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Item reliability is of special interest for Mokken’s
nonparametric item response theory, and is useful for
the evaluation of item quality in nonparametric test
construction research. It is also of interest for non-

parametric person-fit analysis. Three methods for the
estimation of the reliability of single dichotomous
items are discussed. All methods are based on the

assumptions of nondecreasing and nonintersecting item
response functions. Based on analytical and monte
carlo studies, it is concluded that one method is supe-
rior to the other two, because it has a smaller bias and
a smaller sampling variance. This method also demon-
strated some robustness under violation of the condi-
tion of nonintersecting item response functions.
Index terms: item reliability, item response theory,
Mokken model, nonparametric item response models,
test construction.

In practice, total scores on a test are more im-
portant than scores on individual items. In test con-
struction, however, item quality must be assessed
to select appropriate items that together will con-
stitute a useful test. For example, in classical test
theory (Lord & Novick, 1968) item statistics, such
as the proportion correct and the corrected item-
total correlation, are used for this purpose. In logis-
tic item response theory (IRT; e.g., Lord, 1980) items
can be evaluated on the basis of their difficulty, dis-
crimination, and pseudoguessing level. Moreover,
the item information function (Lord, 1980, p. 72)
can be used to assess measurement precision of a
single item. The nonparametric Mokken approach
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to IRT (Mokken, 1971, in press; Mokken & Lewis,
1982) uses proportion correct and an item scalability
coefficient.

Because the Mokken approach provides the theo-
retical framework for this study, its relevant assump-
tions and definitions are discussed. It is argued that
in the Mokken IRT approach the reliability of an
item can serve as a nonparametric counterpart of
the item discrimination in logistic IRT and the cor-
rected item-total correlation from classical test

theory [refer to Lord (1980, p. 33) for a compari-
son of these latter two item statistics].

The purpose of this paper was to apply three rela-
tively simple methods, used earlier for the estima-
tion of total score reliability in the nonparametric
Mokken IRT framework (Mokken, 1971, pp. 142-
147 ; Sijtsma & Molenaar, 1987), to the estimation
of single item reliability. The asymptotic bias and
the finite sample bias of these methods were inves-
tigated.

Basic Assumptions of the Nonparametric
Mokken Approach

Nonparametric IRT models are important for or-
dering persons and items. Cliff & Donoghue (1992)
provided arguments that favor ordinal rather than
interval measurement in psychological and educa-
tional testing. Mokken (1971, pp. 115-169, in press;
Mokken & Lewis, 1982) proposed two nonparamet-
ric IRT models for the analysis of binary item scores.
The first was the monotone homogeneity model
(MHM), which is defined by the assumptions of uni-
dimensionality, local stochastic independence, and
nondecreasingness of the item response functions
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(IRFs). An important property of the MHM is that the
latent trait score (0) is stochastically ordered by the
number-correct score on k items (Grayson, 1988;
Huynh, 1994). Similar models were studied by Hol-
land (1981), Rosenbaum (1984), Stout (1990), Ellis
& van den Wollenberg (1993), and Junker (1993);
other ordinal models were investigated by Schulman
& Haden (1975) and Cliff (1979).

The second model is the double monotonicity
model (DMM). The DMM assumes unidimensional-
ity, local stochastic independence, and nondecreas-
ingness of the ~FS, as well as a fourth assumption
that the IRFs do not intersect. Thus, the DMM not only
allows persons to be ordered, but also allows an or-

dering of items that is identical, except for possible
ties, for all persons taking the test. Similar models
were discussed by Rosenbaum (1987), Croon ( 1991 ),
Sijtsma & Meijer (1992), and Sijtsma & Junker (in
press).

