector loop design parameters are shown in Tables 6.1 and 6.2. A

first order DLL loop filter and a second order FLL loop filter are considered for the

scalar loops. Note that almost all scalar loops simuated here are found to lose lock

with the (15 - 20) dB-Hz data in which the C/N0s of only two satellites are above 17

dB-Hz all the times. So, scalar loop results are not shown for these data sets. In order

to compute the colored noise variance of the scalar loop pseudorange measurements

using Equation 5.6, the averaged discriminator samples are collected every 0.1 sec over

a period of 15 sec. The scalar loop white noise variance is multiplied by a factor

of 3.5 for the (44 - 49) dB-Hz data set. This is done to account for small residual

atmospheric errors which are comparable to noise at high C/N0. For the vector loops

the multiplication factor is 4. It should be noted that the position update interval of

the scalar loops for the (25 - 30) dB-Hz data is 6 sec whereas that for the vector loops

is 4 sec. This is because, for the same duration of data, the scalar loop test statistic is

Table 6.1: Scalar Loop Design Parameters

Design STL

parameters (44 - 49) dB-Hz (25 - 30) dB-Hz

Discriminator output interval (Ta) 20 ms 20 ms

Discriminator averaging interval (lTa) 0.1 sec 0.1 sec

2 sec 6 sec

Position update rate DLL BW (2Bn): 4 Hz DLL BW: 2 Hz

Pseudorange sample Pseudorange sample

rate (Tρ): 0.25 sec rate: 1 sec

Velocity update rate 2 sec 6 sec

Test statistic derived from Pseudorange residuals Pseudorange residuals

Statistic update interval or averaging 2 sec 6 sec

interval of pseudorange residuals (pTρ)

White noise variance of channel i

statistic at epoch k

(
2BnlTaσ

2
ζ̄i,k

p

)
4× 0.1

8
σ2

ζ̄i,k

2× 0.1
6

σ2
ζ̄i,k
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Table 6.2: Vector Loop Design Parameters

Design VTL

parameters (44 - 49) dB-Hz (25 - 30) dB-Hz

Discriminator output interval (Ta) 20 ms 20 ms

Discriminator averaging interval Code (MTa): 2 sec Code: 4 sec

Doppler (lTa): 0.1 sec Doppler: 0.1 sec

Position update rate 2 sec 4 sec

Velocity update rate 0.1 sec 0.1 sec

Test statistic Discriminator Discriminator

derived from outputs outputs

Statistic update interval (MTa) 2 sec 4 sec

Channel i statistic noise
1

20
σ2

ζ̄i,k

1

40
σ2

ζ̄i,k

variance at epoch k (
l

M
σ2

ζ̄i,k
)

Design VTL

parameters (15 - 20) dB-Hz

Discriminator output interval (Ta) 20 ms

Discriminator averaging interval Code (MTa): 6 sec

Doppler (lTa): 0.1 sec

Position update rate 6 sec

Velocity update rate 0.1 sec

Test statistic Discriminator

derived from outputs

Statistic update interval (MTa) 6 sec

Channel i statistic noise
1

60
σ2

ζ̄i,k

variance at epoch k (
l

M
σ2

ζ̄i,k
)
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found to detect fault with the six-second update interval but not with the four-second

interval. However, the vector loops are able to detect fault over the same duration with

the four-second update interval. The modification to account for different position and

velocity update rates of the vector architecture, as described in Section 5.3.2.2, is

applied to vector loop protection level calculations of this chapter.

As an aside, it is important to note that an aviation receiver certified to execute

non-precision approaches updates the position and protection levels at 1 Hz. However,

such fast update rates are not possible in this study under degraded signal environ-

ments. Fast updates are also not possible in good signal environments. This is because

the scalar architecture has high colored noise due to the large drift of the receiver clock,

which needs averaging of a number of RAIM input samples. These samples should be

spaced apart by more than the loop filter time constant. As for the vector architecture,

the discriminator outputs used in vector loop RAIM have large noise which also needs

RAIM input samples to be averaged over at least 2 sec.

6.3.2 Results with Spirent Data

As noted earlier, a distinct problem with the vector architecture is that all of its

pseudorange measurements get corrupted by a fault in a satellite channel, rendering the

vector loop pseudorange measurements unusable for integrity monitoring purposes. As

a remedy, use of the code phase discriminator outputs is proposed to perform integrity

monitoring with the vector architecture. Before delving deep into the performance of

the vector loop integrity monitoring algorithm developed in Chapter 5, some analysis

results are presented below. This is to show what the vector loop pseudorange noise and

pseudorange residuals look like when a fault occurs in a channel and to study whether

the code phase discriminator outputs comply with the single fault assumption. All

these results aim at providing insights into the workings of the vector architecture under

fault. It is important to note that the pseudorange noise mentioned above indicates

the difference between the vector or scalar loop-generated pseudorange measurements

and the geometric pseudoranges (i.e. geometric ranges plus atmospheric delays and

clock bias). On the other hand, pseudorange residuals denote the difference between

pseudorange measurements and predicted or estimated pseudoranges.
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Figure 6.4: Noise in Vector Loop Pseudorange Measurements

6.3.2.1 Vector and Scalar Loop Pseudorange Noise and Residuals

Figure 6.4 shows the receiver input noise plus the noise in the vector loop-generated

pseudorange measurements when a fault is injected in channel 1. They are formed

by multiplying the code phase discriminator outputs with the speed of light and then

removing the fault from the discriminator outputs of the faulty channel. Thus, they

reflect the difference between the geometric pseudoranges plus receiver input noise and

the pseudorange measurements generated by the vector tracking receiver. It is evident

from the figure that the effect of the fault in channel 1 propagates to almost all channels

and corrupts their measurements. This reinforces the earlier finding that the vector

loop pseudorange measurements do not comply with the single fault assumption needed

for protection level calculations of the RAIM algorithms. Thus, they are not suitable

for RAIM purposes. Nevertheless, it would be interesting to study how their residuals

behave under fault, which is explored next.

Two types of vector loop pseudorange residuals are depicted in Figure 6.5 when

a ramp fault of slope 1 m/s is injected into channel 1 at 2.5 min into simulation. The

vector loop pseudorange measurements are generated by taking the difference between

the signal receive time and the receiver-estimated signal transmit time and multiply-

ing the difference by the speed of light. The top left subplot of the figure shows the
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difference between the vector loop pseudorange measurements and the pseudoranges

predicted by the navigation filter (i.e., pseudoranges generated by projecting the pre-

dicted state vector onto LOS). The top right subplot shows the difference between

the vector loop pseudorange measurements and the pseudoranges estimated by the

navigation filter (i.e., pseudoranges generated with the estimated state vector). The

distinction between the two subplots is that the residuals in the first one are obtained

after time updates while those in the second one are obtained after measurement up-

dates. The residual magnitudes are less in the first subplot because the replica code

phase based on which the vector loop pseudorange measurements are generated closely

follows the navigation filter prediction. It is corrected after each measurement update

to accommodate the difference shown in the second subplot. It is interesting to note

that none of the residuals exhibit any anomaly (e.g., drifts) due to the fault except

that the estimated pseudorange residuals vary over a wider range after the occurrence
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Figure 6.5: Vector Loop Pseudorange Residuals and Test Statistics Derived from the

Pseudorange Residuals
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of the fault. The absence of inconsistency in the pseudorange residuals of the vector

loops results from the fact that individual code phases are adjusted by projecting the

navigation filter-estimated state vector onto the LOS vectors. This means that the

replica code phases from which pseudorange measurements are derived are aligned in

accordance with the estimated pseudoranges. Similar to the predicted/estimated pseu-

doranges, vector loop pseudorange measurements are, therefore, derived as projections

from the position domain to the range domain. As a result, when fault occurs, both

pseudorange measurements and predicted/estimated pseudoranges deviate from the

true geometric pseudoranges in such a way that the pseudorange residuals vector will

continue to move around the zero line and follow the linearized measurement model.

