

Development of a New Tracking System Based on CMOS Vision
Processor Hardware, Phase II Prototype Demonstration

Final Report

Prepared by:

Hua Tang
Peng Li

Department of Electrical and Computer Engineering

University of Minnesota Duluth

Northland Advanced Transportation Systems Research Laboratory
University of Minnesota Duluth

CTS 12-08

Technical Report Documentation Page
1. Report No. 2. 3. Recipients Accession No.
CTS 12-08
4. Title and Subtitle 5. Report Date
Development of a New Tracking System Based on CMOS
Vision Processor Hardware, Phase II Prototype Demonstration

May 2012
6.

7. Author(s) 8. Performing Organization Report No.
Hua Tang, Li Peng
9. Performing Organization Name and Address 10. Project/Task/Work Unit No.
Department of Electrical and Computer Engineering
University of Minnesota Duluth
1023 University Drive
Duluth MN 55812

CTS Project #2010008
11. Contract (C) or Grant (G) No.

12. Sponsoring Organization Name and Address 13. Type of Report and Period Covered
Intelligent Transportation Systems Institute
Center for Transportation Studies
University of Minnesota
200 Transportation and Safety Building
511 Washington Ave. SE
Minneapolis, MN 55455

Final Report
14. Sponsoring Agency Code

15. Supplementary Notes
http://www.its.umn.edu/Publications/ResearchReports/

16. Abstract (Limit: 250 words)

Intelligent transportation systems depend on being able to track vehicle operations and collect accurate traffic data.
This project targets a hardware-based video detection system for real-time vehicle detection. To allow real-time
detection, customized hardware implementation of the system is targeted instead on the traditional computer-based
implementation of the system. The system includes four main processing steps. First, a camera is used to capture
images. Second, the captured images are segmented using the Mixture-of-Gaussian algorithm. Without sacrificing
the segmentation accuracy, researchers modified the Mixture-of-Gaussian algorithm to allow more efficient and
economical hardware implementation in terms of design overhead and hardware resources. Third, the
segmentation regions are extracted and validated as the objects of interests. In the last step, the validation result
will be wirelessly transmitted to a variable message sign, which displays necessary traffic information. Since the
system design includes integration of diverse devices, the video design kit from Xilinx is used. Such a hardware-
based vehicle detection system has been experimented tested with practical videos of traffic scene.

17. Document Analysis/Descriptors
Intelligent transportation systems, Cameras, Real time
information, Wireless communication systems, Implementation

18. Availability Statement
No restrictions. Document available from:
National Technical Information Services,
Alexandria, Virginia 22312

19. Security Class (this report) 20. Security Class (this page) 21. No. of Pages 22. Price
Unclassified Unclassified 38

Development of a New Tracking System Based on CMOS
Vision Processor Hardware, Phase II Prototype

Demonstration

Final Report

Prepared by:

Hua Tang
Peng Li

Department of Electrical and Computer Engineering

University of Minnesota Duluth

Northland Advanced Transportation Systems Research Laboratory
University of Minnesota Duluth

May 2012

Published by:

Intelligent Transportation Systems Institute
Center for Transportation Studies

University of Minnesota
200 Transportation and Safety Building

511 Washington Ave. S.E.
Minneapolis, MN 55455

The contents of this report reflect the views of the authors, who are responsible for the facts and the accuracy of the
information presented herein. This document is disseminated under the sponsorship of the Department of
Transportation University Transportation Centers Program, in the interest of information exchange. The U.S.
Government assumes no liability for the contents or use thereof. This report does not necessarily reflect the official
views or policies of the University of Minnesota.

The authors, the University of Minnesota, and the U.S. Government do not endorse products or manufacturers. Any
trade or manufacturers’ names that may appear herein do so solely because they are considered essential to this
report.

Acknowledgments

The authors wish to acknowledge those who made this research possible. The study was funded
by the Intelligent Transportation Systems (ITS) Institute, a program of the University of
Minnesota’s Center for Transportation Studies (CTS). Financial support was provided by the
United States Department of Transportation’s Research and Innovative Technologies
Administration (RITA).

The project was also supported by the Northland Advanced Transportation Systems Research
Laboratories (NATSRL), a cooperative research program of the Minnesota Department of
Transportation, the ITS Institute, and the University of Minnesota Duluth College of Science and
Engineering.

The authors would like to thank Dr. Eil Kwon, director of Northland Advanced Transportation
Systems Research Laboratory (NATSRL) at University of Minnesota Duluth, for very valuable
discussions and comments.

Authors would also like to thank the Minnesota Department of Transportation (MnDOT) and
District I office for providing all traffic videos tested in this project.

Table of Contents

1 Introduction ... 1

1.1 MoG ... 1

1.2 Hardware implementation of MoG .. 3

1.3 Summary .. 5

2 Mixture of Gaussian for Video Segmentation .. 7

2.1 The MoG algorithm .. 7

2.2 The benefits of the MoG algorithm .. 9

2.3 Summary .. 11

3 Hardware Implementation of MoG ... 13

3.1 Modification of the MoG algorithm ... 13

3.2 Hardware implementation of the MoG algorithm .. 14

3.3 The SoC architecture .. 17

3.4 Experiment and performance analysis ... 19

3.5 A prototype vehicle detection system .. 24

3.6 Summary .. 25

4 Summary, Conclusion and Discussion ... 27

References ... 29

List of Figures

Figure 1.1. An illustration of Mixture of Gaussian for object segmentation [2]. 2

Figure 2.1. (a) A partial roundabout traffic scene captured by a nearby surveillance camera; (b)
Number of Gaussian distributions used to model the background pixel-wise (whiter means more
and darker less). .. 11

Figure 2.2. (a) A scene with waving trees; (b) Number of Gaussian distributions used to model
the background pixel-wise (whiter means more and darker less). .. 11

Figure 2.3. (a) The original image; (b) Segmentation results using traditional background
subtraction methods; (c) Segmentation results using the MoG algorithm. 12

Figure 3.1. Overall architecture of the MoG IP. ... 15

Figure 3.2. Circuits in step 1 (3-stage pipeline). ... 15

Figure 3.3. Circuits in step 2 (6-stage pipeline). ... 16

Figure 3.4. Circuits in step 3 (5-stage pipeline). ... 16

Figure 3.5. Circuits in step 4 (4-stage pipeline). ... 17

Figure 3.6. Circuits in step 5 (3-stage pipeline). ... 17

Figure 3.7. SoC architecture of the proposed design. ... 18

Figure 3.8. Segmentation results for a practical traffic scene (𝛼= 𝛽 = 0.0625). left: the original
image, middle: the segmentation results from the hardware implementation, right: the
segmentation results from the software implementation. ... 22

Figure 3.9. Segmentation result (𝛼= 𝛽 = 0.0625). .. 23

Figure 3.10. The prototype of the vehicle detection system. .. 25

Figure 3.11. Top view and side view of the traffic scene where the vehicle detection system is
applied to facilitate vehicle merging (the camera in the side view of the image shows the
hypothesized location of installation). .. 26

List of Tables

Table 1.1. Comparison of different adaptive video segmentation algorithms [21]. 4

Table 3.1. Design summary. ... 20

Table 3.2. Hardware complexity of different blocks. ... 20

Table 3.3. System parameters. .. 23

Table 3.4. System comparison with [21]. ... 24

Executive Summary

It is well known that vehicle tracking processes are very computationally intensive.
Traditionally, vehicle tracking algorithms have been implemented using software approaches. In
other words, the vehicle tracking system is physically implemented in the general computers or
micro-computers regardless of the underlying vehicle tracking algorithm. While the software
approach provides flexibility, efficiency and short design cycle in terms of implementation and
independency from the tracking algorithm, it does have a large computational delay, which
causes low frame rate vehicle tracking. However, real-time vehicle tracking is highly desirable
to improve not only tracking accuracy but also response time, in some ITS (Intelligent
Transportation System) applications such as security monitoring and hazard warning. For this
purpose, this project makes an attempt to design a hardware-based system for real-time vehicle
detection, which is typically a required frontend in the complete tracking system. The proposed
vehicle detection system captures pictures using a camera in real-time and then applies Mixtures
of Gaussian (MoG) algorithm for vehicle segmentation.

