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Abstract

This thesis deals with three problems arising from branching random walks.

The first problem studies the leftmost path (compared with the leftmost particle)

of branching random walks. Let T denote a rooted b-ary tree and let {Sv}v∈T denote a

branching random walk indexed by the vertices of the tree, where the increments are i.i.d.

and possess a logarithmic moment generating function Λ(⋅). Let mn denote the mini-

mum of the variables Sv over all vertices at the nth generation, denoted by Dn. Under

mild conditions, mn/n converges almost surely to a constant, which for convenience may

be taken to be 0. With S̄v = max{Sw : w is on the geodesic connecting the root to v},
define Ln = minv∈Dn S̄v. We prove that Ln/n

1/3 converges almost surely to an explicit

constant l0.

The second problem studies the tightness of maxima (the displacement of the right-

most particle) of generalized branching random walks on the real line R that allow time

dependence and local dependence between siblings. At time n, Fn(⋅) is used to denote

the distribution function of the maximum. Under appropriate tail assumptions on the

branching laws and offspring displacement distributions, we prove that Fn(⋅−Med(Fn))

is tight in n. The main part of the argument is to demonstrate the exponential decay

of the right tail 1− Fn(⋅ −Med(Fn)).

The third problem studies the maximum of branching random walks in a class of

time inhomogeneous environments. Specifically, binary branching random walks with

Gaussian increments will be considered, where the variances of the increments change

over time macroscopically. We find the asymptotics of the maximum up to an OP (1)

(stochastically bounded) error, and focus on the following phenomena: the profile of the

variance matters, both to the leading (velocity) term and to the logarithmic correction

term, and the latter exhibits a phase transition.
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Chapter 1

Introduction

This thesis studies some properties of branching random walks (BRWs) in dimension

1. In Chapter 1, we introduce the model of branching random walks and other related

models, among which are branching Brownian motion (BBM), independent random

walks and random walks in random environments on trees. These different models are

introduced for the following reasons. The branching Brownian motion is a continuous

time version of branching random walk, so many methods to study these two models can

be borrowed from each other. Independent random walks can serve as a starting point in

understanding branching random walks and as a comparison benchmark. Specifically,

understanding the difference between BRWs and the model of independent random

walks is the key in studying the consistent minimum, see Chapter 2, and the maximum

of BRW in time inhomogeneous environment, see Chapter 4. The connection between

branching random walks and random walks in random environments on trees is less

obvious, and it is part of the background of the topic in Chapter 2.

Also in Chapter 1, we review some known results on the asymptotics and tightness

of the maximal displacement. A short and intuitive discussion is presented. We refer

the rigorous proofs to some existing papers and to Chapters 3 and 4. The methods

discussed in Chapter 1 will be modified and used in the following chapters.

In Chapter 2, we look at the consistent minima of branching random walks. Again

we start from independent random walks and a different result for independent random

walks. Understanding the difference leads us to the desired result on BRWs. Moment

methods and precise large deviation estimates are the main tools in this chapter.

1
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In Chapter 3, we switch to an analytic argument in order to study the tightness

of the maxima of a generalized class of branching random walks, generalizing some

results from [16]. By deriving a recursion from the tree structure and using a Lyapunov

function, we are able to prove the tightness of the maxima of branching random walks,

even when the environments are inhomogeneous with respect to time and particles have

interactions with their siblings.

In Chapter 4, we consider some simple models of branching random walks with two

different laws for the increments. With the help of the tightness result in Chapter 3,

we give an aymptotic expansion of the maxima, which is similar to but different from

the known result for the homogenous case reviewed in Chapter 1. More interesting

is that the results change when we switch the order of the laws of the increments.

These simple models offer insights into the more general time inhomogeneous branching

random walks.

1.1 Branching Random Walks and Related Models

As the name suggests, a BRW can be viewed as a system of particles performing random

walks while branching. We assume, in Chapters 1 and 2, that b ≥ 2 is a deterministic

integer and that G(⋅) is a distribution function on R.1

Definition 1. A one dimensional Branching random walk can be described as fol-

lows. At time 0, a particle is located at 0. Suppose that, at time n, a particle v is

at location Sv. At time n + 1, v dies and gives birth to b offspring. The b offspring

then move to their new locations {Sv +Yv,1, . . . , Sv +Yv,b}, respectively, with increments

independently distributed according to G(⋅). Let Dn be the collection of all the particles

at time n and D = ∪nDn the collection of all the particles at all time. Then, {Sv}v∈D
forms a branching random walk indexed by the particles.

Note that the collection of random variables {Yv,i}v∈D,1≤i≤b are i.i.d. with a common

distribution G(⋅). This model and the results described below easily generalize to the

Galton-Watson setup, that is, we allow a random branching in the model (b is a random

variable with some appropriate distribution on Z+.) For simplicity, we assume b to be

1 The model under this assumption only involves time-homogeneous randomness G(⋅) from the
random walks. Branching random walks under different settings will be studied in Chapters 3 and 4.
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deterministic in Chapter 1, 2 and 4. The results reviewed in Chapter 1 were known

to hold for random b, and the results in Chapter 2 and 4 are believed to be true for

random b but haven’t been checked by the author.

There is another equivalent description of branching random walks via trees.

Definition 1’. A one dimensional Branching random walk can be constructed in

two steps. First, we construct a weighted tree. In particular, starting from a rooted

b-ary tree T = (V,E), where V is the set of vertices and E is the set of edges, we assign

i.i.d. G-distributed random variables Xe to each edge e ∈ E in the tree. Second, for

each vertex v ∈ V , we assign a random variable Sv by summing the random variables

on the edges along the geodesic from the root to v. Then {Sv}v∈V forms a branching

random walk.

Remark {Xe}e∈E in Definition 1’ is the same set as {Yv,i}v∈D,1≤i≤b in Definition

1 with different labeling. Xe is understood as the weight of e, which accrues additively,

and Sv is the accumulated weight of the path from the root to v. If we interpret Xe

as the displacement between the two vertices connected by e, then this fits Definition 1

of branching random walks with Sv denoting the displacement of v with respect to the

root. If we interpret Xe as the time needed to pass the edge e, then Sv is the percolation

time to v from the root.

We introduce some more notation for later use. Let v ∈ Dn denote a particle at

time n. vk denotes the ancestor of v at time k for 0 ≤ k ≤ n, and v < u means that u is

a descendent of v. For any u, v ∈ D, u ∧ v denotes the largest common ancestor of two

particles u and v, and uv denotes the edge connecting u and v if u and v are adjacent

(i.e., there is an edge connecting u and v).

For any fixed v ∈ Dn, Sv =
∑n−1

k=0 Xvkvk+1 is a random walk with increments dis-

tributed according to G(⋅). There are bn particles at time n and therefore, for each n,

{Sv}v∈Dn is a collection of bn random walks with the same distribution. However, the

bn random walks are not independent, which makes the questions on branching random

walks less trivial and more interesting. In fact, for any particles u and v, Su and Sv both

depend on Su∧v, the position of their largest common ancestor. Note that we can get

three independent copies of random walks from this description: Su∧v, Su − Su∧v and

Sv−Su∧v. This kind of independence makes it possible for us to carry out a probabilistic

analysis later in the thesis.
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It is natural to introduce a related model called independent random walks, where

the number of random walks grows exponentially with respect to the number of steps.

Specifically, recall that b ≥ 2 is a deterministic integer and that G(⋅) is a distribution

function on R.

Definition 2. The model of independent random walks of length n is a collection

of bn independent random walks of n steps {Skn}b
n

k=1:

Skn = Xk
1 +Xk

2 + ⋅ ⋅ ⋅+Xk
n, k = 1, 2, . . . , bn, (1.1)

where all the random variables {Xk
i }i=1,...,n; k=1,...,bn are i.i.d. with distribution G(⋅).

The number of independent random walks matches the number of particles of a

branching random walk at time n. But the model of independent random walks as-

sumes complete spatial independence. Not surprisingly, the independence makes many

results for independent random walks trivial, while the analysis of branching random

walks will be more involved, as the dependence between particles of branching random

walks puts additional constraints on the behavior of the walks. In order to prove results

on branching random walks, one can sometimes first guess (often hand-waving) analogs

for independent random walks, and then incorporate the difference between branch-

ing random walks and independent random walks. See Figure 1.1 for a simulation

of branching random walks and independent random walks, and note their obviously

different behaviors.

We conclude this section with two more related models. The first is branching

Brownian motion, a continuous time analog of the branching random walk. 1

Definition 3. Branching Brownian motion is a system of particles performing

Brownian motion while branching. The system starts from one particle at location 0

at time 0. Life lengths for particles are independent exponential(1) random variables.

When a particle dies, it gives birth to b offspring. The offspring then follow b independent

Brownian paths starting from the position of their parent.

Sometimes there is great similarity between properties of branching random walks

and branching brownian motion. Methods can be borrowed from each other. See, for

1 Other continuous models are also studied, for example, for the branching OU process, see Engländer
[27], etc.
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Figure 1.1: Simulations of Branching Random Walks and Independent random Walks.

example, Bramson [14] and Addario-Berry and Reed [1]. But it is also worthwhile to

point out that some branching random walks do not always behave in a similar way as

the branching Brownian motion, even if random walks converge to Brownian motion

according to Donsker’s invariance principle. This is beyond the scope of this thesis, but

one can find more discussions in Bramson [15].

The other model we introduce is random walks in random environments on trees,

which can be defined as follows.

Definition 4. Given a b-ary tree T = (V,E) and i.i.d. random weights ! = {pe}e∈E
associated to each edge e ∈ E, a random walk in random environment on T is a

time-homogeneous Markovian chain Yn taking values in V with transition probabilities

P!(Sn+1 = v∣Sn = u) =

⎧⎨⎩
puv∑

←−w=u puw+1 , if ←−v = u,

1∑
←−w=u puw+1 , if ←−u = v,

0, otherwise,

for each fixed choice of !. Here, for any v ∈ V , ←−v denotes the parent of the node v.

Definition 1’ of branching random walks and Definition 4 of random walks in ran-

dom environments on trees both involve a tree with random weights associated to each

edge. However, the weights in Definition 1’ accrue additively. The weights in Definition
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4 roughly represent the probabilities of a walk following a particular edge, and thus

accrue multiplicatively if we calculate the probability of a walk following a path. Of

course, applying a logarithmic transformation, multiplication can easily be turned into

addition. This heuristic builds a non-rigorous connection between branching random

walks and random walks in random environments on a tree. This connection is part of

the background of Chapter 2. For more rigorous statements and proofs, we refer to Hu

and Shi [47].

1.2 Review of Known Results on Branching RandomWalks

In the model of branching random walks, see Definition 1, one interesting problem is

about the maximum (Mn) and minimum (mn) of the displacement of particles at time

n, i.e., the displacement of the rightmost and leftmost particles at time n:3

ℳn = max
v∈Dn

Sv, (1.2)

and

mn = min
v∈Dn

Sv. (1.3)

The asymptotic behavior of the maximum Mn depends on the distribution of the

increments, G(⋅). In this section, instead of quoting all different known results on

Mn, we focus on the following special one, through which we illustrate intuition and

methods relevant to this thesis. In what follows, for a random variable X, we write

Med(X) = sup{x : P (X ≤ x) ≤ 1
2} for the median of X. For simplicity, we deal with

the Gaussian case.

Theorem 1. In Definition 1, let b = 2 and G(⋅) be a standard normal distribution.

Then the maximum Mn satisfies the following.

(i) The sequence {Mn −Med(Mn)}n is tight;

(ii) Med(Mn) =
√

2 log 2n− 3
2
√

2 log 2
log n+O(1).

Hereinafter O(1) is a generic bounded number, i.e., there exists an R ∈ R such that

O(1) ∈ [−R,R].

3 The properties of maxima and minima are easily translated to each other by multiplying all the
increments by −1.
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This model is exactly the discrete time analog of branching Brownian motion. The

first result of this kind was shown for branching Brownian motion in Bramson [14].

Later, Addario-Berry and Reed [1] gave a more general condition on branching random

walks for such results to hold. In the rest of this section, we explain the heuristics for the

above theorem by comparing branching random walks with independent random walks,

see Definition 2. We also present an approach using a recursion to prove tightness,

which will be generalized in Chapter 3.

1.2.1 Moment Methods

We postpone the argument for part (i) in Theorem 1 to the next subsection. In this

subsection, we will mainly explain the reason why one can expect part (ii) in Theorem 1

to be true (assuming part (i)). Let us begin with the following theorem for independent

random walks.

Theorem 1’. For the model of independent random walks in Definition 2, let b = 2 and

G(⋅) be a standard normal distribution. Then the maximum M ′n = max2n

k=1 S
k
n satisfies

(i) The sequence {M ′n −Med(M ′n)}n is tight;

(ii) Med(M ′n) =
√

2 log 2n− 1
2
√

2 log 2
log n+O(1).

The proof of Theorem 1’ is easy because of the spatial independence of the model.

By Definition 2, {Skn}2
n

k=1 is a collection of independent normal random variables with

mean zero and variance n. Thus,

P (M ′n ≤ x) =
2n∏
k=1

P (Skn ≤ x) =

(
1− 1√

2�n

∫ ∞
x

e−
y2

2ndy

)2n

.

Using the fact that ( 1
x −

1
x3

)e−x
2/2 ≤

∫∞
x e−

y2

2 dy ≤ 1
xe
−x2/2 for x > 0, one can bound

P (M ′n ≤ x) for large x, say x > 100
√
n, as

exp(−c1e
−x

2

2n
−log x√

n
+(log 2)n

) ≤ P (M ′n ≤ x) ≤ exp(−c2e
−x

2

2n
−log x√

n
+(log 2)n

),

where c1 and c2 are positive constants. If x =
√

2 log 2n− 1
2
√

2 log 2
log n+ y, then

−x
2

2n
− log

x√
n

+ (log 2)n = −
(√

2 log 2
)
y + f(n, y),
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where, for each fixed y, f(n, y) → − log
√

2 log 2 as n → ∞. This indicates that the

sequence {M ′n −Med(M ′n)}n is tight and

Med(M ′n) =
√

2 log 2n− 1

2
√

2 log 2
log n+O(1).

This proof does not generalize to a proof of Theorem 1 due to the dependence

between the walks in the BRW model. Therefore, we next describe, in the independent

random walks setup, an alternative proof based on moment methods, which does extend

to branching random walks. Namely, let

N ind
n,y =

2n∑
k=1

1{Skn>
√

2 log 2n− 1
2
√
2 log 2

logn+y} (1.4)

be the number of random walks whose displacement are larger than
√

2 log 2n− 1
2
√

2 log 2
log n+

y at time n. Then, the first moment of N ind
n,y is

EN ind
n,y =

2n∑
k=1

P (Skn >
√

2 log 2n− 1

2
√

2 log 2
log n+ y)

= 2nP (S1
n >

√
2 log 2n− 1

2
√

2 log 2
log n+ y),

from which we can deduce, using standard asymptotics of the normal distribution, that

there exist constants c3, c4 and c5 such that

c3e
−c4y ≤ EN ind

n,y ≤ c5e
−c4y. (1.5)

Using the independence of Skn and Sjn for k ∕= j, one can compute the second moment

of N ind
n,y as follows

E(N ind
n,y )2 = E

2n∑
k,j=1

1{Skn,S
j
n>
√

2 log 2n− 1
2
√
2 log 2

logn+y}

=
2n∑

k ∕=j=1

P (Skn, S
j
n >

√
2 log 2n− 1

2
√

2 log 2
log n+ y)

+

2n∑
k=1

P (Skn >
√

2 log 2n− 1

2
√

2 log 2
log n+ y)

= 2n(2n − 1)

(
P (S1

n >
√

2 log 2n− 1

2
√

2 log 2
log n+ y)

)2

+ EN ind
n,y

= (1− 2−n)(EN ind
n,y )2 + EN ind

n,y . (1.6)
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From (1.5), a first moment method (Chebyshev’s inequality) implies the upper bound,

i.e.,

P (M ′n >
√

2 log 2n− 1

2
√

2 log 2
log n+ y) = P (N ind

n,y ≥ 1) ≤ EN ind
n,y ≤ c5e

−c4y,

which can be made as small as we wish by choosing y large enough. From (1.5) and

(1.6), a second moment method implies the lower bound, i.e.,

P (M ′n >
√

2 log 2n− 1

2
√

2 log 2
log n+ y) = P (N ind

n,y > 0)

≥
(EN ind

n,y )2

E(N ind
n,y )2

=
(EN ind

n,y )2

(1− 2−n)(EN ind
n,y )2 + EN ind

n,y

,

which can be made as close to 1 as possible by choosing n large and y very negative (thus

EN ind
n,y is very large). This completes the proof of Theorem 1’ using moment methods.

To adapt the above argument to branching random walks, one needs to understand

the similarity and difference between the two models in Theorem 1 and Theorem 1’. If

we define

N brw
n,y =

∑
v∈Dn

1{Sv>
√

2 log 2n− 3
2
√
2 log 2

logn+y}, (1.7)

the first moment EN brw
n,y , by a similar estimate as (1.5), will go to ∞ as n→∞, failing

to obtain the right bound.

If we compare the results in Theorem 1 and Theorem 1’, both Mn and M ′n are linear

in n (with the same speed) in the leading order term, and the difference lies in the

second order correction. The similarity in the order n terms comes from the point of

view of large deviations. The difference comes from the different constraints along the

path. As roughly illustrated in Figure 1.2, branching random walks typically do not

fluctuate to the right of the straight line leading to the maximum (see figure 1.2(a))

due to the intricate dependence of the particles, but independent random walks get

enough room on both sides to fluctuate at the intermediate times (see figure 1.2(b)).

This fluctuation difference is because, at any intermediate time, there are less random

walks in branching random walks than in independent random walks. For example, at

time n/2, there are 2n/2 walks (particles) in branching random walks, but there are 2n

walks in independent random walks.