However, their noises are correlated with each other at all times because, as mentioned

above, the replica code phases are corrected by projecting the estimated user position

onto LOS vectors. Ignoring the correlation of noise, an attempt has been made to see

how the fault detection algorithm works with the pseudorange residuals. As shown in

Figure 6.5, the test statistics formed by the estimated pseudorange residuals do not

indicate any fault. So, no anomaly is detected by the fault detection algorithm which

performs a consistency check of the pseudorange residuals based on the measurement

model.
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Figure 6.6: Scalar Loop Pseudorange Noise and Residuals
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In order to contrast the vector loop pseudorange noise and residuals with its

scalar counterparts, the scalar loop pseudorange noise and residuals are shown in

Figure 6.6. The true geometric range, satellite clock error, estimated receiver clock

bias and the atmospheric delays are first subtracted from the scalar loop pseudorange

measurements to generate scalar loop pseudorange noise. The resulting difference,

however, exhibits a common non-zero mean which is probably caused by the error in

the estimated clock bias and is, thus, removed. The pseudorange residuals are obtained

by taking the difference between the pseudorange measurements and the navigation

filter-predicted pseudoranges. As expected, the scalar loop pseudorange noises exhibit

a linear drift only in the faulty channel and all pseudorange residuals start drifting

apart after the fault is injected into channel 1, unlike the vector architecture.

Thus, this analysis shows that the vector loop pseudorange measurements not

only violate the single fault assumption, but in the presence of a fault their residuals

do not show any inconsistency which can be exploited by the fault detection algorithm

to detect faults.

6.3.2.2 Error in Code Phase Discriminator Outputs

As discussed in Chapter 5, the vector loop pseudorange errors or code phase discrim-

inator outputs shown in Figure 6.4 have the same mathematical model as that of the

scalar loop pseudorange residuals shown in Figure 6.6. In addition, discriminator noises

are uncorrelated with one another and it can be predicted from theory that fault at

the discriminator level will affect the anomalous channel alone. This means that the

discriminator noise/error of the faulty channel will have a non-zero mean due to fault

while those of the other channels will have zero mean, unlike the vector loop pseu-

dorange measurements. Thus, the code phase discriminator outputs are expected to

exhibit inconsistency during faults which can be used to do integrity monitoring with

the vector architecture. The ability of the code phase discriminator outputs to detect

fault is demonstrated in the simulation studies of Chapter 5. In this chapter, before

focusing on vector loop RAIM performance with GPS data, an analysis of the error

characteristics of the code phase discriminator outputs is performed. This analysis

serves to verify if the single fault assumption holds for the code phase discriminator

outputs.

In order to verify if a fault remains confined only to the faulty channel at

the discriminator level, error in the code phase discriminator outputs is calculated

and plotted in Figure 6.7. From Equation 5.25 of Chapter 5, the discriminator error
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(εvector, m) results as

τm = Hm[Xpm − X̃−
pm

] + εvector, m

or, εvector, m = τm −Hm[Xpm − X̃−
pm

] (6.1)

where τm is the discriminator output vector; Xpm is the true user position and clock bias

vector and X̃−
pm

is its prediction at time tm. while the true user position is known, the

true clock bias is an unknown quantity. However, it can be determined after subtracting

the position error from the discriminator outputs; it will be a common error that is

observed in all channels. The clock error is, thus, extracted by determining the mean

error across channels. Once the clock error is removed, the result obtained is shown in

the left subplots of Figure 6.7. To compare with the scalar loops, the same operation
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Figure 6.7: Error in Vector Loop Code Phase Discriminator Outputs and in Scalar

Loop Pseudorange Residuals
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is performed with the scalar loop pseudorange residuals and the scalar loop errors are

shown alongside the vector loop plots in Figure 6.7. It is evident that the vector loop

discriminator error in the faulty channel grows linearly with time at the rate of 1 m/s

(i.e., at the same rate as that of the injected fault).

An issue that is important to vector loop RAIM is highlighted by the slowly

growing discriminator output error clearly evident in the lower left plot of Figure 6.7.

As will be shown, this has to do with how the correlation function is performed. This

will be discussed in passing only here as a direction for future research and does not

affect the performance of vector loop RAIM in this analysis. To this end, note that,

while all other healthy channels have zero-mean errors up to 3 minutes, error in channel

8 starts drifting slowly after that. In contrast, the scalar loop errors of the healthy

channels always have zero mean. The drift of channel 8 in vector loops, however, is

very slow compared to the actual fault and it is found from other data sets that it

depends on the magnitude of fault drift. That is, with a fault of lower slope, the drift

of channel 8 is slower. Surprisingly, the drift is found to be present only in channel 8

in all of the collected data.

Since the slow drift in channel 8 is not present in the scalar architecture, it

was anticipated that the reason could lie in the different working principles of the two

tracking loops. The difference in the workings of the scalar and vector loops under fault

is that the replica codes of all channels of the latter start drifting from their respective

incoming codes when a fault occurs. This happens because the replica codes in vector

tracking mode are aligned using the estimated pseudoranges from the navigation filter.

Thus, the operating points of the early, late and prompt correlators move away from

their locked positions. If the code autocorrelation function is distorted from its ideal

triangular shape of unity slope, then the discriminator outputs τm will not match the

first term of Equation 6.1 and a systematic error will appear in the term εvector, m. To

verify this, the autocorrelation functions of all channels are reconstructed using three

more early-late correlator pairs in addition to the tracking correlator pair whose outputs

are used to zero the discriminator output [93]. The reconstructed autocorrelation

functions of channel 8 and another channel are shown in Figure 6.8. The line with ‘+’

markers in the figure depicts the trace of the correlator pairs as fault occurs whereas

the dark solid line indicates an ideal autocorrelation function with unity slope on either

side. The dashed line in the right subplot also shows the trace of the tracking correlators

of channel 8 for a longer duration. It is apparent that the correlation function of

channel 8 has a different slope than unity. After accounting for the different slope of
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the autocorrelation function in Equation 6.1, the errors in the code phase discriminator

outputs are shown in Figure 6.9. The absence of the drift of channel 8 in the figure

justifies that it was caused by the slightly distorted autocorrelation function. Thus, a
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Figure 6.8: Reconstructed Autocorrelation Functions of Channels 2 and 8
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fault triggers drifts of the replica code phases which may lead to an increasing error in

the discriminator output of a healthy channel if its autocorrelation function is distorted

from the ideal shape. It is also important to note that in scalar loops and in vector

loops under no fault conditions, the changed slope will not cause any tracking error

because the change is identical on either side. In addition, the drift, being small, does

not affect the RAIM performance of vector loops in this study. However, the above

analysis indicates that vector loop RAIM performance can be sensitive to the shape

of the autocorrelation function and, therefore, the validity of the algorithm and its

performance under multipath signals deserve extensive studies. Next, the performance

of the RAIM algorithm designed in Chapter 5 is discussed.

6.3.2.3 RAIM Performance with Spirent Data

The scalar and vector loop RAIM performance is compared in terms of fault detection
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times and HPLs. The vector loop discriminator averaging interval is 2 sec at (44 -

49) dB-Hz. That is, the number of discriminator samples (M) averaged is 2/Ta =

2/(20×10−3) = 100. Mu1 and Mu2 are two upper bounds for the number of discrimi-

nator samples that can be averaged. They are defined below Equation 5.29 in Chapter

5. Mu1 is calculated as 4397 and remains the same for all C/N0s as it mainly depends

on LOS dynamics. Mu2 for the (44 - 49) dB-Hz data sets is 11500. So, M is below

Mu1 and Mu2 , as required. The test statistics for the six data sets (two without fault,

two with a ramp fault of slope 1 m/s and two with a ramp fault of slope 0.5 m/s) are

shown in Figure 6.10. Figure 6.11, on the other hand, illustrates the HPL and HPE for

the same data sets. HPEs are plotted until a fault is detected. The left hand subplots

show results for the vector loops and the right hand subplots show results for the scalar

loops. The number of previous time epoch terms needed for HPL calculations is 12.

Criterion for determining this number is provided in Section 5.3.1.3 while discussing
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bounds on EKF position error.

For these data sets the vector architecture detects fault about 4 sec before the

scalar architecture. As for the protection levels, the vector loop HPL is about 5 m to 10

m lower than that of the scalar loops. The reason for better performance of the vector

loops is that the vector loop test statistic and position estimate are not affected by

colored noises but the scalar loop test statistic and position estimate are. It is found

that the colored noise contribution to the scalar loop pseudorange measurements is

significant. This is because the receiver is driven by a TCXO whose clock drift and

bias are found to be quite large. The results for four cases of low C/N0 data are

presented next.

6.3.3 Results with Low C/N0 Data

The RAIM performance of the scalar and vector loops for the generated low C/N0 data

is provided below.
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Figure 6.13: Scalar and Vector Loop Horizontal Protection Levels and Position Errors

for Case I

6.3.3.1 Case I

Five data sets are generated for this case where the C/N0 level is decreased to (25 -

30) dB-Hz at 1.6 min into the simulation and held constant at that level until the end.

