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Identification of Items that Show Nonuniform DIF

Pankaja Narayanon, Educational Testing Service

H. Swaminathan, University of Massachusetts at Amherst

This study compared three procedures&mdash;the Mantel-
Haenszel (MH), the simultaneous item bias (SIB), and the
logistic regression (LR) procedures&mdash;with respect to their
Type I error rates and power to detect nonuniform dif-
ferential item functioning (DIF). Data were simulated to
reflect a variety of conditions: The factors manipulated
included sample size, ability distribution differences
between the focal and the reference groups, proportion
of DIF items in the test, DIF effect sizes, and type of item.
384 conditions were studied. Both the SIB and LR proce-
dures were equally powerful in detecting nonuniform

DIF under most conditions. The MH procedure was not
very effective in identifying nonuniform DIF items that
had disordinal interactions. The Type I error rates were
within the expected limits for the MH procedure and
were higher than expected for the SIB and LR proce-
dures ; the SIB results showed an overall increase of
approximately 1% over the LR results. Index terms:

differential item functioning, logistic regression statistic,
Mantel-Haenszel statistic, nondirectional DIF, simulta-
neous item bias statistic, SIBTEST, Type I error rate,
unidirectional DIF.

In recent years, there has been concern over the issue of differential item functioning (DIP) in educational
data. DIF is said to exist if examinees having the same underlying ability have different probabilities of getting
an item correct regardless of group membership. From an item response theory (IRT) perspective, an item
shows DIP if the item response functions (ws) evaluated across two different subgroups are not identical.

According to Mellenbergh (1982), two types of DIP can occur in educational dichotomous data. Uniform
DIF occurs when there is no interaction between ability level and group membership. Nonuniform DIP occurs
when there is interaction between ability level and group membership. In general, although uniform DIP
occurs more often than nonuniform DIP in standardized tests, n&reg;nunif&reg; ly functioning items have been
identified in real data (Hambleton & Rogers, 1989; Linn, Levine, Hastings, & Wardrop, 1981; Mellenbergh,
1982).
A variety of statistical procedures have been developed for detecting DIF (Berk, 1982; Millsap & Everson,

1993). IRT provides a general framework for studying DIF. Unfortunately, ~t’r-b~scd DIF procedures require
large sample sizes, a condition that is often difficult to meet in practice. Because of this, researchers have
developed parametric and nonparametric methods to identify DIF that are effective and, at the same time, easy
to implement in practice.

Some of the most promising nonparametric methods for detecting DIF are the Mantel-Haenszel (MH) pro-
cedure (Holland & Thayer, 1988), the standardization procedure (Dorans & Kulick, 1986), and the simulta-
neous item bias procedure (SIBTEST, henceforth referred to as SIB; Shealy & Stout, 1993). MH and SIB share a
common framework. They are computationally simple, inexpensive, easy to implement in practice, and do
not require large sample sizes. Also, both procedures provide statistics that have associated tests of signifi-
cance.

Swaminathan & Rogers (1990) presented a logistic regression (LR) procedure and demonstrated that it can
be implemented easily in practice. A major advantage of the LR procedure is that it is a model-based proce-
dure with the ability variable treated as continuous. It also allows for testing the hypothesis of no interaction
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between the ability variable and the group variable. In fact, the MH procedure can be conceptualized as being
based on the LR model in which the ability variable is treated as discrete and no interaction between the ability
variable and group membership is permitted. The LR procedure is therefore expected to improve on the MH
procedure for detecting nonuniform DIF. Previous research has shown that the MH, SIB, and LR procedures are
equally effective in the identification of uniform D~ (Ackerman, 1992; Narayanan & Swaminathan, 1994;
Rogers & Swaminathan, 1993a; Roussos & Stout, 1993; Swaminathan & Rogers, 1990).

Swaminathan & Rogers (1990) distinguished two types of nonuniform DIF. Ability typically falls in the
range -3 to +3 on the ability level scale in item response theory. When the IRFs cross in the middle of this
range, a type of nonuniform DIF occurs that is analogous to a disordinal interaction in analysis of variance
(ANOVA) models (Swaminathan & Rogers, 1990). When the IRFs cross outside this range or when the s are
not parallel but do not cross (a situation that may occur with the three-parameter IRT model), a type of nonuni-
form DIP analogous to ordinal interaction occurs. Li & Stout (1993) termed these two types of DIP
&dquo;nondirectional&dquo; and &dquo;unidirectional,&dquo; respectively. Using simulated data, Rogers & Swaminathan (1993a)
showed that although the MH procedure is capable of detecting ordinal or unidirectional D~, it is not capable
of identifying disordinal or nondirectional 1~I~. The LR procedure can adequately identify nondirectional DIP
because it includes a term for interaction between group membership and ability. The major advantage of the
LR procedure is that it can be expanded to condition on more than one ability variable.