We can modify the set in (1.7) by taking account of the intermediate fluctuation

constraints, and prove Theorem 1 using a ballot theorem. We content ourselves with the
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(a) Branching Random Walk (b) Independent Random
Walks

Figure 1.2: Typical path leading to the maximal displacement. Vertical direction: time;
horizontal direction: Space.

intuition in the above paragraph; more details can be found in the papers by Bramson

[14] and Addario-Berry and Reed [1]. Part of the rigorous proof will be repeated within

the argument in Chapter 4.

More importantly, we will apply similar ideas and methods, as discussed above, in

Chapter 2 and 4 to prove other facts concerning branching random walks.

1.2.2 Recursion

In this subsection, we discuss one method for proving part (i) of Theorem 1. There

are several different methods available to prove tightness, for example, there is a simple

argument by Dekking and Host [20] which can be used to prove tightness combined

with some probability estimates. The method relevant to this thesis is the one used in

Bramson and Zeitouni [16]. This method involves a recursion on Fn(⋅), the distribution

of Mn.

The continuous analog of the recursion is the well-known KPP (Kolmogorov-Petrovsky-

Piscounov) equation. Consider binary branching Brownian motion, see Definition 3 with

b = 2. Let n(t) be the number of particles at time t and let {x1(t), . . . , xn(t)(t)} be the

displacement of those particles, then the maximal displacement at time t is defined as
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M bbm
t = max

n(t)
k=1 xk(t). The distribution of the maximum, u(t, x) = P (M bbm

t ≤ x),

satisfies the initial value problem⎧⎨⎩ut(t, x) =
1

2
uxx(t, x) + u(u− 1),

u(0, x) = 1[0,∞)(x).

(1.8)

This is a special case of the KPP equation. The derivation can be found in Mckean

[64] and Bramson [14], and an analog for branching random walks will be presented

in the next paragraph. KPP equations have been and are still studied extensively in

the field of partial differential equations. A well-known characteristic of the solution

is the traveling wave phenomenon, that is, u(t,m(t) + x) → w(x) as t → ∞ for some

distribution function w(x) and some centering term m(t) =
√

2t − 3
2
√

2
log t + O(1), as

was proved by Bramsom [14].

Let us come back to branching random walks. Recall that Mn is the maximum at

time n and Fn(⋅) is its distribution. Let u and v be the two particles at time 1, then

Mu
n = max{w∈Dn+1,u<w}(Sw −Su) and Mv

n = max{w∈Dn+1,v<w}(Sw −Sv) have the same

distribution as Mn. Thus

Fn+1(x) = P (Mn+1 ≤ x) = P (Su +Mu
n < x, Sv +Mv

n ≤ x)

= (P (Su +Mu
n < x))2 = (G ∗ Fn(x))2 ,

where ∗ means the usual convolution. We can then deduce a recursion on the tail

F̄n(x) = 1− F (x) as

F̄n+1(x) = 1−
(
G ∗ (1− F̄n)(x)

)2
= 1−

(
1−G ∗ F̄n(x)

)2
= Q

(
G ∗ F̄n(x)

)
, (1.9)

where Q(x) = 1 − (1 − x)2 = 2x − x2. Note that F̄0(x) = 1(−∞,0)(x) since M0 = 0.

The idea to prove the tightness is that F̄n is never too flat for any n large, that is, for

fixed � ∈ (0, 1), there exist an � = �(�) > 0, an N and an M such that, if n > N and

F̄n(x−M) ≤ �, then F̄n(x−M) ≥ (1 + �)F̄n(x).

Intuitively, there are two operators in (1.9): the convolution and Q. The convolution

has an effect of flattening F̄n out, but the Q operator makes the curve steep again. To

capture the change of flatness, Bramson and Zeitouni employed a Lyapunov function

L(u) = sup
x:u(x)∈(0,�0]

l(u;x), (1.10)
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where

l(u;x) = log

(
1

u(x)

)
+ logb

(
1 + �1 −

u(x−M)

u(x)

)
+

.

Here, �0, b and �1 are constants chosen to make the argument work, and u : R→ [0, 1]

is a decreasing function with limx→−∞ u(x) = 1 and limx→∞ u(x) = 0. With this

choice of the Lyapunov function, they showed that supn L(F̄n) < ∞, which implied

that F̄n cannot be too flat in the right tail. This, together with some other auxiliary

lemmas, easily showed that F̄n cannot be too flat in the left tail either. Thus, the family

{Mn −Med(Mn)}n is tight.

We will extend the argument above in Chapter 3 to handle the tightness of the

maximal displacement of branching random walks in random medium with local depen-

dences.

1.3 Summary of Results in This Thesis

With the intuition gained on the simplified BRW model from Section 1.2, we now explain

the results in the following three chapters and some of the heuristics in proving the

results. The three chapters are based on three papers (two of which, those from chapters

2 and 4, coauthored with Ofer Zeitouni), and can be read independently. A short

summary of the models and results, without detailed assumptions, is presented below.

We refer the details and precise statements to the introductions of the corresponding

chapters.

In Chapter 2, we study the consistent minimum of the BRW model defined in Def-

inition 1 and Definition 1’. The minimum mn, defined by (1.3), is the displacement

of the leftmost particle at time n. From Theorem 1 in Section 1.2 and the symmetry

between mn and Mn as commented in footnote 3, we know that

lim
n→∞

mn

n
= c, a.s.,

for some constant c. The consistent minimum describes the ‘leftmost’ path up to time

n. To characterize the ‘leftmost’ path, we define

Ln = min
v∈Dn

n
max
k=0

(Svk − ck),

which describes the maximal deviation along the ‘leftmost’ path from mk for k ≤ n.
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From the intuition on the path leading to mn, see Figure 1.2 for the path to Mn,

for some intermediate level k, the particle on that path deviates (to the right) from the

leftmost particle (roughly at ck) by a relatively large distance (at least order n1/2). We

can find other paths, along which the maximal deviation from the leftmost particles

among all intermediate levels is smaller than that along the path leading to mn. The

notation Ln is the minimum of such maximal deviations, and the path achieving Ln is

the ‘leftmost’ path.

Regarding Ln, we prove the following, by understanding the profile of the path

achieving Ln and then applying similar moment methods as in Section 1.2.1 to some

appropriate set of walks.

Theorem in Chapter 2. Under appropriate assumptions on G(⋅), we have

lim
n→∞

Ln

n1/3
= l0, a.s.

for some explicit constant l0.

In Chapter 3, we extend the tightness result (see part (i) in Theorem 1) to a wider

class of branching random walks, where the increments of siblings may depend on each

other and the laws of the branching and increments may vary with respect to time.

Instead of the deterministic constant b and the unique distribution function G(⋅) in

Definition 1, we have a sequence of distributions {pn,k}n≥0,k≥1 on Z+ and a sequence

of distributions {Gn,k(x1, . . . , xk)}n≥0,k≥1 on Rk. A particle at time n independently

gives birth to k offspring with probability pn,k, and the increments of the k offspring

are distributed according to a joint distribution Gn,k(x1, . . . , xk) and independent of

everything else. For m ≤ n, let Mm
n denote the maximum at time n of a BRW starting

from location 0 at time m, Fmn (⋅) the distribution of Mm
n and F̄mn (⋅) = 1−Fmn (⋅). Similar

to (1.9), we have a recursion on F̄mn (⋅): for m < n,

F̄mn (x) = 1−
∞∑
k=1

pm,k

∫
Rk

k∏
i=1

(
1− F̄m+1

n (x− yi)
)
dkGm,k(y1, . . . , yk). (1.11)

The tightness result follows from a modified analysis of the recursion (1.11) based

on Bramson and Zeitouni [16], where they derived the tightness for the recursion (1.9).

The recursion (1.11) can be reduced to recursive inequalities of simpler forms. The
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argument in Bramson and Zeitouni [16], which analyzed the recursion (1.9) and its

pointwise nonlinearity, is adapted to study the recursive inequalities and to handle

some global nonlinearity. We prove

Theorem in Chapter 3. Assume that Gn,k are tight, their marginal distributions have

uniform super-exponential decay right tails, pn,k have uniformly bounded support. Then,

under some additional technical assumptions, the sequence {Mn −Med(Mn)}n is tight.

In Chapter 4, we consider the maximal displacement of BRWs in certain time in-

homogeneous environments. Specifically, in Definition 1, b = 2 (binary branching), and

the increments are still independent but distributed as N(0, �2
1) before time n/2 and

N(0, �2
2) after time n/2, if we consider the model up to time n. The maxima (also

denoted by Mn), re-centered by their medians, are still tight by the result from Chapter

3. Our goal is to characterize the mean of Mn up to an O(1) error. The argument

depends on moment methods and analysis of the best profile leading the maximum. A

large deviation calculation provides a good hint on the difference between the optimal

profiles in the homogeneous and inhomogeneous environments. We obtain the following

Theorem in Chapter 4. The maximum Mn of the BRW in the time inhomogeneous

environment described above satisfies that the sequence {Mn −Med(Mn)}n is tight and

Med(Mn) = (
√

2 log 2�eff)n− �
�eff√
2 log 2

log n+O(1)

for some �eff and �, which change with the different ordering of �2
1 and �2

2 as follows:

(i) when �2
1 < �2

2 (increasing variances), �eff =

√
�2
1+�2

2
2 and � = 1

2 ;

(ii) when �2
1 > �2

2 (decreasing variances), �eff = �1+�2
2 and � = 3.

The homogeneous case (�2
1 = �2

2) corresponds to part (ii) in Theorem 1. An inter-

esting phenomenon here is: the profile of the environments matters, both in the leading

(velocity) term and in the logarithmic correction term, and the latter exhibits a phase

transition in the sense that the logarithmic term is discontinuous as �2
1 → �2

2.



Chapter 2

Consistently Minimal

Displacement of Branching

Random Walks

2.1 Introduction

Recall as in Chapter 1 that a branching random walk is a process describing a particle

performing random walk while branching. In this chapter, we consider the 1-dimensional

case as follows. At time 0, there is one particle at location 0. At time 1, the particle

splits into b particles (b ∈ Z+ deterministic and b ≥ 2 to avoid trivial cases), each of

which moves independently to a new position according to some distribution function

F (x). Then at time 2, each of the b particles splits again into b particles, which again

move independently according to the distribution function F (x). The splitting and

moving continue at each integer time and are independent of each other. This procedure

produces a 1-dimensional branching random walk.

To describe the relation between particles, we associate to each particle a vertex

in a b-ary rooted tree T = {V,E} with root o, where each vertex has b children; V is

the set of vertices in T and E is the set of edges in T. The root o is associated with

the original particle. The b children of a vertex v ∈ V correspond to the b particles

from the splitting of the particle corresponding to v. In particular, the vertices whose

15
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distance from o is n, denoted by Dn, correspond to particles at time n. To describe

the displacement between particles, we assign i.i.d. random variables Xe with common

distribution F (x) to each edge e ∈ E. (Throughout, we let e = uv denote the edge

e connecting two vertices u, v ∈ V .) For each vertex v ∈ V , we use ∣v∣ to denote its

distance from o and use vk to denote the ancestor of v in Dk for any 0 ≤ k ≤ ∣v∣. Then

the positions of particles at time n can be described by {Sv∣v ∈ Dn}, where for v ∈ Dn,

Sv =
∑n−1

i=0 Xvivi+1 .

The limiting behavior of the maximal displacement Mn = maxv∈Dn Sv or the min-

imal displacement mn = minv∈Dn Sv as n → ∞ has been extensively studied in the

literature (See in particular Bramson [14],[15], Addario-Berry and Reed [1], and refer-

ences therein.) Throughout this chapter, we assume that

Ee�Xe <∞ for some � < 0 and some � > 0. (2.1)

Then the Fenchel-Legendre transform of the log-moment generating function Λ(�) =

logEe�Xe ,

Λ∗(x) = sup
�∈R

(�x− Λ(�)), (2.2)

is the large deviation rate function (see [21, Ch. 1,2]) of a random walk with step

distribution F (x). In addition to (2.1), we also assume that, for some �− < 0 and

�+ > 0 in the interior of {� : Λ(�) <∞},

�±Λ′(�±)− Λ(�±) = log b, (2.3)

which implies that Λ∗(Λ′(�±)) = log b. These assumptions imply that

M := lim
n→∞

Mn

n
= Λ′(�+) and m := lim

n→∞

mn

n
= Λ′(�−) a.s. . (2.4)

See [1] for more details on (2.4).

The offset of the branching random walk is defined as the minimal deviation of the

path up to time n from the line leading to mn (roughly, the minimal position at time

n). Explicitly, set

Ln = min
v∈Dn

n
max
k=0

(Svk −mk). (2.5)

(See Figure 2.1 for a pictorial description of L3.) Without loss of generality, subtracting

the deterministic constant Λ′(�−) from each increment {Xe}, we can and will assume
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that

m = Λ′(�−) = 0. (2.6)

Under this assumption, (2.3) and (2.5) simplify to

−Λ(�−) = log b, (2.3′)

Ln = min
v∈Dn

n
max
k=0

Svk . (2.5′)

In the process of studying random walks in random environments on trees, Hu and

v

v1

0
D

0

D
1

D
2

D
3

L
3
=S

v
1

u

u2

Figure 2.1: Figure for L3 when m=0 and b=2

Shi [47] (2007) discovered that the offset has order n1/3 in the following sense: there

exist constants c1, c2 > 0 such that

c1 ≤ lim inf
n→∞

Ln

n1/3
≤ lim sup

n→∞

Ln

n1/3
≤ c2. (2.7)

They raised the question as to whether the limit of Ln/n
1/3 exists. In this note, we

answer this affirmatively and prove the following.

Theorem 2. Under assumption (2.1) and (2.3) and with l0 =
3

√
3�2�2

Q

2∣�−∣ , it holds that

lim
n→∞

Ln

n1/3
= l0 a.s. (2.8)



18

In the expression for l0, �− < 0 by the definition (2.3) and �2
Q is the variance that

will be defined in (2.10).

The proof of the theorem is divided into two parts - the lower bound (2.21) and the

upper bound (2.32). In Section 2, we review a result from Mogul’skii [66], which will

be the key estimate in our proof. In Section 3, we apply a first moment argument (with

some modification) in order to study the minimal positions for intermediate levels with

the restriction that the walks do not exceed ln1/3 for some l > 0 at all time. This yields

the lower bound for Ln. In section 4, we apply a second moment argument to the lower

bound P (Ln ≤ ln1/3) for certain values of l. Compared with standard applications of

the second moment method in related problems, the analysis here requires the control

of second order terms in the large deviation estimates. Truncation of the tree is then

used to get independence and complete the proof of the upper bound.

The offset is determined by a competition between two terms: a displacement term

(whose cost is exponential in the displacement) and an entropy term (reflecting the

difficulty in keeping the walk confined in a narrow tube, and with cost proportional to

the exponent of the time divided by width squared; this is made precise in Theorem

3). Roughly speaking, in a time interval of length Δt and displacement width Δl, the

cost is of the form ec1Δl−c2Δt/(Δl)2 . One then sees that the optimum is achieved at Δl

proportional to (Δt)1/3. This gives the scaling on n1/3 to the displacement. In the

actual proof, when optimizing the cost, a certain curve s(t), see (2.17), emerges. The

curve s(t) reflects the location of the minimal position of intermediate levels, and plays

an important role also in the second moment computation, see a discussion in Section

2.5.1.

2.2 An Auxiliary Estimate: the Absorption Problem for

Random Walk

We derive in this section some estimates for random walk with i.i.d. increments {Xi}i≥1

distributed according to a law P with P ((−∞, x]) = F (x) satisfying (2.1), (2.3) and

(2.6). Define

Sn(t) =
X0 +X1 + ⋅ ⋅ ⋅+Xk

n1/3
for

k

n
≤ t < k + 1

n
, k = 0, 1, . . . , n− 1,
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where X0 = 0. Note that due to (2.6), EXi > 0. Introduce the auxiliary law

dQ

dP
= e�−X1−Λ(�−). (2.9)

Under Q, EQX1 = 0. The variance of X1 under Q is denoted by

�2
Q = EQX

2
1 . (2.10)

In the following estimates, f1(t) and f2(t), which may take the value ±∞, are right-

continuous and piecewise constant functions on [0, 1]. Let G := {(t, g(t)) ∈ R2 : 0 ≤
t ≤ 1, f1(t) < g(t) < f2(t)} be a region in R2 bounded by the graphs of f1(t) and f2(t).

Assume also that G contains the graph of a continuous function.

Theorem 3. (Mogul’skii [66, Theorem 3]) Under the above assumptions,

Q(Sn(⋅) ∈ G) = e−
�2�2Q

2
H2(G)n1/3+o(n1/3), (2.11)

where

H2(G) =

∫ 1

0

1

(f1(t)− f2(t))2
dt. (2.12)

In the following, we will need to control the dependence of the estimate (2.11) on

the starting point.

Corollary 1. With notation and assumptions as in Theorem 3, for any � > 0, there is

a � > 0 such that, for any interval I ⊂ (f1(0), f2(0)) with length ∣I∣ ≤ �, we have

sup
x∈I

Q(x+ Sn(⋅) ∈ G) ≤ e−(
�2�2Q

2
H2(G)−�)n1/3+o(n1/3). (2.13)

Proof Let I = (a, b) and Gx := {(t, y) : 0 ≤ t ≤ 1, f1(t) − x < y < f2(t) − x} be the

shift of G by x. Set G′ = Ga ∪Gb. We have

sup
x∈I

Q(x+ Sn(⋅) ∈ G) = sup
x∈I

Q(Sn(⋅) ∈ Gx) ≤ Q(Sn(⋅) ∈ G′) = e−
�2�2Q

2
H2(G′)n1/3+o(n1/3) .

Since H2(G′) =
∫ 1

0
1

(f2(t)−f1(t)+(b−a))2
dt ↑ H2(G) as ∣I∣ = (b − a) → 0 uniformly in the

position of I, the lemma is proved.
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2.3 Lower Bound

Consider the branching random walk up to level n. In this and the next section, we

estimate the number of particles that stay constantly below ln1/3, i.e.,

N l
n =

∑
v∈Dn

1{S
vk
≤ln1/3 for k=0,1,...,n}. (2.14)

In order to get a lower bound on the offset, we apply a first moment method with a

small modification: while it is natural to just calculate the first moment of N l
n, such a

computation ignores the constraint on the number of particles at level k imposed by the

tree structure. In particular, EN l
n for branching random walks is the same as the one

for bn independent random walks. An easy first and second moment argument shows

that the limit in (2.8) is 0 for bn independent random walks, and thus no useful upper

bound can be derived in this way.