The Rasch (1960) model is based on the three
assumptions of the MHM, plus the fourth assumption
of minimal sufficiency of the number-correct scores
of persons and items for the estimation of 0 and the
item parameters, respectively (Fischer, 1974, pp.
193-203). Not only are the IRFs from the Rasch
model strictly increasing and nonintersecting, but
they are also parallel. Levine (1970) discussed con-
ditions from which it can be derived that, in general,
DMM IRFs cannot be transformed into Rasch IRFs.
For example, the DMM allows IRFs with asymptotes
that are not equal to 0 or 1, whereas the Rasch model
excludes such ms. Disregarding the trivial case of
constant IRFS, theoretically the DMM includes the
Rasch model as a special case. In practice, however,
differences become apparent for small numbers of
items (e.g., at most 15 items). For larger numbers of
items, the DMM still allows relatively easy items to
have pseudoguessing levels larger than 0 and rela-
tively difficult items to have upper asymptotes
smaller than 1. This is not at all unrealistic, because

easy items may also be relatively easy for low 0 ex-
aminees, even if there is no guessing, and difficult
items need not be trivial for high 0 examinees.

Other differences between the DMM and the

Rasch model are that DMM IRFs need not be sym-
metrical with respect to the inflection point and that

the slopes of the IRFS may differ. The restriction
that the IRFs are nondecreasing and nonintersecting
implies that these variations can only be effective
in short tests with item locations that are far apart.
Meijer, Sijtsma, & Smid (1990) provided a theo-
retical and a practical comparison of the DMM and
the Rasch model.

Because of the nonparametric definition of the
ms, the MHM and the DMM do not assume specific
distributions for latent model parameters; that is,
characteristics of the models hold irrespective of
such distributions. As a result of a nonparametric
definition, latent item parameters from parametric
models, such as item difficulty and discrimination,
cannot be numerically estimated. In Mokken’s
(1971; Mokken & Lewis, 1982) nonparametric ap-
proach, item difficulty is replaced by the propor-
tion of correct responses to an item (Mokken, 1971,
p. 124). Furthermore, Mokken (1971, p. 151;
Mokken & Lewis, 1982) proposed an item coeffi-
cient that expresses the scalability of a particular
item with respect to the scale of the other items.
Mokken, Lewis, & Sijtsma (1986) noted that this
coefficient is related to the slope of an IRF.

Item Reliability
Item Reliability and Repeatability

Donoghue & Cliff (1991) noted that the Mokken
approach does not provide much specific informa-
tion at the item level. An item statistic that is more

directly related to discrimination than item scalability
(Mokken, 1971, p. 151; Mokken & Lewis, 1982)
could be useful in item selection. Such a statistic can
also play a useful role in nonparametric person-fit
analysis (e.g., Meijer, Molenaar, & Sijtsma, 1994;
Tatsuoka & Tatsuoka, 1983; van der Flier, 1982).
Here, item reliability is proposed as an appropriate
replacement for item discrimination [also refer to
Meredith (1965) for a similar proposal] in a nonpara-
metric IRT context.

The reliability of an item expresses the degree
to which observed item scores can be repeated in-
dependently under similar conditions. Item dis-
crimination (denoted by a) as defined in logistic IRT
(Lord, 1980, p. 13) has a similar interpretation. Let
0 be the latent person parameter with probability
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density f (0). Furthermore, let item g (g = 1, ..., k)
have a latent difficulty parameter S. and a latent
discrimination parameter ag. Keeping f(0) and Bg
fixed, an increase in a8 corresponds to a higher de-
gree of repeatability of observed scores on item g.
As ag - on, response performance is in accordance
with the deterministic Guttman (1950) model: this
means perfect repeatability and thus perfect item
reliability. For response behavior following a lo-
gistic IRT model, an increase in ag yields lower prob-
abilities of a correct response to the left of Ôg and
higher probabilities to the right of it. Consequently,
for each examinee with 6 ~ 8g his/her dominant item
response (which is incorrect for 0 < 88 and correct
for 0 > 8g) can be predicted with higher probability.
Note that for 8 = 8g the probability correct is a con-
stant irrespective of ag. Thus, holding everything
else constant, an increase in ag corresponds to a
higher degree of repeatability of item scores.