The number of discriminator samples (M) averaged to generate the test statistic at

the low C/N0 level is 200 while Mu1 and Mu2 are 4397 and 2000, respectively. For

calculating the HPL, 24 previous epoch terms are considered. It is important to note

that the number of previous time epochs needed to calculate the HPL increases as

C/N0 decreases. The vector loop fault detection times are about 16 sec and 42 sec

lower than the scalar loops. The vector loop HPLs are about half of the scalar loop

190



HPLs. Comparing with the previous high C/N0 results, it can be concluded that

the improvement offered by the vector loop RAIM has increased as C/N0 levels are

decreased.

6.3.3.2 Case II

In this case C/N0 is lowered to the level of (25 - 30) dB-Hz for a period of one minute

and then restored back to the original level. The fault initiates immediately after the

signal power is restored. A total of ten simulations are created for this case: Two

without fault, four with 1 m/s ramp fault and four with 0.5 m/s ramp fault. The test

statistics are shown in Figure 6.14. HPLs and HPEs are shown in Figure 6.15. Note

that the scalar loop HPL and HPE plot is broken into two segments for clarity. In this

case the vector loops detect 1 m/s ramp fault 8 sec and 0.5 m/s fault 4 sec earlier than

the scalar loops.
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Visual Clarity; The First Subplot Shows Results from 1 min to 2.5 min into Simulation

and the Second One Shows Results 2.5 min onwards

6.3.3.3 Case III

For case III C/N0 is degraded to the level of (15 - 20) dB-Hz at about 1.6 min into

simulation and maintained at that level till the end. Since most of the scalar loops are

found to lose lock at the degraded signal level, only vector loop results are provided.

The number of discriminator samples averaged to form the test statistic at (15 - 20)

dB-Hz is 300. The corresponding value of Mu2 is 500. The number of previous time

epoch terms used to calculate the HPL is 29. The performance of vector loop RAIM
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Figure 6.16: Vector Loop Test Statistics for Case III
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Figure 6.17: Vector Loop HPL and HPE for Case III
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is shown in Figures 6.16 and 6.17. As the HPL changes over a wide range due to

change in C/N0, the HPL plot is split into two subplots for visual clarity. The results

show that although fault detection is possible at such low C/N0 environments, the HPL

exceeds the HAL many times, causing RAIM to be unavailable then.

6.3.3.4 Case IV

This case is similar to case II. The only difference is that C/N0 is degraded to the

level of (15 - 20) dB-Hz instead of (25 - 30) dB-Hz. Fault occurs after the signal

level is restored. Results of all of the 10 simulations are presented in Figures 6.18 and

6.19. Although the HPL plot has been broken into three subplots to clearly show both

small and large values of the HPL, the separation between the HPL and HPE does

not appear to be wide enough in the bottom right subplot of Figure 6.19. Actually,

the HPEs that are comparatively large have a correspondingly high HPL. This is not

apparent because all simulation results have been plotted together. In order to clearly

illustrate the separation between the HPE and HPL, this segment of the figure is

magnified in Figure 6.20. In this figure values of some of the corresponding HPE and

HPL that have the same X coordinates are displayed using datatips. For example,

when the HPE is 10.76 m (second left datatip in the middle), the HPL is 62.07 m.
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Figure 6.18: Vector Loop Test Statistics for Case IV
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As for vector loop RAIM performance, during the period when C/N0 is in

the range of 15 dB-Hz to 20 dB-Hz, the HPL exceeds the HAL, resulting in RAIM

unavailability. However, RAIM becomes available immediately after the signal power

is restored from the degraded condition.
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6.3.4 Sensitivity of Protection Levels to Number of Terms

It was discussed in Chapter 5 that a number of previous epoch terms in addition to

the current epoch term need to be considered to calculate the protection levels for

the EKF implementation of the navigation filter (see Section 5.3.1.3). A criterion

(Equation 5.18) was also proposed to determine the number of terms N . To verify the

validity of the criterion, the sensitivity of the HPL to N is shown in Figures 6.21 and

6.22 for one run of the collected Spirent data (C/N0 = (44 - 49) dB-Hz) and one run

of the first set of low C/N0 data (C/N0 = (25 - 30) dB-Hz), respectively. The HPLs

are shown only for the vector architecture. The figures also show the HPLs that would

be obtained with a least squares algorithm for comparison purposes. For the Spirent

data N is found to be 13 or more using Equation 5.18. Since the corresponding HPL

is not distinguishable from that with N = 25 when HPLs with different N are plotted

together, the difference between the HPL with N = 13 and that with N = 25 is shown

separately in the right subplot of Figure 6.21. The maximum difference between the

two HPLs is 0.1138 m. Hence, N = 13 is sufficient for C/N0 = (44 - 49) dB-Hz. It is

also important to note that the EKF HPL is greater than the HPL obtained from the

least squares algorithm.
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Figure 6.22: Sensitivity of HPL to the Number of Terms at C/N0 = (25 - 30) dB-Hz

Next, Figure 6.22 shows the sensitivity of HPL to N for a dataset where the

C/N0 level is degraded to (25 - 30) dB-Hz at 1.6 min into simulation. Following

Equation 5.18, N is found to be greater than 20 for this data. N = 25 is considered

for protection level calculations for this C/N0 level. The right subplot of Figure 6.22

shows the difference between the HPL with N = 30 and that with N = 25. Since the

maximum difference between the two HPLs is on the order of 2 m, a higher value of N

may be necessary. This, in turn, suggests that a more stringent criterion to determine

N at low C/N0 than Equation 5.18 is required.

6.4 Conclusion

In this chapter the vector loop RAIM algorithm developed in Chapter 5 is validated

with GPS measurements. Data for this purpose was generated for the final approach

phase of an aircraft using a Spirent simulator. Artificial Gaussian noise was added to
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the data to simulate intentional interference. With the generated data scalar and vector

loop RAIM performance is compared. From the performance results the following

conclusions are drawn: Vector loop RAIM produces lower protection levels than the

scalar loop RAIM when the receiver is driven by a clock with large bias and drift. The

performance improvement increases as the signal level degrades. At low C/N0 such

as below 20 dB-Hz when scalar loops lose track of signals, vector loop RAIM may be

able to detect fault. But it can also become unavailable due to protection levels being

greater than the alert limits. Because of its ability to track weak signals, however, it

can provide integrity monitoring immediately after the C/N0 level is restored. In a

nutshell, the analysis results of this chapter show that the vector loop RAIM has the

potential to improve the availability of the integrity monitoring algorithm in both good

and bad signal environments. However, the performance of the vector loop RAIM can

be sensitive to multipath, which requires extensive studies.
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Chapter 7

Conclusions and Recommendations

for Future Research

7.1 Summary

The aim of this thesis was to explore some of the key features of the vector architecture.

While this architecture has proved to be a good candidate for dealing with weak signals,

scant information is available about its integrity monitoring. The ability of the vector

architecture to track weak signals, when combinded with integrity, can find use in

safety-critical and liability-critical applications that are inherently susceptible to signal

blockage or signal attenuation. Some of these include personal navigation system for

visually impaired individuals and road tolling operation. In response, the research in

this thesis first shed light on the internal workings of the vector architecture as the open

literature offers meagre information in this regard. Then, leveraging the insights gained

on internal operations of vector loops, a vector loop integrity monitoring algorithm was

designed. The key points that can be drawn from this research are as follows:

1. Internal Doppler aiding among loops in vector tracking mode is the key to vector

tracking’s superiority. Utilizing some constraints that are inherent to the imple-

mentation of the vector architecture, good C/N0 satellites aid low C/N0 satellites

in vector tracking mode. This finding suggests that scalar loops with Doppler

aiding can provide similar performance as the vector architecture.

2. An important result of the vector loop transfer function models developed in

Chapter 4 is the vector loop noise bandwidth. Two types of vector loop noise
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bandwidths were defined: One is for performance analysis of the vector architec-

ture and the other is for comparison with the scalar loops. The second bandwidth

was shown to have the capability of adaptively adjusting its value with noise levels

and user dynamics. Thus, it can be a good candidate for systematically design-

ing a Doppler-aided scalar loop noise bandwidth, which is currently performed

somewhat heuristically. Preliminary guidelines for designing a scalar loop based

on vector loop noise bandwidth were developed in Chapter 4.

