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Abstract

Image denoising is often used for pre-processing images so that subsequent image

analyses are more reliable. Many existing methods can not preserve complicated

edge-structures well, but those structures contain useful information about the image

objects. So, besides noise removal, a good denoising method should preserve im-

portant edge-structures. The major goal of this dissertation is to develop image de-

noising techniques so that complicated edge-structures are preserved efficiently. The

developed methods are based on nonparametric estimation of discontinuous surfaces,

because a monochrome image can be regarded as a surface of the image intensity func-

tion and its discontinuities are usually at the outlines of the objects. The first part of

this dissertation introduces some existing methods and related literature. Next, an

edge-structure preserving 2-D image denoising technique is proposed, and it is shown

that it performs well in many applications. The next part considers 3-D images.

Because of emerging popularity of 3-D MRI images, 3-D image denoising becomes

an important research area. The edge-surfaces in 3-D images can have much more

complicated structures, compared to the edge-curves in 2-D images. So, direct gener-

alizations of 2-D methods would not be sufficient. This part handles the challenging

task of mathematically describing different possible structures of the edge-surfaces in

3-D images. The proposed procedures are shown to outperform many popular meth-

ods. The next part deals with the well-known bias issue in denoising MRI images

that is corrupted with rician noise, and provides an efficient method to remove that

bias. The final part of this dissertation discusses the future research directions along

the line of previous parts. One of them is image denoising by appropriate multilevel

local smoothing techniques so that the fine details of the images are well preserved.
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Chapter 1

Introduction

Images are used in almost every disciplines of science and engineering. Many of them

contain noise that makes the observers’ job difficult to study the image objects. There

are many reasons behind the presence of noise in most of the images, including the ar-

tifacts of the image acquisition devices, e.g., cameras. The noise in the images should

be removed to improve human interpretation. For example, noise in the Magnetic

Resonance Images (MRI) of human brain makes the doctors’ job difficult to detect

tumor or any other abnormal growth. So, image denoising is an important research

area in our society.

A gray-scale image can be expressed by a bivariate function f(x, y), where (x, y)

denotes the spatial location in the image and the function value f(x, y) is proportional

to the brightness of the image at (x, y). f(x, y) is often called image intensity function

in the literature.

To be handled by computer softwares, an image needs to be digitized, both in

spatial location and brightness measure. In many image acquisition devices, e.g.,

cameras, scanners, a digitizer is included which converts the acquired images into

their digital forms. In this dissertation, if not mentioned otherwise, all images refer

to gray-scale digital images.

A conventional 2-D digital image can be expressed by a matrix {f(i, j), i =

1
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1, . . . , n1, j = 1, . . . , n2}, where i, and j are the indices of the rows and columns,

as shown below. 
f(1, 1) f(1, 2) · · · f(1, n2)

f(2, 1) f(2, 2) · · · f(2, n2)
...

...
. . .

...

f(n1, 1) f(n1, 2) · · · f(n1, n2)


Each element of the matrix is called a pixel of the image. The image resolution is

related to n1 and n2. The resolution is high if they are large, and low if they are

small. For the (i, j)-th pixel, the digitized value of f(i, j) is conventionally assumed

to be an integer in the range [0, L − 1], with 0 denoting black and L − 1 denoting

white. The magnitude of f(i, j) quantifies the shade of the image at that position.

The value of f(i, j) is often called gray level of the image at the (i, j)-th pixel. For a

more detailed description, see Gonzalez and Woods (1992), and Qiu (2005).

1.1 Image denoising and jump regression analysis

Assume that the observed image intensities {ξij, i, j = 1, . . . , n} in a noisy 2-D image

follow the following regression model:

ξij = f(xi, yj) + εij, for i, j = 1, . . . , n (1.1)

where {(xi, yj) = (i/n, j/n), i, j = 1, . . . , n} are equally spaced pixel locations, f is

the unknown image intensity function, and {εij, i, j = 1, . . . , n} are independent and

identically distributed (i.i.d.) random errors with mean 0 and unknown variance σ2.

While n1 = n2 = n is used for simplicity, the regression model under the general case

n1 6= n2 can be easily written.
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The image intensity function f has discontinuities/jumps at various places, called

edges in the literature. For example, the image intensity function often has jumps at

the boundaries of the image objects. So, edge-preserving image denoising is essentially

the same problem as the jump-preserving surface estimation in regression analysis

(Qiu, 2007). In jump regression analysis, the design points are not necessarily equally

spaced, while in images they are often so. Clearly, edge-preserving image denoising

can be achieved efficiently by developing and applying certain techniques of jump

regression analysis.

1.2 Edge and edge-structure preserving image de-

noising

In image processing, noise removal is often used as a pre-processing tool. If certain

image features e.g., edges, edge-structures etc. are blurred or lost during denoising,

they can not be recovered later on. Because they often denote major characteristics

of the image objects, it is very important to preserve them while removing noise from

images.

In the literature, there are some existing procedures to denoise images while pre-

serving edges and edge-structures. One group of methods are based on Bayesian

estimation, using Markov Random Field (MRF) modeling and maximum a posteriori

(MAP) algorithms, e.g., Besag (1974), Besag (1986), Fessler et al. (2000), Geman

and Geman (1984), Godtliebsen and Sebastiani (1994), Marroquin et al. (2001), and

Moussouris (1974). Some closely related methods use the regularization approach,

by minimizing certain objective function that enforces a roughness penalty in ad-

dition to a term measuring fidelity of an estimator to the data (Li, 1995; Rivera

and Marroquin, 2002; Rudin et al., 1992). Image denoising by median filtering, and

other robust estimation procedures are widely used as pre-smoothing techniques in
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image processing, because they have certain abilities to preserve edges while denoising

(Brownrigg, 1984; Gallagher and Wise, 1981; Hillebrand and Müller, 2007; Sun et al.,

1994). Other image denoising techniques include adaptive smoothing filters (Polzehl

and Spokoiny, 2000; Saint-Marc et al., 1991), bilateral filtering (Chu et al., 1998;

Tomasi and Manduchi, 1998), diffusion filtering (Barash, 2002; Perona and Malik,

1990), wavelet transformation procedures (Chan et al., 2000; Figueiredo and Nowak,

2001; Nason and Silverman, 1994; Portilla et al., 2003), jump-preserving surface es-

timation procedures (Gijbels et al., 2006; Qiu, 1998, 2004, 2009; Sinha and Schunck,

1992; Yi and Chelberg, 1995), etc. See Qiu (2005, 2007) for more information about

the existing literature on image denoising.

Most image denoising procedures mentioned above have abilities to preserve edges

at places where the edge curvature is not large. At the places where the edges have

angles or where their curvatures are large, the above methods usually blur or round

those edge-structures. One major reason why this happens is that the edge-structures

are hidden in image intensities and they are not easy to describe or measure (Chabat

et al., 1999; Yang et al., 1996), and they are even more difficult to accommodate in

the image denoising procedures (Gijbels et al., 2006). To better discuss this issue, the

discrete version of a 2-D bilateral filtering procedure can be written as follows (cf.,

Section 7.4.2 of Qiu (2005)):

S(t+1)(x, y) =
1

N (t+1)(x, y)

k∑
i=−k

k∑
j=−k

S(t)(x+ i, y + j)w(t)(x+ i, y + j),

where k > 0 is the window size of the filter, S(t+1)(x, y) denotes the denoised image

intensity at the pixel (x, y) in the (t+ 1)th iteration,

w(t)(x+ i, y + j) = exp

(
−i

2 + j2

2σ2
d

)
exp

(
−(S(t)(x+ i, y + j)− S(t)(x, y))2

2σ2
r

)
,

and N (t+1)(x, y) is the summation of all weights {w(t)(x+ i, y + j)}. From the above

expressions, it can be seen that, if a pixel (x + i, y + j) and the given pixel (x, y)
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Figure 1.1: A toy example

are on two different sides of the edge curve in the neighborhood, then the weight

w(t)(x+ i, y+ j) will be small because S(t)(x+ i, y+ j)−S(t)(x, y) would be relatively

large in such cases. However, w(t)(x+ i, y + j) is still a positive value, although it is

relatively small. In other words, observed image intensities in both sides of the edge

curve are actually used in defining S(t+1)(x, y). Now, let us consider a toy example

shown in Figure 1.1, in which there is an angular edge curve in a neighborhood of a

given pixel located at the center (marked by “x”). In such cases, most pixels in the

neighborhood are on the different side of the edge curve, compared to the given pixel.

Therefore, the angle of the edge curve would be blurred by the bilateral filter.

Over the last few years, thanks to the advancement of image acquisition technolo-

gies, 3-D images become popular. For example, in medical science, certain image ac-

quisition techniques, e.g., Magnetic Resonance Imaging (MRI), functional Magnetic

Resonance Imaging (fMRI) can take 3-D images of various human/animal organs.

Due to the artifacts of the image acquisition devices, and many other reasons, 3-D

images often contain heavy noise. So, 3-D image denoising is very important in many

disciplines including medical science. Most existing image denoising methods men-

tioned above are for 2-D images. One possibility of using them in denoising a 3-D

image is to denoise each 2-D slice of the 3-D image. Clearly, this procedure can not

work well, because the spatial information around each voxel is not used efficiently.

(In the literature on 3-D images, the term voxel is used in place of pixel.) Another
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possibility is generalizing the 2-D denoising methods to those of 3-D. This can actually

be achieved for most of the 2-D denoising methods. However, direct generalizations

would also not perform well either in preserving edge-structures of 3-D images. One

major reason is that, the edge locations in 2-D images form curves, whereas those

in 3-D images form surfaces. Edge/jump surfaces in 3-D images have much more

complicated structures than edge/jump curves in 2-D images. So, edge-structure pre-

serving 3-D image denoising is emerging as a new research area. More discussions on

this topic are provided in Sections 2.1 and 3.1.

1.3 Various noise models in medical images

In the image processing literature, most of the existing procedures assume the noise in

the images to be additive, independent and identically distributed (i.i.d.) Gaussian

noise. In real applications, this simple noise model often do not hold to be true.

For example, the noise structure in magnitude MRI images usually follows a rician

model (Bernstein et al., 1989; Sijbers et al., 1998; Nowak, 1999). Some images from

radiography contain noise that are Poisson distributed (Webb, 1988). Chi-square

distributed noise is also common in certain types of images.

When a conventional image denoising procedure is applied to an image that is

corrupted with any of such noise, the image intensity values of the denoised image

would not be close to the actual intensity values. In statistical terminology, the

denoised image is said to be a biased estimate of the true image. This happens

because such noise does not have the zero-mean property. Moreover, the noise in

some cases is dependent on the image intensity values, which makes the estimation

bias to be intensity dependent as well. So, it is even more difficult to efficiently denoise

an image that is corrupted with intensity dependent non-zero mean noise (e.g., the

rician noise). In the literature, there are broadly two approaches to solve this issue.
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One of them is to accommodate the target noise model in the denoising procedure,

to make sure that the denoised image is an unbiased estimate of the true image

(Zhu et al., 2009). Another approach is to reduce/eliminate the bias after applying a

conventional denoising procedure (Gudbjartsson and Patz, 1995; Wiest-Daessle et al.,

2008).

Some of the existing methods to solve the ‘bias problem’ are computationally ex-

pensive. Many other methods estimate the bias by some naive approaches. However,

those estimates of the bias are not good enough to solve the problem either. So,

denoising an image that is corrupted with intensity dependent non-zero mean noise

is also an important research area in medical imaging.

1.4 Organization of this dissertation

The remaining part of this dissertation is organized as follows. In Chapter 2, a 2-D

image denoising procedure is proposed and its numerical performance in comparison

with some existing methods is studied. A 3-D image denoising procedure is proposed

in the first few Sections of Chapter 3. Some of its statistical properties are also

provided. Numerical studies are presented in comparison with some state-of-the-art

methods. Chapter 3 also presents a generalized version of our proposed 3-D image

denoising procedure, along with some numerical examples. In Chapter 4, a bias

correction procedure is proposed to denoise images that are corrupted with rician

noise. Numerical studies in comparison with some existing methods are also provided.

Some limitations of all our proposed methods are discussed in Chapter 5. In that

chapter, some future research problems are also discussed. Proofs and derivations of

some theoretical results are provided in the appendix.



Chapter 2

Edge-structure Preserving 2-D
Image Denoising

In this Chapter, we first introduce the research problem of edge-structure preserving

2-D image denoising in the context of existing literature on that. Then, in Section

2.2, we propose a novel 2-D image denoising procedure which can preserve edges and

major edge features, e.g., angles of the edges. Our method is based on nonparamet-

ric estimation of discontinuous surfaces from noisy data, in the framework of jump

regression analysis, because a monochrome image can be regarded as a surface of the

image intensity function and such a surface usually has discontinuities at the out-

lines of objects. In Section 2.3, we present some numerical results which show that

our method works well in various applications, compared to some existing 2-D image

denoising procedures.

2.1 Introduction

As discussed in Chapter 1, image denoising is often used for pre-processing images so

that subsequent image analysis is more reliable (Gonzalez and Woods, 1992). Besides

noise removal ability, another important requirement for image denoising procedures

is that true image structures, such as edges, should be preserved in the denoising

8
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process. In this Chapter, we handle the 2-D image denoising problem in the framework

of jump regression analysis (JRA), which is a research area handling regression models

involving jumps and discontinuities (Qiu, 2005). In this framework, image denoising

can be accomplished by estimating a discontinuous surface from noisy data, because

a monochrome image can be regarded as a surface of the image intensity function and

such a surface usually has discontinuities at the outlines of objects. A novel procedure

is suggested in this chapter for estimating discontinuous surfaces from noisy data,

which can preserve edges and major edge features, e.g., angles of the edges.

In the literature, there are some existing procedures for 2-D image denoising (Sec-

tion 1.2, Chapter 1). Most existing image denoising and jump surface estimation

procedures have some ability in preserving edges at places where the edge curvature

is small. As discussed in Chapter 1, at places where the edges have angles or where

their curvature is large, however, such edges would often be blurred or rounded by

these existing methods. One major reason why this would happen is that the edge

structures (e.g., angles) are hidden in observed image intensities, they are not easy

to describe and measure (Chabat et al., 1999; Yang et al., 1996), and they are even

more difficult to accommodate in the image denoising process (Gijbels et al., 2006).

In our opinion, edge structures are an important part of images, because they often

denote major characteristics of image objects, and are easier to capture our visual

attention than the parts of the edges with relatively small curvature. Therefore, they

should be preserved during image denoising. In other words, a good image denoising

procedure should preserve not only the parts of the edges with small curvature but

also certain major edge structures, such as angles, corners, and other places on the

edges with large curvature, although the latter goal is much more challenging than

the former.

In this chapter, a 2-D image denoising procedure is suggested, which can preserve

edges and major edge structures well. Our method consists of three major steps,
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outlined below. First, edge pixels are detected in the whole design space by an

edge detector. Second, in a neighborhood of a given pixel, a piecewise linear curve

is estimated from the detected edge pixels by a simple but efficient algorithm, to

approximate the underlying edge segment in that neighborhood. Finally, observed

image intensities on the same side of the estimated edge segment, as the given pixel,

are averaged by the local linear kernel smoothing procedure (Fan and Gijbels, 1996),

for estimating the true image intensity at the given pixel. The proposed 2-D image

denoising procedure is described in detail in Section 2.2. Some numerical examples

are presented in Section 2.3, for evaluating its numerical performance, in comparison

with several existing denoising procedures.

2.2 Proposed methodology

We present our proposed methodology in three parts. In Section 2.2.1, 2-D local

quadratic kernel (LQK) smoothing and a corresponding edge detection procedure

is introduced. Local approximation to edge segments and edge-structure-preserving

local denoising are described in Section 2.2.2. Data driven parameter selection is

discussed in Section 2.2.3.

2.2.1 Edge detection by LQK smoothing

As discussed in Section 2.1, the first step of the proposed image denoising procedure is

to detect edge pixels using an edge detector. Theoretically speaking, any reasonable

edge detector can be used here. In the literature, most existing edge detectors are

based on estimation of the first-order derivatives (Canny, 1986; Fleck, 1992; Qiu,

2002; Qiu and Bhandarkar, 1996) the second-order derivatives (Clark, 1988; Torre

and Poggio, 1986) of the image intensity function. Recently, Sun and Qiu (2007)

propose an edge detector that combines the major strengths of the two types of edge
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detectors, by using both the first-order and the second-order derivatives of the image

intensity function. This edge detector will be used in all numerical examples of this

Chapter, and it is briefly described below.

Assume that observed image intensities {Zij, i, j = 1, 2, . . . , n} follow the following

2-D regression model:

Zij = f(xi, yj) + εij, for i, j = 1, 2, . . . , n, (2.1)

where {(xi, yj), i, j = 1, 2, . . . , n} are equally spaced pixel locations, f is the un-

known image intensity function, and {εij, i, j = 1, 2, . . . , n} are independent and

identically distributed (i.i.d.) random errors with mean 0 and unknown variance σ2.

At a given pixel (x, y), let us consider a circular neighborhood O∗(x, y) = {(u, v) :√
(u− x)2 + (v − y)2 ≤ h∗n}, where h∗n > 0 is a bandwidth parameter. Then, LQK

smoothing is accomplished by

min
a,b,c,d,e,f

∑
(xi,yj)∈O∗(x,y)

{Zij−[ a+ b(xi − x) + c(yj − y) + d(xi − x)(yj − y) +

e(xi − x)2 + f(yj − y)2]}2
K

(
xi − x
h∗n

,
yj − y
h∗n

)
, (2.2)

where K is a radially symmetric, bivariate density kernel function with support

{(x, y) : x2 + y2 ≤ 1}. The solution to a of the minimization problem (2.2) can

be used as an estimator of the intensity f(x, y), the solution to (b, c)′ as an estimator

of the gradient vector G(x, y) = (fx(x, y), fy(x, y))′, and the solution to (e, f)′ as

an estimator of (fxx(x, y), fyy(x, y))′. These estimators, denoted as f̂(x, y), f̂x(x, y),

f̂y(x, y), f̂xx(x, y), and f̂yy(x, y), are called LQK estimators in the literature (Fan and

Gijbels, 1996). Along the estimated gradient direction Ĝ(x, y) = (f̂x(x, y), f̂y(x, y))′,

if (x, y) is on an edge segment, then Ĝ(x, y) would have large Euclidean length and

(f̂xx(x, y), f̂yy(x, y))′ would have the zero-crossing properties that they are zero at
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Figure 2.1: (a): 1-D profile of the image intensity surface around an edge segment.
(b): First-order derivative of the 1-D profile. (c): Second-order derivative of the 1-D
profile.

(x, y) and change signs on two different sides of the edge segment. See Figure 2.1

for a demonstration in one-dimensional cases. Then, a point (x, y) is flagged as a

detected edge pixel if

√
f̂x

2
(x, y) + f̂y

2
(x, y) is larger than a threshold value un and

f̂xx + f̂yy demonstrates the zero-crossing properties in O∗(x, y). A formula for the

threshold value is derived in Sun and Qiu (2007), which depends on a significance

level αn. In all our numerical examples presented in Section 2.3, αn is fixed at 0.01.

2.2.2 Edge-structure preserving image denoising

Detected edge pixels are identified after the edge detection step discussed in the pre-

vious Section. In this Section, we describe the remaining two steps of the proposed

2-D image denoising procedure. At a given pixel (x, y), we consider its circular neigh-

borhood

O(x, y) = {(u, v) :
√

(u− x)2 + (v − y)2 ≤ hn},

where hn > 0 is a bandwidth parameter which could be different from h∗n used in

(2.2). Detected edge pixels in O(x, y) are denoted by {(wk, vk), k = 1, 2, . . . ,m}. Our

major goal here is to estimate f(x, y) from observations in O(x, y) with possible edges

preserved.
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Figure 2.2: The small dots denote detected edge pixels in O(x, y), and the dashed
line denotes the true edge curve which contains an angle. The vertical arrow in
the middle denotes G(x, y), and the two arrows on its two sides denote two typical
estimated gradients of f along the two rays of the angle.

From (2.2), the estimated gradient at a detected edge pixel (wk, vk) is Ĝ(wk, vk),

for k = 1, 2, . . . ,m. Intuitively, if the underlying edge curve in O(x, y) contains an

angle, then gradients of f along its two rays would point to two different directions.

Therefore, in such cases, we would expect that the estimated gradients {Ĝ(wk, vk), k =

1, 2, . . . ,m} can be divided into two groups, each group corresponds to a ray of the

angle, and the estimated gradients in each group would vary around the perpendicular

direction of the corresponding ray. See Figure 2.2 for a demonstration. To estimate

the edge curve in O(x, y), we propose an algorithm with the following steps.

1. Compute the simple average of {Ĝ(wk, vk), k = 1, 2, . . . ,m}, denoted as G(x, y).

2. Divide {(wk, vk), k = 1, 2, . . . ,m} into two groups E = {(wk, vk) : θ(Ĝ(wk, vk),

G(x, y)) ≤ 0} and Ec = {(wk, vk) : θ(Ĝ(wk, vk), G(x, y)) > 0}, where θ(~u,~v) ∈

[−π/2, π/2] denotes the angle from vector ~u to vector ~v.

3. Compute the line L that goes through the center of E in the perpendicular

direction of GE(x, y), where GE(x, y) is the average of the estimated gradients

in E.
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4. Compute the line Lc that goes through the center of Ec in the perpendicular

direction of GEc(x, y), where GEc(x, y) is the average of the estimated gradients

in Ec.

5. Assume that L and Lc cross at point A. If A is located outside of O(x, y), then

the two line segments of L and Lc inside O(x, y) are used for estimating the

edge segments in O(x, y). In the case when A is located inside of O(x, y), L and

Lc is each divided into two half lines by A, and O(x, y) is divided into four parts

by the half lines. The two half lines, one on each of L and Lc, that contain the

centers of E and Ec, respectively, are selected for estimating the edge curve in

O(x, y). Obviously, the two selected half lines form an angle with vertex A.

The estimated edge segment(s) by the above algorithm divides O(x, y) into two

or three parts, depending on whether or not the point A defined in step 5 is located

inside O(x, y). The part containing the given pixel (x, y) is denoted as B(x, y). Then,

the estimator of f(x, y), denoted as f̂(x, y), can be defined by the solution to a of the

following minimization problem:

min
a,b,c∈R

∑
(xi,yj)∈B(x,y)

{Zij − [a+ b(xi − x) + c(yj − y)]}2K

(
xi − x
hn

,
yj − y
hn

)
. (2.3)

Obviously, f̂(x, y) is the local linear kernel (LLK) estimator of f(x, y), constructed

from observations in the one-sided neighborhood B(x, y).