Definition and Estimation

Because the theoretical basis for the definition
and the estimation of item reliability was given by
Mokken (1971, pp. 142-147) and Sijtsma &

Molenaar (1987), only results are provided here.
Let 1tg be the population proportion of persons giv-
ing a correct response on dichotomous item g, and
ng8 the population proportion giving a correct re-
sponse on two locally independent replications of
item g. As a tool for estimating the reliability of a
test score, Mokken (1971, p. 143) defined the reli-
ability of the dichotomous item score Xg as

p(X~) = 0 if ngg = 1t~ (statistical independence be-
tween replications of item g); p(Xg) = if 7E gg = n8.

ng can be estimated unbiasedly (Mokken, 1971,
p. 126); however, because locally independent rep-
lications of items are not possible, a direct estimate
of ngg is not available. Therefore, Mokken (1971,
p. 143) proposed two methods using parameters for
which sample estimators are available to approxi-
mate ngg. Sijtsma & Molenaar (1987) proposed a
third method. All three methods are based on ex-

trapolation or interpolation using items adjacent to

item g in the ordering of items from difficult to easy.
Assume that the k test items are ordered accord-

ing to increasing n8 and that item indexes are in ac-
cordance with this ordering. Let the ms denoted
by ng(O) of all k items be nonintersecting: for items

Based on the idea that the ms of the neighbor items
in the item ordering are more similar to ng(O) than
the other IRFS, all three methods use either 7T ~8),
ng+,(9), or both as a predictor of a real replication
of item g. Note that 7C equals

where F(8) is the cumulative distribution of 0.
Before integrating with dF(8), one of the prob-

abilities ng(O) is replaced by a linear approximation
using one or two of its neighbors-7cg-,(O), 7E ,(6),
or both:

Each method is defined by the choice of a, b, and c.
Substitution of % (8) in Equation 3 and integration
yield

In Equation 5, 1tg-I,g is the population proportion of
persons that have correct responses on both items

g - 1 and g. A similar definition applies to 1tg.g+I’ *
Mokken’s (1971, p. 147) Method 1 uses ex-

Equation 6 should be used if 1tg-1 is closer to 1tg than

7!~; Equation 7 should be used otherwise. Sijtsma
& Molenaar (1987) proposed a decision rule that
resolves the problem of equal distances 1tg - 1tg-1 =
7rl.l - 1tg’

Sijtsma & Molenaar (1987) provided the coun-
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terparts for Equation 6 and Equation 7 after rever-
sal of the scale direction-1 s are replaced by Os and
Os by Is:

Because these four approximations are asymptoti-
cally biased with different signs (Molenaar &

Sijtsma, 1984), Sijtsma & Molenaar’s (1987)
method used the unweighted mean of these four
approximations, for which most of the bias cancels.
This method is denoted by MS.

Mokken’s Method 2 used both neighbors of
item g to approximate 1tgg by interpolation (Mokken,
1971, p. 147). The approximation formula (Mokken,
1971, p. 147) is

For the two extreme items, extrapolation (Method
1) is used; refer to Sijtsma & Molenaar (1987) for
further details. Substitution of an approximation to

1tgg in p(Xg) in Equation 1 yields p, if Equations 6
and 7 are used, p, if Equation 10 is used, and p,, if
the mean of Equations 6, 7, 8, and 9 is used. Note
that Sijtsma & Molenaar (1987) only provided re-
sults pertaining to sample bias and variance of total
score reliability estimation for each of the three re-
liability methods [Method 1 (Equations 6-7), lvts

(Equations 6-9), and Method 2 (Equation 10)].
All approximations to 7rgg are functions of the

bivariate proportions &dquo;9-,,g and 1tg,g+1 and the dis-
tance between ngs. If a bivariate proportion is
smaller or a distance is larger than expected, com-
pared with what it would have been if the items had
been replications, this may bias n88 and, conse-
quently, the reliability estimate of item g.

