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Abstract 

 
Ovarian Cancer is the most lethal gynecologic malignancy. Analyzing the molecular events related to ovarian cancer helps 
understand the pathogenesis of ovarian cancer from a genetic point of view. As miRNA singletons have been found significantly 
related to ovarian cancer and many other cancers, miRNAs have been recognized as an important riboregulator of gene 
expression. However, little is known about how pairs of miRNA expression profiles associate with ovarian cancer.   In our 
analysis, we explored the combinatorial effects of miRNA pairs on regulating gene expression. We assessed the non-additive 
interaction between miRNA pairs on gene expression of patients that carry high grade ovarian cancer. We demonstrate how 
different miRNAs collectively contribute to ovarian cancer. We will illustrate two examples of miRNA pairs, hsa.miR.937 & 
hsa.let.7b and hsa.miR.1277& hsa.miR.485.3b, that we found exhibit non-additive interaction pattern on affecting gene 
expression of the patients with high grade Ovarian Cancer. 

 

Introduction: 
Ovarian cancer is the second most common 
gynecologic cancer in the United States and sixth 
most common cancer in women worldwide[1,2,3]. 
In 2010 alone, there were 13,850 deaths from of 
ovarian cancer with an estimated 21,888 new 
cases diagnosed [4]. Although 90% of the patients 
with early-stage ovarian cancer could successfully 
survive 5 years or longer after initial diagnosis, 
only 21% of the patients who were diagnosed at 
advanced-stage could achieve that [2]. Due to the 
lack of robust methods for early detection, 19% of 
all ovarian cancer is diagnosed at early stage [5]. 
Thus, more understanding on the pathogenesis of 
ovarian cancer is needed for helping to improve 
the early stage detection diagnosis.  
  Analyzing the molecular events related to 
ovarian cancer give the best help on 
understanding the pathogenesis of ovarian cancer 
from a genetic point of view. In order to identify 
the genetic alteration associates with the 
malignant phenotype of ovarian, many 
researchers start investigation on analyzing how 
miRNA expression profiles contribute to ovarian 
cancer. miRNA is a small and new class of non-
coding RNAs that plays an important role in cell-
cycle progression, tissue differentiation and organ 
development [5,7]. Many miRNA singletons have 
been found significantly related to many other 
cancers, such as breast cancer, pancreatic cancer 
and lung cancer. [7,8,9] Several recent studies 
have also  successfully identified that particular 
miRNA singletons such as miR-21, miR-125a, miR-
125b[3], miR-200a,  miR-141, miR-199a [5], are 
significantly differentially or over expressed in the 
miRNA expression profile of ovarian cancer 
patients. Although miRNA has been recognized as 
a riboregulator of gene expression [3] and many 

miRNA singletons have been discovered as 
essential cancer bio-makers, little is known about 
how pairs of miRNA expression profiles associate 
with ovarian cancer.  
  In this report, we represent the result of genome-
wide miRNA expression profiles in a large set of 
high grade Ovarian Serous Cystadenocarcinoma 
(OSC) tissue, a type of highly aggressive epithelial 
ovarian tumor that accounts for 90% of all ovarian 
cancer [6]. We assessed the non-additive 
interaction between miRNA pairs on gene 
expression of patients that carry OSC. We 
demonstrate how different miRNAs collectively 
contributes to this high aggressive OSC. 
 
 
 
 

Material and Methods: 
An overview of the methods used can be found in 
Research Process Chart in Figure1. 
 
Data from The Cancer Genome Atlas (TCGA): 
We acquired the OSC miRNA expression data, gene 
expression data and clinical data from TCGA data 
portal. (Available at: http://tcga-data.nci.nih. 
gov/tcga/) 
  The level three OSC data from TCGA were 
analyzed for both miRNA expression and gene 
expression. In TCGA, level three data represents 
the data which are background corrected, 
molecular abnormalities interpreted and 
normalized.  
miRNA Expression Data: The miRNA microarray 
platform of miRNA expression data is Agilent 
8*15K performed by University of North 
Carolina(UNC).The measurements for 799 
miRNAs were included in the miRNA expression 
data in our analysis. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 

 

Figure 1: Research Process Chart. 

 
Gene Expression Data: The platform of gene 
expression data is Affymetrix HT Human Genome  
U133 Array Plate Set performed by Massachusetts 
Institute of Technology (MIT). We have included 
12042 genes in our analysis. 
 
  We have averaged the expression values of the 
duplicated samples from the same patients in 
miRNA and gene expression data. We have also 
removed patients whose tumor stage information 
is null. 493 patients who have been annotated 
having OSC stage II to IV in the clinical data are 
finally selected in our analysis. (Table 1)  
 
Zscore Normalization: 
 
Before any methods are applied, both miRNA and 
gene expression data are pre-processed by zscore 
normalization: subtracting the mean and dividing 
by standard deviation for data standardization. 