Next, we propose a modification to improve the performance of the proposed

denoising procedure (2.3) and to simplify its computation as well. In regions where the

true image intensity function f is continuous, it is desirable to use a larger bandwidth

to construct an estimator of f , compared to the bandwidth used around true edges,

so that the estimator is better in removing noise. To this end, at a given pixel (x, y),

we first consider a neighborhood Õ(x, y) = {(u, v) :
√

(u− x)2 + (v − y)2 ≤ h̃n} with
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a larger bandwidth h̃n (> hn). In Õ(x, y), if the number of detected edge pixels is so

small that it is unlikely to have a true edge segment in it, then we do not implement

the last two steps of the proposed denoising procedure described above. In such

cases, we can simply define f̂(x, y) to be the conventional LLK estimator in Õ(x, y),

which is the solution to a of the minimization problem (2.3), after B(x, y) is replaced

by Õ(x, y). To do so, there are at least two major benefits. One is that f̂(x, y) is

defined using all pixels in Õ(x, y) in such cases; its denoising ability is thus greatly

improved, compared to the estimator constructed in B(x, y). The second benefit is

that computation involved is greatly simplified. For a typical observed image, there

are many pixels at which no edge segments exist in their neighborhoods. Therefore,

the above two benefits are substantial. In all numerical examples presented in next

section, if the number of detected edge pixels is smaller than or equal to [nh̃n], where

[x] denotes the integer part of x, then we define f̂(x, y) to be the conventional LLK

estimator in Õ(x, y).

When the number of detected edge pixels is larger than [nh̃n] in Õ(x, y), the

chance is high that there is a true edge segment in the neighborhood. In such cases,

we consider using a smaller bandwidth hn (< h̃n) to deal with the potential edges.

In neighborhood O(x, y) with bandwidth hn, if the number of detected edge pixels

is smaller than or equal to [nhn], then f̂(x, y) is defined by the conventional LLK

estimator in O(x, y). Otherwise, f̂(x, y) is defined by procedure (2.3). The entire

proposed image denoising procedure can now be summarized as follows.

Proposed Image Denoising Procedure

• Detect edge pixels using an edge detector such as the one described in Section

2.2.1.

• For a given pixel (x, y), count the number of detected edge pixels in neigh-

borhood Õ(x, y). If this number is smaller than or equal to [nh̃n], then define
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f̂(x, y) to be the conventional LLK estimator in Õ(x, y), and continue the de-

noising procedure for the next pixel. If this number is larger than [nh̃n], then

consider a smaller neighborhood O(x, y) and count the number of detected edge

pixels in that neighborhood. If the number is smaller than or equal to [nhn],

then f̂(x, y) is defined to be the conventional LLK estimator in O(x, y). Other-

wise, estimate the edge segment in O(x, y) using the algorithm described three

paragraphs above, and proceed to the next step.

• Compute f̂(x, y) using (2.3), and continue the denoising procedure for the next

pixel.

2.2.3 Selection of procedure parameters

In the proposed image denoising procedure, there are four parameters un, h∗n, h̃n and

hn (cf., expressions (2.2), (2.3), and the related discussion). They should be chosen

properly because performance of the proposed procedure depends on their values. For

instance, if un is chosen too large, then some real edge pixels would be missed by the

edge detector discussed in Section 2.2.1. Consequently, some jumps in f would be

blurred in the denoising process. Similarly, the bandwidths h∗n, h̃n and hn also play

an important role in image denoising. Theoretically speaking, we can choose these

parameters by minimizing the Mean Integrated Squared Error (MISE) of the surface

estimator, defined by:

MISE(f̂ , f) = E

[∫ 1

0

∫ 1

0

(
f̂(x, y)− f(x, y)

)2

dxdy

]
, (2.4)

where E denotes the expectation with respect to the probability distribution of

f̂(x, y). In practice, because f is unknown, this method can not be actually used. In

this paper, we suggest using a modified version of the conventional cross-validation

(CV) procedure. Remember that, in the proposed denoising procedure, neighbor-
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hoods of two different sizes (i.e., h̃n and hn) are used. For pixels that are quite far

away from true edges, their neighborhoods have width h̃n. For the other pixels, their

neighborhoods have width hn. Let I be the set of pixels whose neighborhoods have

width hn, |I| be the number of pixels in I, and

CV (un, h
∗
n, h̃n, hn) =

λ

|I|
∑

(xi,yj)∈I

[
Zij − f̂−i,−j(xi, yj)

]2

+
1− λ
n2 − |I|

∑
(xi,yj)∈Ic

[
Zij − f̂−i,−j(xi, yj)

]2

, (2.5)

where Ic denotes the complementary set of I, f̂−i,−j(xi, yj) is the “leave-one-out”

estimator of f(xi, yj) obtained by (3) when the (i, j)th observation is not used (cf.,

Section 2.4.4 in Qiu (2005)), and λ is a weighting parameter. It should be pointed out

that both I and Ic depend on un, h∗n, h̃n and hn, although it is not explicit in notation.

From (2.5), we can see that λ controls the trade-off between edge-preservation and

noise removal when choosing the parameters. In the extreme case when λ = 1,

the second term on the right hand side of (2.5) would disappear. In such cases, the

parameters are chosen to best preserve the edges, and the performance of the denoised

image in continuity regions of f are actually not taken into account. In the other

extreme case when λ = 0, the first term on the right hand side of (2.5) would disappear

and the parameters are actually chosen to best remove noise in the continuity regions

of f . In practice, one natural choice for λ is |I|/n2, in which case procedure ((2.5))

becomes the conventional CV procedure. By ((2.5)), selected parameter values are

those minimizing CV (un, h
∗
n, h̃n, hn) under the constraint that h̃n > hn. It should be

pointed out that, in all our numerical studies presented in next section, we actually

did not put the above constraint when searching for the parameter values by CV.

From the results (cf., Tables 2.1–2.3 in Section 2.3), we can see that searched values

of h̃n and hn satisfy the condition that h̃n > hn in all cases, which implies that this

intuitively reasonable constraint is indeed reasonable in practice.
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2.3 Numerical examples

In this section, we present some numerical results regarding the performance of the

proposed image denoising procedure (denoted as NEW), in comparison with several

existing image denoising methods. Four existing methods are considered here, includ-

ing a recent denoising procedure based on gradient estimation and one-sided surface

estimation (denoted as GE, Gijbels et al. (2006)), a denoising method based on MRF

modeling (denoted as MRF, Godtliebsen and Sebastiani (1994)), a wavelet transfor-

mation method (denoted as WT, Portilla et al. (2003)), and the conventional local

median filter (denoted as MED).

First, we present some simulation results when the true image intensity function

is one of the following three functions:

f1(x, y) = −2(x− 0.5)2 − 2(y − 0.5)2 + φ(x ≥ 0.4)φ(y ≥ 0.3)φ(2x+ y ≤ 1.6),

f2(x, y) = −2(x− 0.5)2 − 2(y − 0.5)2 +

φ
(
φ(y ≥ 0.3)φ(y −

√
3x ≤ 0.8− 0.5

√
3)φ(y +

√
3x ≤ 0.8 + 0.5

√
3)+

φ(y ≤ 0.7)φ(y −
√

3x ≥ 0.2− 0.5
√

3)φ(y +
√

3x ≥ 0.2 + 0.5
√

3) > 0
)
,

f3(x, y) = 0.5(1− x)y + (1− 0.5(1− x)y)φ(y ≤ 3(0.25− (x− 0.5)2))φ((x− 0.5)2

+y2 ≥ 0.3) + (1− 0.5(1− x)y)φ(0.48 ≤ x ≤ 0.52)φ(0.25 ≤ y ≤ 0.5),

where φ(a) is the indicator function which equals 1 when a =“True” and 0 otherwise.

One realization of these three functions from model (1) when n = 256 and σ = 0.5

is presented in the first column of Figure 2.3. From the plots, we can see that edges

of f1 have three angles of different sizes, edges of f2 have twelve angles, and edges

of f3 have different curvature at different places. In model (1), random errors are

generated from distribution N(0, σ2). We consider three σ values 0.25, 0.5, and 0.75,
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representing low, medium, and high noise levels, and two n values 128 or 256, denoting

two different image resolutions.

In method NEW, to save some computation, parameter αn used for determining

the threshold value un for edge detection is fixed at 0.01. In such cases, detected edges

look reasonably well. Based on our numerical experience, as long as detected edges

are reasonably good, their effect on denoised image is minimal. Besides un, procedure

NEW has another three parameters, h∗n, h̃n and hn, to choose. The method GE has

three parameters: a bandwidth parameter, and two threshold parameters used in

surface estimation and corner preservation, respectively. The MRF method combines

the ideas of using a discontinuity labeling process (Geman and Geman 1984) and the

iterated conditional modes algorithm (Besag 1986). This procedure assumes that a

binary line component exists between any two vertically or horizontally neighboring

pixels, with 1 denoting an existing edge between the two pixels and 0 denoting no edge.

In a 3×3 neighborhood of a given pixel, there are 12 line components and 212 possible

configurations of these components. To use this procedure, probabilities of the 212

possible line configurations need to be specified. In this section, these probabilities are

estimated from the true image intensity function values at the design points, which

is in favor of this procedure. Besides the line configurations, it has three positive

procedure parameters α, β and λ to determine. In the method WT, the default

family of wavelets (which is Daubechies’ “extremal phase” wavelet), the “full steerable

pyramid” image decomposition procedure, the “Bayes least square (BLS)” solution,

and the “symmetric” boundary handling condition are used. Other parameters are

chosen to be the ones suggested by Portilla et al. (2003). The method MED defines

the surface estimator by the sample median of the observed image intensities in a

circular neighborhood of a given pixel. So, it has one parameter (i.e., the bandwidth)

to choose. Because it is simple to use and has certain ability in preserving edges

while removing noise, it is widely used as a pre-smoothing procedure (cf., Gonzalez
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and Woods (1992), Chapter 4).

For each denoising method considered, 100 replications are performed in each

combination of f , σ, and n. Their parameter values are searched so that the MISE

value (cf., expression (2.4)), estimated by the sample mean of

ISE(f̂ , f) =
1

n2

n∑
i=1

n∑
j=1

[f̂(xi, yj)− f(xi, yj)]
2

over 100 replications, reaches the minimum. The estimated MISE values and the cor-

responding standard errors of ISE of various methods are presented in Tables 2.1–2.3,

along with searched parameter values, for cases when f equals f1, f2, and f3, respec-

tively. For investigating ability of various methods in preserving edge structures, their

estimated local MISE values, computed in circular neighborhoods of radius 0.1 when

n = 128 and radius 0.05 when n = 256 of edge angles, along with the corresponding

standard errors of local ISE are also presented in the tables. From the tables, it can be

seen that the proposed method NEW is uniformly better in quite large margins than

the remaining methods, in terms of both estimated MISE and estimated local MISE,

when noise level is medium to high (i.e., σ = 0.5 or 0.75). When the noise level is

low (i.e., σ = 0.25), it seems that procedure MRF always performs the best, which is

consistent to the findings in Gijbels et al. (2006). For the observed images presented

in the first column of Figure 2.3 when n = 256 and σ = 0.5, the denoised images by

various methods when their parameters are chosen to be the ones corresponding to the

results presented in Tables 2.1–2.3 (cf., columns corresponding to cases when n = 256

and σ = 0.5) are presented in columns 2–6 of Figure 2.3. From the plots, we can

see that certain methods (e.g., GE, MRF, WT) either do not preserve angular edges

well, or do not remove noise sufficiently. Method MED blurs all edges to a certain

degree when removing noise. As a comparison, the denoised images by the proposed

method (cf., the 2nd column in Figure 2.3) preserve all edges reasonably well when

most noise has been removed. As a side note, for the observed triangle image shown
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Figure 2.4: The estimated gradients at the detected edge pixels around the lower-left
angle of the triangle image shown in the (1,1)-th panel of Figure 2.3.

in the (1,1)-th panel of Figure 2.3, the estimated gradients at the detected edge pixels

around the lower-left angle by the proposed method are shown in Figure 2.4. From

the figure, it can be seen that the detected edge pixels around that angle can indeed

be divided into two groups using the estimated gradients for approximating the true

edge curve, as demonstrated in Figure 2.2.

Next, we consider a real test image including a maple leaf in the middle. The

image intensities are in the range [0, 255], and the image has 160 × 160 pixels. A

noisy version of this image with i.i.d. noise from N(0, 1002) is presented in the (1,1)-

th plot of Figure 2.5, from which we can see that the boundary of the maple leaf

has a number of quite sharp angles. We then apply the methods NEW, GE, MRF,

WT, and MED to this example. Their parameters are searched by minimizing the

estimated MISE values obtained from 100 replications, as in Tables 2.1–2.3. The

estimated MISE values, their standard errors, and the search parameters values are

presented in the first column of Table 2.4, from which we can see that the method

NEW has the smallest MISE value. The denoised images by these methods with the

parameters chosen to be the ones in Table 2.4 are presented in Figure 2.5. We can see
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Figure 2.5: The noisy maple leaf image and its denoised images by methods NEW,
GE, MRF, WT, and MED. The noise is from N(0, 1002).

that method NEW preserves the edge structure and removes the noise well, compared

to its peers.

We next consider a magnetic resonance image (MRI) of a knee part of human body

with 128×128 pixels. The image intensity levels range from 0 to 255 as usual. A noisy

version with i.i.d. noise from N(0, 1002) is presented in the (1,1)-th plot of Figure

2.6. As in the previous example, the searched parameters and the estimated MISE

values of the methods NEW, GE, MRF, WT, and MED, based on 100 replications,

are presented in the second column of Table 2.4. From the table, it can be seen that

method WT performs the best, and method NEW is better than the remaining three

methods. The denoised images by these methods from the one shown in the (1,1)-th

plot are presented in the next five plots of Figure 2.6, from which we can see that

both methods NEW and WT preserve edges well, compared to the remaining three

methods. It seems that method NEW preserves edge structures a little better than
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Figure 2.6: The noisy knee magnetic resonance image and its denoised images by
methods NEW, GE, MRF, WT, and MED. The noise is from N(0, 1002).

method WT (cf., the edge segment surrounding the central white part in the image).

The WT method considered here is designed for handling Gaussian noise. So, it

is not surprising that it would perform well in the example of Figure 2.6 where noise

is from a Gaussian distribution. Next, we consider the same MRI image, but add

noise from a Double Exponential distribution with location parameter 0 and scale

parameter 60. The corresponding results are shown in the third column of Table 2.4

and in Figure 2.7. We can see that WT does not perform well in this case in terms

of the estimated MISE.

In the above examples, noise level is homogeneous in entire observed images, for

simplicity. It should be pointed out that the proposed procedure can also handle

cases when the noise level depends on location. As an example, suppose that the

noise level has the expression

σ(x, y) = 40 exp
(
3.5(x− 0.5)2 + 3.5(y − 0.5)2

)
.
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Figure 2.7: The noisy knee magnetic resonance image and its denoised images by
methods NEW, GE, MRF, WT, and MED. The noise is from a Double Exponential
distribution with location parameter 0 and scale parameter 60.

Obviously, σ(x, y) is small in the central region of the image and large in the border

region. An observed noisy knee image with i.i.d. noise from distribution N(0, σ2(x, y))

is shown in the (1,1)-th plot of Figure 2.8. The estimated MISE values and denoised

images of various methods are presented in the fourth column of Table 2.4 and in

Figure 2.8, respectively. It can be seen that method NEW performs the best in this

case.

Finally, we consider adding salt-and-pepper noise to 30% randomly selected pixels

of the knee image. The added noise is binary. It equals either the maximum intensity

level of the true knee image or the minimum intensity level, by random. The noisy

image is shown in the (1,1)-th plot of Figure 2.9. The estimated MISE values and

the denoised images of various methods are presented in the last column of Table 2.4

and in Figure 2.9, respectively. We can see that the median method MED performs

the best in such a case, as expected, because median methods are robust to a small



2.3. Numerical examples 30

Figure 2.8: The noisy knee magnetic resonance image and its denoised images by
methods NEW, GE, MRF, WT, and MED. The noise level changes with location by
σ(x, y) = 40 exp (3.5(x− 0.5)2 + 3.5(y − 0.5)2).
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Figure 2.9: The noisy knee magnetic resonance image and its denoised images by
methods NEW, GE, MRF, WT, and MED. Only 30% randomly selected pixels are
added salt-and-pepper noise.

amount of large or small intensity values such as those with salt-and-pepper noise

added. When the percentage of pixels with salt-and-pepper noise added increases,

its performance becomes worse and worse, which has been numerically confirmed by

us, although the results are skipped here. Method NEW performs better than the

remaining three methods in this case.



Chapter 3

Edge-structure Preserving 3-D
Image Denoising

In this Chapter, we first introduce the research problem of edge-structure preserving 3-

D image denoising. It has a lot of applications in magnetic resonance imaging (MRI),

functional MRI (fMRI), etc. Then, in Section 3.2, we propose a novel 3-D image

denoising procedure, based on nonparametric estimation of a 3-D jump surface from

noisy data. One important feature of this method is its ability to preserve edges and

major edge-structures, such as intersections of two edge surfaces, pyramids, pointed

corners, and so forth. Some of its theoretical results are discussed in Section 3.3.

In Section 3.4, we study its numerical performance, and our numerical studies show

that it works well in various applications. In Section 3.5, a generalization of our

proposed 3-D image denoising method is discussed. Proofs of the theoretical results

are provided in the appendix.

3.1 Introduction

As discussed in Chapter 1, three-dimensional (3-D) images become increasingly popu-

lar in applications. For instance, in magnetic resonance imaging (MRI) and functional

MRI (fMRI), to study the biological mechanism of a 3-D object (e.g., a patient’s

32
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head), people traditionally acquire a set of two-dimensional (2-D) images from slices

of the 3-D object. Then, the 3-D object is reconstructed from the 2-D images, which

is a research area called 3-D image reconstruction in the literature (e.g., Sonka et al.

(2008), Chapters 11 and 12). 3-D image reconstruction is technically challenging, and

the reconstructed 3-D image often contains substantial error in estimating the true

3-D image. Thanks to the rapid progress in image acquisition techniques, we can

now acquire 3-D images directly in certain applications, including MRI and fMRI.

However, observed 3-D images often contain noise due to hardware imperfections and

other reasons. Noise removal is important for the reliability of subsequent image

analyses, which is the focus of this chapter.

As discussed in Section 1.2, most image denoising methods are for analyzing 2-D

images. For a detailed discussion, see Chapter 1 and related references. Some 2-

D image denoising procedures have been generalized for analyzing 3-D images. For

instance, 3-D image denoising based on minimization of Total Variation (TV) is pop-

ular in the computer sciences literature, e.g., Keeling (2003), Wang and Zhou (2006).

The TV approach is first suggested by Rudin et al. (1992) for denoising 2-D images,

and one particular algorithm to accomplish that method is due to Chambolle (2004).

Several MATLAB programs based on Chambolle’s algorithm have been developed

recently for denoising 3-D images, e.g., Getreuer (2007). MATLAB programs for 3-

D image denoising using anisotropic diffusion are also available, e.g., Lopes (2007).

Other 3-D image denoising procedures include the ones based on 3-D wavelet transfor-

mations (Weickert et al., 1998; Hostalkova et al., 2007; Coupe et al., 2008a; Woiselle

et al., 2008), non-local means (Coupe et al., 2008b), distance-weighted Wiener filter-

ing (Lu et al., 2001), and so forth.

As discussed before, besides noise removal, another important requirement for

image denoising procedures is that they should preserve important image structures,

such as edges and major edge features. We notice that the structure of a typical
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Figure 3.1: Different structures of edge surfaces.

3-D image is much more complicated than that of a 2-D image. For instance, edge

locations are surfaces in 3-D cases and they usually have much more complicated

structure than the edge curves in 2-D cases. Besides planar parts, an edge surface

can have complicated structures, such as intersections of two or more edge surfaces,

pyramids, pointed corners, and so forth. See Figure 3.1 for a demonstration. Most

existing image denoising procedures mentioned above have certain ability in preserv-

ing edges at places where the curvature of the edge surfaces is small (i.e., the planar

parts). At places where the curvature of the edge surfaces is large (e.g., intersections

of two or more edge surfaces, pyramids, and pointed corners), however, the edge fea-

tures would be blurred or rounded by them. This phenomenon is similar to its 2-D

counterpart. In 3-D images also, major edge features are an important part of the

image under study, because they often represent major characteristics of the image

objects and are easier to capture our visual attention, compared to those relatively

planar parts of the edge surfaces. Therefore, they should be well preserved during

image denoising. So, in case of 3-D images also, a good image denoising procedure

should preserve not only the planar parts of the edge surfaces but also the major edge

features, although the latter goal is much more challenging than the former.

In this Chapter, we propose a 3-D image denoising procedure which can preserve

edges and major edge features well. Our procedure consists of three major steps,

briefly outlined below. First, edge pixels are detected in the whole design space by an
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edge detector. Second, in a neighborhood of a given pixel, the underlying edge surface

is estimated from the detected edge pixels by an algorithm that takes into account

three possible scenarios of the edge surface. Finally, observed image intensities located

on the same side of the estimated edge surface, as the given pixel, are averaged by

the local linear kernel smoothing procedure for estimating the true image intensity

at the given pixel.

The remaining part of the article is organized as follows. Our proposed 3-D

image denoising procedure is described in detail in Section 3.2. Some of its statistical

properties are discussed in Section 3.3. In Section 3.4, we present some numerical

examples to evaluate its numerical performance. Proofs of the theoretical results are

provided in the Appendix.

3.2 Proposed methodology

We present our proposed methodology in three parts. Section 3.2.1 describes a 3-

D edge detection procedure based on local linear kernel (LLK) smoothing. Local

approximation of edge surfaces and local image denoising are described in Section

3.2.2. Data driven parameter selection is discussed in Section 3.2.3.

3.2.1 3-D edge detection by LLK smoothing

As discussed in Section 3.1, the first step of the proposed 3-D image denoising proce-

dure is to detect edge pixels of a 3-D image using an edge detector. In the literature,

there are many edge detectors for analyzing 2-D images (Canny, 1986; Qiu and Yan-

dell, 1997; Sun and Qiu, 2007). These edge detectors can generally be extended for

analyzing 3-D images. Theoretically speaking, any reasonable 3-D edge detector can

be used in the first step of our 3-D image denoising procedure. Next, we introduce a

3-D edge detector based on LLK smoothing, which can be regarded as a modification
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of the 2-D edge detector in Qiu and Yandell (1997).

Assume that a 3-D image follows the regression model

ξijk = f(xi, yj, zk) + εijk, for i, j, k = 1, 2, . . . , n, (3.1)

where {(xi, yj, zk) = (i/n, j/n, k/n), i, j, k = 1, 2, . . . , n} are the equally spaced de-

sign points (or voxels) in the design space Ω = [0, 1] × [0, 1] × [0, 1], {εijk} are i.i.d.

random errors with mean 0 and unknown variance σ2, f(x, y, z) is an unknown re-

gression function denoting the image intensity function, and N = n3 is the sample

size. We further assume that there exists a partition {Λl, l = 1, 2, . . . , s} of the

design space Ω such that: (i) each Λl is a connected region in Ω; (ii)
⋃s
l=1 Λl = Ω;

(iii) f(x, y, z) is continuous in Λl\∂Λl, for l = 1, 2, . . . , s, where ∂Λl is the bound-

ary point set of Λl, and (iv) there exist at most finite number of line segments

{`l, l = 1, 2, . . . , s∗} in [
⋃s
i=1 ∂Λi]

⋂
Ω such that for each line segment `l there are

Λl1 ,Λl2 ∈ {Λl, l = 1, 2, . . . , s} satisfying `l ⊆ ∂Λl1

⋂
∂Λl2 and for any (x∗, y∗, z∗) ∈ `l

lim
(x,y,z)→(x∗,y∗,z∗),(x,y,z)∈Λl1

f(x, y, z) = lim
(x,y,z)→(x∗,y∗,z∗),(x,y,z)∈Λl2

f(x, y, z).