To address this issue, we use a more delicate first moment argument. Namely, we

look at the vertices not only at level n but also at some intermediate levels. Divide the

interval [0, n] into 1/� equidistant levels, with 1/� an integer. Define recursively, for any

� > 0, ⎧⎨⎩ s0 = 0, w0 = l + �;

sk = sk−1 −
�2�2

Q

2�−w2
k−1

�, wk = l + � − sk for k = 1, . . . , 1
� .

(2.15)

For particles staying below ln1/3, sk will be interpreted as values such that the walks

between times k�n and (k+1)�n never go below (sk−�)n1/3, and wkn
1/3 will correspond

to the width of the window Wk = ((sk − �)n1/3, ln1/3) that we allow between level k�n

and (k + 1)�n when considering those walks that do not go below (sk − �)n1/3 or go

above ln1/3.

Before calculating the first moment, consider the recursion (2.15) for sk. Rewrite it

as

sk = sk−1 −
�2�2

Q

2�−(l + � − sk−1)2
�. (2.16)

This is an Euler’s approximation sequence for the solution of the following differential

equation

s′(t) = −
�2�2

Q

2�−(�− s(t))2
, s(0) = 0, (2.17)
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where � = l + �. The above initial value problem has the solution s�(t) = � +

3

√
−3�2�2

Q

2�−
t− �3. Here we find

l0 =
3

√
3�2�2

Q

−2�−
(2.18)

such that sl0(1) = l0.

For any l1 < l0, we can choose � > 0 and l1 +� < l0. In this case, sl1+�(1) > l1 +� >

l1. If we choose such l1 and � in (2.15), it is easy to check that the sequence {sk}
1
�
k=0

will be greater than l1 somewhere in the sequence. Define

K = min{k : sk ≥ l1}. (2.19)

For fixed 
 > 0 small enough, we can choose � small such that

K� < 1− 
. (2.20)

For k < K − 1, let Zk denote the number of vertices v between level k�n and

(k + 1)�n with Sv < (sk − �)n1/3. Denote by ZK−1 the number of vertices w between

level (K − 1)�n and n with Sw < (sK−1 − �)n1/3. Denote by Z the number vertices

v ∈ Dn whose associated walks stay in Wk between level k�n and (k + 1)�n for k < K

and then stay in WK−1 up to level n. Explicitly,

Z0 =

⌊�n⌋∑
i=1

∑
v∈Di

1{Sv<−�n1/3},

Zk =

⌊(k+1)�n⌋∑
i=⌊k�n⌋+1

∑
v∈Di

1{Sv<(sk−�)n1/3, S
vd
∈Wj for j�n≤d≤(j+1)�n and j<k}, 0 < k < K − 1,

ZK−1 =

n∑
i=⌊K�n⌋+1

∑
v∈Di

1{Sv<(sK−1−�)n1/3, S
vd
∈Wj for j�n≤d≤(j+1)�n and j<K−1},

Z =
∑
v∈Dn

1{S
vd
∈Wj for j�n≤d≤(j+1)�n and j<K, S

vd
∈WK−1 for K�n≤d≤n}.

Observe that

N l1
n ≤

K−1∑
k=0

Zk + Z.
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Figure 2.2: The relation between Zk’s and sk’s.

Using Theorem 3, we provide upper bounds for the first moment of Zk and Z.

Starting with Z0, we have

EZ0 =

⌊�n⌋∑
i=1

biE1{Si<−�n1/3} =

⌊�n⌋∑
i=1

biEQe
−�−Si+iΛ(�−)1{Si<−�n1/3}

≤
⌊�n⌋∑
i=1

e�−�n
1/3
EQ1{Si<−�n1/3} ≤

⌊�n⌋∑
i=1

e�−�n
1/3 ≤ e�−�n1/3+o(n1/3),

where we used the change of measure (2.9) in the second equality, and (3′) and the fact

that �− < 0 in the first inequality.

For 0 < k < K − 1, using again the change of measure (2.9), we get

EZk =

⌊(k+1)�n⌋∑
i=⌊k�n⌋+1

biE1{Si<(sk−�)n1/3, Sd∈Wj for j�n≤d≤(j+1)�n and j<k}

=

⌊(k+1)�n⌋∑
i=⌊k�n⌋+1

EQe
−�−Si1{Si<(sk−�)n1/3, Sd∈Wj for j�n≤d≤(j+1)�n and j<k}

≤ e−�−(sk−�)n1/3
⌊(k+1)�n⌋∑
i=⌊k�n⌋+1

EQ1{Si<(sk−�)n1/3, Sd∈Wj for j�n≤d≤(j+1)�n and j<k}.
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Therefore,

EZk ≤ e−�−(sk−�)n1/3
⌊(k+1)�ni⌋∑
i=⌊k�n⌋+1

Q(Sd ∈Wj for j�n ≤ d ≤ (j + 1)�n and j < k)

= e−�−(sk−�)n1/3
⌊(k+1)�n⌋∑
i=⌊k�n⌋+1

e
−

∑k−1
j=0

�2�2Q

2w2
j

�n1/3+o(n1/3)

≤ e
−�−(sk−�)n1/3−

∑k−1
j=0

�2�2Q

2w2
j

�n1/3+o(n1/3)
= e�−�n

1/3+o(n1/3),

where (2.11) with the choice ofG = ∪k−1
j=0

{
[j�, (j + 1)�)×Wj/n

1/3
}
∪{[k�, 1]×(−∞,∞)}

is applied in the first equality, and (2.15) in the second.

The calculation of EZK−1 is almost the same as EZk except that we replace the

summation limits above by (K − 1)�n + 1 and n and that we replace the k in the

summand by K − 1. Thus, we get the same upper bound for EZK−1,

EZK−1 ≤ e�−�n
1/3+o(n1/3).

We estimate EZ similarly as follows. First, use the change of measure (2.9) to get

EZ = bnE1{Sd∈Wj for j�n≤d≤(j+1)�n and j<K, Sd∈WK−1, for K�n≤d≤n}

= EQe
−�−Sn1{Sd∈Wj for j�n≤d≤(j+1)�n and j<K, Sd∈WK−1, for K�n≤d≤n}

≤ e−�−l1n
1/3
EQ1{Sd∈Wj for j�n≤d≤(j+1)�n and j<K, Sd∈WK−1, for K�n≤d≤n}.

Then, applying (2.11) withG = ∪K−1
j=0

{
[j�, (j + 1)�)×Wj/n

1/3
}
∪{[K�, 1]×WK−1/n

1/3}
in the first equality, we get

EZ ≤ e−�−l1n
1/3
EQ1{Sd∈Wj for j�n≤d≤(j+1)�n and j<K, Sd∈WK−1, for K�n≤d≤n}

= e
−�−l1n1/3−

∑K−1
i=0

�2�2Q

2w2
i

�n1/3−
�2�2Q

2w2
K−1

(1−K�)n1/3+o(n1/3)

≤ e
−


�2�2Q

2l21
n1/3+o(n1/3)

,

where the last inequality is obtained by noting that l1 ≤ SK = −
∑K−1

i=0

�2�2
Q

2�−w2
i
� by

(2.19) and (2.15), and then recalling (2.20) and wK−1 < l1.
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In conclusion, we proved that E(
∑K−1

k=0 Zk +Z) ≤ e−c3n1/3+o(n1/3) for some 0 < c3 <

min{−�−�, 

�2�2

Q

2l21
}. Since

∑K−1
k=0 Zk + Z is an integer valued random variable, we have

P (
K−1∑
k=0

Zk + Z > 0) = P (
K−1∑
k=0

Zk + Z ≥ 1) ≤ E(
K−1∑
k=0

Zk + Z) ≤ e−c3n1/3+o(n1/3).

By the Borel-Cantelli lemma, we have
∑K−1

k=0 Zk + Z = 0 a.s. for all large n. So is

N l1
n = 0, which means that Ln > l1n

1/3 a.s. for all large n. Since l1 < l0 is arbitrary,

we conclude that

lim inf
n→∞

Ln

n1/3
≥ l0 a.s.. (2.21)

This completes the proof of the lower bound in Theorem 2.

2.4 Upper Bound

2.4.1 A Second Moment Method Estimate

In this section, we consider any fixed l2 > l0. A second moment argument will provide

a lower bound for the probability that we can find at least one walk which stays in

the interval Wk between level k�n and (k + 1)�n for all k. A truncation (of the tree)

argument will complete the proof of the upper bound.

As a first step, consider the sequence {sk} in (2.15) with l2 > l0. Then for any � > 0,

it is easy to see that sl2+�(t) is increasing and convex for 0 ≤ t ≤ 1. Thus in the Euler’s

approximation (2.16) of the initial value problem (2.17),

s 1
�
< sl2+�(1) < sl2(1) < l2. (2.22)

It follows from (2.15) that

wk ≥ � for all 0 ≤ k ≤ 1

�
− 1. (2.23)

Define Ñ l2
n as follows:

Ñ l2
n =

∑
v∈Dn

1{S
vj
∈Wk, for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1}.

We will apply second moment method to Ñ l2
n . EÑ l2

n is calculated the same way as EZ

in the previous section. But this time we consider G = {∪
1
�
−1

j=0 Wj/n
1/3× [j�, (j+ 1)�)}∪
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{(l2 −Δl2, l2)× {1}} in (2.11) with Δl2 → 0, so

EÑ l2
n = bnE1{Sj∈Wk, for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1}

= EQe
−�−Sn1{Sj∈Wk, for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1}

= e
(−�−l2−

∑ 1
�−1

k=0

�2�2Q

2w2
k

�)n1/3+o(n1/3)
. (2.24)

From (2.22) and the definition (2.15) of sk, −�−l2−
∑ 1

�
−1

k=0

�2�2
Q

2w2
k
� > 0 and thus EÑ l2

n →
∞.

Therefore, we will be ready to apply the second moment method after the following

calculations:

E(Ñ l2
n )2 = E

∑
u,v∈Dn

1{S
uj
,S
vj
∈Wk, for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1}

=
n−1∑
ℎ=0

E
∑

u,v∈Dn
u∧v∈Dℎ

1{S
uj
,S
vj
∈Wk, for k�n≤j≤(k+1)�n, k=0,..., 1

�
−1}

+EÑ l2
n . (2.25)

In the last expression above, u ∧ v is the largest common ancestor of u and v.

Write ℎ = q�n + r for 0 ≤ q ≤ 1
� − 1 and 0 ≤ r < �n. There are b2n−ℎ−1(b − 1)

indices in the second sum in the right side of (2.25). We estimate the probability for

one such pair to stay in Wk’s. In order to simplify the notation, define

p1(0, ℎ, x) = P (Sℎ ∈ dx, Sj ∈Wk, for k�n ≤ j ≤ (k + 1)�n ∧ ℎ, k = 0, . . . , q),

p2(ℎ, x, n, y) = P (Sn ∈ dy, Sj ∈Wk, for ℎ∨ k�n ≤ j ≤ (k+ 1)�n, k = q, . . . , n∣Sℎ = x).

Similarly, define q1(0, ℎ, x) and q2(ℎ, x, n, y) to be the probability of the same events

under Q.

Then, we can write E(Ñ l2
n )2 as

E(Ñ l2
n )2 = EÑ l2

n +
n−1∑
ℎ=0

b2n−ℎ−1(b− 1)

∫
Wq

(∫
Wn

p2(ℎ, x, n, y)dy

)2

p1(0, ℎ, x)dx.
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By a change of measure (2.9), the above quantity is equal to

EÑ l2
n +

n−1∑
ℎ=0

b2n−ℎ−1(b− 1)

∫
Wq

(∫
Wn

e−�−(y−x)+(n−ℎ)Λ(�−)q2(ℎ, x, n, y)dy

)2

⋅e−�−x+ℎΛ(�−)q1(0, ℎ, x)dx

≤ EÑ l2
n +

n−1∑
ℎ=0

b− 1

b
e(−2�−l2+�−(sq−�))n1/3

⋅
∫
Wq

(∫
Wn

q2(ℎ, x, n, y)dy

)2

q1(0, ℎ, x)dx. (2.26)

We now provide an upper bound for the integral term in the right side of (2.26). We

have ∫
Wq

(∫
Wn

q2(ℎ, x, n, y)dy

)2

q1(0, ℎ, x)dx

≤

(
sup
x∈Wq

∫
Wn

q2(ℎ, x, n, y)dy

)2 ∫
Wq

q1(0, ℎ, x)dx.

By Chapman-Kolmogorov equation, the last quantity in the above display can be rewrit-

ten as(
sup
x∈Wq

∫
Wn

∫
Wq+1

q2 (ℎ, x, (q + 1)�n, z) q2 ((q + 1)�n, z, n, y) dzdy

)2 ∫
Wq

q1(0, q�n, x)dx,

which is equal to(
sup
x∈Wq

∫
Wq+1

q2(ℎ, x, (q + 1)�n, z)q2((q + 1)�n, z, n,Wn)dz

)2

e
−

∑q−1
k=0

�2�2Q

2w2
k

n1/3+o(n1/3)
.

Letting ∪iIi = Wq+1 be any covering of Wq+1, then the above quantity is less than or

equal to(
sup
x∈Wq

∑
i

∫
Ii

q2(ℎ, x, (q + 1)�n, z)q2((q + 1)�n, z, n,Wn)dz

)2

e
−

∑q−1
k=0

�2�2Q

2w2
k

n1/3+o(n1/3)

≤

(∑
i

sup
z∈Ii

q2((q + 1)�n, z, n,Wn)

)2

e
−

∑q−1
k=0

�2�2Q

2w2
k

�n1/3+o(n1/3)
.
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Due to (2.13), for any small �1 > 0, we can choose a finite covering of {Ii} and ∣Ii∣ ≤
�1n

1/3 such that for each i,

sup
z∈Ii

q2((q + 1)�n, z, n,Wn) ≤ e
−(

∑ 1
�−1

k=q+1

�2�2Q

2w2
k

�−�1)n1/3+o(n1/3)
.

After splitting
∑n−1

ℎ=0 to
∑ 1

�
−1

q=0

∑�n−1
r=0 in (2.26), we obtain the upper bound for E(Ñ l2

n )2

as follows,

E(Ñ l2
n )2

≤ EÑ l2
n +

1/�−1∑
q=0

e
(−2�−l2+�−(sq−�))n1/3−

∑q−1
k=0

�2�2Q

2w2
k

�n1/3−2(
∑ 1

�−1

k=q+1

�2�2Q

2w2
k

�−�1)n1/3+o(n1/3)

≤
1/�−1∑
q=0

e
(−2�−l2+�−(sq−�))n1/3−

∑q−1
k=0

�2�2Q

2w2
k

�n1/3−2(
∑ 1

�−1

k=q+1

�2�2Q

2w2
k

�−�1)n1/3+o(n1/3)
. (2.27)

With the bounds for EÑ l2
n (2.24) and E(Ñ l2

n )2 (2.27), we have

P (Ñ l2
n > 0) ≥ (EÑ l2

n )2

E(
˜
N l2
n )2
≥ 1∑1/�−1

q=0 e
(�−(sq−�)+

∑q−1
k=0

�2�2
Q

2w2
k

�+2
�2�2

Q

2w2
q
�+2�1)n1/3+o(n1/3)

=
1∑1/�−1

q=0 e
(−�−�+

�2�2
Q

w2
q
�+2�1)n1/3+o(n1/3)

≥ e(�−�−
�2�2Q

�2
�−2�1)n1/3+o(n1/3)

= e−�2n
1/3+o(n1/3), (2.28)

where �2 := −�−�+
�2�2

Q

�2
�+ 2�1, and we use (2.15) in the first equality and wq ≥ � (see

(2.23)) in the last inequality. We can make �2 arbitrarily small by first choosing � small

then choosing � and �1 small. Therefore, we get

P (Ln ≤ l2n1/3) ≥ P (Ñ l2
n > 0) ≥ e−�2n1/3+o(n1/3). (2.29)

2.4.2 A Truncation Argument

In view of the lower bound (2.29), we truncate the tree at level ⌊�3n1/3⌋ = ⌊2�2n1/3/log b⌋
to get b⌊�3n

1/3⌋ ≥ e2�2n1/3
/b independent branching random walks. We take care of the

path before and after level ⌊�3n1/3⌋ separately.
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Define Lvn similarly as Ln for each branching random walk starting from v ∈ D⌊�3n1/3⌋,

i.e., letting z = ⌊�3n1/3⌋,

Lvn = min
u∈Dz+n,uz=v

z+n
max
k=z

(Suk − Sv).

Then

P (Lvn > l2n
1/3 for every v) = (1− P (Ln ≤ l2n1/3))b

⌊�3n
1/3⌋

≤ (1− e−�2n1/3+o(n1/3))e
2�2n

1/3
/b

≤ e−e
�2n

1/3+o(n1/3)
, (2.30)

when n is large. By the Borel-Cantelli lemma, the above double exponential guarantees

that almost surely for all large n, there exists a v ∈ D⌊�3n1/3⌋ such that

Lvn ≤ l2n1/3. (2.31)

This is an upper bound for the deviation of paths after level ⌊�3n1/3⌋. We also need

to control the paths before that level, which is a standard large deviation computation.

