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The analytical model typically used to perform
generalizability analysis assumes that design effects
are uncorrelated. Often, the assessment of behavioral
data involves designs that employ multiple occa-
sions or repeated trials (as in many observational
and rating studies). In these cases, design effects
may be serially correlated. The implications of
serially correlated effects on the results of gen-
eralizability analyses are discussed. Simulated data
are provided that demonstrate the biases that
serially correlated effects introduce into the
results. Index terms: correlated effects, estimation
of variance components, generalizability theory,
observational studies, repeated trials, serial
correlation.

Generalizability analysis (Cronbach & Gleser,
1964; Cronbach, Gleser, Nanda, & Rajaratnam,
1972; Cronbach, Rajaratnam, & Gleser, 1963;
Gleser, Cronbach & Rajaratnam, 1965) has
become an important and commonly used
method for assessing the dependability of
behavioral measures. Generaiizability theory is
flexible and able to handle different types of data.
These capabilities have made the theory more
appealing than classical test theory (Lord &
Novick, 1968), which has no formal provision for
assessing the dependability of data. Given the
widespread use of generalizability analyses, in-
formation related to the behavior of the statistics
associated with the theory is of interest to

practitioners.
The estimation properties and applied uses of

variance components, which form the central
core of generalizability analysis, have been the
focus of much previous research. Issues involv-
ing the estimation of variance components under

many of the typical linear models applicable to
generalizability analysis have received fairly ex-
tensive coverage in the literature (e.g., Brennan,
1983; Cronbach et al., 1972; Crump, 1946;
Eisenhart, 1947; Henderson, 1953; Searle, 1971).
Additional research has centered on the estima-
tion of sampling distributions and the stability
of estimates of variance components (e.g., Board-
man, 1974; Brennan, 1983; Searle, 1970, 1971;
Smith, 1978, 1982).

Other characteristics of the data that may in-
fluence the statistics resulting from a generaliza-
bility analysis are less well-researched. For exam-
ple, generalizability theory employs a score model
that makes certain assumptions, by design or for
convenience, about the underlying distribution of
the manifest variable. One of these assumptions.
is that all effects in the underlying design model
are uncorrelated. This assumption is weaker than
the assumption of independence used in typical
ANOVA. applications. In generalizability theory,
most effects will be uncorrelated because of the
random sampling assumptions the definition
of the linear model used (Brennan, 1983). Other
effects simply are assumed to be uncorrelated.

For example, in the single-facet crossed design
(often referred to as ap x !’ or &dquo;person by items&dquo;
design), it is assumed that facet (i) and person
(p) effects are uncorrelated, and that the residual
effect is uncorrelated across both persons and
levels of facet. If correlated effects exist in the

data, the practitioner should be aware of how this
might affect the resulting estimates of variance
components and their standard errors.

Correlated Effects and Estimates
of Variance Components

The impact of correlated effects on mean
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square (MS) and estimates of variance com-
ponents has attracted only limited attention in
the past. None of this work has been done in the
context of generalizability theory. Box (1954)
showed that for a two-way ANOVA design with er-
ror (residual) effects correlated across columns
(facet levels), the residual tvts is underestimated
by a fixed amount, and the row (person) MDS is
overestimated by a similar amount. The greater
the correlations between residuals, the greater the
bias. Although Box’s formulation was based on
quadratic forms rather than variance com-

ponents, the results are the same. Maxwell (1968)
provided a discussion of the effects of correlated
errors on classical reliability coefficients by ap-
plying Box’s results to a typical measurement
problem. This type of correlation also would
result in an inflated generalizability coefficient.

The effects predicted by Box’s work can be an-
ticipated for measurement situations if the
covariance structure of measurement data is con-
sidered. Following Brennan (1983), it can be
shown that in the single-facet design,

I

and that

Thus, the expected covariances in the p x i

design, over persons and for common levels of
the facet, will be the sum of the person and
residual variance components. Correspondingly,
the expected covariance across persons, but for
different facet levels, is the person variance com-
ponent (Brennan, 1983). These components can
be estimated by averaging the relevant covariances
over persons for scores on facet levels derived
from a set of p x i data.