Recently, a modification of the SIB procedure, known as crossing-SIBTEST (CRO-SIB), was developed (Li
& Stout, 1993). CRO-SIB is designed to detect nonuniform DIP and has the potential for conditioning on
more than one ability variable. However, the CRO-SIB procedure has not been studied extensively. Also, to
date, there have not been any studies comparing CRO-SIB with MH and LR. Given the possibility that it could
be superior to the MH and LR procedures in some situations, a detailed investigation of the three procedures
is important and timely.

The main objectives of this study were: (1) to investigate and compare the Type I error rates and power
of the MH, CRO-SIB, and LR procedures, and (2) to determine the conditions under which each procedure is
optimal for detecting nonuniform DIF.

of the DIF Statistics

The ant~l- ~~nszel Procedure

The MH procedure (Holland & Thayer, 1988) compares the probabilities of a correct response in the focal
and reference groups for examinees of the same ability as reflected in total number-correct score. The group
an item is suspected of favoring is referred to as the reference group; the group in which an item is suspected
of differentially functioning is called the focal group. In order to compare the probabilities of a correct re-
sponse, item response data for the reference and the focal group members are arranged into a series of 2 x 2
contingency tables. One table is constructed for each test item to accommodate group x item response at each
score level. In all, K 2 x 2 contingency tables are constructed, where K is the number of unique scores for the
test. The 2 x 2 contingency table for the ith item and jth score level is shown in Table 1.

The null DIF hypothesis is that the odds of correctly answering the item at a given score level j are the

Table 1
2 x 2 Contingency ’Table at the jth Score Level

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



259

same for the reference and the focal group at all K levels of the matching variable. The null and alternate
constant odds ratio hypothesis at score level can be expressed as

and

where 1tRj is the probability that a reference group (R) examinee with total score j will answer the studied
item correctly, and ~F~ is the probability that a focal group (F) examinee with total score j will provide a
correct answer to the studied item.

Equations 1 and 2 presume uniform DIF, if DIF exists. Uniform DIF is said to occur when the difference
in the probability of a correct answer to an item between two groups is constant across all ability levels.
The parameter a is called the common odds ratio. When the value of a is equal to 1.0, the probability of a
correct response is equal for both groups. A value of a greater than 1.0 indicates that reference group
members are more likely to answer the item correctly. Similarly, a value of a less than 1.0 indicates that
focal group members are more likely to answer the item correctly. An estimate of the common odds ratio a,
known as aMH’ also provides an estimate of DIF effect size. It can be expressed as

From the K 2 x 2 tables for a given item, the MH statistic, X2 MH’ with a continuity correction is computed as

where ~4~ is the observed number of examinees in the reference group at score level j answering the item
correctly,

and

The Simultaneous Item Bias Procedure

The SIB procedure (Shealy & Stout, 1993) emphasizes the examination of DIF at the test level and
provides a statistical test to detect if DIP is present in one or more items on a test simultaneously. To test
whether a set of items in the test is functioning differentially, item response data for the reference and focal
groups are formed into two subtests-a &dquo;suspect&dquo; subtest containing the items that are to be tested for DIF
(this can be one or more items) and a &dquo;valid&dquo; subtest containing the items that measure the construct that
the test is purported to measure (i.~., those items not suspected of functioning differentially). To calculate
the SIB statistic, examinee subtest scores on the valid subtest are used to group the reference and focal

groups into score levels so that, for n items in the test, the number of score levels on the valid subtest will
be equal to (at most) n + 1. Then, for reference and focal group members with the same valid subtest
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scores, the average proportion correct (across examinees) on the suspect subtest is calculated.
Shealy & Stout’s (1991) DIF index, 0,, is a parameter denoting the amount of unidirectional DIP (the

noncrossing type of DIF in which the same group has a higher proportion correct at all valid subtest score
levels). A 0, value of .1 indicates that the average difference in the probabilities of correct response of the
&dquo;studied&dquo; subtest score between reference and focal group examinees at the same ability level is . .1.

For unidirectional DIP, the hypothesis of interest is

For nondirectional DIF (the modification of SIB for detecting nonuniform DIF called CRO-SIB), the hypoth-
esis of interest is

The two. hypotheses are tested simultaneously. To control for Type I error, the Bonferroni adjustment is
used; that is, each hypothesis is tested at the a/2 level of significance so that the overall Type I error rate
does not exceed cc.

Let

be the total score on the valid subtest, where lg denotes the response to item i scored as 0 or 1, and

be the total score on the studied subtest. Let 1~ and Y,, be the average score in the suspect subtest for all
examinees in the reference and the focal groups, respectively, attaining a valid subtest score X = k, (k = 0,
1, 2, ..., n). Because (Y~ - Y~k) is the difference in performance in the suspect subtest across the two groups
among examinees of the same ability, it will equal 0.0 if the suspect subtest items do not show DIF. How-
ever, when there are differences in the ability distribution of the reference and the focal groups, even in the
case of no l~t~’, (Y~ - Y,,) will differ systematically from 0.0 and will tend to indicate the presence of DIP
even though no DIP is present (Shealy & Stout, 1993). Therefore, if differences in ability distributions of
the reference and focal groups exist, a model-based adjustment known as the regression correction is used
on the means of P. and Y,,,.