3. It was shown in Chapter 4 that a transient error in one channel easily propagates

to other channels because of internal aiding among vector loops. Then, Chap-

ters 5 and 6 showed that all of the vector loop pseudorange measurements get

corrupted by a fault in a single channel. In addition, noise in the vector loop

pseudorange measurements is correlated across channels. This is because the

replica code phases from which the vector loop pseudorange measurements are

derived are corrected by projecting the estimated user position onto LOS vec-

tors. Thus, error in the estimated position gets translated to all the pseudorange

measurements. Further, the analysis in Chapter 6 revealed that the vector loop

pseudorange residuals do not show any inconsistency when a fault occurs in a

channel. All these findings point that the vector loop pseudorange measurements

are not suitable for designing an integrity monitoring or RAIM algorithm, unlike

the scalar loop pseudorange measurements.

4. As an alternative, the code phase discriminator outputs which have the same

mathematical model as the pseudorange residuals were used to design a RAIM

algorithm with the vector architecture. The code phase discriminator outputs

have uncorrelated noise across channels and comply with the single fault as-

sumption (assuming ideal autocorrelation functions) as they are derived from

the input to the vector loop navigation filter. They exhibit inconsistency under

faulty conditions, which can be exploited by the fault detection algorithm to

detect faults.

5. The protection level calculations of RAIM with the EKF implementation of the

navigation filter required an altogether different treatment. This is because in

the EKF past faults affect current estimates, unlike the least squares estimation

algorithms.

6. Performance comparison of vector loop RAIM with scalar RAIM revealed that the
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former offers lower protection levels in both good and bad signal environments.

Moreover, because of the vector loops’ ability to track weak signals, they can

offer integrity monitoring as soon as signal levels are restored if integrity is not

available at low signal powers. Thus, the vector loop RAIM will have higher

availability than scalar loop RAIM in urban navigation where traditional scalar

loop receivers suffer frequent signal attenuation or outages.

7.2 Future Research

The research contained in this thesis can be extended to several directions. They are

noted below:

1. While the vector architecture is superior to the scalar architecture, its benefits

come at the cost of complexity. In Chapter 4 preliminary guidelines for designing

scalar loops that can achieve performance comparable to the vector loops were

proposed. The next step is to implement the guidelines for an application in poor

signal environments and study how the designed scalar architecture performs

compared to the vector architecture and also in terms of computational load.

2. Although the vector loop RAIM has the potential to improve RAIM availability,

injection of fault into real GPS measurements for the validation of vector RAIM

with real data presents a significant challenge. The reason for this is that the fault

should be injected at the system level rather than at the pseudorange level as with

scalar loop RAIM. Data for the results shown in this thesis was generated using a

Spirent simulator. Although this data is a good representation of the real world

environment, it uses standard error models for simulating error sources such as

atmospheric delays and multipath. Thus, a comprehesive performance analysis

of vector loop RAIM requires real GPS measurements. One way of injecting fault

into real GPS data, though somewhat complex, could be as follows. First, the

real IF data can be processed using a Vector PLL and DLL or a deeply integrated

GNSS/INS system with code and carrier phase tracking. Vector tracking or deep

integration is recommended so that low C/N0 signals can be tracked. Once the

tracking loops are in lock, the replica code and carrier phases are aligned with

the incoming code and carrier phases with sufficient accuracy and, hence, can be

treated as equivalent to the incoming signal phases. Next, a drift or bias can be

introduced to the code and carrier phases of the faulty channel and the signal
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samples of this channel can be reconstructed using the modified phase. Then the

signal samples of all channels can be added back to form the IF samples. While

adding the signal samples, caution must be exercised to take into account the

relative time skew of the received satellite signals. An easy but computationally

expensive way would be to write all the signal samples of individual channels in

separate files and then add them together on a point-by-point basis.

3. It was concluded in Chapter 6 that a fault in a channel triggers drifts of all replica

code phases in vector tracking mode. In other words, all replica codes in vector

tracking mode start drifting from their respective incoming codes under fault.

As a result, if the code autocorrelation function of a channel is distorted from

the ideal triangular shape, error in the code phase discriminator ouput of that

channel can grow with time, resulting in violation of the single fault assumption

even at the code phase discriminator level. This will make the developed vector

loop RAIM algorithm ineffective. A potential cause for the distortions of the

autocorrelation function is multipath. Thus, vector loop RAIM performance

deserves extensive studies in multipath environment.

4. As noted earlier, with an EKF-based navigation filter past faults affect the cur-

rent estimate. This complicates the computation of the protection levels because

a number of past epoch terms have to be considered in addition to the current

epoch term. Please refer to Section 5.3.1.3 of Chapter 5 for details. The for-

mulation provided in this thesis holds for step, ramp and sinusoidal faults with

time periods on the order of several hours. Suitable modifications are, therefore,

needed to relax the assumption on the temporal characteristics of faults. Inclu-

sion of the velocity states in the computation of the fault detection test statistic

offers a partial solution, as noted in Section 5.3.1.3. However, even with that

modification, the requirement for different position and velocity update rates

of vector loops would require the above-mentioned assumption to hold true for

protection level calculations (see the derivation in section 5.3.2.2).

5. The present method of protection level calculations assumes only user position,

velocity, clock bias and drift as the navigation filter state vector. This formulation

should be extended to account for user acceleration in order to allow for a better

representation of user dynamics.

6. Further, the calculation of the protection levels for the coherent implementa-
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tion of the vector tracking architecture will probably require an entirely different

approach than that of the noncoherent implementation provided in this thesis.

7. Time correlated errors such as residual atmospheric delays and broadcast epheme-

ris and clock errors need to be adequately modeled or estimated to implement the

second fault detection method of section 5.3.1.2 whose test statistic is the sum of

the snapshot test statistics of current epoch plus a number of past epochs. Time

correlated errors need to be properly accounted for because in the vector architec-

ture successive measurements cannot be adequately spaced apart to counteract

the effect of time-correlated errors as the user position has to be updated every

few seconds to maintain code tracking.

8. In Chapter 6 vector loop RAIM was found to be unavailable at C/N0 between 15

dB-Hz and 20 dB-Hz. Thus, it would be worth studying if the vector loop RAIM

availability improves at low C/N0 with multi-constellation satellite signals.

9. Next, the benefits of vector tracking in non-aviation applications such as Road

User Charging (RUC) schemes [56] can be examined. The use of GNSS in such

high-integrity applications is favored for its low costs and flexibility. However,

frequent signal outages in urban environments remain a significant challenge for

these applications and compromise the availability of scalar loop-based integrity

monitoring. Under these circumstances, a comprehensive analysis can be car-

ried out to determine whether a vector architecture-based RAIM algorithm can

provide better system availability.

10. In view of the challenges associated with vector loop integrity monitoring as

detailed in recommendations 2 through 4, 6 and 7 above, it is important to

study if a well-designed scalar architecture, when driven by a low-drift clock, can

provide similar integrity monitoring performance as the vector architecture. The

scalar architecture can be designed following the guidelines proposed in Chapter

4 of this thesis. In addition, the advent of chip-scale atmoic clocks opens up the

possibility of future receivers to be run by more accurate clocks.
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Appendix A

A.1 Derivation of σ2
IQ

A mathematical expression of σ2
IQ is derived here considering bandlimited pre-correlation

noise. The derivation is given below.

The digital IF signal input to a tracking loop is represented as

rk = ACkDk cos[2π(fI + fdk
)tk + θ0] + nk (A.1)

where A is the signal amplitude after the receiver front end processing; Ck is the re-

ceived C/A code at time tk; Dk is the received navigation data bit at time tk; fI is

the IF frequency; fdk
is the Doppler frequency at tk; θ0 is a constant phase shift; and

nk is bandpass stationary noise. The satellite index has been dropped for simplicity of

notation.

The power spectral density (PSD) function of nk is given as

Φn(f) =

N0/2 if |f ± fI | 6
B

2

0 otherwise

where is B is the two-sided pre-correlation bandwidth. The low pass equivalent (nlk =

xk + jyk) of nk has the following PSD

Φnl
(f) =

N0 if |f | 6 B

2

0 otherwise

Note that approximate values of B and N0 can be obtained from the PSD spectrum of

the IF data as the signal is below the noise floor in IF samples.
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nk is represented in the time domain as

nk = Re{nlk expj2πfI tk}

= xk cos(2πfItk)− yk sin(2πfItk) (A.2)

xk and yk are uncorrelated Gaussian noise processes at time tk with the following

statistics: E[xk] = E[yk] = 0. E[x2
k] = σ2

x = E[y2
k] = σ2

y = N0B. Hence, E[nk] = 0,

E[n2
k] = σ2

n = N0B. It can be shown that the autocorreation function of nk is

φnm = E(nT
k nk+m) = φxm cos[2πfI(tk+m − tk)] (A.3)

where φx is the autocorrelation function of xk.