MoG algorithm is a statistical modeling technique of the background that can be used to build a
background model of the road in terms of intensity of either grayscale or color images to allow
relatively robust and sensitive vehicle segmentation. Compared to many other background
modeling and vehicle segmentation methods, MoG has several important advantages, such as
background update at a controlled pace to incorporate latest illumination and weather changes
and multi-mode modeling to cope with repeated camera shaking. The latter is particularly
needed as in our experience there is constant camera shaking due to wind in practical camera-
based vision systems. MoG can help suppress many false segmentations that would otherwise
appear. Another important advantage of the MoG algorithm for vehicle segmentation is that it is
a good tradeoff between its algorithm performance and complexity of hardware implementation.
This is particularly sought in our projects as we are targeting a hardware-based implementation
of the vehicle detection system and such an implementation should not cause an excessively long
design cycle and use an unreasonable amount of hardware resources.

In our project, we first verify the MoG algorithm for vehicle detection using computer
simulations (or the software approach). We run the MoG algorithm in MATLAB on a long
sequence of images that are taken from a pre-recorded video. It was found that the MoG
algorithm gives satisfactory vehicle segmentation results and is robust to camera shakings. In
addition, another important finding is that the maximum rate of vehicle segmentation using
MATLAB software in a Desktop computer (with Intel T4400 Dual-Core processor in our case)
was only 0.2 frames-per-second (fps), which is very low for real-time vehicle detection for
security monitoring purposes, such as collision warning. This is because the MoG algorithm for
video segmentation application is computational intensive.

To meet the real-time requirement of high-frame-rate, high-resolution video segmentation tasks,
we then target a hardware implementation of the MoG algorithm. Once the MoG algorithm was
verified using computer simulations, we modified the MoG algorithm to tailor it to be suitable to
hardware implementation. Without modification, the MoG algorithm would cause a long design
cycle and use a significant amount of hardware resources. In the project, we modified the MoG
algorithm in a way that it is much more amenable to hardware implementation than the original
one without sacrificing much on the accuracy of vehicle segmentation.

With the modified MoG algorithm, we then proposed a System-on-a-Chip (SoC) architecture for
implementation of the MoG-based image segmentation algorithm. We designed a hardware
Intellectual Property (IP) for the MoG algorithm. Moreover, we integrated the hardware IP into
a SoC architecture, so that some key parameters, such as learning rate and threshold, can be
configured on-line, which makes the system flexible to adapt to different environments. The
proposed system has been implemented and tested on Xilinx XtremeDSP Video Starter Kit
Spartan-3ADSP 3400A Edition. Experiment results show that under a clock frequency of
25MHz, this design meets the real-time requirement for Video Graphics Array (VGA) resolution
(640×480) at 30 frames-per-second (fps). The maximum rate for vehicle detection could reach
81fps. Our experiments show that the vehicle segmentation results from the proposed hardware
implementation are very comparable to those from the software implementation that implements
the original MoG algorithm.

Finally, in this project we incorporate the designed MoG-based vehicle segmentation system as
the core of a complete vehicle detection system. In the complete vehicle detection system, the
vehicle segmentation results are subsequently processed by a vehicle identification module,
which is currently implemented in the SoC architecture based on a simple foreground-pixel
counting based algorithm. Once a vehicle is indentified, SoC architecture sends the detection
result to a variable message sign using a wireless transmitter. Finally, the variable message sign,
which accepts the message through a wireless receiver, displays the detection result. In the
prototype system, we use a computer monitor as a replacement of the variable message sign. We
verify the prototype system in the laboratory using practical traffic videos. We also apply it to
facilitate vehicle merging at ramps where vehicles cannot see each other in different ramps that
merge to the same main road.

1

1 Introduction

Automatic real-time vehicle tracking in Intelligent Transportation System (ITS) applications
require real-time vehicle detection as the pre-requisite. Among many existing technologies for
real-time vehicle detection such as microwave and radar, the camera-based approach is getting
more and more popular today, partially because cameras allows wide view coverage and the
recorded video allows most comprehensive traffic data collection. In camera-based systems,
real-time vehicle detection is equivalent to real-time image segmentation from image processing
point of view.

In this project, we attempted to apply vehicle segmentation techniques for real-time vehicle
detection and implemented the real-time vehicle detection system in hardware which is the main
research target of Phase II of the project. In Phase I of the project [1], we attempted to use
motion estimation techniques, such as Fixed Block Size Motion Estimation (FBSME),
Reconfigurable Block Size Motion Estimation (RBSME), Variable Block Size Motion
Estimation (VBSME) for vehicle segmentation and proposed the corresponding hardware
implementations. However, in [1], while the vehicle detection results tested very promising, it
did suffer from one practical issue, which is camera shaking caused by wind. Camera shaking
causes the motion estimation to be relatively unstable, therefore the results are not reliable in
those cases. For details, readers are referred to [1].

In phase II of the project, we need to address the camera shaking problem that was observed in
Phase I. To this end, we proposed to use Mixtures of Gaussian (MoG) algorithm for robust
vehicle segmentation under even constant camera shaking and also proposed an efficient
hardware implementation of the MoG algorithm. We have also integrated the hardware design
for the MoG-based vehicle segmentation into a complete vehicle detection system and
experiments have validated the system functionality.

In the following, we first give a brief introduction to the MoG algorithm for video segmentation.
Then, we discuss the previous work on hardware implementation of the MoG algorithm. Finally,
we give a summary and organization of the rest of the report.

1.1 MoG

MoG is a statistical modeling technique of the road background and allows object (or the
foreground) segmentation. The MoG algorithm for video segmentation is first proposed by
Stauffer and Grimson [2]. In images of traffic scenes, each pixel is modeled probabilistically
with a mixture of several Gaussian distributions (typically 3 to 5) and each background sample is
used to update the Gaussian distributions, so that the history of pixel variations can be stored in
the mixture of Gaussian distributions. It is clear that the recent variations would dominate the
MoG model. In a similar way, latest light and weather changes can be reflected by updating the
mean and variance of MoG. An illustration of MoG modeling is shown in Figure 1. In Figure 1,
the same spot in the road has different background samples at different times and the history
variations are all recorded in the MoG model. Note that the MoG model would record all
samples of that particular spot. In other words, this means that the MoG model record not only
the actual road background, but also the vehicles, grass, trees, clouds, rain, snow, sunshine and
whatever that occurs on the spot.

2

Suppose that 5 Gaussian distributions are used for the MoG model of each pixel of an image.
Each Gaussian distribution has three parameters associated with it, namely the mean, variance
and weight. The former two are clear from mathematics point of view. The weight parameter of
a Gaussian distribution is used to indicate its importance or dominance in the overall mixture of
5 Gaussian distributions. Typically, the sum of the weights of 5 Gaussian distributions would be
set to unity (1.0). A few other important parameters include a threshold of T and a number B.
The threshold is used to determine the fraction of the overall 5 Gaussian distributions that should
account for the actual road background, because as mentioned above the MoG model records all
samples including both desired/undesired background (undesired background samples for
example are rain, snow, sunshine and so on) and foreground (vehicles). It is obvious that T is
associated with the sum of weight and therefore T should be less than 1.0. A typically value of T
is for example 0.75 and its optimal value for a particular traffic scene can be empirically and
experimented evaluated. Once T is defined, B defines the number of Gaussian distributions that
meet the threshold T or that belong to the distributions representing the background. In our
example, there are a total of 5 Gaussian distributions, therefore B is less than 5.

Figure 1.1. An illustration of Mixture of Gaussian for object segmentation [2].