Illustration of Bias In the Methods

Figure 1 illustrates the effect of distance on the
approximation of 1ti9) using Method 1 (dashed

curves in Figure la) and Method 2 (dashed curve in
Figure lb). In Figure 1, 1tg+l = .697, 1tg = .500, 1tg-l =
.222, 1tg-l,g = .162, and 1tg.g+l = .420. These pro-
portions were based on Sg+, _ -1, 8g = 0, Sg_, = 1.5,
a = 1, and 8 was normally distributed. For Me-
thod 1, 1ti8t was based on Equation 7, and
1tg(8r was based on Equation 6. For Method 2,
1tg(8t- was based on Equation 10.

To illustrate the estimation of 1tgg using Method
1, the extrapolation formula given in Equation 7 is
necessary. For Method 1, the dashed curve denoted

1t/8t in Figure la is the approximation to 1tg(8)
using (n8/n8+,)ng+,(A) (note that substitution of this
product in Equation 3 yields Equation 7). Assume
that 8 follows a normal distribution with its peak at
the scale value for which 1tg(8) = .5. The approxi-
mation on the basis of 1tg+l(8) overestimates 1tg(8)
to the left of the scale, but it underestimates 1ti8) to
the right of it. Because it is multiplied by the factor
x~(0)dF(0), higher values of 8 tend to contribute
most to the integral that yields the approximation
to 7t in Equation 7. The underestimation thus tends
to dominate the overestimation. A larger distance
usually results in a worse approximation. If 1tg+l(8)
- ng(O) increases and 1ti8) is fixed, the multiplica-
tion factor 1t/1tg+1 in Equation 7 decreases and the
approximation to ng(O) lies further to the left of 1tg(8)
and also further below it at the right side of the scale.
Thus, ng(O) is more heavily underestimated if the
distance is larger. The same line of reasoning leads
to the conclusion that the approximation based on
1tg-l(8) [see Equation 6; also refer to the dashed line
1t/8r in Figure la] tends to overestimate 1ti8) and,
as a result, 7t more strongly overestimates 7E if
the curves 1tg-l(8) and n g(0) lie further apart.

For Method 2 (Figure lb), the underestimation
at the right of the scale obtains a larger weight than
the overestimation at the left, and n88 according to
Method 2 tends to be an underestimate. Moving
ng 1(8) further to the right and keeping 1ti8) and
1tg+¡(8) fixed increases the inequality of the distances
and leads to a situation in which it is difficult to

predict how the bias of 1tgg will be affected.
These examples lead to the conclusion that dis-

tance affects the degree to which 1tgg is biased, and
unequal distances of both neighbors to 1ti8) affects
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Figure 1
Three IRFs Illustrating the Approximation of 1tie) Using Methods 1 and 2

the bias differently than equal distances. Given the
susceptibility of the item reliability methods to the
quality of other items in the test, it was determined
that it was important to investigate which of the three
methods has the smallest bias.

An alternative approach would be to use the m
(m > 2) nearest neighbors to approximate 1tgg’ How-
ever, neighbors that are farther away are less simi-

lar (in the sense of replications) to item g than the
two nearest neighbors. Thus, larger bias in estimat-
ing n88 for m > 2 would be expected. By using more
information from the data, however, the sampling
variance of the estimates might decrease compared
with m = 2. An acceptable compromise between
bias and accuracy would probably depend on sev-
eral characteristics of the test, items, and popula-
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tion. [Donoghue & Cliff ( 1991 ) and Cliff & Dono-

ghue (1992) used ordinal multiple regression for a
related problem in ordinal true score theory.] Rather
than pursuing a more complex strategy, asymptotic
and sampling characteristics of reliability estima-
tors based on the simpler Methods 1, 2, andIvts were
investigated. Only if none of these methods yields
satisfactory results may a more complex strategy
be rewarding.