Then, we call D := [
⋃s
l=1 ∂Λl]

⋂
Ω the jump location surfaces (JLSs) of f(x, y, z).

Obviously, JLSs describe the places where f has jumps. So, they also describe edge

surfaces.

To detect edge pixels at a given point (x, y, z) ∈ Ω, let us consider its spherical

neighborhood

O∗(x, y, z) = {(u, v, w) : (u, v, w) ∈ Ω,
√

(u− x)2 + (v − y)2 + (w − z)2 ≤ h∗n},

where h∗n is a bandwidth parameter. In O∗(x, y, z), a 3-D plane is fitted using the
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local linear kernel (LLK) smoothing as follows

min
a,b,c,d

n∑
i,j,k=1

{ξi,j,k − [a+ b(xi − x) + c(yj − y) + d(zk − z)]}2 ×

K

(
xi − x
h∗n

,
yj − y
h∗n

,
zk − z
h∗n

)
, (3.2)

where K is a 3-D density kernel function defined in a unit ball. The solution to

(a, b, c, d) of the minimization problem (3.2) is denoted as (â(x, y, z), b̂(x, y, z), ĉ(x, y, z),

d̂(x, y, z)). Then â(x, y, z) is the LLK estimator of f(x, y, z), and (̂b(x, y, z), ĉ(x, y, z),

d̂(x, y, z)) are LLK estimators of (f ′x(x, y, z), f ′y(x, y, z), f ′z(x, y, z)). It is not difficult

to check that
â(x, y, z)

b̂(x, y, z)

ĉ(x, y, z)

d̂(x, y, z)

 =


w000 w100 w010 w001

w100 w200 w110 w101

w010 w110 w020 w011

w001 w101 w011 w002



−1

∑
ξijkKijk∑

ξijk(xi − x)Kijk∑
ξijk(yj − y)Kijk∑
ξijk(zk − z)Kijk

 , (3.3)

where Kijk = K(xi−x
h∗n

,
yj−y
h∗n

, zk−z
h∗n

), wi1i2i3 =
∑

(xi − x)i1(yj − y)i2(zk − z)i3Kijk, for

i1, i2, i3 = 0, 1, 2, and
∑

is the sum over all design points.

The estimated gradient vector β̂(x, y, z) = (̂b(x, y, z), ĉ(x, y, z), d̂(x, y, z))T pro-

vides an estimate of the direction that the underlying regression function f increases

the fastest. So, if its magnitude is larger, f would be steeper around (x, y, z), and it is

more likely that (x, y, z) is an edge pixel. However, when f is steep but continuous in

O∗(x, y, z), β̂(x, y, z) can also have a relatively large magnitude. To remove this slope

effect, we consider two neighboring design points (xN1, yN1, zN1) and (xN2, yN2, zN2)

along the direction of β̂(x, y, z). Their spherical neighborhoods of size h∗n do not

overlap with O∗(x, y, z), but are adjacent to O∗(x, y, z) on either side. Intuitively, if

(x, y, z) is on a JLS, then (xN1, yN1, zN1) and (xN2, yN2, zN2) would be on two differ-



3.2. Proposed methodology 38

ent sides of the JLS. Based on this intuition, we define the following jump detection

criterion:

δ(x, y, z) = min{‖β̂(x, y, z)− β̂N1
(x, y, z)‖, ‖β̂(x, y, z)− β̂N2

(x, y, z)‖},

where β̂N1
(x, y, z) and β̂N2

(x, y, z) are the estimated gradients in the neighborhoods

of (xN1, yN1, zN1) and (xN2, yN2, zN2), respectively, and ‖ · ‖ is the Euclidean norm.

If there is no jump in the three neighborhoods, then β̂(x, y, z), β̂N1
(x, y, z) and

β̂N2
(x, y, z) should be close to each other. Hence, δ(x, y, z) is small. On the other

hand, if (x, y, z) is on a JLS, then δ(x, y, z) would be relatively large, due to the

jump. Therefore, δ(x, y, z) can be used for detecting jumps. The point (x, y, z) is

then detected as a jump point if

δ(x, y, z) > un, (3.4)

where un is a threshold parameter.

3.2.2 Local approximation to the underlying jump location

surfaces

As discussed in Section 3.1, JLSs of a 3-D image could have a number of different struc-

tures (cf., Figure 3.1). To preserve the major edge structures, we consider estimation

of the underlying JLS in the following neighborhood of a given point (x, y, z) ∈ Ω:

O(x, y, z) = {(u, v, w) : (u, v, w) ∈ Ω,
√

(u− x)2 + (v − y)2 + (w − z)2 ≤ hn},

where hn is a bandwidth that could be different from h∗n used in edge detection

(3.2). To this end, the following three cases are considered. (i) The underlying JLS

in O(x, y, z) is planar, and can be well approximated by a local plane. (ii) The

JLS in O(x, y, z) contains a ridge or valley, and can be well approximated by two
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Figure 3.2: Three basic edge structures used for approximating the underlying JLS
in a neighborhood of a given design point. In each plot, the dots denote the detected
edge pixels, shaded surface denotes approximation of surface and the arrows point to
its normal direction.

crossing half-planes. (iii) The JLS contains a pointed part in O(x, y, z), and can

be approximated reasonably well by a cone. See Figure 3.2 for a demonstration of

these three basic edge structures. In reality, the JLSs may have more complicated

structures than the ones considered here. For instance, they may contain a pyramid,

saddle points, or an elliptically pointed part. However, with the three basic structures,

the major edge features can be preserved well, which is supported by the numerical

examples presented in Section 3.4. In the next four parts, we describe our proposals

to estimate the three basic edge structures from the detected edge pixels, and to

choose one of them for estimating the underlying JLS.

Approximation to the JLS in O(x, y, z) by a local plane

In cases when the underlying JLS is planar in O(x, y, z) (cf., the left panel of Figure

3.1), we suggest approximating it by a local plane constructed as follows.

(i) The plane passes the center (cx, cy, cz) of the detected edge pixels in O(x, y, z).

(ii) Its normal direction is determined by the eigenvector of the largest eigenvalue



3.2. Proposed methodology 40

of

G =
1

m
ΨΨT , (3.5)

where Ψ = (β̂
∗
1, β̂

∗
2, . . . , β̂

∗
m), and {β̂

∗
l , l = 1, 2, . . . ,m} denote estimated gradi-

ent directions (with unit lengths) at all m detected edge pixels in O(x, y, z).

See the left panel of Figure 3.2 for a demonstration, where the dots denote the detected

edge pixels, the arrows denote the direction determined by the eigenvector of the

largest eigenvalue of G, and the shaded plane denotes the plane for approximation.

Lemma 3 in the Appendix shows that the approximation plane converges almost

surely to the true tangent plane of f at (x, y, z) under some regularity conditions.

Approximation to the JLS in O(x, y, z) by two crossing half-planes

In cases when the underlying JLS has a ridge or valley in O(x, y, z) (cf., the middle

panel of Figure 3.1), we suggest approximating it by two crossing half-planes as

follows.

(i) Calculate the eigenvector corresponding to the smallest eigenvalue of G, which

should be a good estimate of the direction of the ridge/valley contained in the

underlying JLS, because the JLS has the smallest variation along that direction.

(ii) Determine the plane P that passes (cx, cy, cz) along the estimated ridge/valley

direction obtained in step (i) and along β
∗

as well, where β
∗

is the average of

{β̂
∗
l , l = 1, 2, . . . ,m}.

(iii) Divide all detected edge pixels in O(x, y, z) into two groups as follows. We first

determine the direction that is orthogonal to the plane P , and then determine

the two groups of the detected edge pixels based on the signs of their inner
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products with the orthogonal direction. Those detected edge pixels with non-

negative inner products belong to one group, and those with negative inner

products belong to the other group.

(iv) For each group of the detected edge pixels, determine a plane that passes the

center of that group of pixels in the direction orthogonal to the averaged gradient

direction within that group of pixels.

(v) The two crossing half-planes are then obtained from the two planes computed in

step (iv). The subspace of O(x, y, z) formed by them should contain (cx, cy, cz).

Approximation to the JLS in O(x, y, z) by a cone

In cases when the underlying JLS contains a pointed part in O(x, y, z) (cf., the right

panel of Figure 3.1), we suggest approximating it by a cone, which can be uniquely

determined by specifying its central axis, its vertex, and the half cone angle (i.e., the

angle between the central axis and a straight line on the lateral surface), as follows.

(i) The direction of the central axis of the cone is estimated by the direction

(1, d2, d3)T that minimizes the sample variance of its inner products with {β̂
∗
l , l =

1, 2, . . . ,m}. Since the angle between the central axis of the cone and the normal

direction at any point on the lateral surface of the cone is a constant, this esti-

mate should be reasonable to use. Simple calculations show that d2 = (Ψ23Ψ13−

Ψ33Ψ12)/(Ψ22Ψ33−Ψ2
23) and d3 = (Ψ12Ψ23−Ψ22Ψ13)/(Ψ22Ψ33−Ψ2

23), where Ψj1j2

is the sample covariance of the (j1, j2)th components of {β̂
∗
l , l = 1, 2, . . . ,m},

for j1, j2 = 1, 2, 3.

(ii) The half cone angle is estimated by the complement of the averaged angle

between the direction of the central axis specified in step (i) and {β̂
∗
l , l =

1, 2, . . . ,m}, which is denoted as θ̂.
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(iii) To specify the location of the central axis, let us consider a sphere Õ(x, y, z) that

is centered at (x, y, z) and has radius h̃n > hn. The plane P̃ passing (cx, cy, cz)

and having the normal direction (1, d2, d3)T would divide Õ(x, y, z) into two

parts. Centers of the detected edge pixels in these parts are then calculated, and

the one closer to P̃ is denoted as (c∗x, c
∗
y, c
∗
z). Then, the line passing (c∗x, c

∗
y, c
∗
z)

along the direction (1, d2, d3)T is used as the central axis of the cone. In all

numerical examples presented in Section 3.4, we choose h̃n = 3hn.

(iv) The vertex location (vx, vy, vz) of the cone is estimated by minimizing the or-

thogonal distance between the cone and the detected edge pixels in O(x, y, z).

After some algebraic manipulations, the estimator can be calculated by

(v̂x, v̂y, v̂z) = (c∗x + β
∗
1t, c

∗
y + β

∗
2t, c

∗
z + β

∗
3t),

where β
∗
1, β

∗
2, and β

∗
3 are three components of β

∗
, t is one of [

∑
dltl/(tan θ̂||β∗||)+∑

t2l ]/
∑
tl and [

∑
dltl/(tan θ̂||β∗||)−

∑
t2l ]/(−

∑
tl) that minimizes

∑
(dl cos θ̂−

|t− tl|||β
∗|| sin θ̂)2,

tl =
β
∗
1(x∗l − cx) + β

∗
2(y∗l − cy) + β

∗
3(z∗l − cz)

||β∗||2
,

dl =
√

(x∗l − c∗x − β
∗
1tl)

2 + (y∗l − c∗y − β
∗
2tl)

2 + (z∗l − c∗z − β
∗
3tl)

2,

(x∗l , y
∗
l , z
∗
l ) denotes the l-th detected edge pixel in O(x, y, z), and

∑
is over all

detected edge pixels in O(x, y, z).

Selection of the local surface

In the previous three parts, we have discussed how to approximate the underlying JLS

in O(x, y, z) using one of the three basic surfaces shown in Figure 3.2. In practice,

we need to choose one of the three surfaces based on observations in O(x, y, z) for
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estimating f(x, y, z). To this end, various model selection criteria, including the

Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC), and so

forth, have been considered. For instance, by the BIC, the fitted surface minimizing

the following BIC criterion should be chosen:

BIC(x, y, z) = m log

(
RSS(x, y, z)

m

)
+ k log(m), (3.6)

where RSS(x, y, z) denotes the sum of squares of the orthogonal distances from the

individual detected edge pixels to the fitted surface in question, m is the number of

detected edge pixels in O(x, y, z), and k is the total number of parameters in the

model of the surface. For the local plane, the two crossing half-planes, and the cone,

their numbers of parameters are 3, 6, and 7, respectively. By the AIC, the second

term on the right side of (3.6) should be replaced by 2k.

In our numerical studies, we tried both AIC and BIC methods, and found that

results with the BIC method are usually better in terms of the mean squared error

(MSE) of the estimated f . This might be consistent with the findings in Nishii (1984)

that the probability of choosing the true model by the BIC tends to 1 when the sample

size increases, as long as the true model is included in the candidate set. In the current

problem, most part of the true JLSs should be well approximated by one of the three

basic surfaces considered. For this reason, we use the BIC in all numerical examples

presented in Section 3.4.

3.2.3 Proposed 3-D image denoising procedure

After the underlying JLS is approximated by a local surface in the neighborhood

O(x, y, z), O(x, y, z) can be divided into two parts by the approximation surface,

denoted as O1(x, y, z) and O2(x, y, z). Without loss of generality, we assume that

(x, y, z) is contained in O1(x, y, z). Then, f(x, y, z) can be estimated by the solution
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to a, denoted as f̂(x, y, z), of the following minimization problem:

min
a,b,c,d

∑
(xi,yj ,zk)∈O1(x,y,z)

{ξijk − [a+ b(xi − x) + c(yj − y) + d(zk − z)]}2 ×

K

(
xi − x
hn

,
yj − y
hn

,
zk − z
hn

)
. (3.7)

From (3.2) and (3.7), f̂(x, y, z) is a weighted average of the observations whose design

points are located on the same side of the approximation surface in O(x, y, z) as the

given point (x, y, z). Intuitively, as long as the the approximation surface estimates

the underlying JLS well, f̂(x, y, z) should preserve edges and major edge features well.

For a real image, there are regions where f is smooth. In these regions, the

number of detected edge pixels should be small. Also, in such regions, a relatively

larger bandwidth is preferred to increase the noise removal ability of the procedure.

So, before estimating f using (3.7), we suggest counting the number of detected edge

pixels in O(x, y, z). If the number is large so that a potential JLS is likely in O(x, y, z)

(e.g., larger than or equal to (nhn)2/4), then estimate f using (3.7). Otherwise,

consider a larger spherical neighborhood Ŏ(x, y, z) with bandwidth h̆n > hn. In

Ŏ(x, y, z), if the number of detected edge pixels is still smaller than (nh̆n)2/4, then

f(x, y, z) can be estimated simply by the conventional LLK estimator constructed

from all observations in Ŏ(x, y, z). If the number of detected edge pixels in Ŏ(x, y, z)

is larger than or equal to (nh̆n)2/4, f(x, y, z) is estimated by the conventional LLK

estimator constructed in O(x, y, z). By this modification, procedure (3.7) is used only

when the number of detected edge pixels in O(x, y, z) is relatively large. To do so,

there are at least two benefits. One is that much computation is saved, because the

conventional LLK estimator is much easier to compute, compared to the one-sided

estimator obtained by (3.7). The other benefit is that the estimated f would be more

efficient, because it is constructed from all observations in O(x, y, z) or Ŏ(x, y, z),
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instead of from part of observations in O(x, y, z), in cases when the number of detected

edge pixels in O(x, y, z) is small. Considering the fact that most points in the design

space are continuity points of f , these benefits are substantial. Regarding h̆n, based

on our numerical experience, we can simply choose h̆n = 1.75hn. In such cases, the

numerical results are satisfactory in all examples considered in Section 3.4. Now we

can summarize the proposed 3-D image denoising procedure as follows.

Proposed 3-D image denoising procedure

• Detect edge pixels by the procedure described in Section 3.2.1.

• For a given pixel (x, y, z), count the number of detected edge pixels in O(x, y, z).

If this number is smaller than (nhn)2/4, then consider a larger spherical neigh-

borhood Ŏ(x, y, z) with bandwidth h̆n. If the number of detected edge pixels

in Ŏ(x, y, z) is still smaller than (nh̆n)2/4, then define f̂(x, y, z) to be the con-

ventional LLK estimate in Ŏ(x, y, z). Otherwise, define f̂(x, y, z) to be the

conventional LLK estimate in O(x, y, z). Continue the denoising procedure for

the next pixel.

• If the number of detected edge pixels in O(x, y, z) is larger than or equal to

(nhn)2/4, then define f̂(x, y, z) by (3.7), after the underlying JLS in O(x, y, z)

is approximated by one of the three basic local surfaces, as discussed in Section

3.2. Continue the denoising procedure for the next pixel.

3.2.4 Selection of procedure parameters

In the proposed 3-D image denoising procedure, there are three parameters h∗n, un,

and hn (cf., expressions (3.2), (3.4), (3.7)). They should be chosen properly because

performance of the proposed image denoising procedure would depend on their values.
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To choose un, we notice that

P (δ(x, y, z) > un)

≤ P (‖β̂(x, y, z)− β̂N1(x, y, z)‖ > un)

= P
(

(̂b(x, y, z)− b̂N1(x, y, z))2 + (ĉ(x, y, z)− ĉN1(x, y, z))2+

(d̂(x, y, z)− d̂N1(x, y, z))2 > u2
n

)
= E

{
P
(

(̂b(x, y, z)− b̂N1(x, y, z))2 + (ĉ(x, y, z)− ĉN1(x, y, z))2+

(d̂(x, y, z)− d̂N1(x, y, z))2 > u2
n

∣∣∣ b̂(x, y, z), ĉ(x, y, z), d̂(x, y, z)
)}

.

For fixed b̂(x, y, z), ĉ(x, y, z), and d̂(x, y, z), ((̂b(x, y, z)− b̂N1(x, y, z))2 + (ĉ(x, y, z)−

ĉN1(x, y, z))2 + (d̂(x, y, z)− d̂N1(x, y, z))2)/σ2
N1 approximately follows the χ2

3 distribu-

tion, under the assumption that there are no jumps in O∗(x, y, z)
⋃
O∗(xN1, yN1, zN1)⋃

O∗(xN2, yN2, zN2), where σ2
N1 = Var(̂bN1(x, y, z)). From expressions in (3.3), we

have

σ2
N1 = σ2

∑
(xi − xN1)2K2

N1

{(
∑

(xi − xN1)KN1}2
,

where KN1 = K
(
xi−xN1

h∗n
,
yj−yN1

h∗n
,
zk−zN1

h∗n

)
. Therefore, a natural choice for un is

un = σ̂

√
χ2

3,αn

∑
(xi − xN1)2K2

N1

(
∑

(xi − xN1)2KN1)2
, (3.8)

where χ2
3,αn is the 1−αn quantile of the χ2

3 distribution and σ̂ is a consistent estimator

of σ. For simplicity, we can define σ̂ to be the residual mean squares of the conven-

tional LLK estimator of f defined in O∗(x, y, z), and αn can be specified beforehand

to be a small number, say, αn = 0.001.
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To choose h∗n and hn, we suggest using the cross-validation (CV) procedure with

the following CV score:

CV (h∗n, hn) =
1

n3

n∑
i,j,k=1

(
ξijk − f̂−i,−j,−k(xi, yj, zk)

)2

, (3.9)

where f̂−i,−j,−k(xi, yj, zk) is the estimate of f(xi, yj, zk) when we do not include the

(i, j, k)-th pixel (xi, yj, zk) in all subsequent steps of the proposed image denoising

procedure after edge detection. Then, h∗n and hn are chosen to be the minimizer

of CV (h∗n, hn). Note that, when computing f̂−i,−j,−k(xi, yj, zk), the (i, j, k)-th pixel

is still used in edge detection, which is for simplifying computation. By (3.9), we

only need to detect edges once in the whole design space. Based on our numerical

experience, it would not change the value of f̂−i,−j,−k(xi, yj, zk) much to include the

(i, j, k)-th pixel or not in edge detection. In the statistical literature, there are some

alternative methods for choosing smoothing parameters like h∗n and hn, including

the Mallow’s Cp, plug-in algorithms, bootstrap, and so forth (Marron, 1988; Loader,

1999; Hall and Robinson, 2009). The CV method is used here mainly because of its

simplicity, which is especially relevant for 3-D image analysis where computation is

generally extensive.

3.3 Some statistical properties

In this section, we discuss some statistical properties of the estimated image intensity

function f̂ . In our description, a point (x, y, z) on the JLSs is called a singular point

if one of the following conditions is satisfied. (i) There exists some constant ν > 0

such that, for any 0 < ν̃ < ν, the spherical neighborhood of (x, y, z) with diameter

ν̃ is divided into more than two connected regions by the JLSs. (ii) There exists a

direction along which the JLSs do not have the one-sided directional tangent line at
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(x, y, z). (iii) The jump magnitude of f at (x, y, z) is 0. (iv) f does not have a tangent

plane at (x, y, z), and (x, y, z) is neither on a ridge/valley of the JLSs nor a vertex of

a circular cone (cf., the middle and right panels of Figure 3.2). All other points on

the JLSs are called nonsingular points. Also, we define

Ωε = [ε, 1− ε]× [ε, 1− ε]× [ε, 1− ε],

Jε = {(x, y, z) : (x, y, z) ∈ Ω, dE((x, y, z), (x∗, y∗, z∗)) ≤ ε, for some (x∗, y∗, z∗)

∈ D},

Sε = {(x, y, z) : (x, y, z) ∈ Ω, dE((x, y, z), (x∗, y∗, z∗)) ≤ ε, for a singular point

(x∗, y∗, z∗) ∈ D},

ΩJ̄ ,ε = Ωε\Jε,

ΩS̄,ε = Ωε\Sε,

where ε is a small positive constant, dE denotes the Euclidean distance, and D denotes

the set of points on the JLSs. Let D̂n = {(xi, yj, zk) : δ(xi, yj, zk) > un} be the set of

all detected edge pixels. Then, we have

Theorem 3.3.1: Assume that f has continuous first order partial derivatives over

(0, 1)×(0, 1)×(0, 1) except on the JLSs, and its first order partial derivatives have one-

sided limits at nonsingular points of the JLSs on both sides of a given JLS; h∗n = o(1),

1/(nh∗n) = o(1), and log2(n)/n3(h∗n)6 = O(1); E|ε4
111| < ∞; the kernel function K is

a Lipschitz-1 continuous, isotropic, trivariate density function; and αn is chosen such

that (i) αn = o(1), (ii) (nh∗n)7/2/{n2
√
− logαn} = o(1) and (iii)

√
− logαn/(nh∗n)3 =

o(1). Then, for any small constant ε > 0, dH(D
⋂

ΩS̄,ε, D̂n

⋂
ΩS̄,ε) = O(h∗n) a.s.,

where dH(A,B) denotes the Hausdorff distance between two point sets A and B,
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defined by

dH(A,B) = max

{
sup

(x,y,z)∈A
inf

(x′,y′,z′)∈B
dE((x, y, z), (x′, y′, z′)),

sup
(x,y,z)∈B

inf
(x′,y′,z′)∈A

dE((x, y, z), (x′, y′, z′))

}
�

Theorem 3.3.2: Besides the conditions in Theorem 3.3.1, if we further assume

that the bandwidth hn satisfies the conditions that hn = o(1), 1/(nhn) = o(1) and

h∗n/h
3
n = o(1), then ‖f̂ −f‖ΩJ̄,hn

= max(x,y,z)∈ΩJ̄,hn
|f̂(x, y, z)−f(x, y, z)| = O(h2

n) a.s.