When using the MoG algorithm for object (vehicles in this case) segmentation, each new sample
(typically the intensity of a grayscale or a color image) of a certain pixel is matched with the
current MoG model of that pixel. A match is defined as the new sample being within J times the
standard deviation of the Gaussian away from the mean. If a match is found, two additional
cases needs to be considered before determining whether the new sample represents background
or foreground. In the above, B Gaussian distributions belong to the background ones, while the
rest (5-B) to the foreground ones. Therefore, if the new sample matches any distribution
belonging to the background ones, the sample is a background sample. On the other hand, if it
matches any distribution belong to the foreground ones, it is a foreground sample. In each of
above two cases, the MoG model would be updated and more specifically the matched Gaussian

3

distribution would be updated with a new mean, variance and weight. Especially important is
the weight update and the weight of the matched Gaussian distribution will be weighted up since
there is one more sample now. For the other 4 Gaussian distributions, theirs means and variance
would not change, but their weights would be reduced by a quarter of the weight increment of
the matched Gaussian distribution in order to sum up all the weight still equal to 1.0.

If the new sample does not match any of 5 Gaussian distributions, it would be declared as a
foreground sample. In that case, the MoG model update would be slightly different from the
above. Among the 5 Gaussian distributions, the one with the smallest weight would be deleted
and be replaced by a new Gaussian distribution associated with the new sample. More
specifically, the new Gaussian distribution would have a mean equal to the sample, an initialized
variance and its weight equal to that of the deleted or the replaced one.

In summary, the MoG algorithm can provide multi-mode modeling of the background (if B≥1)
and in this way of modeling the background, the sensitivity and accuracy of vehicle detection is
highly improved compared to traditional techniques. In Chapter 2, we will give more detailed
mathematical description of the algorithm and discuss its benefits and motivates why it was
chosen in our project.

1.2 Hardware implementation of MoG

In the above subsection, we give a brief introduction of the MoG algorithm to be used as the
vehicle segmentation algorithm. As implementing the MoG-based vehicle segmentation in
hardware to allow real-time vehicle detection is the main goal of the project, we also review
briefly some previous and related work on hardware implementation of vehicle segmentation
algorithm in this subsection.

Conventional image segmentation techniques include non-adaptive methods such as background
subtraction and adaptive methods such as frame difference (FD) [3-6]. The non-adaptive
methods have almost been abandoned because their need for manual initialization. Without re-
initialization, background noise accumulates over time. In another word, they are not suitable
for highly automated surveillance environments or applications. Besides FD, there are several
other adaptive video segmentation methods, such as median filter (MF) [7-9], linear predictive
filter (LPF) [10-13], MoG [2][14-19], and Kernel Density Estimation (KDE) [20].

When selecting the algorithm for image segmentation that needs to be implemented in hardware,
a few factors come into play. A comparison among these methods has been made by Jiang et al.
[21] in terms of performance, memory requirement, segmentation quality, and hardware
complexity. We cite their results in Table 1.1. It can be seen that MoG has arguably the best
trade-off among these adaptive segmentation algorithms.

Although sophisticated video segmentation algorithm development is a hot topic in the research
community, only a few research groups work on the hardware implementation of the algorithms
to meet real-time requirement of high-frame-rate, high-resolution video segmentation tasks. In
our software implementation of a 3-mixture MoG algorithm (in MATLAB) on an Intel T4400
Dual-Core processor, the performance is about 5 second per frame with the VGA resolution
(640×480), which cannot even meet the real-time requirement of 1fps.

4

The latest work about hardware implementation of the MoG algorithm so fast as we know is
from Jiang et al. [21]. In [21], the MoG algorithm is translated into hardware and implemented
in Xilinx VirtexII pro Vp30 Field Programmable Gate Array (FPGA) platform [22]. It can
support VGA resolution (640×480) at 25 fps in real-time. The authors also present a variety of
memory access reduction schemes, which results in more than 70% memory bandwidth
reduction. As a result, their design meets the real-time requirement of high-frame-rate high-
resolution segmentation task with a relatively low hardware complexity.

Table 1.1. Comparison of different adaptive video segmentation algorithms [21].

 FD MF LPF MoG KDE
Algorithm Fast Fast Medium Medium Slow

Performance
Memory 1 frame 50-30 frames 1 frame 1 frame of k n frames of k

Requirement Gaussians Gaussians
Segmentation Worst Low Acceptable Good Best

Quality
Hardware Very low Medium Low to Low High

Complexity Medium

However, the design in [21] lacks flexibility. Some key parameters in the MoG algorithm, such
as learning rate and threshold, have to be setup before generating the FPGA bit stream file. This
means that every time if the users want to change the parameters, they have to re-program the
FPGA, which is a time consuming process. Moreover, some commonly used components in
embedded system, such as Universal Asynchronous Receiver/Transmitter (UART) and Inter-
Integrated Circuit (I2C), are not involved in their design, which also limits the application of their
system.

As we know, video segmentation usually plays a preprocessing role for other applications, such
as video surveillance, object detection, and object tracking. Thus, implementing the video
segmentation algorithm into a hardware IP will be more desirable than implementing it into an
entire system such as in [21]. The main reason is that a hardware IP can be easily integrated into
an SoC architecture so long as it meets the specified bus standard. The SoC architecture has
many advantages. First of all, it is easier to be updated for other applications. We can design
other hardware IPs for applications based on the same bus standard and integrate them into the
same system. Second, based on the SoC architecture, the parameter configuration task will be
easier, which can be performed on-line via Micro Control Unit (MCU) in the SoC. Third, some
commonly used components in embedded system, such as UART and I2C, can be easily
integrated into the SoC. In summary, the SoC architecture makes the overall system more
flexible.

Based on the above discussion, we implemented the MoG algorithm into a hardware IP, and then
integrated it into an SoC architecture in this project. Similar to [21], we made some
modifications to the original MoG algorithm in order to reduce the hardware design complexity
and save hardware resources. However, we did not modify the original algorithm in the same
way as [21]. This is mainly because the Xilinx FPGA in our platform has more resources than

5

the one in [21]. As a result, some algorithm modifications which will degrade segmentation
performance are not used in our design. In another word, the modified MoG algorithm in our
system is closer to the original MoG algorithm than the one in [21].

1.3 Summary

In this Chapter, we give a brief introduction of the MoG algorithm for video segmentation and its
hardware implementation. The rest of this report is organized as follows:

• Chapter 2 presents the MoG algorithm and its benefits in detail and especially how it can
cope with repeated camera shaking.

• Chapter 3 presents the SoC architecture for video segmentation based on the MoG
algorithm. It includes a modified version of the MoG algorithm for hardware
implementation, the structure of the MoG hardware IP, the overall SoC architecture, a
prototype vehicle detection system based on the vehicle segmentation hardware and
some experimental results.

• Chapter 4 presents the summary, conclusion and discussion of the works in the project.

6

7

2 Mixture of Gaussian for Video Segmentation

In this chapter, we will explain why we would prefer the MoG algorithm to the previous motion
estimation algorithm used in Phase I of the project [1]. We first provide a mathematical
description of the MoG algorithm, which is needed to help understand the computation
complexity of the algorithm and why it should be modified for efficient hardware
implementation and how in Chapter 3. Then, we present in detail the advantage of the MoG
algorithm, especially its capability to cope with repeated camera shaking so that much less false
vehicle segmentations would occur.

2.1 The MoG algorithm

The MoG algorithm for video segmentation is first proposed by Stauffer and Grimson [2]. This
algorithm considers the values of a pixel at a particular position (x, y) of an image over time t as
a "pixel process", and the recent history of the pixel is modeled by a mixture of K Gaussian
distributions. The probability of observing the pixel is

𝑃(𝑋𝑡) = ∑ 𝑤𝑖,𝑡𝜂(𝐾
𝑖=1 𝑋𝑡, 𝜇𝑖,𝑡Σ𝑖,𝑡) (3.1)

where Xt stands for the incoming pixel at time t or frame t (note that Xt would be the intensity in a
gray scale image or the intensity of a certain color, such as Red, Green or Blue in a color image),
K is the number of Gaussian distributions, and 𝜂 is a Gaussian probability density function.
Moreover, 𝑤𝑖,𝑡 is the weighting factor, 𝜇𝑖,𝑡 is the mean value and Σ𝑖,𝑡 is the covariance matrix of
the ith Gaussian at time t.