Therefore, correlations within persons will
reduce the average covariance in the diagonal of
a variance-covariance matrix over persons, and

also will inflate the off-diagonal covariances.
Again, these results suggest an overestimation of
the variance component for persons and an

underestimation of the variance component for
the residual.

It should be noted that if the correlated effects
are uniform across levels of the facet, the

covariance matrix over persons will not be af-
fected because the addition of a constant does
not influence the covariance structure of the data.
This will be true if facet effects, rather than
residual effects, are correlated across levels of the
facet. However, correlated facet effects will

deflate the diagonal covariances in a covariance
matrix formed over facet levels, resulting in an
underestimation of the variance component for
the facet. Although this variance component does
not appear in the equation for &dquo;relative&dquo; error
variance [az(~)], it is part of the equation for
&dquo;absolute&dquo; error variance [cr2(õ)] (Cronbach et
al., 1972, pp. 24-25) and for a variety of other
generalizability coefficients, such as those out-
lined by Brennan and Kane (1977) for use with
criterion-referenced tests.

If correlated effects exist in the universe, such
that the correlation between all pairs of effects
are fairly homogeneous or vary in some random
fashion, it can be argued that they are inherent
to the measurement context or domain and are,
therefore, correctly accommodated in the gener-
alizability (G) study estimates of variance com-
ponents. Subsequent decision (D) study applica-
tions will correctly reflect these correlations as
well. However, this will not be true if the pattern
of correlated effects is neither homogeneous nor
random. A nonhomogeneous pattern will occur
if the facet or residual effects (or some combina-
tion) are serially correlated (i.e., that adjacent or
near adjacent pairs of effects are correlated more
highly than nonadjacent effects). For example,
a covariance matrix of serially correlated
residuals would have higher values near the
diagonal (adjacent and close pairs), and the
values would decrease away from the diagonal.

Because the bias associated with correlated ef-
fects is a function of the average correlation be-
tween effects, the nature of the serial correlation
and the number of levels of the correlated facet
in the design are critical. If a lag - 1 serial cor-
relation between effects is present (i.e., the direct
correlation occurs only for adjacent levels of the
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facet under consideration), the bias introduced
into the estimates of the variance components
will be inversely proportional to the number of
levels of the facet used in the G study design. This
will be true regardless of whether the correlations
originate within the facet effects or within the
residuals. Subsequent use of these biased compo-
nents in D study estimation may be misleading.

In many measurement settings, some form of
serial correlation might occur among facet effects
in the data. This is especially likely among time-
segment or occasion facets. Examples include
situations in which ratings are made on repeated
trials of some fixed task, or situations in which
observational data are obtained ordinally over
relatively brief time intervals. Correlated residuals
across levels of any facet also might be present
[in this context, correlated residuals imply
a(¡.t;¡, ¡.t;i’) =1= 0 rather than a(I-1;, ¡.t;¡) =1= 0]. For
example, a serial correlation could be present for
each person across levels of a facet, but its value
may not be homogeneous across persons; this
would result in a correlated interaction term

(residual in the p x i design) in the ANOVA

model employed.
Recently, Rowley (1989) raised a similar con-

cern related to generalizability coefficients de-
rived from correlated data in &dquo;single subject&dquo;
designs. Rowley argued that the presence of serial
correlations in &dquo;single subject&dquo; data also biases
the resulting generalizability coefficient by under-
estimating the residual variance component. Suen
and Ary (1989) reached similar conclusions, but
reported that preliminary work with correlated
data showed only minor variations in the ex-
pected values of the derived generalizability co-
efficients. Suen and Lee (1987) suggested using
a time series analysis to remove the correlation
from the data prior to analysis.