Construct Gene Co-expression Network: 

We performed Weighted Gene Co-expression 
Network Analysis (WGCNA) [10-13] on OSC gene 
expression data. The purpose of applying WGCNA 
is to attempt to identify co-expressed genes and to 
combine the high correlated genes into gene 
modules (clusters). Since gene modules might 
associate with biological pathways [14], 
combining genes into modules is an effective 
scheme for reducing the dimension of gene 
expression data from a level of thousands into a 

smaller set of biologically meaningful gene 
clusters.  

Table1: Data Information 
*clinical data were last updated on August 10th 2010 

  In WGCNA, each gene is considered a node in the 
network. The distance between a pair of gene 
nodes is first determined by their pair-wise 
Pearson correlation value. The gene network is 
constructed based on all pair-wise Pearson 
correlation values between the gene nodes in the 
network. The pair-wise Pearson correlation was 
calculated across all patients for all genes in the 
gene expression data matrix. In order to 
emphasize the large Pearson correlation value, a 
power β ≥ 1, known as soft threshold as against 
hard threshold in un-weighted network, needs to 
be chosen to raise the power of the absolute value 
of Pearson correlation by the formula: 

adjij = |cor(xi, xj)| ^β 
 

This adjij is defined as the adjacency of the genes 
in an unsigned weighted gene co-expression 
network.  
 
Picking a proper value for the soft threshold β is 
an essential step in WGCNA. In order to allow the 
network to keep the continuous nature of the gene 
co-expression information, β should be chosen 
obeying the criterion of scale-free topology. [10] 
In this way, a weighted network exhibits its 
advantages on the robustness in hierarchical 
clustering analysis [10,14].  
 
As we applied WGCNA to gene expression data in 
our analysis, we chose soft power threshold β = 4, 
which is the smallest value reaching the level of 
0.9 on the scale independence. (Figure 2)  

Type   Platform 
No. of 

Patients 
No. of 

Singletons 

miRNA-
Expressions   

UNC__H-
miRNA_8x15Kv2 491 799 

Gene-
Expressions   

BI__HT_HG-
U133A 491 12042 

Clinical*   _ 491 _ 



 
Figure2 : the scale free topology and soft-power selection 

 
Taking the adjacency as input, the dissimilarity of 
a Topological Overlap Matrix (dissTOM) is 
computed. The dissTOM computation minimizes 
the effect of noise and unauthentic associations.  
dissTOM is the final input for the module 
detecting in WGCNA.[10] 
 
As we expect to analyze gene modules with a 
relatively large size, we set the minimum module 
size to be 30 when performing WGCNA. This 
allows all gene modules returned have a size no 
less than 30 genes. After combining dynamic gene 
modules with a correlation higher than 0.8, all 
genes have been assigned to 80 modules . The 
final results are module sizes ranging from 1530 
to 33.(79 modules for signed genes and 1 module 
for unsigned ones). A graphic illustration is shown 
in figure 3. Module memberships were assigned to 
each gene in forms of numeric labels and color 
labels. 
 
In WGCNA, a module eigengene was computed for 
each gene module as the new representative of all 
genes in that module. It refers to the first principal 
component of a gene module. [10, 14] Its value 
summarizes the gene expression level of a certain 
gene module. We consider the new eigengene 
values as the new quantitative traits of genes in 
our analysis.  
 

Linear Regression Based Test for Finding Non-
additive Interaction: 
 

 

 
 
 

 Figure3 : gene module detection. The color bar on the bottom level is 
the final module selection after merging the similar modules. 

 
In order to identify the level of non-additive 
interaction of each pair of miRNAs, we performed 
linear least square regression fitting to each 
miRNA pairs for each gene module.  
 
                                (*) 
 
 
*y stands for the module eigengene data; gene expression 
*x1 stands for miRNA1, x2 stands for miRNA2 
*x1*x2 stands for the interaction term 
* β 0 is the base,β1, β2 and β12 are the coefficient of each term 
*ε represents the error term 
 

 
Since our primary goal is assessing the non-
additive interaction between miRNA pairs on the 
expressions of gene modules, the test of epistasis 
was performed in our analysis. We computed F-
statistics to compare the full model (*) to the 
model which only includes the additive terms 
[17].   Such statistical computation allows us to 
assess significance of the non-additive interaction 
of each pair directly.  

 
                Ho: β12=0    purely additive model 

Ha: β12≠0   full model (*) 
 

 
We have collected a matrix of all p-values from F-
statistic computation in the model comparison for 
all possible miRNA pair combinations on gene 
modules. There are 80 sets of p-value matrices 
returned and each set is a symmetric matrix with 
zeros on the diagonal and all 799 miRNA as rows 
and columns. We have transformed all such 
matrices by taking –log10 of the P-value in every 
cell (-log10PV). (Figure 4) 



 

 
Figure4: An example for illustrating the symmetry –log10PV 

matrix of all pairs on gene module 1. 
 