According to Shealy & Stout (1993), with the regression correction in place, cautions about the ob-
served score as the matching criterion in place of true scores do not apply to the SIB procedure. [For more
details on the classical test theory and item response theory-based justification for the regression correc-
tion, see Shealy & Stout (1993).] It follows that an estimate Øu of 0, is

where A is the proportion among the focal group examinees attaining a score of X = k on the valid subtesto
The SIB test statistic, BU’ for testing the hypothesis of no uniform DIF is

where &(0,) is the estimated standard error of fi~. The expression for ~((3u) is given in Shealy & Stout

(1993).
An estimate Pc of ~3c is defined as
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where ko is the valid subtest score at which crossing is estimated to occur. A detailed description of how the
crossing point is estimated is given in Li & Stout (1993, p. 3). The SIB test statistic Be for testing the
hypothesis of nonuniform DIP is defined as .

The expression for 6 ( fl~ ) is given in Li & Stout ( 1993). The SIB statistics ~U and Be have approximate
N(O, 1) distributions when no DIF is present. The null hypothesis of no DIF is rejected if the value of Bu or
Be exceeds the upper 100(1 - a)th percentile point of the standard normal distribution.

The Logistic Regression Procedure

The standard equation of the LR model for predicting the dichotomous response variables given a set of
independent variables (Bock, 1975) is

where

P(upj = 1) is the response of person p in group j to the item,
0,,j is the intercept parameter,
~ Ij is the slope parameter for group j,
8pj is the observed ability of person p in group j.

According to the definition of DIF, an item is unbiased if individuals having the same ability have
different probabilities of answering an item correctly. Therefore, in the above model, if j3~j = ~02 and fi~~ =

~12’ it follows that the LR functions for the two groups are the same and the item is unbiased.
By definition, an item exhibits uniform DIF if the LR functions for the two groups are parallel but have

different intercepts (i.e., if 0,,;t ~02’ but ~11 = ~12)’ An item exhibits nonuniform DIF if there is an interaction
between the ability level and group membership (i.e., ~11 &dquo;* ~12)’ In the case of nonuniform DIF, the LR
functions are not parallel.

The LR model can be reparameterized to include a parameter corresponding to uniform DIP and a param-
eter corresponding to nonuniform DIF in the form

where

and where

P(up) is the probability of a correct response for person p in group j,
TO is the intercept,
’1:1 is the coefficient of ability,
~2 (= P.1 - ~02) is the group difference,
~3 (= ~11 - ~12) is the interaction between group and ability, and
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g represents group membership, so that

In the above model, an item exhibits uniform DIF if 1:2 -:¡t. 0 and 1:3 = 0, and nonuniform DIF if ~~ ~ 0 (whether
or not T2 = 0). In the model given by Equation 17, the parameters of each item can be estimated using
maximum likelihood estimation. Estimation proceeds by maximizing the likelihood function given by

where

~7 is the sample size,
n is the test length,
M = 1, and

P(M is as defined above in Equation 16.
The estimates of the parameters obtained by the maximum likelihood procedure are asymptotically multi-

variate normally distributed with mean vector x (the true values of the parameters) and variance-covariance
matrix the inverse of which is equal to the negative of the expected value of the matrix of second deriva-
tives of the log-likelihood function. In this case, the expected value of the matrix of second derivatives is
equal to the matrix of second derivatives (Swaminathan & Rogers, 1990). Thus,

where I’ = [~o ~~ 1:2 1:3 ], and T is its estimate. The asymptotic standard error of the estimate of ~S (s = 0, 1,
2, 3) is the square root of the sth diagonal element of ~; that is,

Testing hypotheses regarding the presence of DIF in test items requires testing hypotheses about some of
the elements of Y. The hypotheses of interest are I-lo: 1:2 = 0 and H~: 1:3 = 0. Because the estimates of 1:2 and
~3 are univariate normal, these hypotheses can be tested individually, and the overall Type I error rate is
controlled using a Bonferroni adjustment as with the SIB procedure. Alternatively, the two hypotheses 1:2 =
0 and c3 = 0 can be tested simultaneously as

against

where C is a (2 x 4) matrix defined as:

The statistic for testing the joint (multivariate) hypothesis given by Equations 22-23 is:

Equation 25 has a X2 distribution with two degrees of freedom. When the test statistic exceeds ~«:29 the
hypothesis of no DIF is rejected. The test in Equation 25 is a multivariate test of the hypothesis given by
Equations 22-23.
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Power Study for 9 and L When DIF Is Present

Method

Simulated datasets were used in this study. Only with simulated datasets was it possible to accommo-
date prespecified levels of a variety of factors for the MH, CRO-SIB, and LR procedures and to determine the
detection rates accurately under the desired conditions.