When a new frame of image comes, each pixel sample will be considered whether it belongs to
any existing distribution of that pixel. This procedure is called matching. There are some ways
to match a pixel with Gaussian Distributions. [23] uses the Jeffrey’s divergence which measures
how unlikely that one distribution is drawn from the population represented by the other. The
authors claim this method yield accurate results. One disadvantage of this method is its
complexity. In our project, we applied the typical method, using confidence intervals, for
matching. In statistics, a confidence interval of a Gaussian distribution is a particular kind of
interval estimate of a population parameter. Instead of estimating the parameter by a single
value, an interval likely to include the parameter is given, which indicates the reliability of an
estimate. We choose confidence interval to be 98%, so that an incoming pixel sample X will
match one distribution D(μ,σ) if:

𝑝 =
|𝑋 − 𝜇|
𝜎

≤ 𝐽 = 2.5

In other words, a match is defined as the incoming pixel within J (usually set to 2.5) times the
standard deviation off the center. In case that there are more than one distribution matching the
sample, the distribution which has smallest p will be chosen for updating.

After matching, the next important step is updating the MoG model. The updating is an
important part to keep the background model flexible with environment changes such as light,
sunshine, scene changes, etc. This procedure will:

8

• Create a new Gaussian distribution in the MoG model if there is no match.
• Increase the weight of the Gaussian distribution that matches the incoming pixel sample,

and then update the mean and standard deviation of that distribution. Meanwhile,
decrease the weights of other Gaussian distributions that do not match while keeping the
total weight equal to 1.0.

If a match is found, for that matching Gaussian distribution, its 𝑤𝑖, 𝜇𝑖, and 𝛿𝑖 (Σ𝑖,𝑡= 𝛿𝑖 2 I) are
updated as follows,

𝑤𝑖,𝑡+1 = (1 − 𝛼)𝑤𝑖,𝑡 + 𝛼

= (1 − 𝑤𝑖,𝑡)𝛼 + 𝛼 (3.2)

𝜇𝑖,𝑡+1 = (1 − 𝛽)𝜇𝑖,𝑡 + 𝛽𝑋𝑡 (3.3)

𝛿𝑖,𝑡+1
2 = (1 − 𝛽)𝛿𝑖,𝑡

2 + 𝛽(𝑋𝑡 − 𝜇𝑖,𝑡)𝑇(𝑋𝑡 − 𝜇𝑖,𝑡) (3.4)

where 𝛼 is defined as the learning rate, which essentially indicates how fast the MoG model
should learn new samples [2]. When 𝑤𝑖,𝑡 is large, the amount (1- 𝑤𝑖,𝑡) is small and 𝑤𝑖,𝑡+1 will
increase less. This assures that no distribution is likely to dominate the whole MoG model and
small-weight distributions can adapt faster in the MoG model if it matches. 𝛽 is the second
learning rate, which is defined as follows

𝛽 = 𝛼 ×
1

�2𝜋𝛿𝑖,𝑡
2

× 𝑒
(𝑋𝑡− 𝜇𝑖,𝑡)
2𝛿𝑖,𝑡

2

It can be seen that 𝛽 involves significant computations, which will take large amount of
hardware resources if directly implemented in hardware. Therefore, in Chapter 3, we modified
the definition of 𝛽 so its computation is much easier as long as the modification does not
significantly sacrifice the algorithm accuracy.

On the other hand, when a match is found, for those distributions that do not match, then the
following equations are used to update the weights, means, and variances as follows

𝑤𝑗,𝑡+1 = (1 − 𝛼)𝑤𝑗,𝑡 (3.5)

𝜇𝑗,𝑡+1 = 𝜇𝑗,𝑡 (3.6)

𝛿𝑗,𝑡+1
2 = 𝛿𝑗,𝑡

2 (3.7)

𝑓𝑜𝑟 𝑗 ≠ 𝑖

Basically, for those distributions, their weights are reduced while their means and variances are
kept the same. Please note that the sum of weights of all Gaussian distributions still equal to 1.0
after updates from equations (3.2) and (3.7).

9

If the new pixel sample does not match any of the distributions in the current MoG model of that
pixel, then a new distribution with mean equal to the sample value and an initialized standard
deviation is created. The weight of the new distribution will be that of the lowest-weight
distribution currently in the MoG model. Also, this new distribution will replace that lowest-
weight distribution such that the number of Gaussian distribution remains constant. The update
can be described as follows

𝑤𝑛𝑒𝑤,𝑡+1 = min (𝑤1,𝑡, 𝑤2,𝑡, … , 𝑤𝐾,𝑡) (3.8)

𝜇𝑛𝑒𝑤,𝑡+1 = 𝑋𝑡 (3.9)

𝛿𝑛𝑒𝑤,𝑡+1
2 = 25 (3.10)

where K stands for the total number of Gaussian distributions, say 3 or 5. Usually, all the
Gaussian distributions in the MoG model are assorted in an ascending order, such that 𝑤1,𝑡 in
equation (3.8) is the lowest weight. Therefore, the new distribution created with weight 𝑤𝑛𝑒𝑤,𝑡+1
would then become 𝑤1,𝑡. Also note in equation (3.10), the empirical initial variance is set to 25.

As introduced in Chapter 1, a portion of the Gaussian distributions models the background and
the rest models the foreground. The portion of the Gaussian distributions belonging to the
background is defined to be

𝐵 = 𝑎𝑟𝑔𝑚𝑖𝑛𝑏(∑ 𝑤𝑖 > 𝑇𝑏
1) (3.11)

where T, the threshold, is a measure of the minimum portion of the data that could be accounted
for by the background. Once the MoG model is properly updated, the incoming pixel sample is
finally determined as either background or foreground. One case is that there is a match and the
other case is not. In the first case the pixel sample could be declared as background or
foreground and it depends on the Gaussian distribution that has a match with the pixel sample. If
the Gaussian distribution belongs to the background distributions as mentioned above depending
on threshold T and B, then the pixel sample is declared as background. On the other hand, if the
Gaussian distribution belongs to the foreground distributions, then it is foreground. In the other
case that there is no match, the pixel sample is declared as foreground.

2.2 The benefits of the MoG algorithm

There are several main benefits of the MoG algorithm compared to the other video
segmentations algorithms including the motion estimation algorithm that was previously used in
Phase I of the project.

First, the MoG model could be very responsive to fast illumination changes. Depending on the
learn rate, the response rate could be adjusted. Compared to a fixed background model, this is
clearly an advantage of the MoG model in that the background is kept up-to-date, which should
help reduce false detections.

Second, the multiple Gaussian distributions of the MoG algorithm allow multi-mode modeling of
the background. Typically, the number of Gaussian distributions could be between 3 and 6.

10

Suppose there is only a mixture of 3 Gaussian distributions used in a MoG model. Then, 2 of the
3 distributions could be used for background while the other for foreground. This means that a
two-mode background could be accommodated, which is especially advantageous for repeated
shaking or motion of the background. For instance, for the traffic scene captured by a
surveillance camera as shown in Figure 2.1(a), in practice the camera keeps shaking subject to
wind and therefore the image is not stable at all. The effect is that for the same spot in the
image, sometimes it is the true road background while it is the grass at other times, especially
along the road and grass borders. If we used the traditional background subtraction or frame
difference method for vehicle segmentation, it is then highly likely that many false
segmentations would occur. However, using the MoG algorithm, the two modes can be modeled
by two Gaussian distributions, which may both belong to the background distributions. So in the
MoG algorithm, false segmentations would be much reduced since the algorithm “understands”
that a new pixel sample which originates from either the true road background or the grass can
be both considered as background. This is a significant advantage when there is repeated camera
shaking, which is always observed in all videos we received from state and local transportation
departments. Figure 2.1(b) show the number of Gaussian distributions used to model the
background. At each pixel, whiter means more are used to model the background and darker
means less out of a total of 5 Gaussian distributions.