Since each matrix is symmetric, both the upper 
and the lower triangular contains the same -
log10PV information. We selected the upper 
triangular for each of 80 –log10PV matrices. We 
break every selected part into a vector, where 
each cell in that vector represents the p-value of 
corresponding pair of miRNAs. We have combined 
all such vectors into a matrix with 80 columns and 
318801rows. (-log10PV matrix) 
 
Identify non-additive interaction miRNA pairs:  
Since we are comparing the full model with the 
purely additive model, a lower P-value would 
suggest that the interaction effect is making a 
significant contribution. This is because we could  
not ignore the effect of the interaction if we reject 
the null hypothesis. Equivalently, after 
transforming PV to –log10PV, a high –logPV would 
support this conclusion as well. 
For identifying the significant miRNAs, we took 

the row maximum of the –log10PV matrix. We 

filtered out the low –log10PV pairs and kept the 

ones that have relatively high (-log10PV>6) –

log10PV as target pairs for further graphical 

identification analysis. In the graphical analysis, 

for every target pair, we used scatter plot to show 

the pattern of normalized miRNA expression for 

the two selected miRNAs, one for each axis. We 

used color for all scatters to indicate the level of 

gene expressions of their selected best gene 

module. The best gene module refers to the 

module where the target pair has achieved their 

maximum –log10PV. In this way, we see how the 

expression of the two miRNAs affects the level of 

the gene module expressions. 

However, due to the high skewness and low 

variation of the eigengene value in some of the 80 

gene modules, the non-additive pattern for some 

of the pairs we found is difficult to distinguish on 

their best gene module. Therefore, we have 

filtered out the gene modules that have IQR < 

0.065 in order to illustrate the non-additive 

pattern clearly. (Figure 5) There are 9 qualified  

modules selected.  

 
Figure 5: Histogram of IQR for each gene module 

 

False Discover Rate (FDR) computation:  

We used FDR computation to correct for the 

multiple comparisons. [15,16] Across all 9 gene 

modules, we found 942 pairs show significant to 

the gene expression trait.  

 

By setting the –log10PV threshold to 6, there are  

25 pairs left.(Figure6) 

 
 

 
Figure 6: Brief graphic overview of 25 pairs. 

 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 7: hsa.miR.937 and hsa.let.7b on gene module 7 (Pair 1)

 

From those 25 pairs, we have successfully found 

several that exhibit non-additive pattern on 

affecting eigengene value. We will be presenting 

two pairs that have a significant pattern as 

examples. 

 

Pair1: hsa.miR.937 and hsa.let.7b on gene module 

7 

In the hsa.miR.937 and hsa.let.7b, the –log10PV is 

6.036 on their best eigengene -- gene module 7 of 

the 9 qualified gene modules (The original gene 

module label is 75 before IQR filtering). This high 

–log10PV indicates that the PV for the 

corresponding model comparison test is very 

small and indicates the significance of the 

interaction effect of the two miRNAs.  

From figure 7, we can see that the corresponding 

expression value of the two miRNAs over 493 

patients shows a linear pattern. However, the non-

additive interaction is illustrated by color of figure 

7. The color, which indicates the eigengene 

expression level, does not exhibit a linear trend 

related to the miRNA expression values. In other 

words, we could not find the value of eigengene 

increasing or decreasing as the expression of 

miRNAs monotonically changes. It means the 

miRNAs are not additively controlling the  

 

 

expression values on their best eigengene, which 

best proves that their non-additive interaction 

exists on affecting module7. 

 

Pair2: hsa.miR.1277 and hsa.miR.485.3b on gene 

module 4.  

 
Figure 8: hsa.miR.1277 and hsa.miR.485.3b on gene module 4 

 

In this selected pair, hsa.miR.1277 and 

hsa.miR.485.3b, the –log10PV is 6.165 on their 

best eigengene -- gene module 4 of the 9 qualified 

gene modules (The original gene module label is 

10 before IQR filtering). Similarly, the –log10PV is 

large, which indicates that the PV for the 

corresponding model comparison test is very 

small. We fail to reject adding interaction term in 

the full model.   

In this pair, we do not find additive effects of the 

miRNAs on their best eigengene, which proves 



their non-additive interaction on the eigengene 

expression exists. 

 

 

 

Conclusion: 

 

We have successfully discovered the existence of 

non–additive interactions between miRNAs on 

affecting the gene expression of patients with 

ovarian cancer. Although the significance of 

miRNA singletons on regulating gene expression is 

recognized today, there are seldom studies 

investigating on the pair effects of miRNAs in 

ovarian cancer. Through our analysis, we have 

successfully discovered the existence of non–

additive interactions between miRNAs that affect 

gene expression of patients with ovarian cancer. 

This discovery gives strong support for further 

analysis, such pathways analysis relates to non-

additive interaction effects of miRNAs on ovarian 

cancer or other cancers. 
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