For any small constant ε > 0, when (x, y, z) ∈ Jhn\Sε, h̃n = o(1) and hn
h̃n

= o(1), we

have f̂(x, y, z) = f(x, y, z) +O(hn) a.s. �

Theorem 3.3.1 establishes the almost sure consistency of the detected edge pixels.

If we choose h∗n = O(n−1/4), αn = O(e−n
2
), and all other conditions in the theorem

are satisfied, then we have dH(D
⋂
Dε, D̂n

⋂
Dε) = O(n−1/4) a.s. Theorem 3.3.2

says that the estimated image intensity function is uniformly strong consistent in the

whole design space excluding a small region around the design border and the true

JLSs. At a given point around the true JLSs, it is pointwise strong consistent, as

long as the point in question is a small distance away from any singular points of the

JLSs. Proofs of the above two theorems are provide in the appendix.

3.4 Numerical examples

In this section, we present some numerical results regarding the performance of the

proposed 3-D image denoising procedure (denoted as NEW), in comparison with four

existing methods that are commonly used in practice, including an anisotropic diffu-

sion method (denoted as AD, cf., Lopes (2007)), a method based on total variation

minimization (denoted as TV, cf., Rudin et al. (1992), Getreuer (2007)), a method
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based on optimized non-local means (denoted as ONLM, cf., Coupe et al. (2008b)),

and the conventional local median filtering method (denoted as MED). For the TV

method, the code by Getreuer (2007) interprets a 3-D image as a 2-D image with

vector-valued image intensities. Here, we have modified it by minimizing a TV crite-

rion constructed from a 3-D image directly for 3-D image denoising. In this method,

there is a regularization parameter to choose. The AD method is accomplished by

an iterative algorithm that contains two parameters: the diffusion parameter κ and

the number of iterations of the algorithm. The ONLM method has two bandwidth

parameters to choose. The median filtering method denoises the image by using the

sample median of the observations in a spherical window to estimate the true image

intensity at the central pixel of the window. It has one parameter to choose, which is

the bandwidth of the spherical window. Our proposed denoising method NEW has

three parameters h∗n, un and hn to choose.

First, we consider the following two true image intensity functions

f1(x, y, z) = −(x− 0.5)2 − (y − 0.5)2 − (z − 0.5)2 +

I (max(I(|x− 0.5| ≤ 0.25)I(|y − 0.5| ≤ 0.25)I(|z − 0.5| ≤ 0.25),

I((x− 0.5)2 + (y − 0.5)2 ≤ 0.152)I(|z − 0.5| ≤ 0.35)) = 1
)
,

f2(x, y, z) =
1

4
sin(2π(x+ y + z) + 1) +

1

4
+ I

(
max(I((x− 0.5)2 + (y − 0.5)2

≤ 1

4
(z − 0.5)2)I(z ≤ 0.5)I(z ≥ 0.2),

I((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 ≤ 0.42)

I((x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2 > 0.22)I(z < 0.45)) = 1
)
.

Their edge surfaces are shown in the two plots of Figure 3.3. Basically, f1 contains

a cube with a solid cylinder in the middle, and its background and foreground are
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Figure 3.3: The left and right panels show the jump location surfaces of f1 and f2,
respectively.

variable but smooth. From the left panel of Figure 3.3, we can see that the JLSs of f1

contain planes, intersections of two planes, intersections of three planes, smooth non-

linear surfaces, and intersections of a plane and a smooth non-linear surface. From

the right panel of Figure 3, we can see that f2 contains a half hollow hemisphere and

a cone. The two objects are separated, although they are close to each other. The

foreground of f2 has a fixed intensity level, and its background has a variable intensity

level. Therefore, jump sizes are different at different places of the JLSs.

We then apply the five image denoising procedures to the 3-D noisy images gener-

ated from model (3.1) when f equals f1 or f2, n = 64 or 128 (denoting two different

image resolutions), ε111 ∼ N(0, σ2) with σ = 0.1, 0.2 or 0.3 (representing low, medium

and high noise levels). Because procedures ONLM, TV, AD and MED do not have

corresponding data-driven parameter selection algorithms yet, to make a fair compar-

ison, we search their procedure parameters by minimizing the MISE value estimated

by the sample mean of

ISE(f̂ , f) =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

(
f̂(xi, yj, zk)− f(xi, yj, zk)

)2

over 100 replications, for each combination of f , σ and n, where f̂ denotes the denoised

image of the related denoising method.
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The MISE criterion provides us a measure of the overall performance of a denoising

procedure. But, it can not tell us how well the JLSs are preserved by the denoising

procedure. Hall and Qiu (2007) defined a measure of the jump size (JS) of a 2-D

image. A discretized version of its 3-D generalization can be written as follows. For

the true image intensity function f , its JS can be measured by

JS(f) =
1

(n− 2)3

n−1∑
i=2

n−1∑
j=2

n−1∑
k=2

|f(x′i, y
′
j, z
′
k)− f(x′′i , y

′′
j , z
′′
k)|,

where (x′i, y
′
j, z
′
k) and (x′′i , y

′′
j , z
′′
k) are two pixels on two different sides of the pixel

(xi, yj, zk) along the x−, y−, z−direction, or a diagonal direction that is closest to

the gradient direction of f at (xi, yj, zk). Obviously, if (xi, yj, zk) is an edge pixel,

then |f(x′i, y
′
j, z
′
k) − f(x′′i , y

′′
j , z
′′
k)| is close to the jump magnitude of f at (xi, yj, zk).

Otherwise, |f(x′i, y
′
j, z
′
k)−f(x′′i , y

′′
j , z
′′
k)| is close to 0. So, JS(f) is a reasonable measure

of the accumulative jump magnitude of f along the JLSs. For a denoised image f̂ ,

we can compute JS(f̂) similarly, by using the estimated gradient directions of f .

Then, EP (f̂) = (JS(f) − JS(f̂))/JS(f) would be a reasonable measure of edge-

preservation (EP) for the denoising method in question. In the numerical examples,

after we denoise images by the NEW method and all other competing methods, we

calculate this measure using the neighborhood size 0.0234 when n = 64 and 0.0117

when n = 128 to calculate the gradient directions. For MRI images we used it to be

0.0117. The choices of this neighborhood size seem reasonable if we compare them

with the choice of h∗n in different images listed in Tables 3.1–3.3 below.

The numerical results for f1 and f2 are presented in Tables 3.1 and 3.2, respec-

tively. From Table 3.1, it can be seen that the proposed method NEW is uniformly

better than the competing methods TV, AD, and MED in both MISE and EP, al-

though the MISE values of the methods NEW and TV are almost the same in cases

when σ = 0.1. Compared to the method ONLM, the method NEW performs better

in terms of MISE in cases when σ = 0.2 and 0.3, and performs similarly in terms of
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MISE in cases when σ = 0.1. In terms of EP, it seems that ONLM is better when

σ is small (i.e., σ = 0.1 when n = 64, and σ = 0.1 or 0.2 when n = 128). Similar

conclusions can be made from the results presented in Table 3.2, except that the

methods NEW, TV and ONLM perform similarly in this example in terms of MISE,

but the method NEW is much better than the other two methods in terms of EP.

One realization of f1 is generated from model (3.1) with n = 128, ε111 ∼ N(0, σ2),

and σ = 0.2. Three cross sections of this realization at z = 0.5, z = 0.1875, and

x = 0.4688 are shown in the first column of Figure 3.4. The corresponding cross

sections of the denoised images by TV, AD, ONLM, MED and NEW are shown in

the 2–6 columns. In the denoising methods, their parameters are chosen to be the

ones shown in the part with n = 128 and σ = 0.2 of Table 3.1. Similarly, three cross

sections of a realization of f2 at x = 0.5, x = 0.8125, and x = 0.6562, from model

(3.1) with n = 128, ε111 ∼ N(0, σ2), and σ = 0.2, along with the cross sections of the

denoised images of the five methods, are shown in Figure 3.5. From the two figures,

it can be seen that TV, ONLM and MED tend to blur the edges at some places,

the denoised image by AD seems to contain some scattered noise, and the denoised

image by NEW preserves the edges well and removes noise well. To better see the

results, for the three slices of the denoised images shown in Figure 3.5, we present the

differences between them and the corresponding slices of the true image in Figure 3.6.

From the images in this figure, we can see that the method NEW is indeed better

in preserving edges than the four competing methods, which is consistent with the

results of EP shown in Table 3.2.

Next, we consider a magnetic resonance image (MRI) of a human brain with

128× 128× 52 pixels. Its image intensity levels range from 0 to 809. I.i.d. noise from

the distribution N(0, σ2) is added to the image, where σ is chosen to be 40, 70, or

100. The parameters of the four denoising procedures are chosen in the same way

as those in the examples of Tables 3.1 and 3.2. The results are shown in left-side



3.4. Numerical examples 54

T
ab

le
3.

1:
In

ea
ch

en
tr

y,
th

e
fi
rs

t
li
n
e

p
re

se
n
ts

th
e

es
ti

m
at

ed
M

IS
E

va
lu

e
fr

om
10

0
si

m
u
la

ti
on

s
an

d
th

e
co

rr
es

p
on

d
in

g
st

an
d
ar

d
er

ro
r

of
IS

E
(i

n
p
ar

en
th

es
is

),
th

e
se

co
n
d

li
n
e

p
re

se
n
ts

th
e

m
ea

su
re

of
ed

ge
-p

re
se

rv
at

io
n

E
P

an
d

it
s

st
an

d
ar

d
er

ro
r,

an
d

th
e

th
ir

d
li
n
e

p
re

se
n
ts

th
e

se
ar

ch
ed

p
ro

ce
d
u
re

p
ar

am
et

er
va

lu
es

.
T

h
is

ta
b
le

co
n
si

d
er

s
th

e
ca

se
w

h
en

f
=
f 1

.

n
=

64
n
=

12
8

M
et

h
o
d

σ
=

0.
1

σ
=

0.
2

σ
=

0.
3

σ
=

0.
1

σ
=

0.
2

σ
=

0.
3

.0
00

3
(.

00
00

)
.0

00
9

(.
00

00
)

.0
01

8
(.

00
00

)
.0

00
1

(.
00

00
)

.0
00

4
(.

00
00

)
.0

00
8

(.
00

00
)

T
V

.1
01

1
(.

00
23

)
.1

90
9

(.
00

37
)

.2
48

0
(.

00
50

)
.1

05
3

(.
00

13
)

.1
93

0
(.

00
19

)
.2

73
7

(.
00

24
)

11
.0

6.
0

4.
5

11
.0

6.
0

4.
0

.0
00

6
(.

00
00

)
.0

03
5

(.
00

00
)

.0
08

2
(.

00
01

)
.0

00
3

(.
00

00
)

.0
02

0
(.

00
00

)
.0

04
8

(.
00

00
)

A
D

-.
03

10
(.

00
22

)
-.

04
57

(.
00

50
)

.1
10

9
(.

00
89

)
-.

02
46

(.
00

09
)

-.
06

32
(.

00
21

)
.1

71
9

(.
00

40
)

.1
8

,
6

.4
,

4
.6

,
4

.1
8

,
8

.3
8

,
5

.6
,

5
.0

00
3

(.
00

00
)

.0
01

2
(.

00
00

)
.0

03
2

(.
00

01
)

.0
00

1
(.

00
00

)
.0

00
6

(.
00

00
)

.0
01

5
(.

00
00

)
O

N
L

M
-.

00
82

(.
00

25
)

.0
40

8
(.

00
54

)
.1

19
1

(.
00

75
)

-.
00

70
(.

00
13

)
.0

14
0

(.
00

26
)

.0
42

1
(.

00
35

)
10

,
2

10
,

2
10

,
2

10
,

2
10

,
2

10
,

2
.0

02
2

(.
00

00
)

.0
03

3
(.

00
00

)
.0

05
5

(.
00

01
)

.0
00

8
(.

00
00

)
.0

01
9

(.
00

00
)

.0
03

3
(.

00
00

)
M

E
D

.1
61

5
(.

00
23

)
.2

75
7

(.
00

39
)

.3
21

4
(.

00
51

)
.1

57
9

(.
00

10
)

.3
78

9
(.

00
14

)
.4

66
7

(.
00

16
)

.0
31

3
.0

35
9

.0
35

9
.0

18
9

.0
25

0
.0

25
0

.0
00

3
(.

00
00

)
.0

00
8

(.
00

00
)

.0
01

2
(.

00
01

)
.0

00
1

(.
00

00
)

.0
00

3
(.

00
00

)
.0

00
5

(.
00

00
)

N
E

W
.0

22
4

(.
00

25
)

.0
36

9
(.

00
49

)
.0

46
4

(.
00

75
)

.0
19

9
(.

00
15

)
.0

25
1

(.
00

27
)

.0
27

7
(.

00
38

)
.0

23
,

13
,

.0
37

.0
23

,
22

,
.0

50
.0

28
,

22
,

.0
53

.0
12

,
24

,
.0

25
.0

12
,

44
,

.0
28

.0
14

,
44

,
.0

28



3.4. Numerical examples 55

T
ab

le
3.

2:
In

ea
ch

en
tr

y,
th

e
fi
rs

t
li
n
e

p
re

se
n
ts

th
e

es
ti

m
at

ed
M

IS
E

va
lu

e
fr

om
10

0
si

m
u
la

ti
on

s
an

d
th

e
co

rr
es

p
on

d
in

g
st

an
d
ar

d
er

ro
r

of
IS

E
(i

n
p
ar

en
th

es
is

),
th

e
se

co
n
d

li
n
e

p
re

se
n
ts

th
e

m
ea

su
re

of
ed

ge
-p

re
se

rv
at

io
n

E
P

an
d

it
s

st
an

d
ar

d
er

ro
r,

an
d

th
e

th
ir

d
li
n
e

p
re

se
n
ts

th
e

se
ar

ch
ed

p
ro

ce
d
u
re

p
ar

am
et

er
va

lu
es

.
T

h
is

ta
b
le

co
n
si

d
er

s
th

e
ca

se
w

h
en

f
=
f 2

.

n
=

64
n
=

12
8

M
et

h
o
d

σ
=

0.
1

σ
=

0.
2

σ
=

0.
3

σ
=

0.
1

σ
=

0.
2

σ
=

0.
3

.0
00

6
(.

00
00

)
.0

01
5

(.
00

00
)

.0
02

3
(.

00
00

)
.0

00
3

(.
00

00
)

.0
00

6
(.

00
00

)
.0

01
0

(.
00

00
)

T
V

.1
64

8
(.

00
25

)
.2

37
5

(.
00

46
)

.3
56

3
(.

00
58

)
.1

79
5

(.
00

13
)

.3
07

7
(.

00
22

)
.3

50
4

(.
00

29
)

13
.0

7.
5

4.
5

12
.0

6.
0

4.
5

.0
00

7
(.

00
00

)
.0

03
8

(.
00

00
)

.0
08

7
(.

00
01

)
.0

00
4

(.
00

00
)

.0
02

2
(.

00
00

)
.0

05
2

(.
00

00
)

A
D

.0
15

3
(.

00
31

)
.1

11
1

(.
00

67
)

.1
41

8
(.

00
66

)
.0

08
5

(.
00

17
)

.1
70

9
(.

00
41

)
.1

88
0

(.
00

33
)

.2
2

,
4

.4
,

4
.7

5
,

3
.1

8
,

7
.4

,
5

.7
2

,
4

.0
00

6
(.

00
00

)
.0

01
4

(.
00

00
)

.0
02

4
(.

00
00

)
.0

00
3

(.
00

00
)

.0
00

6
(.

00
00

)
.0

00
9

(.
00

00
)

O
N

L
M

.1
26

4
(.

00
29

)
.2

14
6

(.
00

48
)

.2
52

9
(.

00
67

)
.1

79
5

(.
00

17
)

.2
30

8
(.

00
31

)
.2

56
4

(.
00

45
)

3
,

2
4

,
2

5
,

2
5

,
3

5
,

3
6

,
3

.0
01

1
(.

00
00

)
.0

02
6

(.
00

00
)

.0
03

8
(.

00
00

)
.0

00
6

(.
00

00
)

.0
01

4
(.

00
00

)
.0

02
2

(.
00

00
)

M
E

D
.1

91
8

(.
00

28
)

.3
79

3
(.

00
42

)
.5

01
9

(.
00

49
)

.2
73

5
(.

00
15

)
.4

53
0

(.
00

21
)

.5
72

6
(.

00
20

)
.0

31
3

.0
40

6
.0

50
0

.0
20

3
.0

25
0

.0
29

7
.0

00
6

(.
00

00
)

.0
01

3
(.

00
00

)
.0

01
9

(.
00

00
)

.0
00

2
(.

00
00

)
.0

00
6

(.
00

00
)

.0
00

8
(.

00
00

)
N

E
W

.0
62

5
(.

00
35

)
.1

01
6

(.
00

66
)

.2
00

7
(.

00
99

)
.0

47
7

(.
00

22
)

.0
87

3
(.

00
45

)
.1

56
8

(.
00

65
)

.0
23

,
9

,
.0

31
.0

23
,

16
,

.0
38

.0
28

,
18

,
.0

53
.0

12
,

20
,

.0
19

.0
14

,
22

,
.0

28
.0

14
,

34
,

.0
33



3.4. Numerical examples 56

F
ig

u
re

3.
4:

T
h
e

fi
rs

t
co

lu
m

n
p
re

se
n
ts

th
re

e
cr

os
s

se
ct

io
n
s

of
an

im
ag

e
ge

n
er

at
ed

fr
om

m
o
d
el

(3
.1

)
w

it
h
f

=
f 1

,
n

=
12

8,
ε 1

1
1
∼
N

(0
,σ

2
),

an
d
σ

=
0.

2.
C

ol
u
m

n
s

2–
6

sh
ow

d
en

oi
se

d
im

ag
es

b
y

T
V

,
A

D
,

O
N

L
M

,
M

E
D

an
d

N
E

W
,

re
sp

ec
ti

ve
ly

,
w

h
en

th
ei

r
p
ro

ce
d
u
re

p
ar

am
et

er
s

ar
e

ch
os

en
to

b
e

th
e

co
rr

es
p

on
d
in

g
on

es
li
st

ed
in

T
ab

le
3.

1.



3.4. Numerical examples 57

F
ig

u
re

3.
5:

T
h
e

fi
rs

t
co

lu
m

n
p
re

se
n
ts

th
re

e
cr

os
s

se
ct

io
n
s

of
an

im
ag

e
ge

n
er

at
ed

fr
om

m
o
d
el

(3
.1

)
w

it
h
f

=
f 2

,
n

=
12

8,
ε 1

1
1
∼
N

(0
,σ

2
),

an
d
σ

=
0.

2.
C

ol
u
m

n
s

2–
6

sh
ow

d
en

oi
se

d
im

ag
es

b
y

T
V

,
A

D
,

O
N

L
M

,
M

E
D

an
d

N
E

W
,

re
sp

ec
ti

ve
ly

,
w

h
en

th
ei

r
p
ro

ce
d
u
re

p
ar

am
et

er
s

ar
e

ch
os

en
to

b
e

th
e

co
rr

es
p

on
d
in

g
on

es
li
st

ed
in

T
ab

le
3.

2.



3.4. Numerical examples 58

F
ig

u
re

3.
6:

T
h
e

fi
ve

co
lu

m
n
s

sh
ow

th
e

d
iff

er
en

ce
s

b
et

w
ee

n
th

e
th

re
e

sl
ic

es
of

th
e

d
en

oi
se

d
im

ag
es

sh
ow

n
in

F
ig

u
re

3.
5

an
d

th
e

co
rr

es
p

on
d
in

g
sl

ic
es

of
th

e
tr

u
e

im
ag

e,
fo

r
m

et
h
o
d
s

T
V

,
A

D
,

O
N

L
M

,
M

E
D

an
d

N
E

W
,

re
sp

ec
ti

ve
ly

.



3.4. Numerical examples 59

portion of Table 3.3 and in Figure 3.7. From Table 3.3, we can see that the proposed

procedure NEW outperforms all three competing methods in all cases in terms of

both the MISE and the edge preservation measure EP. In Figure 3.7, the first two

rows present two cross-sections of a noisy version of the 3-D MRI image when σ = 40

(1st column), and their denoised versions by procedures TV, AD, ONLM, MED, and

NEW (columns 2–6). The third and fourth rows and the fifth and sixth rows present

the corresponding results when σ = 70 and 100, respectively. In order to see the detail

better, in the seventh row, we zoom out the upper-middle portion of the images in the

fourth row. From the images in this figure, it seems that procedure NEW preserves

edges better than the competing methods, which is consistent with results in Table

3.3.

We also consider the case when the noise level is different at different places of the

image. In practice, the noise level is often higher in the foreground (i.e., the central

part of the image with the image objects) and lower in the background. To mimic

this situation, the following variable noise level is considered:

σ(x, y, z) = 25 + 50 exp

[
−(x− 0.5)2 + (y − 0.5)2 + (z − 0.5)2

4

]
.

The denoising methods are executed in the same way as before, and the results are

presented in the right-side portion of Table 3.3 and in Figure 3.8. From the table and

the figure, we can see that the proposed procedure NEW performs relatively well in

this case too.

In Section 3.2.4, a cross-validation (CV) procedure is proposed for choosing the

parameters of the proposed procedure NEW. Next, we apply NEW to all examples

discussed above in the same as described, except that un is chosen by (3.8) with

αn = 0.001 and h∗n and hn are chosen by minimizing the CV score defined in (3.9).

The results based on 100 replications are presented in Table 3.4. From this table and

Tables 3.1–3.3, we can see that (i) results of NEW with its parameters selected by
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Figure 3.7: The first two rows present two cross-sections of a noisy version of the 3-D
MRI image when σ = 40 (1st column), and their denoised versions by procedures TV,
AD, ONLM, MED, and NEW (columns 2–6). The third and fourth rows and the fifth
and sixth rows present the corresponding results when σ = 70 and 100, respectively.
Images in the seventh row zoom out the upper-middle portion of the images in the
fourth row. Procedure parameters are chosen to be the ones listed in Table 3.3.
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CV are close to results of NEW with its parameters selected optimally by minimizing

the estimated MISE in all cases, and (ii) when its parameters chosen by CV, NEW

still outperforms TV and MED in all cases, outperforms AD when σ = 0.2 or 0.3,

and is comparable with AD when σ = 0.1. The three cross sections of its denoised

image in the case of Figure 3.4 are shown in the first column of Figure 3.9, the three

cross sections of its denoised image in the case of Figure 3.5 are shown in the second

column, and the cross sections of its denoised images corresponding to rows 2, 4 and

6 of Figure 3.7 are shown in the third column. Comparing Figure 3.9 with Figures

3.4, 3.5, and 3.7, we can see that the denoised images of NEW when its parameters

are chosen by CV are indeed similar to its denoised images when its parameters are

chosen optimally by minimizing the estimated MISE.
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Figure 3.9: The first column shows the cross sections of the denoised image of NEW
in the case of Figure 3.4, the second column shows the cross sections of the denoised
image of NEW in the case of Figure 3.5, and the third column shows the cross sections
of the denoised images of NEW corresponding to rows 2, 4 and 6 of Figure 3.7. In
this example, procedure parameters of NEW are chosen by CV.
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3.5 Generalization of the proposed 3-D procedure

In this section, we modify the proposed 3-D image denoising procedure in several

aspects described below. First, approximating the JLS locally by one of many surface

templates, not by just three, can possibly provide a substantial improvement. If we

know beforehand that some surface structures are likely to be present in a 3-D image,

then it should be included in the pool of surface templates, so that a better surface

approximation can be obtained. Second, a simpler edge detection method and a

simpler procedure for selecting surface templates are used in the modified method.