Factors manipulated. A number of factors that can have an impact on DIF detection rates have been
identified in previous research (Mazor, Clauser, & Hambleton, 1992; Rogers & Swaminathan, 1993a;
Swaminathan & Rogers, 1990). One main factor of interest is sample size (N), Previous research has
shown that the power of MH, CRO-SIB, and LR increased as hl increased. However, in practice, the sample
size of the focal group is likely to be small. Therefore, in this study, focal group sample sizes of N = 500
examinees or less were used.

Test length can have an impact on DIF detection rates because a longer test is likely to produce more
reliable scores and, hence, more accurate ability estimates. However, increasing the proportion of items
showing DIF is likely to produce a contaminated conditioning variable and this may affect the detection
rates. Hence, the power of the DIF procedures is likely to increase when the test length increases and
decrease when the proportion of DIF items in the test increases.

Mazor et al. (1992) investigated the impact on MH with two subgroups sampled from equal and unequal
ability distributions. Differences in the ability distributions of the groups being compared will have an
effect on DIP detection (Mazor et al.; Shealy & Stout, 1993). DIF effect size or the amount of DIP contained
in an item is another factor that is likely to have an effect on the DIF detection procedures. As DIF effect size
increases, the detection rates of the procedures are expected to increase as well.

In this study, five factors were manipulated: sample size, proportion of items containing DIP, ability
distribution differences, DIF effect size, and type of item (combination of difficulty and discrimination).
The two reference group sample sizes (NR = 500 and N, = 1,000) were crossed with the two focal group
sample sizes (~1~. = 200 and N, = 500) to produce four conditions related to sample size. Test length was not
manipulated. Standardized achievement and ability tests usually range from approximately 35 items to 80
items. The study was confined to a single test length of 40 items to investigate the capability of the proce-
dures to detect DIF in a &dquo;short&dquo; test.

The impact of differences in underlying ability distributions was investigated by examining two differ-
ent conditions. In the first case, ability distributions for the two groups were set to be equal with mean 0.0
and standard deviation (SD) of 1. In the second case, the mean was set to 0.0 and -1.0 for the reference and
the focal groups, respectively, again with both SDs set to 1. Distributions that differed by 1 SD were selected
to simulate cases sometimes found in DIF studies (e.g., Hambleton & Rogers, 1989). Because the propor-
tion of DIF items can contaminate the conditioning variable, the proportion of items containing DIF was set
at three levels: 0%, 10%, and 20%.

DIF effect size was manipulated using the area between the ms for the two groups as the measure of DIP
effect size. The area between the IRFs for the two groups can be computed using the formula given by Raju
(1988). Four levels of DIF effect size corresponding to area values of .4, .6, .8, and 1.0 were selected to
reflect DIF effect size values ranging from a small amount of DIF to a fairly large amount of DIF.

I Nonuniform DIF was simulated by keeping the difficulty parameters for the two groups the same and
varying the discrimination parameters (as) for the two groups (see Table 2). 16 items showing nonuniform
~IF’ were simulated by varying the level of the common b-low (b = -1.5), medium (b = 0.0), and high (b =
1.5); the level of a for the two groups-low (.40 <_ c~ < .50 in the reference group and .72 <_ a < 1.03 in the focal

group) and high (.47!~ ~ <_ .90 in the reference group and 1.68 ~ c: < 2.01 in the focal group); and DIF effect size
(area values of .4, .6, ,8, and 1.0), Four item types were studied: (1) low b, high ct; (2) medium b, 1&reg;w ~9
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(3) medium b, high c~~ and (4) high b,1&reg;w c~.
To simulate a 40-item test with 10% of the items showing DIF (i.c., four items), and to accommodate the

characteristics of items that may affect DIF detection, it was necessary to distribute the 16 items into four
40-item tests. Similarly, to simulate 20% of the items showing DIF (i.e., eight items), the 16 DIF items were
distributed into two 40-item tests. Item parameter values for the non-DIF items remained the same in all 40-
item tests. They were randomly selected from published item parameter values from an administration of
the Graduate Management Admission Test (Kingston, Leary, & Wightman, 1988). The c parameters for all
items were set equal to .20.

Simulation procedures. Data for the study were simulated according to the three-parameter logistic
model using the program DATAGEN (Hambleton & Rovinelli, 1973) in order to determine the viability of
the three methods in identifying the 16 nonuniform DIF items described above. Nonuniform DIF was simu-
lated by selecting different a parameters for the two groups and keeping the bs the same for the two groups.
The DIF statistics values forMH andt,tt were obtained using the program DICHODIF (Rogers & Swaminathan,
1993b). The CRO-SIB statistics values were obtained using the program CSIBTEST (Li & Stout, 1994a,
1994b). The item parameter values for the 16 nonuniform DIF items are shown in Table 2 and those for the
non-DIF items are shown in Table 3.