Figure 2.2 gives another example that the background has waving trees. Figure 2.2(a) shows the
image, and (b) shows the number of Gaussian distributions used to model the background pixel-
wise.

It is clear from the two examples that MoG algorithm can model the background in multiple
modes. The multiple scene changes at each pixel caused by camera shaking or background
waving (such as tree leaves, rain, snow, lake/sea surfaces etc) are recorded in the background
distributions and are therefore not identified as false segmentation regions any more.

We show some results from vehicle segmentation. Figure 2.3(a) shows the image frame that has
encountered significant camera shaking with respect to the previous image frame, and Figure
2.3(b) shows segmentation results in traditional background subtraction methods, and finally
Figure 2.3(c) gives segmentation results with the MoG algorithm. It is noted the MoG algorithm
are robust to false detections from camera shaking in comparison to other methods. False
detections are much reduced and most remaining noise in Figure 2.3(c) is salt and pepper noise,
which can be easily removed using median filters.

In our study and practical experiments in Phase I of the project, it was observed that camera
shaking is a very realistic issue that cannot be neglected and the motion estimation algorithm for
vehicle segmentation used in Phase I suffers from this problem, though it gives satisfactory
results when there is little camera jitter. Therefore, in this phase we experimented with the MoG
algorithm of statistical nature and it is shown in this Chapter that it gives satisfactory results even
in case of repeated camera shaking.

11

(a) (b)

Figure 2.1. (a) A partial roundabout traffic scene captured by a nearby surveillance
camera; (b) Number of Gaussian distributions used to model the background pixel-wise

(whiter means more and darker less).

(a) (b)

Figure 2.2. (a) A scene with waving trees; (b) Number of Gaussian distributions used to
model the background pixel-wise (whiter means more and darker less).

2.3 Summary

In this Chapter, we provide a detailed mathematical description of the MoG algorithm for video
segmentation. Then, we discuss the advantages of the MoG algorithm to allow fast update and
cope with repeated camera shaking. Experiment results have shown that the MoG algorithm is
effective to reduce false segmentations resulting from camera shakings.

12

Figure 2.3. (a) The original image; (b) Segmentation results using traditional background
subtraction methods; (c) Segmentation results using the MoG algorithm.

13

3 Hardware Implementation of MoG

In Chapter 2, we gave a detailed mathematical description of the MoG algorithm for vehicle
segmentation and discussed its benefits, especially its robustness to camera shaking. However,
blindly implementing the original MoG algorithm would takes unreasonable amount of design
time and hardware resources. In this Chapter, we first modify the MoG algorithm to make it
more amenable to hardware implementation considering the design cycle and the amount of
hardware resources. When modifying the MoG algorithm, it was kept in mind that a good
tradeoff between computation complexity and accuracy is the goal. As discussed in Chapter 1,
the MoG algorithm does seem to provide the qualitatively best tradeoff among several video
segmentation algorithms. After modification, we then present the hardware implementation of
each major processing step of the modified MoG algorithm in detail, followed by the SoC
implementation of the vehicle segmentation system. A prototype vehicle detection system built
upon the MoG algorithm based vehicle segmentation system is also designed. Finally,
experiment results of the vehicle detection system are shown.

3.1 Modification of the MoG algorithm

To translate the MoG algorithm into hardware with reasonable amount of design cycle and
hardware resources, it is necessary to do some modification of the original algorithm. The
modified algorithm should have almost the same segmentation performance as the original one,
but be more suitable to hardware implementation. A pseudocode of the modified algorithm is
show as follows,

================== Step 1.==================

for 𝑖 = 1 𝑡𝑜 𝐾
 𝑡(𝑖) = (𝜇𝑖 − 𝑋𝑡)2 − 𝐽2𝛿𝑖 2;

================== Step 2.==================

𝐹𝑖𝑛𝑑 𝑡ℎ𝑒 𝑚𝑖𝑛𝑖𝑚𝑢𝑚 𝑡(𝑖), 𝑑𝑒𝑓𝑖𝑛𝑒 𝑟 = arg min[𝑡(𝑖)] ;
𝑖𝑓 (𝑡(𝑟) > 0)
 𝑚𝑎𝑡𝑐ℎ = 0 (𝑛𝑜 𝑚𝑎𝑡𝑐ℎ);
𝑒𝑙𝑠𝑒
 𝑚𝑎𝑡𝑐ℎ = 1 (𝑚𝑎𝑡𝑐ℎ);

================== Step 3.==================

𝑖𝑓 (𝑚𝑎𝑡𝑐ℎ = 0)
 𝜇1 = 𝑋𝑡; 𝛿1 2 = 25;
𝑒𝑙𝑠𝑒

 𝜇𝑟 = 𝜇𝑟 + 𝛽(𝜇𝑟 − 𝑋𝑡);

 𝛿𝑟
2 = 𝛿𝑟

2 + 𝛽[(𝜇𝑟 − 𝑋𝑡)2 − 𝛿𝑟
2];

14

 𝑤𝑟 = 𝑤𝑟 + 𝛼(1 − 𝑤𝑟);

 for 𝑖 = 1 𝑡𝑜 𝐾

 𝑖𝑓 (𝑖 ! = 𝑟)
 𝑤𝑖 = 𝑤𝑖 − 𝛼 𝑤𝑖;

================== Step 4.==================
𝑖𝑓 (𝑚𝑎𝑡𝑐ℎ = 0)
 current pixel is foreground;
𝑒𝑙𝑠𝑒 𝑖𝑓 [𝑟 < (𝐾 − 𝐵)]
 current pixel is foreground;
𝑒𝑙𝑠𝑒
 current pixel is background;

================== Step 5.==================

𝑆𝑜𝑟𝑡 𝑤𝑖 𝑖𝑛 𝑎𝑠𝑐𝑒𝑛𝑑𝑖𝑛𝑔 𝑜𝑟𝑑𝑒𝑟;
𝐵 = 0; 𝑆𝑢𝑚𝑤 = 0; 𝑖 = 𝐾 − 1;
𝑊ℎ𝑖𝑙𝑒 (𝑆𝑢𝑚𝑤 < 𝑇)
 𝑆𝑢𝑚𝑤 += 𝑤𝑖−−;
 𝐵 + +;

Two main notes on the modified MoG algorithm are as follows:

• First, note that the second learning rate in step 3, 𝛽, as defined in Chapter 2.1, is simply
taken as a constant in order to save hardware sources.

• Second, all the other computations of the original MoG algorithm are retained in order
not to sacrifice accuracy, except that they are re-formulated for efficiency of hardware
implementation. For example, a division operation for matching using confidence
intervals (as defined in Chapter 2.1) in step 1 and 2 is preferred to be replaced by
multiplication and subtraction to save design cycle and hardware resources. Compared to
the hardware modification in [21] with simplified the parameter updates in step 3, the
proposed modified version is more close to the original MoG algorithm and less sacrifice
on accuracy is expected.

3.2 Hardware implementation of the MoG algorithm

After proper modification of the original MoG algorithm, the modified version can now be used
for hardware implementation. We show the detailed hardware implementation of each major
processing step of the modified algorithm in this Section.

The proposed hardware implementation of the modified MoG algorithm with three mixtures for
a grayscale image is shown in Figure 3.1 (we will explain why we use three mixtures and a
grayscale image in Section 3.3). The registers 𝐽2, 𝛼, 𝛽, and T are used to store the global
algorithm parameters, and the blocks labeled Step1 to Step5 in Figure 3.1 are the hardware
implementations of the modified MoG algorithm presented in the previous subsection. Their

15

detailed circuits can be found in Figure 3.2 to Figure 3.6 respectively. Note that in the captions
of each Figure, the number of pipelines means the number of clock cycles the circuit takes to get
the output from the input. The corresponding pseudocode presented in the previous section
explains what computations these circuits do.