Third, for better performance, algorithms for locally approximating the JLS are also

generalized to some extent. Some other modifications have also been made, which

will be discussed in detail below. In the remaining part of this section, ‘the proposed

3-D image denoising procedure’ would refer to the modified method.

3.5.1 Proposed modified method

Our modified 3-D image denoising procedure still consists of three major steps. First,

edge voxels are detected using a 3-D edge detector that is constructed under the

JRA framework. Second, in a neighborhood of a given voxel, the underlying edge

surfaces are approximated by a surface template chosen from a pre-specified surface

template family. Third, the true image intensity at the given voxel is estimated by a

weighted average of the observed image intensities in the neighborhood whose voxels

are located on the same side of the surface template as the given voxel. Details of

these steps are described below.

Identification of Edge Voxels

At a given voxel (x, y, z) ∈ Ω, to know whether it is an edge voxel, let us consider

its spherical neighborhood O∗(x, y, z) with radius h∗n. In O∗(x, y, z), we fit a 3-D
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plane using the local linear kernel (LLK) smoothing procedure (3.2). The solution

to (a, b, c, d) of (3.2) is denoted as (â(x, y, z), b̂(x, y, z), ĉ(x, y, z), d̂(x, y, z)), and their

expressions are given in (3.3). Then, â(x, y, z) is the LLK estimator of f(x, y, z), and

(̂b(x, y, z), ĉ(x, y, z), d̂(x, y, z)) are LLK estimators of (f ′x(x, y, z), f ′y(x, y, z), f ′z(x, y, z)).

In (3.2), a 3-D plane is fitted in the neighborhood O∗(x, y, z), by a weighted least

square procedure, for approximating the underlying image intensity function f around

the given voxel (x, y, z). The amount of data involved is determined by the radius

h∗n. Intuitively, at places where the noise level is high, h∗n should be chosen relatively

large to remove more noise. At places where the curvature of the image intensity

function is small (i.e., the image intensity surface is quite straight), h∗n can be chosen

relatively large as well. In practice, however, the noise and the true image intensity

function are both unobservable. All we have are the observed image intensities {ξijk}.

A data-driven procedure for choosing h∗n is discussed in a later part of this section.

The estimated gradient vector β̂(x, y, z) = (̂b(x, y, z), ĉ(x, y, z), d̂(x, y, z))T pro-

vides an estimate of the direction that f increases the fastest around (x, y, z). Let

us consider a plane that passes (x, y, z) and is orthogonal to β̂(x, y, z). Then, this

plan divides O∗(x, y, z) into two halves O∗1(x, y, z) and O∗2(x, y, z), as demonstrated

in Figure 3.10. In O∗1(x, y, z) and O∗2(x, y, z), we compute weighted averages of the

observed image intensities, respectively, with the weights determined by K. The

weighted averages are denoted as â1(x, y, z) and â2(x, y, z). Then, (x, y, z) is flagged

as an edge voxel if

|â1(x, y, z)− â2(x, y, z)| > Tn, (3.10)

where Tn is a threshold. In the case when there are no edge voxels in O∗(x, y, z), it

is derived in the appendix that â1(x, y, z) − â2(x, y, z) is distributed approximately

as N(0, 4σ̂2
∑
K2
h∗n

(xi, yj, zk)/[
∑
Kh∗n(xi, yj, zk)]

2), where
∑

is over all voxels, and
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Figure 3.10: The spherical neighborhood O∗(x, y, z) is divided into two halves
O∗1(x, y, z) and O∗2(x, y, z) by a plane passing the center (x, y, z) and perpendicular to

the estimated gradient β̂(x, y, z).

σ̂2 = 1
N

∑n
i,j,k=1(ξijk − â(xi, yj, zk))

2. Therefore, a reasonable choice of Tn is

Tn =
2Z1−αn/2σ̂

√∑
K2
h∗n

(xi, yj, zk)∑
Kh∗n(xi, yj, zk)

, (3.11)

where Z1−αn/2 is the (1− αn/2)th quantile of the standard normal distribution, and

αn is a pre-specified significance level. The value of αn provides a measure of the

chance that a non-edge voxel would be detected as an edge voxel. Its value should be

chosen relatively small if the total number of voxels is large. Otherwise, there will be

many detected false edge voxels. We have performed many numerical studies in which

the number of voxels of each test image is r× 106 with r ∈ [0.5, 10] (e.g., images with

128× 128× 64 or 256× 256× 128 voxels), and find that results are reasonably good

when we choose αn ∈ [0.0001, 0.001]. In such cases, each non-edge voxel has less than

0.1% chance to be detected as an edge voxel. In all numerical examples presented

later in this Section, we use a single value αn = 0.0002 for simplicity, although the

value of αn can always be adjusted in different cases.
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Figure 3.11: A family of four surface templates for approximating edge surfaces.

Template Surfaces and Edge Surface Approximation

As discussed in Section 3.1, there are mainly three different types of edge-structures

in 3-D images (Figure 3.2). But, there are many variants of each type of edge features

in real images. For instance, for pointed corners, instead of the corn-shape included in

the family, we can also consider the shape of a triangular pyramid that is displayed in

the lower-right panel of Figure 3.11. However, because the edge surface approximation

is performed locally in a small neighborhood of a given voxel, consideration of this

and other variants can only marginally improve the edge surface approximation, which

is confirmed by numerical examples later in this Section. Further, consideration of

extra surface templates would add a substantial amount of computation to the entire

image denoising process. For these reasons, we recommend using the first three

surface templates shown in Figure 3.11, and adding some extra surface templates

to the family only in cases when we know that they are common edge features in a

specific application.

Next, we describe our proposed algorithms for locally approximating the edge

surfaces by the surface templates shown in Figure 3.11. At a given voxel (x, y, z), let
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us consider its spherical neighborhood O(x, y, z) with radius hn, where hn could be

different from h∗n used in (3.2). Again, a data-driven procedure for choosing hn will

be discussed later in this Section. Let {sl, l = 1, 2, . . . ,m} be the detected edge voxels

in O(x, y, z), {β̂
∗
l , l = 1, 2, . . . ,m} be the corresponding estimated gradient directions

(with unit lengths) at these edge voxels by (3.2), and

G = (w1β̂
∗
1, w2β̂

∗
2, . . . , wmβ̂

∗
m)(w1β̂

∗
1, w2β̂

∗
2, . . . , wmβ̂

∗
m)T ,

where wl = |â1(sl)− â2(sl)|−Tn which are all positive at detected edge voxels {sl, l =

1, 2, . . . ,m} (3.10). Therefore, G is a weighted second moment from origin of {β̂
∗
l },

and the weights are determined by the significance of individual detected edge voxels.

The eigenvalues of G are denoted as λ1 ≤ λ2 ≤ λ3, and the corresponding eigenvectors

with unit lengths are v1,v2, and v3. Then, if all β̂
∗
l s are the same (i.e., the underlying

edge surface is a plane), G would have a rank of 1 and v3 would be the normal direction

of the edge plane, and vice versa. Therefore, to approximate the edge surfaces in

O(x, y, z) by the first surface template shown in Figure 3.11, a reasonable solution is

the plane that passes the weighted center s of {sl} with the weights {wl} and has the

normal direction of v3.

To approximate the edge surfaces in O(x, y, z) by the second surface template

(i.e., the one shown in the upper-right panel of Figure 3.11), we proceed in two steps.

First, {sl} are divided into two groups by a plane that passes s along the directions

of v1 and β
∗

where β
∗

denotes the weighted average of {β̂
∗
l , l = 1, 2, . . . ,m} with

the weights {wl, l = 1, 2, . . . ,m}. Second, with each group of the detected edge

voxels, find an approximation plane passing their weighted averaged locations with

its normal direction to be the weighted average of the estimated gradient directions

at the detected edge voxels. Then, the two resulting half planes that cross each other

and form a subspace in O(x, y, z) containing s are used for approximating the edge

surfaces in O(x, y, z).
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To approximate the edge surfaces in O(x, y, z) by a cone (i.e., the surface template

shown in the lower-left panel of Figure 3.11), we need to specify its central axis, vertex

position, and the angle between the central axis and any generatrix. Assume that the

direction of the central axis is d = (1, d2, d3)T . Since the angle between this direction

and the normal direction at any point on the cone is a constant, d2 and d3 can be

estimated by minimizing the weighted sample variance of the inner products between

d and {β̂
∗
l , l = 1, 2, . . . ,m}. Simple calculations show that

d2 = (Ψ23Ψ13 −Ψ33Ψ12)/
(
Ψ22Ψ33 −Ψ2

23

)
d3 = (Ψ12Ψ23 −Ψ22Ψ13)/

(
Ψ22Ψ33 −Ψ2

23

)
,

where Ψj1j2 is the (j1, j2)th component of the weighted sample covariance matrix of

{β̂
∗
l , l = 1, 2, . . . ,m}, for j1, j2 = 1, 2, 3. To specify the location of the central axis,

let us consider a sphere Õ(x, y, z) of radius h̃n > hn. The plane P̃ passing s with the

normal direction of d would divide Õ(x, y, z) into two parts. Weighted centers of the

detected edge voxels in the two parts are then calculated, and the one closer to P̃ is

denoted as s∗ = (c∗x, c
∗
y, c
∗
z). Then, the line passing s∗ along the direction d is defined

to be the central axis of the cone. In this paper, we choose h̃n = 3hn. As a matter of

fact, selection of h̃n does not have much effect on the final results. After the central

axis is determined, the angle between the central axis and any generatrix can be easily

estimated by the weighted average of the angles between d and {β̂
∗
l , l = 1, 2, . . . ,m}.

The location of the vertex (vx, vy, vz) of the cone can be estimated by minimizing

the weighted orthogonal distance between the cone and the detected edge voxels in

O(x, y, z). After some algebraic manipulations, the estimator can be calculated by

(vx, vy, vz) = (c∗x + β
∗
1ρ, c

∗
y + β

∗
2ρ, c

∗
z + β

∗
3ρ),
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where β
∗

= (β
∗
1, β

∗
2, β

∗
3)T , ρ is one of

[
∑

wldltl/(tan θ̂||β∗||) +
∑

wlt
2
l ]/
∑

wltl

and

[
∑

wldltl/(tan θ̂||β∗||)−
∑

wlt
2
l ]/(−

∑
wltl)

that minimizes
∑
wl(dl cos θ̂ − |t − tl|||β

∗|| sin θ̂)2, tl = (β
∗
)T (sl − s)/‖β∗‖2, and

dl = ‖sl − s∗ − tlβ
∗‖.

To approximate the edge surfaces in O(x, y, z) by a triangular pyramid (i.e., the

surface template shown in the lower-right panel of Figure 3.11), we need to estimate

its vertical axis (i.e., the line passing through the vertex and the center of its tri-

angular base), the angular orientation of the triangular base, the normal directions

of the three lateral planes, and the position of the vertex. To estimate the vertical

axis, let us consider the spherical neighborhood Õ(x, y, z) that is described in the pre-

vious paragraph. The weighted center of the detected edge voxels within Õ(x, y, z)

is denoted as s̃ = (c̃x, c̃y, c̃z). Then, the vertical axis is estimated by the line pass-

ing s̃ in the direction of the weighted mean of the estimated gradient directions at

all detected edge voxels in Õ(x, y, z). To determine the angular orientation of the

triangular base, we consider a plane that passes s̃ and is orthogonal to the vertical

axis. We also fix a half straight line L̃ on the plane that starts from s̃. Another two

half straight lines starting from s̃ on the plane can then be determined such that the

three half lines are 1200 apart and partition the plane into three equal parts. The

detected edge voxels in O(x, y, z) can then be divided into three groups based on the

parts of the plane that their projections to the plane belong to. Intuitively, if the

three groups of the detected edge voxels are located on the three lateral planes of the

triangular pyramid, respectively, then the variability of the estimated gradient direc-

tions corresponding to each group of detected edge voxels should be small. Based

on this intuition, the sample variances of the three groups of the estimated gradient
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directions are computed, respectively, and their weighted average is also computed,

with the weights proportional to the numbers of detected edge voxels in the three

groups. This weighted average is called the within-group variance hereafter. We

then keep rotating L̃ clockwise (or counterclockwise) within the plane with a step of

ν0 until the cumulative rotated degrees reaching 1200. For each position of L̃, the

within-group variance is calculated. Then, the final position of L̃ is chosen to be the

one among all its positions considered with the smallest within-group variance. After

the final position of L̃ is determined, the normal directions of the three lateral sides

of the pyramid can be estimated by the weighted means of the estimated gradient

directions within the three groups of detected edge voxels, respectively. Finally, the

vertex of the pyramid can be searched on the vertical axis to minimize the weighted

sum of the squared orthogonal distances from the detected edge voxels in O(x, y, z)

to the respective lateral sides of the pyramid. To this end, we search for the pyramid

vertex on both sides of the vertical axis within O(x, y, z), starting from s̃ with a step

of τ . In the algorithm just described, there are two parameters ν and τ . In our

numerical study presented in later in this Section, we choose ν = 5 and τ = 0.05/n,

because results with smaller values of these parameters would hardly change in all

cases considered.

In practice, we need to choose one of the four estimated surface templates based

on observed image intensities for approximating the edge surfaces in O(x, y, z). For

that purpose, one natural solution is to choose the estimated surface template with

the smallest residual sum of squares (RSS), where RSS is defined to be the sum

of squared orthogonal distances from {sl, l = 1, 2, . . . ,m} to the estimated surface

template. However, by this idea, the first surface template would never be selected

because it is a special case of the second surface template and consequently its RSS

value will never be the smallest one. To overcome this difficulty, we suggest the

following two-step algorithm. Let RSS1, RSS2, RSS3, and RSS4 be the RSS values of
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the four estimated surface templates, respectively. Then,

(i) the third template is selected if RSS3 is the smallest one among RSS1, RSS2,

RSS3, and RSS4, and the fourth template is selected if RSS4 is the smallest RSS

value;

(ii) otherwise, the first template is selected if

F (x, y, z) =
(RSS1(x, y, z)−RSS2(x, y, z))/3

RSS2(x, y, z)/(m− 6)

≤ χ2
3,1−α̃,

and the second template is selected if F (x, y, z) > χ2
3,1−α̃, where χ2

3,1−α̃ is the

(1− α̃)th quantile of the χ2
3 distribution.

In step (ii), we have used the statistical result that F (x, y, z) is distributed asymp-

totically as χ2
3 when m increases Seber (1977), which is true here because the first

template is a special case of the second template and the second template has three

more parameters than the first template. For the value of α̃, if it is chosen smaller,

then the second template would have a smaller chance to be selected. Based on our

numerical experience, results are reasonably good if we choose α̃ = 0.01. For simplic-

ity, this value of α̃ is used in all numerical examples presented in this paper, although

its value can always be adjusted in different cases. Note that, if we decide to use

the first three surface templates only in our image denoising procedure, then step (i)

should be changed to

(i)’ the third template is selected if RSS3 is the smallest one among RSS1, RSS2,

and RSS3,

and step (ii) is not changed.
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3-D Image Denoising

This part is, in many ways, similar to the method discussed in Section 3.2.3. Still,

for readers’ convenience, a brief description is provided below.

After the edge surfaces in the neighborhood O(x, y, z) are approximated by a

surface template, the neighborhood is divided by the surface template into sub-

neighborhoods. The one containing the voxel (x, y, z) is denoted as U(x, y, z). Then,

f(x, y, z) can be estimated by the solution to a of the minimization problem (3.2), af-

ter Kh∗n(xi, yj, zk) is replaced by I((xi, yj, zk) ∈ U(x, y, z))Khn(xi, yj, zk), where I(·) is

the indicator function and it equals 1 if its argument is “true” and 0 otherwise. From

(3.2), and the expressions given in (3.3) for its solutions, we can see that f̂(x, y, z) is

a weighted average of the observed image intensities whose voxels are located on the

same side of the estimated surface template in O(x, y, z) as the given voxel (x, y, z).

Intuitively, as long as the estimated surface template approximates the underlying

edge surfaces well, f̂(x, y, z) should preserve edges and major edge features well.

In the proposed denoising procedure, there are two parameters h∗n and hn in-

volved. We suggest choosing them by the following cross-validation (CV) procedure

(3.9). Because each f̂−i,−j,−k(xi, yj, zk) is computed in a small neighborhoodO(x, y, z),

computation involved in the CV procedure (3.9) is manageable.

It should be pointed out that the denoising procedure discussed above is for cases

when the pointwise noise contained in the observed image has a mean of 0 (3.1). In

some applications, such as MRI imaging, the noise level at a given voxel may depend

on the true image intensity level, and the noise distribution can often be described by

a Rician, Poisson, noncentral Chi-square, or other models Macovski (1996). In such

cases, denoised images by procedures designed for removing additive zero-mean noise

would be biased for estimating the true images, and many bias-correction methods

have been proposed in the literature (e.g., Section 1.3 and related references). In the

next section, we will present a numerical example with Rician noise involved.
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Figure 3.12: A demonstration of a 3-D image and its three 2-D slices.

For a real image, there are regions where f is smooth. In these regions, the

number of detected edge voxels should be small. So, before estimating f , we suggest

counting the number of detected edge voxels in O(x, y, z). If the number is so small

(e.g., smaller than (nhn)2) that a potential edge surface in O(x, y, z) is unlikely, then

f(x, y, z) can be estimated simply by the conventional LLK estimator constructed

from all observations in O(x, y, z). The denoising procedure described in the first

paragraph of this subsection is used only when the number of detected edge voxels

in O(x, y, z) is relatively large. To do so, there are at least two benefits. One is that

much computation is saved, because the conventional LLK estimator is much easier to

compute, compared to the proposed denoising procedure based on local edge surface

approximation. The other benefit is that the estimated f would be more reliable in

cases when the number of detected edge voxels is small, because it is constructed from

all observations in O(x, y, z), instead of from part of the observations. Considering

the fact that most voxels in an image are not edge voxels, these benefits should be

substantial.

3.5.2 Numerical studies

In this section, we present some numerical examples to evaluate the performance

of the proposed 3-D image denoising procedure, in comparison with three existing
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procedures, including the ones based on total variation Getreuer (2007) (denoted as

TV, a different version than the one used in Section 3.4), anisotropic diffusion Lopes

(2007) (denoted as AD), and optimized non-local means Coupe et al. (2008b) (denoted

as ONLM). In Section 3.5.1, it has been pointed out that the first three surface

templates shown in Figure 3.11 could describe major edge features in 3-D images

well. In order to investigate the impact of the inclusion of the fourth surface template

(i.e., the triangular pyramid shown in the lower-right panel of Figure 3.11) on the

performance of our proposed method, we consider its two versions. One uses the first

three surface templates only (denoted as NEW), and the other uses all four surface

templates (denoted as NEW-P). In both versions, the kernel functionK is chosen to be

the Epanechnikov kernel function K(x, y, z) = C(1−x2)(1−y2)(1−z2) defined in the

unit ball {(x, y, z) : x2 +y2 +z2 ≤ 1}, where C > 0 is a normalization constant. It has

been shown in the statistical literature Epanechnikov (1969) that this kernel function

has certain optimality properties. The procedure TV has a regularization parameter

involved, the procedure AD is an iterative algorithm and contains two parameters,

i.e., the diffusion parameter and the number of iterations, and the procedure ONLM

has two bandwidth parameters to choose. To evaluate the performance of a denoised

image f̂ , a standard statistical criterion is the mean integrated squared error (MISE),

defined as MISE(f̂ , f) =
∫ 1

0

∫ 1

0

∫ 1

0
[f̂(x, y, z) − f(x, y, z)]2 dxdydz, which is estimated

by the sample mean of

ISE(f̂ , f) =
1

n3

n∑
i=1

n∑
j=1

n∑
k=1

[
f̂(xi, yj, zk)− f(xi, yj, zk)

]2

based on 100 replications.

We first consider a 3-D MRI image of a human brain which has 128 × 128 × 52

voxels. Its image intensity levels range from 0 to 809. A demonstration of the 3-D

image and its three slices are shown in Figure 12. This is the same image used in

Section 3.4. I.i.d. random noise from the distribution N(0, σ2) is added to the image,
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and σ is chosen to be 80, 100, or 120, representing low, medium, and high noise

levels. With each σ value, the parameters of all denoising procedures are chosen such

that their estimated MISE values based on 100 replications reach the minimum. For

the proposed denoising procedure NEW, we also consider choosing its parameters by

the CV procedure (3.9), to investigate the effectiveness of the CV procedure. The

corresponding method is denoted as NEW-CV.

The estimated MISE values, their standard errors, and the procedure parame-

ter values of the related methods are presented in the first three columns of Table

3.5. From the table, we can see that the proposed procedure NEW outperforms all

three competing methods TV, AD and ONLM in all cases, and the outperformance

is statistically significant because the difference of the MISE values of the procedure

NEW and any one of these methods is larger than 2 times of the sum of the two

corresponding standard errors. Also, when its parameters are chosen by the CV pro-

cedure (3.9), its performance gets slightly worse, compared to the procedure NEW

with the parameters chosen by minimizing MISE. But, NEW-CV still outperforms

all three competing methods in all cases by a reasonably large margin. By comparing

NEW with NEW-P, it can be seen that the performance of NEW-P is indeed only

marginally better than that of NEW. The first three columns in Figure 3.13 demon-

strate the three slices of the denoised images by procedures TV, AD, ONLM, NEW,

NEW-CV, and NEW-P, when σ = 100. The corresponding slices of the original image

are those shown in Figure 3.12 . From the images, it can be seen that edge structures

are better preserved by procedures NEW, NEW-CV, and NEW-P (cf., several central

dark regions in images shown in the first column). The residual plots of the images in

the first column are shown in the fourth column, from which we can see that the resid-

ual plots of procedures TV, AD and ONLM show slight patterns around the brain

boundary and such patterns are almost invisible in the residual plots of procedures

NEW, NEW-CV and NEW-P, which can be confirmed by the close-up views of an
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upper-right portion of the residual images that are shown in column 5 of Figure 3.13.