Indeed, for q integer (later, we take q = ⌊�3n1/3⌋), set

Z̃q =

q∑
k=1

∑
v∈Dk

1{Sv≥2Mq}.

Recall the definition for M in (2.4). Let Q′ be defined by dQ′

dP = e�+Xe−Λ(�+). We have

EZ̃q =

q∑
k=1

bkE1{Sk≥2Mq} =

q∑
k=1

bkEQ′e
−�+Sk+kΛ(�+)1{Sk≥2Mq}

≤
q∑

k=1

bke−2�+Mq+kΛ(�+)EQ′1{Sk≥2Mq}

≤
q∑

k=1

bke−�+Mk+kΛ(�+)e−�+Mq = e−�+Mq+o(q),

where, in the last equality, we use the definitions of M and �+ (see (2.3) and (2.4)). It

follows that

P (Z̃q ≥ 1) ≤ EZ̃q ≤ e−�+Mq+o(q).

Again by the Borel-Cantelli lemma, Z̃q = 0 for all large q almost surely.
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Taking q = ⌊�3n1/3⌋ and combining with (2.31), we obtain that

Ln ≤ Ln+⌊�3n1/3⌋ ≤ (l2 + 2M�3)n1/3

is true for all large n almost surely. That is,

lim sup
n→∞

Ln

n1/3
≤ l2 + 2M�3 a.s.

Since �3 > 0 and l2 > l0 are arbitrary, we conclude that

lim sup
n→∞

Ln

n1/3
≤ l0 a.s. (2.32)

Together with (2.21), this completes the proof of Theorem 2.

2.5 Concluding Remarks

2.5.1 The Curve s(t) of (2.17)

We comment in this subsection on the curve s(t) of (2.17) as a solution to an appropriate

variational principle. By the computation in Section 2, s(t)n1/3 denotes the minimal

possible position for vertices at level tn. However, in Section 3, it is not a priori clear

that s(t) will be our best choice. To see why s(t) must indeed be the best choice for the

upper bound argument, let us consider a general curve �(t) ≤ l2 as the lower bound for

the region. Examining the second moment computation, we need

max
t

{
−�(t) +

∫ t

0

c

(l2 − �(u))2
du

}
≤ 0

to make the argument work, where c is some constant. Define w(t) = l2−�(t) ≥ 0. The

above condition is equivalent to

l2 ≥ max
t
{w(t) +

∫ t

0

c

w(u)2
du}.

Therefore, the best (smallest) upper bound that we can hope is the result of the following

optimization problem

min
w:(0,1)→R+

max
t
{w(t) +

∫ t

0

c

w(u)2
du}. (2.33)

The solution to this variational problem, denoted by w∗(⋅), satisfies s(t) = l2 − w∗(t).
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2.5.2 Generalizations

Since the approach in this chapter only uses first and second moment methods, it seems

to apply, under natural assumptions, to the situation where the b-ary tree is replaced by

a Galton-Watson tree whose offspring distribution possesses high enough exponential

moments. This is a question subject to further study. We do not pursue such an

extension here.
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Chapter 3

Tightness for Maxima of

Generalized Branching Random

Walks

3.1 Introduction

We study the maxima of a class of generalized branching random walks (GBRW),

which are governed by a family of branching rules {pn,k}n≥0,k≥1 and displacement laws

{Gn,k}n≥0,k≥1. For this class, we assume that pn,k are nonnegative real numbers such

that
∑∞

k=1 pn,k = 1 and
∑∞

k=1 kpn,k <∞ for each n ≥ 0; Gn,k are distribution functions

on Rk for each n and k. The GBRW is defined recursively as follows. In order to show

the genealogical relationships between particles, we will use the following hierarchical

field to label them. At time 0, a particle o = 1 is located at 0. Suppose that, at time

n, v = 1�1 . . . �n (�i ∈ N) is a particle at location Sv. At time n+ 1, v dies and gives

birth to Kv ≥ 1 (random) offspring. We denote the offspring of v at generation n + 1

by {v1, . . . , vKv} and their locations by {Sv +Xv,1, . . . , Sv +Xv,Kv}, respectively. Let

D be the collection of all the particles at any time and Dn the ones alive at time n.

We consider the case where the random vectors {(Kv, Xv,1, . . . , Xv,Kv)}v∈D indexed by

particles are independent and have distributions

P
(
Kv = k

∣∣v ∈ Dn;Su, u ∈ ∪nk=0Dk

)
= pn,k (3.1)

31
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and

P
(
Xv,1 ≤ x1, . . . , Xv,Kv ≤ xKv

∣∣v ∈ Dn;Kv = k;Su, u ∈ ∪nk=0Dk

)
= Gn,k(x1, . . . , xk) for n = 0, 1, . . . and k = 1, 2, . . . . (3.2)

We are interested in the maximal displacement of particles at time n, i.e., ℳn =

maxv∈Dn Sv. Let Fn(⋅) be the distribution function of ℳn and set F̄n(⋅) = 1 − Fn(⋅).
Under some assumptions, we want to prove the tightness of the sequence of re-centered

distributions Fn (⋅ −Med(Fn)), where Med(Fn) is the median of Fn. See Section 3.2 and

Section 3.5 for two different sets of assumptions under which tightness can be proved.

From the previous description, our GBRW allows time dependence (through the

n parameter) and some local dependence (through the joint distribution Gn,k). We

will review some of the existing literature on tightness and make some comparisons

with this paper. Dekking and Host [20] (1991) gave a short proof for tightness of

Fn (⋅ −Med(Fn)) when the offspring displacements are all bounded above by a uniform

constant. Using moment arguments, Addario-Berry and Reed [1] (2009) proved that

ℳn−Eℳn is exponentially tight when the offspring displacements are i.i.d. and satisfy

appropriate large deviation assumptions. By modifying the arguments in [1], [14] and

[20], it is possible (but not checked yet) to extend the tightness result to the case when

the offspring displacements are unbounded and have local dependence between siblings

but not time dependence. See [17] (2010) for using this method to prove the tightness

of maxima of modified branching random walks derived from Gaussian free field.

Using a different approach, Bramson and Zeitouni [16] (2009) provided an analytic

method to prove tightness of the maximal displacement when, among other situations,

the offspring displacement distributions depend on time and satisfy certain tail condi-

tions; they assumed that the offspring displacements are i.i.d. and used a recursion

to derive their results. When the joint distribution is locally dependent, this recursion

(see (3.3) below) loses some of its nice properties; we will therefore not be able to ap-

ply directly this approach. Rather, it needs to be modified to take advantage of some

recursion bounds, see (3.6) below.

In order to find a recursion, one needs to look at GBRWs starting from particles

at some intermediate time. For any integer m and v = 1�1 . . . �m ∈ Dm, the process

{Su−Sv∣u = 1�1 . . . �m�1 . . . �k ∈ Dm+k, �k ∈ N, k = 1, 2, . . . } is a GBRW governed by



33

branching rules {pn+m,k}n≥0,k≥1 and displacement laws {Gn+m,k}n≥0,k≥1. For n > m,

the maximal displacement (from Sv) at time n − m is denoted by ℳv
n. {ℳv

n}v∈Dm
are i.i.d. random variables whose distribution is denoted by Fmn (⋅). Again set F̄mn (⋅) =

1− Fmn (⋅). Note that Fn(⋅) = F 0
n(⋅), F̄n(⋅) = F̄ 0

n(⋅) and F̄nn (⋅) = 1{x<0}(⋅).
One obtains a recursion regarding Fmn (⋅) by looking at the first generation of GBRWs

starting from particles at time m. For n > m,

Fmn (x) =
∞∑
k=1

pm,k

∫
Rk

k∏
i=1

Fm+1
n (x− yi)dkGm,k(y1, . . . , yk).

Following [16], we consider a recursion for F̄mn (⋅). For n > m, the above equation is

equivalent to

F̄mn (x) = 1−
∞∑
k=1

pm,k

∫
Rk

k∏
i=1

(
1− F̄m+1

n (x− yi)
)
dkGm,k(y1, . . . , yk). (3.3)

Without loss of generality, for any fixed n, k > 0, we assume Gn,k has identical

marginal distributions (all denoted by gn,k(x)), i.e.,

gn,k(x) =

∫
Rk−1

dk−1Gn,k(y1, . . . , yi−1, x, yi+1, . . . , yk) for any 1 ≤ i ≤ k. (3.4)

Otherwise, if not all the marginal distributions of Gn,k are the same, we can consider

G̃n,k defined by

G̃n,k(x1, . . . , xk) =
1

k!

∑
�∈Pk

Gn,k(x�(1), . . . , x�(k)),

where Pk denotes all the permutations on {1, . . . , k}. Then G̃n,k has identical marginal

distributions and recursion (3.3) is the same for Gn,k and G̃n,k.

To apply an approach similar to [16], we introduce two functions

Q1,k(u) = 1− (1− u)k and Q2,k(u) = ku for 0 ≤ u ≤ 1. (3.5)

We will work with the following recursion inequalities derived from (3.3), instead of

(3.3) itself.

Lemma 1. Assuming F̄mn (x) satisfies the recursion (3.3), then the following recursion

bounds hold, for n > m,

∞∑
k=1

pm,kgm,k ∗Q1,k(F̄
m+1
n )(x) ≤ F̄mn (x) ≤

∞∑
k=1

pm,kgm,k ∗Q2,k(F̄
m+1
n )(x), (3.6)
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where ∗ is the convolution defined by f ∗g(x) =
∫∞
−∞ f(x−y)dg(y) for any two functions

f(x) and g(x) whenever the integral makes sense.

Proof. We begin by proving the upper bound in (3.6). Rewrite (3.3) as

F̄mn (x) =
∞∑
k=1

pm,k

∫
Rk

(
1−

k∏
i=1

(
1− F̄m+1

n (x− yi)
))

dkGm,k(y1, . . . , yk).

Using the inequality that 1−
∏k
i=1(1− xi) ≤

∑k
i=1 xi for 0 ≤ xi ≤ 1 and the fact that

Gm,k(⋅, . . . , ⋅) has the same marginal distributions gm,k(⋅), one obtains that the above

quantity is at most

∞∑
k=1

pm,k

∫
Rk

k∑
i=1

F̄m+1
n (x− yi)dkGm,k(y1, . . . , yk) =

∞∑
k=1

pm,k

∫
R

kF̄m+1
n (x− y)dgm,k(y).

Together with the definition of Q2,k, c.f. (3.5), one obtains the upper bound in (3.6).

We next prove the lower bound in (3.6). Applying Hölder’s inequality to (3.3), one

obtains that

F̄mn (x) ≥ 1−
∞∑
k=1

pm,k

k∏
i=1

(∫
Rk

(
1− F̄m+1

n (x− yi)
)k
dkGm,k(y1, . . . , yk)

)1/k

.

Again, since Gm,k(⋅, . . . , ⋅) possesses the same marginal distributions gm,k(⋅), the right

side above equals

1−
∞∑
k=1

pm,k

k∏
i=1

(∫
R

(
1− F̄m+1

n (x− y)
)k
dgm,k(y)

)1/k

= 1−
∞∑
k=1

pm,k

(∫
R

(
1− F̄m+1

n (x− y)
)k
dgm,k(y)

)

=
∞∑
k=1

pm,k

(∫
R

(
1−

(
1− F̄m+1

n (x− y)
)k)

dgm,k(y)

)
.

Together with the definition of Q1,k, see (3.5), one obtains the lower bound in (3.6).

3.2 Assumptions and Statement of Result for Bounded

Branching.

In this section, we discuss the tightness property in the case where the offspring number

is uniformly bounded. To state our result, we need some assumptions both on the
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branching and displacement laws. We introduce assumptions concerning the branching

mechanism.

(B1) {pn,k}n≥0 possess a uniformly bounded support, i.e., there exists an integer k0 > 1

such that pn,k = 0 for all n if k /∈ {1, . . . , k0}.

(B2) The mean offspring number is uniformly greater than 1 by some fixed constant,

i.e., there exists a real number m0 > 1 such that infn{
∑k0

k=1 kpn,k} > m0.

We introduce the following assumptions on the displacement laws Gn,k for those n and

k such that pn,k ∕= 0.

(MT1) For some fixed �0 <
1
4 logm0 ∧ 1, there exists an x0 such that ḡn,k(x0) ≥ 1 − �0

for all n and k, where ḡn,k(x) = 1− gn,k(x). By shifting, we may and will assume

that x0 = 0, that is, ḡn,k(0) ≥ 1− �0.

(MT2) There exist a > 0 and M0 > 0 such that ḡn,k(x + M) ≤ e−aM ḡn,k(x) for all n, k

and M > M0, x ≥ 0.

(GT) For any �1 > 0, there exists a B > 0 such that Gn,k(B, . . . , B) ≥ 1 − �1

and Gn,k([−B,∞)k) ≥ 1 − �1 for all n and k. (With an abuse of notation,

Gn,k is also used here as a function on measurable sets defined by Gn,k(A) :=∫
A d

kGn,k(x1, . . . , xk) for A ⊂ Rk. See (3.2) for the definition of Gn,k as a distri-

bution function on Rk.)

Assumptions (MT1) and (MT2) are about the marginal distributions. (MT1) pre-

vents too much mass drifting to −∞, while (MT2) guarantees that the right tails of the

marginals decay at least exponentially. (GT) states the tightness of the joint distribu-

tion of the increments. Note that (MT1) is implied by (GT), however, we still state

(MT1) separately with notations to be used later in the proofs.

Now we are ready to state our main theorem.

Theorem 4. Under the above assumptions (B1), (B2), (MT2) and (GT), the family

of the recentered maxima distributions {Fn (⋅ −Med(Fn))}n≥0 is tight.

Theorem 4 is proved in Section 3.3, with the proofs of some propositions deferred

to Section 3.4. With an analysis of a Lyapunov function, we control the right tails
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of distributions Fn (⋅ −Med(Fn)). Then we use assumption (GT) together with the

right tail property to control the behavior of left tails of the distributions. Using a

similar approach, we can also prove a variation of Theorem 4 under slightly different

assumptions in Section 3.5.

3.3 A Lyapunov Function, Main Induction and Proof of

Theorem 4

This section follows [16], with some minor revisions, in introducing a Lyapunov function.

Namely, for a choice of �1, b and M (to be determined later), we define the Lyapunov

function L(⋅) as

L(u) = sup
{x:u(x)∈(0, 1

2
]}
l(u;x), (3.7)

where

l(u;x) = log

(
1

u(x)

)
+ logb

(
1 + �1 −

u(x−M)

u(x)

)
+

. (3.8)

Here (x)+ = x ∨ 0, and we take the convention that log 0 = −∞.

As in [16], the heart of the proof is contained in the following proposition.

Proposition 1. Under assumptions (B1), (B2), (MT1) and (MT2), there is a choice

of �1, b and M such that supm≤n L(F̄mn ) < C for some finite number C > 0.

The proof of Proposition 1 will take the bulk of the chapter, and is detailed in

Section 3.4. Before proving it, we discuss its consequences. As in [16, Corollary 2.8],

the same proof, using Proposition 1, yields the following

Corollary 2. Let the assumptions (B1), (B2), (MT1) and (MT2) hold. Then, there

exists �1 such that, for all n and m ≤ n,

F̄mn (x) ≤ �1 implies F̄mn (x−M) ≥ (1 +
�1
2

)F̄mn (x). (3.9)

This corollary gives the desired control over the behavior of the right tail of F̄mn (⋅).
We next control the left tail. First, one obtains the following pointwise bounds for the

integral (3.3).
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Lemma 2. The assumption (GT) implies that, for any �1 > 0, there exists a B such

that

Qm(F̄m+1
n )(x+B)− �1 ≤ F̄mn (x) ≤ Qm(F̄m+1

n )(x−B) + �1, (3.10)

where Qm(u) =
∑∞

k=1 pm,k
(
1− (1− u)k

)
.

Proof. For any �1 > 0, choose the B as in the assumption (GT). The upper bound is

obtained by only considering the integral over (−∞, B]k in (3.3).

F̄mn (x) ≤ 1−
∞∑
k=1

pm,k

∫
(−∞,B]k

k∏
i=1

(
1− F̄m+1

n (x− yi)
)
dkGm,k(y1, . . . , yk).

By the monotonicity of F̄mn (⋅), the right side is less than

1−
∞∑
k=1

pm,k
(
1− F̄m+1

n (x−B)
)k
Gm,k(B, ⋅ ⋅ ⋅ , B).

For any �1, choose B as in assumption (GT). Then Gm,k(B, ⋅ ⋅ ⋅ , B) ≥ 1 − �1, and the

above quantity is less than or equal to

1−
∞∑
k=1

pm,k
(
1− F̄m+1

n (x−B)
)k

(1− �1)

= Qm(F̄m+1
n )(x−B) + �1

∞∑
k=1

pm,k
(
1− F̄m+1

n (x−B)
)k

≤ Qm(F̄m+1
n )(x−B) + �1,

proving the upper bound in (3.10). To obtain the lower bound, first rewrite (3.3) as

F̄mn (x) =

∞∑
k=1

pm,k

∫
Rk

(
1−

k∏
i=1

(
1− F̄m+1

n (x− yi)
))

dkGm,k(y1, . . . , yk).

By restricting the above integral to [−B,∞)k, one has a lower bound on F̄mn ,

F̄mn (x) ≥
∞∑
k=1

pm,k

∫
[−B,∞)k

(
1−

k∏
i=1

(
1− F̄m+1

n (x− yi)
))

dkGm,k(y1, . . . , yk).