In the simulation studies conducted here, the

slopes of the iRFs were equal in several conditions,
but this does not mean that the same reliability was
estimated for each item. The estimation depends on:
(1) the variance of the item score and, therefore,
the proportion correct on the item; and (2) the dif-
ference between the proportions correct of the items
used for the estimation. As a result, items with par-
allel IRFs can have different reliabilities although
they have equal discriminations.
An analytical derivation of the distribution prop-

erties of the three methods was not pursued because
the ordering of the items according to their diffi-
culty may well vary across random samples and, as
a result, different approximations to ngg will be used.
Therefore, conclusions were based on simulation
studies.

Asymptotic Bias in Item Reliability
Estimation Methods

Method

The bias of the three item reliability methods was
investigated with respect to p(X8) in Equation 1 us-
ing population fractions obtained from numerical
integration across the 0 distribution. This allowed
the performance of the three methods to be investi-
gated in the ideal case of very large samples.

Sets of seven items were used. Seven items was

large enough because (1) the focus was on the indi-
vidual item; (2) the distance between items could
be manipulated equally well in small or large item
sets; (3) the differences between extremely located
items and items in between could be studied inde-

pendently of test length; and (4) usually distances
between adjacent items in longer tests are smaller
so results for shorter tests were expected to be con-
servative. Logistic ms were used. Although the

theoretical framework was nonparametric IRT, para-
metrically defined ms and parameter distributions
were necessary to simulate Is and Os. However, this
did not fully exploit the possibilities of the DMM.
Such limitations are typical of research using simu-
lated data in a nonparametric framework.

Given seven two-parameter logistic model (2PLM)
IRFs and a standard normal distribution of 0, nu-
merical integration (IMSL, 1987, routine QDAGS/
DQDAGS) was used to obtain the population propor-
tions 1tg (g = 1,..., 7), ngg (g = 1, ..., 7), and 1tgh (g, h =

1, ..., 7; g ~ h). Using ng and 1tgg, the item reliability
p(X8) was calculated. To calculate item reliability with
approximation Methods 1, 2, and MS, the proportions
1tg and jr were used: the results are denoted p,, p,,
and pms, respectively. The difference between each
of these parameters and p(X8) is the bias of a specific
method with respect to the reliability in Equation 1
for item g.
A completely crossed 4 x 2 x 3 design was used.

Four levels of average discrimination aM were used:

am =.5, 1, 2, and 5. In combination with a standard
normal 0 distribution, these values ranged from very
weak to very strong discrimination (Meijer et al.,
1994).
Two levels of the spread of the as within one

test were used: no spread (all 7 as equal) and posi-
tive spread (as unequal). No spread corresponded
to nonintersection of the 2PLM IRFs. For example,
for am = 1, ag = 1 (g = 1, ..., 7). Positive spread
corresponded to intersection of the IRFS, and thus
provided a violation of a condition underlying esti-
mation of item reliability. For example, for am = 1,
a = (1.3, 1, 1, .7, 1, 1.3, .7). This more realistic
condition allowed the robustness of the estimation
methods to be investigated.

The third factor was distance between item lo-

cations. A distinction was made between sets of

equally spaced items and sets of unequally spaced
items. Three levels were distinguished. For two lev-
els, item locations (8s) were equidistant with me-
dian of 0 and distance [d(S)] of either .1 or .5. These
levels were denoted ES [equidistant, small distance
(.1); 8 = (-.3, -.2, -.1, 0, .1, .2, .3 for the seven
items)] and EL [equidistant, large distance (.5); 8 =
(-1.5, -1, -.5, 0, .5, 1, 1.5)]. For the third level,
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denoted UD (unequal distance), d(S) varied more
realistically within one item set. In particular, 8 =
(-.4, -.3, -.2, 0, .2, .8, 1.6) for all design cells at
this level.

Results

Table 1 summarizes the asymptotic bias results
for the complete design. For nonintersecting its,
the results for Method lvts indicate that the reliability
was almost unbiased for most items. For the ES, EL,
and UD conditions taken together, 70 of the 84
reliabilities (12 cells with 7 items per cell) had an
absolute bias smaller than .01, and 75 had an abso-
lute bias smaller than .03. The largest bias was -.06
for aM = 5 and uD. The results were almost always
better for Method wts than for Methods 1 and 2.
Methods 1 and 2 often yielded unacceptably large
absolute biases; for example, bias larger than .10.
Method 1 often had a large bias for most of the 7
items in the test (not shown here). Method 2 pri-
marily yielded large biases for the two extreme items
(for which, in fact, Method 1 is used) and sometimes
also for the items in between (also not shown here).