Table 2
Item Parameters IJsed to Cienerate Nonuniform DIF Items

Thus, DIF analyses were implemented with datasets simulated for four combinations of sample size, two
levels of ability distribution differences, three levels of percent of items containing DIP, four levels of DIP
effect size, and four types of items (combinations of a and b). 384 conditions were studied to investigate
nonuniform DIE The data were replicated 100 times for each condition. The power and Type I error rates
of the three statistics were evaluated at a = .05 and a = .01.

Computation of ~IF In computing the MH DIF statistics, a two-stage procedure re~&reg;mmer~d~d by
Holland & Thayer (1988) was used. In the first stage, the total score based on all items was used as the
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Table 3
Item Parameters for the Non-DIF Items

Note. Item parameters for Items 1-36 did not vary across conditions.

matching criterion to group the examinees, and items showing DIP were identified. In the second stage,
items showing DiF (with the exception of the studied item) were excluded from the calculation of the total
score used to group examinees. The two-stage procedure described above was not used for the CRO-SIB and
LR DIF statistics.

Analysis. A completely crossed five-way ANOVA was used to determine the effects of the five factors
on the performance of MH, CRO-SIB, and LR. The dependent variable was the mean detection rate for each
of the three procedures. The independent variables were the five factors manipulated in the study.
Results

The ANOVA results presented in Table 4 show that for all three procedures, three of the five factors-N,
type of item, and DIP effect size-had significant main effects at a = .05. In addition, several two-way
interaction effects observed were common for the three procedures. These were hl x ability distribution,
type of item x ability distribution, ability distribution x DIF effect size, proportion of DIP (% DIP) x DIP
effect size, and type of item x t~I~’ effect size. For MH, there were interaction effects for N x type of item and
% DIF x type of item. Table 5 shows the mean detection rates and mean Type I error rates for each of the
five factors.

Elect of sample size. The results in Table 5 indicate that the detection rates for the three procedures
showed a steady increase as N increased. In particular, the detection rates for the three procedures appeared
to increase more for an increase in NF than for an increase in T~~. For example, at a = .05, for TV~ == 500,
when ~F increased from 200 to 500, the increase in the detection rates was 10% for MH, 14% for CRO-SIB,
and 17% for LR, For N, = 1,000, th~ increase was 14% for MH, 17% for CRO-SIB, and 18% for LI~. However,
when N, increased from 500 to 1,000, the increase in the detection rates for the three procedures was 4The
to 5% for TVp = 200, and approximately 6% to 8% for N~ = 500.

For a = .05, CRO-SIB showed an increase of approximately 5% in detection rates over LR for all Ns. The
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Table 4
Main Effects and Two-Way Interaction Effects From the ANOVA of the Effects of All

____ 

Factors on the Performance of the MH, CRO-SIB, and LR Procedures in Detecting DIF
-- ~- - --- - -

*Significant ~t p < .05.

detection rates for MH varied from approximately 31% to approximately 49% for the four Ns.
The Type I error rates presented in Table 5 show that they were within the nominal limits for MH for all

Ns. They were higher than expected for CRO-SIB and LR, with CRO-SIB showing an increase of approxi-
mately .3% over LR. For all three procedures, the Type I error rates were slightly less for the smallestN than
for other Ns. For example, for N, = 500 and N, = 200 at a = .05, the Type I error rates were approximately
4.5% for MH, 7.~% for CRO-SIB, and 7.5% for LR. For NR = 1,000 and ~1~. = 500, the Type I error rates
increased to 5.6% for MH, 9.1 % for CRO-SIB, and 8.9% for LR.

E’ffect of ability distribution differences. For all three procedures, the detection rates were higher when
examinees were sampled from the equal ability distribution than from the unequal ability distribution (see
Table 5). Although the differences in detection rates for the two types of distributions were only approxi-
mately 2% to 3% for MH and CRO-SIB, they were much higher (approximately 14%) for LR. For example, at
a = .05, for the unequal .ability distribution, the detection rates decreased from those of the equal ability
distribution from 40% to 38% for MH, from 69% to 66% for CRO-SIB, and from 70% to 56% for LR.

For all three procedures, Table 5 shows that the Type I error rates were higher for the unequal ability
distribution than those for the equal ability distribution. For example, at a = .05, the Type I error rates for
the equal ability distributions were 4.1% for MH, 7% for CRO-SIB, and 6.1% for LR. For the unequal ability
distributions, they were 5.5% for MH, 10% for CRO-SIB, and 9.8% for LR. Although the increase was only
marginal for MH (approximately 1.5%), it was approximately 3% for CRO-SIB and approximately 3.5% for
LR. Overall, CRO-SIB showed the highest Type I error rates under both conditions.

Effect of percent of items containing D~F The detection rates for MH and CRO-SIB did not differ much
whether the tests had 10% or 20% DIP items,. For LR, there was an increase of approximately 4% for tests
with 10% DIP items over tests with 20% ~t~’ items. For example, at a =.05, the detection rates were 39% for
MH and 68% for CRO-SIB for tests with 10% or 20% DIP items. For LR, the detection rate was 65% when
tests contained 10% DIP items and 61% when tests contained 20% DIP items.