A Simulation Study

Method

To illustrate the bias introduced into estimates
of variance components due to serially correlated
effects, a monte carlo study was conducted using

the single-facet crossed p x i design. The simula-
tion assumed that correlated effects are not

accommodated in typical applications of gener-
alizability theory. Rather, these effects are rep-
resented in the modeled parametric form of the
score effects (i.e., independent components) in the
population of interest, which allows the appro-
priate application of the ANOVA sums of squares
and the variance component quadratic models to
the data. The simulations implemented in this
study represent only two of an infinite number
of potential violations of the essentially inde-
pendent distributions of the data.

The study was designed to demonstrate that
under this characterization in the typical single-
facet model,

and, therefore, higher-order models may not
hold. In that case, a new model may be war-

ranted, or methods must be developed to remove
the correlation from the data prior to applying
the model.

For the first simulation, a simple data-

generation algorithm was used to model one par-
ticular form of dependence in the distribution of
the scores xp; that might result in correlated

residuals across facet levels within each person.
In this model, xpi can be characterized as

where z. denotes a normally distributed standard
score, distributed ~0,1] on the interval {-~, + 00 L
for the model term corresponding to the subscript
a. If no other transformation is applied to za,
then, given Equation 3,

For purposes of the first simulation condition,
a lag - 1 dependence among facet effects within
persons was introduced as a form of serial cor-
relation within the residual component 6p,,e of
the model in Equation 3. To produce this

dependence, the data generation algorithm in
Equation 4 was adapted so that
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where

and

In Equation 8, p defines the correlation of adja-
cent error terms (i - 1 and i) in the rightmost
component of Equation 6. Note that despite the
introduction of the lag - 1 dependence for p~;_1,~
and p~;,~, the independent variance of the third
component score ali,, remains equal to 1 by
definition.

Under this characterization, serial correlations
might be introduced at any level of Equation 4
and with respect to any subscript. The choice of
placing the serial correlation on the Zp;,e compo-
nent, for adjacent levels of i, merely restricts the
serial correlation within the levels of p.

For the second simulation, which examined
serially correlated facet effects, the same variance
structure of Equation 4 was retained, but the
focus was shifted to the second score component
subscripted exclusively by &dquo;i 9 The process of in-
troducing lag - 1 dependence among facet effects
becomes

given the lag - 1 dependence on zit at

and

For purposes of this study, a very restrictive set
of conditions was studied to illustrate the poten-
tial bias that serially correlated data contribute
to estimates of variance components and D study
inferences. Specifically, the design selected was
studied under a variety of conditions-all com-

binations of both ni (the number of levels of the
facet) and n, (the number of persons) were set
at 10, 25, or 50. Therefore, the smallest design
studied was a 10 x 10 design, and the largest was
a 50 x 50 design. These values were selected
because they represent sample sizes that previous-
ly were found to produce stable estimates of
variance components (Smith, 1978). A limited
number of design configurations in which

n; < 10 also were simulated to illustrate the

potential influence of sample size on the estima-
tion bias introduced by correlated effects. For all
design conditions, simulated data were replicated
for lag - 1 serial correlations of .2, .4, .6, and .8.

In the major portion of the simulation, all ef-
fects were drawn from a unit normal distribution;
therefore, the population values of the variance
components (op, cyl and (3’i,,) were each con-
strained to 1.0 as indicated above. To provide
some indication of how the relative magnitudes
of the population variance components moderate
the estimation bias associated with serially cor-
related effects, a limited set of design configura-
tions was simulated such that the population
value of the residual component was 4.0.

The various combinations of n,, n;, and p
resulted in 36 different design configurations in
the major portion of the study. Additional design
configurations were simulated to more clearly
establish the effects of varying ni and the relative
magnitude of the residual variance component.
Each design was simulated 1,000 times.