For intersecting IRFS, the asymptotic bias was
larger for all three methods. For Method Ms, 27 of
the 84 reliabilities had an absolute bias smaller than

.01, and 53 had an absolute bias smaller than .03.
The largest bias for this method was -.07 for am =
5 and UD. As for the nonintersecting IRFS, the re-
sults for intersecting IRFs were almost always bet-
ter for Method lvts than for Methods 1 and 2. With a
few exceptions, the bias of Method lvts for single
item reliabilities was acceptable (data for single
items are not shown in Table 1).

For Method Ms, a three-factor analysis of vari-
ance (ANOVA) was performed with bias as the de-
pendent variable. Table 2 shows that with respect
to the main effects, only aM had a significant influ-
ence on the bias of items. Furthermore, there was
only one significant two-way interaction between
am and d(8). The three-way interaction was not sig-
nificant. Because no effect was found for the spread
of the as within a test, it was concluded that bias is

quite robust given intersecting IRFS. Furthermore,
the grand mean of the bias was .001 (not shown
here). Main effects and interaction effects were al-

most all very close to 0 (between -.01 and .01),
with one exception for aM = 5 and EL (first-order
interaction was -.03; not shown here). For Method
Ms it can be concluded that: (1) bias was smaller
for Method lvts than for Methods 1 and 2; (2) bias
was often negligible or practically acceptable; and
(3) bias stayed within reasonable limits even if IRFS
intersected.

Finite Sample Estimation of Item Reliability
A monte carlo study was conducted to assess the

sampling characteristics of the three approximations
to item reliability for realistic sample sizes. Despite
the larger asymptotic biases for Methods 1 and 2

(Table 1), they were included in the monte carlo
investigation because (1) sampling variance as well
as bias is important; (2) it may be that a method
with larger asymptotic bias has smaller finite sample
bias given, for example, the additional problem of
different neighbors mentioned above; and (3) Meth-
ods 1 and 2 are simpler than Method Ms and might
thus be recommended if the bias of Method lvts is

only slightly smaller.

Method

Data matrices containing binary item scores for
N (persons) x 7 items were generated (for the simu-
lation procedure see Sijtsma & Molenaar, 1987)
using 2PLM IRFs and a standard normal distribution
of 9. The design from the asymptotic bias study was
extended by adding sample size as a fourth factor
with three levels: N= 100, 300, and 900; item 5 and
a values were the same as in the previous study. N
= 100 was considered to be typical of ad hoc test
construction that is part of a larger research project,
N = 300 is typical of test construction research as
performed in a noncommercial environment (e.g.,
universities where the means to collect data from

larger samples are limited), and N = 900 (or more)
is typical of large-scale test construction on a com-
mercial basis.

Thus, a completely crossed 4 x 2 x 3 x 3 design
was used. There were 200 replications in each cell.
For each replication, the estimated 1tg and 1tgh were
used (in the order found from that replicated data
matrix) for estimation of p by Methods 1, 2, and Ms.
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Table 1
Number of Items With IBiasl <.01 and < .03, Largest Negative Bias (Min), and Largest

Positive Bias (Max) for Parameters p,, pz, and pm, Relative to p(Xg), for ES, EL,
and UD Conditions, and for Nonintersecting and Intersecting IRFs (Blank if IBiasl < .O1)

Results

For N = 300 and each combination of aM, spread
of the as, and d(8), the mean of an estimate of item
reliability was calculated across items and 200 rep-
lications. Table 3 shows the mean finite sample bias
and SD of the three methods in one test for N = 300.