After the inphase (I) and quadrature (Q) processing and carrier wipe off of the

incoming signal [62], the inphase and quadrature channel noises are represented as

nIk
=

xk√
2

cos(2πf̂dk
tk + θ̂0) +

yk√
2

sin(2πf̂dk
tk + θ̂0) (A.4)

nQk
=

yk√
2

cos(2πf̂dk
tk + θ̂0)−

xk√
2

sin(2πf̂dk
tk + θ̂0) (A.5)

where f̂dk
denotes estimated Doppler frequency and θ̂0 is estimated carrier phase off-

set in the beginning of the kth correlation interval. θ̂0 is zero when only the Doppler

frequency is tracked. For ease of notation the term (2πf̂dk
tk + θ̂0) is now represented

as θ̂k. As for the noise statistics, E[nIk
] = E[nQk

] = 0. E[n2
Ik

] = E[n2
Qk

] = N0B/2.

E[nT
Ik

nQk
] = 0.

Carrier wipe off is followed by code wipe off. During the code wipe off process

the I and Q samples are multiplied by the corresponding replica C/A code samples.

Then, M samples are added over a coherent integration time T to form the I and Q

correlator outputs. Similar to nIk
and nQk

, the I and Q correlator noises are uncorre-

lated and have identical noise statistics. So, both of them are represented by ηk. Their

noise statistics are: E(ηk) = 0 and E(η2
k) = σ2

IQ. Next, σ2
IQ of the I correlator noise

is derived. The same derivation also holds for the Q correlator. For convenience xk√
2

is

represented as x̃k with variance σ2
x̃ = N0B/2.

By definition, σ2
IQ is

σ2
IQ = E[

M∑
i=1

CinIi

M∑
j=1

CjnIj
]
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= E[
M∑
i=1

M∑
j=1

CiCjnIi
nIj

] (A.6)

Since the C/A code and IF noise are uncorrelated and the summation and the expec-

tation operations are commutative, one writes

σ2
IQ =

M∑
i=1

M∑
j=1

E[CiCj]E[nIi
nIj

]

=
M∑
i=1

M∑
j=1

RijφnIij
(A.7)

where R is the C/A code autocorrelation function. Now using Equations A.3 and A.4

σ2
IQ =

M∑
i=1

M∑
j=1

Rijφx̃ij
cos(θ̂i − θ̂j)

=
M∑
i=1

M∑
j=1

Rijφx̃ij
cos(θ̂ij) (A.8)

Based on an ideal correlation of the C/A code, Rij is given by

Rij =

1− |τij| if |τij| < 1

0 otherwise

τij is the phase difference between the ith and jth samples of the C/A code in chips.

φx̃ij
is defined as

φx̃ij
=

N0B

2

sin[πB(ti − tj)]

πB(ti − tj)

=
N0B

2
sinc[B(ti − tj)]

To simplify subsequent derivations, the pre-corre-lation noise bandwidth B and (ti−tj)

in the above equation are replaced with fs/l (l ≥ 1) and (i− j)/fs, respectively, where

fs is the sampling frequency. Thus, the above equation becomes

φx̃ij
=

N0fs

2l
sinc

(
i− j

l

)
(A.9)

Figure A.1 shows a pictorial representation of Rij and normalized φx̃ij
for fs =

20 MHz and B = 6 MHz. It is evident from the mathematical expression of Rij and
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also from the figure that Rij becomes zero when (i− j) exceeds a certain integer value

(say N = bfs/fcodec, where fcode is the C/A code chipping rate and bac denotes the

largest integer not exceeding a). As a result, for a given i, j needs to be varied only

from max[1,(i − N)] to min[(i + N), M ]. Thus, after modifying the upper and lower

limits of j and substituting Rij and φxij
, Equation A.8 changes to

σ2
IQ =

N0fs

2l

M∑
i=1

j=min[i+N, M ]∑
j=max[1, i−N ]

(1− |τij|)sinc

(
i− j

l

)
cos(θ̂ij) (A.10)

Although σ2
IQ can be computed numerically using the above equation, a simpli-

fied form of σ2
IQ is derived next. In order to do so, the following approximation is made

to the value of cos θ̂ij (= cos[2πf̂d(i− j)/fs]) in Equation A.10. θ̂ij becomes maximum

when i − j = ±N = ±bfs/fcodec. Assuming a maximum Doppler shift of 10 KHz for

high-speed vehicles including most high-speed aircraft [69] and substituting fs/fcode for
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(i− j), the lowest possible value of cos(θ̂ij) is calculated as cos[2π× 104/(1.023× 106)]

= 0.998. Thus, cos(θ̂ij) varies between 0.998 and 1 over a coherent integration interval.

Therefore, is is approximated to be 1 in the derivation.

Now with some algebra Equation A.10 is simplified as follows:

σ2
IQ =

N0fs

2l

M∑
i=1

j=min[i+N, M ]∑
j=max[1, i−N ]

(1− |τij|)sinc

(
i− j

l

)

=
N0fs

2l

M∑
i=1

j=min[i+N, M ]∑
j=max[1, i−N ]

sinc

(
i− j

l

)
−

N0fs

2l

M∑
i=1

j=min[i+N, M ]∑
j=max[1, i−N ]

|τij|sinc

(
i− j

l

)
Substituting (i− j)× fcode/fs for τij, one gets

σ2
IQ =

N0fs

2l

M∑
i=1

j=min[i+N, M ]∑
j=max[1, i−N ]

sinc

(
i− j

l

)
−

N0fs

2l

M∑
i=1

j=min[i+N, M ]∑
j=max[1, i−N ]

|i− j|fcode

fs

sinc

(
i− j

l

)

=
N0fs

2l

M∑
i=1

j=min[i+N, M ]∑
j=max[1, i−N ]

sinc

(
i− j

l

)
−

N0fcode

2l

M∑
i=1

j=min[i+N, M ]∑
j=max[1, i−N ]

|i− j|sinc

(
i− j

l

)
(A.11)

The first term of the above equation is denoted as σ2
IQ1

and the second term as σ2
IQ2

and simplify them separately. As for σ2
IQ1

, the improper integral of the sinc function

is used as follows:

∫ ∞

−∞
sinc(x)dx = 2

∫ ∞

0

sinc(x)dx

= 2 lim
b→∞

∫ b

0

sinc(x)dx

= 1

Approximating the above integration by a discrete sum
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lim
c→∞

2

xj= c∑
xj=1

sinc(xj)∆x + sinc(0)∆x = 1

where {xj} ∈ R represents equally spaced sample points, with increment ∆x = xj+1 -

xj being the same for all j. Dividing both sides of the above equation by ∆x leads to

lim
c→∞

2

xj= c∑
xj=1

sinc(xj) + 1 =
1

∆x

Substituting (i− j)/l for xj and 1/l for ∆x, the above equation reduces to

lim
c→∞

2

(i−j)= c∑
(i−j)=1

sinc

(
i− j

l

)
+ 1 = l (A.12)

It is observed from Figure A.1 that φx̃ij
has m oscillations of decreasing am-

plitude on either side of non-zero Rij, where m = bB/(2fcode)c = 3. bac denotes the

largest integer not exceeding a. It is also evident that the decay rate of φx̃ij
decreases

with large values of (i − j). In addition, it follows from the mathematical expression

of φx̃ij
that it decays faster as m increases. Therefore, when m > 3 i.e., when the

pre-correlation bandwidth is fairly larger than the two-sided C/A code bandwidth, the

following approximation is made

lim
c→N

2

(i−j) = c∑
(i−j) = 1

sinc

(
i− j

l

)
+ 1 =

(i−j) = N∑
(i−j) =−N

sinc

(
i− j

l

)
≈ l

For a given i the limits of the summation operation are changed as follows:

j = i+N∑
j = i−N

sinc

(
i− j

l

)
≈ l (A.13)

Comparing Equations A.11 and A.13, one can conclude that Equation A.13 holds true

for all i except for i ≤ N and i > M - N . For these outlying values of i, the left hand

side (LHS) of Equation A.13 lies in the range of [l−∆1, l +∆2], where ∆1 and ∆2 are

positive real numbers and < l/2. As defined earlier, M is the number of samples that

are added over a given coherent integration time T . Without data bit wipe-offs, T can

vary from one code epoch to 20 code epochs. So, M is at least 1023 times larger than

N which is the number of samples in one code chip. As M � N , the first N and the

last N sample points of T (for which the LHS of Equation A.13 is different from l) will

have an insignificant effect on the total sum. Thus, assuming Equation A.13 holds for

all i, σ2
IQ1

is approximately given as
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σ2
IQ1

=
N0fs

2l

M∑
i=1

j=min[i+N, M ]∑
j=max[1, i−N ]

sinc

(
i− j

l

)

σ2
IQ1

≈ N0fs

2l

M∑
i=1

l

σ2
IQ1

≈ MN0fs

2

σ2
IQ1

≈ M2N0

2T
(A.14)

It should be noted that the above value of σ2
IQ1

matches that of σ2
IQ obtained using

the white noise assumption [63].