Since F̄m+1
n (x) is decreasing in x and Gm,k

(
[−B,∞)k

)
≥ 1−�1 as in assumption (GT),
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one has

F̄mn (x) ≥
∞∑
k=1

pm,k

(
1−

(
1− F̄m+1

n (x+B)
)k)

Gm,k

(
[−B,∞)k

)
≥

∞∑
k=1

pm,k

(
1−

(
1− F̄m+1

n (x+B)
)k)

(1− �1)

= Qm(F̄m+1
n )(x+B)− �1

∞∑
k=1

pm,k

(
1−

(
1− F̄m+1

n (x+B)
)k)

≥ Qm(F̄m+1
n )(x+B)− �1,

proving the lower bound in (3.10) and completing the proof of Lemma 2.

Lemma 2 almost verifies [16, Assumption 2.4], except that Qm depends on m. How-

ever, with the assumption (B1), Qm satisfies [16, T1 and T2 in Definition 2.3] uniformly

in m. Namely, the family of strictly increasing functions Qm : [0, 1] → [0, 1], with

Qm(0) = 0 and Qm(1) = 1, satisfies the following:

(T1’) Qm(x) > x for all x ∈ (0, 1). For any � > 0, one can choose c� = 1 + m0−1
k0

� > 1

such that Qm(x) > c�x for all x ≤ 1− � and all m.

(T2’) For each � ∈ (0, 1), there exists a nonnegative function g�(�) → 0 as � ↘ 0 (for

example, choose g�(�) = (1−(1−�)k0 )
k0�

(
1+�
�+�

)k0−1
�) such that, for any m, if x ≥ �

and Qm ((1 + g�(�))x) ≤ 1−�
1+� , then Qm ((1 + g�(�))x) ≥ (1 + �)Qm(x).

To check the above two properties, one uses the strict convexity of 1− (1− x)k and its

monotonicity in k. Details are omitted here. From the above (T1’) and (T2’), one can

deduce the following lemma in exactly the same way as in [16, Lemma 2.10].

Lemma 3. Suppose that (3.9) holds for all m ≤ n under some choice of �1,M, �1 > 0.

Also, suppose that assumption (B1) and (3.10) hold. For fixed �0 ∈ (0, 1), there exist

a constant 
 = 
(�0) < 1 and a continuous function f(t) = f�0(t) : [0, 1] → [0, 1], with

f(t)→t→0 0, such that, for any � ∈ (0, 1−�0
�0

), � ∈ [�1, �0] and large enough N1 = N1(�),

the following holds. If M ′ > M and, for any m < n, F̄mn (x) ≥ �1,

F̄mn (x−M ′) ≤ (1 + �)F̄mn (x) and F̄mn (x−M ′) ≤ �,

then

F̄m+1
n (x+N1 −M ′) ≤ (1 + f(�)) F̄m+1

n (x−N1)
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and

F̄m+1
n (x+N1 −M ′) ≤ 
�.

By iterating, the above lemma gives a connection between the left and right tail

behavior. That is, by applying Corollary 2 and Lemma 3 several times as in [16, Proof

of Proposition 2.9], the same contrapositive argument proves: for fixed �0 ∈ (0, 1), there

exist an �̂0 = �̂0(�0) > 0, an n0 and an M̂ such that, if n > n0 and F̄ 0
n(x−M̂) ≤ �0, then

F̄ 0
n(x− M̂) ≥ (1 + �̂0)F̄ 0

n(x). Recalling that Fn(⋅) = F 0
n(⋅), this will yield the following

tightness proposition.

Proposition 2. Suppose that (3.9) holds for all m ≤ n under some choice of �1,M, �1 >

0. Also, suppose that assumption (B1) and (3.10) hold. Then, the family of recentered

maxima distributions {Fn (⋅ −Med(Fn))}n≥0 is tight.

We have proved Theorem 4 under the assumption that Proposition 1 is true. There-

fore, it remains to show Proposition 1, which we do in the next section.

3.4 Analysis of Lyapunov Function and Proof of Proposi-

tion 1

In this section we focus on proving Proposition 1, which is an analog of [16, Theorem

2.7]. The same idea works here: the exponential decay of gn,k will not bring much

mass from far away during a single recursion step. However, the exact approach in [16]

does not quite apply here. [16] deals separately with the nonlinearity and convolution

in a recursion equality. In our case, the recursion (3.3) does not possess such a nice

form. Fortunately, we have the recursion inequalities (3.6). These bounds require one

to analyze the nonlinearity and convolution together. Throughout this section, all the

sums about k are from 1 to k0 since assumption (B1) is assumed. We begin with some

properties of the two functions in (3.5). Q2,k(u) = ku is simple, and the following simple

facts about Q1,k(u) will be used later on.

Lemma 4. There exists a c1 = c1(k0) ≥ 1 such that, for all 1 ≤ k ≤ k0 and 0 ≤ u ≤ 1,

Q1,k(u) ≥ u (3.11)
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and

ku− c1u
2 ≤ Q1,k(u) ≤ ku = Q2,k(u). (3.12)

Next, we state a choice of �1, b and M in the Lyapunov function under which

Proposition 1 is true. Throughout, we fix k0,m0, �0,M0 and a as in assumptions (B1),

(B2), (MT1) and (MT2). Next, we choose 0 < �1 < 1
100 small, b > 1 close to 1,

M > 100 big and an auxiliary variable 0 < � < 1
100 small (used later to control the

flatness change) such that the following restrictions hold.

M > 4M0 and e−aM/2 ≤ (4k0)4e−aM/2 ≤ 1

100
; (3.13)

8(2k0)5/2�
1/2 log b−3/2
1

(1− �0)�3/2
<

1

2c1
; (3.14)

c1
1 + �1
1− �0

�
1/ log b
1 ≤

k0∑
k=1

kpn,k −m0 for all n; (3.15)

logm0

2
≥ 2(�1 + �0) +

6�

log b
; (3.16)

aM

16 log b
≥ 2 (�1 + �0 + log(4k0))− log �

log b
; (3.17)

a

16 log b
≥ 2 log(4k0)

M
. (3.18)

The above conditions are compatible. In fact, thinking of � as � log b, one can choose

�1 and � small enough so that (3.16) holds due to the choice of �0 in assumption (MT1),

then one chooses a b close enough to 1 so that (3.14), (3.15) and (3.18) hold due to the

choice of m0 as in assumption (B2), and finally one chooses M large enough so that

(3.13) and (3.17) hold.

With the choice of the above �1, b, M and �, we can now prove Proposition 1.

Proof of Proposition 1. Choose C = log 2. The conclusion supm≤n L(F̄mn ) ≤ C will

follow from the claim:

L(F̄mn ) > C implies that L(F̄m+1
n ) > C for any m < n. (3.19)
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Suppose the conclusion is violated, then L(F̄mn ) > C for some m ≤ n. Iterating the claim

n−m times, one gets L(F̄nn ) > C. However, L(F̄nn ) = −∞ because F̄nn (x) = 1{x<0}(x).

This contradiction proves proposition 1, assuming claim (3.19).

The claim (3.19) follows from the following proposition because of (3.6).

Proposition 3. Suppose that two non-increasing cadlag functions u, v : R → [0, 1]

satisfy
k0∑
k=1

pkgk ∗Q1,k(u)(x) ≤ v(x) ≤
k0∑
k=1

pkgk ∗Q2,k(u)(x), (3.20)

where pk and gk satisfy the assumptions in Section 3.2 as pn,k and gn,k, and Q1,k and

Q2,k satisfy Lemma 4. Then

L(v) > C implies that L(u) > C. (3.21)

In order to prove Proposition 3, a few observations, notation and lemmas are needed.

Starting from L(v) > C, one obtains, by definition (3.7) of the Lyapunov function, that

there exists an x1 ∈ R such that

v(x1) ≤ 1

2
and l(v;x1) ≥ max{C,L(v)− 1

4
logm0}. (3.22)

By definition (3.8) of l(v;x), one obtains that v is small and flat at x1 in the following

sense:

1 + � :=
v(x2)

v(x1)
< 1 + �1 (3.23)

and

f0 := v(x1) < (�1 − �)1/ log be−C <
1

2
, (3.24)

where x2 := x1 −M . Using the bounds (3.20) and (3.23), one gets that

k0∑
k=1

pkgk ∗Q1,k(u)(x2) ≤ (1 + �)

k0∑
k=1

pkgk ∗Q2,k(u)(x1), (3.25)

from which we will search for a flat segment in u(x) where u(x) is also small.

To control the value of u(x), we derive here some preliminary estimates of u(x) at

x1 and x2, which will be used later to control the value of u(x) at other places. For
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i = 1, 2, first applying the Chebyshev inequality and then applying (3.20) and the fact

ḡk(0) ≥ 1− �0 from assumption (MT1), one gets

k0∑
k=1

pkQ1,k(u)(xi) ≤
k0∑
k=1

pk
1

ḡk(0)

∫
R

Q1,k(u)(xi − y)dgk(y)

≤ 1

1− �0
v(xi). (3.26)

This, together with the lower bound (3.11) on Q1,k, the definition (3.24) of f0 and the

definition (3.23) of �, implies that

u(x1) ≤ f0

1− �0
, (3.27)

and

u(x2) ≤ 1 + �

1− �0
f0. (3.28)

A finer estimate of u(x2) can be obtained and will be needed. First, using (3.26) and

the lower bound (3.12) on Q1,k, one gets(
k0∑
k=1

kpk − c1u(x2)

)
u(x2) ≤ 1 + �

1− �0
f0.

By combining the first estimate (3.28) of u(x2), the bound (3.24) on f0 and the restric-

tion (3.15), the coefficient multiplying u(x2) on the left side of the last inequality is at

least

k0∑
k=1

kpk − c1u(x2) ≥
k0∑
k=1

kpk − c1
1 + �

1− �0
f0

≥
k0∑
k=1

kpk − c1
1 + �1
1− �0

(�1 − �)1/ log be−C

≥
k0∑
k=1

kpk − c1
1 + �1
1− �0

�
1/ log b
1 ≥ m0.

Therefore, we conclude that

u(x2) ≤ 1 + �

m0(1− �0)
f0 =

1 + �

m0(1− �0)
v(x1). (3.29)

To control the flatness of u(x), we define some more auxiliary variables and then

state some lemmas. The constants � = �(�1− �), �′ = �+ �, �′′ = �+ 2� and �(3) = �+ 3�
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are defined to monitor the flatness change. Note that �, �′, �′′, �(3) < �1 because � < 1
100 .

We somewhat simplify the argument in [16]. Set

y0 =
1

a
log

2k0

�f0
, (3.30)

q = inf{y ≥M/2 : u(x2 − y) > (4k0)2u(x1 − y)} (3.31)

and

r = y0 ∧

{
q, if u(x2 − q)− ≥ (4k0)u(x1 − (q + M

2 )),

q − M
2 , otherwise,

(3.32)

where f(x)− := limy→x− f(y) is the left limit of f at x. Intuitively, q is used to denote

the first nonflatness place to the left of x1. When r < y0, r is used to denote a nonflat

interval, namely, it is easy to check that

u(x2 − y) ≥ (4k0)u(x1 − y) for all y ∈ (r, r +M/2]. (3.33)

We can now state the following sequence of lemmas, whose proofs will be discussed

in the next subsection. The convention of∫ b

a
f(x)dg(x) =

∫
(a,b]

f(x)dg(x)

for a, b ∈ R will be made throughout the rest of the chapter.

Lemma 5. Assume that (3.24) and (3.25) hold. Then,

k0∑
k=1

pk

∫ r

−∞
Q1,k(u)(x2 − y)dgk(y) ≤ (1 + �′)

k0∑
k=1

pk

∫ r

−∞
Q2,k(u)(x1 − y)dgk(y). (3.34)

Lemma 6. If (3.24) and (3.34) are satisfied, then there exist some 1 ≤ k ≤ k0 and r′

such that ∫ r′

−∞
u(x2 − y)dgk(y) ≤ (1 + �′′)

∫ r′

−∞
u(x1 − y)dgk(y), (3.35)

where r′ = r when r′ > M .

Lemma 7. Suppose (3.35) holds. Then either

(a) u(x2 − y1) ≤ (1 + �(3))u(x1 − y1) for some y1 ≤ r′ ∧M , or
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(b) u(x2 − y1) ≤ (1 + �′′ − �eay1/8)u(x1 − y1) for some y1 ∈ (M, r].

Lemma 6 and Lemma 7 are analogs of [16, Lemma 3.5, Proposition 3.2], respectively.

Equipped with lemma 7, we are ready to prove Proposition 3.

Proof of Proposition 3 assuming Lemma 7. We will compare L(u) and L(v) using

(3.29) and Lemma 7. As Lemma 7 suggests, two different cases will be discussed sepa-

rately.

Case (a). Assume u(x2 − y1) ≤ (1 + �(3))u(x1 − y1) for some y1 ≤ r′ ∧M . Then,

(3.29) implies that

u(x1 − y1) ≤ u(x2) ≤ 1 + �

m0(1− �0)
v(x1).

Therefore, it follows from the definition (3.8) of l(u;x) that

l(u, x1 − y1)− l(v, x1) ≥ log
v(x1)

u(x1 − y1)
+ logb

�1 − �(3)

�1 − �

≥ log
m0(1− �0)

1 + �
+ logb(1− 3�)

≥ logm0 − 2(�1 + �0)− 6�

log b
≥ logm0

2
,

where (3.16) guarantees the last inequality.

Case (b). Assume u(x2 − y1) ≤ (1 + �′′ − �eay1/8)u(x1 − y1) for some y1 ∈ (M, r].

Then, the definition (3.32) of r and (3.29) imply that

u(x1 − y1) ≤ (4k0)2y1/M+2u(x1 −M/2) ≤ (4k0)2y1/M+2 1 + �

m0(1− �0)
v(x1).

Therefore, it follows that

l(u, x1 − y1)− l(v, x1) = log
v(x1)

u(x1 − y1)
+ logb

�1 − �′′ + �eay1/8

�1 − �

≥ log
m0(1− �0)

(1 + �)(4k0)2y1/M+2
+ logb(1− 2�+ �eay1/8)

≥ logm0 − 2(�0 + �1)− 2 log(4k0)

M
y1 − 2 log(4k0)

+
log �+ ay1/8

log b
.

Rewrite the last term ay1
8 log b as ay1

16 log b + ay1
16 log b , use y1 ≥M in one summand and deduce

that the above quantity is at least

logm0 − 2(�0 + �1 + log(4k0)) +
log �

log b
+

aM

16 log b
+ y1(

a

16 log b
− 2 log(4k0)

M
) ≥ 1

2
logm0,
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where (3.18) and (3.17) guarantee the last inequality.

To wrap the argument up, both cases imply, by (3.8), (3.22) and C = log 2,

log
1

u(x1 − y1)
≥ l(u, x1 − y1) ≥ C +

1

2
logm0 ≥ − log

1

2
,

which implies that u(x1− y1) ≤ 1
2 . Therefore, by the definition (3.7) of L(u) and (3.22)

again,

L(u) ≥ l(u, x1 − y1) ≥ l(v, x1) +
1

2
logm0 ≥ L(v) +

1

4
logm0 ≥ L(v),

from which (3.21) follows. Thus, the proof of Proposition 3 is complete.

3.4.1 Proof of Lemmas

With the assumption (MT2), the proof of [16, Proposition 3.2] carries over (with some

change of notation) to the proof of Lemma 7 assuming Lemma 6. So we only need to

prove Lemma 6 and 5. (For completeness, we give the proof of Lemma 7 in the appendix

of this chapter.) The proof of Lemma 6 will be presented first, and then the proof of

Lemma 5.

Proof of Lemma 6. When q > M/2, we have u(x2 − y) ≤ (4k0)2u(x1 − y) for y ∈
[M/2, q]. Thus, one obtains that, for any y ≤ r ≤ q,

u(x2 − y) ≤ u(x2 − r) ≤ (4k0)2r/M+2u(x2).

Since r ≤ y0 = 1
a log 2k0

�f0
, one has, using (3.28), that the above is at most

(4k0)2y0/M+2 1 + �

1− �0
f0 <

2(4k0)2

1− �0
(4k0)

2
aM

log
2k0
�f0 f0 =

2(4k0)2

1− �0
(
2k0

�f0
)

2
aM

log(4k0)f0.

Note that 2
aM log(4k0) < 1

2 from (3.13). Applying the bound (3.24) on f0, the above

quantity is at most

2(4k0)2

1− �0

√
2k0f

1/2
0

�1/2
=

8(2k0)5/2f
1/2
0

(1− �0)�3/2
� <

8(2k0)5/2(�1 − �)1/2 log b−3/2

(1− �0)�3/2
�.

Therefore, it follows from (3.14) that

u(x2 − y) ≤ 1

2c1
� for any y ≤ r. (3.36)
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This, combined with (3.12), implies that, for any 1 ≤ k ≤ k0 and y ≤ r1,

Q1,k(u)(x2 − y) ≥ ku(x2 − y)− c1 (u(x2 − y))2

= ku(x2 − y)(1− c1

k
u(x2 − y)) ≥ ku(x2 − y)(1− 1

2
�).

Applying the above bound and the definition (3.5) of Q2,k(u) in the first inequality, and

(3.34) in the second, one has∑k0
k=1 kpk

∫ r
−∞ u(x2 − y)dgk(y)∑k0

k=1 kpk
∫ r
−∞ u(x1 − y)dgk(y)

≤ 1

1− 1
2�

∑k0
k=1 pk

∫ r
−∞Q1,k(u)(x2 − y)dGk(y)∑k0

k=1 pk
∫ r
−∞Q2,k(u)(x1 − y)dGk(y)

(3.37)

≤ 1 + �′

1− 1
2�
≤ 1 + �′′.

If the conclusion of the lemma does not hold, i.e., for all 1 ≤ k ≤ k0,∫ r

−∞
u(x2 − y)dgk(y) > (1 + �′′)

∫ r

−∞
u(x1 − y)dgk(y),

one obtains a contradiction to (3.37). This completes the proof of Lemma 6 in case

q > M/2.