To further investigate the denoised images, the density curves of the image intensities

of the denoised images when σ = 100 are shown in Figure 3.14. Because the density

curves of the procedures NEW, NEW-CV, and NEW-P are almost identical, only the

one of NEW-CV is visible in the plot. From the plot, it can be seen that, when image

intensities are in the range from 0 to about 70, the density curves of NEW, NEW-CV,

and NEW-P are closer to the density curve of the true image, shown by the thick

solid curve in the plot, than the density curves of the three competing procedures. In

cases when image intensities are larger than 70, the density curves of all procedures

are close to each other. From the plot, it can also be seen that more than 80% image

intensities of the true image or each of the denoised images are below 70. So, we

can conclude that overall the image intensities of the denoised images by procedures

NEW, NEW-CV, and NEW-P are closer to the image intensities of the true image,

compared to the image intensities of the denoised images by the three competing

procedures.

Table 3.5: In each entry, the first line presents the estimated MISE value and their
standard errors (in parenthesis), the second line presents the searched procedure
parameter values.

Method σ = 80 σ = 100 σ = 120 variable σ
TV 1119.3 (2.9) 1401.1 (3.9) 1649.1 (4.9) 1073.1 (2.8)

.0030 .0025 .0019 .0032
AD 1157.8 (3.5) 1525.0 (4.8) 1916.9 (6.3) 1088.9 (3.3)

475,1 700,1 900,1 225,2
ONLM 884.8 (3.4) 1127.5 (4.6) 1364.0 (6.2) 845.2 (3.2)

12,1 16,1 25,1 11,1
NEW 837.3 (2.4) 1022.7 (3.1) 1189.2 (4.1) 811.5 (2.2)

.0172,.0156 .0188,.0188 .0188,.0188 .0172,.0156
NEW-CV 850.4 (2.4) 1029.0 (2.9) 1189.2 (4.1) 823.8 (2.4)

.0117,.0156 .0172,.0188 .0188,.0188 .0117,.0156
NEW-P 835.3 (2.5) 1011.8 (3.5) 1184.1 (4.7) 809.7 (2.2)

.0172,.0156 .0180,.0180 .0180,.0180 .0172,.0156
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Figure 3.13: The first three columns show the three slices of the denoised images by
procedures TV, AD, ONLM, NEW, NEW-CV, and NEW-P, respectively, in six rows
when σ = 100. Images in column 4 are residual images of those shown in column 1.
Images in column 5 show the close-up views of an upper-right portion of the images
in column 4.



3.5. Generalization of the proposed 3-D procedure 81

0 50 100 150 200

0.
00

0
0.

00
5

0.
01

0
0.

01
5

0.
02

0

Image intensity values

D
en

si
ty

TRUTH
TV
AD
ONLM
NEW
NEW−CV
NEW−P

Figure 3.14: Density curves of the image intensities of the true 3-D image and the six
denoised 3-D images when σ = 100.

In practice, noise level may not be homogeneous in the entire image. To simulate

this scenario, we consider the following variable σ:

σ(x, y, z) = 30 +

50 exp

[
−(x− .5)2 + (y − .5)2 + (z − .5)2

4

]
. (3.12)

The MISE values, their standard errors, and the searched procedure parameter values

of the six methods in this case are shown in the last column of Table 3.5. Denoised

images are shown in Figure 3.15 for the first slice presented in Figure 3.12. From Table

3.5 and Figure 3.15, it can be seen that procedures NEW, NEW-CV, and NEW-P

also perform better than the three competing procedures in this case.

Next, we consider adding the Rician noise to the 3-D test image shown in Figure

3.12. By adding the Rician noise, the observed image intensity at the voxel (x, y, z)
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Figure 3.15: Images in the first row show the first slice (shown in Figure 3.12) of
the noisy image and the denoised images by procedures TV, AD, ONLM, NEW,
NEW-CV, and NEW-P, respectively, when the noise level is variable, as defined in
refeq:03:006. Images in the second row show the close-up views of a top portion of
the corresponding images in the first row.

is generated by
√

[f(x, y, z) + ε1]2 + ε22, where ε1 and ε2 are i.i.d. noise from the dis-

tribution N(0, σ̃2). As in the previous examples, we consider cases when σ̃ = 80, 100,

and 120. For each denoising procedure, we use the bias correction method proposed in

Wiest-Daessle et al. (2008) to remove estimation bias. Let f̃(x, y, z) be the intensity

of the denoised image by a given denoising procedure. Then, its bias-corrected ver-

sion is defined to be
√
f̃ 2(x, y, z)− 2σ̃2. In practice, σ̃ is often unknown and should

be estimated from the observed image. In this example, it is estimated by
√
s/2,

where s is the sample standard deviation of the squared observed intensities at the

first 16× 16× 13 voxels. The calculated MISE values based on 100 replications of all

six procedures are presented in Figure 3.16. Again, the MISE curve of the procedure

NEW is not visible in the plot because it is overlapped with the one of NEW-CV.

From the plot, it can be seen that procedures NEW, NEW-CV, and NEW-P outper-

form all three competing procedures in all cases except the case when σ̃ = 80. In

that case, the procedure ONLM is the best. In the case when σ̃ = 100, the procedure

ONLM performs similarly to the procedures NEW, NEW-CV, and NEW-P, which
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Figure 3.16: MISE values of various methods based on 100 replications when σ̃ =
80, 100, and 120.

can also be seen from Figure 3.17 where the denoised images of the six procedures

are shown for the second slice presented in Figure 3.12.

We next consider another 3-D MRI test image of a person’s head which has 128×

128×126 voxels with intensity levels ranging from 0 to 255. Three slices of the image

are shown in Figure 3.18. Then, i.i.d. noise from the distribution N(0, σ2) is added

to the image. We consider three noise levels: σ = 50, 75, and 100, representing low,

medium, and high noise levels. With each noise level, parameters of all the denoising

procedures considered are chosen in exactly the same way as that in the example

of Table 3.5. The estimated MISE values based on 100 replications, their standard

errors, and the procedure parameter values are shown in the first three columns of

Table 3.6. From the table, we can see that (i) procedures NEW, NEW-CV, and NEW-

P are uniformly better than the three competing procedures TV, AD, and ONLM,

(ii) procedure NEW-CV is slightly worse than procedure NEW, and (iii) procedure

NEW-P only marginally improves procedure NEW. All these results are consistent
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Figure 3.17: Images in the first row show a slice of the noisy image and its denoised
versions by procedures TV, AD, ONLM, NEW, NEW-CV, and NEW-P, respectively,
when Rician noise with σ̃ = 100 is considered. The slice presented here corresponds
to the second slice shown in Figure 3.12. Images in the second row show the close-up
views of a top portion of the images in the first row.

with the ones found in the example of Table 3.5. The first three columns of Figure

3.19 demonstrate three slices of the denoised images by procedures TV, AD, ONLM,

NEW, NEW-CV, and NEW-P, respectively, when σ = 75. The three slices correspond

to the ones shown in Figure 3.18. From the images, it seems that the edge structures

are better preserved by procedures NEW, NEW-CV, and NEW-P (cf., the boundary

of the neck part in images shown in the first column). This can be confirmed by the

deviation plots (i.e., plots of true images minus denoised images) of the images in

the first column, shown in the fourth column of Figure 3.19, and their close-up views

(shown in the fifth column of Figure 3.19) of the neck portion.

In MRI imaging, salt-and-pepper noise is quite common. Next, we simulate a sce-

nario with salt-and-pepper noise using the test image of head, by changing the image

intensities of 5% randomly selected voxels to 0 and changing the image intensities of

another 5% randomly selected voxels to 255. The noisy image is shown in the (1,1)th

plot of Figure 3.20 for the first slice presented in Figure 3.18. Then, all six denoising

procedures are applied to the noisy image. Their procedure parameters are chosen in
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Figure 3.18: Three slices of a 3-D test image of a person’s head.

Table 3.6: In each entry, the first line presents the estimated MISE value and their
standard errors (in parenthesis), the second line presents the searched procedure
parameter values.

Method σ = 50 σ = 75 σ = 100 salt-and-pepper
TV 557.1 (0.7) 803.5 (1.6) 1020.2 (2.0) 752.1 (2.1)

.0030 .0019 .0013 .0033
AD 488.9 (1.0) 749.6 (1.3) 964.4 (1.7) 836.0 (1.7)

135,2 230,2 350,2 800,1
ONLM 504.5 (0.9) 707.5 (1.7) 934.2 (2.8) 629.9 (2.0)

10,1 14,1 16,1 8,1
NEW 462.1 (0.7) 610.9 (1.0) 731.3 (1.4) 594.5 (1.7)

.0172,.0141 .0188,.0203 .0219,.0234 .0219,.0156
NEW-CV 482.8 (0.7) 610.9 (1.0) 731.7 (1.5) 617.8 (1.4)

.0172,.0188 .0188,.0188 .0219,.0219 .0188,.0188
NEW-P 461.6 (0.7) 608.9 (1.1) 729.7 (1.7) 592.9 (1.5)

.0180,.0156 .0188,.0188 .0219,.0203 .0250,.0156
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Figure 3.19: The first three columns show the three slices of the denoised images of
the test image of head by procedures TV, AD, ONLM, NEW, NEW-CV, and NEW-
P, respectively, in six rows when σ = 75. Images in column 4 are residual images of
those shown in column 1. Images in column 5 show the close-up views of the neck
portion of the images in column 4.
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Figure 3.20: Images in the first row show the first slice (shown in Figure 3.18) of the
noisy image and the denoised images by procedures TV, AD, ONLM, NEW, NEW-
CV, and NEW-P, respectively, when 10% salt-and-pepper noise is added to the test
image of head. Images in the second row show the close-up views of the neck portion
of the corresponding images in the first row.

the same way as before. The MISE values, their standard errors, and the searched

procedure parameter values of the six procedures in this case are shown in the last

column of Table 3.6. Denoised images are shown in the first row of Figure 3.20 for

the first slice. Images in the second row of Figure 3.20 show the close-up views of the

neck portion of the images in the first row. From Table 3.6 and Figure 3.20, it can

be seen that procedures NEW, NEW-CV, and NEW-P also perform better than the

three competing procedures in this case.



Chapter 4

Efficient Bias Correction for MRI
Image Denoising

Magnetic resonance imaging (MRI) is a popular radiology technique that is used

for visualizing detailed internal structure of the body. Observed MRI images are

generated by the inverse Fourier transformation from received frequency signals of a

MR scanner system. Previous research has demonstrated that random noise involved

in the observed MRI images can be adequately described by the so-called rician noise

model. Under that model, the observed image intensity at a given pixel is a non-linear

function of the true image intensity and two independent zero-mean random variables

with a same normal distribution. Because of such a complicated noise structure in the

observed MRI images, denoised images by conventional denoising methods are usually

biased, and the bias would reduce image contrast and affect negatively on subsequent

image analysis. Therefore, it is important to address the bias issue properly. To

this end, several bias correction procedures have been proposed in the literature

(Chapter 1.3). Most of them are proposed based on intuition. In Section 4.2, we

study the rician noise and the corresponding bias-correction problem systematically,

and propose a new and more accurate bias-correction formula. Numerical studies in

Section 4.3 show that it works well in various applications.

88



4.1. Introduction 89

4.1 Introduction

Magnetic resonance imaging (MRI) is a technique used mainly for assessing pathologi-

cal or other physiological conditions in living tissues, by visualizing the inside of living

organisms Vlaardingerbroek and den Boer (1999). In simple terms, its methodological

basis lies in: (i) different tissues have different compositions and physical properties,

such as water molecule densities, from which the tissue type at a given position can be

determined, and (ii) these differences, in water molecule density say, can be depicted

as various image contrasts using the MRI technique.

When a part of a body (e.g., a patient’s head) is placed in a uniform magnetic

field of a given direction, say, the z direction, the hydrogen nuclei of water in that

part would align themselves in parallel or anti-parallel with the field, creating a net

magnetization, and rotate with the Larmor frequency. The basis of MRI lies in ma-

nipulating the local magnetic field such that the local resonant frequency would differ

at different locations, which is achieved by applying additional, small, linear mag-

netic field gradients. In a MR scanner system, three orthogonally positioned gradient

coils would produce such magnetic fields that vary linearly along their respective axes

(e.g., x, y, and z axes), and these small fields are added to the main magnetic field.

Turning on the coils in any particular combination would produce a field gradient

along any desired direction. After applying radio frequency (RF) pulses transmitted

by a separate RF coil, emitted radiation is absorbed by nuclei. Consequently, the net

magnetization is tipped away from the main z axis; the nuclei continue their rotation,

and as the excited nuclei relax back to the initial lower-energy alignment along the

main field, RF signals are re-emitted and received by a RF receiver coil. Along the

z direction, suppose a particular perpendicular slice of the body part at z = z0 is

to be imaged. Then, a RF pulse with frequency corresponding to that slice position

would excite the nuclei in that plane. Considering only the proton density and spin
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Figure 4.1: (a) Signals in frequency domain. (b) Corresponding spatial image ob-
tained by the discrete inverse Fourier transformation of the signals shown in (a).

relaxation, the received signal can be expressed by

S(kx, ky) =

∫ ∫
Ωz0

m(x, y) exp[i2π(kxx+ kyy)]dxdy, (4.1)

where Ωz0 denotes the 2-dimensional (2-D) region of the slice, m(x, y) is the density

of hydrogen protons at (x, y), and kx and ky are the frequency change rates along the

x and y directions of the local magnetic fields. Note that some constant multipliers

have been ignored on the right-hand-side of (1) for simplicity. It can be seen that

S(kx, ky) is a Fourier transformation of m(x, y). Therefore, if we have signals S(kx, ky)

in frequency domain, for all kx, ky = 1, 2, . . . , n, then m(x, y) can be determined

in spatial domain at n × n regularly spaced pixels by the discrete inverse Fourier

transformation (Chapter 7 in Qiu (2005)), as demonstrated in Figure 4.1.

Equation (4.1) is only a theoretical model for describing MRI image acquisition.

In practice, there will be random noise involved in the received signal S(kx, ky) in the

frequency domain, due to various reasons, including hardware imperfections, signal

dropouts caused by field inhomogeneity, and so forth. There has been a considerable

amount of existing research for describing the noise pattern in observed MRI images

in the spatial domain e.g., Gudbjartsson and Patz (1995), Macovski (1996). Most
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existing research shows that the noise pattern in observed MRI images can be ade-

quately described by the following rician noise model, e.g., Bernstein et al. (1989),

Sijbers et al. (1998):

Z(x, y) =

√
[m(x, y) + µ1(x, y)]2 + µ2

2(x, y), (4.2)

where Z(x, y) denotes the observed image intensity at the pixel (x, y), m(x, y) is the

true image intensity, and µ1(x, y) and µ2(x, y) are two independent random variables

with the normal distribution N(0, σ2) where σ is often unknown. One explanation of

the rician noise model (4.1) is that, when Z(x, y) is reconstructed from the frequency

signal S(kx, ky) using the inverse Fourier transformation, the imaginary part of the

complex output of the transformation does not contain any information about m(x, y)

(Nowak, 1999).

From (4.2), it can be seen that the rician noise involved in the observed image

Z(x, y) does not have the traditional zero-mean and additive structure. Instead, its

noise level depends on the true image intensity m(x, y), and it contaminates m(x, y)

nonlinearly. Kristoffersen (2007) and Zhu et al. (2009). systematically studied the

statistical properties of rician noise in MRI images. Because of non-additivity and

nonlinearity of rician noise, many conventional image denoising techniques, including

the total variance minimization (Rudin et al., 1992), anisotropic diffusion (Perona

and Malik, 1990), non-local means (Buades et al., 2005), jump surface estimation

(Qiu, 1998), and so forth, would result in biased estimates of the true image m(x, y).

The contrast of these biased estimates is usually lower than that of the true image

(Nowak, 1999), because the magnitude of bias depends on observed image intensities

and the bias is usually larger at places where the observed image intensities are

smaller. Therefore, it is important to reduce the bias and obtain a better estimate of

the true image, so that the true image structures can be better revealed.
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In the literature, a number of methods have been proposed to estimate noise level

in MRI images and to reduce the bias caused by the rician noise. Aja-Fernández

et al. (2008), Coupe et al. (2010), Rajan et al. (2010) etc. recently proposed different

methods to estimate the noise level in MRI images. Sijbers and den Dekker (2004)

suggested a denoising method based on the maximum likelihood estimation (MLE)

of the true image m(x, y) in model (4.2). However, the MLE is not easy to obtain

due to the nonlinearity of the model and to the fact that the true image usually has

many edge curves hidden in the observed image intensities. Gudbjartsson and Patz

(1995) suggested the bias-correction formula

m̂1(x, y) =
√
|m̃2(x, y)− σ2|, (4.3)

where m̃(x, y) denotes the denoised image by a conventional image denoising pro-

cedure, e.g., the non-local means estimate (Coupe et al., 2008b), and m̂1(x, y) is

the bias-corrected estimate of m(x, y). The formula (4.3) was derived using the

normal distribution approximation to the rician noise distribution, which may not

provide an accurate approximation in practice. Wiest-Daessle et al. (2008) noticed

that E(Z2(x, y)) = m2(x, y) + 2σ2, based on which they proposed the following bias-

correction procedure:

m̂2(x, y) =
√
m̃2(x, y)− 2σ2I

(
m̃(x, y) ≥

√
2σ
)
, (4.4)

where I(·) is an indicator function taking the value of 1 if “·=True” and 0 otherwise.

Note that the case m̃(x, y) <
√

2σ can happen in reality, especially in the background

regions of the MRI images. It has been shown that formula (4.4) can reduce bias.

However, it is clear that we do not have the equality m(x, y) =
√
E(Z(x, y))2 − 2σ2

in cases when m2(x, y) = E(Z2(x, y)) − 2σ2. Therefore, this formula should have

room for improvement.
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In this Chapter, we propose a novel bias-correction method using regression analy-

sis. From (4.2), it can be noticed that conventional image denoising methods actually

estimate E(Z(x, y)), instead of m(x, y). The resulting bias is mainly contributed by

E(Z(x, y))−m(x, y) which is a function of m(x, y). This function can be estimated

accurately using regression and Monte Carlo simulation. Numerical results show that

this method can provide a better bias correction, compared to the existing methods

mentioned above. The details of this method are described in Section 4.2. Some

numerical results are presented in Section 4.3.

4.2 Proposed bias correction method

In this section, we describe our proposed bias correction method in details. First, we

re-write model (4.2) as

Z(x, y) = f(m(x, y)) + εm(x, y), (4.5)

where f(m(x, y)) = E(Z(x, y)) is the mean of the observed image Z(x, y), and

εm(x, y) is the zero-mean random part of Z(x, y). Obviously, εm(x, y) depends on

the true image intensity m(x, y), which is indicated by its subscript. As discussed in

Section 4.1, the denoised image m̃(x, y) by a conventional image denoising procedure

is usually an asymptotically unbiased estimator of f(m(x, y)), which would have an

asymptotic bias of f(m(x, y)) − m(x, y). If the function f has an inverse g = f−1

and g can be properly specified, then a reasonable, bias-corrected, estimate of m(x, y)

would be

m̂(x, y) = g(m̃(x, y). (4.6)
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From models (4.2) and (4.5), we have

Z(x, y) = σf1

(
m(x, y)

σ

)
+ σεm,1(x, y),

where f1 and εm,1 denote the values of f and εm when σ = 1. Since t = m(x, y)/σ

can be interpreted as the signal-to-noise ratio (SNR), f1 can also be regarded as a

function of SNR. Further, the above expression implies that f and g have the following

properties

f(tσ) = σf1(t), g(sσ) = σg1(s), (4.7)

where g1 denotes the value of g when σ = 1 (i.e., g1 = f−1
1 ), and s = f1(t). By (4.6)

and (4.7), if f1 or g1 can be properly specified, then the bias-corrected estimate of

m(x, y) can be defined by

m̂(x, y) = σ̂g1

(
m̃(x, y)

σ̂

)
, (4.8)

where σ̂ is a reasonable estimate of σ.

The closed-form formula of the function f1 or g1 is difficult to derive. However,

their expressions can be approximated accurately by a numerical approach described

as follows. Let us first discuss the expression of f1(t). Because the image intensity of

a real image is always non-negative, let us constrain ourselves to t ≥ 0. For a given

t, we can generate ñ observed image intensity values by (4.2), in which m(x, y) is set

to be t and N1(x, y) and N2(x, y) are replaced by two independent random numbers

from the standard normal distribution. Then, by (4.5), f1(t) can be estimated by

the sample mean of the ñ observed image intensity values. When ñ is chosen large,

such an estimate should be accurate by the strong law of large numbers (Chapter

5 of Chung (1974)). For instance, when ñ = 10, 000 and t changes its values in

[0, 10] with a step 0.01, the estimated f1(t) is shown in Figure 4.2(a) by the dark
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solid line. From the plot, it can be seen that it is an increasing function when

t ≥ 0, and its value when t = 0 can be easily computed to be 1.253. As a reference,

the light solid line in the plot denotes the identity transformation. As described

above, a conventional image denoising procedure would have an asymptotic bias of

f(m(x, y))−m(x, y) = σ[f1(t)− t]. Therefore, from Figure 4.2(a), it can be seen that

(i) the conventional image denoising procedure would have positive biases across the

image, and (ii) the biases would be larger at places with smaller SNR values.

The estimated g1(s), which is obtained from the estimated f1(t) shown in Figure

4.2(a) by switching the x and y axes, is shown in Figure 4.2(b) by the dark solid

line. As a comparison, in the case when σ = 1, the corresponding transformations

of the bias correction formulas (4.3) and (4.4) described in Section 4.1, suggested

by Gudbjartsson and Patz (1995) and Wiest-Daessle et al. (2008), respectively, are√
|s2 − 1| and

√
s2 − 2I(s ≥

√
2). They are also displayed in the same plot by

long-dashed and short-dashed lines, respectively. From the plot, we can see that all

three bias correction methods try to pull down the estimated image intensities of a

conventional image denoising procedure. However, compared to the proposed formula

(4.8), the formula (4.3) seems not to correct the bias big enough especially when the

SNR s ≤ 1, while the formula (4.4) seems to over-correct the bias.

In practice, we need to obtain a good estimator σ̂ of σ before we can use formula

(4.8) for bias correction. To this end, one simple method is to use the sample variance

of Z2(x, y) in the background region of an MRI image, because m(x, y) is close to

zero in the background and thus the sample variance of Z2(x, y) in that region would

be approximately 4σ4. In all the numerical examples presented in this paper, σ̂ is

computed using this method, based on the first [1, 32] × [1, 32] pixels of an MRI

image. In the literature, there are a few alternative methods for estimating σ (Aja-

Fernández et al., 2008; Coupe et al., 2010; Rajan et al., 2010) but these methods

are more computationally extensive. We checked the numerical performance of our
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Figure 4.2: (a) Function f1(t) (dark solid line) estimated by simulation, and the
identity transformation (light solid line). (b) Transformation function g1(s) in the
proposed bias correction formula (4.8) (dark solid line), the corresponding transfor-
mation functions of the formulas (4.3) and (4.4) (long-dashed and short-dashed lines,
respectively), and the identity transformation (light solid line).

proposed bias-correction method, and found that its performance using the simple

estimator σ̂ described above is similar to its performance when we pretend that σ is

known.