For both intersecting and nonintersecting IRFS,

Method Ms almost always had a smaller finite
sample bias than Methods 1 and 2. Because it was

so small, for practical purposes the bias of Method
lvts could be ignored. The SD of Method lvts was

almost always smaller than that of Methods 1 and
2. The same trend was found for N = 100 and N =

900. Because of these results, only the results for
Method wts are discussed in more detail.

Nonintersecting IRFs. For nonintersecting IRFs,
Table 4 (upper-half) shows that Method lvts was al-
most unbiased. For the widely spaced items (EL) with
nonintersecting IRFS, except for aM = 5, the bias was
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Table 2
Results of the Analysis of Variance for

Asymptotic Item Bias of pMs

somewhat larger for the extreme items. For ocM = 5,
the bias was larger for nonextreme items. For un-
equally spaced items (UD), bias was negligible ex-
cept for ~ = 1, Item 7; cc, = 2, Item 7; and oc,~,i = 5,
Items 5-7. For N = 100 (not shown here), bias was
in general somewhat higher, especially for cc, = .5
and a,i,,1= 1. For N = 900 (also not shown here), bias
results were highly similar to the results obtained for
N = 300.

For N = 300 and nonintersecting IRFS, the SDs

for almost all items were approximately .05. Only
the SDs for the extremely easy and difficult items
from widely spaced sets of items (EL) sometimes
were somewhat larger (e.g., for Item 1, am = 1, the
SD was .07). For N = 100 (not shown here), the SD
of Method Ms across samples was rather large (be-
tween .07 and .13 for the extreme items and be-
tween .04 and .09 for the items in between). For N
= 900 (also not shown here), the SD for almost all
items was approximately .025. In general, for N =
100 the SD was approximately ~3 times as large as
for N = 300, and for N = 900 it was approximately
~3 times as small as for N = 300.

For otm = 1 and aM = 2, the distribution of the lvts
estimator was rather symmetrical around its mean
for all sample sizes (the skewness was between -.4
and .4). For ccm = .5, the distribution was positively
skewed for some items. For c~m = 5 and all sample
sizes, the distribution was negatively skewed for
some items and positively skewed for others. The
peakedness of the distribution was comparable to the
normal distribution for all discrimination levels (in
general, the kurtosis was approximately 3).

Intersecting IRFs. For intersecting IRFs (Table
4), the bias of Method lvls was generally larger than
for nonintersecting IRFs. The pattern of bias across

Table 3
Mean Absolute Bias of p,, p,, and pms Across 200 Replications and Seven Items, and Average SD Across Seven Items,

for N= 300 (Blank if IBiasl < .01) for ES, EL, and UD Conditions and for Nonintersecting and Intersecting IRFs
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Table 4
Mean Bias and Standard Deviation (SD) Across Replications of om, For Seven Items (N = 300, 200 Replications

Per Cell; Blank if lbiasl < .01) and for Nonintersecting and Intersecting IRFs

items within a test was rather inconsistent. Relatively
few items showed a bias smaller than -.01 or larger
than .01; bias for these items ranged from -.08 to
.05. However, for the majority of the items bias was
much smaller. The SD results for intersecting IRFS
were comparable to those for nonintersecting ms.
The same results were generally observed for skew-
ness and kurtosis. Results for intersecting and
nonintersecting IRFs were comparable across the three
sample sizes.
ANOVA results. For Method MS, two four-

factor ANOVAs (N = 300) were performed: one with
bias as the dependent variable and one with SD as the
dependent variable. Table 5 shows that am and the
spread of the as had a significant effect on the bias
of the items. There was only one significant two-
way interaction, between aM and d(8). No three- or
four-way interactions were found to be significant.
The grand mean of the bias was -.001. The vast
majority of the absolute values of main and interac-
tion effects were less than .01. A few exceptions oc-
curred for some first-, second-, and third-order

Downloaded from the Digital Conservancy at the University of Minnesota, http://purl.umn.edu/93227.  
May be reproduced with no cost by students and faculty for academic use.  Non-academic reproduction  

requires payment of royalties through the Copyright Clearance Center, http://www.copyright.com/ 



333

interactions (~= 5; effects between -.02 and .02 in
most cases; never smaller than -.03 or larger than
.03). Thus, the finite sample bias results were largely
in agreement with the asymptotic bias results.