Now σ2
IQ2

is simplified as follows:

σ2
IQ2

=
N0fcode

2l

M∑
i=1

j=min[i+N, M ]∑
j=max[1, i−N ]

|i− j|sinc

(
i− j

l

)

=
N0fcode

2l

M∑
i=1

j=i∑
j=max[1, i−N ]

l

π
sin

(
π

i− j

l

)
−

N0fcode

2l

M∑
i=1

j=min[i+N, M ]∑
j=i+1

l

π
sin

(
π

i− j

l

)
(A.15)

Again, the different effect of N first and N last sample points of T is ignored as

M � N . Now since l = fs/B and N = bfs/fcodec, it can be shown that for N

< i 6 M − N , either term of σ2
IQ2

vanishes when B/fcode is an even integer. So,

σ2
IQ2

is approximately zero for even B/fcode. Likewise, when B/fcode is an odd inte-

ger, σ2
IQ2

becomes
2MN0fcodel

π2
. For other positive values of B/fcode, σ2

IQ2
is given by

MN0fcodel

π2

(
1− cos

Bπ

fcode

)
.
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In summary, σ2
IQ is

σ2
IQ ≈



MN0fs

2
if

B

fcode

is even

MN0fs

2
− 2MN0fcodel

π2
if

B

fcode

is odd

MN0fs

2
− MN0fcodel

π2

(
1− cos

Bπ

fcode

)
otherwise

(A.16)

In the above equation the first term dominates the second term as
B

fcode

or
fs

fcode

in-

creases.

To estimate σ2
IQ in real time, an additional correlator pair is used. This corre-

lator pair is shifted from the prompt correlators by multiple chips. The replica signal

generated by this correlator pair, when correlated with the incoming signal, results in

noise [47]. This is because the signal component correlates to zero due to the large

offsets of the replica code from the received code. The variance of the output noise

samples is computed and cross-checked.
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Appendix B

B.1 Upper Bound on LOS Rate of Change

The LOS vector to satellite i is given by[
−(xsi

− xu)

ρi

−(ysi
− yu)

ρi

−(zsi
− zu)

ρi

]
=
[
−uxi

−uyi
−uzi

]
where ρi is the pseudorange measurement to satellite i. [xsi

ysi
zsi

]T and [xu yu zu]
T

are the x, y and z components of satellite and user positions, respectively, expressed

in the ECEF coordinates. uxi
, uyi

and uzi
are the x, y and z components of the LOS

vector.

An upper bound for the rate of change of uxi
is derived below. The derivation

also holds for the y and z components. The rate of change of uxi
is given by

u̇xi
= (ρi(ẋsi

− ẋu)− ρ̇i(xsi
− xu))/ρ

2
i (B.1)

where ρ̇i represents the pseudorange rate for satellite i. ẋsi
and ẋu denote x-axis

velocities of the satellite i and user, respectively. Substituting the maximum values of

ρ̇, ẋs and ẋu and the minimum value of ρ and using the inequality |xs − xu| < ρ, one

can write

u̇xi
< (ρi(|ẋsi

|max + |ẋu|max) + |ρ̇i|maxρi)/ρ
2
i

< (|ẋsi
|max + |ẋu|max + |ρ̇i|max)/ρimin (B.2)

Now, substituting |ẋs|max = |ẋu|max = 3.874 km/sec, |ρ̇|max = 1.912 km/sec [69] and

ρmin = 20193 km [58], the following upper bound is obtained

u̇xmax = 4.78× 10−4 sec−1 (B.3)

Note that the above bound is a very conservative one as it is unlikely that the maxima

and minima of all the components of u̇x will occur simultaneously. Further, the value

of |ẋu|max assumed here would be too high for most applications.
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B.2 Proof that Diagonal Elements of Gd, lKv, l are

Inversely Related to Number of Satellites

An arbitrary matrix P3×2 is defined as


a1 1

a2 1

a3 1

. Thus, P represents a geometry with

two degrees of freedom and three visible satellites. Now, after some algebraic manipu-

lations, one can write:

diag[P (P T P )−1P T ]3×1 =
1

(a1 − a2)2 + (a1 − a3)2 + (a2 − a3)2
×

(a1 − a2)
2 + (a1 − a3)

2

(a2 − a1)
2 + (a2 − a3)

2

(a3 − a1)
2 + (a3 − a2)

2

 (B.4)

If one more satellite is added to the P matrix with the 4th row as [a4 1], then:

diag[P (P T P )−1P T ]4×1 =
1∑4

i=2(a1 − ai)2 +
∑4

i=3(a2 − ai)2 + (a3 − a4)2
×

(a1 − a2)
2 + (a1 − a3)

2 + (a1 − a4)
2

(a2 − a1)
2 +

∑4
i=3(a2 − ai)

2∑2
i=1(a3 − ai)

2 + (a3 − a4)
2∑3

i=1(ai − a4)
2

 (B.5)

Comparing Equations B.4 and B.5, it is noted that the diagonal elements of

P (P T P )−1P T are always positive and less than one. Moreover, a close observation

of Equation B.5 indicates that, with more satellites in view, both numerators and

denominator of Equation B.5 are greater than their counterparts of Equation B.4. So,

if ki/k and (ki + ci)/(k + c) are the ith elements of the two column vectors of Equations

B.4 and B.5, respectively, then, with simple algebra it can be shown that ki/k >

(ki + ci)/(k + c) requires ki/k > ci/c. Now substituting k, c, ki and ci from Equations

B.4 and B.5, it can be shown that ki/k > ci/c holds for any values of a1, a2, a3 and a4,

meaning the diagonal terms of P (P T P )−1P T decrease with the number of satellites.

The above proof, after rigorous algebraic manipulations, can also be extended to any

dimensions of P to ensure generality.
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Appendix C

C.1 Upper Bound on Cumulative Distribution Func-

tion of HPE

If εx and εy represent the x axis and the y axis position errors, respectively, then the

horizontal position error (HPE) is given as HPE =
√

ε2
x + ε2

y. The derivation of the

cumulative distribution function (CDF) of the HPE is given below. It is assumed that

εx v N (0, σ2
x), εy v N (0, σ2

y); εx and εy are statistically independent; and σ2
x > σ2

y .

It can be shown that the probability density functions (PDF) of x′ = ε2
x and y′

= ε2
y are

fX′(x′) =
1√

2πσx

1√
x′

exp−x′/(2σ2
x) (C.1)

fY ′(y′) =
1√

2πσy

1√
y′

exp−y′/(2σ2
y) (C.2)

Considering the one-to-one relationship between the HPE2 and the HPE, one

can write

P (HPE 6
√

k) = P (HPE2 6 k)

= P (x′ + y′ 6 k)

=

∫∫
x′+y′6k

fX′Y ′(x′, y′)dx′dy′ (C.3)

where fX′Y ′(x′, y′) is the joint PDF of x′ and y′. Since x′ and y′ are independent,

fX′Y ′(x′, y′) = fX′(x′)fY ′(y′). Hence, the above equation becomes

P (x′ + y′ 6 k) =

∫∫
x′+y′6k

fX′(x′)fY ′(y′)dx′dy′
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=

∫ k

0

fX′(x′)dx′
∫ k−x′

0

fY ′(y′)dy′ (C.4)

Substituting Equation C.2 in the above equation and replacing y′ with y′′ = y′/σ2
y , the

following equation is obtained

P (x′ + y′ 6 k) =

∫ k

0

fX′(x′)dx′
∫ (k−x′)/σ2

y

0

1√
2π

1√
y′′

exp−y′′/2 dy′′

Note that, after the change of variable from y′ to y′′, the second integral reduces to the

CDF of a chi-square distribution with single DOF which is P (x 6 X) = erf(
√

X/2),

where erf is the error function and x is chi squared distributed with single DOF.