The Type I error rates were within nominal limits for MH whether tests contained 0%, 10%, or 20% DIP
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Table 5
Mean Percent Detection Rates (Power) and Type I Error Rates for the MH, CRO-SIB,

and LR Procedures Under All Conditions for a = .05 and ~, &reg; .Ol

items. The Type error rates were slightly higher for CRO-SIB and LR, ranging up to approximately 8.6%.
At a = .05, the Type ~rr~r rates were within the nominal limits for MH (appr&reg;~~r~~te~y 4.~~I&reg;~ and were
higher than expected for CRO-SIB (~.1 % to 8.6%) and LR (7.5%&reg; to ~.6%&reg;) for tests with 0%, 10%, or 20% DIF
items.
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Table 6
Mean Percent Detection Rates (Power) for the MH, CRO-SIB, and LR Procedures for

Ability Distribution x N and for Ability Distribution x Type of Item for a = .05 and a = .01______

Effect of type of item. The results in Table 5 show that overall the detection rates for the four types of
items were lowest for MH, whereas the similarity between the detection rates for CRo-sm and LR was very
high. The detection rates for CRO-SIB and LR were highest for low b, high a items (8 8 % and 90% for a = .05)
followed by medium b, high a items (77% and 70% for a = .05); for MH, these percentages were 66% and
22%. The detection rates for CRO-SIB and LR were lowest for medium b, low a items (47% and 44% for a =
.05) followed by high b, low a items (59% and 48% for a = .05); corresponding results for MH were 15% and
5~%.

The Type I error rates for MH were well within expected limits, and higher than expected for CRO-SIB
and LR (10.5% and 9.9% for a = .05). For all three procedures, the Type I error rates were higher for highly
discriminating items.

Effect of DIF effect size. The detection rates for the three procedures steadily increased as area values
increased from .4 to 1.0. The lowest detection rates were observed for MH, which ranged from 23% to 50%
when the area value increased from .4 to 1.0 for = .05. For CRO-SIB, they ranged from 44% to 83%; forLR,
they ranged from 38% to 80%.

Table 4 shows the results of 10 two-way interaction effects between the five factors. Therefore, care is
needed in interpreting the main effects of the ANOVA in view of the significant two-way interactions be-
tween the factors. Tables 6 and 7 show mean detection rates for four of the significant interactions.

Effect of ability distribution x N. Table 6 shows that as hl increased, the detection rates for all three
procedures increased for the equal as well as the unequal ability distribution. The lowest detection rates
were obtained for MH under both conditions. The detection rates for all three procedures were higher for
the equal ability distribution than those for the unequal ability distribution. At a = .05, as N increased the
detection rates for the equal ability distribution increased from 34% to 45% for MH, from 59% to 79% for
CRO-SIB, and from 58% to ~1% for LR. For the unequal ability distribution, the detection rates increased
from 27% to 43% for MH, from 57% to 79% for CRO-SIB, and from 46% to 69% for LR as N increased. The

interaction between l~ and ability distribution showed a decrease in the detection rates for the unequal
ability distribution of 7% for MH, 2% for CRO-SIB, and 12% for LR for I~I~ = 500 and hJF = 200, and 2% for
MH, 0% for CRO-SIB, and 12% for LR for NR = 1,000 and Np = 500 from the detection rates for the equal
ability distribution.

Effect of ability distribution x type of item. Table 6 also shows the interaction between ability distribu-
tion and type of item for the three procedures. Several trends were evident from the data in Table 6 at a = .05.
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1. The detection rates for all three procedures for the equal ability distribution were highest for items with
low b and high a. At a = .05, they were 91% for MH, and 93% for CRO-SIB and LR. Detection rates for the
unequal ability distribution decreased by 49% for MH, 11% for CRO-SIB, and 6% for LR.

2. For items with high and low a for the equal ability distribution, the detection rates were 59% forMH and
CRO-SIB, and 54% for LR. The detection rates for the unequal ability distribution decreased by 12% for
MH, remained the same at 59% for CRO-SIB, and decreased by 12% for LR. 

’

3. For medium items (for both low and high as), the detection rates &reg;f ~~ for both distributions were very
low compared to those of CRO-SIB and LR. For the equal ability distribution, the detection rates for me-
dium b,1&reg;w c~ items were 6% for MH, 44% for CRO-SIB, and 48% for LR. For the unequal ability distribu-
tion, the detection rates increased by 17% for MH and by 6% for CRO-SIB, and decreased by 9% for LR.

4. For the equal ability distribution, the detection rates for medium b, high a items were 3% for MH, 81% for
CRO-SIB, and 84% for LR. For the unequal ability distribution, the detection rates increased by 38% for
MH, decreased by 8% for CRO-SIB, and decreased by 27% for LR.