Such a hardware implementation of the modified MoG algorithm can be then used as an IP and
be integrated in an SoC hardware platform to allow build-up of a complete system, such as a
vehicle detection system or a vehicle tracking system. This is discussed in the next Section.

Figure 3.1. Overall architecture of the MoG IP.

Figure 3.2. Circuits in step 1 (3-stage pipeline).

16

Figure 3.3. Circuits in step 2 (6-stage pipeline).

Figure 3.4. Circuits in step 3 (5-stage pipeline).

17

Figure 3.5. Circuits in step 4 (4-stage pipeline).

Figure 3.6. Circuits in step 5 (3-stage pipeline).

3.3 The SoC architecture

To integrate designed MoG IP into an SoC architecture, we need to use standard interfaces of the
SoC platform. Since our hardware platform is based on Xilinx Spartan3A-DSP FPGA, we need
to use three groups of interfaces. The first one is the video bus interface [22], which are used for
incoming pixels and segmentation results (refer to Figure 3.1). The second one is the Processor
Local Bus (PLB) interface [24], which connects the registers 𝐽2, 𝛼, 𝛽, and T (as shown in Figure
3.1) to the Xilinx MCU MicroBlaze [25]. The third one is the Video Frame Buffer Controller
(VFBC) bus interface [26], which connects the MoG IP to Xilinx multi-port memory controller

18

(MPMC) [26] to read the model parameters (VFBC In in Figure 3.1) and update the model
parameters (VFBC Out in Figure 3.1). The overall SoC architecture is shown in Figure 3.7. All
the IPs except the designed MoG IP are Xilinx's products, and are available from Xilinx. For
more detailed information about these IPs, please see [22].

We use 8 bits for each register in the MoG IP. The bit width of the VFBC bus is set to 64, which
is the maximum bit width of the bus. These 64 bits are assigned for the parameters of a MoG
model of each pixel as follows. 8 bits are for the mean parameter 𝜇 of each mixture in the
model, and 8 bits for the variance parameter 𝛿2 of each mixture in the model. All of these bits
are used for integer part and no fraction part is used for the mean parameter or the variance
parameter. 4 bits are for the weight parameter 𝑤 of each mixture in the model. All of these bits
are used for fraction part and no integer part is used for the weight parameter. As a result, for the
three-mixture Gaussian model, 3 × (8 + 8 + 4) = 60 bits are used to store the mean, variance,
and weight parameters. The last 4 bits of the VFBC bus are used for the parameter B. This
explains that why we have used a three-mixture Gaussian model for a grayscale image as
mentioned in Section 3.2. Note, if we used more mixtures or a color image, then the number of
required bandwidth (or total number of bits to store the MoG parameters) would significantly
increase and to accommodate it takes the VFBC bus more than one clock cycle to read in and
store the MoG parameters, which would then slow down the processing of the MoG IP and
eventually reduce the frame rate of vehicle segmentation. For example, using 5 mixtures for a
color image (with Red, Green and Blue), the total number of bits is 3 × 5 × (8 + 8) + 5 × 4 +
4 = 264, which needs at least 5 clock cycles to read in and store them.

Next, we compute the required memory space to store all MoG parameters for a three-mixture
Gaussian model and a grayscale image. For a typical 640×480 image, the required memory
space is then 640×480×64 =2.35 Mega Bytes memory.

Figure 3.7. SoC architecture of the proposed design.

19

The proposed SoC design works under three clock domains. The components connected to PLB
work under the 62.5MHz clock domain. The components connected to Video Bus and VFBC
work under the 25MHz clock domain. The DDR2 SRAM (not shown in Figure 3.7) connected
to MPMC work under the 125MHz clock domain. Some components connected both to PLB
and Video Bus, such as Camera Processing and the MoG IP, have two clock domains. MPMC is
the only component which works under all of the three clock domains.

The main advantage of this SoC architecture is that most of the components are connected to
MicroBlaze via PLB. These components can communicate with each other via MicroBlaze,
which makes the system very flexible. For example, if we want to control or reset the learning
rate 𝛼 of the MoG IP via UART, we can send commands to UART first. Then UART will send
these commands to MicroBlaze via PLB. Once MicroBlaze gets these commands, it will
configure the value of register 𝛼 to the desired one via PLB. This process is independent from
the video processing, which means that the configuration process can be performed on-line. In
the MoG IP, the configurable parameters are 𝐽2, learning rate 𝛼 and 𝛽, and the threshold T.
Users can configure these parameters on-line to most ideal values by an experiment approach.
This is also a significant advantage compared to the implementation in [21] as it lacks flexibility
of parameter control.

3.4 Experiment and performance analysis

The proposed design has been implemented and verified in Xilinx Spartan-3A DSP FPGA Video
Starter Kit [22]. Design report from Xilinx ISE shows that the critical path delay of the proposed
design is 7.766ns. The overall design takes 14k Slices, 12k Slice Flip Flops, 15k 4-Input LUTs,
77 BRAMs, 11 DSP48As, and 2 DCMs. The FPGA design summary is shown in Table 3.1. The
hardware complexity of different blocks in the system is shown in Table 3.2. The system's
parameters are shown in Table 3.3. This system can process one pixel per clock cycle due to the
pipeline structure. If the video's resolution is 640×480, it can support up to

25 × 106

640 × 480
= 81 𝑓𝑝𝑠

where 25 × 106 refers to the main clock frequency in the SoC implementation and 640 × 480
the total number of pixels. The throughput in Table 3.3 is computed by multiplying the Video
Bus clock frequency and the bit width of the memory bus. In our design, we use 64 bits to store
the 3-mixtures Gaussian model, and 8 bits for the input image. Thus the bit width of the memory
bus is totally 72 bits, and the throughput is

25 × 106 × 72

1024 × 1024 × 8
= 214 𝑀𝑒𝑔𝑎 𝐵𝑦𝑡𝑒𝑠

20

Table 3.1. Design summary.

Logic Number of used Utilization
Slice Flip Flops 12,410 26%
4-input LUTs 15,921 33%

Occupied Slices 14,265 60%
DCMs 2 25%

BRAMs 77 61%
DSP48As 11 8%

Table 3.2. Hardware complexity of different blocks.

Logic Block Flip Flops 4-input LUTs BRAMs
Camera In 10 0 0

Camera Processing 992 1073 3
Gamma 95 62 3
MPMC 7040 7933 43
DVI out 29 1 0
UART 146 134 0

I2C 382 494 0
MicroBlaze 1676 2639 4

MoG IP 1278 2481 0

Figure 3.8 shows the segmentation results for a pre-recorded video of a practical traffic scene, a
roundabout located in Cottage Grove, Washington County, Minnesota. For comparison purpose,
the segmentation results from the hardware implementation are shown together with those from
the original software implementation for 10 consecutive image frames. It can be seen that they
are very comparable. In general, the segmentation results from the software implementation has
less noise due to the original algorithm and some additional processing steps while the hardware
implementation runs the modified algorithm with a small sacrifice of quality. In fact, it is noted
that the segmented vehicles from the hardware approach are more solid than those from the
software approach, and this is due to additional processing steps performed in the software
implementation other than the original MoG algorithm.

It is also important to note that camera shaking is not a major concern anymore for the MoG
algorithm compared to traditional background subtraction algorithms. All the 10 images
encountered constant camera shaking, but the segmentation results in most cases do not suffer
much from that (except that first one) due to the multi-mode modeling capability of the MoG
algorithm discussed in Chapter 2.2.

21

22

Figure 3.8. Segmentation results for a practical traffic scene (𝜶= 𝜷 = 0.0625). left: the
original image, middle: the segmentation results from the hardware implementation, right:

the segmentation results from the software implementation.

23

Another sample output of the video segmentation system in an office setting is shown in Figure
3.9. It can be seen that the moving object, the person in this case, is clearly identifiable in spite
of incomplete detection in the sense that the body part is not segmented as foreground.