When q = M/2 and u(x2−M/2) ≤ 4k0u(x2), with (3.28), one still has, for y ≤ r ≤ q,

u(x2 − y) ≤ u(x2 − r) ≤ 4k0u(x2) ≤ 8k0f0

(1− �0)�
�. (3.38)

Using the bound (3.24) on f0 and (3.14), the above is at most

8k0(�1 − �)1/ log b−1

(1− �0)�
� ≤ 1

2c1
�.

Thus, (3.36) holds. Repeating the argument below (3.36), one gets Lemma 6 in this

case.

When q = M/2 but u(x2−M/2) > (4k0)u(x2), we truncate (3.34) before transform-

ing this case to the previous case. Define

r′ = inf{y ≥ 0 : u(x2 − y) > 4k0u(x2)}.
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Then 0 ≤ r′ < M/2 and u(x2 − r′) ≤ 4k0u(x2). By monotonicity of u, u(x2 − y) ≥
4k0u(x1 − y) for y ∈ (r′, r]. Therefore, for 1 ≤ k ≤ k0,∫ r

r′
Q1,k(u)(x2 − y)dgk(y)− (1 + �′)

∫ r

r′
Q2,k(u)(x1 − y)dgk(y)

≥
∫ r

r′
u(x2 − y)dgk(y)− 2

∫ r

r′
k0u(x1 − y)dgk(y)

=

∫ r

r′
(u(x2 − y)− 2k0u(x1 − y)) dgk(y) ≥ 0,

which, together with (3.34), yields the truncated inequality

k0∑
k=1

pk

∫ r′

−∞
Q1,k(u)(x2 − y)dgk(y) ≤ (1 + �′)

k0∑
k=1

pk

∫ r′

−∞
Q2,k(u)(x1 − y)dgk(y).

This is a analog of (3.34) with r replaced by r′, and u(x2− r′) ≤ 4k0u(x2). Replacing r

by r′ in the argument starting from (3.38), one concludes the proof of Lemma 6 in all

cases.

Proof of Lemma 5. The purpose of this lemma is to justify the flatness of the trun-

cated integral. That is, we want to prove that mass from faraway does not affect the

value of the integral in a significant way. This is almost guaranteed by the exponential

decay of gn,k(⋅). However, we need to control the difference between Q1,k(u)(x2 − y)

and Q2,k(u)(x1− y), using the lower bound (3.11) on Q1,k(u) and the definition (3.5) of

Q2,k(u). Two different cases will be presented separately.

Case (i). When r < y0, (3.33) holds. Because of (3.25) and � < �′, (3.34) will follow

from ∫ ∞
r

Q1,k(u)(x2 − y)dgk(y)− (1 + �′)

∫ ∞
r

Q2,k(u)(x1 − y)dgk(y) ≥ 0. (3.39)

To prove (3.39), because of (3.11), it suffices to show that∫ ∞
r

u(x2 − y)dgk(y)− 2k0

∫ ∞
r

u(x1 − y)dgk(y) ≥ 0. (3.39′)

We break the left side into 3 pieces. First, by (3.33),

1

2

∫ r+M/2

r
u(x2 − y)dgk(y)− 2k0

∫ r+M/2

r
u(x1 − y)dgk(y)

=

∫ r+M/2

r

(
1

2
u(x2 − y)− 2k0u(x1 − y)

)
dgk(y) ≥ 0. (3.40)
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Second, because of assumption (MT2) (rapid decay of ḡk(⋅)) and (3.13), one has

1

2

∫ r+M/2

r
u(x2 − y)dgk(y)− 2k0

∫ r+M

r+M/2
u(x1 − y)dgk(y)

≥ 1

4
u(x2 − r)ḡk(r)− 2k0u(x2 − r)ḡk(r +M/2) (3.41)

≥ (
1

4
− 2k0e

−aM/2)u(x2 − r)ḡk(r) ≥ 0.

Third, again because of assumption (MT2) (rapid decay of ḡk(⋅)) and (3.13), one has∫ ∞
r+M/2

u(x2 − y)dgk(y)− 2k0

∫ ∞
r+M

u(x1 − y)dgk(y)

≥
∫ ∞
r+M/2

u(x2 − (y −M/2))dgk(y)− 2k0

∫ ∞
r

u(x2 − y)dgk(y +M)

=

∫ ∞
r

u(x2 − y)dgk(y +M/2)− 2k0

∫ ∞
r

u(x2 − y)dgk(y +M) (3.42)

≥ (1− 2k0e
−aM/2)

∫ ∞
r

u(x2 − y)dgk(y +M/2) ≥ 0

Summing (3.40), (3.41) and (3.42), one gets (3.39’). Thus, (3.39) is verified in case (i),

and (3.34) holds.

Case (ii). When r = y0, (3.33) may not be true. However, the difference between

the two sides of (3.34) is

k0∑
k=1

pk

∫ r

−∞
Q1,k(u)(x2 − y)dgk(y)− (1 + �′)

k0∑
k=0

pk

∫ r

−∞
Q2,k(u)(x1 − y)dgk(y)

≤
k0∑
k=1

pkgk ∗Q1,k(u)(x2)− (1 + �′)

k0∑
k=1

pk

∫ r

−∞
Q2,k(u)(x1 − y)dgk(y).

Recall that �′ = �+ �. (3.25) implies that the above quantity is less than or equal to

(1 + �)

k0∑
k=1

pkgk ∗Q2,k(u)(x1)− (1 + �′)

k0∑
k=1

pk

∫ r

−∞
Q2,k(u)(x1 − y)dgk(y)

= (1 + �′)

k0∑
k=1

pk

∫ ∞
r

Q2,k(u)(x1 − y)dgk(y)− �
k0∑
k=1

pkgk ∗Q2,k(u)(x1).

Since r = y0 = 1
a log 2k0

�f0
, the assumption (MT2) implies ḡk(r) ≤ e−ay0 = �f0

2k0
. Q2,k(u) ≤

k0, (3.20) and (3.24) yield that the above quantity again does not exceed

(1 + �′)k0
�f0

2k0
− �f0 ≤ 0.
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So (3.34) is proved in case (ii). This completes the proof of the lemma.

3.5 Tightness for Identical Marginals

In this section, we discuss the tightness problem in the case when all the marginal

distributions at the same level are the same, i.e., gn,k(⋅) = gn(⋅) does not depend on

the number of offspring. Compared with the assumptions made in Section 3.2, we relax

the bounded support assumption (B1) on pn,ks, at the price of a uniform marginal

assumption on Gn,k (see (MT0’) below). Namely, we assume

(B1’) There exist positive real numbers m0 and m1 such that infn{
∑∞

k=1 kpn,k} > m0 >

1 and supn
∑∞

k=1 k
2pn,k < m1.

(MT0’) gn,k(⋅) = gn(⋅) for all k ≥ 1.

(MT1’) For some fixed �0 <
1
4 logm0 ∧ 1, there exists an x0 such that ḡn(x0) ≥ 1− �0 for

all n, where ḡn(x) = 1 − gn(x). By shifting, we will assume that x0 = 0, that is,

ḡn(0) ≥ 1− �0.

(MT2’) There exist a > 0 and M0 > 0 such that ḡn(x + M) ≤ e−aM ḡn(x) for all n and

M > M0, x ≥ 0.

(GT’) For any �1 > 0, there exists a B > 0 such that Gn,k(B, . . . , B) ≥ 1 − �1 and

ḡn(−B) ≥ 1− �1 for all n and k.

Then we still have the following tightness result.

Theorem 5. Under assumptions (B1’), (MT0’), (MT1’), (MT2’) and (GT’), the family

of the recentered maxima distribution {Fn (⋅ −Med(Fn))} is tight.

Since the proof is similar to the proof of Theorem 4, we only give a sketch. The

argument is based on the following recursion inequality, another form of (3.6) under the

assumption (MT0’),

gm ∗

( ∞∑
k=1

pm,kQ1,k(F̄
m+1
n )

)
(x) ≤ F̄mn (x) ≤ gm ∗

( ∞∑
k=1

pm,kQ2,k(F̄
m+1
n )

)
(x), (3.43)
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where Q1,k and Q2,k are defined as (3.5). Set

Qm,(1)(u) =

∞∑
k=1

pm,kQ1,k(u), (3.44)

and

Qm,(2)(u) =

∞∑
k=1

pm,kQ2,k(u). (3.45)

Although the difference between Q1,k and Q2,k increases as k increases, the weighted

functions Qm,(1) and Qm,(2) still behave nicely and possess an analog of Lemma 4.

Lemma 8. Letting Qm,(1) and Qm,(2) be defined as in (3.44) and (3.45), respectively,

then it follows from assumption (B’) that

Qm,(1)(u) > u, (3.46)

and

Qm,(2)(u)− c2u
2 ≤ Qm,(1)(u) ≤ Qm,(2)(u) ≤

√
m1u. (3.47)

Lemma 5 relies on the facts that Q1,k(u) ≥ u and Q2,k(u) ≤ k0u, and Lemma 6

relies on the fact that Q1,k(u) ≥ Q2,k(u) − c1u
2. Therefore, with a modification of q

and r, we can prove analogs of those two lemmas due to the bounds in Lemma 8. An

analog of Proposition 3 then follows. Proposition 1 and Corollary 2 hold under the new

assumptions in this section.

Assumption (GT’) plays a role as (GT) in connecting the left and right tail behavior.

Specifically, it guarantees Lemma 2, Lemma 3 and Proposition 2 under the new settings.

Theorem 5 follows immediately as Theorem 4.

Appendix

This proof of Lemma 7 is almost the same as the proof of [16, Proposition 3.2] except

for different notations, so we give it here for completeness.

proof of Lemma 7 assuming Lemma 6. The lemma will be proved by contradiction. As-

sume that neither (a) nor (b) in lemma 7 holds, i.e.,

u(x2 − y) > (1 + �(3))u(x1 − y) for all y ≤ r′ ∧M, (ā)
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and

u(x2 − y) > (1 + �′′ − �eay/8)u(x1 − y) for all y ∈ (M, r′]. (b̄)

If r′ ≤M , then only (ā) holds and it implies that∫ r′

−∞
u(x2 − y)dgk(y) > (1 + �(3))

∫ r′

−∞
u(x1 − y)dgk(y).

Since �(3) = �′′ + � > �′′, this is a contradiction to (3.34). So we are done.

If r′ > M , then r′ = r and (ā) and (b̄) imply that∫ M

−∞
u(x2 − y)dgk(y) > (1 + �(3))

∫ M

−∞
u(x1 − y)dgk(y)

and ∫ r

M
u(x2 − y)dgk(y) >

∫ r

M
(1 + �′′ − �eay/8)u(x1 − y)dgk(y).

Summing the above two inequality, one gets that∫ r

−∞
u(x2 − y)dgk(y) > (1 + �′′)

∫ r

−∞
u(x1 − y)dgk(y)

+�

[∫ M

−∞
u(x1 − y)dgk(y)−

∫ r

M
eay/8u(x1 − y)dgk(y)

]
.

We claim that ∫ M

−∞
u(x1 − y)dgk(y)−

∫ r

M
eay/8u(x1 − y)dgk(y) ≥ 0, (3.48)

which will imply a contradiction of (3.34) and complete the proof.

It thus remains to prove the claim (3.48). The second integral on the left side of

(3.48) can be written as∫ r

M
eay/8u(x1 − y)dgk(y) =

∞∑
l=1

∫ lM+M

lM
eay/8u(x1 − y)1{y≤r}dgk(y).

Since q ≥ r > M/2, one has u(x2 − y) ≤ (4k0)2u(x1 − y) for all y ∈ [M/2, r], the last

quantity in the above display is less than or equal to

∞∑
l=1

∫ lM+M

lM
ealM/8+aM/8(4k0)2l+2u(x1 −M/2)dgk(y)

≤
∞∑
l=1

ealM/8+aM/8(4k0)2l+2u(x1 −M/2)ḡk(lM).
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Using Assumption (MT2) and (3.13), the above is again less than or equal to

∞∑
l=1

ealM/8+aM/8(4k0)2l+2u(x1 −M/2)e−alM+aM/2ḡk(M/2)

≤ 1

4
u(x1 −M/2)ḡk(M/2).

But the last term does not exceed∫ M

M/2
u(x1 − y)dgk(y) ≤

∫ M

−∞
u(x1 − y)dgk(y).

So the proof of (3.48) is complete. We are done with proving Lemma (7).



Chapter 4

Branching Random Walks in

Time Inhomogeneous

Environments

4.1 Introduction

Branching random walks and their maxima have been studied mostly in space-time

homogeneous environments (deterministic or random). For work on the deterministic

homogeneous case of relevance to our study we refer to [14] and the recent [1] and [2].

For the random environment case, a sample of relevant papers is [36, 38, 46, 49, 58,

62, 69]. As is well documented in these references, under reasonable hypotheses, in the

homogeneous case the maximum grows linearly, with a logarithmic correction, and is

tight around its median.

Branching random walks are also studied under some space inhomogeneous environ-

ments. A sample of those papers are [10, 23, 28, 37, 43, 45, 53].

Recently, Bramson and Zeitouni [16] and Fang [30] showed that the maxima of

branching random walks, recentered around their median, are still tight in time inhomo-

geneous environments satisfying certain uniform regularity assumptions, in particular,

the laws of the increments can vary with respect to time and the walks may have some

local dependence. A natural question is to ask, in that situation, what is the asymptotic

53
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behavior of the maxima. Similar questions were discussed in the context of branching

Brownian motion using PDE techniques, see e.g. Nolen and Ryzhik [72], using the fact

that the distributions of the maxima satisfy the KPP equation whose solution exhibits

a traveling wave phenomenon.

In all these models, while the linear traveling speed of the maxima is a relatively

easy consequence of the large deviation principle, the evaluation of the second order

correction term, like the ones in Bramson [14] and Addario-Berry and Reed [1], is more

involved and requires a detailed analysis of the walks; to our knowledge, it has so far

only been performed in the time homogeneous case.

Our goal is to start exploring the time inhomogeneous setup. As we will detail

below, the situation, even in the simplest setting, is complex and, for example, the

order in which inhomogeneity presents itself matters, both in the leading term and in

the correction term.

In this chapter, in order to best describe the phenomenon discussed above, we focus

on the simplest case of binary branching random walks where the diffusivity of the

particles takes two distinct values as a function of time. It is a modified version of

Definition 1 in Chapter 1.

We now describe the setup in detail. For � > 0, let N(0, �2) denote the normal

distributions with mean zero and variance �2. Let n be an integer, and let �2
1, �

2
2 > 0

be given. We start the system with one particle at location 0 at time 0. Suppose that

v is a particle at location Sv at time k. Then v dies at time k+ 1 and gives birth to two

particles v1 and v2, and each of the two offspring ({vi, i = 1, 2}) moves independently

to a new location Svi with the increment Svi−Sv independent of Sv and distributed as

N(0, �2
1) if k < n/2 and as N(0, �2

2) if n/2 ≤ k < n. Let Dn denote the collection of

all particles at time n. For a particle v ∈ Dn and i < n, we let vi denote the ith level

ancestor of v, that is the unique element of Di on the geodesic connecting v and the

root. We study the maximal displacement Mn = maxv∈Dn Sv at time n, for n large. 1

It will be clear that the analysis extends to a wide class of inhomogeneities with

finitely many values and ‘macroscopic’ change (similar to the description in the previous

paragraph), and to the Galton-Watson setup. A universal result that will allow for

1 Since one can understand a branching random walk as a ‘competition’ between branching and
random walk, one may get similar results by fixing the variance and changing the branching rate with
respect to time.
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continuous change of the variances is more complicated, is expected to present different

correction terms, and is the subject of further study.

In order to describe the results in a concise way, we recall the notation OP (1) for

stochastically boundedness. That is, if a sequence of random variables Rn satisfies

Rn = OP (1), then, for any � > 0, there exists an M such that P (∣Rn∣ > M) < � for all

n.

An interesting feature of Mn is that the asymptotic behavior depends on the order

relation between �2
1 and �2

2. That is, while

Mn =
(√

2 log 2 �eff

)
n− �

�eff√
2 log 2

log n+OP (1) (4.1)

is true for some choice of �eff and �, �eff and � take different expressions for different or-

dering of �1 and �2. Note that (4.1) is equivalent to that the sequence {Mn−Med(Mn)}n
is tight and

Med(Mn) =
(√

2 log 2 �eff

)
n− �

�eff√
2 log 2

log n+O(1),

where the median of a random variable X is denoted by Med(X) = sup{x : P (X ≤
x) ≤ 1

2}. In the following, we will use superscripts to distinguish different cases, see

(4.2), (4.3) and (4.4) below.

A special and well-known case is when �1 = �2 = �, i.e., all the increments are i.i.d..

In that case, the maximal displacement is described as follows:

M=
n =

(√
2 log 2 �

)
n− 3

2

�√
2 log 2

log n+OP (1); (4.2)

the proof can be found in [1], and its analog for branching Brownian motion can be found

in [14] using probabilistic techniques and [57] using PDE techniques. This homogeneous

case corresponds to (4.1) with �eff = � and � = 3
2 . In this chapter, we deal with the

extension to the inhomogeneous case. The main results are the following two theorems.

Theorem 6. When �2
1 < �2

2 (increasing variances), the maximal displacement is

M↑n =

(√
(�2

1 + �2
2) log 2

)
n−

√
�2

1 + �2
2

4
√

log 2
log n+OP (1), (4.3)

which is of the form (4.1) with �eff =

√
�2
1+�2

2
2 and � = 1

2 .
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Theorem 7. When �2
1 > �2

2 (decreasing variances), the maximal displacement is

M↓n =

√
2 log 2(�1 + �2)

2
n− 3(�1 + �2)

2
√

2 log 2
log n+OP (1), (4.4)

which is of the form (4.1) with �eff = �1+�2
2 and � = 3.