Thus, CRO-SIB and LR showed the highest detection rates for items with high as and low bs. The detection
rates for MH were highest for the unequal ability distribution for medium items.

Regardless of the type of item, MH showed a power of only approximately 50% when the ability distri-
bution was unequal. Therefore, MH appears to be not suitable for studying nonuniform DIP when the ability
distributions are unequal. With the equal ability distribution, MH was effective in detecting nonuniform DIP
only for items with high and low bs, a situation that corresponds to ordinal or unidirectional DIF.

Effect &reg;f pea°ccnt of DIF x N. Table 7 shows the results of the interaction effects of l~ x by percent of
items containing DIP. Again, Table 7 shows that as N increased, the detection rates for the three procedures
increased whether tests had 10% or 20% l~t~’ items. At a = .05, as IV increased the detection rates for MH
increased from 31% to 49% for tests containing 10% and 20% DIP items. The detection rates for CRO-SIB
increased from 58% to 78% when tests contained 10% ~I~’ items and from 57% to 80% when tests con-
tained 20% DIF items. For both MH and CRO-SIB, the interaction between N and % ~a~’ was minimal for all
Ns (approximately 1% to 2%). As N increased, the detection rates for LR increased from 54% to 789l when
tests contained 10% DIF items and from 49% to 73% when tests contained 20% DIF items. The interaction
between N and % DIP for LR showed a decrease up to approximately 5% in the detection rates for tests
containing 20% DIF items from tests containing 10% DIP items, depending on N.

Effect of percent of DIF x type of item. The results for the interaction effects of the % DIP X type of
item (Table 7) show that the detection rates for CRO-SIB did not differ much for all types of items as the

Table 7
Mean Percent Detection Rates (Power) for the MH, CRO-SIB, and LR Procedures for

% DIF x N and for % DIF x Type of Item for a = .05 and a = .0 1
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percent of items containing DIF increased. For LR, the detection rates decreased for all types of items as the
percent of items showing DIF decreased. For MH, the detection rates decreased for medium b, high a and
high, low a items and increased for low b, high a and medium b, low a items.

For example, at a = .05, the detection rates for tests containing 10% DIF items were 649l for MH, 899l for
CRO-SIB, and 91% for LR for low b, high a items. They increased by 5% for MH, decreased by 1% for CRO-
SIB, and decreased by 2% for LR for tests containing 20% DIF items. For hi~h b,1&reg;~ ~ items, the detection
rates for tests containing 10% DIF items were 54% for MH, 61% for CRO-SIB, and 52% for Irlt. They de-
creased by 2% for MH, by 4% for CRO-SIB, and by 7% for LR for tests containing 20% DIF items. For
medium b, low a items, the detection rates for tests containing 10% DIF items were 13% for MH, 46% for
CRO-SIB, and 44% for LR. They increased by 4% for MH, by 2% for CRO-SIB, and by 1% for LR for tests
containing 20% DIF items. For medium b, high a items, the detection rates for tests containing 10% DIF
items were 26% for MH, 77% for CRO-SIB, and 73% for LR. They decreased by 7% for MH, remained the
same for CRO-SIB, and decreased by 5% for LR for tests containing 20% DIF items.

The interaction between % DIF and type of item showed a marginal decrease of up to 4% for CRO-SIB for
low a items in tests containing 20% DIF items from those containing 10% DIF items. For LR, there was an
overall decrease ranging from 1% to 7% for tests with 20% DIF items from tests with 10% DIF items,
depending on the type of item. MH showed an increase of approximately 5% and a decrease of approxi-
mately 2% to 7% in the detection rates, depending on the type of item.

These results indicate that although CRO-SIB and LR in general are able to identify a high percentage of
nonuniform DIF items, their inflated Type I error rates call for an adjustment to the values at the desired
significance levels. To investigate such an adjustment, the Type I error rates of CRO-SIB and LR were
evaluated at nine significance lev~ls-.05, .04, .03, .02, .Ol, .0075, .005, .0025, and .001-to determine the
exact level of adjustment to the values at the desired level.

Table 8 presents the Type I error rates of CRO-SIB and LR statistics at nine significance levels. These results
indicate that the Type I error rates varied across all three factors-N, ability distribution, and % DIF. Figure la
demonstrates graphically the results presented in Table 8 for N, = 500 and rJF &reg; 200; Figure lb displays the
results for the two ability distributions, averaged across sample sizes. Figure la shows that the level of adjust-
ment for a = .05 is to set it to a = .03 for both procedures. Figure 16 shows that the impact of the equal and
unequal ability distributions on the Type I error rates of the two procedures was different. Although the Type
I error rates were only slightly inflated for the two procedures for the equal ability distributions, they were
much higher for the unequal ability distributions. For the equal ability distribution, the level of adjustment for
a = .05 is to set it to a = .034 for CRO-SIB and to a = .04 for LR (see Figure lb). For the unequal ability dis-
tribution, the level of adjustment for a =.05 is to set it to a = .022 for CRO-SIB and to a = .025 for the LR. These
results appear to be a means to ensure that the Type I error rates are under control.