Substituting this, one gets

P (x′ + y′ 6 k) =

∫ k

0

fX′(x′)erf

(√
k − x′

2σ2
y

)
dx′ (C.5)

A close observation of Equation C.1 shows that fX′(x′) is positive and has an

asymptotic discontinuity at x′ = 0. Therefore, it is required to examine whether the

integral of Equation C.5 exists over the integration interval (0, k] or not. For this

purpose the definition of the improper Riemann integral is used, as given below∫ k

0

fX′(x′)erf

(√
k − x′

2σ2
y

)
dx′

= lim
ε→0+

∫ k

ε

fX′(x′)erf

(√
k − x′

2σ2
y

)
dx′

Note that the error function erf(x) takes on values between 0 and 1 i.e. 0 6 erf(x) 6 1 for

any x ∈ R. This implies that the non-negative function I(x′) = fX′(x′)erf

(√
k − x′

2σ2
y

)
is less than fX′(x′). Now applying the property of monotonicity to the integration of

I(x′) and fX′(x′) which are Reimann integrable in the range of 0 < ε < k, one can

write

0 <

∫ k

ε

I(x′)dx′ <

∫ k

ε

fX′(x′)dx′

Substituting for fX′(x′)

<

∫ k

ε

1√
2πσx

1√
x′

exp−x′/(2σ2
x) dx′

Using the substitution x′′ = x′/σ2
x
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<

∫ k/σ2
x

ε/σ2
x

1√
2π

1√
x′′

exp−x′′/2 dx′′ (C.6)

As ε tends to zero from above, the RHS of the above inequality becomes the CDF of

a chi-square distribution with single DOF and exists. Therefore, for 0 < ε < k∫ k/σ2
x

ε/σ2
x

1√
2π

1√
x′′

exp−x′′/2 dx′′

< lim
ε→0+

∫ k/σ2
x

ε/σ2
x

1√
2π

1√
x′′

exp−x′′/2 dx′′

< erf

(√
k

2σ2
x

)
(C.7)

Combining Equations C.6 and C.7 gives

0 <

∫ k

ε

I(x′)dx′ < erf

(√
k

2σ2
x

)
(C.8)

Considering
∫ k

ε
I(x′)dx′ = F (k) - F (ε), dF (x′)/dx′ = I(x′) > 0 and the above inequality,

it can be concluded that G(ε) = F (k) - F (ε) is continuous, decreasing and bounded

on (0, k) for 0 < ε < k, where k is fixed. If M is its least upper bound on (0, k), then

arbitrarily small δ1, δ2 > 0 can always be found such that for 0 < ε < δ1, M − δ2 <

G(δ1) < G(ε) < M + δ2. Or, for ε < δ1, (M −G(ε)) < δ2. As this inequality is true for

any infinitesimally small δ1 and δ2, one can write limε→0+ G(ε) = limε→0+(F (k)−F (ε))

= M . Hence, limε→0+

∫ k

ε
I(x′)dx′ i.e. the integral of Equation C.5 exists.

Since both integrals of Equation C.6 exist as ε → 0+, the inequality is pre-

served under the limit operation. Therefore, from Equations C.6 and C.7 the following

inequality is obtained

lim
ε→0+

∫ k

ε

I(x′)dx′ < lim
ε→0+

∫ k/σ2
x

ε/σ2
x

1√
2π

1√
x′′

exp−x′′/2 dx′′

P (x′ + y′ 6 k) <erf

(√
k

2σ2
x

)
(C.9)

Next it will be investigated if a Gaussian distribution with zero mean and vari-

ance (σ2
x+σ2

y) will bound the tail of the distribution of the HPE. In order to do this, first

a lower bound of Equation C.5 is found. Note that I(x′) > fX′(x′)erf(
√

(k − x′)/(2σ2
x))

as σ2
x > σ2

y . Using the property of monotonicity of integration yields

P (x′ + y′ 6 k) >

∫ k

0

fX′(x′)erf

(√
k − x′

2σ2
x

)
dx′ (C.10)
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Substituting for fX′(x′) from Equation C.1 and replacing x′/σ2
x with x′, it can be shown

that the RHS of the above inequality becomes the CDF of a chi-square distribution

with DOF 2. Thus, combining Equations C.9 and C.10 results

1− exp−k/(2σ2
x) < P (x′ + y′ 6 k) < erf

(√
k

2σ2
x

)
(C.11)

So, the probablity that the HPE is larger than
√

k is bounded as follows

1− erf

(√
k

2σ2
x

)
< P (

√
x′ + y′ >

√
k) < exp−k/(2σ2

x) (C.12)

Now, the probability that a Gaussian random variable z with zero mean and

variance (σ2
x + σ2

y) exceeds
√

k in magnitude is given by

P (|z| >
√

k) = 1− erf

(√
k

2(σ2
x + σ2

y)

)
(C.13)

It should be noted that the lower bound LB(k) of Equation C.12 is always

less than G(k) (= P (|z| >
√

k)) of Equation C.13 while the upper bound UB(k) is

equal to G(k) at k = 0. It can also be shown that, for some M , UB(k) is larger than

G(k) for 0 < k 6 M2 and then crosses over to the other side of G(k) for k > M2.

The value of M is determined by the absolute and relative magnitudes of σx and σy.

The larger is the ratio of σx to σy, the greater is M . Therefore, when σx and σy

are close to each other (e.g. σx < 2.5σy), G(k) will always bound UB(k) (and H(k)

(= P (
√

x′ + y′ >
√

k))) after some k. On the other hand, when σx exceeds σy by a

certain margin determined by their magnitudes, G(k) may not bound UB(k) for any k

of practical interest. However, UB(k) becomes a conservative upper bound of H(k) as

σx � σy and both G(k) and H(k) then approach LB(k) from above. Thus, it might

happen that G(k) would bound H(k) after some k. To verify this, G(k) and H(k)

are simulated for different magnitudes of σx and σy and it is found that G(k) always

bounded H(k) after some k, as shown in Figure C.1.

It is important to note that the above derivation assumes that εx and εy are

uncorrelated. If they are correlated, then they can be uncorrelated by applying a

whitening transformation. The transformation matrix is the eigen vectors of the posi-

tion error covariance matrix in the horizontal plane. Since εx and εy are assumed to
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Figure C.1: Difference between G(k) and H(k) for Different Values of k

be Gaussian distributed, the uncorrelated variables ε′x and ε′y can be related to εx and

εy through an angular rotation θ about the origin, as given below

εx = ε′x cos θ + ε′y sin θ

εy = ε′x sin θ − ε′y cos θ

Using the above transformation, the following relationship is obtained: x′+y′ = ε2
x +ε2

y

= ε′2x + ε′2y . Thus, P (x′ + y′ ≤ k) = P (ε′2x + ε′2y ≤ k). Then Equation C.12 can be

derived using the same approach as before for the uncorrelated variables ε′x and ε′y.

The variances of ε′x and ε′y are the eigen values of the position error covariance matrix

and the means are zero.

229



C.2 Proof that Fault Detection Test Statistic and

EKF Position Error are Statistically Indepen-

dent

C.2.1 Snapshot Fault Detection Method

The statistical independence between current position error and current snapshot test

statistic is proved by showing that orthogonal components of the measurement noise

vector contribute to the test statistic and position error. This derivation follows from

[89]. Recalling the definition of WSSE or z2 from Chapter 5, one can write

WSSEk = z2
k = (∆ρ

k
−Hk(H

T
k W−1

k Hk)
−1HT

k W−1
k ∆ρ

k
)T×

W−1
k (∆ρ

k
−Hk(H

T
k W−1

k Hk)
−1HT

k W−1
k ∆ρ

k
) (C.14)

where Wk is the pseudorange measurement noise covariance. Hk is the pseudorange

measurement model matrix and ∆ρ
k

is the predicted pseudorange residual vector.