For comparison purpose, it is useful to introduce the model of 2n independent (inho-

mogeneous) random walks with centered independent Gaussian variables, with variance

profile as above. Denote by M ind
n the maximal displacement at time n in this model.

Because of the complete independence, it can be easily shown that

M ind
n =

(√
(�2

1 + �2
2) log 2

)
n−

√
�2

1 + �2
2

4
√

log 2
log n+OP (1) (4.5)

for all choices of �2
1 and �2

2. Thus, in this case, �eff =
√

(�2
1 + �2

2)/2 and � = 1/2. Thus,

the difference between M=
n and M ind

n when �2
1 = �2

2 lies in the logarithmic correction.

As commented (for branching Brownian motion) in [14], the different correction is due

to the intrinsic dependence between particles coming from the branching structure in

branching random walks.

Another related quantity is the sub-maximum obtained by a greedy algorithm, which

only considers the maximum over all decendents of the maximal particle at time n/2.

Applying (4.2), we find that the output of such algorithm is(√
2 log 2�1

n

2
− 3

2

�1√
2 log 2

log
n

2

)
+

(√
2 log 2�2

n

2
− 3

2

�2√
2 log 2

log
n

2

)
+OP (1)

=

√
2 log 2(�1 + �2)

2
n− 3(�1 + �2)

2
√

2 log 2
log n+OP (1). (4.6)

Comparing (4.6) with the theorems, we see that this algorithm yields the maximum

up to an OP (1) error in the case of decreasing variances (compare with (4.4)) but not

in the case of increasing variances (compare with (4.3)) or of homogeneous increments

(compare with (4.2)).

A few comparisons are now in order.

1. When the variances are increasing, M↑n is asymptotically (up to OP (1) error)

the same as M ind
n , which is exactly the same as the maximum of independent

homogeneous random walks with effective variance
�2
1+�2

2
2 .
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2. When the variances are decreasing, M↓n shares the same asymptotic behavior with

the sub-maximum (4.6). In this case, a greedy strategy yields the approximate

maximum.

3. With the same set of diffusivity constants {�2
1, �

2
2} but different order, M↑n is

greater than M↓n.

4. While the leading order terms in (4.2), (4.3) and (4.4) are continuous in �1 and �2

(they coincide upon setting �1 = �2), the logarithmic corrections exhibit a phase

transition phenomenon (they are not the same when we let �1 = �2).

We will prove Theorem 6 in Section 4.2 and Theorem 7 in Section 4.3. Before proving

the theorems, we state a tightness result.

Lemma 9. The sequences {M↑n −Med(M↑n)}n and {M↓n −Med(M↓n)}n are tight.

This lemma follows from Bramson and Zeitouni [16] or Fang [30]. One can write

down a similar recursion for the distribution of Mn to the one in those two papers,

except for different subscripts and superscripts. Since the argument there depends only

on one step of the recursion, it applies here directly without any change and leads to

the tightness result in the lemma.

A note on notation: throughout, we use C to denote a generic positive constant,

possibly depending on �1 and �2, that may change from line to line.

4.2 Increasing Variances: �2
1 < �2

2

In this section, we prove Theorem 6. We begin in Subsection 4.2.1 with a result on

the fluctuation of an inhomogeneous random walk. In the short Subsection 4.2.2 we

provide large-deviations based heuristics for our results. While it is not used in the

actual proof, it explains the leading term of the maximal displacement and gives hints

about the derivation of the logarithmic correction term. The actual proof of Theorem

6 is provided in subsection 4.2.3.
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4.2.1 Fluctuation of an Inhomogeneous Random Walk

Let

Sn =

n/2∑
i=1

Xi +
n∑

i=n/2+1

Yi (4.7)

be an inhomogeneous random walk, where Xi ∼ N(0, �2
1), Yi ∼ N(0, �2

2), and Xi and

Yi are independent. Define

sk,n(x) =

⎧⎨⎩
�2

1k

(�2
1 + �2

2)n2
x, 0 ≤ k ≤ n

2
,

�2
1
n
2 + �2

2(k − n
2 )

(�2
1 + �2

2)n2
x,

n

2
≤ k ≤ n,

(4.8)

and

fk,n =

⎧⎨⎩ cfk
2/3, k ≤ n/2,

cf (n− k)2/3, n/2 < k ≤ n.
(4.9)

As the following lemma says, conditioned on {Sn = x}, the path of the walk Sn follows

sk,n(x) with fluctuation less than or equal to fk,n at level k ≤ n.

Lemma 10. There exists a constant C > 0 (independent of n) such that

P (Sn(k) ∈ [sk,n(Sn)− fk,n, sk,n(Sn) + fk,n] for all 0 ≤ k ≤ n∣Sn) ≥ C,

where Sn(k) is the sum of the first k summands of Sn, i.e.,

Sn(k) =

⎧⎨⎩

k∑
k=1

Xk, k ≤ n/2,

n/2∑
k=1

Xk +

k∑
k=n/2+1

Yk, n/2 < k ≤ n.

Proof. Let S̃k,n = Sn(k) − sk,n(Sn). Then, similar to Brownian bridge, one can check

that S̃k,n are independent of Sn. To see this, first note that the covariance between S̃k,n

and Sn is

Cov(S̃k,n, Sn) = ES̃k,nSn − ES̃k,nESn = ES̃k,nSn,

since ESn = 0 and ES̃k,n = 0.
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For k ≤ n/2,

S̃k,n =

(
1− �2

1k

(�2
1 + �2

2)n2

) k∑
i=1

Xi −
�2

1k

(�2
1 + �2

2)n2

n/2∑
i=k+1

Xi −
�2

1k

(�2
1 + �2

2)n2

n∑
i=n/2+1

Yi.

Expand S̃k,nSn, take expectation, and then all terms vanish except for those containing

X2
i and Y 2

i . Taking into account that EX2
i = �2

1 and EY 2
i = �2

2, one has

Cov(S̃k,n, Sn) = ES̃k,nSn

=

(
1− �2

1k

(�2
1 + �2

2)n2

) k∑
i=1

EX2
i −

�2
1k

(�2
1 + �2

2)n2

n/2∑
i=k+1

EX2
i −

�2
1k

(�2
1 + �2

2)n2

n∑
i=n/2+1

EY 2
i

=

(
1− �2

1k

(�2
1 + �2

2)n2

)
k�2

1 −
�2

1k

(�2
1 + �2

2)n2
(n/2− k)�2

1 −
�2

1k

(�2
1 + �2

2)n2
(n/2)�2

2

= 0. (4.10)

For n/2 < k ≤ n, one can calculate Cov(S̃k,n, Sn) = 0 similarly as follows. First,

S̃k,n =
�2

2(n− k)

(�2
1 + �2

2)n2

n/2∑
i=1

Xi +
�2

2(n− k)

(�2
1 + �2

2)n2

k∑
i=n/2+1

Yi −
(

1− �2
2(n− k)

(�2
1 + �2

2)n2

) n∑
i=k+1

Yi.

Then, expanding S̃k,nSn and taking expectation, one has

Cov(S̃k,n, Sn) = ES̃k,nSn

=
�2

2(n− k)

(�2
1 + �2

2)n2

n/2∑
i=1

EX2
i +

�2
2(n− k)

(�2
1 + �2

2)n2

k∑
i=n/2+1

EY 2
i −

(
1− �2

2(n− k)

(�2
1 + �2

2)n2

) n∑
i=k+1

EY 2
i

=
�2

2(n− k)

(�2
1 + �2

2)n2
(n/2)�2

1 +
�2

2(n− k)

(�2
1 + �2

2)n2
(k − n/2)�2

2 −
(

1− �2
2(n− k)

(�2
1 + �2

2)n2

)
(n− k)�2

2

= 0

Therefore, S̃k,n are independent of Sn since they are Gaussian. Using this indepen-

dence,

P (Sn(k) ∈ [sk,n(Sn)− fk,n, sk,n(Sn) + fk,n] for all 0 ≤ k ≤ n∣Sn)

= P (S̃k,n ∈ [−fk,n, fk,n] for all 0 ≤ k ≤ n∣Sn)

= P (S̃k,n ∈ [−fk,n, fk,n] for all 0 ≤ k ≤ n).
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By calculation similar to (4.10), S̃k,n is a Gaussian sequence with mean zero and variance

k�2
1

((�2
1+�2

2)n−2�2
1k)

(�2
1+�2

2)n
for k ≤ n/2 and (n− k)�2

2
((�2

1+�2)n−2�2
2(n−k))

(�2
1+�2

2)n
for n/2 < k ≤ n. The

above quantity is

1− P (∣S̃k,n∣ > fk,n, for some 0 ≤ k ≤ n) ≥ 1−
n∑
k=1

P (∣S̃k,n∣ > fk,n).

Using a standard Gaussian estimate, e.g. [25, Theorem 1.4], the above quantity is at

least,

1−
n∑
k=1

c0√
k
e−

f2k,n
k
c1 ≥ 1− 2

∞∑
k=1

c0√
k
e−c

2
f c1k

1/3

:= C > 0

where c0, c1 are constants depending on �1 and �2, and C > 0 can be realized by

choosing the constant cf large. This proves the lemma.

4.2.2 Sample Path Large Deviation Heuristics

We explain (without giving a proof) what we expect for the order n term of Mn↑,
by giving a large deviation argument. The exact proof will be postponed to the next

subsection. Consider the same Sn as defined in (4.7) and a function �(t) defined on [0, 1]

with �(0) = 0. A sample path large deviation result, see [21, Theorem 5.1.2], tells us

that the probability for S⌊rn⌋ to be roughly �(r)n for 0 ≤ r ≤ s ≤ 1 is roughly e−nIs(�),

where

Is(�) =

∫ s

0
Λ∗r(�̇(r))dr, (4.11)

�̇(r) = d
dr�(r), and Λ∗r(x) = x2

2�2
1
, for 0 ≤ r ≤ 1/2, and x2

2�2
1
, for 1/2 < r ≤ 1. A first

moment argument would yield a necessary condition for a walk that roughly follows the

path �(r)n to exist among the branching random walks,

Is(�) ≤ s log 2, for all 0 ≤ s ≤ 1. (4.12)

This is equivalent to⎧⎨⎩

∫ s

0

�̇2(r)

2�2
1

dr ≤ s log 2, 0 ≤ s ≤ 1

2
,∫ 1

2

0

�̇2(r)

2�2
1

dr +

∫ s

1
2

�̇2(r)

2�2
2

dr ≤ s log 2,
1

2
≤ s ≤ 1.

(4.13)
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Otherwise, if (4.12) is violated for some s0, i.e., Is0(�) > s0 log 2, there will be no path

following �(r)n to �(s0)n, since the expected number of such paths is 2sne−nIs(�) =

e−(Is(�)−s log 2)n, which decreases exponentially.

Our goal is then to maximize �(1) under the constraints (4.13). By Jensen’s in-

equality and convexity, one can prove that it is equivalent to maximizing �(1) subject

to
�2(1/2)

�2
1

≤ 1

2
log 2,

�2(1/2)

�2
1

+
(�(1)− �(1/2))2

�2
2

≤ log 2. (4.14)

Note that the above argument does not necessarily require �2
1 < �2

2.

Under the assumption that �2
1 < �2

2, we can solve the optimization problem with

the optimal curve

�(s) =

⎧⎨⎩
2�2

1

√
log 2√

(�2
1 + �2

2)
s, 0 ≤ s ≤ 1

2
,

2�2
1

√
log 2√

(�2
1 + �2

2)

1

2
+

2�2
2

√
log 2√

(�2
1 + �2

2)
(s− 1

2
),

1

2
≤ s ≤ 1.

(4.15)

If we plot this optimal curve and the suboptimal curve leading to (4.6) as in Figure

4.1, it is easy to see that the ancestor at time n/2 of the actual maximum at time n is not

a maximum at time n/2, since
2�2

1

√
log 2√

(�2
1+�2

2)
<
√

2�2
1 log 2. A further rigorous calculation as

in the next subsection shows that, along the optimal curve (4.15), the branching random

walks have an exponential decay of correlation. Thus a fluctuation between n1/2 and

n that is larger than the typical fluctuation of a random walk is admissible. This is

consistent with the naive observation from Figure 4.1. This kind of behavior also occurs

in the independent random walks model, explaining why M↑n and M ind
n have the same

asymptotical expansion up to an O(1) error, see (4.3) and (4.5).

4.2.3 Proof of Theorem 6

With Lemma 10 and the observation from Section 4.2.2, we can now provide a proof of

Theorem 6, applying the first and second moments method to the appropriate sets. In

the proof, we use Sn to denote the walk defined by (4.7) and Sk to denote the sum of

the first k summand in Sn.

Proof of Theorem 6. Upper bound. Let an =
√

(�2
1 + �2

2) log 2n −
√
�2
1+�2

2

4
√

log 2
log n. Let

N1,n =
∑

v∈Dn 1{Sv>an+y} be the number of particles at time n whose displacements are
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n�2

n

Figure 4.1: Dashed: maximum at time n of BRW starting from maximum at time n/2.
Solid: maximum at time n of BRW starting from time 0.

greater than an + y. Then

EN1,n = 2nP (Sn ≥ an + y) ≤ c2e
−c3y

where c2 and c3 are constants independent of n and the last inequality is due to the fact

that Sn ∼ N(0,
�2
1+�2

2
2 n). So we have, by the Chebyshev’s inequality,

P (M↑n > an + y) = P (N1 ≥ 1) ≤ EN1,n ≤ c2e
−c3y. (4.16)

Therefore, this probability can be made as small as we wish by choosing a large y.

Lower bound. Consider the walks which are at sn ∈ In = [an, an + 1] at time n

and follow sk,n(sn), defined by (4.8), at intermediate times with fluctuation bounded

by fk,n, defined by (4.9). Let Ik,n(x) = [sk,n(x)− fk,n, sk,n(x) + fk,n] be the ‘admissible’

interval at time k given Sn = x, and let

N2,n =
∑
v∈Dn

1{Sv∈In,Svk∈Ik,n(Sv) for all 0≤k≤n}

be the number of such walks. By Lemma 10,

EN2,n = 2nP (Sn ∈ In, Sn(k) ∈ Ik,n(Sn) for all 0 ≤ k ≤ n)

= 2nE(1{Sn∈In}P (Sn(k) ∈ Ik,n(Sn) for all 0 ≤ k ≤ n∣Sn))

≥ 2nCP (Sn ∈ In) ≥ c4. (4.17)
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Next, we bound the second moment EN2
2,n. By considering the location of any pair

v1, v2 ∈ Dn of particles at time n and at their common ancestor v1 ∧ v2, we have

EN2
2,n = E

∑
v1,v2∈Dn

1{Svi∈In, S(vi)
j∈Ij,n(S

(vi)
j ) for all 0≤j≤n,i=1,2}

=
n∑
k=0

∑
v1,v2∈Dn
v1∧v2∈Dk

E1{Svi∈In, S(vi)
j∈Ij,n(S

(vi)
j ) for all 0≤j≤n,i=1,2}

≤
n∑
k=0

∑
v1,v2∈Dn
v1∧v2∈Dk

P (Sv1 ∈ In, S(v1)j ∈ Ij,n(S(v1)j ) for all 0 ≤ j ≤ n)

⋅P (Sv2 − Sv1∧v2 ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In),

where we use the independence between Sv2 − Sv1∧v2 and S(v1)j in the last inequality.

And the last expression (double sum) in the above display is

n∑
k=0

22n−kP (Sn ∈ In, Sn(j) ∈ Ij,n(Sn) for all 0 ≤ j ≤ n)

⋅P (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In)

≤ EN2,n

n∑
k=0

2n−kP (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In).

The above probabilities can be estimated separately when k ≤ n/2 and n/2 < k ≤ n.

For k ≤ n/2, Sn − Sn(k) ∼ N(0, n2 (�2
1 + �2

2)− k�2
1). Thus,

P (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In)

≤ 2fk,n
1√

�((�2
1 + �2

2)n− 2k�2
1)

exp

⎛⎜⎝−
(

(1− 2�2
1k

(�2
1+�2

2)n
)an − fk,n

)2

(�2
1 + �2

2)n− 2k�2
1

⎞⎟⎠
≤ 2

−n+
2�21

�21+�
2
2
k+o(k)

.

For n/2 < k ≤ n, Sn − Sn(k) ∼ N(0, (n− k)�2
2). Thus,

P (Sn − Sn(k) ∈ [x− sk,n(x)− fk,n, x− sk,n(x) + fk,n], x ∈ In)

≤ 2fk,n
1√

2�(n− k)�2
2

exp

⎛⎜⎝−
(

2�2
2(n−k)

(�2
1+�2

2)n
an − fk,n

)2

2(n− k)�2
2

⎞⎟⎠
≤ 2

− 2�22
�21+�

2
2

(n−k)+o(n−k)
.
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Therefore,

EN2
2,n ≤ EN2,n

⎛⎝n/2∑
k=0

2
�21−�

2
2

�21+�
2
2
k+o(k)

+
n∑

k=n/2+1

2
�21−�

2
2

�21+�
2
2

(n−k)+o(n−k)

⎞⎠ ≤ c5EN2,n, (4.18)

where c5 = 2
∑∞

k=0 2
�21−�

2
2

�21+�
2
2
k+o(k)

. By the Cauchy-Schwartz inequality,

P (M↑n ≥ an) ≥ P (N2,n > 0) ≥ (EN2,n)2

EN2
2,n

≥ c4/c5 > 0. (4.19)

The upper bound (4.16) and lower bound (4.19) imply that there exists a large

enough constant y0 such that

P (M↑n ∈ [an, an + y0]) ≥ c4

2c5
> 0.

Lemma 9 tells us that the sequence {M↑n−Med(M↑n)}n is tight, so M↑n = an+O(1) a.s..

That completes the proof.