After σ̂ is obtained, we can compute the value of g1(s) with s = m̃(x, y)/σ̂ by an

algorithm similar to the one described above for creating Figure 4.2(b), after m̃(x, y) is

computed by a conventional image denoising procedure. However, if we can derive an

explicit formula that provides a good approximation to the transformation function

g1(s), then the use of our proposed bias correction formula (4.8) will be greatly

simplified. To this end, we suggest approximating g1(s) by the first-order regression

spline function

β−1 + β0s+
∑̀
j=1

βj(s− vj)+,

where β = (β−1, β0, β1, . . . , β`) are coefficients, (1, s, (s−v1)+, . . . , (s−v`)+) are the ba-
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sis functions, (s−v)+ = (s−v) if s ≥ v and 0 otherwise, and (v1, v2, . . . , v`) are the set

of knots chosen to be (1.253, 1.3, 1.4, 1.5, 1.75, 2.0, 2.5, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0).

From Figure 4.2(b), we can see that g1(s) is almost straight when s > 2, and it is

curved mainly when s ∈ [1.253, 2]. That is the reason why we use denser knots in

[1.253, 2], and relatively less knots when s > 2. Also, when s > 10, g1(s) can be

simply approximated by s. So, we constrain ourselves to cases when s ∈ [0, 10]. To

estimate the above regression spline function in [0, 10], we generate the data in the

same way as we compute the estimated values of g1(s) shown in Figure 4.2(b), and

the estimated values of g1(s) are used as the data here. Then, the regression spline

approximation, denoted as ĝS,1(s), has the expression

ĝS,1(s) = β̂−1 + β̂0s+
∑̀
j=1

β̂j(s− vj)+

where β̂ = (β̂−1, β̂0, β̂1, . . . , β̂`) is the least squares estimate of β.

In formula (4.4) suggested by Wiest-Daessle et al. (2008), there is a threshold

value
√

2 involved. When the ratio m̃(x, y)/σ <
√

2, (4.4) simply defines the cor-

rected image intensity to be 0. We studied the legitimacy of the inclusion of such

a threshold value, and found that the threshold value is necessary, for the following

reason. In a typical MRI image, pixels with lower SNR values are usually located in

the background regions, and it is thus reasonable to set the corrected image intensi-

ties at such pixels to be 0. We performed many numerical studies, and found that

inclusion of a threshold value T in the range of [
√

2, 1.5] would generally improve

the bias-corrected MRI images (see some numerical results reported in Section 4.3).

According to Figure 4.2(b), “T =
√

2” corresponds to the corrected SNR m̂(x, y)/σ

of about 0.7, and “T = 1.5” corresponds to the corrected SNR of about 0.9. Based

on all the considerations described above, we suggest using the following formula for
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approximating g1(s):

ĝ1(s) =


0, when s < T

ĝS,1(s), when T ≤ s ≤ 10

s, when s > 10.

(4.9)

Then, bias-correction can be accomplished by using (4.8), with g1 replaced by ĝ1

defined above.

4.3 Numerical studies

In this section, we present some numerical examples to investigate the performance

of our proposed bias-correction formulas (4.8)-(4.9), denoted as NEW. We compare

the results with those of two commonly used ones in practice: the normal approxima-

tion formula (4.3), denoted as GP, and the moment-based formula (4.4), denoted as

WD. Both formulas (4.3) and (4.4) are described in Section 4.1. Their performance

is evaluated using three popular denoising procedures: the total variance (TV) pro-

cedure by Rudin et al. (1992), the anisotropic diffusion (AD) procedure by Perona

and Malik (1990), and the optimized non-local means (ONLM) algorithm by Coupe

et al. (2008b). For TV and AD, the MATLAB codes presented by Getreuer (2007)

and Lopes (2007) are used. To evaluate the performance of a bias-correction method,

we use the standard criterion of the estimated mean integrated squared error (MISE),

defined as follows. Let m(x, y) be the true image and m̂(x, y) be the bias-corrected

estimate of m(x, y). Then, the integrated squared error is estimated by

ISE =
1

N

∑
(x,y)

[m̂(x, y)−m(x, y)]2

where N denotes the total number of pixels and
∑

(x,y) denotes the summation over

all pixels. Then, MISE is estimated by the sample mean of the 100 ISE values com-
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Figure 4.3: The true image and two noisy images with σ = 40 and 60 of the brain
test image.

puted from 100 replicated simulations. By this criterion, the bias-correction method

performs better if its MISE value is smaller. In the bias-correction literature, another

popular criterion is the “contrast” of an image, defined to be the difference between

the intensities of the brightest and the darkest pixels (Coupe et al., 2008b). The

rationale of this criterion is that the estimation bias caused by the rician noise would

generally decrease the image contrast. So, by this criterion, a bias-correction is better

if the contrast of the bias-corrected image is larger. However, the contrast is sensitive

to outliers. To make it robust to outliers, in this paper, we use the trimmed contrast,

defined to be the contrast of an image, after the 1% largest and the 1% smallest

intensities being deleted.

Two MRI images, one of a brain and another of an ankle, are used as test images.

The brain image has 350× 350 pixels, and the ankle image has 432× 432 pixels. In

both images, the intensity values range from 0 to 255. We then add rician noise of

two different levels σ = 40 and σ = 60 to the images (4.2). The true and noisy images

of the two test images are presented in Figures 4.3 and 4.4.

We then apply the denoising methods TV, AD, and ONLM to various test images,

and then use the bias-correction methods NEW, GP, and WD to correct biases of

the denoised images. For each pair of the denoising and bias-correction methods, the

procedure parameters are chosen to minimize the estimated MISE value of the bias-
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Figure 4.4: The true image and two noisy images with σ = 40 and 60 of the ankle
test image.

corrected image. For the method NEW, four values of the threshold T are considered

(4.9). They are 1.253,
√

2, 1.5, and 1.55, which correspond to the corrected SNR

values of 0, 0.7, 0.9 and 1.0. The four versions with these four threshold values are

denoted as NEW1, NEW2, NEW3, and NEW4, respectively. The estimated MISE

values and their standard errors, and the sample mean values of the trimmed contrasts

and their standard errors are presented in Tables 4.1 and 4.2.

From Table 4.1, we can have the following conclusions. First, the bias-correction

procedure NEW3 is better than its peers GP and WD in all cases in terms of the

MISE. Second, all four versions of NEW are better than GP and WD in all cases in

terms of the trimmed contrast. Third, NEW2 and NEW3 are generally better than

NEW1 and NEW4, and it seems that, NEW3 is slightly better when the noise level

is relatively low (i.e., σ = 40), and NEW2 is slightly better when the noise level is

relatively high (i.e., σ = 60) except the case with AD. So, in practice, we suggest

choosing the threshold value T of our proposed bias-correction method to be in the

range [
√

2, 1.5]. Similar conclusions can be obtained from the results in Table 4.2.

The bias-corrected denoised images of the noisy brain image with σ = 40 in

Figure 4.3, are shown in Figure 4.5, in which, rows 1–3 present the denoised images

by TV, AD and ONLM, and columns 1–3 present the bias-corrected denoised images

by GP, WD and NEW3. Row 4 shows the deviation images defined to be (bias-
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corrected denoised image - true image) by the denoising procedure TV and by the

bias-correction procedures GP, WD and NEW3, respectively. From the bias-corrected

denoised images, it can be seen that the ones corrected by NEW3 are slightly sharper

than the others. The deviation images show that the bias-corrected denoised image

by NEW3 has the smallest deviation, compared the images corrected by the other

two procedures, although the difference between the second and the third images is

small. Similar conclusions can be made from the images shown in Figure 4.6.
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Figure 4.5: Bias-corrected denoised images in the angle image example with σ = 40.
Rows 1-3 presents the denoised images by denoising procedures TV, AD and ONLM.
Columns 1-3 presents the bias-corrected denoised images by procedures GP, WD and
NEW3. Row 4 shows the bias images defined to be (bias-corrected denoised image
- true image) by the denoising procedure TV and by the bias-correction procedures
GP, WD and NEW3, respectively.
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Figure 4.6: Bias-corrected denoised images in the angle image example with σ = 40.
Rows 1-3 presents the denoised images by denoising procedures TV, AD and ONLM.
Columns 1-3 presents the bias-corrected denoised images by procedures GP, WD and
NEW3. Row 4 shows the bias images defined to be (bias-corrected denoised image
- true image) by the denoising procedure TV and by the bias-correction procedures
GP, WD and NEW3, respectively.



Chapter 5

Conclusions and Future Research

Edge-structure preserving image denoising is an important research area. In this dis-

sertation, we have proposed three image denoising procedures, one for 2-D images,

and two for 3-D images. Also, we proposed a bias correction method to efficiently

denoise images that are corrupted with rician noise. In Section 5.1, we briefly sum-

marize the proposed methods, and in Section 5.2, we discuss some related issues for

future research.

5.1 Brief summary

We proposed an edge-structure preserving 2-D image denoising method in Chapter

2. Numerical studies show that it works well in various applications. In Chapter

3, we proposed an edge-structure preserving 3-D image denoising method. We also

provided some statistical properties of that procedure. Numerical performances were

also presented in comparison with some state-of-art methods, and they show that

it works well in various applications. In Section 3.5, we modified that procedure to

improve its performance. Numerical results of the modified method were also pro-

vided. In Chapter 4, we proposed an efficient bias correction method while denoising

images that are corrupted with rician noise. This method is based on simple nu-
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merical simulation study, and it is convenient to use. After we apply a conventional

image denoising method to remove the rician noise from an image, the denoised image

would be biased for estimating the true image. When we apply the proposed bias

correction method on that biased denoised image, we can get an unbiased estimate of

the true image. Its numerical performance in comparison with some existing methods

was investigated, and our numerical results show that it works well in various real

applications.

5.2 Some future research problems

In Chapter 2, we have presented a 2-D image denoising procedure in the framework of

jump regression analysis. The new procedure can efficiently preserve both the parts

of edges with small curvature and the parts of edges with large curvature. From the

construction of the proposed method, it can be seen that this method would not work

well at places where two or more edge segments cross, because the true edge curves

can not be approximated well by two half lines around a crossing point of several

edge segments. It requires much future research to denoise images properly in such

cases. Our proposed method consists of three steps. Although each step is based

on local smoothing and the corresponding computation is thus fast, it is ideal to

simplify the method by skipping or combining certain steps without sacrificing much

of its denoising and edge-structure preserving ability.

As pointed out in Section 2.1, most existing image denoising procedures in the

literature can not preserve certain edge-structures well. For instance, the anisotropic

diffusion filters control the degree of smoothing around a given pixel by a nonhomo-

geneous diffusivity which is often chosen to be a decreasing function of an estimated

gradient (cf., Section 7.5 of Qiu (2005)). So, if the given pixel is close to an edge

curve, then the estimated gradient would be large and consequently there would be
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less smoothing around that pixel. However, in order to remove noise, some smoothing

is still necessary around edge curves. Therefore, a certain degree of edge blurring is

inevitable by the diffusion filters. Because the diffusion filters usually do not take

the shape of the edge curves into consideration, they could not preserve certain edge

structures (e.g., angles) well. These comments can also be applied to the bilateral fil-

ters (Tomasi and Manduchi, 1998), because Barash (2002) showed that bilateral filters

were just special diffusion filters. Hillebrand and Müller (2007) recently demonstrated

that the M-filter discussed by Chu et al. (1998) cannot handle isolated outliers well

when denoising, and they proposed a modification to overcome that limitation by

combining the ideas of robust estimation and trimming. Although proper selection

of certain parameters needs to be further addressed, this modification makes a good

contribution to the image denoising literature. The current denoising procedure re-

quires explicit detection of JLSs before estimating the true image intensity function.

In practice, it might be more convenient to use an image denoising procedure without

explicit detection of the JLSs. Much future research is required to modify other ex-

isting denoising methods so that edge-structures can be better preserved while noise

and other possible contaminations are better removed.

In case of the proposed 3-D image denoising methods, many of these aforesaid

limitations also apply. Further, in the case of 3-D images, the structure of JLSs can

be very complicated, and many possible edge-structures were not considered yet. All

these are areas where much future research is necessary.

In cases of both 2-D and 3-D image denoising, although the proposed methods

can preserve important edge-structure, they would blur some fine details in the im-

ages (e.g., blood vessels in a brain MRI). This is because we choose the bandwidth

parameters globally. By doing so, the amount of smoothing in a continuity region

(cf., Section 3.2) of an image is same as the amount of smoothing near regions of

that image that contain fine details. To preserve such details, the shape and size of a
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related neighborhood should be determined locally. So, one possible way to accom-

plish this is to consider neighborhoods with various different shapes and sizes, at each

pixel/voxel, and select the appropriate one at a given pixel/voxel by local information

of image features. This is also an important future research area, which is related to

multilevel local smoothing.

Moreover, various types of medical images contain different types of noise. Rician

noise is one of them. We have proposed a bias correction method to deal with the

rician noise. Much future research is necessary to remove many other types of non-

zero mean, intensity-dependent noise.
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Appendix A

Proofs and Derivations

A.1 Proof of Theorem 3.3.1

We begin with two Lemmas. For simplicity, in the appendix, we use “
∑

” to denote

the sum over all design points {(xi, yj, zk), i, j, k = 1, 2, . . . , n}, unless otherwise

mentioned.

Lemma A.1 : Under the conditions stated in Theorem 3.3.1, we have, for i1, i2, i3 =

0, 1, 2,∥∥∥∥∥ 1

n3(h∗n)
3

∑(
xi − x
h∗n

)i1 (yj − y
h∗n

)i2 (zk − z
h∗n

)i3
K

(
xi − x
h∗n

,
yj − y
h∗n

,
zk − z
h∗n

)
− νi1i2i3

∥∥∥∥∥
Ωh∗n

= O

(
1

nh∗n

)

and ∥∥∥∥ 1

n3h3

∑
εijkK

(
xi − x
h

,
yj − y
h

,
zk − z
h

)∥∥∥∥
Ωh∗n

= o

(
βn log(n)

nh

)
a.s.,

where νi1i2i3 =
∫ ∫ ∫

ui1vi2si3K(u, v, s) dudvds, for i1, i2, i3 = 0, 1, 2. �

Proof of Lemma A.1 : This is a straightforward generalization of Proposition

2 in Qiu (2009) from 2-D to 3-D cases. �
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Lemma A.2 : Under the conditions in Theorem 3.3.1, we have

‖â− f‖ΩJ̄,h∗n
= O

(
(h∗n)2

)
+ o

(
βn log n

nh∗n

)
a.s.

‖b̂− f ′x‖ΩJ̄,h∗n
= O (h∗n) + o

(
βn log n

n(h∗n)2

)
a.s.

‖ĉ− f ′y‖ΩJ̄,h∗n
= O (h∗n) + o

(
βn log n

n(h∗n)2

)
a.s.

‖d̂− f ′z‖ΩJ̄,h∗n
= O (h∗n) + o

(
βn log n

n(h∗n)2

)
a.s.

If (x, y, z) ∈ Jh∗n\Sε, then we have


â(x, y, z)

b̂(x, y, z)

ĉ(x, y, z)

d̂(x, y, z)

 =


f−(x, y, z)

f ′x(x̃, ỹ, z̃)

f ′y(x̃, ỹ, z̃)

f ′z(x̃, ỹ, z̃)

+


φ0(x, y, z)C(x, y, z) +O((h∗n)2) + o(βn logn

nh∗n
)

φ1(x, y, z)C(x, y, z) + γ1(x, y, z)Cx(x, y, z) +O(h∗n) + o(βn logn
n(h∗n)2 )

φ2(x, y, z)C(x, y, z) + γ2(x, y, z)Cy(x, y, z) +O(h∗n) + o(βn logn
n(h∗n)2 )

φ3(x, y, z)C(x, y, z) + γ3(x, y, z)Cz(x, y, z) +O(h∗n) + o(βn logn
n(h∗n)2 )

 a.s.

where f−(x, y, z) is the smaller one of the two one-sided (due to JLS) limits of f at

(x, y, z), (x̃, ỹ, z̃) is some point around (x, y, z) that satisfies (i) it is a continuity point

of f that is on the same side of the JLS as (x, y, z), and (ii) dE((x̃, ỹ, z̃), (x, y, z)) ∼

O(1/n), C(x, y, z), Cx(x, y, z), Cy(x, y, z), Cz(x, y, z) are absolute jump magnitudes

of f(x, y, z) and its first order x, y and z partial derivatives, φ1(x, y, z), φ2(x, y, z)

and φ3(x, y, z) are three constants satisfying√
φ2

1(x, y, z) + φ2
2(x, y, z) + φ2

3(x, y, z) = O(1/h∗n) a.s.,

γ1(x, y, z), γ2(x, y, z) and γ3(x, y, z) are three constants between −1 and 1, and
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φ0(x, y, z) is some constant between 0 and 1. �

Proof of Lemma A.2 : When (x, y, z) ∈ ΩJ̄ ,h∗n
, by the Taylor’s expansion, for

any (xi, yj, zk) ∈ O∗(x, y, z), we have

ξijk = f(xi, yj, zk) + εijk

= f(x, y, z) + (xi − x)f ′x(x, y, z) + (yj − y)f ′y(x, y, z) + (zk − z)f ′z(x, y, z)

+ O((h∗n)2) + εijk

So, we have

∑
ξijkKijk∑

ξijk(xi − x)Kijk∑
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
w000 w100 w010 w001

w100 w200 w110 w101

w010 w110 w020 w011

w001 w101 w011 w002




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∑
O((h∗n)2)Kijk +

∑
εijkKijk∑

O((h∗n)2)(xi − x)Kijk +
∑
εijk(xi − x)Kijk∑

O((h∗n)2)(yj − y)Kijk +
∑
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O((h∗n)2)(zk − z)Kijk +
∑
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 . (A.1)

By (3.3), (A.1), and Lemma A.1, we have


â(x, y, z)

b̂(x, y, z)

ĉ(x, y, z)
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+


O((h∗n)2) + o(βn logn

nh∗n
)

O(h∗n) + o(βn logn
n(h∗n)2 )

O(h∗n) + o(βn logn
n(h∗n)2 )

O(h∗n) + o(βn logn
n(h∗n)2 )

 a.s. (A.2)

Under the conditions in Theorem 3.3.1, it is clear that (A.2) is uniformly true for

(x, y, z) ∈ ΩJ̄ ,h∗n
. This an easy application of Lemma A.1.
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Now, if (x, y, z) ∈ Jh∗n\Sε and n is large enough so that h∗n < ε, then O∗(x, y, z) is

divided into two parts I1 and I2 by the JLS. Without loss of generality, let us assume

that there is a positive jump from I1 to I2 at (x, y, z). Then, when (xi, yj, zk) ∈ I1,

we have

ξijk = f(xi, yj, zk) + εijk

= f−(x, y, z) + (xi − x)f ′x(x̃, ỹ, z̃) + (yj − y)f ′y(x̃, ỹ, z̃) + (zk − z)f ′z(x̃, ỹ, z̃)

+ O((h∗n)2) + εijk

Similarly, when (xi, yj, zk) ∈ I2, we have

ξijk = f(xi, yj, zk) + εijk

= f−(x, y, z) + (xi − x)f ′x(x̃, ỹ, z̃) + (yj − y)f ′y(x̃, ỹ, z̃) + (zk − z)f ′z(x̃, ỹ, z̃)

+ C(x, y, z) + (xi − x)Cx(x, y, z) + (yj − y)Cy(x, y, z) + (zk − z)Cz(x, y, z)

+ O((h∗n)2) + εijk

where (x̃, ỹ, z̃) is some point in I1 that satisfies the conditions stated in Lemma A.2.

By (3.3) and the above two expressions, we have


â(x, y, z)

b̂(x, y, z)

ĉ(x, y, z)

d̂(x, y, z)

 =


f−(x, y, z)

f ′x(x̃, ỹ, z̃)

f ′y(x̃, ỹ, z̃)

f ′z(x̃, ỹ, z̃)

+


φ0(x, y, z)C(x, y, z) +O((h∗n)2) + o(βn logn

nh∗n
)

φ1(x, y, z)C(x, y, z) + γ1(x, y, z)Cx(x, y, z) +O(h∗n) + o(βn logn
n(h∗n)2 )

φ2(x, y, z)C(x, y, z) + γ2(x, y, z)Cy(x, y, z) +O(h∗n) + o(βn logn
n(h∗n)2 )

φ3(x, y, z)C(x, y, z) + γ3(x, y, z)Cz(x, y, z) +O(h∗n) + o(βn logn
n(h∗n)2 )

 a.s.
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where

φ0(x, y, z) =

∑
(xi,yj ,zk)∈I2 K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)∑
K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)

φ1(x, y, z) =

∑
(xi,yj ,zk)∈I2(xi − x)K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)∑
(xi − x)2K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)

φ2(x, y, z) =

∑
(xi,yj ,zk)∈I2(yj − y)K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)∑
(yj − y)2K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)

φ3(x, y, z) =

∑
(xi,yj ,zk)∈I2(zk − z)K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)∑
(zk − z)2K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)

γ1(x, y, z) =

∑
(xi,yj ,zk)∈I2(xi − x)2K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)∑
(xi − x)2K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)

γ2(x, y, z) =

∑
(xi,yj ,zk)∈I2(yj − y)2K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)∑
(yj − y)2K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)

γ3(x, y, z) =

∑
(xi,yj ,zk)∈I2(zk − z)2K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)∑
(zk − z)2K(xi−x

h∗n
,
yj−y
h∗n

, zk−z
h∗n

)
.

From the above expressions, it is obvious that γ1(x, y, z), γ2(x, y, z) and γ3(x, y, z) are

constants between 0 and 1, and φ0(x, y, z) is a constant between 0 and 1. Without

loss of generality, let Cx(x, y, z), Cy(x, y, z) and Cz(x, y, z) denote absolute jump

magnitudes of f ′x, f
′
y and f ′z, then γ1(x, y, z), γ2(x, y, z) and γ3(x, y, z) are constants

between −1 and 1. By similar arguments to those in Qiu and Yandell (1997) it is not

difficult to check that
√
φ1(x, y, z)2 + φ2(x, y, z)2 + φ3(x, y, z)2 = O(1/h∗n) a.s. So,

Lemma A.2 is proved. �

Proof of Theorem 3.3.1: For a design point (x, y, z) ∈ ΩS̄,ε, if it is more than

h∗n away from any JLS, then at least one of O∗(xN1 , yN1 , zN1) and O∗(xN2 , yN2 , zN2) is

located in a same continuous region as (x, y, z). So, we have

δ(x, y, z) ≤ ‖β̂(x, y, z)− β̂N1
(x, y, z)‖ = O (h∗n) + o

(
βn log n

n(h∗n)2

)
a.s.
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The above expression is a direct conclusion of Lemma A.2. Using the fact that

χ2
3,αn = O(− logαn), the expression (3.8) and Lemma A.1, it is not difficult to check

that the threshold value un = O(n
√
− logαn

(nh∗n)5/2 ) a.s. The fact that χ2
3,αn = O(− logαn)

can be proved easily by using χ2
3,αn ≤ 3χ2

1,αn/3
and the Mill’s inequality regarding

normal tail probabilities. So, under the condition that (nh∗n)7/2

n2
√
− logαn

= o(1), we have

δ(x,y,z)
un

= o(1) a.s. resulting δ(x, y, z) < un a.s. (i.e., (x, y, z) is not detected as an edge

point) when n is large enough, and this is uniformly true for all (x, y, z) ∈ ΩS̄,ε∩ΩJ̄ ,h∗n
.