Table 5
Results of the Analysis of Variance for

Finite Sample Bias of p,s (N = 300)

Table 6 shows the results of the ANOVA using SD
as the dependent variable. Note that d(6) and N
had a significant influence on the SD of the items.
There was also a significant two-way interaction
between ~ and d(B). No three- or four-way inter-
actions were significant.

Discussion

The estimation and use of item reliability is not
a common practice in nonparametric test construc-
tion research. Moreover, like item reliability, the H.
coefficient (Mokken & Lewis, 1982) is an increas-
ing function of the slope of the IRF (Mokken et al.,
1986). Therefore, it would be interesting to com-
pare these two item parameters. This topic is briefly
discussed in relation to the H coefficient for two

Table 6
Results of the Analysis of Variance

for the SD of pMs 
_____

items, HBh. This coefficient is defined (Mokken &

Lewis, 1982) as

Note that the covariance is in the numerator and
the maximum possible covariance given n, and 7c,
is in the denominator. The scalability coefficient for
item g with respect to the other k - 1 items in the
test, Hg, is defined by taking the sum across all co-
variances between item g and the other items in the
numerator and the sum across all corresponding
maximum covariances in the denominator (Mokken
& Lewis, 1982).

There is remarkable equivalence between the
item reliability of item g and the H coefficient for
two independent replications of item g. Let Xg and
Xg. be two independent replications. Then

The scalability coefficient for two independent rep-
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lications thus equals

This is exactly the reliability of item g: Hg8 = p(X,).
An interpretation of the item reliability, thus, is the
scalability of an item with respect to an indepen-
dent replication of that item.

This shows that item reliability is related to but
not identical to the concept of scalability (Mokken
& Lewis, 1982). The item reliability expresses how
well item performance can be repeated under simi-
lar circumstances. The item scalability expresses the
degree to which an item is scalable in the sense of
the Guttman model together with the other k - 1

items in the test. To estimate p(Xg), information is
used from one or two neighbor items in the diffi-
culty ordering that replace a real replication of item
g. How to use p(X8) and Hg in a complementary way
in a Mokken analysis is a topic for future investiga-
tion.

Method lvts investigated here for estimating item
reliability is also useful for obtaining information
about the discrimination of the items. The method
circumvents the identification problems that may
arise in estimating the discrimination parameter in
the two- and three-parameter logistic models. The
one-parameter logistic model proposed by Verhelst
& Glas (1995) is an attempt to estimate a hybrid
model between the one- and two-parameter logis-
tic models by imputing integer values for the as,
thereby avoiding the estimation problem. The fit of
the model to the data and the usefulness of the esti-
mates of the person parameters and the item diffi-
culties are improved iteratively by adaptation of the
imputations of the as. Although Method Ivts does
not provide the as themselves, given the nonpara-
metric context used here it may be used to obtain

similar information.

Theoretically, item reliability provides informa-
tion about the item that is independent of the other
items in the test. In practice, one or two neighbor
items are used to estimate this parameter. Item reli-

ability does not provide information about the fit of
an item in the Mokken model of double monotoni-

city but should be used as a practical index of the
quality of items after model-data fit has been estab-
lished. This is a common strategy in test construc-
tion using an IRT model: first a set of items is isolated
that are in agreement with the theoretical require-
ments, and next some items may be removed that
are not suited for practical use because, for example,
their reliability is too low. Note in this context that
IRT models, such as the one-, two-, and three-param-
eter logistic models and the model of double mono-
tonicity, theoretically allow items with an almost 0
reliability (refer to Wood, 1978, for an example in-
volving the fit of the Rasch model to random noise
data). Such items, of course, do not have practical
measurement value.
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