4.3 Decreasing Variances: �2
1 > �2

2

We will again separate the proof of Theorem 7 into two parts, the lower bound and the

upper bound. Fortunately, we can apply (4.2) directly to get a lower bound so that we

can avoid repeating the second moment argument. However, we do need to reproduce

(the first moment argument) part of the proof of (4.2) in order to get an upper bound.

4.3.1 An Estimate for Brownian Bridge

Toward this end, we need the following analog of Bramson [14, Proposition 1’]. The

original proof in Bramson’s used the Gaussian density and reflection principle of con-

tinuous time Brownian motion, which also hold for the discrete time version. The proof

extends without much effort to yield the following estimate for the Brownian bridge

Bk − k
nBn, where Bn is a random walk with standard normal increments.

Lemma 11. Let

L(k) =

⎧⎨⎩
0 if s = 0, n,

100 log k if k = 1, . . . , n/2,

100 log(n− k) if k = n/2, . . . , n− 1.
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Then, there exists a constant C such that, for all y > 0,

P (Bn −
k

n
Bn ≤ L(k) + y for 0 ≤ k ≤ n) ≤ C(1 + y)2

n
.

The coefficient 100 before log is chosen large enough to be suitable for later use, and

is not crucial in Lemma 11.

4.3.2 Proof of Theorem 7

Before proving the theorem, we discuss the equivalent optimization problems (4.13) and

(4.14) under our current setting �2
1 > �2

2. It can be solved by employing the optimal

curve

�(s) =

⎧⎨⎩
√

2 log 2�1s, 0 ≤ s ≤ 1

2
,√

2 log 2�1
1

2
+
√

2 log 2�2(s− 1

2
),

1

2
≤ s ≤ 1.

(4.20)

If we plot the curve �(s) and the suboptimal curve leading to (4.6) as in Figure 4.2,

these two curves coincide with each other up to order n. Figure 4.2 seems to indicate

that the maximum at time n for the branching random walk starting from time 0 comes

from the maximum at time n/2. As will be shown rigorously, if a particle at time n/2

is left significantly behind the maximum, its descendents will not be able to catch up

by time n. The difference between Figure 4.1 and Figure 4.2 explains the difference in

the logarithmic correction between M↑n and M↓n.

Proof of Theorem 7. Lower Bound. For each i = 1, 2, the formula (4.2) implies that

there exist yi (possibly negative) such that, for branching random walk at time n/2

with variance �2
i ,

P

(
Mn/2 >

√
2 log 2�i

n

2
− 3�i

2
√

2 log 2
log

n

2
+ yi

)
≥ 1

2
.

By considering a branching random walk starting from a particle at time n/2, whose

location is greater than
√

2 log 2�1
n
2 −

3�1
2
√

2 log 2
log n

2 +y1, and applying the above display

with i = 1 and 2,we know that

P

(
M↓n >

√
2 log 2(�1 + �2)

2
n− 3(�1 + �2)

2
√

2 log 2
log

n

2
+ y1 + y2

)
≥ 1

4
. (4.21)
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n�2

n

Figure 4.2: Dash: both the optimal path to the maximum at time n and the path
leading to the maximum of BRW starting from the maximum at time n/2. Solid: the
path to the maximal (rightmost) descendent of a particle at time n/2 that is significantly
behind the maximum then.

Upper Bound. We will use a first moment argument to prove that there exists a

constant y (large enough) such that

P

(
M↓n >

√
2 log 2(�1 + �2)

2
n− 3(�1 + �2)

2
√

2 log 2
log

n

2
+ y

)
<

1

10
. (4.22)

Similarly to the last argument in the proof of Theorem 6, the upper bound (4.22) and the

lower bound (4.21), together with the tightness result from Lemma 9, prove Theorem

7. So it remains to show (4.22).

Toward this end, we define a polygonal line (piecewise linear curve) leading to
√

2 log 2(�1+�2)
2 n− 3(�1+�2)

2
√

2 log 2
log n

2 as follows: for 1 ≤ k ≤ n/2,

M(k) =
k

n/2
(
√

2 log 2�1
n

2
− 3�1

2
√

2 log 2
log

n

2
);

and for n/2 + 1 ≤ k ≤ n,

M(k) = M(n/2) +
k − n/2
n/2

(
√

2 log 2�2
n

2
− 3�2

2
√

2 log 2
log

n

2
).
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Note that k
n log n ≤ log k for k ≤ n. Also define

f(k) =

⎧⎨⎩

y k = 0, n2 , n,

y + 5�1
2
√

2 log 2
log k 1 ≤ k ≤ n/4,

y + 5�1
2
√

2 log 2
log(n2 − k) n

4 ≤ k ≤
n
2 − 1,

y + 5�2
2
√

2 log 2
log(k − n

2 ) n
2 + 1 ≤ k ≤ 3n

4 ,

y + 5�2
2
√

2 log 2
log(n− k) 3n

4 ≤ k ≤ n− 1.

We will use f(k) to denote the allowed offset (deviation) from M(k) in the following

argument.

The probability on the left side of (4.22) is equal to

P (∃v ∈ Dn such that Sv > M(n) + y).

For each v ∈ Dn, we define �v = inf{k : Svk > M(k) + f(k)}; then (4.22) is implied by

n∑
k=1

P (∃v ∈ Dn such that Sv > M(n) + y, �v = k) < 1/10. (4.23)

We will split the sum into four regimes: [1, n/4], [n/4, n/2], [n/2, 3n/4] and [3n/4, n],

corresponding to the four parts of the definition of f(k). The sum over each regime,

corresponding to the events in the four pictures in Figure 4.3, can be made small. The

first two are the discrete analog of the upper bound argument in Bramson [14]. We will

present a complete proof for the first two cases, since the argument is not too long and

the argument (not only the result) is used in the latter two cases.

(i). When 1 ≤ k ≤ n/4, we have, by the Chebyshev’s inequality,

P (∃v ∈ Dn such that Sv > M(n) + y, �v = k)

≤ P (∃v ∈ Dk, such that Sv > M(k) + f(k)) ≤ E
∑
v∈Dk

1{Sv>M(k)+f(k)}.

The above expectation is less than or equal to

C2k√
k
e
− (M(k)+f(k))2

2�21 ≤ C2k√
k

exp

⎛⎜⎝−
(√

2 log 2�1k + �1√
2 log 2

log k + y
)2

2k�2
1

⎞⎟⎠
≤ Ck−3/2e

−
√
2 log 2
�1

y
. (4.24)
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(a) 1 to n/4 (b) n/4 to n/2

(c) n/2 to 3n/4 (d) 3n/4 to n

Figure 4.3: Four small probability events. Dash line: M(k). Solid curve: M(k) + f(k).
Polygonal line: a random walk.

Summing these upper bounds over k ∈ [1, n/4], we obtain that

n/4∑
k=1

P (∃v ∈ Dn such that Sv > M(n) + y, �v = k) ≤ Ce−
√
2 log 2
�1

y
∞∑
k=1

k−3/2. (4.25)

The right side of the above inequality can be made as small as we wish, say at most
1

100 , by choosing y large enough.

(ii). When n/4 ≤ k ≤ n/2, we again have, by Chebyshev’s inequality,

P (∃v ∈ Dn such that Sv > M(n) + y, �v = k)

≤ P (∃v ∈ Dk, such that Sv > M(k) + f(k), and Svi ≤M(i) + f(i) for 1 ≤ i ≤ k)

≤ E
∑
v∈Dk

1{Sv>M(k)+f(k), and Svi≤M(i)+f(i) for 1≤i<k}.

Letting Sk be a copy of the random walks before time n/2, then the above expectation

is equal to

2kP (Sk > M(k) + f(k), and Si ≤M(i) + f(i) for 1 ≤ i < k)

≤ 2kP (Sk > M(k) + f(k), and
1

�1
(Si −

i

k
Sk) ≤

1

�1
(f(i)− i

k
f(k)) for 1 ≤ i ≤ k).

(4.26)
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1
�1

(Si − i
kSk) is a discrete Brownian bridge and is independent of Sk. Because of this

independence, the above quantity is less than or equal to

2kP (Sk > M(k) + f(k)) ⋅ P (
1

�1
(Si −

i

k
Sk) ≤

1

�1
(f(i)− i

k
f(k)) for 1 ≤ i < k).

The first probability can be estimated similarly to (4.24),

P (Sk > M(k) + f(k))

≤ C√
k

exp

⎛⎜⎝−
(√

2 log 2�1k − 3�1
2
√

2 log 2
log k + 5�1

2
√

2 log 2
log(n2 − k) + y

)2

2k�2
1

⎞⎟⎠
≤ C2−kk(

n

2
− k)−5/2e

−
√
2 log 2
�1

y
. (4.27)

To estimate the second probability, we first estimate 1
�1

(f(i)− i
kf(k)). It is less than

or equal to 1
�1
f(i) = y

�1
+ 5

2
√

2 log 2
log i for i ≤ k/2 < n/4, and, for k/2 ≤ i < k, it is less

than or equal to

5

2
√

2 log 2
log(n/2− i)− i

k

5

2
√

2 log 2
log(n/2− k) +

y

�1
(1− i

k
)

=
5

2
√

2 log 2

(
log(n/2− i)− log(n/2− k) +

k − i
k

log(n/2− k)

)
+

y

�1
(1− i

k
)

≤ 5

2
√

2 log 2

(
log(k − i) +

k − i
k

log k

)
+

y

�1
≤ 100 log(k − i) +

y

�1
.

Therefore, applying Lemma 11, we have

P

(
1

�1
(Si −

i

k
Sk) ≤

1

�1
(f(i)− i

k
f(k)) for 1 ≤ i ≤ k

)
≤ P

(
1

�1
(Si −

i

k
Sk) ≤ 100 log i+

y

�1
for 1 ≤ i ≤ k/2, and

1

�1
(Si −

i

k
Sk) ≤

100 log(k − i) +
y

�1
for k/2 ≤ i ≤ k

)
≤ C(1 + y)2/k, (4.28)

where C is independent of n, k and y.

By all the above estimates (4.26), (4.27) and (4.28),

n/2∑
k=n/4

P (∃v ∈ Dn such that Sv > M(n) + y, �v = k) ≤ C(1 + y)2e
−
√
2 log 2
�1

y
∞∑
k=1

k−5/2.

(4.29)
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This can again be made as small as we wish, say at most 1
100 , by choosing y large

enough.

(iii). When n/2 ≤ k ≤ 3n/4, we have

P (∃v ∈ Dn such that Sv > M(n) + y, �v = k)

≤ P (∃v ∈ Dk such that Sv > M(k) + f(k) and Svi ≤M(i) + f(i) for 1 ≤ i ≤ n/2)

≤ E
∑
v∈Dk

1{Sv>M(k)+f(k), and Svi≤M(i)+f(i) for 1≤i<n/2}.

The above expectation is, by conditioning on {Svn/2 = M(n) + x},

2k
∫ y

−∞
P (S′k−n/2 > M(k)−M(n/2) + f(k)− x) ⋅

⋅P (Si −
i

n/2
Sn/2 ≤ f(i)− i

k
x for 1 ≤ i < n/2) ⋅

⋅pSn/2(M(n/2) + x)dx, (4.30)

where S and S′ are two copies of the random walks before and after time n/2, respec-

tively, and pSn/2(x) is the density of Sn/2 ∼ N(0,
�2
1n
2 ).

We then estimate the three factors of the integrand separately. The first one, which

is similar to (4.24), is bounded above by

P (S′k−n/2 > M(k)−M(n/2) + f(k)− x) ≤ C√
k − n/2

e
− (M(k)−M(n/2)+f(k)−x)2

2(k−n/2)�22

≤ C2−(k−n/2)(k − n

2
)−3/2e

−
√
2 log 2
�2

(y−x)
.

The second one, which is similar to (4.28), is estimated using Lemma 11,

P (Si −
i

n/2
Sn/2 ≤ f(i)− i

k
x for 1 ≤ i < n/2) ≤ C(1 + 2y − x)2/n. (4.31)

The third one is simply the normal density

pSn/2(M(n/2) + x) =
C√
n
e
− (M(n/2)+x)2

n�21 ≤ C2−n/2ne
−
√
2 log 2
�1

x
. (4.32)

Therefore, the integral term (4.30) is no more than

C(k − n/2)−3/2e
−
√
2 log 2
�2

y
∫ y

−∞
(1 + 2y − x)2e

(
√
2 log 2
�2

−
√
2 log 2
�1

)x
dx,
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which is less than or equal to C(1 + y)2e
−
√
2 log 2
�1

y
(k − n/2)−3/2 since �2 < �1.

Summing these upper bounds together, we obtain that

3n/4∑
k=n/2

P (∃v ∈ Dn such that Sv > M(n) + y, �v = k) ≤ C(1 + y)2e
−
√

2 log 2
�1

y
∞∑
k=1

k−3/2.

(4.33)

This can again be made as small as we wish, say at most 1
100 , by choosing y large

enough.

(iv). When 3n/4 < k ≤ n, we have

P (∃v ∈ Dn such that Sv > M(n) + y, �v = k)

≤ P (∃v ∈ Dk such that Sv > M(k) + f(k), and Svi ≤M(i) + f(i) for 1 ≤ i < k)

≤ E
∑
v∈Dk

1{Sv>M(k)+f(k), and Svi≤M(i)+f(i), for 1≤i<k}.

The above expectation is, by conditioning on {Svn/2 = M(n) + x},

2k
∫ y

−∞
P (S′k−n/2 > M(k)−M(n/2) + f(k)− x,

S′i < M(i)−M(n/2) + f(i)− x, for n/2 < i ≤ k)

⋅P (Si −
i

n/2
Sn/2 ≤ f(i)− i

k
x for 1 ≤ i < n/2) ⋅ pSn/2(M(n/2) + x)dx

where S and S′ are copies of the random walks before and after time n/2, respectively.

The second and third probabilities in the integral are already estimated in (4.31)

and (4.32). It remains to bound the first probability. Similar to (4.26), it is bounded

above by

P
(
S′k−n/2 > M(k)−M(n/2) + f(k)− x, S′i < M(i)−M(n/2) + f(i)− x,

for n/2 < i ≤ k
)
≤ C(1 + 2y − x)2e

−
√
2 log 2
�2

(2y−x)
(n− k)−5/2.

With these estimates, we obtain in this case, in the same way as in (iii), that

n∑
k=3n/4

P (∃v ∈ Dn such that Sv > M(n) + y, �v = k) ≤ C(1 + y)2e
−
√
2 log 2
�1

y
∞∑
k=1

k−5/2.

(4.34)
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This can again be made as small as we wish, say at most 1
100 , by choosing y large

enough.

Summing (4.25), (4.29), (4.33) and (4.34), then (4.23) and thus (4.22) follow. This

concludes the proof of Theorem 7.

4.4 Further Remarks

We state several immediate generalization and open questions related to binary branch-

ing random walks in time inhomogeneous environments where the diffusivity of the

particles takes more than two distinct values as a function of time and changes macro-

scopically.

Results involving finitely many monotone variances can be obtained similarly to the

results on two variances in the previous sections. Specifically, let k ≥ 2 (constant) be

the number of inhomogeneities, {�2
i > 0 : i = 1, . . . , k} be the set of variances and

{ti > 0 : i = 1, . . . , k}, satisfying
∑k

i=1 ti = 1, denote the portions of time when �2
i

governs the diffusivity. Consider binary branching random walk up to time n, where

the increments over the time interval [
∑j−1

i=1 tin,
∑j

i=1 tin) are N(0, �2
j ) for 1 ≤ j ≤ k.

When �2
1 < �2

2 < ⋅ ⋅ ⋅ < �2
k are strictly increasing, by an argument similar to that in

Section 4.2, the maximal displacement at time n, which behaves asymptotically like the

maximum for independent random walks with effective variance
∑k

i=1 ti�
2
i , is√√√⎷2(log 2)

k∑
i=1

ti�2
i n−

1

2

√∑k
i=1 ti�

2
i√

2 log 2
log n+OP (1).

When �2
1 > �2

2 > ⋅ ⋅ ⋅ > �2
k are strictly decreasing, by an argument similar to that in

Section 4.3, the maximal displacement at time n, which behaves like the sub-maximum

chosen by the previous greedy strategy (see (4.6)), is

√
2 log 2(

k∑
i=1

ti�i)n−
3

2
(
k∑
i=1

�i√
2 log 2

) log n+OP (1).

Results on other inhomogeneous environments are open and are subjects of further

study. We only discuss some of the non rigorous intuition in the rest of this section.

In the finitely many variances case, when {�2
i : i = 1, . . . , k} are not monotone in

i, the analysis of maximal displacement could be case-by-case and a mixture of the
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previous monotone cases. The leading order term is surely a result of the optimization

problem (4.12) from the large deviation. But, the second order term may depend on the

fluctuation constraints of the path leading to the maximum, as in the monotone case.

One could probably find hints on the fluctuation from the optimal curve solving (4.12).

In some segments, the path may behave like Brownian bridge (as in the decreasing

variances case), and in some segments, the path may behave like a random walk (as in

the increasing variances case).

In the case where the number of different variances increases as the time n increases,

analysis seems more challenging. A special case is when the variances are decreasing,

for example, at time 0 ≤ i ≤ n the increment of the walk is N(0, �2
i,n) with �2

i,n =

2 − i/n. The heuristics (from the finitely many decreasing variances case) seem to

indicate that the path leading to the maximum at time n cannot be left ‘significantly’

behind the maxima at all intermediate levels. This path is a ‘rightmost’ path. From the

intuition of [31] and Chapter 2, if the allowed fluctuation is of order n� (� < 1/2), then

the correction term is of order n1−2�, instead of log n in (4.1). However, the allowed

fluctuation from the intermediate maxima, implicitly imposed by the variances, becomes

complicated as the difference between the consecutive variances decreases to zero. A

good understanding of this fluctuation may be a key to finding the correction term.
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