Therefore,

sup
(x,y,z)∈D̂n

⋂
ΩS̄,ε

inf
(x′,y′,z′)∈D

⋂
ΩS̄,ε

dE((x, y, z)T , (x′, y′, z′)T ) = O(h∗n) a.s. (A.3)

On the other hand, if (x, y, z) is a non-singular point on a JLS, then by Lemma

A.2, we have

δ(x, y, z) ∼ C(x, y, z)
√
φ1(x, y, z)2 + φ2(x, y, z)2 + φ3(x, y, z)2 +O(h∗n) +

o(
βn log n

n(h∗n)2
) a.s.

Since
√
φ1(x, y, z)2 + φ2(x, y, z)2 + φ3(x, y, z)2 = O(1/h∗n) a.s., by the the condition

that
√
− logαn/(nh∗n)3 = o(1), we have δ(x, y, z) > un a.s. So, (x, y, z) would be

detected as an edge pixel when n is large enough. Since min(x,y,z)∈D
⋂

ΩS̄,ε
C(x, y, z) > 0

(see the definition of singular points in Section 3.3), the above result is uniformly true

for (x, y, z) ∈ D
⋂

ΩS̄,ε. Therefore,

sup
(x,y,z)∈D

⋂
ΩS̄,ε

inf
(x′,y′,z′)∈D̂n

⋂
ΩS̄,ε

dE((x, y, z)T , (x′, y′, z′)T ) = O(h∗n) a.s. (A.4)

By (A.3) and (A.4), Theorem 3.3.1 is proved. �
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A.2 Proof of Theorem 3.3.2

We begin with three Lemmas.

Lemma A.3: Besides the conditions in Theorem 3.3.1, let us further assume

that (x, y, z) ∈ Jhn\Sε, the JLS has unique tangent plane at (x∗, y∗, z∗), the point

on D that is closest to (x, y, z), and the bandwidth hn satisfies the conditions that

hn = o(1), 1/(nhn) = o(1), and h∗n/hn = o(1). Then, the local plane fitted by the

algorithm (approximation of the JLS by a local plane) in Section 3.2.2 converges

almost surely to the tangent plane of the JLS at (x∗, y∗, z∗) both in normal direction

and pointwise as n→∞. �

Proof of Lemma A.3 : Assume that the normal direction of the tangent plane

of the JLS at (x∗, y∗, z∗) is (ρx∗ , ρy∗ , ρz∗)
T with

√
ρ2
x∗ + ρ2

y∗ + ρ2
z∗ = 1. Without loss

of generality, we further assume that (ρx∗ , ρy∗ , ρz∗)
T = (0, 0, 1)T and that n is large

enough so that hn < ε. So, the equation of the tangent plane of the JLS at (x∗, y∗, z∗)

is z = z∗ and any nonsingular point on the JLS in O(x, y, z) satisfies z = z∗ +O(h2
n).

Therefore, the gradient direction at any point on JLS in O(x, y, z) can be written as

(O(h2
n), O(h2

n), 1 +O(h2
n))T . Now, if (x∗, y∗, z∗) ∈

(
Jh∗n\Sε

)
∩O(x, y, z), then

β̂
∗
(x∗, y∗, z∗) =

(
b̂(x∗, y∗, z∗)

‖β̂(x∗, y∗, z∗)‖
,
ĉ(x∗, y∗, z∗)

‖β̂(x∗, y∗, z∗)‖
,
d̂(x∗, y∗, z∗)

‖β̂(x∗, y∗, z∗)‖

)T

.

The expressions of b̂(x∗, y∗, z∗), ĉ(x∗, y∗, z∗), d̂(x∗, y∗, z∗) and β̂(x∗, y∗, z∗) can be ob-

tained from Lemma A.2. From Lemma A.1, it is easy to check that φ3(x∗, y∗, z∗) ∼
O(n3(h∗n)4)
O(n3(h∗n)5)

= O( 1
h∗n

) a.s. Since the gradient direction at any point of the JLS in

O(x, y, z) can be written as (O(h2
n), O(h2

n), 1 + O(h2
n))T , from the expressions of

φ1(x∗, y∗, z∗) and φ2(x∗, y∗, z∗) in Lemma A.2, we can see that both of them are of the

order O(n3(h∗n)3h2
nh
∗
n)

O(n3(h∗n)5)
= O

(
h2
n

h∗n

)
a.s. Then, we have β̂

∗
(x∗, y∗, z∗) = (O(h2

n), O(h2
n), 1 +

O(h2
n))T a.s. So, the matrix G = (gi1,i2 , i1, i2 = 1, 2, 3) defined in (3.5) has the prop-
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erty that

gi1,i2 = O(h2
n) a.s., if (i1, i2) 6= (3, 3),

g3,3 = 1 +O(h2
n) a.s.

Since G is a real symmetric matrix, the eigenvalues of G are τ + 2
√
p cos γ, τ −

√
p(cos γ+

√
3 sin γ) and τ−√p(cos γ−

√
3 sin γ), where 3τ = trace(G), 2q = det(G−

τI), 6p is the sum of squares of the elements of (G − τI), and γ = 1
3

tan−1

√
p3−q2

q

with 0 ≤ γ ≤ π. Therefore, we have, τ = 1
3

+ O(h2
n) a.s., 6p = 2

3
+ O(h2

n) a.s.,

q = 1
27

+O(h2
n) a.s. and γ = O(h2

n) a.s. and thus the three eigenvalues of G are of the

orders 1+O(hn), O(hn), and O(hn), a.s., respectively. The eigenvector corresponding

to a eigenvalue λ can be found by finding the solution for e = (e1, e2, e3)T from the

two equations Ge = λe and e′e = 1. If λ = λ1 with λ1 being the largest eigenvalue

of G, we have

e1 = η

(
g1,2g2,3 − g1,3(g2,2 − λ1)

(g1,1 − λ1)(g2,2 − λ1)− g1,2g2,1

)
,

e2 = η

(
g1,3g2,1 − g2,3(g1,1 − λ1)

(g1,1 − λ1)(g2,2 − λ1)− g1,2g2,1

)
,

e3 = η,

where η is such that e2
1 + e2

2 + e2
3 = 1. After combining this result and the results

about the elements of G and λ1, we have e1 = O(hn) a.s., e2 = O(hn) a.s. and

e3 = 1 + O(hn) a.s., from which we have e converges to (0, 0, 1)T a.s., as n → ∞.

Therefore, the normal direction of the fitted plane by the algorithm (approximation

of the JLS by a local plane) in Section 3.2.2 converges to the normal direction of the

JLS at (x∗, y∗, z∗) almost surely. From Theorem 3.3.1, it is clear that the center of

D̂n∩O(x, y, z) converges almost surely to some point on the tangent plane of the JLS

at (x∗, y∗, z∗), and the convergence rate is O(hn). This concludes the proof of Lemma
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A.3.

Lemma A.4: Besides the conditions in Theorem 3.3.1, let us further assume that

(x, y, z) ∈ Jhn\Sε , the JLS has two different one-sided tangent planes at some point

(x∗, y∗, z∗) ∈ O(x, y, z), and the bandwidth hn satisfies the conditions that hn = o(1),

1/(nhn) = o(1), and h∗n/h
3
n = o(1). Then, the two half-planes fitted by the algorithm

(approximation of the JLS by two crossing half-planes) in Section 3.2.2 converges

almost surely to the two one-sided tangent planes of the JLS at (x∗, y∗, z∗).

Proof of Lemma A.4 : Without loss of generality we can assume that two

different one-sided tangent planes at (x∗, y∗, z∗) are x = x∗ and y − y∗ = κ(x − x∗)

where κ is a constant, which are labeled P1 and P2 respectively. They intersect

at a straight line L and clearly (x∗, y∗, z∗) ∈ L. Let us consider a plane S that

passes L and separates P1 and P2 in O(x, y, z). Then, S divides O(x, y, z) into two

parts N1(x, y, z) and N2(x, y, z), and it divides D ∩ O(x, y, z) into two parts D ∩

N1(x, y, z) and D ∩N2(x, y, z). From the proof of Lemma A.3, we see that if a point

(x∗, y∗, z∗) is more than h∗n away from L and (x∗, y∗, z∗) ∈ (Jhn\Sε) ∩ N1(x, y, z),

then β̂
∗
(x∗, y∗, z∗) = (1 + O(h2

n), O(h2
n), O(h2

n))T a.s., which converges to the normal

direction of P1 as n → ∞. Likewise, if (x∗, y∗, z∗) is more than h∗n away from L and

(x∗, y∗, z∗) ∈ (Jhn\Sε) ∩ N2(x, y, z), then β̂
∗
(x∗, y∗, z∗) =

(
κ+O(h2

n)√
1+κ2 ,

1+O(h2
n)√

1+κ2 , O(h2
n)
)T

a.s. which converges to the normal direction of P2 as n→∞. Define,

m1 = number of elements in D̂n ∩N1(x, y, z) that are more than h∗n away from L.

m2 = number of elements in D̂n ∩N2(x, y, z) that are more than h∗n away from L.

m3 = number of elements in D̂n ∩O(x, y, z) that are at most h∗n away from L.

Since m is the number of points in D̂n ∩ O(x, y, z) and h∗n
h3
n

= o(1), we have m3

m
=

O
(
h∗n
hn

)
= o(h2

n) a.s. Similarly we can show that m1

m
and m2

m
are strictly between 0
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and 1 when n is large enough. Then the matrix G has the properties that

g1,1 =
1

m

(
m1 +

κ2m2

1 + κ2
+m3ζ

)
+O(h2

n) a.s.

g1,2 = g2,1 =
1

m

(
κ2m2

1 + κ2
+m3ζ

)
+O(h2

n) a.s.

g2,2 =
1

m

(
m2

1 + κ2
+m3ζ

)
+O(h2

n) a.s.

g3,3 =
m3ζ

m
+O(h2

n) a.s.

g1,3 = g3,1 =
m3ζ

m
+O(h2

n) a.s.

g2,3 = g3,2 =
m3ζ

m
+O(h2

n) a.s. (A.5)

where ζ is a number between −1 and 1. Consequently, when n is sufficiently large

|g1,1|, |g1,2|, |g2,2| > 0 a.s. and |g1,3|, |g2,3| and |g3,3| are all of the order o(1) a.s. If

λ is an eigenvalue of G, then we have det(G − λI) = 0. Combining this with (A.5),

we have (g3,3 − λ) ((g1,1 − λ)(g2,2 − λ)− g1,2g2,1) = O(h2
n) a.s. Therefore, when n is

large enough, one solution of λ is O(h2
n) a.s. and the other two solutions differ from

0 by at least a non-zero constant because of the Cauchy-Schwarz inequality that

|g1,1g2,2 − g1,2g2,1| > 0. Now, proceeding similarly as in the proof of Lemma A.3,

we can check that the eigenvector corresponding to the smallest eigenvalue of G is

(O(h2
n), O(h2

n), 1 +O(h2
n))T a.s., which converges to (0, 0, 1)T , the direction of L.

Now, we can check that

β
∗

=

(
m1

m
+

m2κ

m
√

1 + κ2
+O(h2

n) + o(h2
n),

m2

m
√

1 + κ2
+O(h2

n) + o(h2
n),

O(h2
n) + o(h2

n)
)T
a.s.

So, the orthogonal direction of the plane P , defined in the description of the algorithm
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to approximate the JLS by two crossing half-planes, in Section 3.2.2 is

~l =

(
− m2

m
√

1 + κ2
+O(h2

n) + o(h2
n),

m1

m
+

m2κ

m
√

1 + κ2
+O(h2

n) + o(h2
n),

O(h2
n) + o(h2

n)
)T
a.s.

The inner product of this orthogonal direction with β̂(x∗, y∗, z∗) is



− m2

m
√

1+κ2 +O(h2
n) + o(h2

n) a.s.,

if (x∗, y∗, z∗) ∈ D̂n ∩N1(x, y, z) and is more than h∗n away from L.

m1

m
√

1+κ2 +O(h2
n) + o(h2

n) a.s.,

if (x∗, y∗, z∗) ∈ D̂n ∩N2(x, y, z) and is more than h∗n away from L.

when n is large enough the first number is negative and the second number is positive

almost surely. Define

G1(x, y, z) = {(x∗, y∗, z∗) : (x∗, y∗, z∗) ∈ D̂n ∩O(x, y, z) and ~l
T
β̂(x∗, y∗, z∗) ≤ 0}.

G2(x, y, z) = {(x∗, y∗, z∗) : (x∗, y∗, z∗) ∈ D̂n ∩O(x, y, z) and ~l
T
β̂(x∗, y∗, z∗) > 0}.

Then, when n is large enough, G1(x, y, z) includes all points that are more than h∗n

away from L and in D̂n ∩N1(x, y, z) and G2(x, y, z) includes all points that are more

than h∗n away from L and in D̂n ∩ N2(x, y, z). By Theorem 3.3.1 and the fact that

m3

m
= o(h2

n), the center of G1(x, y, z) would converge almost surely to some point on

P1 and the center of G2(x, y, z) would converge almost surely to some point on P2

and both convergence rates would be O(hn). Lemma A.4 follows from this result and

the results about convergence of β̂
∗
’s in the first paragraph of this proof.

Lemma A.5: Besides the conditions in Lemma A.4 on f and certain procedure

parameters, we further assume that h̃n = o(1), hn
h̃n

= o(1), and D ∩ O(x, y, z) is a
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circular cone, then the local cone fitted by the algorithm (local approximation to the

JLS by a cone) described in Section 3.2.2 converges pointwise to D∩O(x, y, z) almost

surely.

Proof of Lemma A.5 : Without loss of generality, let us assume that the central

axis of the true cone is parallel to the x-axis with a vertex at v, and the angle between

the central axis and any generatrix of the cone is θ. In such cases, the direction of

the central axis is βC = (1, 0, 0)T . From Lemma A.2, for a given detected edge pixel

(x∗l , y
∗
l , z
∗
l ) in O(x, y, z), if it is more than h∗n

sin θ
away from v, then the angle between

β̂l
∗

and the central axis of the cone is θ+O(h∗n) a.s. Therefore, the sample variance,

denoted as σ̃2
n, of the inner products of {β̂l

∗
, l = 1, 2, . . . ,m} and βC is O((h∗n)2) a.s.

For a given direction β̃, if h∗n/(β̃−βC) = o(1), then σ̃2
n would have the property that

(h∗n)2/σ̃2
n = o(1), which is uniformly true for all such β̃. So, the direction minimizing

σ̃2
n among all possible directions is (1, O(h∗n), O(h∗n)) a.s. Therefore, the estimated

direction of the central axis of the true cone, as described in item (i) of the algorithm

to locally approximate the JLS by a cone, in Section 3.2.2, has the property that

θ̂ = θ +O(h∗n) a.s.

From item (iii) of the that algorithm in Section 3.2.2, plane P̃ divides Õ(x, y, z)

into two parts. Let us define Õ1(x, y, z) to be the part where the vertex v of the

cone lies, and the other part is denoted as Õ2(x, y, z). It is clear that the distance of

the center of the detected edge pixels in Õ1(x, y, z) from P̃ is O(hn), and the center

of the detected edge pixels in Õ2(x, y, z) from P̃ is of the order h̃n. So, the center

of D̂n ∩ Õ1(x, y, z), denoted as (c∗x, c
∗
y, c
∗
z) in Section 3.2.2, is within O(h∗n) from the

central axis of the true cone, because by Theorem 3.3.1 all the detected edge pixels

are within O(h∗n) from the true JLSs.

Suppose, the estimated vertex location is v̂. By the fact that the detected edge

pixels are within O(h∗n) from the true JLSs (cf., Theorem 3.3.1), the orthogonal

distance between the fitted cone and the detected edge pixels in O(x, y, z) is O(‖v̂ −
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v‖) + O(h∗n) a.s. Moreover, by the algorithm (to locally approximate the JLS by a

cone) in Section 3.2.2, v̂ is chosen by minimizing the orthogonal distance. By similar

arguments to those in the first paragraph of the proof, we have ‖v̂− v‖ = O(h∗n) a.s.

By this result and the results obtained in the previous paragraphs, the fitted cone

converges pointwise to D ∩O(x, y, z) almost surely.

Proof of Theorem 3.3.2: From the first part of Lemma A.2, it is obvious that

‖f̂ − f‖ΩJ̄,hn
= O(h2

n), a.s., under the conditions stated in the theorem. Now, let us

consider a given point (x, y, z) ∈ Jhn ∩ Sε in the following three cases.

Case I: The JLS has unique tangent plane at any of its points in O(x, y, z).

Assume that (x∗, y∗, z∗) is the nearest point on the JLSs to (x, y, z). From the

proof of Lemma A.3, it can be seen that the local plane fitted by the corresponding

algorithm in Section 3.2.2 converges almost surely to the tangent plane of the JLSs at

(x∗, y∗, z∗). By Lemma A.4, the two half-planes fitted by the corresponding algorithm

in Section 3.2.2 also converges almost surely to the tangent plane at (x∗, y∗, z∗). So

does the fitted cone by the corresponding algorithm in Section 3.2.2, as justified by

Lemma A.5.

Recall that O1(x, y, z) and O2(x, y, z) are the two parts of O(x, y, z) separated by

the true JLS, with O1(x, y, z) containing the point (x, y, z). Similarly, let us define

E1(x, y, z) to be the part of O(x, y, z) separated by the estimated JLS that contains

the point (x, y, z). From the first paragraph of the proof of Lemma A.3, we know that

the number of design points in E1(x, y, z)
⋂
O1(x, y, z) and E1(x, y, z)

⋂
O2(x, y, z) are



A.2. Proof of Theorem 3.3.2 132

of orders O(n3h3
n) and O(n3h5

n), a.s., respectively. By expression (3.3), we have

f̂(x, y, z)=

∑
(xi,yj ,zk)∈O1(x,y,z)∩E1(x,y,z)

w∗(xi, yj, zk)f(xi, yj, zk)∑
(xi,yj ,zk)∈O1(x,y,z)∩E1(x,y,z)

w∗(xi, yj, zk)
.
|O1(x, y, z) ∩ E1(x, y, z)|

|E1(x, y, z)|

+

∑
(xi,yj ,zk)∈O2(x,y,z)∩E1(x,y,z)

w∗(xi, yj, zk)f(xi, yj, zk)∑
(xi,yj ,zk)∈O2(x,y,z)∩E1(x,y,z)

w∗(xi, yj, zk)
.
|O2(x, y, z) ∩ E1(x, y, z)|

|E1(x, y, z)|

= (f(x, y, z) +O(hn)) .
(
1 +O(h2

n)
)

+O(h2
n) a.s. (A.6)

= f(x, y, z) +O(hn) a.s.,

where w∗(xi, yj, zk) denote the weights in the LLK estimator defined in (3.3), and |A|

denotes the number of design points in the region A.

Case II: The JLS has two different one-sided tangent planes at some of its point

(x∗, y∗, z∗) in O(x, y, z).

From Lemma A.4, the fitted two half-planes by the corresponding algorithm in

Section 3.2.2 converges almost surely to the two one-sided tangent planes with rate

O(hn). Therefore, RSS2(x, y, z)/m = O(h2
n), a.s. However, it is obvious that the

fitted plane and cone by the algorithms described in Sections 3.2.2 and 3.2.2 both

do not converge to the two one-sided tangent planes; further, RSS1(x, y, z)/m and

RSS3(x, y, z)/m would converge almost surely to two positive constants. So, when

n is large enough, we have BIC2(x, y, z) < min(BIC1(x, y, z), BIC3(x, y, z)), a.s.

Consequently, the two fitted half-planes by the corresponding algorithm in Section

3.2.2 will be selected for estimating the JLS in O(x, y, z) by the BIC procedure (3.6).

From the proof of Lemma A.4, we can see that |O1(x, y, z)∩E1(x, y, z)|/|E1(x, y, z)| =

1 + O(h2
n) a.s., and |O2(x, y, z) ∩ E1(x, y, z)|/|E1(x, y, z)| = O(h2

n) a.s. Therefore, by

similar arguments to (A.7), we have f̂(x, y, z) = f(x, y, z) +O(hn) a.s.
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Case III: D ∩O(x, y, z) is a circular cone.

By Lemma A.5 and similar arguments to those in Case II, we can show that

the BIC procedure (3.6) would select the fitted cone by the corresponding algorithm

in Section 3.2.2 for estimating the JLS in O(x, y, z), and consequently f̂(x, y, z) =

f(x, y, z) +O(hn) a.s. �

A.3 Derivation of the threshold Tn in (3.11)

By definition, we have

â1(x, y, z) =

∑
(xi,yj ,zk)∈O∗1(x,y,z) ξijkKh∗n(xi, yj, zk)∑

(xi,yj ,zk)∈O∗1(x,y,z) Kh∗n(xi, yj, zk)

â2(x, y, z) =

∑
(xi,yj ,zk)∈O∗2(x,y,z) ξijkKh∗n(xi, yj, zk)∑

(xi,yj ,zk)∈O∗2(x,y,z) Kh∗n(xi, yj, zk)
.

So,

Var (â1(x, y, z)− â2(x, y, z))

=

∑
(xi,yj ,zk)∈O∗1(x,y,z) σ

2K2
h∗n

(xi, yj, zk)

[
∑

(xi,yj ,zk)∈O∗1(x,y,z) Kh∗n(xi, yj, zk)]2

+

∑
(xi,yj ,zk)∈O∗2(x,y,z) σ

2K2
h∗n

(xi, yj, zk)

[
∑

(xi,yj ,zk)∈O∗2(x,y,z) Kh∗n(xi, yj, zk)]2
. (A.7)

In cases when K is chosen spherically symmetric, we have the results that

∑
(xi,yj ,zk)∈O∗1(x,y,z)

Kh∗n(xi, yj, zk)

=
∑

(xi,yj ,zk)∈O∗2(x,y,z)

Kh∗n(xi, yj, zk)

=
1

2

∑
Kh∗n(xi, yj, zk),
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where
∑

is over all voxels. Note that, because the kernel function K is defined in

a unit ball, the
∑

in the last equation of the above expression is actually over all

voxels in O∗(x, y, z) only. After applying these results to the denominators on the

right-hand-side of equation (A.7), we have

Var (â1(x, y, z)− â2(x, y, z))

=
4σ2

∑
K2
h∗n

(xi, yj, zk)

[
∑
Kh∗n(xi, yj, zk)]2

. (A.8)

Therefore, by the Central Limit Theorem (CLT) in statistics, â1(x, y, z)− â2(x, y, z)

is asymptotically normally distributed with mean 0 and the variance given in (A.8).

In practice, σ2 in (A.8) is often unknown, and should be replaced by its estimator σ̂2.

Thus, a reasonable choice for Tn is the one given in (3.11), based on the asymptotic

distribution of â1(x, y, z) − â2(x, y, z). In such cases, when there are no edge voxels

in O∗(x, y, z), it is asymptotically true that

P (|â1(x, y, z)− â2(x, y, z)| > Tn) = αn.