Finally, we made a comparison of the proposed design with the one proposed by Jiang et al [21].
The results are shown in Table 3.4. Note that the theoretically maximum frame rate of our
design is 81fps for the image resolution 640×480, which is much higher than the one proposed
by Jiang et al [21]. This is mainly because our hardware design uses totally 21-stage pipeline,
which has much shorter critical path than the one proposed by Jiang et al [21]. Basically, the two
systems have almost the same performance. Our system consumes more hardware resources
than [21]. However, our system is more flexible than that in [21] at the expense of more
hardware resources. For further development work such as video surveillance, object detection,
and object tracking, our system is a more flexible platform due to the SoC architecture.

Figure 3.9. Segmentation result (= = 0.0625). 𝜶 𝜷

Table 3.3. System parameters.

Resolution 640 ×480
Throughput 214 MB/s
Frame rate 30 fps

No. of Gaussians 3
PLB clock frequency 62.5 MHz

Video bus clock frequency 25 MHz
DDR2 clock frequency 125 MHz

24

Table 3.4. System comparison with [21].

 Jiang et. al [21] The proposed design
No. of Slices 6,107 14,625

No. of Flip Flops 4,273 12,410
No. DCMs 5 2

No. of BRAMs 84 77
Resolution 640 × 480 640 × 480
Frame rate 25 fps 30 fps
Throughput 170 MB/s 214 MB/s

No. of Gaussians 3 3

3.5 A prototype vehicle detection system

So far in this Chapter, we have presented in detail how to implement the MoG algorithm based
vehicle segmentation system in hardware. A complete vehicle detection system would
incorporate several major components, including the camera-based imaging module, a vehicle
segmentation system, a vehicle identification module and finally a message transfer module. In
general, the vehicle segmentation system is the core of the overall vehicle detection system.

Finally, we show a developed prototype vehicle detection system with the MoG based vehicle
segmentation system as the core. Figure 3.10 shows the complete system in a laboratory setting.
The camera is used to capture images in real-time, which are then sent to the FPGA hardware
which implements both the MoG-based vehicle segmentation system and the vehicle
identification module. Note that vehicle identification itself is an important task as well and
there are many algorithms proposed for object identification, such as the connected-component
algorithm [1]. However, in our prototype system, we used the simple foreground-pixel counting
based algorithm. This algorithm works as follows. First, given the camera view, a certain region
is pre-selected and such a location could be places which need to be monitored, for instance, a
region around the vehicle stops in an intersection. Second, for each image frame, the number of
foreground pixels in the selected region is simply counted. If there are enough foreground
pixels, then it is declared that a vehicle is present and in this case the detection result or signal is
true. Otherwise no vehicle is detected. Finally, the detection result is sent through wired or
wireless methods to a nearby message sign to alert drivers. In Figure 3.10, a wireless transmitter
and receiver are used to send and receive the signal. The shown message sign is a solar-powered
portable one with flashing lights and the warning message can be customized [27].

In the laboratory setting, we tested the prototype system. We played a pre-recorded video in one
computer and let the camera focus on the screen and capture images in real-time (30fps). Then,
the detection results were shown in another computer monitor (we used the computer monitor to
emulate a practical message sign in the lab). The prototype system was validated with a few
testing.

The compete vehicle detection system has been applied to facilitate vehicle merging in the
laboratory. Figure 3.11 (one top view and one side view) shows the picture of two cases of two
merging ramps (at Route 53 and I-35 in Duluth MN). The two merging ramps are shown in red
and they eventually merge to one lane road. However, due to concrete walls between the two

25

ramps, drivers on one ramp are usually not aware of drivers on the other ramp, which are likely
to cause and actually have caused accidents according to District I office of Mn/DOT, despite a
yielding sign at one ramp. One application of the prototype vehicle detection system would then
be to monitor the two ramps (for example as shown in the bottom figure of Figure 3.11) and
issue warning if there are merging vehicles from both ramps. To test the system in the
laboratory, again, a pre-recorded video of the merging ramps were played in one computer and
the prototype vehicle detection system computed the detection results which were transmitted to
be displayed in another computer. The prototype system had shown to be working in most cases,
except when there are extremely large camera displacements. Note that one most important
performance parameter in this case is the response time (the time delay between image capture
and detection result display), which is preferred to be as small as possible in that a large delay
would carry more risk of vehicle collision from vehicle merging. Our frame rate of the vehicle
detection system is currently at 30fps and it was estimated that the response time is about 0.033
second. Within such a time delay, the vehicle would have traveled by less than 0.44 meter for a
vehicle speed of 30 miles per hour (mph) or less than 0.6 meter of 40mph. We believe that such
figures give some safety margins for vehicle merging.

Figure 3.10. The prototype of the vehicle detection system.

3.6 Summary

In this Chapter, we first discuss how we modify the original MoG algorithm to allow efficient
hardware implementation. Then, we present the implementation of a MoG IP for the modified
MoG algorithm and the detailed circuit implementation for each processing step. We
subsequently show the SoC architecture for implementation of the overall MoG-based vehicle
segmentation system. Experiments of a lab scene and practical traffic scenes on the SoC
architecture were performed and the results were satisfying. Finally, on the basis of the MoG-
based vehicle segmentation system, we further developed a prototype real-time vehicle detection
system by incorporating a vehicle identification module based on a simple foreground-pixel
counting based algorithm and signal transfer interface based on a set of wireless transmitters and
receivers. Such a prototype real-time vehicle detection system has been applied to facilitate
vehicle merging for a practical traffic scene in the laboratory environments.

26

Google Maps - ©2012 Google

Figure 3.11. Top view and side view of the traffic scene where the vehicle detection system
is applied to facilitate vehicle merging (the camera in the side view of the image shows the

hypothesized location of installation).

27

4 Summary, Conclusion and Discussion

In this project, our main research task is to come up with a hardware implementation of the MoG
algorithm and the corresponding SoC architecture for the MoG-based vehicle segmentation
system to be applied in real-time vehicle detection systems. We first gave an introduction in
Chapter 1 on the background of the project and why we had switched the vehicle segmentation
algorithm from motion estimation in Phase I to MoG in Phase II. The capability of the MoG
algorithm to cope with repeated camera shaking is a major advantage in that practical cameras
always suffer from shaking due to wind. In Chapter 2 of the report, we explained in detail how
the MoG algorithm segments vehicles and showed that it can help address camera shaking as
validated with experimental results. In Chapter 3, we presented in detail the hardware
implementation of the MoG algorithm and the overall SoC architecture for MoG-based vehicle
segmentation system that allows online reconfiguration of some algorithm parameters that could
affect segmentation quality. We showed experiment results of the vehicle segmentation system
and evaluated its performance. We also compared the proposed hardware implementation of the
MoG-based vehicle segmentation system to a state-of-the-art design reported in recent literature
and showed that our design is competitive.

The main benefit of the project is that a hardware-based vehicle segmentation system and a
vehicle detection system can provide a significant speed advantage compared to the traditional
software-based vehicle detection system using computers. Such an advantage is very important
in a few ways. First, time critical applications like security warning, vehicle collision warning,
etc., require very fast response time, and the proposed hardware-based vehicle detection system
has a very small delay from image capture to detection results. Second, such a hardware-based
vehicle detection system is the first component of a complete video-based vehicle tracking
system. Due to the small delay in processing the image, the hardware-based vehicle tracking
system would have a much higher frame rate and a higher frame rate implies more tracking
accuracy which leads to more accurate traffic data collection.

Regarding the hardware implementation of the MoG-based vehicle segmentation system, the
main contribution of the proposed design is that the SoC architecture makes the system more
flexible to adapt to different environments and makes it easier to develop other video processing
IPs for applications such as video surveillance, object detection, and object tracking. The
proposed design can support VGA resolution (640×480) at 30fps in real-time under 25MHz
clock frequency. The maximum frame rate is 81fps.