Decomposing W−1
k into W

−1/2
k W

−1/2
k

z2
k = (W−1/2∆ρ

k
−W

−1/2
k Hk(H

T
k W

−1/2
k W

−1/2
k Hk)

−1HT
k W

−1/2
k W

−1/2
k ∆ρ

k
)T×

(W
−1/2
k ∆ρ

k
−W

−1/2
k Hk(H

T
k W

−1/2
k W

−1/2
k Hk)

−1HT
k W

−1/2
k W

−1/2
k ∆ρ

k
) (C.15)

Substituting W
−1/2
k ∆ρ

k
= ∆ρ∗

k
and W

−1/2
k Hk = H∗

k gives

z2
k = (∆ρ∗

k
−H∗

k(H∗
k

T H∗
k)−1H∗

k
T ∆ρ∗

k
)T×

(∆ρ∗
k
−H∗

k(H∗
k

T H∗
k)−1H∗

k
T ∆ρ∗

k
) (C.16)

Next, decomposing ε∗k = W
−1/2
k εk into two orthogonal components, it will be shown

that one component contributes to the test statistic and the other to the EKF position

error.

ε∗k = ε<H∗
k

+ εN
H∗T

k

(C.17)

where the first term on the right hand side is in the column space (or range) of H∗
k and

the second term is in the null space of H∗
k

T . Since the measurement noise is injected

through ∆ρ
k
, ∆ρ∗

k
is now replaced with ε∗k. Thus, the first term in the parentheses of

Equation C.16 becomes

rk = ∆ρ∗
k
−H∗

k(H∗
k

T H∗
k)−1H∗

k
T ∆ρ∗

k
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=ε∗k −H∗
k(H∗

k
T H∗

k)−1H∗
k

T ε∗k (C.18)

Substituting for ε∗k gives

rk = ε∗k −H∗
k(H∗

k
T H∗

k)−1H∗
k

T ε∗k

=(ε<H∗
k

+ εN
H∗T

k

)−H∗
k(H∗

k
T H∗

k)−1H∗
k

T (ε<H∗
k

+ εN
H∗T

k

) (C.19)

Replacing ε<H∗
k

with H∗
ky as it lies in the range of H∗

k , one obtains

rk = ε∗k −H∗
k(H∗

k
T H∗

k)−1H∗
k

T ε∗k

=(H∗
ky + εN

H∗T
k

)−H∗
k(H∗

k
T H∗

k)−1H∗
k

T (H∗
ky + εN

H∗T
k

)

=εN
H∗T

k

(C.20)

Next, the error εXk
in the a posteriori state estimate can be written as [86]

εXk
= (I −KkCk)FεXk−1

+ (I −KkCk)wk−1 −Kk

[
εk

ξ
k

]
(C.21)

where Kk is the Kalman gain; F is the state transition matrix; Ck is the EKF mea-

surement model matrix and wk−1 is the process noise vector. ξ
k

is the noise in the

pseudorange rate measurements vector. It is important to note that εk is independent

of εXk−1
, ξ

k
and wk−1. The contribution of the measurement noise to the state estimate

error is given by

η
Xk

=Kk

[
εk

ξ
k

]

=Σ−k CT
k

(
CkΣ

−
k CT

k +

[
Wk 0

0 W ′
k

])−1 [
εk

ξ
k

]

where Σ−k is the predicted error covariance matrix of the EKF; W ′
k is the pseudorange

rate measurement noise covariance. Replacing

[
Wk 0

0 W ′
k

]
with W ′′

k and

[
εk

ξ
k

]
with ζ

k

η
Xk

=Σ−k CT
k (CkΣ

−
k CT

k + W ′′
k )−1ζ

k

=Σ−k CT
k (W ′′

k )−1/2(W ′′
k )1/2(CkΣ

−
k CT

k + W ′′
k )−1(W ′′

k )1/2(W ′′
k )−1/2ζ

k

Replacing (W ′′
k )−1/2Ck with C∗

k and (W ′′
k )−1/2ζ

k
with ζ∗

k
, one gets

η
Xk

=Σ−k C∗T
k (C∗

kΣ−k C∗T
k + I)−1ζ∗

k
(C.22)
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With some algebra η
Xk

becomes

η
Xk

=Σ−k C∗T
k (C∗

kΣ−k C∗T
k + I)−1ζ∗

k

=Σ−k (C∗T
k − C∗T

k (C∗
kΣ−k C∗T

k ) + C∗T
k (C∗

kΣ−k C∗T
k )(C∗

kΣ−k C∗T
k )− . . .)ζ∗

k

=Σ−k (C∗T
k − (C∗T

k C∗
kΣ−k )C∗T

k + (C∗T
k C∗

kΣ−k )(C∗T
k C∗

kΣ−k )C∗T
k − . . .)ζ∗

k

=Σ−k (C∗T
k C∗

kΣ−k + I)−1C∗T
k ζ∗

k

=Σ−k (C∗T
k C∗

kΣ−k + I)−1C∗T
k

[
ε∗k

ξ∗
k

]
(C.23)

Ck and Hk are given by

Ck = [Cx, k Cy, k Cz, k Cclk]

Hk = [Hx, k Hy, k Hz, k [1 . . . 1]T1×j]

where

Cm, k =



−ũm1, k
0

...
...

−ũmj, k
0

0 −ũm1, k

...
...

0 −ũmj, k


2j×2

, Hm, k =


−ũm1, k

...

−ũmj, k


j×1

, Cclk =



1 0

...
...

1 0

0 1

...
...

0 0


2j×2

m = x, y, z

where ũmi, k
= m component of the LOS vector from satellite i to user at time tk. It is

defined in Chapter 3 while discussing the vector loop navigation filter and in Appendix

B. j is the number of visible satellites. Thus, H∗
k and C∗

k become

H∗
k = W

−1/2
k Hk =

H∗
x, k H∗

y, k H∗
z, k W

−1/2
k


1

...

1


j×1


C∗

k =

[
W

−1/2
k [0]j×j

[0]j×j (W ′
k)
−1/2

]
Ck
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=

[
Ij×j [0]j×j

[0]j×j (W ′
k)
−1/2

]
×



H∗
x, k


0

...

0

 H∗
y, k


0

...

0

 H∗
z, k


0

...

0

 W
−1/2
k


1

...

1




0

...

0




0

...

0

 Hx, k


0

...

0

 Hy, k


0

...

0

 Hz, k


0

...

0




1

...

1




(C.24)

Using the above mathematical expression of C∗
k , it is evident that only the ε<H∗

k

com-

ponent of ε∗k will contribute to Equation C.23. Hence, η
Xk

is given by

η
Xk

= Σ−k (C∗T
k C∗

kΣ−k + I)−1C∗T
k

ε<H∗
k

ξ∗
k

 (C.25)

As ε<H∗
k

and εN
H∗T

k

are orthogonal components of ε∗k and ξ∗
k

and ε∗k are statistically in-

dependent, η
Xk

and rk are uncorrelated. Since η
Xk

and rk are assumed to be Gaussian-

distributed, they are also statistically independent. Thus, the current snapshot test

statistic and position error, being corrupted by rk and η
Xk

, respectively, are statistically

independent.

Though not considered in the navigation filter implementation of this thesis, Hk

and Ck will, in practice, have additional columns to account for coefficients correspond-

ing to estimated state errors which include ephemeris error, residual ionospheric and

troposhperic delays and additional rows corresponding to measurements containing a

priori information about the state errors. However, since both Hk and Ck will be ex-

panded the same way, the statistical independence between rk and η
Xk

will be retained.

Moreover, it is envisioned that the future implementation of vector loop integrity mon-

itoring algorithm will have a test statistic that may include the velocity states. For this

case, using the same argument as above it can be shown that orthogonal components

of ξ∗k will contribute to rk and η
Xk

.

C.2.2 Fault Detection Method Using Current and Past Snap-

shot Test Statistics

In this fault detection method the test statistic is formed by adding a number of past

snapshot test statistics to the current snapshot test statistic. As it has been proved
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above that current snapshot statistic and position error are independent, it is sufficient

to show that current position error is independent of a past snapshot test statistic. For

this purpose, η
Xk

is propagated to the next time epoch tk+1 using Equations C.21 and

C.25 as follows:

η
Xk+1

=(I −Kk+1Ck+1)FΣ−k (C∗T
k C∗

kΣ−k + I)−1C∗T
k

ε<H∗
k

ξ∗
k

 (C.26)

Again using the orthogonality of εN
H∗T

k

and ε<H∗
k

, it is apparent that η
Xk+1

and rk

are uncorrelated. Hence, past snapshot test statistics and current position error are

statistically independent.
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Figure D.1: Approach Plate of Runway 02L, Changi International Airport, Singapore
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