Results

Table 1, which summarizes the results of the
simulations for the serially correlated facet effect
and residual effect models, reveals predictable
trends. In the case of serially correlated errors,
the residual component was underestimated, and
the person component was overestimated by a
nearly equal amount. Together or separately,
these biases will result in an overestimation of the

computed generalizability coefficient for any D
study. When facet effects were serially correlated,
the residual and person components were un-

affected ; however, o~ was underestimated as a
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Table 1
Mean Variance Component Estimates for Various Combinations of

n,, n;, and p Under Two Conditions of Correlated Effects

function of both the serial correlation and ni.
Although this underestimation does not directly
affect the typical generalizability coefficient and
66relative&dquo; error term, it does affect the estima-
tion of the &dquo;absolute&dquo; error term, universe score
confidence intervals, and other statistics that

make use of this component (e.g., index of

dependability for mastery tests).
For designs that employ only a few levels of

a facet, the bias introduced by serially correlated
effects can be significant even for modest levels
of correlation (p). Table 2 shows this bias for
some selected conditions in which ni < 10 (the
information reported in Table 2 also is based on
1,000 replications of each design configuration).
Note that in the typical case in which only a few
observations are made on each person, the bias
in the estimates of variance components can be
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Table 2
Mean Variance Component Estimates
for the Correlated Residuals Model

for Values of n, < 10, Where
p = .2 and n = .25

quite substantial even for small values of serial
correlation.

Note that the amount of bias introduced in
the estimates of variance components for each
condition is constrained by the relative size of the
population values of the variance components
represented. In the simulation study, the residual
component was modeled to be comparable in
magnitude to the person and facet component.
In most applications of generalizability theory,
the residual component is usually far larger than
that for persons. Consequently, the practical
effect of serial correlation can be expected to be
even greater for real data. That is, the relative
amount of variance redistributed to the person
component from the residual component is pro-
portional to the population value of the residual
component for fixed values of n,, ni, and the
serial correlation.
An illustration of this effect is shown in Table

3. The data in Table 3 are based on simulations
for the correlated residual model in which the
residual variance component was modeled to be
4.0 instead of 1.0 (again, the values in Table 3
are based on 1,000 replications of each design
configuration). Note that the proportion of
residual variance transferred to the person com-

ponent estimate is nearly identical to that shown
in Table 1; therefore, the bias introduced into the
person component estimate is much greater
because the residual component was initially
larger.

Discussion

The results reported here indicate that serial

Table 3
1l~ean Variance Component Estimates for
Various Combinations of ni and p, Where

apl6p;,e and a¡/ a;i,e Equal 4.0 (np = 50)

correlation in measurement effects can have a
marked influence on the impression of the de-
pendability of the measurement data. Perhaps the
most troubling aspect of these findings is that the
bias introduced by the correlation is a function
of the number of levels of the facet represented
in the G study design and of the relative magni-
tude of the population values of the variance
components. The applied implication of the
former finding is not only that the estimates of
variance components will be biased, but that the
bias will decrease as the number of observations
on each person increases. Consequently, when n;
is large, the effects will be minimal. Because of
these dependencies, the normal D study estimates
(in which ni is varied and typically smaller than
that used in the G study) will not be accurate
because the variance components resulting from
the G study are based on a different uni than that
employed in the D study. This, of course, pro-
vides still another strong case for large sample
G study designs in which the bias is minimal.

The effects noted above are equally likely to
be present in designs employing more than a
single facet. Because economy of observations
becomes an important concern in more complex
designs, the biases present could be quite large.
Consider, for example, a simple nested design
with ratings on repeated trials nested within
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occasions for a particular observation schedule.
In such studies, it would not be uncommon to
include only a few occasions in the G study (cer-
tainly fewer than 10). In the presence of a serial-
ly correlated occasion effect, the variance com-
ponent for occasions might be seriously under-
estimated and therefore leave the impression that
the occasion of the observations has a minimal
effect on the generalizability of the data.
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