Future work is planned as follows:

• Improvement of the prototype vehicle detection system.
The focus of this project is hardware implementation of the vehicle segmentation system,
which is the core of the complete vehicle detection system. Currently, the vehicle
identification module is implemented using a simple foreground-pixel counting based
scheme and this module can be improved for automated detection instead of manual
specification of an interested region in the image. Also, the system can be integrated
with a real variable message sign.

• Development of a complete hardware-based vehicle tracking system.

28

We demonstrated a hardware-based prototype vehicle detection system in this project
built upon a vehicle segmentation system. In many ITS applications, especially those
that require video-based traffic data collection, a complete vehicle tracking system is
needed and the vehicle detection system is part of it. If a hardware-based implementation
for the complete vehicle tracking system is necessary, which will allow very high-frame-
rate vehicle tracking and significantly improve the accuracy of vehicle tracking and hence
accuracy of traffic data collection, then the vehicle tracking algorithm needs to be
implemented in hardware as well. Depending on the complexity of the vehicle tracking
algorithm, this may be a very time-consuming task.

 Exploration of the new computer powers with graphical processing units (GPU).
Recent advances in GPU has made personal computers more powerful than before and
GPU-based computing has become more and more popular, especially in scientific and
engineering applications involving computation-intensive operations. If vehicle
segmentation and in general vehicle tracking is implemented on computers with GPU, the
performance could be much improved and real-time, high-frame-rate vehicle detection is
then possible. Note that a computer-based implementation of the vehicle detection
system is a software approach as we discussed in Chapter 1, and the software approach
does provide superior flexibility. Therefore, in the future, such a possibility of using
GPU-based computers for implementation of a vehicle detection system and tracking
system may be explored.

29

References

1. H. Tang, Development of a New Tracking System based on CMOS Vision Processor
Hardware: Phase I, Final report, CTS 09-04, 2009, Center for Transportation Studies,
University of Minnesota, Minneapolis, MN.

2. C. Stauffer, W. E. L. Grimson, “Adaptive background mixture models for real-time
tracking,” Proceedings of IEEE Conference on Computer Vision and Pattern
Recognition, vol. 2, June 1999, Ft. Collins, CO, pp. 246-252.

3. S. Chien, S. Ma, L. Chen, “Efficient moving object segmentation algorithm using
background registration technique,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 12, no. 7, pp. 577-586, 2002.

4. D. A. Migliore, M. Matteucci, M. Naccari, “View-based detection and analysis of
periodic motion,” Proceedings of the 4th ACM International Workshop on Video
Surveillance and Sensor Networks, October 2006, Santa Barbara, CA, pp. 215-218.

5. J. Moon, D. Kim, and R. Park, “Video matting based on background estimation,”
Proceedings of the World Academy of Science, Engineering and Technology, vol. 2,
January 2005, pp. 152-155.

6. Q. Zhang, R. Klette, “Robust background subtraction and maintenance,” Proceedings of
the 17th International Conference on Pattern Recognition, August 2004, Cambridge,
U.K., pp. 90-93.

7. R. Cutler, L. Davis, “View-based detection and analysis of periodic motion,”
Proceedings of the 14th International Conference on Pattern Recognition, August 1998,
Brisbane, Australia, pp. 495-500.

8. B. Lo, S. Velastin, “Automatic congestion detection system for underground platforms,”
Proceedings of the International Symposium on Intelligent Multimedia, Video Speech
Processing, May 2001, Hong Kong, pp. 158-161.

9. F. Porikli, “Multiplicative background-foreground estimation under uncontrolled
illumination using intrinsic images,” Proceedings of the IEEE Workshop Motion Video
Computing (WACV/MOTION’05), January 2005, Breckenridge, CO, pp. 20-25.

10. S. Haykin, Adaptive Filter Theory, 4th edition, 2001, Prentice-Hall, Upper Saddle River,
NJ.

11. J. Zhong, S. Sclaroff, “Segmenting foreground objects from a dynamic textured
background via a robust Kalman filter,” Proceedings of the International Conference on
Computer Vision, October 2003, Nice, France, pp. 44-50.

12. S. Messelodi, C. M. Modena, N. Segata, M. Zanin, “A Kalman filter based background
updating algorithm robust to sharp illumination changes,” Proceedings of the 13th
International Conference on Image Analysis Processing, 2005, Cagliari, Italy, pp. 163-
170.

13. C. Ridder, O. Munkelt, H. Kirchner, “Adaptive background estimation and foreground
detection using Kalman-filtering,” Proceedings of the International Conference on
Recent Advances in Mechatronics, 1995, Istanbul, Turkey, pp. 193-199.

30

14. O. Javed, K. Shafique, M. Shah, “A hierarchical approach to robust background
subtraction using color and gradient information,” Proceedings of the Workshop Motion
Video Computing, 2002, Orlando, FL, pp. 22-27.

15. L. Li, W. Huang, I. Y. H. Gu, Q. Tian, “Foreground object detection in changing
background based on color co-occurrence statistics,” Proceedings of the 6th IEEE
Workshop on Applications of Computer Vision, Orlando, FL, 2002, pp. 269-274.

16. M. Harville, G. Gordon, J. Woodfill, “Adaptive video background modeling using color
and depth,” Proceedings of the IEEE International Conference on Image Processing,
October 2001, Thessaloniki, Greece, pp. 90-93.

17. Y. Zhang, Z. Liang, Z. Hou, H. Wang, M. Tan, “An adaptive mixture Gaussian
background model with online background reconstruction and adjustable foreground
mergence time for motion segmentation,” Proceedings of the IEEE International
Conference Industrial Technology, December 2005, Hong Kong, pp. 23-27.

18. H. Wang, D. Suter, “A re-evaluation of mixture-of-Gaussian back-ground modeling,”
Proceedings of the IEEE International Conference on Acoustics, Speech, Signal
Processing, March 2005, Philadelphia, PA, pp. 1017-1020.

19. Y. Xu, D. Xu, Y. Liu, A. Wu, “Illumination invariant motion estimation for video
segmentation,” Proceedings of the IEEE International Conference on Acoustics, Speech,
Signal Processing, May 2004, Quebec, Canada, pp. 737-740.

20. A. Elgammal, D. Harwood, L. Davis, “Non-parametric model for background
subtraction,” Proceedings of the European Conference on Computer Vision (ECCV),
2000, Dublin, Ireland, pp. 751-767.

21. H. Jiang, H. Ardo, V. Owall, “A hardware architecture for real-time video segmentation
utilizing memory reduction techniques,” IEEE Transactions on Circuits and Systems for
Video Technology, vol. 19, no. 2, pp. 226-236, 2009.

22. “Spartan-3A DSP FPGA video starter kit user guide,” 2008, Xilinx, Inc., San Jose, CA.

23. I. Pavlidis, V. Morellas, P. Tsiamyrtzis, S. Harp, “Urban Surveillance Systems: From the
Laboratory to the Commercial World,” Proceedings of IEEE, vol. 89, no. 10, pp. 1478-
1497, 2001.

24. “Processor Local Bus (PLB) v4.6 (v1.04a) - Product Specification,” 2009, Xilinx, Inc.,
San Jose, CA.

25. “Microblaze processor reference guide,” 2009, Xilinx, Inc., San Jose, CA.

26. “Multi-port memory controller (MPMC) (v5.04.a) - Product Specification,” 2009, Xilinx,
Inc., San Jose, CA.

27. “Custom BlinkerSign,” 2011, Traffic & Parking Control Co., Inc., Brown Deer, WI.

	Technical Report Documentation Page
	Executive Summary
	1 Introduction
	1.1 MoG
	1.2 Hardware implementation of MoG
	1.3 Summary

	2 Mixture of Gaussian for Video Segmentation
	2.1 The MoG algorithm
	2.2 The benefits of the MoG algorithm
	2.3 Summary

	3 Hardware Implementation of MoG
	3.1 Modification of the MoG algorithm
	3.2 Hardware implementation of the MoG algorithm
	3.3 The SoC architecture
	3.4 Experiment and performance analysis
	3.5 A prototype vehicle detection system
	3.6 Summary

	4 Summary, Conclusion and Discussion
	References