Discussion

The results indicated that overall there was high agreement between CRO-SIB and LR in detecting non-
uniform DIF under most conditions. It is not surprising that MH was not capable of detecting nonuniform
DIF under certain conditions because this procedure was designed to detect only uniform DIF. As expected,
all three procedures were affected by sample size. The detection rates for all three procedures increased
when sample size increased. Given that the reference group had a minimum sample size of 500, the results
of this study indicate that detection rates are affected by small focal group sample sizes. When the focal
group sample size increased from 200 to 500, the detection rates increased. The power of CRO-SIB and LR
in detecting nonuniform DIF was as high as ‘~5%, on average, for a focal group sample size of approxi-
mately 500. Because this study investigated only four combinations of sample size, more research is needed
in this area. The ratio of the reference to the focal group sample size should be taken into consideration.
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Table 8

Type I Error Rates of CRO-SIB and LR Computed at I~Tlne Significance Levels

The results also suggest that DIP effect size can have a significant effect on DIF detection procedures
irrespective of the size of reference and focal groups and the ratio of these sample sizes. For all three
procedures, the detection rates steadily increased when DIF effect sizes specified in terms of the areas
between the t1~’s for the two groups increased from .4 to 1.0. The lowest detection rates occurred for MH-

varying between 23% and 50%. Practitioners should be aware that items showing very small amounts of
DIF may go undetected, especially when the sample is small. However, it can be argued that in such cases
the DIF may be so small that it would make little practical difference.

The results supported the findings of Rogers & Swaminathan (1993a)y that is, the difficulties and discrimi-
nations of the items that comprise the test significantly influenced the detection rates of DIF detection proce-
dures. Their study comparing MH and LR showed that MH was not capable of detecting nonuniform DIF when
the interaction was disordinal or nondirectional (i.e., when the IRFs of the two groups crossed in the middle of
the ability distribution). Disordinal or nondirectional interactions occur with items of average difficulty. The
MH statistic is a signed statistic and, thus, is sensitive to the direction of ~t~’. When the direction of DIF changes
in the middle of the ability score distribution, negative differences in one part of the score distribution cancel
against the positive differences in the other part. Therefore, nonuniform Dip items of this form will not be
detected by MH. CRO-SIB was as powerful as the LR procedure in detecting ordinal and disordinal interactions
under most of the studied conditions. For the two types of items included in this study for which the interac-
tions were ordinal (when the IRFS for the two groups crossed at the lower or upper end of the ability distribu-
tion), the performance of MH was comparable with the other two procedures.
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Figure 1
Type ! I Error Rates for the SIB and LR Procedures

In general, the detection rates for CRO-SIB and LR were highest for high a items with low b followed by
medium b items. Low a items with medium b were least detected. For MH, the most significant factor to
determine its capability to detect nonuniform DIF appeared to be the type of item. Although its performance
appeared to be comparable with the other two procedures in detecting DIP in low and high b items, MH has
limited use in the detection of DIF in average b items. However, it appears that DIF in such items can be
adequately detected by CRO-SIB and LR.
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The proportion of items showing DIF did not have a large impact on the DIF detection rates of MH and
CRO-SIB; however, it did minimally affect the detection rates ofLR (approximately 4~l&reg;). This may be due to’
the two-stage procedure adopted in computing the MH statistic. Items identified as DIF in the first compu-
tations were removed when forming the score groups for computing the DIF statistics for the second time.
The two-stage procedure was not used for CRO-SIB and LR, and it is likely that the results would have
improved for both procedures if this had been used.

The Type I error rates were within nominal limits for MH. They were higher than expected for CRO-SIB
and LR, with CRO-SIB results showing an overall increase of approximately 1% over LR results. In general,
there appeared to be an increase in Type I error rates for the three procedures when the ability distribution
differences increased or proportion of items containing DIF increased.

The results also showed that CRO-SIB and LR were equally effective in detecting nonuniform DIF in test
items. However, the Type I error rates for both procedures were higher than the nominal level and, there-
fore, require an adjustment. This study indicated that the levels of adjustment varied with different condi-
tions. The exact level of adjustment can be determined by evaluating the Type I error rates at a number of
significance levels. The desired significance level then can be set to the adjusted significance level for the
condition investigated. MH appeared to have limited use in the detection of nonuniform DIF items that
crossed in the middle of the ability range for the equal ability distribution. For the unequal ability distribu-
tion, its power was limited for all types of items.

In general, the results indicate that with an adjustment in the a level, either the CRO-SIB procedure or the
LR procedure can be used routinely for DIF detection. CRO-SIB is noniterative and simple to implement.
However, LR is a general procedure and can be implemented readily using computer packages such as SPSS
(SPSS, 1993) and SAS/STAT (SAS, 1993).
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